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Introduction

The concept of metric dimension was introduced by Slater [START_REF] Slater | Leaves of trees[END_REF] and studied independently by Harary and Melter [12]. This problem has been investigated widely since then. The metric dimension has a lot of applications in different areas of science and technology. The concept of the edge metric dimension is a recent advancement in this line of research. Next we reveal some of the applications of metric dimension in various subjects.

The metric dimension arises in many diverse areas, including navigation of robots [START_REF] Khuller | Landmarks in graphs[END_REF], telecommunications [START_REF] Beerloiva | Network discovery and verification[END_REF], combinatorial optimization [START_REF] Sebö | On metric generators of graphs[END_REF] and sonar and coast guard Loran [START_REF] Slater | Leaves of trees[END_REF] and applications to chemistry in [START_REF] Chartrand | Resolvability in graphs and the metric dimension of a graph[END_REF][START_REF] Chartrand | Resolvability and the upper dimension of graphs[END_REF][START_REF] Johnson | Structure-activity maps for visualizing the graph variables arising in drug design[END_REF]. Furthermore, this topic has some applications to problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures [START_REF] Melter | Metric bases in digital geometry[END_REF]. Metric dimension of several interesting classes of graphs can be seen in [START_REF] Ahmad | On the metric dimension of barcycentric subdivision of Cayley graphs Cay(Z n ⊕ Z 2 )[END_REF][START_REF] Ahmad | Minimal doubly resolving sets of Necklace graph[END_REF][START_REF] Bailey | Basie size, metric dimension and other invariants of groups and graphs[END_REF][START_REF] Bailey | On the metric dimension of Grassmann graphs[END_REF][START_REF] Cceres | On the metric dimension of cartesian products of graphs[END_REF][START_REF] Imran | On classes of regular graphs with constant metric dimension[END_REF][START_REF] Imran | Families of plane graphs with constant metric dimension[END_REF][START_REF] Imran | On the metric dimension of two classes of convex polytopes[END_REF][START_REF] Imran | Computing the metric dimension of convex polytopes generated by the wheel related graphs[END_REF][START_REF] Kratica | Minimal doubly resolving sets and the strong metric dimension of some convex polytopes[END_REF][START_REF] Vetrik | Computing the metric dimension of the categorial product of graphs[END_REF].

Let G = (V, E) be a simple and connected graph. For a vertex x ∈ V (G) distinguishes two vertices y, z ∈ V (G) if d G (y, x) = d G (z, x) , where d G (x, y) denotes the length of the shortest path between the vertices x and y in G . A vertex set R 1 ⊆ V (G) is a metric generator for G , if any pair of vertices of G is distinguished by at least one vertex of R 1 and R 1 is the resolving set of G . The minimum cardinality of any metric generator for G is the metric dimension of G, denoted by dim(G). Let R 1 = {r 1 , r 2 , . . . , r s } be an ordered set of vertices of G and let x ∈ V (G) , then the representation r(x|R 1 ) of

x with respect to R 1 is the s -tuple (d G (x, r 1 ), d G (x, r 2 ), d G (x, r 3 ), . . . , d G (x, r s )) .
Since the set R 1 has the minimum cardinality, therefore this is also known as the basis of G , and its cardinality is called the metric dimension or location number [START_REF] Buczkowski | On k -dimensional graphs and their bases[END_REF].

Similarly, for x ∈ V (G) be a vertex and e = yz ∈ E(G) be an edge. The distance between the vertex x and the edge e is given by d

G (x, e) = min{d G (x, y), d G (x, z)}. A vertex t ∈ V (G) distinguishes two edges e, f ∈ E(G) if d G (t, e) = d G (t, f ). A set R ⊆ V (G)
is an edge metric generator for G if every two edges of G are distinguished by some vertex of R . The minimum cardinality of R is called the edge metric dimension and is denoted by edim(G) [START_REF] Kelenc | Uniquely identifying the edges of a graph: the edge metric dimension[END_REF]. Let R = {r 1 , r 2 , . . . , r t } be an ordered set of vertices of G and let e ∈ E(G) , then the representation r(e|R) of e with respect to R is the t -tuple (d G (e, r 1 ), d G (e, r 2 ), d G (e, r 3 ), . . . , d G (e, r t )) .

In addition, combined (mixed) form of these two parameters depicted above is of fascinate. A vertex x ∈ V (G) distinguishes two elements (vertices or edges)

u, v ∈ V (G) ∪ E(G) if d G (x, u) = d G (x, v). A set R m ⊆ V (G)
is a mixed metric generator for G if every two distinct elements (vertices or edges) of G are distinguished by some vertex of R m . The smallest cardinality of R m is the mixed metric dimension and is denoted by mdim(G) [START_REF] Kelenc | On the mixed metric dimension of graphs[END_REF].

Geometrically, an operation that splits an edge into two edges by inserting a new vertex into the interior of an edge is known as subdividing an edge. If we are performing a sequence of edge-subdivision operations, then it is called Subdividing a graph G and resulting graph is called a subdivision of the graph G . The subdivision of graph can be used to convert a general graph into a simple graph. If we subdividing each edge of the graph G , then this subdivision is called the barycentric subdivision of G . Gross and Yellen [START_REF] Gross | Graph theorey and its applications[END_REF] proved the results that the barycentric subdivision of any graph is a simple and bipartite graph.

A graph G is planar if it can be drawn in the plane without edge crossings. Subdivision of graphs play a very important role in characterization of planar graphs. A graph G is planar if and only if every subdivision of G is planar. Two graphs are said to be homeomorphic if they are subdivisions of same graph G . The next theorem gives a nice characterization of planar graphs.

Theorem 1.1. [START_REF] Gross | Graph theorey and its applications[END_REF] A graph is planar if and only if it does not contain a subdivision of K 5 or K 3,3 .

In this paper, we study the edge metric dimension of barcycentric subdivision of Cayley graphs Cay(Z n ⊕ Z 2 ) . We prove that these subdivisions of Cayley graphs have constant edge metric dimension and only three vertices chosen appropriately suffice to resolve all the vertices of these subdivision of Cayley graphs Cay(Z n ⊕ Z 2 ) .

Results and Discussions

As expressed, there are a several graphs in which metric generator and edge metric generator are same. In this sense, one could believe that most likely any edge metric generator R is likewise a standard metric generator. In any case, this is again further far from the truth, despite the fact that there are a few families of graphs in which such actualities happen. Kelenc et al. [START_REF] Kelenc | Uniquely identifying the edges of a graph: the edge metric dimension[END_REF] explained some comparison between the edge metric generator and standard metric generator in detailed. We show a few results concerning the edge metric dimension of graphs. The first importance result about the complexity is as follows:

Theorem 2.1. [START_REF] Kelenc | Uniquely identifying the edges of a graph: the edge metric dimension[END_REF] Computing the edge metric dimension of graphs is N P -hard.

The edge metric dimension of Cartesian product of two paths P r and P t with r and t vertices is determined in the following proposition. Proposition 2.2. [START_REF] Kelenc | Uniquely identifying the edges of a graph: the edge metric dimension[END_REF] Let G be the grid graph

G = P r 2P t , with r ≥ t ≥ 2 . Then edim(G) = dim(G) = 2.
Kelenc et al. [START_REF] Kelenc | Uniquely identifying the edges of a graph: the edge metric dimension[END_REF] proved in the next proposition that the edge metric dimension of wheel graphs and observe it is strictly larger than the value for the metric dimension, except in the case W 1,3 .

The wheel graph W 1,n is the graph obtained from a cycle C n , n ≥ 3 by joining all vertices of C n to an additional vertex. In [START_REF] Kelenc | Uniquely identifying the edges of a graph: the edge metric dimension[END_REF], they determined the edge metric dimension of wheel graph W 1,n in the following proposition:

Proposition 2.3. [19] Let W 1,n be a wheel graph. Then edim(W 1,n ) = n, for n = 3, 4 n -1, for n ≥ 5
The fan graph F 1,n is the graph obtained by joining each vertices of a path P n , to an additional vertex. In the next proposition, the edge metric dimension of fan graph F 1,n is determined. Proposition 2.4. [START_REF] Kelenc | Uniquely identifying the edges of a graph: the edge metric dimension[END_REF] Let F 1,n be a fan graph. Then

edim(F 1,n ) = n, for n = 1, 2, 3 n -1, for n ≥ 4
Kelenc et al. [START_REF] Kelenc | Uniquely identifying the edges of a graph: the edge metric dimension[END_REF] also determined the edge metric dimension of path, cycle, complete graph, complete bipartite, cartesian product of cycles and bounds for some families of graphs. 

H = H -1 .
The Cayley graphs Cay(Z n ⊕ Z 2 ), n ≥ 3 , is a 3-regular graph which is also known as the cartesian product C n 2P 2 of a cycle of order n with a path of order 2 . The Cayley graphs Cay(Z n ⊕ Z 2 ), n ≥ 3 consists of an inner n -cycle a 1 a 2 a 3 . . . a n , an outer n -cycle x 1 x 2 x 3 . . . x n and n spokes a i x i , 1 ≤ i ≤ n. This implies that the order and size of Cay(Z n ⊕ Z 2 ) is 2n and 3n , respectively. The metric dimension of Cayley graphs Cay(Z n ⊕ Z 2 ) has been determined in [START_REF] Cceres | On the metric dimension of cartesian products of graphs[END_REF] while the metric dimension of Cayley graphs Cay(Z n : H) for all n ≥ 7 and H = {±1, ±3} hase been determined in [START_REF] Javaid | Metric dimension and determining number of Cayley graphs[END_REF].

The barcycentric subdivision graph BS(Cay(Z n ⊕ Z 2 )) can be obtained by splitting edges a i a i+1 by inserting a new vertices b i , splitting edges a i x i by inserting a new vertices c i splitting edges x i x i+1 by inserting a new vertices y i . From this we observe that , BS(Cay(Z n ⊕ Z 2 )) contains 5n vertices among of these 3n vertices of degree 2 and 2n vertices of degree 3 and 6n edges. In the next theorem, we prove that the metric dimension of the barcycentric subdivision BS(Cay(Z n ⊕Z 2 )) of is constant and only three vertices appropriately chosen suffice to resolve all the vertices of the BS(Cay(Z n ⊕ Z 2 )) . Theorem 3.1. Let BS(Cay(Z n ⊕ Z 2 )) be the barcycentric subdivision of Cayley graphs (Cay(Z n ⊕ Z 2 )) ; then edim(BS(Cay(Z n ⊕ Z 2 ))) = 3 for every n ≥ 6.

Proof. We will prove the above equality by double inequalities. Case 1. When n is even.

Let R = {a 1 , a n 2 +1,an } ⊂ V (BS(Cay(Z n ⊕ Z 2 )
)) , we show that R is a resolving set for BS(Cay(Z n ⊕ Z 2 )) in this case. For this we give representations of any edge of E(BS(Cay(Z n ⊕ Z 2 ))) with respect to R .

Representations for the edges of BS(Cay(Z

n ⊕ Z 2 )) are r(a i b i |R) =        (2i -2, n -2i + 1, 2i), for 1 ≤ i ≤ n 2 -1 (n -2, 1, n -1), for i = n 2 (2n -2i + 1, 2i -n -2, 2n -2i -1), for n 2 + 1 ≤ i ≤ n -1 (1, n -2, 0), for i = n and r(b i a i+1 |R) =        (2i -1, n -2i, 2i + 1), for 1 ≤ i ≤ n 2 -1 (n -1, 0, n -2), for i = n 2 (2n -2i, 2i -n -1, 2n -2i -2), for n 2 + 1 ≤ i ≤ n -1 (0, n -1, 1), for i = n
Representations for the set of interior edges of BS(Cay(

Z n ⊕ Z 2 )) are r(a i c i |R) = (2i -2, n -2i + 2, 2i), for 1 ≤ i ≤ n 2 (2n -2i + 2, 2i -n -2, 2n -2i), for n 2 + 1 ≤ i ≤ n and r(c i x i |R) = (2i -1, n -2i + 3, 2i + 1), for 1 ≤ i ≤ n 2 (2n -2i + 3, 2i -n -1, 2n -2i + 1), for n 2 + 1 ≤ i ≤ n Representations for the edges on the outer cycle of BS(Cay(Z n ⊕ Z 2 )) are r(x i y i |R) =        (2i, n -2i + 3, 2i + 2), for 1 ≤ i ≤ n 2 -1 (n, 3, n + 1), for i = n 2 (2n -2i + 3, 2i -n, 2n -2i + 1), for n 2 + 1 ≤ i ≤ n -1 (3, n, 2), for i = n and r(y i x i+1 |R) =        (2i + 1, n -2i + 2, 2i + 3), for 1 ≤ i ≤ n 2 -1 (n + 1, 2, n), for i = n 2 (2n -2i + 2, 2i -n + 1, 2n -2i), for n 2 + 1 ≤ i ≤ n -1 (2, n + 1, 3), for i = n
We note that there are no two edges having the same representations implying that edim(BS(Cay(Z n ⊕ Z 2 ))) ≤ 3 . On the other hand, we show that edim(BS(Cay(Z n ⊕ Z 2 ))) ≥ 3 . Suppose on contrary that edim(BS(Cay(Z n ⊕ Z 2 ))) = 2 , then there are the following possibilities to be discussed.

(1) Both vertices are in the inner cycle. Here are the following subcases.

• Both vertices belong to the set {a i : 1 ≤ i ≤ n}. Without loss of generality, we can suppose that one resolving vertex is a 1 . Suppose that the second resolving vertex is

a k (2 ≤ k ≤ n 2 +1) . Then for 2 ≤ k ≤ n 2 , we have r(a 1 c 1 |{a 1 , a k }) = r(a 1 b n |{a 1 , a k }) = (0, 2k-2) , and for k = n 2 + 1 , we have r(a 1 b 1 |{a 1 , a n 2 +1 }) = r(a 1 b n |{a 1 , a n 2 +1 }) = (0, n -1) 
, a contradiction.

• Both vertices belong to the set {b i : 1 ≤ i ≤ n}. Without loss of generality, we can suppose that one resolving vertex is b 1 . Suppose that the second resolving vertex is b k

(2 ≤ k ≤ n 2 + 1) . Then for 2 ≤ k ≤ n 2 , we have r(a 1 c 1 |{b 1 , b k }) = r(a 1 b n |{(b 1 , b k }) = (1, 2k-1) , and for k = n 2 +1 , we have r(a 1 b 1 |{b 1 , b n 2 +1 }) = r(a 2 b 1 |{b 1 , b n 2 +1 }) = (0, n-1) , a contradiction.
• One vertex belong to the set {a i : 1 ≤ i ≤ n} and the second vertex belong to the set {b i : 1 ≤ i ≤ n}. Without loss of generality, we can suppose that one resolving vertex is a 1 . Suppose that the second resolving vertex is b

k (1 ≤ k ≤ n 2 +1) . Then for 1 ≤ k ≤ n 2 , we have r(a 1 b n |{a 1 , b k }) = r(a 1 c 1 |{a 1 , b k }) = (0, 2k -1) , and for k = n 2 + 1 , we have r(a 1 b 1 |{a 1 , b n 2 +1 }) = r(a 1 c 1 |{a 1 , b n 2 +1 }) = (0, n -1) , a contradiction.
(2) Both vertices are in the interior vertices. Without loss of generality, we can suppose that one resolving vertex is c 1 . Suppose that the second resolving vertex is

c k (2 ≤ k ≤ n 2 + 1) . Then for 2 ≤ k ≤ n 2 + 1 , we have r(x 1 c 1 |{c 1 , c k }) = r(a 1 c 1 |{c 1 , c k }) = (0, 2k -1) 
, a contradiction.

(3) Both vertices are in the outer cycle. Due to the symmetry of the graph, this case is analogous to case (1). ( 4) One vertex is in the inner cycle and the other one is in the set of interior vertices. Here are the two subcases.

• One vertex is in the set {a i : 1 ≤ i ≤ n} and the other one is in the set of interior vertices {c i : 1 ≤ i ≤ n} . Without loss of generality, we can suppose that one resolving vertex is a 1 . Suppose that the second resolving vertex is

c k (1 ≤ k ≤ n 2 + 1) . Then for k = 1, we have r(a 1 b 1 |{a 1 , c 1 }) = r(a 1 b n |{a 1 , c 1 }) = (0, 1) . For 2 ≤ k ≤ n 2 , we have r(a 1 b n |{a 1 , c k }) = r(a 1 c 1 |{a 1 , c k }) = (0, 2k -1) and for k = n 2 + 1 , we have r(a 1 b n |{a 1 , c n 2 +1 }) = r(a 1 b 1 |{a 1 , c n 2 +1 }) = (0, 2n
) , a contradiction. • One vertex is in the set {b i : 1 ≤ i ≤ n} and the other one is in the set of interior vertices {c i : 1 ≤ i ≤ n} . Without loss of generality, we can suppose that one resolving vertex is b 1 . Suppose that the second resolving vertex is c

k (1 ≤ k ≤ n 2 + 1) . Then for k = 1, we have r(x 1 y 1 |{b 1 , c 1 }) = r(x 1 y n |{b 1 , c 1 }) = (3, 1) . For 2 ≤ k ≤ n 2 , we have r(a 1 c 1 |{b 1 , c k }) = r(a 1 b n |{b 1 , c k }) = (1, 2k -1) and for k = n 2 + 1 , we have r(c 2 x 2 |{b 1 , c n 2 +1 }) = r(a n b n |{b 1 , c n 2 +1 }) = (2, n -1) 
, a contradiction. (5) One vertex is in the outer cycle and the other one is in the set of interior vertices. Due to the symmetry of the graph, this case is analogous to case (4). ( 6) One vertex is in the inner cycle and the other one is in the outer cycle. Here are the following subcases.

• One vertex is in the set {a i : 1 ≤ i ≤ n} and the other one is in the set {x i : 1 ≤ i ≤ n} . Without loss of generality, we can suppose that one resolving vertex is a 1 . Suppose that the second resolving vertex is x k (1 ≤ k ≤ n 2 + 1) . Then for k = 1, we have r(a 1 b 1 |{a 1 , x 1 }) = r(a 1 b n |{a 1 , x 1 }) = (0, 2) . For 2 ≤ k ≤ n 2 + 1 , we have r(a 1 b 1 |{a 1 , x k }) = r(a 1 c 1 |{a 1 , x k }) = (0, 2k -1) , a contradiction.

• One vertex is in the set {a i : 1 ≤ i ≤ n} and the other one is in the set {y i : 1 ≤ i ≤ n} . Without loss of generality, we can suppose that one resolving vertex is a 1 . Suppose that the second resolving vertex is y k (1 ≤ k ≤ n 2 + 1) . Then for k = 1, we have r(a 1 b 1 |{a 1 , y 1 }) = r(a 1 b n |{a 1 , y 1 }) = (0, 3) . for i = ⌈ n 2 ⌉ (2n -2i + 3, 2in -1, 2n -2i + 1), for ⌈ n 2 ⌉ + 1 ≤ i ≤ n Again we see that there are no two vertices having the same representations which implies that edim(BS(Cay(Z n ⊕ Z 2 ))) ≤ 3 . On the other hand, suppose that edim(BS(Cay(Z n ⊕ Z 2 ))) = 2 , then there are the same possibilities as in case (1) and contradictions can be deduced analogously. This implies that edim(BS(Cay(Z n ⊕ Z 2 ))) = 3 in this case, which completes the proof.

  For 2 ≤ k ≤ n 2 , r(a i c i |R) =    (2i -2, n -2i + 2, 2i), for 1 ≤ i ≤ ⌈ n 2 ⌉ -1 (2i -2, n -2i + 2, 2n -2i), for i = ⌈ n 2 ⌉ (2n -2i + 2, 2in -2, 2n -2i), for ⌈ n 2 ⌉ + 1 ≤ i ≤ n r(c i x i |R) =    (2i -1, n -2i + 3, 2i + 1), for 1 ≤ i ≤ ⌈ n 2 ⌉ -1 (2i -1, n -2i + 3, 2n -2i + 1),
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  The edge metric dimension of barcycentric subdivision of Cayley graphs Cay(Z n ⊕ Z 2 )

Let G be a semigroup, and let H be a nonempty subset of G . The Cayley graph Cay(G, H) of G relative to H is defined as the graph with vertex set G and edge set E(H) consisting of those ordered pairs (a, b) such that ha = b for some h ∈ H . Cayley graphs of groups are significant both in group theory and in constructions of interesting graphs with nice properties. The Cayley graph Cay(G, H) of a group G is symmetric or undirected if and only if

we have r(a 1 b 1 |{a 1 , y k }) = r(a 1 c 1 |{a 1 , y k }) = (0, 2k) and for k = n 2 + 1 , we have r(a 1 b 1 |{a 1 , y n 2 +1 }) = r(a 1 c 1 |{a 1 , y n 2 +1 }) = (0, n + 1) , a contradiction. • One vertex is in the set {b i : 1 ≤ i ≤ n} and the other one is in the set {y i : 1 ≤ i ≤ n} . Without loss of generality, we can suppose that one resolving vertex is b 1 . Suppose that the second resolving vertex is

) . Then for k = 1, we have r(a

Hence from above it follows that there is no resolving set with two vertices for

)) , we show that R is a resolving set for BS(Cay(Z n ⊕ Z 2 )) in this case. For this we give representations of any edge of E(BS(Cay(Z n ⊕ Z 2 ))) with respect to R . Representations for the edges of of the inner cycle of BS(Cay(

Representations for the edges on the outer cycle of BS(Cay(Z n ⊕ Z 2 )) are

Representations for the set of interior edges of BS(Cay(Z n ⊕ Z 2 )) are