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Y. Chitour∗, D. Prandi†, L. Rizzi‡
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Abstract

We study the asymptotic growth of the eigenvalues of the Laplace-Beltrami
operator on singular Riemannian manifolds, where all geometrical invariants
appearing in classical spectral asymptotics are unbounded, and the total vol-
ume can be infinite. Under suitable assumptions on the curvature blow-up, we
prove how the presence of the singularity influences the Weyl’s asymptotics
and the localization of the eigenfunctions for large frequencies.

As a consequence of our results we identify a class of singular structures
such that the corresponding Laplace-Beltrami operator has the following non-
classical Weyl’s law:

N(λ) ∼ ωn
(2π)nλ

n/2υ(λ),

where υ is slowly varying at infinity in the sense of Karamata. Finally, for any
non-decreasing slowly varying function υ, we construct a singular Riemannian
structure prescribing the above Weyl’s law.

A key tool in the proof is a universal estimate for the remainder of the
heat trace on Riemannian manifolds, which is of independent interest.
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1 Introduction
In [44], Hermann Weyl studied the distribution of eigenvalues for the Laplace oper-
ator on bounded domains of Rn, and proved the following asymptotic formula:

N(λ) ∼ ωn
(2π)nvol(Ω)λn/2 λ→∞. (1)

Here, N(λ) is the number of eigenvalues smaller than λ for the Dirichlet Laplacian
on a bounded domain Ω ⊂ Rn (also called the eigenvalue counting or Weyl’s func-
tion), and vol(Ω) is its Lebesgue measure. The classical proof of this result employs
the variational method known as Dirichlet-Neumann bracketing, and the explicit
estimate with remainder of the eigenvalue counting function on cubes, see e.g. [19].

Weyl’s law has been proved to hold for the Laplace-Beltrami operator on compact
Riemannian manifolds, where the Lebesgue measure is replaced by the Riemannian
one. In this case (1) is a consequence of the celebrated Minakshisundaram-Pleijel
heat kernel asymptotics and the Karamata tauberian theorem, see e.g. [10].

As we will see shortly, the finiteness of the volume is not necessary for the
discreteness of the spectrum of the Laplace-Beltrami operator. Since in the case of
infinite volume the r.h.s. of (1) is infinite, one might wonder what the leading order
of N(λ) is, as λ→∞, and which spectral invariant it encodes.

A well understood example is that of quasi-bounded domains of R2, as the horn-
shaped domains {(x, y) | |x|α|y| ≤ 1}. It turns out that the parameter α is a spectral
invariant appearing in the leading order of N(λ), which is of the form λ log λ for
α = 1, and λ(1+α)/2 otherwise, see [40, 43] and references therein for details. In these
cases the difficulty in the study of the Weyl function arises from the unboundedness
of the domain, since the intrinsic geometry of the problem is trivial.

1.1 The Grushin sphere model
In this paper we are concerned with singular Riemannian structures, where all geo-
metric invariants, including the curvature and the volume, can be unbounded. We
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first discuss a simple model representing the class of singularities under investigation.
This is an almost-Riemannian structure in the sense of [2, 8].

Consider the two dimensional sphere S2 ⊂ R3. Let X and Y be the generators
of rotations around the x and y axis, respectively. These vector fields are collinear
on the equator Z = {(x, y, z) ∈ S2 | z = 0}, and linearly independent elsewhere. By
declaring X, Y to be orthonormal, we define a Riemannian structure on the sphere,
which is singular on Z (the coefficients of the metric explode). Nevertheless, the
associated Laplace-Beltrami operator, with domain C∞c (N \ Z) is essentially self-
adjoint on L2(N \Z, dµg) and has discrete spectrum [8]. Due to the high symmetry
of the problem the spectrum can be explicitly computed, and in [7] the following
non-classical asymptotics has been obtained:

N(λ) ∼ 1
4λ log λ, λ→∞. (2)

It is easy to check that the total Riemannian volume of N \ Z is infinite, and
the curvature explodes to −∞ at the equator1. Hence, heat kernel and heat trace
estimates are bound to blow up close to the singular region, and it is not clear how
to deduce the asymptotic behaviour of N(λ) using tauberian techniques.

1.2 Assumptions and main results
Let (M, g) be a non-complete Riemannian manifold. The singular set must be
thought as a subset of the metric boundary approaching whom all geometric quan-
tities such as the curvature, the measure of balls, et cetera, blow up. Such a blow
up must occur in a controlled fashion.

Assumption (Σ). There exists a neighborhood U = {δ < ε0} of the metric bound-
ary such that the following hold:

(a) Regularity: the distance δ from the metric boundary is smooth;

(b) Convexity: the level sets of δ are convex, that is Hess(δ) ≤ 0;

(c) Curvature control: there exists C > 0 such that | Sec | ≤ Cδ−2;

(d) Injectivity radius control: there exists C > 0 such that inj ≥ Cδ.

The above assumption implies that we can approach the singularity through an
exhaustion Mε = {δ ≥ ε} of smooth Riemannian manifold with convex boundary,
with curvature explosion at most quadratic and injectivity radius going to zero at
most linearly as ε→ 0.
Remark 1.1. The injectivity radius control in the assumption (Σ) is automatically
satisfied if the level sets of δ are strictly convex, see Proposition 3.2.

1This is the case for all 2-dimensional ARS. However, let us point out that for n > 2 one can
build similar structures where the curvature is unbounded both above and below, see Example 7.1.
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We consider the Friedrichs extension ∆ of the Laplace-Beltrami operator with
domain C∞c (M), that is the unique self-adjoint operator in L2(M, dµg) associated
with the quadratic form

Q(u) =
∫
M
|∇u|2dµg, ∀u ∈ C∞c (M). (3)

Our first result is the following.

Theorem 1.1. Let M be a Riemannian manifold satisfying Assumption (Σ) and
with compact metric completion. Then there exists C± > 0 and Λ > 0 such that

C− ≤
N(λ)

λn/2vol(M1/
√
λ)
≤ C+, ∀λ ≥ Λ. (4)

Remark 1.2. The convexity assumption is used to prove the compactness of the
resolvent of ∆ and it plays a fundamental role in several comparison estimates of
the remainder of the Weyl’s asymptotics for the truncations.

In the general setting of Theorem 1.1, we are not able to obtain a precise asymp-
totic for N(λ) as λ → ∞. In fact, this result only yields a leading order for the
latter, and does not even imply the existence of a limit in (4). In order to obtain the
precise Weyl asymptotic, we need more precise assumptions on the volume growth,
as measured by the quantity

υ(λ) := vol
(
M1/

√
λ

)
. (5)

Recall that υ is slowly varying at infinity in the sense of Karamata if υ(aλ) ∼ υ(λ)
as λ → ∞ for all positive a. Some examples of slowly varying functions are log λ,
the iterates logk λ = logk−1 log λ, rational functions with positive coefficients formed
with the logk λ. The following result is proved in Section 5.

Theorem 1.2. Let M be a Riemannian manifold satisfying Assumption (Σ) and
with compact metric completion. Then, if υ is slowly varying, we have

lim
λ→∞

N(λ)
λn/2υ(λ) = ωn

(2π)n . (6)

Here, ωn is the volume of the n-dimensional Euclidean unit ball.

Remark 1.3. The assumptions of Theorem 1.2 are verified for the Grushin structure
of Section 1.1. More generally, they are verified for generic 2-dimensional ARS
without tangency points, see Section 7. In these cases υ(λ) = σ log λ for some σ > 0
depending on the structure.

A celebrated result due to Y. Colin de Verdière states that, for any finite sequence
of m positive integer numbers, one can find a compact Riemannian manifold M
such that these numbers are the first m eigenvalues of M , see [15]. Exploiting
Theorem 1.2, we prove a counterpart at infinity of this result, prescribing the large
eigenvalues asymptotic in place of a finite part of the spectrum (see Section 5).

4



Theorem 1.3. For any compact manifold N of dimension n and non-decreasing
slowly varying function υ : R+ → R+ there exists a Riemannian structure on N ,
singular along any prescribed submanifold S, such that for its Laplace-Beltrami op-
erator the Weyl’s law (6) holds.

Observe that the Laplace-Beltrami operator associated with the structure given
by Theorem 1.3 is essentially self-adjoint, see Remark 5.1.

Via a classical argument, we also prove the concentration of eigenfunctions of
the Laplace-Beltrami operator at the metric boundary, in presence of a non-classical
Weyl’s asymptotic. A precise statement is the following (see Sec. 6).

Theorem 1.4. LetM be a n-dimensional non-complete Riemannian manifold such
that the Laplace-Beltrami operator ∆ has discrete spectrum, and

lim
λ→∞

N(λ)
λn/2

=∞, (7)

Let 0 ≤ λ1 ≤ λ2 ≤ . . . be the eigenvalues of −∆, and, for all i ∈ N, denote by φi
a normalized eigenfunction associated with the eigenvalue λi. Then, there exists a
density one subset S ⊆ N such that for any compact U it holds

lim
i→∞
i∈S

∫
U
|φi(x)|2dµg(x) = 0. (8)

In particular Theorem 1.4 applies to all structures satisfying the assumptions of
Theorem 1.1, provided that the volume of M is infinite.

Finally, in Section 7, we apply our results to a class of almost-Riemannian struc-
tures, which generalize the Grushin sphere model discussed above.

1.3 Structure of the proof
We sketch the proof of Theorem 1.1, which is carried out in detail in Section 4,
and present a key technical tool occurring in the proof. The argument relies on a
combination of variational and tauberian techniques. In its simplest instance, we
split M = Mε

0 ∪ M∞
ε . By Dirichlet-Neumann bracketing, we bound N(λ) with

the sum of the counting functions for the Laplace-Beltrami operator on the two
domains, with Neumann (+) or Dirichlet (−) boundary conditions, respectively:

N−[0,ε](λ) +N−[ε,∞](λ) ≤ N(λ) ≤ N+
[0,ε](λ) +N+

[ε,∞](λ). (9)

Formula (9), as ε→ 0, should determine the asymptotics of N(λ) as λ→∞.
The implementation of this simple strategy is quite delicate. Thanks to the

convexity assumption, Mε
0 supports a Hardy-type inequality. As a consequence,

N±[0,ε(λ)](λ) = 0, provided that ε → 0 sufficiently fast (in a quantitative way) as
λ→∞. In this regime the asymptotics of N(λ) is controlled by the Weyl function
of the truncation M∞

ε(λ). The latter is a Riemannian manifold with boundary and
finite volume, which satisfies indeed the classical Weyl’s law

N±[ε(λ),∞](λ) ∼ ωn
(2π)nvol

(
M∞

ε(λ)

)
λn/2. (10)
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The implicit remainder in (10), which depends on the parameter of the truncation
ε(λ), must be carefully controlled as λ → ∞. The key tool here is the following
heat-trace asymptotic formula with universal remainder2, proved in Section 2.

Theorem 1.5 (Heat trace asymptotics with quantitative remainder). Let (M, g) be
a smooth compact n-dimensional Riemannian manifold with convex boundary ∂M .
Let K,H ≥ 0 such that | Sec(M)| ≤ K and |Hess(δ)| ≤ H for d∂ < inj∂M . Then
there exists a constant c > 0, depending only on n, such that the following estimate
for the Dirichlet and Neumann heat kernels holds:∣∣∣∣∣(4πt)n/2vol(M)

∫
M
p±(t, x, x)dµg(x)− 1

∣∣∣∣∣ ≤ c
(
t

t0

)1/2
, (11)

for all values of t ∈ R+ such that

√
t ≤
√
t0 = min

{
injM ,

inj∂M
2 ,

π√
K
,

1
H

}
. (12)

As a consequence of Theorem 1.5, and a suitable Karamata-type theorem with
remainder (due to Ingham [26]), we obtain an asymptotic formula with universal
remainder for the eigenvalue counting function of the Laplace-Beltrami operator on
a compact Riemannian manifold with boundary as λ→∞ (see Theorem 2.5). The
latter also implies a Buser’s inequality for manifolds with convex boundaries similar
to the one proved in [25] with different techniques (see Corollary 2.6).

When applied to the truncationsM =M∞
ε(λ), this result singles out the quantities

whose explosion must be controlled as λ→∞ and ε→ 0, concluding the proof.

1.4 Other classes of singular structures
Conical singularity. There is a sharp difference between our class of singular
structures and conical singularities [11]. In this latter case, our techniques do not
apply since the boundaries of the truncations M∞

ε are concave (hence non-convex)
as ε → 0. However, the spectrum of the Laplace-Beltrami is still discrete, the
total volume is finite, and the classical Weyl’s law (1) holds. In this sense, conical
singularities are more gentle, and do not modify the leading order of the Weyl
function with respect to the non-singular compact case. Indeed, conical singularities
are detected only at much higher order, see [41, 42].

Structures with locally bounded geometry In [30] the author considers non-
complete Riemannian structures (M, g), equipped with a weighted measure σ2dµg,
and the unique self-adjoint operator in L2(M, σ2dµg), associated with the Friedrichs
extension of the quadratic form

Q(u) =
∫
M
|∇u|2σ2dµg, u ∈ C∞c (M). (13)

2By “universal remainder”, we mean that it depends only on a handful of geometrical intrinsic
quantities, and fixed dimensional constants.
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The Riemannian measure dµg and the weight σ might be singular at the metric
boundary, and no regularity of the metric boundary is assumed. The author derives
in this setting Weyl’s asymptotics similar to the ones of Theorem 1.1. Despite the
similarities, the setting and methods of [30] are rather different with respect to ours.
The assumptions in [30] imply that M is locally uniformly bi-Lipschitz equivalent
to an Euclidean ball. If the metric completion is compact, this implies that the
Riemannian measure of M is finite. In particular [30] cannot be applied to the
simplest model of our class of singularities, that is the Grushin sphere.

ARS with smooth measures. An analogue to Theorem 1.2 for 2-dimensional
ARS was announced in [17], as a consequence of a more general local Weyl’s law
for sub-Laplacians [18, 16]. There, the authors are concerned with the Friedrichs
extension associated with the quadratic form

Q(u) =
∫
N
|∇u|2dω, u ∈ C∞(N), (14)

where N is a smooth compact manifold carrying a smooth almost-Riemannian struc-
ture (the reader not familiar with AR geometry can think at the example of the
Grushin sphere discussed above, where N = S2). The norm of the gradient is well
defined and smooth everywhere, including at the singular region Z ⊂ N and the
measure dω is positive and smooth on N . Even if the Weyl’s asymptotics is known
to be invariant when replacing ω by eφω, for φ ∈ C∞(N), it is not clear how the
spectral asymptotics are related when φ explodes at Z. It is actually surprising that,
for generic 2-ARS, we obtain the same Weyl’s law in our setting, where dω = dµg is
singular on Z, and the domain of the form (14) is C∞c (N \ Z).

Magnetic bottles. It would be interesting to extend our results to the magnetic
Laplacian, that is the self-adjoint operator −∆A associated with the quadratic form

QA(u) =
∫
M
|du− iuA|2dµg, u ∈ C∞c (M), (15)

where M is a Riemannian manifold, A is a one-form representing the magnetic
potential, and | · | here is the dual Riemannian norm on the complexified cotangent
bundle. The two-form B = dA is the magnetic field. When −∆A has compact
resolvent and is essentially self-adjoint on C∞c (M), one talks about magnetic bottles.
The Weyl’s law for magnetic bottles on Rn has been studied in [14], for the Poincaré
half-plane in [32], and more generally for geometrically finite hyperbolic surfaces in
[33]. In all these cases, the results are proved through the variational method and
localization on suitable small cubes. To our knowledge, the problem on manifolds
with non-constant and possibly exploding curvature has not been yet addressed.

Metric measure spaces. Recently, in [4, 46], the authors studied the pointwise
convergence of heat kernels for sequences of infinitesimally Hilbertian metric mea-
sure spaces with Ricci curvature bounded from below, the so-called RCD-spaces.
This class includes all measured-Gromov-Hausdorff limits of complete Riemannian
structures with Ricci curvature uniformly bounded from below, and dimension uni-
formly bounded from above. As a consequence, the authors also prove that any
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RCD-space satisfies a classical Weyl’s law. Therefore, our contribution can be seen
as the first step toward the investigation of the Weyl’s asymptotics for limits of
Riemannian structures (Xn, gn, µgn) where the Ricci curvature is unbounded.
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2 Heat kernel estimates with remainder
Let (M, g) be a smooth n-dimensional Riemannian manifold, with smooth boundary
∂M . In this section we prove on-diagonal estimates for the heat kernel and the heat
trace of M , with an explicit control on the remainder term.

2.1 Notation and preliminaries
The injectivity radius at x ∈M , denoted by injM(x), is the supremum of times t > 0
such that every unit-speed geodesic emanating from x and defined up to time t is
length-minimizing. The injectivity radius of M is then equal to

injM = inf
x∈M

injM(x). (16)

This definition extends the classical one for possibly non-complete Riemannian man-
ifolds with boundary. Observe that the exponential map expx : TxM → M is a
diffeomorphism when restricted to the largest ball of radius smaller than inj(x) con-
tained in the domain of the exponential map (geodesics may cease to be defined
when they hit the boundary or the metric boundary of the manifold).

We denote the Riemannian distance from ∂M by d∂ : M → [0,+∞), that is

d∂(x) = inf
z∈∂M

d(x, z). (17)

A length-parametrized geodesic γ : [0, t] → M , γ(0) ∈ ∂M is length-minimizing
w.r.t. the boundary if for all 0 ≤ s < t it holds d∂(γ(s)) = s. In particular, it
necessarily holds that γ̇(0) ⊥ Tγ(0)∂M and that γ(0) is the only point of ∂M realising
d∂(γ(s)). The injectivity radius from ∂M , denoted by inj∂M , is then defined as injM ,
by replacing length-minimizing geodesics with length-minimizing geodesics w.r.t.
the boundary.
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For a smooth function f : M → R, we let

Hess(f)(X, Y ) = g(∇X∇f, Y ), X, Y ∈ Γ(M), (18)

where ∇ denotes the covariant derivative. The notation Hess(f) ≥ c (resp. ≤ c)
for some constant c ∈ R is to be understood in the sense of quadratic forms and
w.r.t. the metric g. The boundary ∂M is convex (resp. strictly convex) if its second
fundamental form Hess(d∂)|∂M is non-positive (resp. negative). Moreover, it is mean
convex if Tr Hess(d∂)|∂M ≤ 0.

2.2 On-diagonal heat kernel estimates
The Dirichlet and Neumann heat kernels p+ and p− are the minimal fundamental
solutions of the heat equation associated with the Laplace-Beltrami operator ∆ =
div ◦∇ with, respectively, Dirichlet or Neumann boundary conditions. We denote
the corresponding operators by ∆+ and ∆−.

The main theorem of the section is the following.

Theorem 2.1. Let (M, g) be a smooth compact n-dimensional Riemannian manifold
with convex boundary ∂M . Let K ≥ 0 be such that | Sec(M)| ≤ K. Moreover, let

ρ(x) = min
{
d∂(x)

2 , injM
}
, ∀x ∈M. (19)

Then there exist positive constants c1, c2, c3 > 0, depending only on n, such that
∣∣∣(4πt)n/2p±(t, x, x)− 1

∣∣∣ ≤ c1Kt+ c2e
−c3

ρ(x)2

4t , ∀
√
t ≤ min

{
ρ(x), π√

K

}
. (20)

Proof. Consider the double M̄ = M ∪∂M M of M , which is a compact smooth
manifold without boundary, endowed with the Lipschitz metric ḡ inherited from g.
Let d̄ and µ̄ denote the corresponding metric and measure on M̄ . Clearly, d̄ and µ̄
coincide with d and µ, when restricted to either isometric copy M ⊂ M̄ . Following
[31], although the coefficients of the Laplace-Beltrami operator are discontinuous
there is a well-defined heat kernel p̄ on (M̄, ḡ), which satisfies

p±(t, x, y) = p̄(t, x, y)∓ p̄(t, x, y∗), ∀x, y ∈M, (21)

where y∗ ∈ M̄ denotes the reflection of y w.r.t. the boundary ∂M ∈ M̄ . We organize
the proof in several steps.

Step 1. Gromov-Hausdorff approximation. For τ > 0, there exists a sequence
ḡτ of smooth Riemannian metrics on M̄ such that

• (M, d̄τ , µ̄τ )→ (M̄, d̄, µ̄) in the measured Gromov-Hausdorff sense, as τ → 0;

• Ric(ḡτ ) ≥ −K(n− 1), for all values of τ ;

• for any compact set K such that K ∩ ∂M = ∅ and for sufficiently small τ , we
have ḡτ |K = ḡ|K ;

9



• the distance to ∂M in M̄ w.r.t. ḡτ coincides with d∂, seen as a function on M̄ .

The construction of this family is sketched in [35, Sec. 4] for positive Ricci curvature
and strictly convex boundary. It is not hard to check that this extends to the case of
convex boundary, see [45, Thm. 1.8] and references therein for details. The measured
Gromov-Hausdorff convergence in the sense of Fukaya [22] follows from the fact that,
in this construction, ḡτ → ḡ uniformly in coordinates.

As a consequence of the measured Gromov-Hausdorff convergence and the Ricci
bound, we have the convergence of the corresponding heat kernels p̄τ : R+× M̄ × M̄

lim
τ↓0

p̄τ (t, x, y) = p̄(t, x, y), ∀(t, x, y) ∈ R+ × M̄ × M̄, (22)

uniformly on M̄ × M̄ , for any fixed t. See [21, Theorem 2.6].
The argument consists in obtaining lower and upper bounds for p̄τ that are

uniform w.r.t. τ . Passing to the limit and using (21) will then yield the statement.

Step 2. Lower bound. The lower bound on p̄τ is a consequence of classi-
cal comparison theorems for the heat kernel with Ricci lower bounds on com-
plete manifolds without boundary. Indeed, applying [10, Thm. 7, p. 196] we have
p−K(t, d(x, y)) ≤ p̄τ (t, x, y) for all (t, x, y) ∈ R+ × M̄ × M̄ , for all n ∈ N, and where
p−K : R+ × [0,+∞)→ R is the heat kernel for the simply connected space form of
constant curvature −K. In particular, as τ → 0, we have

p−K(t, x, y) ≤ p̄(t, x, y), ∀(t, x, y) ∈ R+ × M̄ × M̄. (23)

Step 3. Upper bound. Observe that, for the upper bound, the comparison theo-
rem cannot hold globally. We claim that there exists positive constants C1, C2, C3 >
0, such that for any x ∈ M and

√
t < min{ρ(x), π/

√
K}, where ρ(x) is defined in

(19), it holds

p̄(t, x, x) ≤ pK(t, 0) + C1

tn/2
e−C3

ρ2(x)
4t and p̄(t, x, x∗) ≤ C1

tn/2
e−C3

ρ2(x)
4t . (24)

We use B̄x(r) (resp. B̄τ
x(r)) to denote the open ball with center x and radius r > 0

with respect to the metric d̄ (resp. d̄τ ). When the ball is completely contained in
one of the two copies of M in M̄ , we drop the bar since no confusion arises.

Fix x ∈ M , and let ρ = ρ(x). Let Ω = Bx(ρ). By definition of ρ, the closure of
Ω = B̄τ

x(ρ) is contained in one of the two copies of M ⊂ M̄ , and does not intersect
∂M . Hence, assuming τ sufficiently small, we have ḡτ |Ω = g|Ω, and

Ω = B̄τ
x(ρ) = B̄x(ρ) = Bx(ρ). (25)

Denoting by pτΩ the heat kernel w.r.t. ḡτ on Ω with Dirichlet boundary condition,
the Markov property of the heat kernel implies that

p̄τ (t, x, y) ≤ p̄τΩ(t, x, y) + sup
0<s≤t
z∈∂Ω

p̄τ (s, z, y). (26)
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This follows, e.g., by applying [24, Lemma 3.1] and upper-bounding the hitting
probability appearing there by 1. We now estimate the two terms appearing on the
r.h.s. of (26), which we will refer to as the local and the global term, respectively,
for the case of y ∈ {x, x∗}.

Let us start by considering the local term, for y = x∗. Since Ω ⊂ M , it follows
that x∗ /∈ Ω, hence

p̄τΩ(t, x, x∗) = 0. (27)
Let now y = x. Observe that since ρ ≤ injM , and Ω = B̄τ

x(ρ) lies in the region
of M where the metric is unperturbed, Ω lies within the injectivity radius from x.
Therefore, we can apply [10, Theorem 6, p. 194] and domain monotonicity of the
Dirichlet heat kernel to obtain

p̄τΩ(t, x, x) ≤ pK(t, 0). (28)

The global term in (26) is more delicate. Observe that the Li-Yau inequality
(see Lemma A.4) requires only a lower bound on the Ricci curvature, and hence
can be applied to the compact Riemannian manifold with no boundary (M̄, ḡτ ), for
which Ric(ḡτ ) ≥ −(n − 1)K, for all τ . As a consequence, there exist constants
C1, C2, C3 > 0, depending only on the dimension n of M̄ , such that

p̄τ (s, z, y) ≤ C1√
volτ (B̄τ

y (
√
s))volτ (B̄τ

z (
√
s))

eC2Ks−C3
d̄2τ (z,y)

4s , (29)

for all (s, z, y) ∈ R+ × M̄ × M̄ .
Recall that z ∈ ∂B̄τ

x(ρ), and ρ(x) ≤ d∂(x)/2. This implies that d̄τ (z, x) = ρ, and

d̄τ (z, x∗) ≥ d̄τ (x, x∗)− d̄τ (z, x) = 2d∂(x)− ρ ≥ 3ρ ≥ ρ. (30)

Hence, (29), for y ∈ {x, x∗}, yields

p̄τ (s, z, y) ≤ C1√
volτ (B̄τ

y (
√
s))volτ (B̄τ

z (
√
s))

eC2Ks−C3
ρ2(x)

4s , y ∈ {x, x∗}. (31)

Recall now that in (26) s ≤ t. Furthermore
√
t ≤ ρ = min

{
d∂(x)

2 , injM
}

. It
follows that B̄τ

y (
√
s), for y ∈ {x, x∗} appearing in (31) do not intersect ∂M , and

hence we can choose τ sufficiently small in such a way that these sets lie in the
region of M̄ where the metric is unperturbed, yielding

volτ (B̄y(
√
s)) = vol(By(

√
s)), ∀s ≤ t, y ∈ {x, x∗}. (32)

Furthermore, since
√
t ≤ injM , and thanks to the upper bound on the sectional

curvature of (M, g), we have

vol(By(
√
s)) ≥ vol(BK(

√
s)), ∀s ≤ t, y ∈ {x, x∗}. (33)

Finally, since
√
t ≤ π√

K
, we deduce (see Lemma A.2) the existence of a constant

C > 0 depending only on n such that , for τ sufficiently small, it holds

volτ (B̄τ
y (
√
s)) ≥ Csn/2, ∀s ≤ t, y ∈ {x, x∗}. (34)

11



The same argument shows that (34) holds also for y = z ∈ ∂Ω for τ sufficiently
small. By plugging (34) in (31), and renaming the constants, we deduce that

p̄τ (s, z, y) ≤ C1

sn/2
e−C3

ρ2(x)
4s , ∀s ≤ t, y ∈ {x, x∗}. (35)

An elementary argument show that, up to replacing the constant C1 with a larger
constant (still depending only on n), one has

sup
0<s≤t
z∈∂Ω

p̄τ (s, z, y) ≤ C1

tn/2
e−C3

ρ2(x)
4t , y ∈ {x, x∗}, (36)

which is the the final estimate for the global part of (26).
By (27) (resp. (28)) and (36), passing to the limit as τ → 0 in (26), completes

the proof of the upper bounds (24).

Step 4. Conclusion. By (21), the lower bound (23) and the upper bound (24)
for the heat kernel of the double yield the following on-diagonal estimates for the
Dirichlet and Neumann heat kernels of the original manifold with boundary:

p−K(t, 0)− C1

tn/2
e−C3

ρ2(x)
4t ≤ p±(t, x, x) ≤ pK(t, 0) + 2C1

tn/2
e−C3

ρ2(x)
4t , (37)

valid for all 0 <
√
t ≤ min{ρ(x), π√

K
}. We conclude by using the uniform estimates

of p±K(t, 0) given in Lemma A.1 (which we apply with T = π2).

2.3 Heat trace bound
In this section we apply Theorem 2.1 to estimate the heat trace on M .

Theorem 2.2 (Heat trace asymptotics with quantitative remainder). Let (M, g) be
a smooth compact n-dimensional Riemannian manifold with convex boundary ∂M .
Let K,H ≥ 0 such that | Sec(M)| ≤ K and |Hess(δ)| ≤ H for d∂ < inj∂M . Then
there exists a constant c > 0, depending only on n, such that the following estimate
for the Dirichlet and Neumann heat kernels holds:∣∣∣∣∣(4πt)n/2vol(M)

∫
M
p±(t, x, x)dµg(x)− 1

∣∣∣∣∣ ≤ c
(
t

t0

)1/2
, (38)

for all values of t ∈ R+ such that

√
t ≤
√
t0 = min

{
injM ,

inj∂M
2 ,

π√
K
,

1
H

}
. (39)

Proof. Fix t as in our assumptions. Let i = min{injM ,
inj∂M

2 }. We split M into 3
disjoint components (see Figure 1):

Ω1 =
{
d∂
2 <

√
t

}
, Ω2 =

{√
t ≤ d∂

2 < i

}
, Ω3 =

{
i ≤ d∂

2

}
. (40)

12



ρ(x)

d∂(x)
2

Ω3

Ω2

i = min{injM , inj∂M

2 }

Ω2

Ω1

injM

injM

√
t

Li-Yau
from ∂M

Figure 1: The regions Ω1,Ω2,Ω3. The condition
√
t ≤ injM ensures the existence of

Ω2, Ω3 where we apply Theorem 2.1. The condition
√
t ≤ min

{
injM , π√

K
, inj∂M

2 , 1
H

}
allows one to apply the Li-Yau estimate on Ω1.

We estimate the heat trace on these three sets separately.
Estimate on Ω1. By definition, and thanks to our assumption on t, we have

d∂
2 <

√
t ≤ min

{
injM ,

inj∂M
2 ,

π√
K
,

1
H

}
. (41)

It follows that ρ(x) = d∂(x)/2 for any x ∈ Ω1, where ρ is defined in (19). Fur-
thermore, d∂(x) < inj∂M , that is, Ω1 is contained inside the injectivity radius from
the boundary. Observe that, by construction,

√
t > ρ(x), and one cannot apply

the bound of Theorem 2.1. However, the assumption on t allows one to apply the
Li-Yau type estimate (213) of Lemma A.4. This yields,

(4πt)n/2
∫

Ω1
p±(t, x, x)dµg(x) ≤ C4vol(Ω1). (42)

In order to complete the estimate on Ω1, we bound its volume. We have,

vol(Ω1) =
∫ 2
√
t

0
vol(Zξ)dξ, (43)

where vol(Zξ) denotes the Riemannian volume of the level set Zξ = {d∂ = ξ}
(a smooth (n − 1)-dimensional hypersurface for ξ > 0, with Z0 = ∂M). For all
0 < ξ ≤ inj∂M , it holds

d

dξ
vol(Zξ) =

∫
Zξ

Tr(Hess(d∂)) dσξ ≤ (n− 1)Hvol(Zξ), (44)

which implies
vol(Zξ) ≤ vol(∂M)e(n−1)Hξ. (45)

Recall now that t/t0 ≤ 1, and hence H
√
t ≤ 1. Thus, plugging (45) into (43) we

conclude the estimate on Ω1, yielding

(4πt)n/2
∫

Ω1
p±(t, x, x)dµg(x) ≤ C4vol(∂M)

√
t. (46)
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for some constant C4 > 0 depending only on n.
Estimate on Ω2. By construction, Ω2 still lies in the region within the injectivity

radius from ∂M . Furthermore, it still holds ρ(x) = d∂(x)/2 for x ∈ Ω2. Here,
however,

√
t ≤ min{ρ(x), π√

K
}, and hence we can apply the result of Theorem 2.1.

In particular, denoting with c a generic positive constant depending only on the
dimension, whose value can be possibly increased at each step, we have
∫

Ω2

∣∣∣(4πt)n/2p±(t, x, x)− 1
∣∣∣ dµg(x) ≤

∫
Ω2

(
cKt+ ce−

ρ2(x)
ct

)
dµg(x) (47)

= cKvol(Ω2)t+ c
∫

Ω2
e−

d2
∂(x)
ct dµg(x) (48)

= cKvol(Ω2)t+ c
∫ i

2
√
t
e−

ξ2

ct vol(Zξ)dξ (49)

≤ cKvol(Ω2)t+ cvol(∂M)
∫ ∞

0
e−

ξ2

ct
+(n−1)Hξdξ

(50)
≤ cKvol(Ω2)t+ cvol(∂M)

√
t. (51)

Here, similarly as the case for Ω1, we used the fact that Ω2 lies within the injectivity
radius from ∂M , and the estimate (45). Furthermore, we evaluate explicitly the
Gaussian integral in the last inequality, and use the fact that H

√
t ≤ 1.

Estimate on Ω3. For x ∈ Ω3, it does not necessarily hold ρ(x) = d∂(x)/2,
neither x is forcibly within the injectivity radius from ∂M . However, it holds ρ(x) ≥
i. Since we have

√
t ≤ i, this implies that

√
t ≤ ρ(x), and we can apply Theorem 2.1

again. Hence, we obtain
∫

Ω3

∣∣∣(4πt)n/2p±(t, x, x)− 1
∣∣∣ dµg(x) ≤

∫
Ω3

(
cKt+ ce−

ρ2(x)
ct

)
dµg(x) (52)

≤
(
cKt+ ce−

i2

ct

)
vol(Ω3) (53)

≤ c
(
Kt+ t

i2

)
vol(Ω3). (54)

Here, in the last step, we used the inequality e−1/x ≤ x/e for x > 0.
Since vol(Ωi)/vol(M) ≤ 1, splitting the l.h.s. of (38) in the subsets Ω1,Ω2,Ω3,

using (46), (51), (54), and increasing the constants, yields∣∣∣∣∣(4πt)n/2vol(M)

∫
M
p±(t, x, x)dµg(x)− 1

∣∣∣∣∣ ≤ c

(
vol(∂M)
vol(M)

√
t+Kt+ t

i2

)
(55)

≤ c

(
vol(∂M)
vol(M)

√
t+ t

t0

)
, (56)

where we used the definition of t0. It only remains to estimate the ratio vol(∂M)/vol(M)
in (56). Recall that Zx = {d∂ = x}. The lower bound on the Hessian yields

d

dx
vol(Zx) =

∫
Zx

Tr(Hess(d∂))dσx ≥ −H(n− 1)vol(Zx), ∀x ≤ inj∂M . (57)
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Integrating the above, we have

vol(Zx) ≥ vol(∂M)e−H(n−1)x, ∀x ≤ inj∂M . (58)

Therefore, since t0 ≤ i2 and H
√
t0 ≤ 1, we have

vol(M)
vol(∂M) ≥

∫ √t0/(n−1)

0

vol(Zx)
vol(∂M)dx ≥

1− e−H
√
t0

H(n− 1) ≥
√
t0(1− e−1)
n− 1 . (59)

Plugging this estimate in (56), and using the fact that t/t0 ≤ 1 yields the result.

In the next corollary, we present a weaker but simpler statement, in global form.

Corollary 2.3 (Heat trace asymptotics with quantitative remainder, global form).
In the setting of Theorem 2.2, there exists a constant c > 0, depending only on the
dimension n, such that∣∣∣∣∣(4πt)n/2vol(M)

∫
M
p±(t, x, x)dµg(x)− 1

∣∣∣∣∣ ≤ c

(t/t0)1/2 t ≤ t0,

(t/t0)n/2 t ≥ t0,
(60)

where
√
t0 = min

{
injM ,

inj∂M
2 , π√

K
, 1
H

}
is defined in (39).

Proof. Assume that t ≥ t0, and let here W (t) = (4π)n/2
vol(M)

∫
M p±(t, x, x)dµg(x). Since

W (t) is decreasing and positive, we have∣∣∣W (t)− t−n/2
∣∣∣ ≤ W (t0) + t

−n/2
0 (61)

≤
∣∣∣W (t0)− t−n/20

∣∣∣+ 2t−n/20 (62)

≤ t
−n/2
0 R(t0) + 2t−n/20 (63)

≤ t
−n/2
0 (c+ 2). (64)

Therefore, up to modifying again c, we obtain

R(t) =
∣∣∣tn/2W (t)− 1

∣∣∣ ≤ c
(
t

t0

)n/2
, ∀t ≥ t0, (65)

concluding the proof.

2.4 Weyl’s law with remainder
When M is compact, the spectrum of −∆±Ω is a discrete subset of the positive real
axis, i.e., σ(−∆±) ⊂ [0,+∞), accumulating at infinity. The Weyl counting function
is then defined as

N±(λ) = #(σ(−∆±) ∩ [0, λ]). (66)
It is well known that heat trace asymptotics imply asymptotics for the Weyl

counting function, by means of Tauberian theorems in the form of Karamata [27].
We need here a Karamata-type of result with remainder, due to Ingham [26, The-
orem B]. Due to the fact that, for our purposes, we need to know the explicit
dependence of the constants with respect to all parameters and functions at play,
the statement below is slightly more precise than the one in [26]. Since the proof is
unchanged, we omit it.
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Theorem 2.4 (Ingham’s Tauberian Theorem [26]). Let µ : [0,∞)→ R be a positive
and non-decreasing function. Denote with the same symbol the associated Stieltjes
measure. Let α > −1, and let χ : [0,+∞)→ R be a function such that

χ(λ) > 0, χ(λ)↗∞, λ−α−1χ(λ)↘, ∀λ > 0. (67)

Let µ̂(t) =
∫∞

0 e−tλdµ(λ) denote the Laplace transform of µ. Suppose that there
exists c1 > 0 such that

|tαµ̂(t)− 1| ≤ c1

χ(1/t) , ∀t > 0. (68)

Then there exists another constant c2 = c2(c1, α) > 0 such that∣∣∣∣∣Γ(α + 1)µ(λ)
λα

− 1
∣∣∣∣∣ ≤ c2

log(χ(λ) + 1) , ∀λ > 0. (69)

Remark 2.1. Theorem 2.4 in particular recovers the classical statement of Karamata:
if µ̂(t) ∼ t−α as t→ 0, then µ(λ) ∼ λα/Γ(α + 1) as λ→∞.

We use Corollary 2.3 to derive the Weyl law with remainder for M . In order to
do that, we define the function χ : R+ → R by

1
χ(λ) :=

(λ0/λ)1/2 λ ≥ λ0,

(λ0/λ)n/2 λ ≤ λ0.
(70)

Observe that χ is obtained by replacing t with 1/λ in the remainder given by Corol-
lary 2.3. Here λ0 = 1/t0 which, using (39), is√

λ0 = 1
min

{
injM ,

inj∂M
2 , π√

K
, 1
H

} . (71)

Theorem 2.5 (Weyl law with quantitative remainder). In the setting of Theorem
2.2, there exists a constant c > 0 depending only on n, such that the following esti-
mate holds for the Weyl counting function for the Dirichlet or Neumann eigenvalues:∣∣∣∣∣∣ N(λ)

ωn
(2π)nvol(M)λn/2 − 1

∣∣∣∣∣∣ ≤ c

log(χ(λ) + 1) , ∀λ > 0. (72)

Proof. The proof is an application of Theorem 2.4. Indeed, observe that∫
M
p±(t, x, x)dµg(x) =

∞∑
i=1

e−tλi =
∫ ∞

0
e−tλdN(λ). (73)

Moreover, by Corollary 2.3, the assumptions in Theorem 2.4 are satisfied with α =
n/2, χ defined in (70), and letting

µ(λ) = (4π)n/2
vol(M)N(λ). (74)

Recalling that Γ(n2 + 1) = πn/2

ωn
yields the result.

16



The upper bound part of Theorem 2.5 can be seen a version of Buser’s inequality
with sharp leading order constant as λ → ∞. The price to pay for sharpness is a
stronger curvature assumption (Buser’s inequality for closed manifolds only requires
a Ricci lower bound, see [9]). See also [25, Sec. 1.2] and references therein for a
more detailed discussion on Buser’s and related inequalities. If one does not require
a sharp leading constant, the upper bound of Theorem 2.5 can be restated in a
strictly weaker form as follows.

Corollary 2.6 (Buser’s type inequality). In the setting of Theorem 2.2, there exists
a constant C > 0 depending only on n, such that the following estimate holds for
the Weyl counting function for the Dirichlet or Neumann eigenvalues:

N(λ) ≤ Cvol(M)
(
λn/2 + inj−nM + inj−n∂M +Kn/2 +Hn

)
, ∀λ > 0. (75)

3 Geometric structure at the singularity
In this section we collect some preliminary results on the structure of Riemannian
manifolds M satisfying Assumption (Σ).

We denote by M̂ the metric completion of M w.r.t. the Riemannian distance
and by ∂M = M̂\M the metric boundary. The distance from the metric boundary
is denoted by δ. Recall that δ is Lipschitz and satisfies the eikonal equation, i.e.,
|∇δ| ≡ 1.

For any 0 ≤ a < b ≤ +∞, we letMb
a = {a ≤ δ ≤ b} ∩M. The following lemma

collects some basic properties of M.

Lemma 3.1. Let M be a Riemannian manifold satisfying Assumptions (Σ). Then
there exists ε0 > 0 such that:

i. For any ε < ε0 the level sets Zε = {δ = ε} are smooth embedded submanifolds.
Then, letting Z = Zε0, we have the identification Mε0

0 ' (0, ε0] × Z with
δ(x, z) = x for (x, z) ∈ (0, ε0]×Z. In particular, there exists a one-parameter
family (h(x))x∈(0,ε0] of Riemannian metrics on Z such that

g = dx2 + h(x), on Mε
0 ' (0, ε0]×Z. (76)

Moreover, for any vector V tangent to Z, the map x 7→ hx(V, V ) is non-
increasing.

ii. There exists a constant C > 0 such that, for all ε < ε0, it holds

inj∂M∞ε ≥ ε0, Hess δ|TZε ≥ −
C

ε
. (77)

Proof. The first part of the statement is an immediate consequence of the smooth-
ness of δ near the metric boundary. The fact that x 7→ h(x) is a non-increasing
family of Riemannian metrics follows from the convexity assumption.

Furthermore for all ε ≤ ε0 the truncation M∞
ε admits an inward tubular neigh-

borhood of its boundary, given by Mε0
ε , on which the metric is the restriction of
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(76) to (ε, ε0] × Zε0 . Hence, the distance from its boundary ∂M∞
ε = Zε ' Zε0 ,

satisfies
d∂(x, z) = δ(x, z)− ε = x− ε. (78)

Up to halving ε0 this proves the bound on the injectivity radius in the second
statement. Finally, the bound on the Hessian matrix follows by the geometric bounds
on the sectional curvatures, and the fact that Hess δ and Sec are connected by a
Riccati equation (see, [37, Proposition 7]).

Proposition 3.2. Let M be a singular Riemannian manifold with compact metric
completion satisfying (Σ). If the convexity condition (b) is assumed to be strict (i.e.
Hess(δ) < 0), then the injectivity radius condition (d) is automatically verified.

Proof. Let p, q ∈M. Let γ : [0, 1]→M be a piecewise smooth curve joining p and
q. Let I ⊂ [0, 1] be a maximal interval such that

δ(γ(t)) < min{δ(p), δ(q), ε0}, ∀t ∈ I. (79)

In particular, γ(I) ⊆ Mε0
0 ' (0, ε0) × Z, with g = dx2 + h(x), where h(x) is a

one-parameter family of smooth metrics on Z. Since Hess(δ) ≤ 0, and δ(x, z) = x,
it follows that x 7→ h(x) is non-increasing. Thus, replacing on I the curve γ(t) =
(x(t), z(t)) with its projection (x(∂I), z(t)) will yield a shorter piecewise smooth
curve between p and q. It follows that in order to minimize the length of curves
between points of M, we can restrict to curves such that

δ(γ(t)) ≥ min{δ(p), δ(q), ε0}, ∀t ∈ [0, 1], (80)

which are well separated from the metric boundary of M. It follows that for any
p, q ∈ M there exist a minimizing curve joining them, any such a curve is a Rie-
mannian geodesic, and any such a geodesic respects (80).

In particular, if p, q ∈ Mε there exists a minimizing geodesic all contained in
Mε joining them (which a fortiori a minimizing geodesic ofMε). Thus, taking into
account the definition of inj for a manifold with boundary, the proof of the classical
Klingenberg Lemma (cf. [12, Ch. 5]) holds unchanged, and

injMε
≥ min

{
π√
Kε

,
`ε
2

}
, (81)

where Kε = C/ε2 is the upper bound on the sectional curvature of Mε, and `ε is
the shortest simple closed geodesic in Mε.

Let γ : [0, 1]→M be such a shortest closed geodesic. Let t0 be a point of closest
distance from the metric boundary. Assuming that t0 < ε0, we have

(δ ◦ γ)′′(t0) = Hess(δ)(γ̇(t0), γ̇(t0)) < 0. (82)

This is a contradiction. It follows that δ(γ(t)) ≥ ε0 for all t ∈ [0, 1], and the length
of the closed geodesic in (81) does not depend on ε. We conclude by (81).

The following volume estimate will come handy in many proofs.
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Lemma 3.3 (Relative volume estimates). Let M be a non-complete Riemannian
manifold with tame singular geometry. Then there exists C ′ > 0 such that, for any
0 < a ≤ b ≤ ε0 we have

vol(M∞
b )

vol(M∞
a ) ≥

(
a

b

)1/C′

(83)

Proof. The regularity of the metric boundary allows to write, thanks to (76)

vol(M∞
ε ) =

∫ ε0

ε
vol(Zx) dx+ vol(M∞

ε0 ). (84)

The lower bound on the Hessian given by Lemma 3.1(ii) yields that m(∂M∞
x ) ≥

(n− 1)Cε−2. This implies that, up to enlarging C,

d

dx
vol(Zx) =

∫
Zx

m(∂M∞
x ) dσx ≥ −

C

x
vol(Zx), ∀x ≤ ε0. (85)

By Gronwall’s Lemma, this yields

vol(Zx)
vol(Zε)

≥
(
ε

x

)C
, ∀x ∈ [ε, ε0]. (86)

Combining (84) with (86) we obtain

vol(M∞
ε )

vol(Zε)
≥
∫ ε0

ε

(
ε

x

)C
dx = ε

∫ ε0/ε

1

(1
x

)C
dx. (87)

The r.h.s. of the above inequality is larger than or equal to C ′ε provided that, e.g.,
ε ≤ ε0/2. By continuity, it follows that, up to reducing C ′ we have

vol(M∞
ε )

vol(Zε)
≥ C ′ε, ∀ε ≤ ε0. (88)

Note that (88) is equivalent to

d

dε
log vol(M∞

ε ) ≥ − 1
C ′ε

, ∀ε ≤ ε0, (89)

which yields (83) upon integration.

4 Weyl’s asymptotics for singular manifolds
Let M be a Riemannian manifold satisfying Assumption (Σ) and with compact
metric completion. We recall that for Ω ⊂M the Friedrichs (or Dirichlet) Laplace-
Beltrami operator ∆+

Ω is the operator on L2(Ω) associated with the quadratic form

Q(u) =
∫

Ω
|∇u|2 dµg, (90)

with domain H1
0 (M), i.e., the closure of C∞c (Ω) w.r.t. the scalar product naturally

associated with Q. On the other hand, we let the Neumann Laplace-Beltrami ∆−Ω
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operator be the operator associated with the same form, but with domain H1(Ω) =
{u ∈ C∞(Ω)∩L2(Ω) | Q(u) < +∞}. Here, we let C∞(Ω) be the space of restrictions
of functions in C∞c (M) to Ω. Observe that, by Corollary B.3, if ∂Ω∩M has Lipschitz
boundary, then ∆±Ω have discrete spectrum. Then, for 0 ≤ a < b ≤ ∞, we denote
by N±[a,b](λ) the Weyl counting functions associated with ∆±Mb

a
.

In this section we prove asymptotics for the counting function N(λ) of the
Friedrichs Laplace-Beltrami operator on M. The strategy of proof is based on
the following instance of Dirichlet-Neumann bracketing (see [19, p. 407]), adapted
to our setting.

Proposition 4.1 (Dirichlet-Neumann bracketing). Let M be a non-complete Rie-
mannian manifold with compact metric completion and regular metric boundary.
Assume, moreover, that ∂M is mean convex. Then, for any 0 = a0 < a1 < . . . <
an+1 = +∞, we have

n∑
i=0

N−[ai,ai+1](λ) ≤ N(λ) ≤
n∑
i=0

N+
[ai,ai+1](λ), ∀λ ≥ 0. (91)

The argument consists in the following steps:

1. Consider the exhaustion M∞
ε , for ε ≤ ε0. Use then Theorem 2.5 to obtain a

Weyl’s law N[ε,∞](λ) of M∞
ε , with an explicit remainder term

2. Relate ε to λ so that ε → 0 as λ → ∞, and that the remainder term in
N[ε(λ),∞](λ) is controlled as λ→∞.

A first essential step is to discard the contributions to N(λ) of the regions near
the metric boundary for quantitatively small values of λ. This is the purpose of the
following Lemma, which is an immediate consequence of the minmax principle and
the Hardy inequality given by Proposition B.1.

Lemma 4.2 (Spectral estimates at the metric boundary). Let M be a Riemannian
manifold satisfying Assumption (Σ) and with compact metric completion. Then, for
ε < ε0/2, it holds

N±[0,ε](λ) = 0, ∀λ < 1
8ε2 . (92)

We are now ready to state and prove the main result of this section.

Theorem 4.3. Let M be a Riemannian manifold satisfying Assumption (Σ) and
with compact metric completion. Then, there exist C± > 0 and Λ > 0 such that

C− ≤
N(λ)

λn/2vol(M∞
1/
√
λ
) ≤ C+, ∀λ ≥ Λ. (93)

Proof. Let 0 < ε ≤ ε0. We split M into two parts M =Mε
0 ∪M∞

ε . Thanks to all
our assumptions, by Theorem 2.5, we have∣∣∣∣∣ (2π)n

ωnvol(M∞
ε )λn/2N

±
[ε,∞](λ)− 1

∣∣∣∣∣ ≤ c

log(χ(λ) + 1) , ∀λ > 0, (94)

20



where χ(λ) is given in (70). By our assumptions, there exists a constant b > 0,
depending only on the dimension, such that λ0 = b/ε2 (for simplicity, we set this
constant to 1 in the following). In particular, we have

χ(λ) = min
{(
ε2λ

)1/2
,
(
ε2λ

)n/2}
. (95)

Our aim is to let ε → 0 as fast as possible, as λ → ∞, while keeping ε2λ bounded
in order to be able to control the remainder term. Hence, we set ε = εa(λ) where

εa(λ) := 1√
aλ
, a > 0. (96)

In this case the remainder in (94) is bounded by a constant, depending only on the
dimension and on a, which can be made arbitrarily small as a→ 0.

In the rest of the proof, by considering two cases in which a is large and small,
we obtain the upper and lower bound for N(λ), respectively.

Upper bound. Choose a+ > 8 and set ε = εa+(λ) as described above. Then,
Lemma 4.2 yields N±[0,ε](λ) = 0 for λ ≥ Λ := 4/ε2

0a+. Hence, by Neumann bracketing
(i.e., the r.h.s. of the statement of Proposition 4.1) we obtain that there exists C+ > 0
independent of λ and such that for all λ ≥ Λ it holds

N(λ) ≤ N+
[0,ε](λ) +N+

[ε,∞](λ) ≤ N+
[ε,∞](λ) ≤ C+λ

n/2vol
(
M∞

1/
√
a+λ

)
. (97)

Lower bound. In this case we can always neglect the boundary contribution,
since N−[0,ε](λ) ≥ 0. By Dirichlet bracketing (i.e., the l.h.s. of the statement of
Proposition 4.1), we have

N(λ) ≥ N−[0,ε] +N−[ε,∞](λ) ≥ N−[ε,∞](λ), ∀ε ≤ ε0. (98)

Choose a− sufficiently small, and ε = εa−(λ), in such a way that the remainder term
in (94) is smaller than 1. We deduce that there exists a constant C− > 0 such that

N(λ) ≥ N−[ε,∞](λ) ≥ C−λ
n/2vol

(
M∞

1/
√
a−λ

)
, ∀λ > 0. (99)

To conclude the proof it suffices to apply Lemma 3.3 to (99) and (97).

Remark 4.1. The proof of Theorem 4.3 shows that the estimate of Theorem 2.2 (and
in turn Theorem 4.3 itself) cannot be improved. To see that, suppose that we are
able to deduce a better remainder, in such a way that by setting

ε = 1√
aλ
, (100)

the remainder of Theorem 2.2 is negligible, and not simply bounded, as λ → ∞.
For the upper bound, arguing as above, we obtain the estimate

lim sup
λ→∞

N(λ)
λn/2vol(M∞

1/
√
λ
) ≤

ωn
(2π)na

1/2C′
+ , (101)
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where we used Lemma 3.3 to compute vol(M∞
1/
√
aλ

)/vol(M∞
1/
√
λ
) = a1/2C′ . Note

that, to get rid of the boundary terms by Lemma 4.2, we need to choose a+ > 8.
Hence, the best upper bound in (101) is obtained for a+ = 8, and cannot be improved
further. For the lower bound, we obtain

lim inf
λ→∞

N(λ)
λn/2vol(M∞

1/
√
λ
) ≥

ωn
(2π)na

1/2C′
− . (102)

In this case there is no constraint on a−, which can be chosen as large as we want,
obtaining a contradiction with (101).

5 Exact Weyl’s law for slowly varying volume
In this section we obtain a stronger version of Theorem 4.3, under an additional
assumption on the volume growth. Recall that a continuos function ` : R+ → R+ is
slowly varying at ∞ in the sense of Karamata [6] if for all a > 0 it holds

lim
x→∞

`(ax)
`(x) = 1. (103)

One can show that the above limit is uniform for a in compact intervals.
Example 5.1. Examples of slowly varying functions, cf. [6], are log x, the iterates
logk x = logk−1 log x, rational functions with positive coefficients formed with the
logk x. Non-logarithmic examples are

exp ((log x)α1 . . . (logk x)αk) , 0 < αi < 1. (104)

One might also have infinitely oscillating functions as

exp
(
(log x)1/3 cos(log x)1/3

)
. (105)

Clearly, any function with finite limit is slowly varying.

Theorem 5.1. Let M be a Riemannian manifold satisfying Assumption (Σ) and
with compact metric completion. Assume, moreover, that the function

υ(λ) := vol
(
M∞

1/
√
λ

)
, (106)

is slowly varying. Then, we have

lim
λ→∞

N(λ)
λn/2υ(λ) = ωn

(2π)n . (107)

Proof. We prove that

ωn
(2π)n ≤ lim inf

λ→∞

N(λ)
λn/2υ(λ) ≤ lim sup

λ→∞

N(λ)
λn/2υ(λ) ≤

ωn
(2π)n . (108)

The proof of the lower bound starts as in the proof of Theorem 4.3, i.e., by splitting
M =M∞

ε ∪Mε
0, for ε ≤ ε0. We have

N(λ) ≥ N−[0,ε] +N−[ε,∞](λ) ≥ N−[ε,∞](λ). (109)
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Choose a > 0 sufficiently small, and let ε = 1/
√
aλ. From (94) we deduce the

existence of a constant C(a), tending to 0 as a→ 0, such that

N(λ) ≥ N−[ε,∞](λ) ≥ ωn
(2π)nλ

n/2υ(aλ)(1 + C(a)). (110)

We now use the fact that υ(λ) is slowly varying to obtain

lim inf
λ→∞

N(λ)
λn/2υ(λ) ≥

ωn
(2π)n (1 + C(a)). (111)

By letting a→ 0 we conclude the proof of the lower bound.
The proof of the upper bound is more delicate. In this case, we split M into

three parts. Let 0 < ε1 < ε2 sufficiently small, and let

M =Mε1
0 ∪Mε2

ε1 ∪M
∞
ε2 . (112)

Consider a < 1 small enough, and let

ε1(λ) := 1
10
√
λ
, ε2(λ) := 1√

aλ
. (113)

The factor 10 above has been chosen in order to be able to apply Lemma 4.2, whence
N+

[0,ε1(λ)](λ) = 0. By Neumann bracketing we obtain

N(λ) ≤ N+
[ε1(λ),ε2(λ)](λ) +N+

[ε2(λ),∞](λ). (114)

In Proposition 5.2 we show that, thanks to the slowly varying assumption, the
first term in (114) gives a negligible contribution to the asymptotics, more precisely

lim
λ→∞

N+
[ε1(λ),ε2(λ)](λ)
λn/2υ(λ) = 0. (115)

On the other hand, applying Theorem 2.5 toM∞
ε2(λ), we obtain that for all λ > 0

N+
[ε2(λ),∞](λ) ≤ ωn

(2π)nvol
(
M∞

ε2(λ)

)
λn/2 (1 + C(a)) , (116)

where C(a)→ 0 as a→ 0. Since υ is slowly varying we have

vol
(
M∞

ε2(λ)

)
∼ υ(λ). (117)

Putting together the contributions from (115)-(116), we finally get

lim sup
λ→∞

N(λ)
λn/2υ(λ) ≤

ωn
(2π)n (1 + C(a)). (118)

Letting a→ 0, we have C(a)→ 0, which completes the proof.

The following proposition estimates the number of eigenvalues in the intermedi-
ate strip Mε2

ε1 close to the singularity.
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Proposition 5.2. LetM be a Riemannian manifold satisfying Assumption (Σ) and
with compact metric completion. There exist a constant C > 0 such that, for any
0 < ε1 < ε2 < ε0, it holds

N±[ε1,ε2](λ) ≤ Cvol(Zε1)(ε2 − ε1)
(
ε2

ε1

)C/2
λn/2, ∀λ >

(
ε2

ε1

)−C 1
ε2

1
. (119)

Assume furthermore that υ(λ) is slowly varying, and choose ε1 = 1
10
√
λ

and ε2 = 1√
aλ

as in (113), with a < 1 sufficiently small. Then we have

lim
λ→∞

N±[ε1(λ),ε2(λ)](λ)
λn/2υ(λ) = 0. (120)

Proof. Let I = [ε1, ε2]. Close to the metric boundary Mε2
ε1 = I × Z and

g = dx2 + h(x), (121)

where h(x) is a one-parameter family of Riemannian metrics on the fixed n − 1-
dimensional manifold without boundary Z. It is sufficient to prove the proposition
for the Neumann case. Let Q be the corresponding quadratic form and R the
corresponding Rayleigh quotient, i.e.

Q(u) =
∫
I×Z
|∇gu|2 dµg, R(u) = Q(u)

‖u‖2
L2(I×Z,dµg)

(122)

The idea is to control the Rayleigh quotient in terms of the one of a simpler metric.
To this purpose let g1 be the metric on I × Z obtained by freezing x to ε1, that is

g1 = dx2 + h(ε1). (123)

Fix a smooth measure dz on Z. Observe that

dµg = e2θ(x,z)dxdz, (124)

for some smooth function θ : I × Z → R. Notice that the mean curvature of the
level sets of δ is m = Tr Hess(δ) = 2∂xθ. Therefore we have

− C

x
≤ 2∂xθ ≤ 0, (125)

for some constant C > 0 depending only on n. It follows that on I × Z it holds(
ε1

ε2

)C
dµg1 ≤ dµg ≤ dµg1 , (126)

as measures. Inequality (126) will be used to estimate the behaviour of the measure
in the Rayleigh quotient. For what concerns the behaviour of the norm of the
gradient, let (z1, . . . , zn−1) be local coordinates on Z. One has that

g = dx2 +
n−1∑
i,j=1

hij(x, z)dzidzj. (127)
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The convexity assumption (i.e. Hess(δ) ≤ 0) amounts to the fact that inverse matrix
x 7→ hij(x, z) is a non-decreasing family of positive quadratic forms. Hence

|∇gu|2 = |∂xu|2 +
n−1∑
i,j=1

hij(x, z) ∂u
∂zi

∂u

∂zj
≥ |∂xu|2 +

n−1∑
i,j=1

hij(ε1, z)
∂u

∂zi

∂u

∂zj
= |∇g1u|2.

(128)
It follows from (126) and (128) that, denoting with R1 the Rayleigh quotient of the
Riemannian manifold (I × Z, g1), one has

R(u) ≥
(
ε1

ε2

)C
R1(u), ∀u ∈ C∞(I × Z). (129)

By the minmax characterization of eigenvalues, it follows that

N+
(I×Z,g)(λ) ≤ N+

(I×Z,g1)

((
ε2

ε1

)C
λ

)
. (130)

We stress that (I×Z, g1) is the product of (I, dx2) and (Z, h1), with h1 := h(ε1). As
such, it is a compact Riemannian manifold with convex (totally geodesic) boundary.
Its sectional curvature is bounded by the one of the factor (Z, h1). By Gauss’
equation there exists a constant C (depending only on the constants appearing in
the condition (S) and hence not on the choice of ε1, ε2) such that

| Sec(I × Z, g1)| ≤ | Sec(Z, h1)| ≤ C

ε2
1
. (131)

Consider now the injectivity radius of (I × Z, g1), which is clearly equal to the in-
jectivity radius of (Z, h1), which is an embedded submanifold of (M, g) with the
induced metric. The injectivity radius of a submanifold of bounded second funda-
mental form in a Riemannian manifold of bounded sectional curvature and injectiv-
ity radius is bounded below in terms of the aforementioned quantities as stated in
Lemma A.5 in the appendix. In particular there exists C > 0 not depending on the
choice of ε1, ε2) such that

inj(I × Z, g1) = inj(Z, h1) ≥ C−1ε1. (132)

We can now apply Theorem 2.5, yielding the existence of a constant C > 0, not
depending on the choice of ε1, ε2, such that

N+
[ε1,ε2](λ) ≤ Cvol(I × Z, g1)

((
ε2

ε1

)C
λ

)n/2
, ∀λ >

(
ε2

ε1

)−C 1
ε2

1
. (133)

This proves the first part of the proposition, as vol(I × Z, g1) = vol(Zε1)(ε2 − ε1).
To prove the second part, from the definition υ(1/x2) = vol(Mx) we deduce that

vol(Mx) =
∫ ∞
x

vol(Zx) dx ⇒ vol(Zε1) = υ′(1/ε2
1)

2ε3
1

. (134)

Let now choose ε1 = 1
10
√
λ

and ε2 = 1√
aλ

, for a < 1 and sufficiently small. Notice that
if a is taken sufficiently small depending on the given value of C, then the condition
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for the validity of (133) is verified for all λ. We have in this case, renaming the
constants (which may now depend on a)

N+
[ε1(λ),ε2(λ)](λ)
λn/2υ(λ) ≤ C(a)λυ

′(100λ)
υ(λ) , ∀λ > 0. (135)

Since υ is slowly varying the r.h.s. tends to zero (use the first part of Lemma 5.3).

The following straightforward result is an application of [6, Thm. 1.7.2 and Prop.
1.5.8]. See also [28, Thm. 2].

Lemma 5.3. Let υ : R+ → R+ be a slowly varying function of class C1 such that
λ 7→ λaυ′(λ) is monotone, for some a ≥ 0. Then,

lim
λ→∞

λυ′(λ)
υ(λ) = 0. (136)

Furthermore, if (136) holds, then υ is slowly varying.

5.1 Metrics with prescribed Weyl’s law
We prove the following converse to Theorem 5.1.

Theorem 5.4. For any n-dimensional compact manifold N and non-decreasing
slowly varying function υ : R+ → R+ there exists a Riemannian structure on N ,
singular along any prescribed submanifold S, such that

lim
λ→∞

N(λ)
λn/2υ(λ) = ωn

(2π)n . (137)

Proof. The idea is to build a non-complete structure on N \S with a warped-product
structure near S, with respect to some function f . One has to carefully choose f in
such a way that vol(M1/

√
λ) ∼ υ(λ) and Assumption (Σ) is satisfied. To this purpose

one needs to control the asymptotic behaviour of the quantities λυ′′(λ)/v′(λ) and
λυ(3)(λ)/v′(λ), which is in general impossible for slowly varying functions3. We
tackle this problem resorting to the theory of regular variation, replacing υ with
a more tame slowly varying function with the prescribed asymptotic behavior as
λ→∞.

More precisely, we refer to [6, Ch. 1, 3] for definition of the de Haan class Π, and
the smooth de Haan class SΠ, both strict subsets of slowly varying function. Firstly,
by [20, Appendix B], any non-decreasing slowly varying function υ is asymptotic to
a de Haan function, which we still denote by υ ∈ Π. Furthermore, by a smoothing
result [6, Thm. 3.7.7], any de Haan function υ is asymptotic to a smooth one, which
we still denote with the same symbol υ ∈ SΠ. This implies that

lim
λ→∞

λυ(1+m)(λ)
υ′(λ) = (−1)mm!, ∀m ∈ N. (138)

3Observe that these limits exists for all examples of monotone slowly varying function given at
the beginning of this section. An example of strictly monotone slowly varying function for which
the quantity λυ′′(λ)/v(λ) does not have a limit is v′(λ) = 2 log λ+ sin log λ.
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Moreover, it follows from the proof of [6, Thm. 3.7.7] that υ′(λ) > 0 for sufficiently
large values of λ. Thus, we will henceforth assume that υ itself is smooth, strictly
increasing, and satisfies (138).

We proceed now with the construction in the case in which S is an submanifold
of co-dimension > 1 or is one-sided. The case of a two-sided hypersurfaces follows
from a similar argument. Choose a tubular neighborhood U ⊂ N of S such that
U \ S = (0, 2)× F , where F is a fixed hypersurface without boundary (clearly this
is possible for any smooth embedded submanifold S of co-dimension > 1). Choose
some fixed metric ĝ on F , and set on U :

g = dx2 + f 2ĝ, (139)

where f : (0, 2) → R+ is a positive smooth function to be chosen later and meant
to explode as x tends to 0. Extend g to a smooth Riemannian metric on the whole
M := N \ S, by preserving (139) on the neighborhood (0, 1)× F .

By construction (M, g) has compact metric completion, and has regular metric
boundary. Furthermore δ = x for x ∈ (0, 1). In particular the level sets of δ close
to the metric boundary are diffeomorphic to two copies of F . We now define f in
such a way that vol(M1/

√
λ) ∼ υ(λ), setting

f(x)n−1 = 2
vol(F, ĝ)

υ′(1/x2)
x3 , x ∈ (0, 1). (140)

Since υ is strictly increasing, f > 0 and its only singularity is at x = 0.
Let us verify (M, g) satisfies Assumption (Σ). The projection on the first factor

π : (0, 1) ×f2 F → (0, 1) of the warped product (139) is a Riemannian submersion
with leaves (F, ĝ). Using O’Neill formulas [5, 9.29, 9.104], the sectional curvatures
are:

K(U, V ) = 1
f 2 K̂(U, V )−

(
f ′

f

)2

, (141)

K(X,U) = −f
′′

f
, (142)

K(X, Y ) = 0. (143)

Here, U, V are orthonormal vectors tangent to the fibers F , X, Y are unit vectors
tangent to the base (−1, 1), and K̂ is the sectional curvature of (F, ĝ). Finally, the
hypersurfaces {δ = |x|} have as their second fundamental form

Hess(δ)(U, V ) = f ′

f
g(U, V ). (144)

Notice that, since υ ∈ SΠ, we have that λυ′(λ) is slowly varying at infinity. It
follows that f(x) → +∞ as x → 0. It is then clear that the quantities controlling
the behavior of the geometric invariants of g close to the metric boundary (i.e. as
x→ 0) are f ′/f and f ′′/f . Thanks to the fact that υ is a de Haan function, we are
able to compute their asymptotics. By (138), hm(x)→ (−1)mm! as |x| → 0, where

hm(x) := υ(m+1)(1/x2)
x2υ′(1/x2) , m = 1, 2, . . . . (145)
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Using (140), we have hence, as x→ 0,
f ′(x)
f(x) = −3 + 2h1(x)

(n− 1)x ∼ −
1

(n− 1)x, (146)

f ′′(x)
f(x) = 3n+ 6− 4(n− 2)h1(x)2 + 4(n− 1)h2(x) + 6(n+ 1)h1(x)

(n− 1)2x2 ∼ n

(n− 1)2x2 .

(147)

We deduce that for all ε < ε0 with ε0 sufficiently small, the Assumption (Σ) is
verified. We conclude by applying Theorem 5.1 to (M, g).

Remark 5.1. We mention in passing that the Laplace-Beltrami operator of the struc-
ture built in the proof of Theorem 5.4, with domain C∞c (M), is essentially self-
adjoint in L2(M, dµg). Indeed, as a consequence of the curvature estimates obtained
in the above proof, one has ∆x = (n−1)f ′

f
, and hence

Veff :=
(

∆x
2

)2

+
(

∆x
2

)′
∼ 3

4x2 , x→ 0. (148)

where the prime denotes the derivative with respect to the inward pointing normal
to the fibers F . In particular, it must hold that, for sufficiently small x

Veff ≥
3

4x2

(
1− 1

log x−1

)
. (149)

This allows to apply the essential-self adjointness criterion of [38], combined with
the improvement of the constant obtained in [34]. We omit the details.

6 Concentration of eigenfunctions
Under the assumptions of Theorem 4.3, it holds that N(λ) � λn/2vol(M1/

√
λ).

Recall that f � g means that the ratio f/g is uniformly bounded above and below
by positive constants for λ large enough. In this section, we show that under the
additional assumption vol(M) = ∞, then the eigenfunctions concentrate on the
metric boundary of M.

We recall that a subset S ⊆ N has density a ∈ [0, 1] if

lim
`→∞

1
`

`−1∑
k=0

1S(k) = a. (150)

Theorem 6.1. LetM be a n-dimensional non-complete Riemannian manifold such
that the Laplace-Beltrami operator ∆ has discrete spectrum. Assume that

lim
λ→∞

N(λ)
λn/2

=∞. (151)

Let 0 ≤ λ1 ≤ λ2 ≤ . . . be the eigenvalues of −∆, and, for all i ∈ N, denote by φi
the normalized eigenfunction associated with the eigenvalue λi. Then, there exists a
density one subset S ⊆ N such that for any compact U it holds

lim
i→∞
i∈S

∫
U
|φi(x)|2dµg(x) = 0. (152)
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Proof. Fix a compact set U . Let p∆ denote the heat kernel of ∆. Let ai(U) :=∫
U |φi(x)|2dµg(x). Since the heat kernel is local, we have

tn/2
∞∑
i=1

e−tλiai(U) = tn/2
∫
U
p∆(t, x, x)dµg(x) ∼ c, t→ 0, (153)

for some constant c > 0. By the standard Karamata theorem it holds∑
λi≤λ

ai(U) ∼ c

Γ(n/2 + 1)λ
n/2, λ→∞. (154)

By our assumption on N(λ) it holds then

lim
`→∞

1
`

`−1∑
i=1

ai(U) = 0. (155)

By [36, Lemma 6.2], the above statement is equivalent to the existence of a density
one subset SU ⊆ N such that

lim
i→∞
i∈SU

ai(U) = 0. (156)

The subset SU ⊂ N a priori depends on the choice of U but we next build a subset
S having the same property and which does not depend on U , as claimed in the
statement. The proof uses ideas similar to those in the proof of [36, Lemma 6.2]
and [13, Sec. 5].

Let {Um}m∈N be an exhaustion of M by compact subsets, that is each Um is
compact, Um+1 ⊃ Um, and Um →M as m→∞. Let Sm ⊂ N a density one subset
built as above, such that

lim
i→∞
i∈Sm

ai(Um) = 0. (157)

Without loss of generality, we can assume that Sm+1 ⊆ Sm (if this is not the case,
we take in place of Sm the set S̃m = ∩i≤mSi. Indeed S̃m is a density-one subset of
N with the required properties, and such that (157) holds).

By the density one property, there exists i1 < i2 < . . . such that

1
`

`−1∑
k=0

1Sm(k) ≥ 1− 1
m
, ∀` ≥ im−1. (158)

Then, the required set S can be taken as

S :=
∞⋃
m=1

Sm ∩ [im, im+1), (159)

Indeed, if im ≤ n < im+1 we have

1
`

`−1∑
k=0

1S(k) ≥ 1
`

`−1∑
k=0

1Sm(k) ≥ 1− 1
m
, (160)

yielding that S has density one.
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Notice that, by construction since Sm+1 ⊆ Sm, we have that S ∩ [im,∞) ⊆ Sm.
Therefore for all m > 0 we have

lim
i→∞
i∈S

ai(Um) = 0. (161)

We conclude the proof by noticing that any compact set Ū is contained in some Um̄,
and we have ai(Ū) ≤ ai(Um̄) for all i ∈ N.

7 Strongly regular ARS
We now apply our results to a class of structures where the metric boundary can
be locally described as the singular region of a Riemannian metric. This class is
modeled on almost-Riemannian structures, introduced in [2]. We provide here a
direct and local definition, which is sufficient for our purposes. We refer the reader
to [38, Sec. 7] for a self-contained presentation closer to our approach.

Let N be a smooth, connected n-dimensional manifold, and let Z ⊂ N be a
smooth embedded hypersurface Z. We assume to be given a metric g, which is
Riemannian on N \ Z and such that for all p ∈ Z there exist local coordinates
(x, z) ∈ R× Rn−1 and smooth vector fields

X0 = ∂x, Xi =
n−1∑
j=1

aij(x, z)∂zj , (162)

which are orthonormal for g outside of Z, and det aij(x, z) = 0 if and only if x = 0.
Furthermore, we ask that there exists an m ∈ N such that

aij(x, z) = xmâij(x, z), det âij 6= 0. (163)

In this case, on each local chart, we have

X0 = ∂x, Xi = xmX̂i = xm
n−1∑
j=1

âij∂zi , (164)

where X0, X̂1, . . . , X̂n have maximal rank also on the singular region. In particular
we can introduce the regularized Riemannian structure in a neighborhood of Z such
that X̂0 = X0, X̂1, . . . , X̂n are a smooth orthonormal frame. We denote with a hat
all the quantities relative to this structure. In particular, the regularized measure
σ̂(Z) of Z is well defined, as the induced measure on Z of the regular Riemannian
structure.

Definition 7.1. A singular Riemannian structure on an n-dimensional manifold N
satisfying the above condition is called an m-strongly regular ARS, where m is the
integer defined in (163).

The non-complete Riemannian manifoldM = N \Z has metric boundary given
by at most two copies of Z (depending whether the latter is one or two-sided).
Finally, in the above local coordinates, and close to Z, we have δ(x, z) = |x|. It
follows that any strongly regular ARS has regular metric boundary.
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Remark 7.1. As a consequence of the theory developed in [38], the Laplace-Beltrami
of a strongly regular ARS is essentially self-adjoint in L2(N \ Z). The same result
holds more generally for regular structures, introduced in [38], that is, when the
condition (163) is replaced by the weaker one

det aij(x, z) = xkφ(x, z), φ(x, z) 6= 0. (165)

Indeed, any strongly regular structure is regular, for k = m(n− 1).

7.1 Curvature bounds
We now discuss the relevant curvature bounds for strongly regular ARS.

Proposition 7.2. For any m-strongly regular ARS on a compact n-dimensional
manifold, there exists ε0, C > 0 such that, for all planes Σ, one has

|Sec(Σ)| ≤ C

δ2 , −C
δ
≤ Hess(δ) < 0, (166)

whenever δ ≤ ε0. Furthermore, as ε→ 0, we have

vol(M∞
ε ) ∼ 2σ̂(Z)

ε−(m(n−1)−1) m(n− 1) > 1,
log ε−1 m(n− 1) = 1.

(167)

Proof. To compute curvature-like quantities, we adopt the following modified Ein-
stein convention. Latin indices run from 1, . . . , n − 1, and repeated indices are
summed on that range. The index 0 is reserved for the variable x, e.g. ∂0 = ∂x. The
non vanishing structural functions are given by

[X0, Xi] = c`0iX`, [Xi, Xj] = c`ijX`. (168)

Koszul formula for the Levi-Civita connection in terms of orthonormal frames yields

∇iXj = Γ`ijX` + γijX0, ∇0Xi = δi`X`, ∇iX0 = −γi`X`, (169)

δi` = 1
2(c`0i − ci0`), γi` = 1

2(ci0` + c`0i), Γ`ij = 1
2(c`ij + ci`j + cj`i). (170)

Notice that δ = −δ∗, γ = γ∗, while Γ`ij = −Γji`. From the definition of curvature

R(X, Y, Z,W ) = g(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,W ), (171)

we deduce the following formulas for the Riemann tensor

R(Xi, Xj, Xk, X`) = ∂iΓ`jk + ΓsjkΓ`is − γjkγi` − ∂jΓ`ik − ΓsijΓ`js (172)
+ γikγj` − csijΓ`sk, (173)

R(Xi, Xj, Xk, X0) = Γ`jkγi` + ∂iγjk − Γ`ikγj` − ∂jγik − csijγsk, (174)
R(X0, Xi, Xj, X0) = ∂0γij + γi`δ`j + γj`δ`i − γi`γ`j, (175)
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In particular Sec(X ∧ Y ) = R(X, Y, Y,X) for any pair of unit orthogonal vectors
X, Y . Furthermore, since d∂ = |x|, we have

Hess(δ)(Xi, Xj) = −γij. (176)

In terms of the matrix a, the structural functions read

c`0i = a−1
`s ∂0asi, c`ij = (ari∂rasj − ajr∂rasi) a−1

s` . (177)

Using (177) one obtains

c`0i = m

x
1i` + ĉ`0i, c`ij = xmĉ`ij, (178)

which implies

δij = δ̂ij, γij = m

x
1ij + γ̂ij, Γ`ij = xmΓ̂`ij. (179)

From (173)-(175) we obtain

R(Xi, Xj, Xk, X`) = −m
2

x2 (1jk1i` − 1ik1j`) +O
(1
x

)
, (180)

R(Xi, Xj, Xk, X0) = O(1), (181)

R(X0, Xi, Xj, X0) = −m(m+ 1)
x2 1ij +O

(1
x

)
. (182)

and
Hess(d∂)(Xi, Xj) = −m

x
1ij +O(1). (183)

To compute the volume asymptotics, assume without loss of generality that Z is
contained in a single chart. Then we have, vol(M∞

ε ) ∼ vol(Mε0
ε ), and

vol(Mε0
ε ) =

∫
ε≤|x|≤ε0

dx
∫
Z

√
det(aa∗)(x, z)dz (184)

=
∫
ε≤|x|≤ε0

1
xm(n−1)dx

∫
Z

√
det(ââ∗(x, z))dz (185)

=
∫
ε≤|x|≤ε0

1
xm(n−1)dx

(∫
Z

√
det(ââ∗(0, z))dz

)
(1 +O(ε)) (186)

= 2(1 +O(ε))σ̂(Z)
∫ ε0

ε

1
xm(n−1)dx, (187)

from which the result follows.

The next example shows that the results of Proposition 7.2 do not hold without
the strongly regular condition (163). In particular, one can have ARS where all
geometric quantities have an arbitrarily fast polynomial explosion to ±∞.
Example 7.1 (Worst case curvature explosion). The example is in dimension n =
3, then it is sufficient to take the metric product with an Euclidean space of the
appropriate dimension to obtain the analogue example in dimension n. We stress
that the forthcoming example respects the k-regular condition (165).
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Let k ≥ 1, and consider the structure defined locally in coordinates (x, z) ∈
R× R2 by the vector fields

X0 = ∂x, X1 = ∂z1 + x∂z2 , X2 = xk∂z2 . (188)

In other words, Xi = aji∂zi , for i = 1, 2, with

a =
(

1 0
x xk

)
. (189)

The most singular terms in the curvature arise all from the first equation of (177).
In particular letting Ci` = c`0i, we have

C = (a−1∂0a)∗ =
(

0 1
xk

0 k
x

)
. (190)

It follows that

δ = 1
2(C − C∗) =

(
0 1

2xk
− 1

2xk 0

)
, γ = 1

2(C + C∗) =
(

0 1
2xk

1
2xk

k
x

)
. (191)

Notice that, rewriting (175) in this notation, we obtain, for i = 1, 2,

Sec(X0 ∧Xi) = (∂0γ + 2γδ − γ2)ii = diag
(
− 3

4x2k ,
1

4x2k −
k(k + 1)

x2

)
, (192)

and, for i, j = 1, 2,

Hess(d∂)(Xi, Xj) = −1
2

(
0 1

2xk
1

2xk
k
x

)
, (193)

whose eigenvalues obey h± = ± 1
2xk (1 + o(1)) as x→ 0.

7.2 Weyl asymptotics for ARS
We now apply the theory developed in the previous sections to ARS. We recall that
the notation f � g means that f/g has finite and positive lim sup and lim inf.

Theorem 7.3 (Weyl asymptotics for ARS). Consider the Laplace-Beltrami operator
of an m-strongly regular ARS on an n-dimensional compact manifold. Then, with
the exception of the case n = 2 and m = 1, we have

N(λ) � λ(n−1)(m+1)/2, λ→ +∞. (194)

In the special case n = 2 and m = 1, we have

lim
λ→+∞

N(λ)
λ log λ = |σ̂(Z)|

4π . (195)
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Proof. As we discussed at the beginning of this section, a strongly regular ARS has
regular metric boundary. Furthermore, by Proposition 7.2, it respects all assump-
tions of Theorem 4.3. Notice that, since the boundaries of the truncations M∞

ε

are strictly convex, we applied Proposition 3.2, to avoid a direct estimate of the
injectivity radius (see Remark 1.1). The volume function υ(λ) = vol(M∞

1/
√
λ
) can

be easily recovered from Proposition 7.2:

υ(λ) ∼ 2σ̂(Z)

λ(m(n−1)−1)/2 m(n− 1) > 1,
log λ m(n− 1) = 1.

(196)

In the first case the result follows from Theorem 4.3. In the second case, υ(λ) is
slowly varying, and we can apply Theorem 5.1.

A Auxiliary geometric estimates
On the simply connected n-dimensional Riemannian space form MK of curvature
K ∈ R, the heat kernel depends only on t and on the distance r = d(x, y), hence with
a slight abuse of notation we denote it with pK(t, r). Here and below r ∈ [0,+∞) if
K ≤ 0, and r ∈ [0, π/

√
K] if K > 0.

Lemma A.1 (Uniform heat kernel for model spaces). For all T > 0 there exists a
constant C > 0, depending only on n and T , such that

|(4πt)n/2pK(t, 0)− 1| ≤ C|K|t, ∀t ≤ T/|K|. (197)

Proof. If K = 0, the estimate is trivially verified. Let us consider K 6= 0. For a
Riemannian metric G and α > 0, let gα := α2g. Then, Sec(gα) = α−2 Sec(g), and
pgα(t, x, y) = α−dpg(t/α2, x, y). This immediately implies

(4πt)n/2pK(t, r) = (4πt|K|)n/2p±1(t|K|, r
√
|K|), (198)

where±1 is the sign ofK. Moreover, by the Minakshisundaram-Pleijel asymptotics4,
we deduce that for all T > 0 there exist a constant C > 0 such that

|(4πt)n/2p±1(t, 0)− 1| ≤ Ct, ∀t ≤ T, (199)

where C depends only on n and T . This and (198) prove the statement.

Lemma A.2. Let K ≥ 0, and let BK(r) be the ball of radius r ≤ π/
√
K on the

simply connected space form with constant curvature equal to K and dimension n.
Then, there exists a constant C > 0, depending only on the dimension, such that

vol(BK(r)) ≥ Crn, ∀r ≤ π/
√
K. (200)

4We refer to the following simplified statement, valid for any complete n-dimensional Rieman-
nian manifold: for all T > 0 and x ∈M there exists C > 0 such that

∣∣(4πt)n/2p(t, x, x)− 1
∣∣ ≤ Ct,

for all t ∈ (0, T ]. For a proof in the compact case see e.g. [39, Prop. 3.23]. The extension to the
non compact case is done via a localization argument (as in (26)) and Varadhan’s formula.
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Proof. By Bishop-Gromov, and since K ≥ 0, the function

r 7→ vol(BK(r))/vol(B0(r)) (201)

is non-increasing. Hence, by the same rescaling argument used to prove Lemma A.1,

vol(BK(r))
vol(B0(r)) = vol(B1(r

√
K))√

K
nvol(B0(r))

= vol(B1(r
√
K))

vol(B0(r
√
K))

≥ vol(B1(π))
vol(B0(π)) . (202)

To conclude the proof it suffices to observe that vol(B0(r)) = rnvol(B0(1)). In
particular, C = vol(B1(π))/πn.

In the next Lemma we show that for any ball Bx(r) there always exists a spherical
sector which points away from the boundary and whose size does not depend on the
point. This yields a uniform lower bound to the measure of sufficiently small balls.

Lemma A.3 (Uniform volume lower bound for manifolds with boundary). Let
(M, g) be a complete n-dimensional Riemannian manifold with boundary. Let H ≥ 0
such that −H ≤ Hess(d∂) for d∂ < inj∂M . Let

r0 = min
{

injM ,
inj∂M

2 ,
1
H

}
. (203)

Then for any x ∈M and r ≤ r0 there exists an open set Sx(r) ⊂ Bx(r) such that

• if Bx(r) does not intersect ∂M , then Sx(r) = Bx(r);

• if Bx(r) intersects ∂M , then the closest point of Sx(r) to ∂M is x.

Let, moreover, K ≥ 0 be such that Sec(g) ≤ K on Sx(r). Then, there exists a
constant C ∈ (0, 1/2), depending only on n, such that

vol(Bx(r)) ≥ vol(Sx(r)) ≥ Cvol(BK(r)), ∀r ≤ r0. (204)

Proof. Fix r ≤ r0. If d∂(x) > r, the ball does not intersect the boundary, and we
set Sx(r) = Bx(r). By the upper bound on Sec and since the balls lie within the
injectivity radius from their center, we have that their volumes are bounded from
below by the volume of the metric ball with the same radius on the space form with
constant curvature equal to K:

vol(Bx(r)) ≥ vol(BK(r)). (205)

If d∂(x) ≤ r, the ball hits ∂M . The condition r < inj∂M /2 implies that Bx(r) lies in
the region where d∂ is smooth and −H ≤ Hess(d∂). Consider a length parametrized
geodesic γ emanating from x, and directed towards the direction where d∂ increases,
that is with θ ∈ [−π/2, π/2], where cos θ = g(γ̇,∇d∂). Hence

d∂(γ(t)) ≥ −H2 sin2(θ)t2 + cos(θ)t+ d∂(x), ∀t ≤ r. (206)

Therefore, minimizing geodesics emanating from x and with length smaller than r
do not cross ∂M provided that, e.g.,

cos θ ≥ Hr

2 . (207)
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Thanks to the assumption r ≤ 1/H the above inequality holds if |θ| < π/3. Let
Sx(r) ⊂ Bx(r) be the corresponding spherical sector of radius r. By construction,
x is the closest point to ∂M . Since r ≤ r0 ≤ inj(x), we can fix normal polar
coordinates (s,Ω) ∈ [0, r0]× Sn−1 at x. Therefore

vol(Bx(r)) ≥ vol(Sx(r)) =
∫
S̄x(r)

sn−1A(s,Ω)dsdΩ, (208)

where S̄(r) is the Euclidean spherical sector corresponding to Sx(r) in these coor-
dinates, and sn−1A(s,Ω) is the Jacobian determinant of the exponential map with
base x. By standard comparison arguments, the assumption Sec(g) ≤ K yields
A(s,Ω) ≥ AK(s), where the latter is the corresponding object on the n-dimensional
space form with constant curvature equal to K. Hence

vol(Sx(r)) ≥
∫
S̄(r)

sn−1AK(s)dsdΩ. (209)

Without loss of generality we can fix coordinates (θ, ϕ) ∈ (−π/2, π/2) × Sn−2 such
that S̄(r) = {|θ| < π/3, s < r}. In these coordinates dΩ = sin(θ)n−2dθdϕ, where
dϕ is the standard measure on Sn−2. Therefore

vol(Sx(r)) ≥
∫ r

0
sn−1AK(s)ds

∫ π/3

0
dθ sin(θ)n−2vol(Sn−2) = Cvol(BK(r)). (210)

Simple symmetry considerations imply that C ∈ (0, 1/2).
Lemma A.4 (Li-Yau inequality). Let (M, g) be a complete n-dimensional Rieman-
nian manifold with convex boundary, and Ric(g) ≥ −K(n − 1), for some K ≥ 0.
Then there exist constants C1, C2, C3 > 0, depending only on n, such that

p±(t, x, y) ≤ C1√
vol(Bx(

√
t))vol(By(

√
t))
eC2Kt−C3

d2(x,y)
4t , ∀(t, x, y) ∈ R+×M×M.

(211)
Furthermore, let H ≥ 0 such that −H ≤ Hess(d∂) for d∂ < inj∂M , let K ≥ 0 such
that Sec(M) ≤ K, and let

√
t0 = min

{
injM ,

inj∂M
2 ,

1
H
,
π√
K

}
. (212)

Then, there exists a constant C4 > 0, depending only on n, such that

(4πt)n/2p±(t, x, y) ≤ C4e
−C3

d2(x,y)
4t , ∀(t, x, y) ∈ (0, t0)×M ×M. (213)

Proof. The Dirichlet heat kernel is dominated from above by the Neumann heat
kernel. In this case the first inequality is [29, Thm. 3.2], where the parameters ε
and α are fixed in the allowed ranges.

To prove the second part of the theorem, it suffices to uniformly bound from
below the volumes of the balls appearing at the denominator of (211). Since

√
t0 is

smaller than the r0 appearing in Lemma A.3, the latter implies the existence of a
constant C > 0, depending only on n, such that vol(Bz(

√
t)) ≥ Cvol(BK(

√
t)) for

all z ∈M . Then, to complete the proof, it suffices to observe that the bound
√
t0 ≤

π/
√
K implies that vol(BK(

√
t)) ≥ C1t

n/2 for some dimensional constant C1 > 0.
This follows by elementary computations, as done in the proof of Lemma A.2.
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The following theorem was mentioned in [3, p. 69] for metric spaces with cur-
vature bounded above. Quite surprisingly, we were not able to find a proof or a
statement it in the literature for the Riemannian case.

Lemma A.5. Let N be a closed Riemannian submanifold of a Riemannian man-
ifold (M, g), with bounded second fundamental form |II| ≤ H. Assume also that
Sec(M, g) ≤ K. Letting h be the induced metric on N inherited from g, we have

inj(N, h) ≥ min
{

π√
K +H2

,
π

2
√
K
, inj(M, g)

}
, (214)

with the usual convention that π/
√
K =∞ if K ≤ 0.

Proof. By Gauss’ equation, for all X, Y, Z,W ∈ TN we have

Rg(X, Y, Z,W ) = Rh(X, Y, Z,W ) + II(X,Z)II(Y,W )− II(Y, Z)II(X,W ). (215)

It follows that Sec(N, h) ≤ K +H2. By Klingenberg’s Lemma

inj(N, h) ≥ min
{

π√
K +H2

,
`(γ)

2

}
, (216)

where `(γ) is length the shortest non-trivial closed geodesic in (N, h). Let γ be such
a geodesic, parametrized with unit speed. Its curvature in (M, g) is bounded by

|∇g
γ̇ γ̇| = |II(γ̇, γ̇)| ≤ H. (217)

Hence its length cannot be to short, provided that some conditions are met. Assume
that `(γ) ≤ min{2 inj(M, g), π/

√
K}. In this case, γ lies in a ball BR of radius

R ≤ π
2
√
K

and within the injectivity radius of its center. By [3, Thm. 4.3], BR is an
RK domain in the sense of Alexandrov (i.e. a domain U ⊂M such that for any pair
of points in U there exists a geodesic of length < π/

√
K, it varies continuously with

the endpoints, and minimizes the length in U). Under these condition we can lower
bound the length of γ thanks to [3, Corollary 1.2(c)]. We obtain

`(γ)
2 ≥ π√

K +H2
. (218)

We conclude easily.

B Compactness of the resolvent
Proposition B.1 (Hardy inequality). Let M be a non-complete Riemannian man-
ifold with regular metric boundary. Assume, moreover, that the boundaries ∂M∞

ε

are mean convex for sufficiently small ε. Then, for sufficiently small ε, we have
∫
Mε

0

|∇u|2 dµg ≥
1
8

∫
Mε

0

|u|2

d2
∂

dµg, ∀u ∈ H1(Mε
0). (219)
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Proof. Fix ε > 0 sufficiently small so that d∂ is smooth onMε
0 and ∆d∂ = Tr Hess d∂ ≤

0. We start by considering u ∈ C∞c (Mε
0). Then, an integration by parts yield

0 ≤ −
∫
Mε

0

|u|2d−1
∂ ∇d∂ dµg = −

∫
Mε

0

|u|2

d2
∂

dµg + 2
∫
Mε

0

u

d∂
g(∇u,∇d∂) dµg. (220)

Here, we used the fact that |∇d∂| ≡ 1. Finally, the Cauchy-Schwarz inequality yields
∫
Mε

0

|u|2

d2
∂

dµg ≤ 2
(∫
Mε

0

|u|2

d2
∂

dµg

)1/2 (∫
Mε

0

|∇u|2 dµg
)1/2

, (221)

thus proving (219) with the bigger constant 1/4 for u ∈ C∞c (Mε
0). A straightforward

density argument then yields∫
Mε

0

|∇u|2 dµg ≥
1
4

∫
Mε

0

|u|2

d2
∂

dµg, ∀u ∈ H1
0 (Mε

0). (222)

Let now u ∈ C∞c (M) ∩ C∞(Mε
0). Recall that, up to reducing ε, thanks to the

regularity of the metric boundary there exists coordinated (x, z) ∈ (0, 2ε]×Zε 'M2ε
0

where the metric is as in (76). Then, we let

ũ(x, z) := u(min{x, 2ε− x}, z). (223)

By construction, ũ is Lipschitz with compact support, smooth onMε
0 andM2ε

ε , and
coincides with u on Mε

0. In particular, ũ ∈ H1
0 (M2ε

0 ) and thus, by the first part of
the proof we have, ∫

M2ε
0

|∇ũ|2 dµg ≥
1
4

∫
M2ε

0

|ũ|2

d2
∂

dµg (224)

In the (x, z)-coordinates, we have dµg = e2θ(x,z)dxdz for some smooth reference
measure dz on Zε and smooth function θ : (0, 2ε]×Zε → R. Furhtermore, thanks to
the mean convexity assumption, ∂xθ = 1

2 Tr Hess d∂ ≤ 0 and, in particular, θ(x, z) ≤
θ(2ε− x, z) for all x ∈ [ε, 2ε]. As a consequence, we have∫

M2ε
ε

|∇ũ|2 dµg ≤
∫ 2ε

ε

∫
Zε
|∇u(2ε− x, z)|2e2θ(2ε−x,z) dxdz =

∫
Mε

0

|∇u|2 dµg. (225)

The above and (224) yield∫
Mε

0

|∇u|2 dµg ≥
1
2

∫
M2ε

0

|∇ũ|2 dµg ≥
1
8

∫
M2ε

0

|ũ|2

d2
∂

dµg ≥
1
8

∫
Mε

0

|u|2

d2
∂

dµg. (226)

This completes the proof of the statement for u ∈ C∞c (M) ∩ C∞(Mε
0) and, by

density, for u ∈ H1(Mε
0).

The proof of the following result follows the arguments of [38, Prop. 3.7]. The
argument here is simplified thanks to the absence of an external L2

loc potential.

Theorem B.2 (Compact embedding). LetM be a non-complete Riemannian man-
ifold with compact metric completion and regular metric boundary. Assume, more-
over, that the boundaries ∂M∞

ε are mean convex for sufficiently small ε.
Then, for any domain Ω ⊂M, we have that H1

0 (Ω) compactly embeds in L2(Ω).
If, moreover, ∂Ω ∩M is Lipschitz, then the same is true for H1(Ω).
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Proof. Let (un) ⊂ H1
0 (Ω) be such that ‖un‖H1(Ω) ≤ C for some C > 0. In order to

find a subsequence of (un)n converging in L2(Ω) we consider separately the behavior
close and far away from the metric boundary. For a fixed ε > 0 sufficiently small,
consider two Lipschitz functions φ1, φ2 :M→ [0, 1] such that φ1 + φ2 ≡ 1, φ1 ≡ 1
on Mε/2

0 , suppφ1 ⊂ Mε
0, and |∇φi| ≤ M for some M > 0. Define un,i = φiun, so

that, with a slight abuse of notation, un,1 ∈ H1
0 (Mε

0) and un,2 ∈ H1
0 (M∞

ε/2 ∩ Ω).
By a density argument, a straightforward application of Leibniz rule, and Young

inequality, for i = 1, 2 we have∫
Ω
|∇un,i|2 dµg ≤

∫
Ω
|∇φi|2|u|2 dµg +

∫
Ω

(φ2
i + 2|∇φi|2)|∇u|2 dµg. (227)

By the fact that ‖un‖H1(Ω) ≤ C and that φi is uniformly Lipschitz, the above implies
that, up to enlarging C > 0, it holds ‖un,1‖H1(Mε

0∩Ω) ≤ C and ‖un,2‖H1(M∞
ε/2∩Ω) ≤ C.

SinceM∞
ε/4 is a compact Riemannian manifold with smooth boundary, by [23, Corol-

lary 10.21] we have that H1
0 (M∞

ε/2∩Ω) compactly embeds in L2(M∞
ε ∩Ω) ⊂ L2(Ω).

Thus, (un,2)n, being bounded in H1
0 (M∞

ε/2 ∩Ω), admits a convergent subsequence in
L2(M∞

ε/2) ⊂ L2(M).
On the other hand, by the Hardy inequality of Proposition B.1, we have

‖un,1‖2
L2(Mε

0∩Ω) =
∫
Mε

0

|un,1|2 dµg ≤ 8ε2
∫
Mε

0

|∇un,1|2 ≤ 8Cε2, (228)

where we used the boundedness of (un,1)n in H1(Mε
0) ∩ Ω. Then, by choosing

ε = εk = (
√

8Ck)−1, we obtain that for any k ∈ N there exists a subsequence
n 7→ γk(n) such that uγk(n) = uγk(n),1 + uγk(n),2 with ‖uγk(n),1‖ ≤ 1/k and (uγk(n),2)n
convergent in L2(M). A diagonal argument (see the proof of [38, Prop. 3.7]) yields
the existence of a subsequence of (un)n convergent in L2(M), completing the proof
of the first part of the statement.

The same argument applies to prove the second part of the statement. The main
difference is that, in this case, un,2 ∈ H1(M∞

ε/2 ∩Ω). However, under the additional
assumption of regularity of ∂Ω∩M, we have that H1(M∞

ε/2∩Ω) compactly embeds
in L2(M∞

ε/2 ∩Ω) since, up to taking a slightly smaller ε, the boundary of M∞
ε/2 ∩Ω

is Lipschitz5.

Corollary B.3. LetM be a non-complete Riemannian manifold with compact met-
ric completion and regular metric boundary. Assume, moreover, that the boundaries
∂M∞

ε are mean convex for sufficiently small ε. Then, for any domain Ω ⊂M such
that ∂Ω ∩M is Lipschitz, the resolvents (∆±Ω − z)−1 of the Dirichlet and Neumann
Laplace-Beltrami operators are compact for any z > 0. In particular, the spectrum
of ∆±Ω is discrete.

Proof. By Theorem B.2, it holds that H1(Ω) compactly embed in L2(Ω). Since
D(∆±Ω) ⊂ H1(Ω) this implies the compactness of the resolvent. To this effect, and
for completeness sake, we replicate the argument of [23, Theorem 10.20].

5We were not able to find the required statement in the literature, but the result follows by the
arguments of [23, Corollary 10.21, Second proof] and the Euclidean Rellich-Kondrakov Theorem
[1, Theorem 6.3].
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Since ∆±Ω is a non-positive operator, its resolvent set is contains (0,+∞). Thus,
for z > 0, Rz := (∆±Ω − z)−1 is a bounded self-adjoint operator in L2(Ω). Moreover,
for any ψ ∈ L2(Ω) we have u := Rzψ ∈ D(∆±Ω) ⊂ H1(Ω), whence∫

Ω
|∇u|2 dµg + z

∫
Ω
|u|2 dµg = −

∫
Ω

(
∆±Ωu− zu

)
ū dµg = −

∫
Ω
ψū dµg. (229)

By Cauchy-Schwarz inequality this implies

min{1, z}‖u‖2
H1 ≤

∣∣∣∣∫
Ω
ψū dµg

∣∣∣∣ ≤ ‖u‖L2‖ψ‖L2 ≤ ‖u‖H1‖ψ‖L2 . (230)

We then get ‖Rzψ‖H1 ≤ max{1, z−1}‖ψ‖L2 for any ψ ∈ L2(Ω). That is, R̃z :
L2(Ω) → H1(Ω), defined by R̃zψ := Rzψ, is a bounded operator. Letting ι :
H1(Ω)→ L2(Ω) be the compact embedding operator, we have that Rz = ι◦ R̃z. We
have thus shown that Rz is the composition of a bounded operator with a compact
one, and thus is compact itself.
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est donnée. Ann. Sci. École Norm. Sup. (4), 20(4):599–615, 1987.

[16] Yves Colin de Verdière, Luc Hillairet, and Emmanuel Trélat. Spectral asymptotics
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