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Abstract

If confocal microscopy is an ubiquitous tool in life science, its applications in chem-

istry and materials science are still, in comparison, very limited. Of particular interest

in these domains is the use of confocal microscopy to investigate temperature-dependent

phenomena such as self-assembly, diffusio- or thermophoresis, or crystal growth. Sev-

eral hurdles must be solved to develop a temperature-controlled stage for laser scanning

confocal microscopy, in particular regarding the influence of an elevated temperature

gradient close to the microscope objective, which most people try very hard to avoid.

Here we report the design of a temperature-controlled stage able to generate stable

temperature gradients in both positive and negative temperature range and does not

require use of liquid nitrogen. Our setup provides an excellent control of the temper-

ature gradient, which can be coupled with a controlled displacement of the sample,

making it useful in particular for a variety of solidification, chemistry, and interfacial
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problems. We illustrate the benefits of our setup with several case studies of inter-

est in chemistry and materials science: the 3D real-time imaging of ice growth, the

segregation of hard particles by growing crystals, the freezing behaviour of single emul-

sions, the self-shaping of oil droplets upon cooling, and the self-assembly of amphiphile

molecules into helical structures. These results show how confocal microscopy coupled

with a temperature-controlled stage is a welcome addition to the toolkit of chemists

and materials scientists.

Introduction

Temperature gradients have an important impact on many natural and industrial, chemical,

and physical processes ranging from geophysics and biology to metallurgy and materials

synthesis. In Nature temperature gradients are responsible for the ice lensing of soils in cold

regions and the metamorphism of snow,1,2 ice and the evolution of their interface.3 Natu-

rally occurring antifreeze proteins protect a variety of living species (plants, insects, fishes)

from freezing. To evaluate their effectiveness and that of developed synthetic analogues,

well established temperature gradients are required.4 In metallurgy, temperature gradients

determine the morphology of solid/liquid interface,5,6 the lateral growth rate of the crys-

tals,7 or the formation of intermetallic compounds at solid/liquid interfaces.8 The evolution

of the mushy zone (partially solid/liquid region) in a fixed temperature gradient is also an

important topic in nuclear safety.9 Temperature gradient is one of the key parameter in the

growth of monocrystals, which are essential components of optical systems10 and microelec-

tronics.11 Temperature gradients are used to create composition gradients for new types of

materials such as plasmonic arrays.12 In soft matter studies, temperature gradients are used

to study self-assembly processes such as micelles formation13 or evolution of RNA-based self-

assembled structures.14 Temperature gradients are applied to study thermophoretic mobility

of vesicles.15 Thermophoresis is used to manipulate bubbles and droplets.16 Temperature gra-

dients were also used to study phase transitions in liquid crystals17 and later were applied
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to develop new temperature measurement techniques.18 We could continue this list of exam-

ples for a long time. Being able to use and control temperature gradients in experimental

setups is therefore an problem with far-reaching implications. While sample heating is easily

achieved by the use of resistive heaters, sample cooling typically relies on the use of liquid

nitrogen which is, in some cases, inconvenient. In addition, because of thermal stability

and condensation issues, most microscopists try very hard to avoid freezing temperatures

and temperature gradients close to the microscope objectives. A few (costly) commercial

temperature-controlled stages, cooled using liquid nitrogen, are available.

Here we report the design of a temperature-controlled stage (and the corresponding sam-

ples) able to generate stable temperature gradients in both positive and negative temperature

range and does not require the use of liquid nitrogen. We developed this stage to perform

in situ laser scanning confocal microscopy, which is relevant to investigate a broad range of

chemistry problems, as we will demonstrate in this paper.

Confocal microscopy with rapid imaging capacities provides access to the 2D or 3D

evolution of sample morphology with good time and space resolution. It allows simultaneous

imaging of liquid phase, crystals and dispersed phase (particles, droplets, bubbles. . . ).

Design of the stage

We designed a temperature-controlled stage based on two Peltier elements (Fig. 1). The main

advantage of this design is that it allows both heating and cooling. Therefore, temperature

controlled experiments can be performed either in positive or negative temperature range,

or in a mixed regime, providing elevated temperature gradients.

For our stage, we selected two ET-127-10-13 Peltier cooler modules (Produced by Adap-

tive and purchased from RS Components, France). These modules have following parameters:

dimensions = 30×30×3.6 mm, Imax = 3.9 A, Vmax = 15.7Vdc and maximum cooling power

Pcmax = 35.2 W. Dimensions were chosen based on the sample geometry and desired stage
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Figure 1: Overview of the temperature gradient stage for in situ operations under the confocal
microscope: (A) Operation schematics. A constant temperature gradient is achieved in the
gap between the Peltier elements. If the sample is pushed at a velocity V , a solidification
front moves at a velocity U = V . The solidification front is thus always in the centre of the
observation windows, which is useful for solidification studies. (B) 3D representation. (C
and D) Photographs of front and side views. The insulating foam that covers the sample
was removed for the picture.

size. Imax and Vmax determine the choice of power and controlling modules. The maximum

cooling power defines the overall performance of the temperature-controlled stage and the

setup requirements for the heat sink.

To control the Peltier cooling modules, we use TEC-1122 Dual Thermo Electric Cooling

Temperature Controller from Meerstetter Engineering, Switzerland. This specialized TEC

controller is able to independently drive two Peltier modules which generate an output cur-

rent up to 10 A and driving voltage up to 21 V. The controller can handle Pt100, Pt1000, or

NTC temperature probes. The temperature precision/stability of the controller is < 0.01◦C.

The temperature controller is paired to a laptop via USB. The TEC Service software (v2.50,

provided with the controller) is used to monitor and control all the operating parameters of

the temperature-controlled stage.

The design of an efficient heat sink is of uttermost importance to ensure the efficient

operation of Peltier elements. The heat sink must withdraw and dissipate the heat generated

on the warm side of the Peltier modules. The heat load is composed of the heat load of the

object (amount of heat withdrew by Peltier element from the object) and heat load of the

4



Peltier element due to losses. In our case, the maximum heat load can be as high as 96.4 W

(15.7 V ×3.9 A+35.2W ) for each Peltier. Almost 200 W must thus be removed continuously

during the operations. Based on these high heat loads, we design a home-made water-cooled

heat sink (Fig. 2). A silicon carbide honeycomb (which provides a high surface exchange),

in contact with the heat source, is used to transfer the heat to the coolant that circulates

through the heat sink. The thermal conductivity of silicon carbide is sufficient to remove all

the generated heat, while the chemical inertia of silicon carbide ensures that the heat sink

does not degrade over time because of corrosion. The circulating water is cooled by MPC

Minichiller (Model 3006.0015.99, Huber, Germany), which typically operates at −5◦C.

Figure 2: Schematics of the heat sink.

The temperature-controlled stage is thermally isolated with a polyurethane foam. A hole

is cut in the foam to accommodate the objective of the microscope. This allows to decrease

the amount of condensation on the top of the sample.

An additional step is required to ensure a reliable contact with the Peltier elements and

avoid undesirable z-translations of the sample during the operations. We thus attached thin

(1 mm) steel plates on the top of each Peltier element. A magnetic frame is placed on the top

of the sample to ensure that the sample remains in contact with the temperature-controlled

stage during translation (Fig. 1B). This approach ensures a good thermal contact between

the sample and the stage independently of sample thickness variations and guarantees that

friction remains reasonably low to prevent stick-and-slip behaviour. Steel plates, in addition,
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help better homogenize the temperature field.

The temperature gradient stage is placed on the piezoelectric stage of the microscope.

Because the piezoelectric stage needs to move freely during 3D acquisition, the weight placed

on top of the stage cannot exceed 200 g. It was therefore critical to come up with a lightweight

design for the stage. The whole temperature-controlled stage weight is 160 g, which ensures

that 3D acquisition can be properly conducted.

Price estimate

A breakdown of the cost of the elements used for the setup is given in Tab. 1. The most

costly parts are the temperature controller and the water cooler (which most labs already

have). For the later, we used an expensive (but very efficient) water cooler (4,000 Eur.),

although a cheaper one would probably do the job as well. The overall cost is therefore in

the 3,800–6,8000 Eur. range, which is much cheaper than the commercially available stages.

The cost does not include, of course, the time spent on designing, building, and testing the

stage.

Table 1: Price estimate of the different elements used to build the setup.

Parts Price (Eur.)
Temperature controller 2,600
Peltier elements (×2) 70
Sink temperature sensors 6
Object temperature sensors (×2) 104
Thermal paste 25
Epoxy resin 6
Heat sink 0 (spare parts)
Water cooler 1,000 to 4,000
Total 3,800 to 6,800
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Sample preparation

We design lightweight samples for solidification studies (see case studies below). Hele-Shaw

cells are prepared by sandwiching the sample (solution, emulsion, suspension) between two

microscope cover glass slides. The slides are connected together with two stripes of double-

side sticky tape (Fig. 3A, B). The second stripe acts as a spacer and ensures a constant

sample thickness. To reduce thermal mass of the sample cell we use cover glass slides

(Menzel, 24× 60 mm, thickness 0.13–0.16 mm) instead of traditional microscope slides used

in commercially available temperature-controlled stages. This solution decreases the thermal

inertia in the system. However, it requires additional measures to ensure a constant contact

of the sample with the stage during translation as we discussed above (magnetic frame).

Samples were sealed with acrylic glue or nail polish. We observed no effect of possible

solvent residues on the freezing behaviour of the samples.

For the experiments–solidification studies–where the sample is translated through a tem-

perature gradient, we use Micos Pollux Drive stepper motor with VT-80 translation stage

(PI, USA). A flexible connection of the sample to the motor was achieved via 0.1mm thick

plastic strip. It is attached to the sample with double sided sticky tape and screwed to the

motor lever (Fig. 3C). Such type of connection diminishes the risks of damages to the sample

by bending loads arising from the lack of parallelism between the latter and the motor. It

reduces as well heat transfer in the system.

For image acquisition, we use long working distance non-immersive objectives (Leica HC

PL APO 20x/0.70 CS and 10x/0.40 CS2) to minimize the effect of the microscope thermal

mass on the freezing process. These objectives have free working distances of 0.59 mm and

2.2 mm respectively.
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Figure 3: Sample preparation (A and B). Photo of the assembled sample on the temperature-
controlled stage (C).
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Operation modes

Several operation modes are possible, depending on the system investigated. In the case

studies reported below, we used two main operating modes: (1) a fixed temperature gradient,

no sample displacement and (2) a fixed temperature gradient with sample displacement. We

use the first mode to investigate temperature-dependent phenomena such as self-assembly

or the self-shaping of droplets. Because of the high temperature gradient (up to 20◦C/mm)

in a small observation window typically less than 1 mm, it is possible to investigate a large

variety of experimental conditions at once. Although we work at a constant temperature

and temperature gradient, it is also possible to keep the temperature gradient constant while

the temperature is increased or decreased, if needed.

The second mode (sample displacement, fixed temperature gradient) is used for solidifica-

tion studies. This mode has two main benefits. First, it allows to decouple the temperature

gradient with the growth rate of the crystals, because they are independently controlled.

These two parameters play a critical role on the solidification regimes and microstructure.

The second benefit is a consequence of the fixed interface position in the observation frame.

If we investigate the interactions of objects (particles, oil droplets) with the solidification

front, we can observe and analyse hundreds or more of interaction events. A statistical

analysis of the interactions can thus be achieved. We use this mode to investigate the 3D

morphology of ice growth, the behaviour of hard particles in interaction with a solidification

front, and the freezing of emulsions.

The typical operation procedure is as follows. The sample is prepared as described

previously. The temperature of the stage is adjusted to 20◦C. The sample is deposited

on the freezing stage, attached to the stepper motor, and put-in-place with the magnetic

frame. The stage is then thermally isolated with the polymer foam. The desired temperature

gradient is established by setting the temperatures of Peltier elements. Finally–if needed–,

the solidification front velocity is set by adjusting the speed of translation stage motor.

Image analysis was done with Fiji (ImageJ 1.51h).19

9



Performances

The temperature of the Peltier elements in our setup can be varied from −25◦C to over

+90◦C. The lower limit is determined by the choose of Peltier elements, efficiency of heat

sink, temperature of cooling water, and thermal insulation of the stage. The upper limit is set

by the sample evaporation and thermal stability of some elements of the stage. The maximal

temperature gradient that can be established depends on the temperature of each Peltier.

In our experiments, we apply temperature gradients in the 5–20◦C/mm range. The design

of the stage, combined with the small sample thickness, ensure that the vertical temperature

gradient through the sample is negligible. Symmetrical ice crystals are formed (Fig. 4A).

Pt100 thermocouples provide temperature readings with a precision of ±0.05% while the

temperature controller ensures a temperature precision of 0.01◦C. The actual precision of the

temperature control within the sample is, however, lower due to the sample displacement and

therefore to the dynamic character of the thermal contact with the temperature-controlled

stage. Position of solid/liquid interface for the temperature gradient of 10◦C/mm and several

sample displacement velocities are shown in Fig. 4B. The interface velocity stabilizes within

a minute after the beginning of the sample translation. The small fluctuations observed,

most likely, arise from the variations in the thermal contact between the sample and the

freezing stage.

We find a very good agreement between the imposed velocity (speed of stepper motor) and

the measured velocity of the solidification front (Fig. 4C). The VT-80 translation stage can

adjust the sample displacement velocity from 0.5µm/s to several mm/s. The useful upper

limit is nevertheless mainly determined by the acquisition performance of the microscope

and specificity of the experiment.
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Figure 4: (A) Cross-section of frozen 10−5M dye solution along the temperature gradient of
10◦C/mm. Sample displacement velocity 2µm/s. (B) Measured solidification front velocity
for several sample displacement velocities. (C) Measured solidification front velocity vs
imposed one. The solid line represents a 1:1 dependence. Error bars do not exceed the size
of the marker.

11



Design of the solutions/emulsions

We choose a set of three oils combining a melting temperature significantly lower than that of

the water, a low solubility in water and compatibility with standard surfactants–see Tab. 2.

For the most of the studies we used propyl benzoate as an oil due to the good density

matching with water.

Table 2: Properties of suitable oil candidates to prepare the emulsions for freezing experi-
ments.

Oil Melting point Solubility (g/100g) Density (g/cm3) CAS number
Anisole −37◦C 0.100 0.995 100-66-3
Octyl acetate −38.5◦C 0.018 0.870 112-14-1
Propyl benzoate −51.6◦C 0.035 1.023 2315-68-6

Table 3: Properties of dyes used to prepare the emulsions for freezing experiments.
The emission and excitation wavelengths were measured respectively in water and
in methanol. ∗ Difluoro2-[1-(3,5-dimethyl-2H-pyrrol-2-ylidene-N)ethyl]-3,5-dimethyl-1H-
pyrrolato-Nboron. This is a more hydrophobic version of the BODIPY fluorescent dye.

Dye Excitation wavelength (nm) Emission wavelength (nm) CAS number
Sulforhodamine B 565 586 3520-42-1
BODIPY ∗ 493 504 121207-31-6

To dye the aqueous phase we use Sulforhodamine B. To avoid fluorescence self-quenching

which was reported above 2×10−4M 20 we use 10−5M solution in combination with 1% - 5%

laser power (MAX power - 10mW ) for all the experiments. For oil staining we use Difluoro2-

[1-(3,5-dimethyl-2H-pyrrol-2-ylidene-N)ethyl]-3,5-dimethyl-1H-pyrrolato-Nboron. This is a

more hydrophobic version of the BODIPY fluorescent dye. It has good solubility in all the

oils we studied. A concentration of 10−4M is sufficient to obtain clear imaging at 1% laser

power. We observe no significant changes in the fluorescence intensity upon cooling.
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Case studies

We illustrate here the benefits of our setup with a variety of case studies of interest in

chemistry in particular, and more generally in materials science: 3D real-time imaging of ice

growth, the segregation of hard particles by growing crystals, the freezing behavior of single

emulsions, the self-shaping of oil droplets upon cooling, and the self-assembly of amphiphiles

into helical structures.

3D, real-time imaging of ice growth

An advantage of confocal microscopy in comparison to other characterization techniques

is ability to perform in situ 3D imaging of the sample without introducing observation

artifacts. A number of techniques have been used to investigate crystal growth, and each

one of them has its own benefits and limitations. Optical microscopy is easy to perform, does

not induce observation artifacts (low energy of the light beam), but does not provide a 3D

representation of the crystals. The only technique able to provide in situ 3D representation of

crystal growth is X-ray tomography. However, the effects of interaction between the highly

energetic beam and the ice crystals are still problematic.21 Confocal microscopy provides

thus a complementary alternative to X-ray imaging.

We previously used confocal microscopy to image crystal growth in situ.22 However, the

previous setup provided little to no control over the cooling rate and temperature gradient,

and the solidification front was moving through the observation window, making the opera-

tion difficult. With the current temperature-controlled stage, we have a complete control of

the growth velocity, growth direction, and temperature gradient. It is thus much easier to

investigate in a reliable and reproducible manner.

This is particularly useful when one of the main crystallographic axes of the sample

does not coincide with the orientation of the focal plane. One such example is the growth

of tilted crystals during the solidification of 200mM solution of ice shaping compound -
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zirconium acetate (Fig. 5A-C). Classical 2D imaging in this case will not provide the complete

information on the sample morphology. Volume information acquired in such a case with

AFM may be misinterpreted as well.

The importance of 3D imaging becomes even more prominent if we reduce the temper-

ature gradient in this system from 15◦C/mm to 5◦C/mm . This leads to the formation of

internal porosity with complex geometry (Fig. 5E) while in-plane view provides no evidences

of such change in the ice shaping behavior of zirconium acetate (Fig. 5D). However, this

observation of the internal porous structure of the crystals help us rationalize the previously

reported porous morphology of ice-templated materials, obtained under similar conditions.22

Figure 5: 3D reconstruction of ice crystals formed in 200mM zirconium acetate solution at
temperature gradient of: (A-C) 15◦C/mm and (D-E) 5◦C/mm. The green arrows indicate
the growth direction and rate of crystal growth. Cyan rectangles indicate planes along which
3D reconstruction was sectioned. Reconstructed volume is 291×291×58µm3 for the sample
(A-C) and 291× 291× 67µm3 for the sample (D-E).

Segregation of hard particles by growing crystals

The interaction of particles with a solidification front has been a central feature of interest

in solidification studies for the past 40 years. Because of its many occurrences in differ-

ent domains, from geophysics (soils freezing) to metallurgy (particle-reinforced alloys), food
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engineering, or ice-templating of porous materials,23 a lot of attention has been paid to in-

vestigate the interactions of particles with growing crystals and their outcome. Of particular

interest are the solidification patterns,24 the development of secondary phases or premelted

films around entrapped particles,25 and the solidification in confined environments.26,27

Further progress in our understanding of these phenomena requires in situ observation of

the solidification processes, at the spatial resolution of particles. In addition, being able to

discriminate the solid and liquid phases during solidification is critical. Confocal microscopy,

with point by point illumination of the sample and rejection of out of focus light, provides

a way to overcome many of the problems in conventional microscopy caused by multiple

scattering of objects which are out of focus, and prevents imaging deep within a sample.

A popular technique in solidification studies is X-ray tomography. However, in addition to

the beam-induced artefacts mentioned above, the current spatial resolution does not allow

imaging individual particle and their dynamics.

Here we use our temperature-controlled stage to investigate the freezing of hard particles

suspensions in conditions similar to that used in materials processing routes based on freez-

ing.28 The 1 vol.% particle suspension was frozen at 20µm/s, in a 5◦C/mm temperature

gradient.

A 3D view of the frozen sample is shown in Fig. 6. The Sulforhodamine B dye is rejected

by the ice crystals, the black regions of the image corresponds thus to the ice crystals. The

rapid growth rate of the crystals (20 µm/s) induce lamellar solidification patterns typically

encountered in ice-templating studies.29 The particles are segregated between the lamellar

ice crystals (region A), where a nearly dense packing can be observed. We can also notice

that not all particles are segregated by the crystals: a few isolated particles (region B)

are entrapped within the ice crystals. This means that a mixed regime can exist during

solidification, where most–but not all– particles are segregated by the solidification front.

The critical velocity above which particles are engulfed by the front 30 directly depends

on the particle size. However, here we use particles with a very narrow size distribution.
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Figure 6: Accumulation of solid particles between growing ice crystals during directional
solidification. Crystals grew from the bottom (cold) to the top (warm). Most particles
have been segregated and concentrated between the crystals. A few isolated particles have
nevertheless been engulfed by growing crystals. Water is still liquid in most of the inter-
particle spaces. Temperature gradient: 5◦C/mm, growth rate 20µm/s.

Therefore the mixed regime cannot be explained by a particle size distribution effect, where

large particles would be engulfed and smaller one repelled and concentrated between adjacent

crystals.

Higher magnification observations (insets C and D in Fig. 6) enable us to identify the

inter-particle regions where ice is already present. In inset C, a dense packing of particles

can be seen. The pore size between the particles is thus small, and we can see on the

image that the water is still liquid, as the Sulforhodamine B signal is strong. In inset D,

however, a cubic packing with larger pores is observed. The Sulforhodamine B signal is much

weaker, revealing thus that ice has already penetrated into the pores. This behavior can be

explained by the Gibbs-Thomson freezing point depression: the freezing point decreases with

pore size.31 Hence pore ice is formed first in the largest pores. With confocal microscopy,

we can thus follow the progression of freezing within the packing of segregated particles. No

other technique can provide such observations today.
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The perspectives in the solidification studies in the presence of particles are therefore

exciting. Not only can we image ice, liquid, and particles, but the temperature-controlled

stage also provides a decoupled control of the temperature gradient and the ice growth

rate, which are the main parameters that control the solidification patterns and segregation

behaviours. In addition, we can perform such observations dynamically, and should thus

be able to investigate the dynamics of particle segregation and their coupling with crystal

growth.

Freezing emulsions

Emulsions are another interesting system to freeze, for several reasons. The first one is, of

course, to better understand the freeze/thaw stability of emulsions, which are of interest

in many chemistry,32 pharmaceutical,33 and food engineering34–36 applications. The second

motivation are freezing routes using emulsions, which can yield porous materials37 or cap-

sules.38 The third reason, with far-reaching implications, is the use of model mono-dispersed

emulsions to investigate the interaction of objects with a solidification front.39 The later is

a phenomenon encountered in applications as diverse as the freezing of soils in cold regions,

the cryopreservation of cells, the solidification of particle-reinforced alloys, or the removal of

pollutants by directional freezing.40 Because we can easily control their size, composition,

and surface chemistry, oil droplets are interesting objects to play with in this case. They may

offer a particularly interesting analogy to the behaviour of soft objects such as reproductive

or red blood cells.

Before moving to systems closer to that of applications, it is better to start the investi-

gations with a model system. Here we prepare an oil-in-water emulsion using microfluidics.

The volume fraction of oil is low enough so that droplets do not interact with each other

during freezing. We can thus investigate in details the interaction of isolated droplets with

the front. A typical image is shown in Fig. 7. The ice rejects the dye from water and appears

thus in black. The liquid regions fluoresce (magenta). A second dye, incorporated in the oil
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droplets (cyan), enables us to identify them. We can thus simultaneously image the liquid,

the ice, and the droplets, in 2D or 3D.

With rapid imaging capacities, we can capture in 3D the interaction of an oil droplet with

the solidification front. A typical time-lapse, 3D reconstruction is shown in Fig. 7B. Here,

we combined all the z slices (z-projection). The result is equivalent to an optical microscopy

image with an extended depth of view and limited light scattering. We can thus clearly

follow the movement of the droplet, the deformation of the solid/liquid interface, as well as

the formation of a thin liquid film between the droplet and the ice. This thin film is preserved

when the droplet is completely engulfed by the ice. In the example shown here, the thin

liquid film extends towards the solidification front, creating thus a defect (grain boundary) in

the solidification microstructure. Because the solidification front is at a constant position in

the observation frame, we can gather statistics about the droplet behaviour, unlike previous

studies of particle/front interactions where only a few interactions events were imaged and

analysed. Hundreds of interactions events can be analysed if the experiment is run for long

enough.39

The current setup offers a uniquely-controlled platform to investigate the freeze/thaw

stability of emulsions, with 3D, in situ, multiphase imaging capacities, providing statistical

informations about the interactions of soft objects with a solidification front. It may thus

become a valuable tool in the study of such systems.

Self-shaping of oil droplets upon cooling

Bottom-up approach becoming an attractive energy and material efficient alternative to the

classical top-down approach in the materials synthesis. A great variety of organic,41–43 in-

organic44 and composite materials45 was obtained via the bottom-up approach by using

polymers, small synthetic and biological molecules, amphiphiles, graphene and other compo-

nents as building blocks. Of particular interest of organic self-assembly is that many of such

systems, including DNA,46 peptides47 and amphiphiles,48,49 exhibit temperature metamor-
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Figure 7: Directional solidification of oil-in-water emulsion: (A) General view of the sample.
(B) Time-lapse sequence of the oil droplet encapsulation by the solidification front.
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phism - i.e. different morphologies may be obtained by changing the temperatures or cooling

rate. While being able to provide multiplicity of morphologies, self-assembling systems can

be difficult to study when both thermodynamics and kinetics are involve in the structure

formation.50

Here we present an example based on the work of Denkov et al.51 Hexadecane droplets

in water (containing appropriate surfactant) spontaneously change their morphology several

times, generating series of complex regular shapes owing to the internal phase-transition

processes (Fig. 8). The sample consists of 5% v/v of hexadecane in water (containing 1

wt% of Brij 58 surfactant). The emulsion is produced by hand shaking for 30 seconds. The

sample is introduced at 20◦C and then one side was cooled to 0◦C with a cooling rate of

0.1◦C/s.

The confocal image is shown in Fig. 8A. At 18◦C (melting point of hexadecane), the oil

freezes, resulting in the change in the droplet colour (insert B in Fig. 8). A variety of frozen

droplets with irregular shapes including triangles (Fig. 8C and D), hexagons, and prisms

(Fig. 8E) can be observed below the melting point.

Fig. 8E shows the time-lapse sequence for the sample translated with a velocity of 1 µm/s

over a temperature gradient of 10◦C/mm. This corresponds to the cooling rate of 0.01◦C/s.

In total agreement with the work of Denkov et al. under slow cooling spherical oil droplet

transforms consecutively into hexagonal platelet, tetragonal platelet, platelet with high as-

pect ratio and, eventually, thin fibre. The advantage of the approach proposed here over

the classical cooling experiment is that a large amount of statistical data on the droplets

metamorphism can be accumulated within single experiment.

Self-assembly of amphiphiles into helical structures

Chiral assemblies such as twisted ribbons, helices and tubes are commonly encountered in

Nature, with the double helix of DNA being the most well-known. Such structures have

attracted extensive research interest over the last decade owing to their importance for the
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Figure 8: Hexadecane in water (contains 1 wt% of Brij 58 surfactant) emulsion in the tem-
perature gradient of 10◦C/mm: General view (A). Zoom-in on the different morphological
features of the sample (B-D). Time-lapse sequence of the evolution of the sample translated
through the temperature gradient of 10◦C/mm with the velocity of 1 µm/s. Different colour
LUTs are applied to the images A–D and E for better visibility.
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understanding of biological phenomena and use in nanotechnology44 and functional materials

synthesis.41,42

Chiral structures are typically formed upon the cooling of the sample below the phase

transition temperature.52 Determining the effect of the temperature on the formation kinetics

and morphology of aggregates can be, however, a time consuming task. Here we present a

fast screening of the temperature effect on the amphiphile self-assembly.

The following experiment is based on the work of Aime et al.53,54 The sample contains

20mM didodecyldimethylammonium bromide, 20mM guanosine 5’-monophosphate (GMP)

disodium salt, and acetic acid to adjust the pH to 5.9. We first solubilize the sample at 50◦C

and then introduced it in a temperature gradient of 10◦C/mm (between 20◦C and 40◦C).

Fig. 9A shows the sample morphology after four hours of ageing. Sulforhodamine B flu-

orescent dye forms strong ion pair with amphiphile, which ensures that in our experiment

we do visualize only the latter. The reported Krafft temperature of didodecyldimethylam-

monium guanosine 5’-monophosphate complex is 35◦C (for 3mM solution). Above this

temperature amphiphile is in the melted state. It forms circular domains at the surface of

the bottom glass slide (Fig. 9B). Fluorescence intensity differs between the domains which

can result from the thickness variation (multi-layered structure). Below the Krafft temper-

ature, the amphiphile/GMP complex precipitates from the solution and self-assembles into

micrometer-size helical structures (Fig. 9C). Interestingly, even close to the phase transi-

tion temperature, we do not observe any helix orientation along the temperature gradient.

This suggests that helical structures are not formed through the condensation of monomers

from solution, but rather via the structural reorganization of existing precipitate. Decreas-

ing the temperature results in the formation of smaller helical structures evincing slower

self-assembly kinetics (Fig. 9D).
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Figure 9: Organic self-assembly in linear temperature gradient of 10◦C/mm: (A) overview;
(B) zone above the Krafft temperature (KT): melted sample; (C) zone below the KT: helical
structures, fast kinetics; (D) zone below the KT: helical structures, slow kinetics. Image
recorded 4 hours after the beginning of experiment.

Conclusions and perspectives

We presented here a versatile design of a stage for temperature controlled-experiments under

the confocal microscope, including experiments with elevated temperature gradients (up to

20◦C/mm here). The variety of examples reported here, from crystal growth to the freezing

stability of emulsions emulsions, the self-assembly of amphiphiles into helical structures or

the self-shaping of oil droplets, illustrate the potential of this approach in chemistry and

materials science. If confocal microscopy is an ubiquitous tool in life sciences, very little has

been comparatively shown in chemistry and materials science. We hope that this study and

setup design will inspire other chemists to enter this playground. While we used only two

detectors in our setup, most confocal microscope today can accommodate up to 5 detectors.

More complex multiphase imaging can thus be envisioned if needed.
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