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  L'archive ouverte pluridisciplinaire

anatomy. Single-organ methods leave the potential of organ cosegmentation in large field-of-view (FOV) images unexplored.

Multiorgan segmentation is necessary in several situations. Some clinical procedures, such as radiotherapy [START_REF] Pasquier | Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy[END_REF] and detection of metastasis [START_REF] Moltz | Advanced segmentation techniques for lung nodules, liver metastases, and enlarged lymph nodes in CT scans[END_REF] require a simultaneous scrutiny of several anatomies. Other applications include the creation of patientspecific models and the semantic navigation of anatomy [START_REF] Seifert | Semantic annotation of medical images[END_REF]. Speaking of methods, multiorgan segmentation expressed as a sequence of single-organ segmentations is prone to the propagation of errors between different stages. This is usually alleviated by post-segmentation correction, which is difficult to generalize [START_REF] Camara | Computational modeling of thoracic and abdominal anatomy using spatial relationships for image segmentation[END_REF]. Intrinsically multiorgan methods raise questions neither on segmentation sequence nor on error propagation. We thus focus on anatomy-independent multiorgan methods that can be applied to a wide range of medical images.

A. Multiorgan segmentation methods

The basic procedure that underlies multiatlas segmentation (MAS) methods [START_REF] Park | Construction of an abdominal probabilistic atlas and its application in segmentation[END_REF]- [START_REF] Oliveira | A novel multi-atlas strategy with dense deformation field reconstruction for abdominal and thoracic multi-organ segmentation from CT[END_REF] is the following: a number of images are selected from a dataset and registered onto the target structure, then corresponding annotations are transfered to the target and merged to localize and segment it. An atlas designates the pair of the intensity image and its annotation. A recent survey [START_REF] Iglesias | Multi-atlas segmentation of biomedical images: a survey[END_REF] shows that MAS methods are applied to brain MRI more often than to thoracic-abdominal CT images. The reason is that the relatively low inter-subject variation in overall brain shape and structure locations allows good alignment. In contrast, abdominal structures exhibit high location and shape variability and are challenging for registration [START_REF] Xu | Evaluation of six registration methods for the human abdomen on clinically acquired ct[END_REF].

A related family of methods are those that rely on statistical shape models (SSM) [START_REF] Chen | Medical image segmentation by combining graph cuts and oriented active appearance models[END_REF]- [START_REF] Okada | Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors[END_REF]. In a nutshell, SSM methods create a statistical model for a structure describing its mean shape or appearance and its variabilities. The model is then matched to a target in order to localize and segment it. Note that such mean models represent variation in the particular dataset they are created from. Therefore, when a target significantly differs from the mean, specificity can be low. Moreover, due to wide inter-subject differences, the mean shape of some structures may have no anatomical meaning. We refer the reader to the following review for further details [START_REF] Heimann | Statistical shape models for 3D medical image segmentation: a review[END_REF].

The shortcomings of SSM are addressed in some atlas-based methods, e.g. [START_REF] Wolz | Automated abdominal multi-organ segmentation with subject-specific atlas generation[END_REF], [START_REF] Kahl | Good features for reliable registration in multi-atlas segmentation[END_REF], by the creation of subject-specific shape models, called probabilistic atlases (PA), constructed by merging registered annotations into a spatial probability of organ location, used subsequently as a prior to segment the target. The construction of such target-specific PAs can however be costly since several atlases are required to build a PA for a specific target that cannot be used to segment another.

Patch-based segmentation methods [START_REF] Wang | Geodesic patch-based segmentation[END_REF], [START_REF] Tong | Discriminative dictionary learning for abdominal multi-organ segmentation[END_REF] avoid the computationally expensive step of, often non-rigid, atlas registration in MAS methods. Instead of registering organ-level atlases, the latter are split into a large number of patches, and patch selection is done according to a similarity metric in local neighborhoods around the voxels of the target.

Machine learning has had important contributions to multiorgan segmentation. Since classifiers, when applied as they are, label image elements (voxels, superpixels, etc.) independently, researchers have taken local context into account by using long-range spatial features [START_REF] Montillo | Entangled decision forests and their application for semantic segmentation of CT images[END_REF], [START_REF] Heinrich | Multi-organ segmentation using vantage point forests and binary context features[END_REF], by introducing location variables into the classifier's objective [START_REF] Glocker | Joint classification-regression forests for spatially structured multi-object segmentation[END_REF] or by using random fields in conjunction with classifiers [START_REF] Seifert | Hierarchical parsing and semantic navigation of full body CT data[END_REF]. With the emergence of deep learning, neural networks have regained ground in medical image analysis [START_REF] Litjens | A survey on deep learning in medical image analysis[END_REF]. Deep neural networks of fully convolutional [START_REF] Larsson | Robust abdominal organ segmentation using regional convolutional neural networks[END_REF]- [START_REF] Lavdas | Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs) and a multi-atlas (MA) approach[END_REF] and especially of the U-net variant [START_REF] Pawlowski | DLTK: State of the art reference implementations for deep learning on medical images[END_REF], [START_REF] Hu | Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets[END_REF] have achieved very good results in multiorgan segmentation. The effectiveness of these methods depends on the availability of large annotated datasets and GPUbased computing to optimize empirically defined network architectures that can have millions of parameters [START_REF] Hu | Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets[END_REF].

Regularization techniques are widely resorted to in multiorgan segmentation to favor the spatial consistency of labels assigned to individual image elements by a voting or a probability maximization mechanism. Level-set [START_REF] Hu | Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets[END_REF], [START_REF] Kohlberger | Automatic multi-organ segmentation using learning-based segmentation and level set optimization[END_REF] and random walk methods [START_REF] Heinrich | Multi-organ segmentation using vantage point forests and binary context features[END_REF] have been used to regularize initial segmentations produced by classifiers. The use of Graph Cut regularization is arguably the most common. It is employed by many methods such as [START_REF] Linguraru | Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT[END_REF]- [START_REF] Wolz | Automated abdominal multi-organ segmentation with subject-specific atlas generation[END_REF], [START_REF] Kahl | Good features for reliable registration in multi-atlas segmentation[END_REF], [START_REF] Okada | Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors[END_REF], [START_REF] Wang | Geodesic patch-based segmentation[END_REF], [START_REF] Tong | Discriminative dictionary learning for abdominal multi-organ segmentation[END_REF]. Graph Cut optimization has the advantage of theoretical and empirical optimality [START_REF] Szeliski | A comparative study of energy minimization methods for markov random fields with smoothness-based priors[END_REF]. For a particular class of objective functions frequently arising in segmentation, Graph Cut algorithms produce global optima in single-object and provablygood approximate solutions in multiobject segmentation [START_REF] Boykov | Graph cuts in vision and graphics: Theories and applications[END_REF].

B. Keypoint-based registration and segmentation

Widely used by the computer vision community [START_REF] Tuytelaars | Local invariant feature detectors: a survey[END_REF], keypoint-based image description and matching methods, such as SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] and SURF [START_REF] Bay | Speeded-up robust features (SURF)[END_REF], have found relatively few applications in medical image analysis. These methods first detect a number of interest points (edges, ridges, blobs etc.) in the image, then compute feature vectors describing local neighborhoods around these points and use them as content descriptors. In medical imaging, 3D versions of SIFT have been used for brain MR image matching [START_REF] Cheung | n-SIFT: n-dimensional scale invariant feature transform[END_REF], linear registration of radiation therapy data [START_REF] Allaire | Full orientation invariance and improved feature selectivity of 3D SIFT with application to medical image analysis[END_REF] and deformable registration of thoracic CT [START_REF] Urschler | SIFT and shape context for feature-based nonlinear registration of thoracic CT images[END_REF]. A review of keypoint-based medical image registration can be found in [START_REF] Sotiras | Deformable medical image registration: A survey[END_REF]. Taking an approach close to ours, PAs used as priors in Graph Cut segmentation are created in [START_REF] Kahl | Good features for reliable registration in multi-atlas segmentation[END_REF] by registering atlases to the target via SIFT keypoints extracted from the target and atlases and used to estimate an affine transformation. A final step of deformable registration is applied on images prior to merging registered atlases to create PAs. Significant speedups in MAS have been achieved in [START_REF] Wachinger | Keypoint transfer segmentation[END_REF] by eliminating dense image registration between target and atlases. Organ labels are transfered to the target image based on sparse correspondences between keypoints identified in the latter and those detected in atlas images that carry labels.

II. METHODS

We propose an automatic multiorgan segmentation method for 3D images of different anatomical content and modality. It follows a Bayesian approach and uses location and intensity likelihoods of structures and a prior distribution of their spatial configuration. Location likelihoods are defined by target-specific PAs constructed by registering atlases to the target in shrinking frames using a fast SURF-based registration method that estimates a homothetic transformation (translation + isotropic scale). Confidence regions of PAs are used to derive target-specific intensity likelihoods. The spatial prior is derived from shortest-path constraints defined on the adjacency graph of structures [START_REF] Kéchichian | Shortestpath constraints for 3D multi-object semi-automatic segmentation via clustering and graph cut[END_REF]. Likelihoods and the spatial prior define an energy function, optimized by a multilabel Graph Cut algorithm to obtain the multiorgan segmentation. A preliminary, less efficient version of the present work has appeared in [START_REF] Kéchichian | Automatic 3D multiorgan segmentation via clustering and graph cut using spatial relations and hierarchically-registered atlases[END_REF], [START_REF] Kéchichian | Automatic multiorgan segmentation using hierarchically registered probabilistic atlases[END_REF] where we employed a different registration approach by using a reference image in the frame of which PAs were created and transfered to the target by pairwise registration.

We describe our approach in this section and present evaluations in the subsequent one. The last section concludes the paper pointing out future directions of research.

A. SURF keypoint-based image registration

Image registration is a key component in our segmentation method using PAs. Dense deformable registration methods are robust to shape variability but they exhibit high computational cost [START_REF] Xu | Evaluation of six registration methods for the human abdomen on clinically acquired ct[END_REF], which is a problem for the construction of PAs for over two dozen structures. Moreover, as PAs do not constitute the dominant decision factor in segmentation, suboptimal PAs can be nearly as effective as ones built via deformable registration. Imperfections can be balanced out by criteria such as organ appearance and spatial coherence.

We use a fast and robust registration algorithm based on SURF keypoints and a homothetic transformation, capable of registering a pair of images within a few seconds. Keypoints are extracted from each 2D axial slice, however, registration is computed in 3D i.e. the transformation is estimated in the 3D object space, regardless of image spacing, hence the (2+1)D designation. Volumes with partial overlap are well handled, which is important for localizing organs not entirely falling in the image frame. In this paper we improve the registration method detailed in [START_REF] Kéchichian | Automatic multiorgan segmentation using hierarchically registered probabilistic atlases[END_REF] by following a multiscale approach.

1) Feature extraction and matching: We currently extract SURF keypoints [START_REF] Bay | Speeded-up robust features (SURF)[END_REF], but our method is generic and could use other off-the-shelf descriptors as well. To reduce computation time, we first isotropically resample the volume so that its second longest dimension is equal to a desired resolution R. Next, we extract SURF features from each axial slice. Fig. 1 shows features found in a pair of slices in Visceral training dataset images 10000108_1_CTce_ThAb and 10000109_1_CTce_ThAb. The total number of features is 11500 and 9400, respectively. Lastly, extracted features are matched using the second closest ratio criterion [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. Fig. 1 shows the 9 matching keypoint pairs found in both slices. 2) (2+1)D registration: Once keypoint pairs are found, we proceed with volume registration. One problem with keypointbased registration is that the number of true matching keypoint pairs is relatively low. Hence, for robustness, we use a simple homothetic transformation model:

  x ′ y ′ z ′   = s   x y z   +   t x t y t z   . (1) 
We estimate s, t x , t y and t z on keypoint pairs similarly to the RANSAC method [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF]. The use of a single scale factor preserves the intrinsic shape of an organ, which might otherwise be compromised with higher degrees of freedom. Rotation parameters are unnecessary because we currently process images with consistent patient orientations.

3) Registration in shrinking frames: To improve the robustness of organ localization proposed in [START_REF] Kéchichian | Automatic multiorgan segmentation using hierarchically registered probabilistic atlases[END_REF], we follow a multiscale approach seeking a balance between registration domain size and accuracy according to the following heuristic: a large image contains many keypoints, therefore its registration would be robust, however its structures will all be registered by the same transformation limiting the accuracy of individual structure registrations. In contrast, a smaller image contains fewer keypoints, therefore its registration would be less robust but might be locally more accurate. Therefore, when registering a source patient organ with its counterpart in the target, we start by registering patients on the entire image frame, then progressively shrink registration frames while converging towards the bounding box of the source organ. To register an organ O, our algorithm performs the following steps:

• Set the source frame F 1 to the whole image of patient 1, and the target frame F 2 to that of patient 2. • If registration is successful, i.e. the number of RANSAC inliers is above a threshold θ, shrink F 1 and F 2 towards the bounding box of source O, and recompute the transform, otherwise use the previous transform and terminate. In our experiments, we use 5 shrinking steps setting θ to 20. Fig. 2 illustrates the procedure. We note that our global-tolocal registration strategy is closer to the MRF-based multiscale registration approach taken in the MAS method [START_REF] Gass | Multi-atlas segmentation and landmark localization in images with large field of view[END_REF] compared to MAS methods [START_REF] Jimenez-Del Toro | Hierarchic multi-atlas based segmentation for anatomical structures: Evaluation in the visceral anatomy benchmarks[END_REF], [START_REF] Wang | Automatic multi-organ segmentation using fast model based level set method and hierarchical shape priors[END_REF] that proceed according to anatomical hierarchies, performing affine registration on thorax-abdomen and deformable registration on organ levels. A related 2-step regression-based method is proposed in [START_REF] Gauriau | Multi-organ localization with cascaded global-to-local regression and shape prior[END_REF].

• Register F 1 onto F 2 .

B. Organ probabilistic atlas construction

A target-specific PA of an organ introduces a bias for certain locations in the image for the shape it represents allowing to rule out locations that are unlikely to be part of the organ. Fig. 3a illustrates such a PA. The reference-frame PA creation approach in our earlier work [START_REF] Kéchichian | Automatic multiorgan segmentation using hierarchically registered probabilistic atlases[END_REF], while having lower computational cost, fails to exploit the full variability of the dataset because only a single pairwise registration, that of the reference and target images, is attempted. Moreover the use of a dataset-representative reference introduces bias for it.

Using images and annotations from the Visceral training dataset as atlases [START_REF] Hanbury | Bringing the algorithms to the data: cloud-based benchmarking for medical image analysis[END_REF], we construct target-specific PAs for the 20 structures listed in Table I. We also create PAs for three additional regions: background (BKG), thorax and abdomen (THAB) and body envelope (ENV) from annotations generated automatically as explained in [START_REF] Kéchichian | Automatic multiorgan segmentation using hierarchically registered probabilistic atlases[END_REF]. Full-image modeling by the introduction of these labels gives more discriminative power to our spatial prior and allows to label corresponding regions in the target with the same segmentation algorithm as the structures of interest, rather than resorting to target-dependent preprocessing to remove undesired regions as in [START_REF] Wang | Automatic multi-organ segmentation using fast model based level set method and hierarchical shape priors[END_REF].

We create a PA separately for each structure in a target image of a given modality according to the following steps:

• Register dataset images of the same modality as the target onto the latter via the procedure described in Section II-A3. Use bounding boxes of organ annotations in dataset images to guide the frame shrinking process. • Apply obtained transformations to corresponding annotation images (essentially binary mask images). • Rank registered annotations according to their mutual overlap as measured by the Dice similarity metric. Annotations with greater mean overlap (agreement) with others are ranked higher. Refer to Fig. 3b. • Select highest ranking annotations eliminating ones with mean overlap inferior to a predefined threshold τ . • Accumulate selected annotations in a 3D histogram of target image dimensions and normalize it to produce a spatial probability distribution representing the PA. Our ranking scheme is similar to the approach taken in [START_REF] Wolz | Automated abdominal multi-organ segmentation with subject-specific atlas generation[END_REF], although the latter uses the overlap measure to weigh registered annotations in the PA rather than selecting better and eliminating poorer ones. In practice, we set τ = 0.20.

C. Image clustering

The full-resolution voxel representation is often redundant because objects usually comprise many similar pixels that could be grouped. Therefore, we simplify the image prior to segmentation by an image-adaptive centroidal Voronoi tessellation (CVT) achieving a good balance between cluster compactness and object boundary adherence. We have shown that the clustering improves the runtime and memory footprint of the segmentation up to an order of magnitude without compromising the quality of the result [START_REF] Kéchichian | Shortestpath constraints for 3D multi-object semi-automatic segmentation via clustering and graph cut[END_REF], as it remains largely stable across practical settings of clustering resolution. Note however that imprecise tessellations cannot be corrected, as we apply no post-segmentation correction or refinement. We shall leave out algorithmic details of the method and define the graph of a CVT, illustrated in Fig. 4b. Denote the surface of a cluster C i by ∂C i . Given a clustering C, let the set S index its clusters, and let G = S, E be an undirected graph on cluster centroids where pairs of clusters sharing a surface define the set of edges E = {i, j} | i, j ∈ S, |∂C i ∩ ∂C j | = 0 . Consequently, the neighborhood of a node i ∈ S is defined as

N i = j | j ∈ S, ∃ {i, j} ∈ E .

D. Multiorgan image segmentation

We formulate image segmentation as a Bayesian labeling problem, defined as the optimal assignment of a label from a set of labels L, representing the structures to be segmented, Reproduced from Fig. 5 in [START_REF] Kéchichian | Automatic multiorgan segmentation using hierarchically registered probabilistic atlases[END_REF].

to each of the variables in a set of n variables, indexed by S.

Assume that each variable i ∈ S represents a cluster of a CVTclustered image and is associated with the corresponding node in the CVT graph G. An assignment of labels to all variables, denoted by ℓ ∈ L, is called a configuration. An assignment of a label to a single variable is denoted by ℓ i . In order to find the optimal segmentation, we follow a maximum a posteriori approach and compute the optimal configuration by minimizing the energy of a posterior distribution of ℓ, defined by:

E(ℓ) = t 1 i∈S D i (ℓ i ) + t 2 i∈S P i (ℓ i ) + 1 2 i∈S j∈Ni V i,j (ℓ i , ℓ j ) .
(2) In (2), t 1 and t 2 are temperature parameters, N i is the neighborhood of the variable i. The first and second sums in (2) correspond respectively to organ intensity and location (PA) likelihood energies, and the third is the energy of a prior distribution of label configurations expressed as a Markov random field (MRF) with respect to G. We minimize (2) via the expansion moves multilabel Graph Cut algorithm [START_REF] Boykov | Graph cuts in vision and graphics: Theories and applications[END_REF].

1) Spatial configuration prior: Pairwise terms of (2) encode prior information on interactions between labels assigned to pairs of neighboring variables. They favor the spatial consistency of the labeling with respect to a reference model by favoring valid and penalizing invalid but possible solutions. We define these terms according to the piecewise-constant vicinity prior model we proposed in [START_REF] Kéchichian | Shortestpath constraints for 3D multi-object semi-automatic segmentation via clustering and graph cut[END_REF]. Let A = L, W be a weighted undirected graph on L where W is the set of unit-weight edges linking pairs of nodes representing adjacent structures in the image. We define the pairwise term in (2) by:

V i,j ℓ i , ℓ j = |∂C i ∩ ∂C j | ω a, b , ℓ i = a, ℓ j = b . (3)
where ω a, b is the shortest-path weight from a to b in A, |∂C i ∩ ∂C j | is the area of the common surface of clusters C i , C j ensuring that (2) is independent of clustering resolution. We use the graph given in Fig. 5 to define the spatial prior in experiments involving the Visceral dataset.

2) Intensity and location likelihoods: Unary terms of (2) measure the cost of label assignments. They are defined by: where I v and X v denote the intensity and the coordinates of voxel v. Location likelihoods Pr(X|l) are defined from PAs.

D i (ℓ i ) = -ln v∈Ci Pr(I v | ℓ i ) , (4a) 
P i (ℓ i ) = -ln v∈Ci Pr(X v | ℓ i ) , (4b) 
The intensity likelihood Pr(I|l) for a given l is estimated as a Gauss-smoothed normalized intensity histogram derived from voxels inside regions of high probability in the corresponding PA. We define confidence regions according to a probability threshold. Fig. 3a gives an illustration for the right kidney.

III. EVALUATION RESULTS

We have evaluated our method in Visceral benchmarks [START_REF] Jimenez-Del Toro | Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: Visceral anatomy benchmarks[END_REF]. Visceral provides training and test datasets of annotated radiological images and a cloud-based platform allowing participants to develop and evaluate segmentation algorithms in identical environments on the same test dataset. Since the latter comprises few images and is not available to participants, in order to make statistically valid conclusions and to explore parameter settings, we have evaluated our method independently on the training dataset as well. In addition to comparisons with benchmarks participants, we compare our method with state of the art methods and conclude this section by comparing our results for abdominal organs with those reported by specialized single-organ MAS methods.

A. Data

The Visceral dataset [START_REF] Hanbury | Bringing the algorithms to the data: cloud-based benchmarking for medical image analysis[END_REF] Annotations for all structures listed in Table I are provided for all modalities except abdominal MRI, which does not carry annotations for thoracic structures. We discard these structures in segmentation. Details on subjects and acquisition conditions are given in the Visceral project documentation [START_REF] Winterstein | Data set for first competition[END_REF].

B. Performance metrics

We measure segmentation quality with respect to ground truth via two metrics, the well-known Dice similarity metric (DSM) and mean surface distance (MSD). These metrics are complementary in that DSM measures volume overlap whereas MSD measures the accuracy of boundary delineation.

Visceral benchmarks follow a per-anatomy evaluation strategy that is more suited to single-organ or sequential multiorgan segmentation methods. Simultaneous multiorgan methods, producing segmentations for all organs in a single run with a single parameterization ought to be evaluated additionally on the entire image. Thus, in addition to DSM and MSD for individual structures, we employ "overall" metrics calculated from respective mean weighted measures for all structures.

Let S l and T l represent the sets of voxels labeled with l ∈ L in the segmented image I and the ground-truth annotation T respectively, and denote the DSM for a structure l ∈ L by DSM l (I, T ). We define the "overall" DSM metric by:

DSM L (I, T ) = l∈L DSM l (I, T ) |T l | |T | , (5) 
where | • | denotes the structure size in voxels. Note that the weighting mechanism allows larger structures to dominate (5) biasing it against smaller ones. Let M l S and M l T be the surfaces of structure volumes labeled by l ∈ L in the segmented image I and the groundtruth annotation T . The MSD for l ∈ L is given by:

MSD l = max d(M l S , M l T ), d(M l T , M l S ) , (6) 
where d(A, B) is the directed mean distance in millimeters. For a pair of surfaces A and B, d(A, B) is given by:

d(A, B) = 1 M a∈A min b∈B a -b . (7) 
The overall MSD metric is defined similarly to [START_REF] Moltz | Advanced segmentation techniques for lung nodules, liver metastases, and enlarged lymph nodes in CT scans[END_REF].

C. Qualitative evaluation

Fig. 6 gives 3D illustrations of multiorgan segmentations produced by our method on 2 images of different modalities from the Visceral training dataset. Corresponding 2D coronal views are given in Fig. 7. Further qualitative and quantitative results are given in the supplement. In 3D views, segmentations are represented by surfaces extracted from labeled volumes, overlaid on coronal cross sections of corresponding images and rendered with transparencies to allow occluded structures to be visible. Fig. 6 is organized in 2 groups of 3 views presenting 3 multiorgan segmentations for the same image. The leftmost view in each group presents the best image segmentation as measured by [START_REF] Moltz | Advanced segmentation techniques for lung nodules, liver metastases, and enlarged lymph nodes in CT scans[END_REF], the middle presents an aggregate of best organ segmentations as measured by DSM and the rightmost view presents the ground-truth annotation. It is obvious that most structures in globally or individually evaluated segmentations have similar segmentation quality, especially larger ones such as the lungs and the liver. Differences can be observed on smaller organs, e.g. the oversegmentation of the bladder in CTce_ThAb (left). 

D. Results on the Visceral training dataset

For all images in the dataset, we follow a leave-oneout approach by selecting a target and using all remaining annotated images in the same modality to construct PAs. We set the registration resolution parameter R to 150 voxels. t 2 = 0.12, found empirically to produce good results for most organs in this modality in terms of organ presence in results and acceptable segmentation quality. Naturally, blue bars indicate the best performance, however orange ones corresponding to overall performance are quite similar, especially on major thoracic and abdominal organs, while falling short on smaller ones due to the bias in the overall metric. Lastly, yellow bars indicate performance implications of using "default" parameters in situations where seeking an optimal setting would be impractical. The mean DSM value on all structures in the presented modality is about 10% lower in the fixed setting compared to optimized settings. Table I presents the results of quantitative evaluation on all 4 modalities of the Visceral training dataset. For each structure in the leftmost column, we give mean DSM and MSD values calculated over best structure segmentations produced by a parameter setting. We give the number of structures for each modality under the "#" column. Since the Visceral dataset does not provide annotations for all structures in all images, this number is not always equal to 20.

In Fig. 9 we compare the proposed method with our previous [START_REF] Kéchichian | Automatic multiorgan segmentation using hierarchically registered probabilistic atlases[END_REF]. We limit the presentation to the CTce_ThAb modality using only the DSM metric. We can see that the proposed method improves on the previous for all structures except one. Statistical testing using one-tailed paired t-test confirms that improvements are significant on the p = 0.05 level for 18 structures, and for 8 structures on p = 0.01.

No improvements were made for the 1 st lumbar vertebra (L1). This can be explained as follows. The proposed method performs several registrations to construct the structure PA and has greater chances of missing the target L1 and registering against nearby vertebrae compared to the previous approach that performs a single registration between the target and a reference image onto which PAs are constructed in advance.

We close this section by an evaluation of the segmentation quality vs. runtime trade-off induced by settings of the registration resolution parameter R on the training dataset CTce_ThAb. Fig. 10 gives mean DSM values of best structure segmentations for 4 settings of R: 200, 150, 100 and 50. Table III summarizes corresponding mean runtimes. All algorithms are implemented in C++ and run in a 64-bit Linux environment on a laptop computer with a CPU speed of 2.1 GHz and a RAM capacity of 16 GB. Table III shows that a threefold reduction of PA construction time is possible via R = 50, and that PA construction time dominates total runtime. We construct PAs sequentially, which is not mandatory since PAs are independent, therefore a speedup proportional to the number of CPUs is possible by parallel PA creation. The current per-organ runtime however is close to that of the recent patch-based method [START_REF] Tong | Discriminative dictionary learning for abdominal multi-organ segmentation[END_REF] where 2 h are needed to segment 5 abdominal structures using 20 atlases, i.e. 0.4 h per organ. In comparison, using 20 atlases to segment 23 structures, our method requires about 0.57 h per organ for R = 100. Fig. 10 confirms that the segmentation quality remains relatively stable for larger organs, such as the lungs and major abdominal organs, and even for the thin and elongated but well contrasted trachea. However important deteriorations in segmentation quality can be observed for smaller or thinner poorly contrasted structures such as abdominal muscles and the gallbladder. We think that the quality-runtime trade-off can be resolved only in the context of an application. We discuss fundamental approaches to runtime reduction in Section IV.

E. Visceral benchmark results and comparisons

We present evaluation results obtained on the Visceral test dataset during Visceral benchmarks. We mention that out of a dozen participating groups, only 2, other than ours, attempted to segment all structures in all modalities. The cloud-based platform, evaluation conditions and results of participants up to 2016 are described in [START_REF] Jimenez-Del Toro | Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: Visceral anatomy benchmarks[END_REF]. Results are also published online on a leaderboard [START_REF]Segmentation Leaderboard[END_REF], this, however is left to the discretion of participants. Therefore we refer to both [START_REF] Jimenez-Del Toro | Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: Visceral anatomy benchmarks[END_REF] and the leaderboard to obtain complete figures for comparisons.

Table II lists our results along with those reported by participants who have segmented at least half of the structures in the CTce_ThAb modality. Comparisons on other modalities are given in the supplement. For each structure, we report mean DSM and MSD values along with the number of produced segmentations. Unfortunately we do not have access to the latter figures for other participants. Due to the impracticality of searching best settings of segmentation parameters t 1 and t 2 in the virtual machine execution environment, in benchmark runs we use temperature settings that have produced best overall † Nagoya University Hospital dataset (private) segmentations as measured by (5) on the Visceral training dataset. We have also tested few nearby settings in an attempt to produce better segmentations for smaller structures.

F. Comparison with the state of the art

It is difficult to compare one's method to the state of the art due to differences in datasets, evaluation strategies and metrics. Nevertheless, in Table IV we present a quantitative comparison of multiorgan segmentation methods representative of the families of approaches discussed in Section I-A. With few exceptions, these methods have been developed and evaluated on contrast-enhanced abdominal CT images. We report results for commonly segmented structures. Methods evaluated on the same dataset appear with a common symbol in the table. We can see that our method achieves comparable performances to those of related methods while opting for simpler algorithms and segmenting 4-5 times as many structures.

G. Comparison with single organ MAS methods

Finally we compare our results to those reported by 3 specialized MAS methods for major abdominal organs. The comparison confirms that our generic method achieves close results to and can even outperform these methods.

1) Liver: In [START_REF] Platero | A multiatlas segmentation using graph cuts with applications to liver segmentation in CT scans[END_REF], a MAS approach using PAs constructed by nonrigid registration is used in a graph-cut segmentation incorporating an intensity model, a label prior probability and spatial regularizer based on a Finsler metric. On 10 contrastenhanced CT images, reported mean DSM = 0.973 ± 0.007. In comparison, we obtain 0.929 ± 0.072 on 20 such images.

2) Kidneys: In [START_REF] Yang | Automatic kidney segmentation in CT images based on multi-atlas image registration[END_REF], a two-step approach is followed whereby kidneys are first located via affine registration of atlases in low resolution, then aligned to higher resolution atlases via deformable registration to obtain final segmentations. On 22 kidneys segmented from contrasted angiographic CT images, mean DSM = 0.952 ± 0.018 and MSD = 0.913 ± 1.06 mm. On 40 kidneys in similar images, we achieve mean DSM = 0.938 ± 0.061 and mean MSD = 0.20 ± 0.46 mm.

3) Spleen: In [START_REF] Xu | Shape-constrained multi-atlas segmentation of spleen in CT[END_REF], atlas-to-target registrations are used to locate the spleen, the fusion of which provides a shape constraint for a level-set segmentation. On 25 contrasted CT images, mean DSM = 0.83 ± 0.08 and mean MSD = 3.48 ± 1.88 mm. In comparison, we obtain mean DSM = 0.906 ± 0.123 and mean MSD = 1.030 ± 2.570 mm on 20 such cases.

IV. FUTURE WORK

There are several opportunities for near-term improvements on the present method. Table I shows that it performs better on CT than on MR images. The reason is that CT images have consistent appearances, whereas MR images suffer intensity inhomogeneity the correction of which [START_REF] Vovk | A review of methods for correction of intensity inhomogeneity in MRI[END_REF] can improve registration and segmentation. Furthermore, the accuracy of PAs for some "stray" structures, e.g. L1, can be improved by initializing registration for such structures from those of more stable neighbors, e.g. psoas major muscles and the kidneys. Generic data-independent methods are suitable for the unattended processing of large datasets. With similar segmentation performances by most methods, the main challenge today is to achieve significant improvements in runtime with increasing numbers of anatomies while maintaining accuracy levels. Recent approaches, such as patch-based methods, while eliminating deformable registration, are still computationally expensive, leading in practice to the use of fewer atlases thus reducing the robustness of the method. Deep learning approaches require large amounts of annotated data and dedicated hardware to be effective. We think that sparse representations constitute a promising approach to overcome the burden of image data and to accelerate algorithms significantly. For keypoint-based representations [START_REF] Wachinger | Keypoint transfer segmentation[END_REF], the problem of false matches, the number of which can be well above one third of all matches [START_REF] Mikolajczyk | An affine invariant interest point detector[END_REF], has to be addressed. We think that metric learning methods [START_REF] Zheng | Pairwise identity verification via linear concentrative metric learning[END_REF], especially in 3D, can be beneficial in this context.

Another interesting future research direction is the ability to handle images of varying FOV where not all atlas dataset structures are present. This too is beneficial for the batch processing of large heterogeneous datasets. In this case, an initial detection of the image's content would subsequently allow to select suitable atlases to define models only for structures appearing in the image. Content detection could also be carried out by a keypoint-based approach [START_REF] Agier | Hubless 3D medical image bundle registration[END_REF].

Fig. 1 .

 1 Fig. 1. (top) Features extracted from axial slices in a pair of Visceral training images, (bottom) the 9 matching features. A feature is represented by a circle of radius proportional to the scale at which it is detected, blue and red circles correspond to positive and negative Laplacian values [41]. Reproduced from Fig. 1 in [49].

Fig. 2 .

 2 Fig. 2. Multiscale registration in shrinking frames. Source (blue) and target (green) patients are initially set to entire images. The algorithm alternates registration and shrinking for a number of iterations, or until registration fails.

Fig. 3 .

 3 Fig. 3. (a) Probabilistic atlas of right kidney (transparent white) and its confidence region (transparent red) overlaid on the organ in a contrasted CT image (Section II-D2). (b) Illustration of annotation ranking: two registered annotations with good overlap having good chances of selection for PA construction, and one poorly registered annotation highly likely to be eliminated.

Fig. 4 .

 4 Fig. 4. Adaptive CVT clustering and its graph (b) for a circle image (a). Reproduced from Fig. 5 in [49].

Fig. 5 .

 5 Fig.5. The adjacency graph used to define the spatial prior in our experiments. Reproduced from Fig.6in[START_REF] Kéchichian | Automatic multiorgan segmentation using hierarchically registered probabilistic atlases[END_REF].

  is divided into training and testing subsets comprising, respectively, 10 and 20 annotated large FOV images of 4 modalities with the following mean image dimensions and voxel sizes: contrast-enhanced thoracic-abdominal CT (CTce_ThAb, 512×512×438 voxels, 0.71 × 0.71 × 1.5 mm), unenhanced whole-body CT (CT_wb, 512 × 512 × 877 voxels, 0.84 × 0.84 × 1.5 mm), contrastenhanced abdominal MRI (MRT1cefs_Ab, 313 × 76 × 384 voxels, 1.25×3×1.25 mm) and unenhanced whole-body MRI (MRT1_wb, 391 × 29 × 1469 voxels, 1.26 × 6 × 1.26 mm).

Fig. 6 .

 6 Fig. 6. 3D rendering of multiorgan segmentations of Visceral training dataset images 10000109_1_CTce_ThAb (left) and 10000331_4_MRT1cefs_Ab (right). In each group, the leftmost view gives the best image segmentation, the middle an aggregate of best organ segmentations and the rightmost the ground-truth annotation.

Fig. 7 .

 7 Fig. 7. 2D coronal views of multiorgan segmentations of Visceral training dataset images 10000109_1_CTce_ThAb (left) and 10000331_4_MRT1cefs_Ab (right). In each group, the left view gives the best image segmentation, the right an aggregate of best organ segmentations.

Fig. 8 .

 8 Fig. 8. Comparison of best organ segmentations vs. organs coming from best image segmentations vs. organ segmentations produced by fixed parameters on the Visceral training dataset CTce_ThAb. Sample sizes are given above the upper horizontal axis. Refer to Section III-D for details.

  100 segmentations are attempted per image, corresponding to combinations of energy parameters t 1 and t 2 (2) uniformly sampled on empirically determined ranges. For CT modalities t 1 ∈ [0.1, 1.0], and for MRI t 1 ∈ [0.5, 1.4]. Irrespective of modality, t 2 is set to c×t 1 , where c ∈ [0.1, 1.0]. Due to differ-

Fig. 9 .Fig. 10 .

 910 Fig.9. Comparison of the proposed method with our previous[START_REF] Kéchichian | Automatic multiorgan segmentation using hierarchically registered probabilistic atlases[END_REF] on the Visceral training dataset CTce_ThAb. Sample sizes are given above the upper horizontal axis, significant improvements at p = 0.01 indicated via "*".

TABLE I QUANTITATIVE

 I LEAVE-ONE-OUT EVALUATION RESULTS OF THE PROPOSED METHOD ON ALL FOUR MODALITIES OF THE VISCERAL TRAINING DATASET.

			CTce_ThAb			CT_wb			MRT1cefs_Ab			MRT1_wb	
	Structures	#	DSM	MSD	#	DSM	MSD	#	DSM	MSD	#	DSM	MSD
	trachea	20 0.868 ± 0.031 0.465 ± 0.419	20 0.878 ± 0.047 0.349 ± 0.327	0	-	-	20 0.556 ± 0.300 3.114 ± 8.672
	lung R	20 0.978 ± 0.009 0.037 ± 0.019	20 0.974 ± 0.011 0.043 ± 0.025	0	-	-	20 0.883 ± 0.037 0.312 ± 0.154
	lung L	20 0.974 ± 0.012 0.049 ± 0.034	20 0.972 ± 0.011 0.046 ± 0.031	0	-	-	19 0.866 ± 0.081 0.404 ± 0.349
	pancreas	18 0.573 ± 0.207 4.066 ± 5.940	20 0.441 ± 0.151 4.717 ± 2.943	11 0.338 ± 0.265 4.624 ± 4.296	5 0.137 ± 0.147 8.798 ± 5.041
	gallbladder	20 0.542 ± 0.323 4.882 ± 6.993	18 0.179 ± 0.200 15.96 ± 15.52	10 0.133 ± 0.245 21.06 ± 21.01	6 0.093 ± 0.227 59.34 ± 89.44
	bladder	20 0.903 ± 0.052 0.215 ± 0.207	19 0.747 ± 0.124 1.232 ± 0.930	20 0.673 ± 0.269 1.952 ± 3.246	20 0.700 ± 0.277 1.806 ± 3.064
	sternum	20 0.788 ± 0.103 1.557 ± 2.371	20 0.772 ± 0.098 1.035 ± 1.194	0	-	-	5 0.280 ± 0.139 4.401 ± 2.749
	L1	20 0.613 ± 0.215 3.067 ± 3.358	20 0.486 ± 0.149 3.388 ± 1.984	13 0.375 ± 0.196 4.462 ± 3.241	19 0.495 ± 0.264 2.900 ± 3.162
	kidney R	20 0.935 ± 0.052 0.208 ± 0.397	20 0.762 ± 0.175 1.651 ± 2.415	17 0.783 ± 0.191 1.771 ± 2.740	20 0.784 ± 0.155 0.704 ± 0.870
	kidney L	20 0.941 ± 0.069 0.190 ± 0.530	20 0.852 ± 0.107 0.670 ± 1.072	19 0.844 ± 0.181 1.859 ± 5.073	19 0.745 ± 0.236 0.927 ± 1.315
	adrenal R	14 0.361 ± 0.251 4.621 ± 6.077	13 0.193 ± 0.153 5.127 ± 3.232	3 0.001 ± 0.002 16.83 ± 10.04	2 0.006 ± 0.008 2.770 ± 0.862
	adrenal L	16 0.346 ± 0.242 9.340 ± 20.26	14 0.219 ± 0.111 4.370 ± 2.868	5 0.166 ± 0.227 9.975 ± 8.625	6 0.006 ± 0.014 14.33 ± 20.01
	psoas R	20 0.866 ± 0.033 0.496 ± 0.192	20 0.792 ± 0.101 1.085 ± 0.776	20 0.749 ± 0.061 0.831 ± 0.301	20 0.747 ± 0.168 1.200 ± 2.099
	psoas L	20 0.858 ± 0.042 0.610 ± 0.284	20 0.792 ± 0.083 1.049 ± 0.693	20 0.709 ± 0.086 1.318 ± 0.921	20 0.728 ± 0.248 9.779 ± 39.65
	abdominal R 20 0.683 ± 0.158 2.509 ± 2.849	20 0.510 ± 0.213 4.442 ± 3.647	3 0.063 ± 0.057 14.42 ± 11.56	2 0.132 ± 0.185 5.457 ± 1.173
	abdominal L 20 0.661 ± 0.199 4.262 ± 8.083	20 0.545 ± 0.263 5.058 ± 6.670	4 0.197 ± 0.164 6.592 ± 2.810	2 0.075 ± 0.103 6.175 ± 0.003
	aorta	20 0.760 ± 0.126 2.150 ± 1.433	20 0.621 ± 0.109 2.674 ± 1.150	3 0.360 ± 0.288 6.440 ± 3.623	20 0.540 ± 0.083 1.741 ± 0.710
	liver	20 0.929 ± 0.072 0.546 ± 1.410	20 0.889 ± 0.039 0.689 ± 0.508	20 0.868 ± 0.052 0.512 ± 0.426	19 0.818 ± 0.038 0.696 ± 0.339
	thyroid	15 0.505 ± 0.244 3.543 ± 3.383	17 0.444 ± 0.223 3.475 ± 3.018	0	-	-	13 0.283 ± 0.266 3.047 ± 2.138
	spleen	20 0.906 ± 0.123 1.030 ± 2.570	20 0.898 ± 0.053 0.376 ± 0.603	20 0.817 ± 0.113 0.717 ± 0.812	20 0.739 ± 0.102 0.680 ± 0.629

TABLE II VISCERAL

 II BENCHMARK EVALUATION RESULTS OF THE PROPOSED AND OTHER MULTIORGAN SEGMENTATION METHODS ON THE VISCERAL TEST DATASET CTC E_THAB . BEST PERFORMANCES ARE HIGHLIGHTED IN BOLD FACE.

			Proposed		Gass et al. [16]	Jimenez et al. [15]	Wang & Smedby [51]
	Structures	#	DSM	MSD	DSM	MSD	DSM	MSD	DSM	MSD
	trachea	10 0.834 ± 0.050 0.538 ± 0.319	0.847 ± 0.050 0.378 ± 0.515	0.855 ± 0.022 0.223 ± 0.046	-	-
	lung R	10 0.973 ± 0.016 0.049 ± 0.030	0.965 ± 0.013 0.069 ± 0.035	0.963 ± 0.013 0.065 ± 0.032	0.971 ± 0.014 0.070 ± 0.034
	lung L	10 0.972 ± 0.015 0.050 ± 0.029	0.961 ± 0.011 0.121 ± 0.107	0.959 ± 0.010 0.071 ± 0.022	0.972 ± 0.013 0.076 ± 0.061
	pancreas	4 0.585 ± 0.132 4.459 ± 1.885	0.460 ± 0.159 3.472 ± 2.270	0.423 ± 0.136 3.804 ± 2.867	-	-
	gallbladder	8 0.673 ± 0.220 2.433 ± 3.134	0.381 ± 0.208 6.314 ± 7.680	0.484 ± 0.132 3.603 ± 2.910	-	-
	bladder	10 0.848 ± 0.097 0.629 ± 0.644	0.683 ± 0.090 1.514 ± 0.639	0.679 ± 0.142 1.879 ± 1.192	0.866 ± 0.070 0.375 ± 0.284
	sternum	8 0.784 ± 0.112 0.801 ± 0.755	0.635 ± 0.148 1.257 ± 0.941	0.721 ± 0.058 0.899 ± 0.388	0.762 ± 0.092 0.993 ± 0.649
	L1	8 0.584 ± 0.233 7.601 ± 6.271	0.624 ± 0.356 3.228 ± 5.710	0.523 ± 0.301 4.504 ± 5.509	-	-
	kidney R	10 0.950 ± 0.013 0.087 ± 0.037	0.914 ± 0.027 0.199 ± 0.116	0.889 ± 0.026 0.243 ± 0.097	0.959 ± 0.011 0.072 ± 0.030
	kidney L	10 0.947 ± 0.014 0.092 ± 0.042	0.913 ± 0.029 0.335 ± 0.403	0.910 ± 0.015 0.172 ± 0.046	0.945 ± 0.027 0.137 ± 0.127
	adrenal R	4 0.290 ± 0.205 3.180 ± 1.910	0.213 ± 0.139 3.035 ± 1.588	0.342 ± 0.148 2.660 ± 1.437	-	-
	adrenal L	4 0.304 ± 0.283 8.632 ± 8.740	0.250 ± 0.159 3.900 ± 2.906	0.331 ± 0.176 3.115 ± 1.965	-	-
	psoas R	10 0.818 ± 0.024 0.989 ± 0.390	-	-	0.799 ± 0.025 0.757 ± 0.230	0.845 ± 0.026 0.671 ± 0.321
	psoas L	10 0.797 ± 0.075 1.036 ± 0.673	0.813 ± 0.046 0.622 ± 0.277	0.794 ± 0.049 0.742 ± 0.298	0.830 ± 0.074 0.638 ± 0.321
	abdominal R 6 0.633 ± 0.176 4.763 ± 4.905	-	-	0.453 ± 0.173 6.600 ± 5.901	-	-
	abdominal L 5 0.703 ± 0.137 3.276 ± 3.255	-	-	0.474 ± 0.180 6.068 ± 7.420	-	-
	aorta	10 0.681 ± 0.130 6.219 ± 7.854	0.785 ± 0.042 1.011 ± 0.619	0.762 ± 0.039 1.094 ± 0.508	-	-
	liver	10 0.950 ± 0.012 0.182 ± 0.068	0.908 ± 0.021 0.646 ± 0.378	0.887 ± 0.019 0.514 ± 0.179	0.949 ± 0.010 0.174 ± 0.075
	thyroid	5 0.375 ± 0.170 4.427 ± 2.568	0.184 ± 0.166 5.847 ± 2.749	0.410 ± 0.157 3.337 ± 1.295	-	-
	spleen	10 0.911 ± 0.069 0.557 ± 1.364	0.781 ± 0.075 1.530 ± 1.144	0.730 ± 0.116 2.005 ± 1.967	0.909 ± 0.069 0.573 ± 1.210

TABLE III MEAN

 III (PER IMAGE) MEMORY FOOTPRINT AND RUNTIME FIGURES OF PROPOSED ALGORITHMS MEASURED ON THE VISCERAL DATASET CTC E_THAB FOR VARYING REGISTRATION RESOLUTIONS.

	R Mem. (MB) PA constr. * (s) Clust. (s) Seg. (s) Total (h)
	50		27683		1327	9.12
	100 150	10542	42669 90116	3827	1072 1010	13.21 26.38
	200		127965		1257	36.96
						

* sequential

TABLE IV COMPARISON

 IV WITH STATE OF THE ART METHODS. DSM IS GIVEN AS A PERCENTAGE, MSD IN MILLIMETERS. ± 1.1 89.7 ± 10.0 85.8 ± 10.16 83.8 ± 21.2 41.8 ± 18.8 74.1 ± 17.5 46.7 ± 26.8 62.0 ± 17.3

	Method			Subjects		Metric	Lungs	Liver	Kidneys	Spleen	Pancreas	Bladder	Gallbladder	Aorta
	Proposed method ‡ best parameter settings		20	DSM MSD	97.6 ± 1.1 0.1 ± 0.0	92.9 ± 7.2 0.6 ± 1.4	93.8 ± 6.1 90.6 ± 12.3 57.3 ± 20.7 0.2 ± 0.5 1.0 ± 2.6 4.1 ± 5.9	90.3 ± 5.2 54.2 ± 32.3 76.0 ± 12.6 0.2 ± 0.2 4.9 ± 7.0 2.2 ± 1.4
	Proposed method ‡ 97.2 fixed parameter setting 20 DSM MSD 0.1 ± 0.0	1.2 ± 2.8	1.8 ± 4.5	3.5 ± 7.4	6.0 ± 6.4	1.7 ± 1.6	6.1 ± 8.2	4.3 ± 4.4
	Oliveira et al. [19] ‡		20	DSM MSD	97.7 ± 1.2 0.9 ± 0.4	93.6 ± 2.8 2.7 ± 1.1	93.2 ± 7.2 1.9 ± 3.0	91.0 ± 9.4 57.2 ± 14.7 65.7 ± 17.3 51.8 ± 27.5 2.7 ± 3.5 6.7 ± 5.6 6.4 ± 2.4 7.9 ± 10.9	86.2 ± 6.6 2.1 ± 1.2
	Heinrich et al. [28] ‡		20 DSM	-	90.9 ± 5.1	89.9 ± 5.4 83.3 ± 17.3	-62.3 ± 18.8	-	-
	Pawlowski et al. [34] *		20 DSM	-	95.7	91.1	92.5	72.2	-	67.6	87.5
	Larsson et al. [31]	*		20	DSM MSD	--	94.6 1.7	88.8 2.0	93.1 1.9	60.2 4.5	--	62.4 8.7	86.1 5.0
	Heinrich et al. [14], [17]	*	20	DSM MSD	--	94.8 1.5	90.8 1.1	91.9 1.6	74.0 2.3	--	60.4 7.0	85.7 3.6
	Wang et al. [14]	*			20	DSM MSD	--	94.6 1.5	88.7 1.7	92.8 1.4	65.1 4.9	--	68.0 ∞	83.4 5.2
	Tong et al. [26] †			150 DSM	-	94.9 ± 1.9	93.6 ± 3.8	92.5 ± 6.5 71.1 ± 14.7	-	-	-
	Wolz et al. [13] †			150	DSM MSD	--	94.0 ± 2.8 2.0 ± 2.8	92.5 ± 7.2 2.3 ± 3.4	92.0 ± 9.2 69.6 ± 16.7 2.3 ± 3.0 3.7 ± 4.4	--	--	--
	Okada et al. [23]				134	DSM MSD	--	94.1 ± 2.4 1.7 ± 0.9	91.6 ± 14.3 1.5 ± 2.9	92.1 ± 8.1 72.5 ± 17.6 1.2 ± 1.6 3.0 ± 3.1	-63.5 ± 28.5 85.0 ± 18.6 -5.2 ± 5.5 2.1 ± 3.3
	Chu et al. [12]				100	DSM MSD	--	95.1 ± 1.0 1.2 ± 0.2	90.1 ± 5.0 1.3 ± 0.4	91.4 ± 5.7 69.1 ± 15.3 0.9 ± 0.4 1.9 ± 0.6	--	--	--
	Bagci et al. [22]				20 DSM	-	95.8 ± 0.6	96.5 ± 0.7	96.5 ± 0.8	-	-	-	-
	Linguraru et al. [10]		20	DSM MSD	--	95.6 ± 0.6 1.1 ± 0.4	92.6 ± 2.3 0.8 ± 0.4	91.8 ± 1.5 1.0 ± 0.5	--	--	--
	Kohlberger et al. [36]	120,100,20 MSD	1.6 ± 0.5	2.9 ± 1.7	1.2 ± 1.0	-	-	-	-	-
	Seifert et al. [30]			226,335,203,,53 MSD	-	1.3 ± 0.5	1.1 ± 0.4	2.1 ± 1.2	-	1.4 ± 0.8	-	-
												

‡ 

Visceral training dataset (public) * Beyond the Cranial Vault challenge dataset (public)
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