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Abstract
We study the asymptotic growth of the eigenvalues of the Laplace-Beltrami

operator on singular Riemannian manifolds, where all geometrical invariants
appearing in classical spectral asymptotics are unbounded, and the total vol-
ume can be infinite. Under suitable assumptions, we prove that the leading
term of the Weyl’s asymptotics contains information on the singularity, i.e.
its Minkowski dimension and its regularized measure. We apply our results
to a particular class of almost-Riemannian structures. A key tool in the proof
is a universal estimate for the remainder of the heat trace on Riemannian
manifolds, which is of independent interest.
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1 Introduction
In [35], Hermann Weyl studied the distribution of eigenvalues for the Laplace oper-
ator on bounded domains of Rn, and proved the following asymptotic formula:

N(λ) ∼ ωn

(2π)n
vol(Ω)λn/2 as λ → +∞. (1)
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Here, N(λ) is the number of eigenvalues smaller than λ for the Dirichlet Laplacian
on a bounded domain Ω ⊂ Rn (also called the eigenvalue counting or Weyl’s func-
tion), and vol(Ω) is its Lebesgue measure. The classical proof of this result employs
the variational method known as Dirichlet-Neumann bracketing, and the explicit
estimate with remainder of the eigenvalue counting function on cubes (see e.g. [13]).

Weyl’s asymptotic law (1) has been proved to hold for the Laplace-Beltrami
operator on compact Riemannian manifolds, where the Lebesgue measure is re-
placed by the Riemannian one. In this case (1) is a consequence of the celebrated
Minakshisundaram-Pleijel heat kernel asymptotics and the Karamata Tauberian
theorem, see e.g. [7] and [2, 37] for recent generalizations to the case of metric
measure spaces satisfying synthetic curvature conditions.

It is interesting to notice that the finiteness of the volume of M is not a necessary
condition for the discreteness of the spectrum of the Laplace-Beltrami operator.
Moreover, if such volume is infinite, the r.h.s. of (1) is infinite as well and one might
wonder what the leading order of N(λ) is, as λ → +∞, and which spectral invariant
it encodes.

A well understood example is that of quasi-bounded domains of R2, as the horn-
shaped domains {(x, y) | |x|α|y| ≤ 1}. It turns out that the parameter α is a spectral
invariant encoding the leading order of N(λ), which is of the form λ log λ for α = 1,
and λ(1+α)/2 otherwise, see [31, 34] and references therein for details. In these cases
the difficulty in the study of the Weyl function arises from the unboundedness of
the domain, since the geometry of the problem is trivial.

1.1 The Grushin sphere model
In this paper we are concerned with non-complete Riemannian structures where
the metric is singular at the boundary of the metric completion of the manifold,
and in particular all geometric invariants, including the total measure, can be un-
bounded. We first discuss a simple example representing the class of singularities
under investigation, which is an almost-Riemannian structure in the sense of [1, 6].

Consider the two dimensional sphere S2 ⊂ R3. Let X and Y be the standard
generators of rotations around the x and y axis, respectively. These vector fields
are collinear on the equator Z = {(x, y, z) ∈ S2 | z = 0}, and linearly independent
elsewhere. By declaring X, Y to be orthonormal, we define a Riemannian struc-
ture on the sphere, which is singular on Z (the coefficients of the metric explode).
Nevertheless, the associated Laplace-Beltrami operator, with domain C∞

c (N \ Z) is
essentially self-adjoint on L2(N \ Z, dµg) and has discrete spectrum [6]. Due to the
high symmetry of the problem the spectrum can be explicitly computed, and in [5]
the following non-classical asymptotics has been obtained:

N(λ) ∼ 1
4λ log λ, λ → +∞. (2)

It is easy to check that the total Riemannian volume of N \Z is infinite, and the
curvature is unbounded1. This is a general feature of ARS, and more particularly

1More precisely, it explodes to −∞ at the equator, and this is the case for all ARS in dimension
n = 2. However, let us point out that for n > 2 one can build similar structures where the curvature
is unbounded both above and below, see Example 5.1.
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of singular Riemannian structures under investigation. In addition, all heat kernel
and heat trace estimates are bound to blow up close to the singular region, and it
is not clear how to apply Tauberian techniques to deduce the asymptotic behaviour
of N(λ).

1.2 Main results
We formalize next our class of singular structures. Let M and 󰁦M be a non-complete
Riemannian manifold of dimension n and its metric completion, respectively. The
singular set is the (possibly empty) subset of the metric boundary ∂M = 󰁦M \ M
approaching whom geometric quantities such as the curvature, the measure of small
balls, et cetera, blow up. We also consider the Friedrichs extension ∆ of the Laplace-
Beltrami operator with domain C∞

c (M), that is the unique self-adjoint operator in
L2(M, dµg) associated with the quadratic form

Q(u) =
󰁝

M
|∇u|2dµg, ∀u ∈ C∞

c (M). (3)

It is crucial to identify several geometrical quantities that control the spectral
properties of the problem as the distance from the metric boundary d̂∂ → 0. To
this purpose, let Mb

a, for 0 ≤ a < b ≤ +∞, denotes the level sets Mb
a = {a ≤ d̂∂ ≤

b} ∩ M. We consider the following regularity assumption of the metric boundary.

Definition 1.1. We say that M has regular metric boundary if there exists ε0 > 0
such that d̂∂ is smooth on Mε0

0 .

Our main result reads as follows.

Theorem 1.2. Let M be a non-complete Riemannian manifold, with compact met-
ric completion and regular metric boundary. Assume that there exist C, ε0 > 0 such
that, for all ε ≤ ε0, we have

Ric(M∞
ε ) ≥ − C

ε2 , Sec(M∞
ε ) ≤ C

ε2 . (4)

Assume also that for all ε ≤ ε0, the boundary of M∞
ε is convex, and that

m(∂M∞
ε ) ≥ −C

ε
, injM∞

ε
≥ ε

C
. (5)

Then there exist C± > 0 and Λ > 0 such that

C− ≤ N(λ)
λn/2vol(M∞

1/
√

λ
) ≤ C+, ∀λ ≥ Λ. (6)

Several remarks are in order. Firstly, almost all quantitative assumptions in The-
orem 1.2 are concerned with the local geometry of M close to the metric boundary.
The only non-local assumption is that on the injectivity radius, which might be
difficult to check in concrete examples. However this assumption is automatically
verified provided that the boundaries are strictly convex, see Remark 4.1.
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Secondly, let us stress the importance of the convexity assumption. It is used
to prove the compactness of the resolvent of ∆ and, in turn, the discreteness of its
spectrum. Furthermore it plays a fundamental role in several comparison estimates
of the remainder of the Weyl asymptotics for the truncations.

Lastly, in this general setting we are not able to deduce the existence of a limit
in (6) as λ → +∞, but only the leading order. Under more precise assumptions on
the Minkowski dimension of the singularity we are able to improve this result. For
the definition of Minkowski dimension, see Section 4.2.

Corollary 1.3. Let M be an n-dimensional non-complete Riemannian manifold
satisfying the assumptions of Theorem 1.2. Assume that ∂M has Minkowski dimen-
sion d > 0. Then

N(λ) ≍

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

λn/2 d < n,

λn/2 log λ d = n,

λd/2 d > n,

λ → +∞, (7)

where the notation f ≍ g means that f/g has finite and positive lim sup and lim inf.

In particular, the Minkowski dimension of the singularity is a spectral invariant,
which determines the leading term of the asymptotics of N(λ). Notice that the
asymptotics is non-classical, as soon as d ≥ n. Finally, in the case d = n we are able
to prove a more precise result.

Theorem 1.4. Let M be a non-complete Riemannian manifold satisfying the as-
sumptions of Theorem 1.2. Assume that ∂M has Minkowski dimension d = n with
regularized volume |∂M|reg. Then,

lim
λ→+∞

N(λ)
λn/2 log λ

= ωn

(2π)n

|∂M|reg

2 . (8)

The assumptions of Theorem 1.4 are verified for generic 2-dimensional ARS
without tangency points, and more precisely, for strongly regular n-dimensional ARS
which are defined in Section 5. This class includes the Grushin example discussed at
the beginning of this introduction. For a more precise statement concerning ARS,
see Theorem 5.3.

1.3 Structure of the proof
We give here a sketch of the proof of Theorem 1.2, which is carried out in detail in
Section 4, and present a key technical tool occurring in the proof. The argument
relies on a combination of variational and Tauberian techniques. In its simplest in-
stance, we split M = Mε

0∪M∞
ε . By Dirichlet-Neumann bracketing, we bound N(λ)

with the sum of the counting functions for the Laplace-Beltrami operator on the two
domains, with Neumann (+) or Dirichlet (−) boundary conditions, respectively:

N−
[0,ε](λ) + N−

[ε,∞](λ) ≤ N(λ) ≤ N+
[0,ε](λ) + N+

[ε,∞](λ). (9)

Formula (9), as ε → 0, should determine the asymptotics of N(λ) as λ → +∞.
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The implementation of this simple strategy is quite delicate. Thanks to the
convexity assumption, Mε

0 supports a Hardy-type inequality. As a consequence,
N±

[0,ε(λ)](λ) = 0, provided that ε → 0 sufficiently fast (in a quantitative way) as
λ → +∞. In this regime the asymptotics of N(λ) is controlled by the Weyl function
of the truncation M∞

ε(λ). The latter is a Riemannian manifold with boundary and
finite measure, which satisfies indeed the classical Weyl law given by

N[ε(λ),∞](λ) ∼ ωn

(2π)n
vol

󰀓
M∞

ε(λ)

󰀔
λn/2. (10)

The remainder in (10), which depends on the parameter of the truncation ε(λ), must
be carefully controlled as λ → +∞. The key tool here is the following heat-trace
asymptotic formula with universal remainder2, proved in Section 3.

Theorem 1.5 (Heat trace asymptotics with universal remainder). Let (M, g) be
a smooth compact n-dimensional Riemannian manifold with convex boundary ∂M .
Let K ≥ 0 such that Sec ≤ K, Ric ≥ −(n − 1)K and let H ≥ 0 such that

− H ≤ Hess(d∂) ≤ 0, for d∂ < inj∂M . (11)

Moreover, set
i = min

󰀝
injM ,

inj∂M

2

󰀞
. (12)

Then, there exist positive constants c1, c2, c3, c4 > 0, depending only on n, such that
the following estimate for the Dirichlet and Neumann heat kernels holds:

󰀏󰀏󰀏󰀏󰀏
(4πt)n/2

vol(M)

󰁝

M
p±(t, x, x)dµg(x) − 1

󰀏󰀏󰀏󰀏󰀏 ≤ c1Kt + c2
vol(∂M)
vol(M)

√
t + c3e

−c4
i2

4t , (13)

for all values of t ∈ R+ such that

√
t ≤

√
t0 = min

󰀫

injM ,
inj∂M

2 ,
π√
K

,
1
H

󰀬

. (14)

As a consequence of Theorem 1.5, and a suitable Karamata-type theorem with
remainder (due to Ingham [19]), we obtain an asymptotic formula with universal
remainder for the eigenvalue counting function of the Laplace-Beltrami operator on
a compact Riemannian manifold with boundary as λ → +∞, which is given in
Theorem 3.5.

When applied to the truncations M = M∞
ε(λ), this result singles out the quantities

whose explosion must be controlled as λ → +∞ and ε → 0, concluding the proof of
Theorem 1.2.

1.4 Comparison with other singular structures
Conical singularity. There is a sharp difference between our class of singular
structures and conical singularities [8]. In this case, our techniques do not apply since

2By “universal”, we mean that the remainder only depends on a handful of geometrical invariant
quantities, and fixed dimensional constants.
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the boundaries of the truncations M∞
ε are concave (hence non-convex) as ε → 0.

However, the spectrum of the Laplace-Beltrami is still discrete, the total volume
is finite, and the classical Weyl law (1) holds. In this sense, conical singularities
are more gentle, and do not modify the leading order of the Weyl function as in
Theorem 1.2 and Corollary 1.3. Indeed, for the conical case, the presence of the
singularity is detected only at much higher order, see [32, 33].

Structures with locally bounded geometry In [23] the author considers non-
complete Riemannian structures (M, g), equipped with a weighted measure σ2dµg,
and the unique self-adjoint operator in L2(M, σ2dµg), associated with the Friedrichs
extension of the quadratic form

Q(u) =
󰁝

M
|∇u|2σ2dµg, u ∈ C∞

c (M). (15)

The Riemannian measure dµg and the weight σ might be singular at the metric
boundary, and no regularity of the metric boundary is assumed. The author derives
in this setting Weyl’s asymptotics similar to the ones of Theorem 1.2 and Corollary
1.3. Despite the similarities, the setting and methods of [23] are rather different
with respect to ours. The assumptions in [23] imply that M is locally uniformly
bi-Lipschitz equivalent to an Euclidean ball. If the metric completion is compact,
this implies that the Riemannian measure of M is finite. In particular [23] cannot
be applied to the simplest model of our class of singularities, that is the Grushin
sphere.

ARS with smooth measures. An analogue to Theorem 1.4 for 2-dimensional
ARS was announced in [11], as a consequence of a more general local Weyl law
for sub-Laplacians [12, 10]. There, the authors are concerned with the Friedrichs
extension associated with the quadratic form

Q(u) =
󰁝

N
|∇u|2dω, u ∈ C∞(N), (16)

where N is a smooth compact manifold carrying a smooth almost-Riemannian struc-
ture (the reader not familiar with AR geometry can think at the example of the
Grushin sphere discussed above, where N = S2). The norm of the gradient is well
defined and smooth everywhere, including at the singular region Z ⊂ N and the
measure ω is positive and smooth on N . Even if the Weyl’s asymptotics is known
to be invariant when replacing ω by eφω, for φ ∈ C∞(N), it is not clear how the
spectral asymptotics are related when φ explodes at Z. It is actually surprising that,
for generic 2-ARS, we obtain the same Weyl law in our setting, where dω = dµg is
singular on Z, and the domain of the form (16) is C∞

c (N \ Z).

Magnetic bottles. It would be interesting to extend our results to the magnetic
Laplacian, that is the self-adjoint operator −∆A associated with the quadratic form

QA(u) =
󰁝

M
|du − iuA|2dµg, u ∈ C∞

c (M), (17)
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where M is a Riemannian manifold, A is a one-form representing the magnetic
potential, and | · | here is the dual Riemannian norm on the complexified cotangent
bundle. The two-form B = dA is the magnetic field. When −∆A has compact
resolvent and is essentially self-adjoint on C∞

c (M), one talks about magnetic bottles.
The Weyl law for magnetic bottles on Rn has been studied in [9], for the Poincaré
half-plane in [25], and more generally for geometrically finite hyperbolic surfaces in
[26]. In all these cases, the results are proved through the variational method and
localization on suitable small cubes. To our knowledge, the problem on manifolds
with non-constant and possibly exploding curvature has not been yet addressed.
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2 Preliminaries
In this section we collect some basic definitions which will be necessary in the rest
of the paper. In particular, the notions presented in Section 2.1 will be used for the
heat kernel and trace estimates of Section 3, while those presented in Section 2.2
will be used in Sections 4 and 5.

2.1 Riemannian manifolds with boundary
Let (M, g) be a smooth n-dimensional Riemannian manifold, with smooth boundary
∂M . We let d∂ : M → [0, +∞) be the Riemannian distance from ∂M , that is,

d∂(x) = inf
z∈∂M

d(x, z). (18)

A geodesic γ : [0, t] → M , γ(0) ∈ ∂M is optimal w.r.t. the boundary if for all
0 ≤ s < t it holds d∂M(γ(s)) = s and γ(0) is the only point of ∂M realising
d∂M(γ(s)). In particular, it necessarily holds that γ̇(0) ⊥ Tz∂M .

Definition 2.1. The injectivity radius at x ∈ M , denoted by injM(x) is the supre-
mum of times t > 0 such that every optimal geodesic emanating from x is either
optimal up to time t or crosses the boundary at some time t′ < t. The injectivity
radius of M is then equal to

injM = inf
x∈M

injM(x). (19)
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The injectivity radius from ∂M at z ∈ ∂M , denoted by inj∂M(z), is defined similarly,
by replacing optimal geodesics with optimal geodesics w.r.t. the boundary. We then
let the injectivity radius of ∂M to be

inj∂M = inf
z∈∂M

inj∂M(z). (20)

Observe that, with the above definition, that injM > 0 for any compact manifold.
Moreover, if M is a bounded smooth open subset of Rd, then injM = +∞. In general,
it could happen that inj∂M = 0 (e.g., for the Euclidean square in Rn).

For a smooth function f : M → R, we denote by Hess(f) the Riemannian
Hessian of f , that is,

Hess(f)(X, Y ) = g(∇X∇f, Y ), X, Y ∈ Γ(M). (21)

Here, we denoted by ∇X the covariant derivative in the direction X. In the following,
the notation Hess(f) ≥ c (resp. ≤ c) for some constant c ∈ R is to be understood
in the sense of symmetric forms and w.r.t. the metric g.

Let 0 < ε < inj∂M . Notice that d∂ is smooth on {d∂ < inj∂M}, and thus
Zε = {d∂ = ε} is a smooth embedded hypersurface. The second fundamental form
and the mean curvature of Zε are equal to Hess(d∂)|T Zε and its trace, respectively.

Definition 2.2. The boundary ∂M is convex (resp. strictly convex) if its second
fundamental form Hess(d∂)|∂M is non-positive (resp. negative). Moreover, it is mean
convex if Tr Hess(d∂)|∂M ≤ 0.

Laplace-Beltrami operator. We use L2(Ω) to denote the space of square inte-
grable functions on Ω w.r.t. the Riemannian volume µg. For any u ∈ L2(Ω), we let
∇u be the distributional Riemannian gradient of u, and define its H1 norm as

󰀂u󰀂2
H1(Ω) =

󰁝

M
|u|2 dµ +

󰁝

M
|∇u|2 dµ. (22)

Then, H1
0 (Ω) and H1(Ω) are, respectively, the closure of C∞

c (Ω) and of {u ∈ C∞(Ω) |
󰀂u󰀂H1(Ω) < +∞} w.r.t. this norm.We remark that H1(Ω) ⊂ W 1(Ω), where the latter
is the space of measurable functions such that 󰀂u󰀂H1(Ω) < +∞ in the distributional
sense.

The Laplace-Beltrami operator is the differential operator defined by

∆ = divµg ◦∇. (23)

We will consider two realizations of the Laplace-Beltrami operator as an operator
on L2(Ω): the Friedrichs (or Dirichlet) and the Neumann Laplace-Beltrami opera-
tors, denoted, by ∆−

Ω and ∆+
Ω, respectively. When Ω = M , we will often drop the

subscript, i.e., ∆± = ∆±
M . These are the operators associated with the non-negative

symmetric form
E(u, v) =

󰁝

M
g(∇u, ∇v) dµ, (24)

with domains H1
0 (Ω) and H1(Ω), respectively.
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Remark 2.1. Let Ω = M . When M is complete, both the Friedrichs and Neumann
Laplace-Beltrami operators coincide since the Laplace-Beltrami operator with do-
main C∞

c (M) is essentially self-adjoint [16]. On the other hand, if Ω ⊂ M is a
smooth domain, these corresponds to consider Dirichlet and Neumann boundary
conditions, respectively.

Heat kernel. The Dirichlet (resp. Neumann) heat kernel of M , denoted by p−

(resp. p+) is the minimal fundamental solution of the heat equation associated with
the Dirichlet (resp. Neumann) Laplace-Beltrami operator, i.e., p± : R+ ×Ω×Ω → R
is a smooth function such that

∂tp
±(t, x, ·) = ∆±

Ωp±(t, x, ·), lim
t→0

p±(t, x, ·) = δx, ∀x ∈ M. (25)

Here, δx denotes the Dirac delta mass at x ∈ M . In particular, since M has smooth
boundary, the definition of ∆±

Ω implies that p− satisfies Dirichlet boundary condi-
tions at ∂M , while p+ satisfies Neumann ones.

Spectrum. If Ω is a relatively compact set in M , the spectrum of −∆±
Ω is a discrete

subset of the positive real axis, i.e., σ(−∆±) ⊂ [0, +∞), accumulating at infinity.
The Weyl counting function is then defined as

N±
Ω (λ) = #(σ(−∆±

Ω) ∩ [0, λ]). (26)

When Ω = M , we will always consider the Friedrichs Laplace-Beltrami operator,
and denote its Weyl counting function by N(λ).

2.2 Non-complete Riemannian manifolds
Let M be a non-complete Riemannian manifold (without boundary). We let 󰁦M be
the metric completion of M w.r.t. the Riemannian distance and ∂M = 󰁦M \ M be
the metric boundary. The distance from the metric boundary is denoted by d̂∂. We
recall that d̂∂ is Lipschitz and satisfies the eikonal equation, i.e., |∇d̂∂| ≡ 1. For any
0 ≤ a < b ≤ +∞, we let Mb

a = {a ≤ d̂∂ ≤ b} ∩ M and Za = {d̂∂ = a}.
We also assume that M has regular metric boundary (in the sense of Defini-

tion 1.1), i.e., there exists ε0 > 0 such that d̂∂ is smooth on Mε0
0 . Under this assump-

tion the level sets Zε are smooth embedded hypersurfaces for all ε ∈ (0, ε0], and there
exists a uniform tubular neighborhood of the metric boundary Mε0

0 ≃ (0, ε0] × Zε0

where the metric reads

g = dx2 + hx(z), (x, z) ∈ (0, ε0] × Zε0 . (27)

Here, hx is a one-parameter family of smooth metrics on Zε0 . Within this identi-
fication, d̂∂(x, z) = x. Furthermore for all ε ≤ ε0 the truncation M∞

ε admits an
inward tubular neighborhood of its boundary, given by Mε0

ε , on which the metric
is the restriction of (27) to (ε, ε0] × Zε0 . Hence, the distance from its boundary
∂M∞

ε = Zε ≃ Zε0 , satisfies

d∂(x, z) = d̂∂(x, z) − ε = x − ε. (28)

We reformulate this last statement in an equivalent way, as follows.
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Lemma 2.3 (Boundary injectivity radius estimate). Let M be a non-complete Rie-
mannian manifold with regular metric boundary. Then, up to halving ε0, it holds

inj∂M∞
ε

≥ ε0, ∀ε ≤ ε0. (29)

From now on, we assume M to have compact metric completion. On M we
are only interested in the Friedrichs Laplace-Beltrami operator, as defined in the
previous section, that we denote simply by ∆. In particular, we will consider only
the Sobolev space H1

0 (M).
For this reason, given Ω ⊂ M, we define the Sobolev space H1

0 (Ω), as in the case
of manifolds with boundary, to be the closure of C∞

c (Ω) w.r.t. the H1(Ω) norm, and
H1(Ω), to be the closure w.r.t. the same norm of the set3 C∞(Ω) ∩ C∞

c (M). With
this definition, functions of H1(Ω) are restrictions of functions of H1

0 (M). Observe
that, if Ω ⊂ M∞

ε for some ε > 0 and ∂Ω is smooth, by [3, Theorem 2.9] we recover
the definition of H1(Ω) given in the case of manifolds with boundary.

We need the following result, that we prove in Appendix B.

Proposition 2.4 (Hardy inequality). Assume that there exists ε0 > 0 such that the
boundary of M∞

ε is mean convex for any 0 < ε ≤ ε0. Then, for any 0 < ε ≤ ε0,
󰁝

Mε
0

|∇u|2dµg ≥ 1
4

󰁝

Mε
0

|u|2

d̂2
∂

dµg, ∀u ∈ C∞
c (Mε

0). (30)

Assume from now on that that there exists ε0 > 0 such that the boundary of
M∞

ε is mean convex for any 0 < ε ≤ ε0. Then, since M has compact metric
completion, the spectrum of −∆ is a discrete subset of the positive real axis, i.e.,
σ(−∆±) ⊂ [0, +∞), accumulating at infinity. (See Proposition B.2.) We denote the
Weyl counting function associated with ∆ by N(λ) and, for 0 ≤ a < b ≤ ∞, the
Weyl counting function of ∆±

Mb
a

by N±
[a,b](λ).

A classical tool to study N(λ) is the following, see [13, p. 407].

Proposition 2.5 (Dirichlet-Neumann bracketing). Let M be a non-complete Rie-
mannian manifold with compact metric completion and regular metric boundary.
Assume, moreover, that there exists ε0 > 0 such that the boundary of M∞

ε is mean
convex for any 0 < ε ≤ ε0. Then, for any 0 = a0 < a1 < . . . < an+1 = +∞, we have

n󰁛

i=0
N−

[ai,ai+1](λ) ≤ N(λ) ≤
n󰁛

i=0
N+

[ai,ai+1](λ), ∀λ ≥ 0. (31)

3 Heat kernel estimates with remainder
In this section we prove the following on-diagonal estimates for the heat kernel, with
an explicit control on the remainder term.

Theorem 3.1. Let (M, g) be a smooth compact n-dimensional Riemannian manifold
with convex boundary ∂M . Let K ≥ 0 be such that

Sec(M) ≤ K, and Ric(M) ≥ −(n − 1)K. (32)
3By C∞(Ω) ∩ C∞

c (M) we mean functions on Ω that are restrictions of functions of C∞
c (M).
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Moreover, let

ρ(x) = min
󰀫

d∂(x)
2 , injM

󰀬

, ∀x ∈ M. (33)

Then there exist positive constants c1, c2, c3 > 0, depending only on n, such that

󰀏󰀏󰀏(4πt)n/2p±(t, x, x) − 1
󰀏󰀏󰀏 ≤ c1Kt + c2e

−c3
ρ(x)2

4t , ∀
√

t ≤ min
󰀫

ρ(x), π√
K

󰀬

. (34)

Proof. Consider the double M̄ = M ∪∂M M of M , which is a compact smooth
manifold without boundary, endowed with the Lipschitz metric ḡ inherited from g.
Let d̄ and µ̄ denote the corresponding metric and measure on M̄ . Clearly, d̄ and µ̄
coincide with d and µ, when restricted to either isometric copy M ⊂ M̄ . Following
[24], although the coefficients of the Laplace-Beltrami operator are discontinuous
there is a well-defined heat kernel p̄, which satisfies

p±(t, x, y) = p̄(t, x, y) ∓ p̄(t, x, y∗), (35)

where y∗ ∈ M̄ denotes the reflection of y w.r.t. the boundary ∂M ∈ M̄ . We organize
the proof in several steps.

Step 1. Gromov-Hausdorff approximation. For τ > 0, there exists a sequence
ḡτ of smooth Riemannian metrics on M̄ such that

• (M, d̄τ , µ̄τ ) → (M̄, d̄, µ̄) in the measured Gromov-Hausdorff sense, as τ → 0;

• Ric(ḡτ ) ≥ −K(n − 1), for all values of τ ;

• for any compact set K such that K ∩ ∂M = ∅ and for sufficiently small τ , we
have ḡτ |K = ḡ|K ;

• the distance to ∂M in M̄ w.r.t. ḡτ coincides with d∂, seen as a function on M̄ .

The construction of this family is sketched in [27, Sec. 4] for positive Ricci curvature
and strictly convex boundary. It is not hard to check that this extends to the case of
convex boundary, see [36, Thm. 1.8] and references therein for details. The measured
Gromov-Hausdorff convergence in the sense of Fukaya [15] follows from the fact that,
in this construction, ḡτ → ḡ uniformly in coordinates.

As a consequence of the measured Gromov-Hausdorff convergence and the Ricci
bound, we have the convergence of the corresponding heat kernels p̄τ : R+ × M̄ × M̄

lim
τ↓0

p̄τ (t, x, y) = p̄(t, x, y), ∀(t, x, y) ∈ R+ × M̄ × M̄, (36)

uniformly on M̄ × M̄ , for any fixed t. See [14, Theorem 2.6].
The argument consists in obtaining lower and upper bounds for p̄τ that are

uniform w.r.t. τ . Passing to the limit and using (35) will then yield the statement.

11



Step 2. Lower bound. The lower bound on p̄τ is a consequence of classi-
cal comparison theorems for the heat kernel with Ricci lower bounds on com-
plete manifolds without boundary. Indeed, applying [7, Thm. 7, p. 196] we have
p−K(t, d(x, y)) ≤ p̄τ (t, x, y) for all (t, x, y) ∈ R+ × M̄ × M̄ , for all n ∈ N, and where
p−K : R+ × [0, +∞) → R is the heat kernel space form of constant curvature −K.
In particular, taking the limit, we have

p−K(t, x, y) ≤ p̄(t, x, y), (t, x, y) ∈ R+ × M̄ × M̄. (37)

Step 3. Upper bound. Observe that, for the upper bound, the comparison theo-
rem cannot hold globally. We claim that there exists positive constants C1, C2, C3 >
0, such that for any x ∈ M and t ≤ ρ2(x), where ρ(x) is defined in (33), it holds

p̄(t, x, x) ≤ pK(t, 0) + C1

tn/2 e−C3
ρ2(x)

4t and p̄(t, x, x∗) ≤ C1

tn/2 e−C3
ρ2(x)

4t . (38)

For x ∈ M̄ and r > 0, we use B̄x(r) (resp. B̄τ
x(r)) to denote the metric ball with

center x and radius r in M̄ with respect to the metric d̄ (resp. d̄τ ). When the ball
is contained in M ⊂ M̄ , we drop the bar since no confusion arises.

Fix x ∈ M , let ρ := ρ(x), and consider τ > 0. Denoting by pτ
B̄τ

x(ρ) the heat kernel
w.r.t. gτ on B̄τ

x(ρ) with Dirichlet boundary condition, the Markov property of the
heat kernel implies that

p̄τ (t, x, y) ≤ p̄τ
B̄τ

x(ρ)(t, x, y) + sup
0<s≤t

z∈∂B̄τ
x(ρ)

p̄τ (s, z, y). (39)

This follows, e.g., by applying [18, Lemma 3.1] and upper-bounding the hitting
probability appearing there by 1. The claim follows by considering in the above
y ∈ {x, x∗} and by estimating separately the two terms appearing on the r.h.s.,
which we will refer to as the local and the global term, respectively.

Let us start by considering the local term. Since p̄τ
Bx(ρ)(t, x, y) = 0 whenever

y /∈ Bx(ρ), and d(x, x∗) ≥ 2d∂(x) > ρ, we have

p̄τ
Bx(ρ)(t, x, x∗) = 0. (40)

On the other hand, by definition of ρ, the closure of B̄τ
x(ρ) is contained in one of

the two copies of M ⊂ M̄ , and does not intersect ∂M . Hence, up to assuming τ
sufficiently small, we have ḡτ |Ω = g|Ω. In particular, B̄τ

x(ρ) = B̄x(ρ) = Bx(ρ). By
construction, the latter lies within the injectivity radius from x and the sectional
curvature is bounded from above by K on it. Therefore, we can apply [7, Theorem 6,
p. 194] and domain monotonicity of the Dirichlet heat kernel to obtain

p̄τ
Bx(ρ)(t, x, x) ≤ pK(t, 0). (41)

The global term is more delicate. Observe that Li-Yau inequality (see Lemma A.2)
requires only a lower bound on the Ricci curvature, and hence can be applied to
the compact Riemannian manifold (M̄, ḡτ ), for which Ric(ḡτ ) ≥ −(n − 1)K, for all

12



τ . As a consequence, there exist constants C1, C2, C3 > 0, depending only on the
dimension n of M̄ , such that

p̄τ (s, z, y) ≤ C1󰁴
volτ (Bτ

y (
√

s))volτ (Bτ
z (

√
s))

eC2Ks−C3
d̄2

τ (z,y)
4s (42)

for all (s, z, y) ∈ R+ × M̄ × M̄ .
Recall that z ∈ ∂Bx(ρ), and ρ(x) ≤ d∂(x)/2. This implies that d̄τ (z, x) = ρ, and

d̄τ (z, x∗) ≥ d̄τ (x, x∗) − d̄τ (z, x) = 2d∂(x) − ρ ≥ 3ρ ≥ ρ. (43)

Hence, (42) yields

p̄τ (s, z, y) ≤ C1󰁴
volτ (Bτ

y (
√

s))volτ (Bτ
z (

√
s))

eC2Ks−C3
ρ(x)2

4s , y ∈ {x, x∗}. (44)

Observe that, if
√

t ≤ ρ = min
󰁱

d∂(x)
2 , injM}, there exists a constant C > 0,

depending only on n, such that

volτ B̄y(
√

s)) ≥ Csn/2, ∀s ≤ t, y ∈ {x, x∗}, (45)

and the same holds true for z. Indeed, since
√

t < d∂(x)/2, the closure of Bτ
y (

√
s)

does not intersect ∂M . As a consequence, for fixed t, we can further restrict τ in such
a way that these balls lie inside the region of M̄ where the metric is unperturbed,
yielding

volτ B̄y(
√

s)) = vol(By(
√

s)), ∀s ≤ t. (46)
Furthermore, by

√
t ≤ injM , and thanks to the upper bound on the sectional curva-

ture of (M, g), we have

vol(By(
√

s)) ≥ vol(BK(
√

s)), ∀s ≤ t. (47)

Finally, since
√

t ≤ π√
K

, we can easily deduce (see Lemma A.4) the existence of a
constant C > 0 depending only on n such that

BK(
√

s) ≥ Csn/2, ∀s ≤ t. (48)

The same argument can be applied replacing y ∈ {x, x∗} by z ∈ ∂Bx(ρ).
By plugging (45) in (44), and up to redefining the constants, we deduce that

p̄τ (s, z, y) ≤ C1

sn/2 e−C3
ρ(x)2

4s , y ∈ {x, x∗}. (49)

Elementary arguments show that, up to replacing the constant C1 with a larger
constant (still depending only on the dimension), one has

sup
0<s≤t
z∈∂Ω

p̄τ (s, z, y) ≤ C1

tn/2 e−C3
ρ2(x)

4t , ∀t ≤ ρ2, y ∈ {x, x∗}, (50)

which is the the final estimate for the global part of (39).
By (40) (resp. (41)) and (50), passing to the limit as τ → 0 in (39), completes

the proof of the upper bounds (38).
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Step 4. Conclusion. By (35), the lower bound (37) and the upper bound (38)
for the heat kernel of the double yield the following on-diagonal estimates for the
Dirichlet and Neumann heat kernels of the original manifold with boundary:

p−K(t, 0) − C1

tn/2 e−C3
ρ2(x)

4t ≤ p±(t, x, x) ≤ pK(t, 0) + 2C1

tn/2 e−C3
ρ2(x)

4t . (51)

In particular, by the uniform estimates of p±K(t, 0) given in Lemma A.1 (which we
apply with T = π2), we have

󰀏󰀏󰀏(4πt)n/2p±(t, x, x) − 1
󰀏󰀏󰀏 ≤ c1Kt + c2e

−C3
ρ2(x)

4t , (52)

valid for all 0 <
√

t ≤ min{ρ(x), π√
K

}.

3.1 Heat trace bound
In this section we apply Theorem 3.1 to estimate the heat trace on M .

Theorem 3.2 (Heat trace asymptotics with quantitative remainder). Let (M, g) be
a smooth compact n-dimensional Riemannian manifold with convex boundary ∂M .
Let K, H ≥ 0 such that

Sec(M) ≤ K, and Ric(M) ≥ −(n − 1)K, (53)

− H ≤ Hess(d∂) ≤ 0, for d∂ < inj∂M . (54)
Moreover, we let

i = min
󰀝

injM ,
inj∂M

2

󰀞
. (55)

Then, there exist constants c1, c2, c3, c4 > 0, depending only on n, such that the
following estimate for the Dirichlet and Neumann heat kernels holds:

󰀏󰀏󰀏󰀏󰀏
(4πt)n/2

vol(M)

󰁝

M
p±(t, x, x)dµg(x) − 1

󰀏󰀏󰀏󰀏󰀏 ≤ c1Kt + c2
vol(∂M)
vol(M)

√
t + c3e

−c4
i2

4t , (56)

for all values of t ∈ R+ such that

√
t ≤

√
t0 = min

󰀫

injM ,
inj∂M

2 ,
π√
K

,
1
H

󰀬

. (57)

Proof. Fix t as in our assumptions. We split the manifold into 3 disjoint components
(see Figure 1):

Ω1 =
󰀫

d∂

2 <
√

t

󰀬

, Ω2 =
󰀫√

t ≤ d∂

2 < i

󰀬

, Ω3 =
󰀫

i ≤ d∂

2

󰀬

. (58)

We estimate the heat trace on these three sets separately.
Estimate on Ω1. By definition, and thanks to our assumption on t, we have

d∂

2 <
√

t ≤ min
󰀫

injM ,
inj∂M

2 ,
π√
K

,
1
H

󰀬

. (59)
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ρ(x)

δ(x)
2

Ω3

Ω2

i = min{injM ,
inj∂M

2 }

Ω2

Ω1

injM

injM

√
t

Li-Yau
from ∂M

Figure 1: The regions Ω1, Ω2, Ω3 and their relations with all parameters. The con-
dition

√
t ≤ injM ensures the existence of Ω2, Ω3 where we apply Theorem 3.1. The

condition
√

t ≤ min
󰁱
injM , π√

K
, inj∂M

2 , 1
H

󰁲
allows one to apply the Li-Yau estimate

on Ω1.

It follows that ρ(x) = d∂(x)/2 for any x ∈ Ω1, where ρ is defined in (33). Further-
more, d∂(x) < inj∂M , that is, Ω1 is contained inside the injectivity radius from the
boundary. Observe that, by construction,

√
t ≥ ρ(x), and one cannot apply the

bound of Theorem 3.1. However, the assumption on t allows one to apply Li-Yau
estimate (194) of Lemma A.2. This yields,

(4πt)n/2
󰁝

Ω1
p±(t, x, x)dµg(x) ≤ C4vol(Ω1). (60)

In order to complete the estimate on Ω1, one has to bound its volume. We have,

vol(Ω1) =
󰁝 2

√
t

0
vol(Zξ)dξ, (61)

where vol(Zξ) denotes the Riemannian volume of the level set Zξ = {d∂ = ξ} (a
smooth (n − 1)-dimensional hypersurface for ξ > 0, with Z0 = ∂M). Thanks to the
convexity assumption, for all 0 < ξ ≤ inj∂M , it holds

d

dξ
vol(Zξ) =

󰁝

Zξ

Tr(Hess(d∂)) dσξ ≤ 0, ⇒ vol(Zξ) ≤ vol(∂M). (62)

This and (60) conclude the estimate on Ω1, giving

(4πt)n/2
󰁝

Ω1
p±(t, x, x)dµg(x) ≤ 2C4vol(∂M)

√
t. (63)

Estimate on Ω2. By construction, Ω2 still lies in the region within the injectivity
radius from ∂M . Furthermore, it still holds ρ(x) = d∂(x)/2 for x ∈ Ω2. Here,
however,

√
t ≤ ρ(x), and hence we can apply the result of Theorem 3.1. In particular,

󰁝

Ω2

󰀏󰀏󰀏(4πt)n/2p±(t, x, x) − 1
󰀏󰀏󰀏 dµg(x) ≤

󰁝

Ω2

󰀣

c1Kt + c2e
−c3

ρ2(x)
4t

󰀤

dµg(x) (64)
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= c1Kvol(Ω2)t + c2

󰁝

Ω2
e−c3

d2
∂(x)
16t dµg(x) (65)

= c1Kvol(Ω2)t + c2

󰁝 i

2
√

t
e−c3

ξ2

16t vol(Zξ)dξ (66)

≤ c1Kvol(Ω2)t + c2vol(∂M)
󰁝 ∞

0
e−c3

ξ2

16t dξ (67)

≤ c1Kvol(Ω2)t + c4vol(∂M)
√

t. (68)

Here, we used the same argument we employed for Ω1 to disintegrate the measure
dµ, and to estimate vol(Zξ).

Estimate on Ω3. For x ∈ Ω3, it does not necessarily hold ρ(x) = d∂(x)/2,
neither x is forcibly within the injectivity radius from ∂M . However, it holds ρ(x) ≥
i. Since we have

√
t ≤ i, this implies that

√
t ≤ ρ(x), and we can apply Theorem 3.1

again. Hence, we obtain
󰁝

Ω3

󰀏󰀏󰀏(4πt)n/2p±(t, x, x) − 1
󰀏󰀏󰀏 dµg(x) ≤

󰁝

Ω3

󰀣

c1Kt + c2e
−c3

ρ2(x)
4t

󰀤

dµg(x) (69)

≤
󰀣

c1Kt + c2e
−c3

i2

4t

󰀤

vol(Ω3). (70)

Since vol(Ωi)/vol(M) ≤ 1, splitting the l.h.s. of (56) in the subsets Ω1, Ω2, Ω3,
using (63), (68), (70), and renaming the constants, yield the result.

The remainder estimate of Theorem 3.2 can be expressed in many equivalent
ways. For example, one can control the ratio vol(∂M)/vol(M) in terms of the lower
bound on the mean curvature of the boundary and the lower bound on the injectivity
radius from the boundary (and hence i). We prefer (56) since it is closer to the well
known small time heat kernel asymptotics for Riemannian manifolds with boundary.
In the next corollary, we present a weaker but simpler statement, in global form.

Corollary 3.3 (Heat trace asymptotics with quantitative remainder, global form).
In the setting of Theorem 3.2, there exists a constant c > 0, depending only on the
dimension n, such that

󰀏󰀏󰀏󰀏󰀏
(4πt)n/2

vol(M)

󰁝

M
p±(t, x, x)dµg(x) − 1

󰀏󰀏󰀏󰀏󰀏 ≤ c

󰀻
󰀿

󰀽
(t/t0)1/2 t ≤ t0,

(t/t0)n/2 t ≥ t0,
(71)

where t0 is defined in (57).

Proof. Recall the remainder term of (56) in its original form

R(t) = c1Kt + c2
vol(∂M)
vol(M)

√
t + c3e

−c4
i2

4t , ∀t ≤ t0. (72)

The inequality e−1/x ≤ x/e for x > 0 yields

R(t) ≤ c

󰀣

Kt + vol(∂M)
vol(M)

√
t + t

i2

󰀤

. (73)
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Recall that Zx = {d∂ = x}. The lower bound on the Hessian yields

d

dx
vol(Zx) =

󰁝

Zx

Tr(Hess(d∂))dσx ≥ −H(n − 1)vol(Zx), ∀x ≤ inj∂M . (74)

Integrating the above, we have

vol(Zx) ≥ vol(∂M)e−H(n−1)x, ∀x ≤ inj∂M . (75)

Therefore, since t0 ≤ i2 and H
√

t0 ≤ 1, we have

vol(M)
vol(∂M) ≥

󰁝 √
t0/(n−1)

0

vol(Zx)
vol(∂M)dx ≥ 1 − e−H

√
t0

H(n − 1) ≥
√

t0(1 − e−1)
n − 1 . (76)

Thus, up to modifying c with another constant, depending only on n, we obtain

R(t) ≤ c
󰀕

t

t0

󰀖1/2
, ∀t ≤ t0, (77)

where we used the definition of t0, and elementary manipulations.
Assume now that t ≥ t0, and let here W (t) = (4π)n/2

vol(M)
󰁕

M p±(t, x, x)dµg(x). Since
W (t) is decreasing and positive, we have

󰀏󰀏󰀏W (t) − t−n/2
󰀏󰀏󰀏 ≤ W (t0) + t

−n/2
0 (78)

≤
󰀏󰀏󰀏W (t0) − t

−n/2
0

󰀏󰀏󰀏 + 2t
−n/2
0 (79)

≤ t
−n/2
0 R(t0) + 2t

−n/2
0 (80)

≤ t
−n/2
0 (c + 2). (81)

Therefore, up to modifying again c, we obtain

󰀏󰀏󰀏tn/2W (t) − 1
󰀏󰀏󰀏 ≤ c

󰀕
t

t0

󰀖n/2
, ∀t ≥ t0, (82)

concluding the proof.

3.2 Weyl’s law with remainder
It is well known that heat trace asymptotics imply Weyl law asymptotics, by means
of Tauberian theorems in the form of Karamata [20]. We need here a Karamata-
type of result with explicit remainder, due to Ingham [19, Theorem B]. For our
purposes, we need to know the explicit dependence of the constants with respect to
all parameters and functions at play. For this reason, the statement below is slightly
more precise than the one in [19]. Since the proof is unchanged, we omit it.

Theorem 3.4 (Karamata theorem with remainder [19]). Suppose that

F (t) = t
󰁝 ∞

0
A(λ)e−tλdλ, s > 0, (83)
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where A(λ) is positive and non decreasing for λ > 0. Suppose α > −1. Let χ(λ) be
a function such that

χ(λ) > 0, χ(λ) ↗ ∞, λ−α−1χ(λ) ↘, ∀λ > 0 (84)

Suppose that there exists c1 > 0 such that
󰀏󰀏󰀏󰀏󰀏
F (1/λ)

λα
− 1

󰀏󰀏󰀏󰀏󰀏 ≤ c1

χ(λ) , ∀λ > 0. (85)

Then there exists another constant c2 = c2(c1, α) > 0 such that
󰀏󰀏󰀏󰀏󰀏
Γ(α + 1)A(λ)

λα
− 1

󰀏󰀏󰀏󰀏󰀏 ≤ c2

log(χ(λ) + 1) , ∀λ > 0. (86)

We use Corollary 3.3 to derive the Weyl law with remainder for M . In order to
do that, we define the function χ : R+ → R by

1
χ(λ) :=

󰀻
󰀿

󰀽
(λ0/λ)1/2 λ ≥ λ0,

(λ0/λ)n/2 λ ≤ λ0.
(87)

Observe that χ is obtained by replacing t with 1/λ in the remainder given by Corol-
lary 3.3. Here λ0 = 1/t0 which, using (57), is

󰁴
λ0 = 1

min
󰁱
injM , inj∂M

2 , π√
K

, 1
H

󰁲 . (88)

Theorem 3.5 (Weyl law with quantitative remainder). In the setting of Theorem
3.2, there exists a constant c > 0 depending on n, such that the following estimate
holds for the Weyl counting function for the Dirichlet or Neumann eigenvalues:

󰀏󰀏󰀏󰀏󰀏󰀏
N(λ)

ωn

(2π)n vol(M)λn/2 − 1

󰀏󰀏󰀏󰀏󰀏󰀏
≤ c

log(χ(λ) + 1) , ∀λ > 0. (89)

Proof. The proof is an application of Theorem 3.4. Indeed, observe that
󰁝

M
p±(t, x, x)dµg(x) =

∞󰁛

i=1
e−tλi = t

󰁝 ∞

0
N(λ)e−tλdλ. (90)

Moreover, by Corollary 3.3, the assumptions in Theorem 3.4 are satisfied with α =
n/2, χ defined in (87), and letting

A(λ) = (4π)n/2

vol(M)N(λ), F (t) = t
󰁝 ∞

0
A(λ)e−tλdλ. (91)

Recalling that Γ(n/2 + 1) = πn/2/ωn yields the result.

4 Weyl’s asymptotics for singular manifolds
Let M be a non-complete Riemannian manifold. For the notations and some pre-
liminary facts used in this section, we refer to Section 2.2.
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4.1 Proof of the Weyl law
Here we prove the Weyl law for the counting function N(λ) of the Friedrichs ex-
tension of the Laplace-Beltrami operator of M. The strategy of proof (based on
Dirichlet-Neumann bracketing, see Proposition 2.5) consists in the following steps:

1. Consider the exhaustion M∞
ε , for ε ≤ ε0. Use then Corollary 3.5 to obtain a

Weyl law N[ε,+∞](λ) of M∞
ε , with an explicit remainder term.

2. Relate ε to λ so that ε → 0 as λ → +∞ so as to control the remainder term
in N[ε(λ),+∞](λ) as λ → ∞.

A first essential fact is the following, which allows to discard the contributions
of the regions near the boundary to N(λ) for quantitatively small values of λ.

Lemma 4.1 (Spectral estimates at the metric boundary). Let M be a non-complete
Riemannian manifold with compact metric completion and regular metric boundary.
Assume that, for all ε ≤ ε0, the boundary of M∞

ε is mean convex. Then for all
ε ≤ ε0/2 it holds

N±
[0,ε](λ) = 0, ∀λ <

1
8ε2 . (92)

Proof. A minmax argument combined with Proposition 2.4 yields a spectral lower
bound for the Dirichlet spectrum, and hence N−

[0,ε](λ) = 0 if λ < 1/4ε2.
To prove the analogous statement for the Neumann spectrum, we claim that the

Hardy inequality of Proposition 2.4 holds also for the restrictions to Mε
0 of functions

C∞
c (M). To prove the claim, thanks to the regularity of the metric boundary, we

consider coordinates (x, z) ∈ (0, ε] × Zε0 ≃ Mε
0, where the metric is as in (27). In

these coordinates, the Riemannian measure is dµ = e2θ(x,z)dxdz, for some smooth
function θ : (0, ε]×Zε0 → R. Furthermore, ∂xθ = 1

2 Tr Hess d∂ ≤ 0. Let u ∈ C∞
c (M)

and ũ be the function on M2ε
0 defined in the above coordinates by

ũ(x, z) = u(min{x, 2ε − x}, z). (93)

By construction, ũ is continuous, smooth on Mε
0 and M2ε

ε , compactly supported in
M2ε

0 , and its restriction to Mε
0 coincides with u. Furthermore, it holds

󰁝

M2ε
ε

|∇ũ|2dµ =
󰁝 2ε

ε
dx

󰁝

Zε0

|∇u(2ε − x, z)|2e2θ(x,z)dxdz (94)

≤
󰁝 2ε

ε
dx

󰁝

Zε0

|∇u(2ε − x, z)|2e2θ(2ε−x,z)dxdz (95)

=
󰁝 ε

0
dx

󰁝

Zε0

|∇u(x, z)|2e2θ(x,z)dxdz (96)

=
󰁝

Mε
0

|∇u|2dµ, (97)

where in the second line we used the fact that x 󰀁→ e2θ(x,z) is non-increasing by
mean convexity. A straightforward approximation argument shows that the Hardy
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inequality of Proposition 2.4 holds for ũ on M2ε
0 , even if ũ it not smooth (this is

why we required 2ε ≤ ε0). Hence, we obtain
󰁝

Mε
0

|∇u|2dµg = 1
2

󰁝

Mε
0

|∇u|2dµg + 1
2

󰁝

Mε
0

|∇u|2dµg (98)

≥ 1
2

󰁝

M2ε
0

|∇ũ|2dµg (99)

≥ 1
8ε2

󰁝

M2ε
0

|ũ|2dµg (100)

≥ 1
8ε2

󰁝

Mε
0

|u|2dµg, ∀u ∈ C∞
c (M), (101)

concluding the proof of the claim.

Crucial in the proof is the following relative volume estimate.
Lemma 4.2 (Relative volume estimates). Let M be a non-complete Riemannian
manifold with regular metric boundary. Assume that there exists C > 0 such that

m(∂M∞
ε ) ≥ −C

ε
, ∀ε ≤ ε0. (102)

Then there exists C ′ > 0 such that, for any 0 < a ≤ b ≤ ε0 we have
vol(M∞

b )
vol(M∞

a ) ≥
󰀕

a

b

󰀖1/C′

. (103)

Proof. Thanks to the regularity of the metric boundary and in particular (27), we
have

vol(M∞
ε ) = (M∞

ε0 ) +
󰁝 ε0

ε
vol(Zx)dx. (104)

The lower bound on the mean curvature yields
d

dx
vol(Zx) =

󰁝

Zx

m(∂M∞
x )dσx ≥ −C

x
vol(Zx), ∀x ≤ ε0. (105)

By Gronwall’s Lemma, this implies
vol(Zx)
vol(Zε)

≥
󰀕

ε

x

󰀖C

, ∀ε ≤ x ≤ ε0. (106)

Combining (104) with (106) we obtain
vol(M∞

ε )
vol(Zε)

≥
󰁝 ε0

ε

󰀕
ε

x

󰀖C

dx = ε
󰁝 ε0/ε

1

󰀕 1
x

󰀖C

dx. (107)

The r.h.s. of the above inequality is larger than or equal to C ′ε provided that, e.g.,
ε ≤ ε0/2. By continuity, it follows that

vol(M∞
ε )

vol(Zε)
≥ C ′ε, ∀ε ≤ ε0. (108)

Note that (108) is equivalent to

− d

dε
log vol(M∞

ε ) ≤ 1
C ′ε

, ∀ε ≤ ε0, (109)

which yields (103) upon integration.
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We are now ready to state and prove the main result of this section.

Theorem 4.3. Let M be a non-complete Riemannian manifold with compact metric
completion and regular metric boundary. Assume that there exist two constants
C, ε0 > 0 such that for all 0 < ε ≤ ε0, we have

Ric(M∞
ε ) ≥ −(n − 1)C

ε2 , Sec(M∞
ε ) ≤ C

ε2 . (110)

Assume also that for all 0 < ε ≤ ε0 the boundary of M∞
ε is convex, and that

m(∂M∞
ε ) ≥ −C

ε
, injM∞

ε
≥ ε

C
. (111)

Then there exist C± > 0 and Λ > 0 such that

C− ≤ N(λ)
λn/2vol(M∞

1/
√

λ
) ≤ C+, ∀λ ≥ Λ. (112)

Remark 4.1. Thanks to Proposition 4.8, the assumption on the injectivity radius in
Theorem 4.3 is automatically satisfied if the boundary is strictly convex.
Remark 4.2. We recall that a function υ : R+ → R+ is slowly varying at 0 in the
sense of Karamata [4] if

lim
x→0

υ(ax)
υ(x) = 1, ∀a > 0. (113)

Then, if the function x 󰀁→ vol(M∞
x ) is slowly varying at 0, we can asymptotically

improve the lower bound in (112):

ωn

(2π)n/2 ≤ lim inf
λ→+∞

N(λ)
λn/2vol(M1/

√
λ) . (114)

This is the case, in particular, if vol(M) is finite.

Proof. Let 0 < ε ≤ ε0. We split M into two parts M = Mε
0 ∪ M∞

ε . Observe that,
and thanks to all our assumptions, by Theorem 3.5, we have

󰀏󰀏󰀏󰀏󰀏
(2π)n

ωnλn/2vol(M∞
ε )N±

[ε,∞](λ) − 1
󰀏󰀏󰀏󰀏󰀏 ≤ c

log(χ(λ) + 1) , ∀λ > 0, (115)

where χ(λ) is given in (87). By our assumptions, there exists a constant b > 0,
depending only on the dimension, such that λ0 ≤ b/ε2 (without loss of generality,
we assume this constant to be equal to 1). In particular, we have

χ(λ) = min
󰀝󰀓

ε2λ
󰀔1/2

,
󰀓
ε2λ

󰀔d/2
󰀞

. (116)

We would like to send ε → 0 as fast as possible, with λ → +∞, while keeping the
remainder term under control. During this process, we remark that χ is bounded if
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and only if ε2λ is bounded. Hence, we relate ε and λ in such a way that ε2λ is a
given constant parameter. More precisely, we set ε = εa(λ) where

εa(λ) =
󰁶

1
aλ

, a > 0. (117)

In this case the remainder in (115) is bounded by a constant, depending only on the
dimension and on a, which can be made arbitrarily small as a → 0.

In the remainder of the proof, by considering the cases in which a is very large
and very small, we obtain the upper and lower bound for N(λ), respectively.

Upper bound. Choose a+ > 8 and ε = εa+(λ) as described above. In this case,
Lemma 4.1 yields N±

[0,ε](λ) = 0. Hence, by Neumann bracketing (e.g., the r.h.s. of
the statement of Proposition 2.5) we obtain that there exists C+ > 0 independent
of λ and such that

N(λ) ≤ N+
[0,ε](λ) + N+

[ε,∞](λ) ≤ N+
[ε,∞](λ) ≤ C+λn/2vol

󰀕
M∞

1/
√

a+λ

󰀖
, (118)

provided that λ ≥ Λ+ = 1/ε2
0a+.

Lower bound. In this case we can always neglect the boundary contribution,
since N−

[0,ε](λ) ≥ 0. By Dirichlet bracketing (e.g., the l.h.s. of the statement of
Proposition 2.5), we have

N(λ) ≥ N−
[0,ε] + N−

[ε,∞](λ) ≥ N−
[ε,∞](λ), ∀ε ≤ ε0. (119)

Choose a = a− sufficiently small, and ε = εa(λ), in such a way that the remainder
term in (115) is smaller than < 1. We deduce that there exists a constant C− > 0
such that

N(λ) ≥ N−
[ε,∞](λ) ≥ C−λn/2vol

󰀕
M∞

1/
√

a−λ

󰀖
, (120)

provided that λ ≥ Λ− = 1/ε2
0a−.

We conclude the proof of (112) thanks to Lemma 4.2, and setting Λ = Λ− ≥ Λ+.
Assume now that the function υ(x) = vol(M∞

x ) is slowly varying, that is,

lim
x→0

υ(ax)
υ(x) = 1, ∀a > 0. (121)

In this case, in the proof of the lower bound, we can let a− → 0, in which case Λ →
+∞, C− → ωn

(2π)n , and vol(M∞
1/

√
a−λ

) ∼ vol(M1/
√

λ). This proves (114). Clearly we
cannot improve the upper bound with the same argument, sending a+ → 0, since in
order to neglect the boundary term one must keep a+ > 8.

Remark 4.3. The proof of Theorem 4.3 shows that the estimate of Theorem 3.2 (and
in turn Theorem 4.3 itself) cannot be improved. To see that, suppose that we are
able to deduce a better remainder, in such a way that by setting

ε = 1√
aλ

, (122)
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the remainder of Theorem 3.2 is negligible, and not simply bounded, as λ → +∞.
For the upper bound, arguing as above, we obtain the estimate

lim sup
λ→+∞

N(λ)
λn/2vol(M∞

1/
√

λ
) ≤ ωn

(2π)n
a

1/2C′

+ , (123)

where we used Lemma 4.2 to compute vol(M∞
1/

√
aλ

)/vol(M∞
1/

√
λ
) = a1/2C′ for some

constant C ′ > 0. Note that, to get rid of the boundary terms by Lemma 4.1, we
need to choose a+ > 8. Hence, the best upper bound in (123) is obtained for a+ = 8,
and cannot be improved further. For the lower bound, we obtain

lim inf
λ→+∞

N(λ)
λn/2vol(M∞

1/
√

λ
) ≥ ωn

(2π)n
a

1/2C′

− . (124)

In this case there is no constraint on a−, which can be chosen as large as we want,
obtaining a contradiction with (123).

4.2 Generalized Minkowski dimension
In this section we refine the Weyl asymptotics for non-complete manifolds, under
stronger conditions on the volume explosion at infinity.

Definition 4.4 (Minkowski dimension). Let M be a non-complete Riemannian
manifold of dimension n. We say that the metric boundary ∂M has generalized
Minkowski dimension d if ε 󰀁→ vol(M2ε

ε )
εn−d admits positive and finite lim inf and lim sup

as ε → 0. If these two limits agree, we define the regularized volume of ∂M as

|∂M|reg = 1
Cd

lim
ε→0

vol(M2ε
ε )

εn−d
, where Cd =

󰀻
󰀿

󰀽
log 2 if d = n,
2n−d−1

n−d
otherwise.

(125)

Remark 4.4. It is easy to check that ∂M has Minkowski dimension d ≥ n if and
only if there exists positive and finite lim inf and lim sup as ε → 0 of the quantity:

vol(M∞
ε )

log ε−1 , if d = n, or vol(M∞
ε )

εn−d
, if d > n. (126)

Moreover, vol(M) is finite if and only if d < n.
The following is a direct consequence of Theorem 4.3, and Remark 4.4 and 4.2.

Corollary 4.5. Let M be a non-complete Riemannian manifold satisfying the as-
sumptions of Theorem 4.3. Assume that ∂M has Minkowski dimension d. Then

N(λ) ≍

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

λn/2 d < n,

λn/2 log λ d = n,

λd/2 d > n,

λ → +∞, (127)

where the notation f ≍ g means that f/g has finite and positive lim sup and lim inf.
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The main result of this section is an improvement on the above result in the case
where the Minkowski dimension of ∂M coincides with the dimension of M.

Theorem 4.6. Let M be a non-complete Riemannian manifold satisfying the as-
sumptions of Theorem 4.3. Assume that ∂M has Minkowski dimension d = n with
regularized volume |∂M|reg. Then,

lim
λ→+∞

N(λ)
λn/2 log λ

= ωn

(2π)n

|∂M|reg

2 . (128)

In order to prove Theorem 4.6, we need the following technical result.

Lemma 4.7. Let M be an n-dimensional non-complete Riemannian manifold such
that ∂M has Minkowski dimension d = n and regularized volume |∂M|reg. Then,
for any 0 < ε1 < ε2 < 1, we have

vol(Mε2
ε1) =

󰀓
1 + R(ε1, ε2)

󰀔
|∂M|reg log ε2

ε1
, (129)

where R(ε1, ε2) → 0 as ε1 → 0 and ε2
ε1

→ +∞.

Proof. By assumption one has that

vol(M2ε
ε ) = |∂M|reg log 2 + o(1), as ε → 0. (130)

Let 0 < ε1 < ε2 < 1 be such that ε1 is sufficiently small and ε2/ε1 is sufficiently
large (w.r.t. 1). Let k ∈ N be defined by

k =
󰀧 log ε2

ε1

log 2

󰀨

. (131)

We apply (130) with 2ε = 2j+1ε1 and ε = 2jε1, j ∈ N. Summing up for 0 ≤ j ≤ k,
and letting ε1 → 0 one obtains that

vol(Mε2
ε1) =

󰀓
1 + o(1)

󰀔
k|∂M|reg log 2. (132)

Assuming further that ε2/ε1 tends to +∞ we get the result.

Proof of Theorem 4.6. We prove the following inequalities:

lim sup
λ→+∞

N(λ)
λn/2 log λ

≤ ωn

(2π)n

|∂M|reg

2 ≤ lim inf
λ→+∞

N(λ)
λn/2 log λ

. (133)

The proof of the right inequality in (133) starts as in the proof of Theorem 4.3,
i.e., by splitting M = M∞

ε ∪ Mε
0. Thanks to Dirichlet bracketing (e.g., the l.h.s.

of the statement of Proposition 2.5), we can neglect the contribution of Mε
0, hence

obtaining
N(λ) ≥ N−

[0,ε](λ) + N−
[ε,∞](λ) ≥ N−

[ε,∞](λ), ∀ε > 0. (134)
Note that vol(M∞

1 ) < +∞. Then, by Lemma 4.7 we have

vol(M∞
ε ) =

󰀓
1 + o(1)

󰀔
|∂M|reg log 1

ε
, where lim

ε→0
o(1) = 0. (135)
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Given α ∈ (0, 1), we let ε(λ) := 1√
λ

(1−α) . In this case, applying Theorem 3.5, the
remainder tends to zero as λ → +∞. We therefore obtain

lim inf
λ→+∞

N(λ)
λn/2 log λ

≥ ωn

(2π)n

|∂M|reg

2 (1 − α), ∀α ∈ (0, 1). (136)

Letting α → 0 in the above estimate we obtain the desired inequality.
We next turn to the proof of the left inequality in (133), which is more delicate.

In this case, we split M into three parts. Let 0 < ε1 < ε2 sufficiently small, and let
M = Mε1

0 ∪ Mε2
ε1 ∪ M∞

ε2 . (137)
Given α ∈ (0, 1), we choose

ε1(λ) := CH√
λ

, ε2(λ) := CH
√

λ
(1−α) , (138)

where CH = 1/8 is the constant appearing in Lemma 4.1. The latter implies that
N+

[0,ε1(λ)](λ) = 0. By Neumann bracketing (e.g., the r.h.s. of the statement of Propo-
sition 2.5) we obtain

N(λ) ≤ N+
[ε1(λ),ε2(λ)](λ) + N+

[ε2(λ),∞](λ). (139)
Observe that, by Lemma 4.7, we have

vol
󰀓
Mε2(λ)

ε1(λ)

󰀔
=

󰀓
1 + o(1)

󰀔
|∂M|reg

α

2 log λ, where lim
λ→+∞

o(1) = 0. (140)

Applying Theorem 3.5 to Mε2(λ)
ε1(λ), this implies that as λ → +∞,

N+
[ε1(λ),ε2(λ)](λ) = ωn

(2π)n
|∂M|reg

α

2 λn/2 log λ (1 + O(1)) . (141)

In the above, the remainder term O(1) may not tend to zero. However, the quantity
1/χ(λ), which controls the error, is uniformly bounded in terms of geometric quan-
tities computed at the smallest distance from the boundary, that is, ε1(λ), which
does not depend on α. Therefore the O(1) term is uniformly bounded for α ∈ (0, 1).
Hence, there exist a constant R > 0 such that, for all α ∈ (0, 1), it holds

lim sup
λ→+∞

N+
[ε1(λ),ε2(λ)](λ)
λn/2 log λ

≤ ωn

(2π)n
|∂M|reg

α

2 (1 + R). (142)

On the other hand, by (135) one has

vol(M∞
ε2(λ)) =

󰀓
1 + o(1)

󰀔
|∂M|reg

1 − α

2 log λ, where lim
λ→+∞

o(1) = 0. (143)

Applying Theorem 3.5 to M∞
ε2(λ), we obtain,

N+
[ε2(λ),∞](λ) = ωn

(2π)n
vol(M∞

ε2(λ))λn/2
󰀕

1 + O
󰀕 1

λα

󰀖󰀖
(144)

=
󰀓
1 + o(1)

󰀔 ωn

(2π)n
|∂M|reg

1 − α

2 λn/2 log λ. (145)

By (139), summing (142) and (145), one gets that

lim sup
λ→+∞

N(λ)
λn/2 log λ

≤ ωn

(2π)n
|∂M|reg(1 + αR). (146)

As before, one concludes by letting α → 0.
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4.3 On the assumptions of Theorem 4.3
Here, we show that the assumption on the injectivity radius in Theorem 4.3 is
automatically satisfied if the boundary is strictly convex.

Proposition 4.8 (Injectivity radius estimate). Let M be a non-complete Rieman-
nian manifold with regular metric boundary. If for all ε ≤ ε0 the boundary of M∞

ε

is strictly convex and Sec(M∞
ε ) ≤ C

ε2 for some C > 0, then there exists C ′ > 0 such
that

injM∞
ε

≥ C ′ε, ∀ε ≤ ε0. (147)

Proof. A Klingenberg-type lemma for manifolds with convex boundary4 yields that

injM∞
ε

≥ min
󰀫

π√
Kε

,
ℓε

2

󰀬

, (148)

where Kε = C/ε2 is the upper bound on the sectional curvature of M∞
ε , and ℓε is the

shortest closed geodesic in M∞
ε . We claim that no such closed geodesic can intersect

Mε0
ε . In fact, let γ be a shortest geodesic loop, and assume by contradiction that

the closest point of γ to ∂M∞
ε , say γ(t0), lies in Mε0

ε . In particular, t 󰀁→ d∂(γ(t))
has a minimum at t0. But the strict convexity assumption yields

d2

dt2

󰀏󰀏󰀏󰀏󰀏
t=t0

d∂(γ(t)) = Hess(d∂)(γ̇(t0), γ̇(t0)) < 0, (149)

yielding a contradiction. Hence, for all ε < ε0, the shortest closed geodesic in M∞
ε is

contained in M∞
ε0 , and its length does not depend on ε. We conclude by (148).

5 Strongly regular ARS
We now apply our results to a class of structures where the metric boundary can
be locally described as the singular region of a Riemannian metric. This class is
modeled on almost-Riemannian structures, introduced in [1]. We provide here a
direct and local definition, which is sufficient for our purposes. We refer the reader
to [28, Sec. 7] for a self-contained presentation closer to our approach.

Let N be a smooth, connected n-dimensional manifold, and let Z ⊂ N be a
smooth embedded hypersurface Z. We assume to be given a metric g, which is
Riemannian on N \ Z and such that for all p ∈ Z there exist local coordinates
(x, z) ∈ R × Rn−1 and smooth vector fields

X0 = ∂x, Xi =
n−1󰁛

j=1
aij(x, z)∂zj

, (150)

which are orthonormal for g outside of Z, and det aij(x, z) = 0 if and only if x = 0.
Furthermore, we ask that there exists an m ∈ N such that

aij(x, z) = xmâij(x, z), det âij ∕= 0. (151)
4The convexity of the boundary implies geodesic convexity of the interior, and hence the proof

of Klingenberg lemma is unchanged w.r.t. the case with ∂M = ∅. See e.g. [21, Sec. 6].

26



In this case, on each local chart, we have

X0 = ∂x, Xi = xmX̂i = xm
n−1󰁛

j=1
âij∂zi

, (152)

where X0, X̂1, . . . , X̂n have maximal rank also on the singular region. In particular
we can introduce the regularized Riemannian structure in a neighborhood of Z such
that X̂0 = X0, X̂1, . . . , X̂n are a smooth orthonormal frame. We denote with a hat
all the quantities relative to this structure. In particular, the regularized measure
σ̂(Z) of Z is well defined.

Definition 5.1. A singular Riemannian structure on an n-dimensional manifold N
satisfying the above condition is called an m-strongly regular ARS, where m is the
integer defined in (151).

The non-complete Riemannian manifold M = N \ Z has metric boundary given
by at most two copies of Z (depending whether the latter is one or two-sided).
Finally, in the above local coordinates, and close to Z, we have d̂∂(x, z) = |x|. It
follows that any strongly regular ARS has regular metric boundary.
Remark 5.1. As a consequence of the theory developed in [28], the Laplace-Beltrami
of a strongly regular ARS is essentially self-adjoint in L2(N \ Z). The same result
holds more generally for regular structures, introduced in [28], that is, when the
condition (151) is replaced by the weaker one

det aij(x, z) = xkφ(x, z), φ(x, z) ∕= 0. (153)

Indeed, any strongly regular structure is regular, for k = m(n − 1).

5.1 Curvature bounds
We now discuss the relevant curvature bounds for strongly regular ARS.

Proposition 5.2. For any m-strongly regular ARS on a compact n-dimensional
manifold, there exists ε0, C > 0 such that, for all planes σ, one has

|Sec(σ)| ≤ C

d̂2
∂

, − C

d̂∂

≤ Hess(d̂∂) < 0, (154)

whenever d̂∂ ≤ ε0. The Minkowski dimension of ∂M is equal to d = (n−1)(m+1) ≥
n. The regularized measure of ∂M and the regularized volume of Z are related by

|∂M|reg = 2σ̂(Z). (155)

Proof. To compute curvature-like quantities, we adopt the following modified Ein-
stein convention. Latin indices run from 1, . . . , n − 1, and repeated indices are
summed on that range. The index 0 is reserved for the variable x, e.g. ∂0 = ∂x. The
non vanishing structural functions are given by

[X0, Xi] = cℓ
0iXℓ, [Xi, Xj] = cℓ

ijXℓ. (156)
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Koszul formula for the Levi-Civita connection in terms of orthonormal frames yields

∇iXj = Γℓ
ijXℓ + γijX0, ∇0Xi = δiℓXℓ, ∇iX0 = −γiℓXℓ, (157)

δiℓ = 1
2(cℓ

0i − ci
0ℓ), γiℓ = 1

2(ci
0ℓ + cℓ

0i), Γℓ
ij = 1

2(cℓ
ij + ci

ℓj + cj
ℓi). (158)

Notice that δ = −δ∗, γ = γ∗, while Γℓ
ij = −Γj

iℓ. From the definition of curvature

R(X, Y, Z, W ) = g(∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z, W ), (159)

we deduce the following formulas for the Riemann tensor

R(Xi, Xj, Xk, Xℓ) = ∂iΓℓ
jk + Γs

jkΓℓ
is − γjkγiℓ − ∂jΓℓ

ik − Γs
ijΓℓ

js (160)
+ γikγjℓ − cs

ijΓℓ
sk, (161)

R(Xi, Xj, Xk, X0) = Γℓ
jkγiℓ + ∂iγjk − Γℓ

ikγjℓ − ∂jγik − cs
ijγsk, (162)

R(X0, Xi, Xj, X0) = ∂0γij + γiℓδℓj + γjℓδℓi − γiℓγℓj, (163)

In particular Sec(X ∧ Y ) = R(X, Y, Y, X) for any pair of unit orthogonal vectors
X, Y . Furthermore, since d∂ = |x|, we have

Hess(d̂∂)(Xi, Xj) = −γij. (164)

In terms of the matrix a, the structural functions read

cℓ
0i = a−1

ℓs ∂0asi, cℓ
ij = (ari∂rasj − ajr∂rasi) a−1

sℓ . (165)

Using (165) one obtains

cℓ
0i = m

x
1iℓ + ĉℓ

0i, cℓ
ij = xmĉℓ

ij, (166)

which implies

δij = δ̂ij, γij = m

x
1ij + γ̂ij, Γℓ

ij = xmΓ̂ℓ
ij. (167)

From (161)-(163) we obtain

R(Xi, Xj, Xk, Xℓ) = −m2

x2 (1jk1iℓ − 1ik1jℓ) + O
󰀕 1

x

󰀖
, (168)

R(Xi, Xj, Xk, X0) = O(1), (169)

R(X0, Xi, Xj, X0) = −m(m + 1)
x2 1ij + O

󰀕 1
x

󰀖
. (170)

and
Hess(d∂)(Xi, Xj) = −m

x
1ij + O(1). (171)

A computation of |M2ε
ε | in local coordinates given by the definition of strongly

regular structures yields the Minkowski dimension and the regularized measure as
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stated in the proposition. Assuming without loss of generality that Z is contained
in a single chart, we have, for sufficiently small ε,

|M2ε
ε | =

󰁝

ε≤|x|≤2ε
dx

󰁝

Z

󰁴
det(aa∗)(x, z)dz (172)

=
󰁝

ε≤|x|≤2ε

1
xm(n−1) dx

󰁝

Z

󰁴
det(ââ∗(x, z))dz (173)

=
󰁝

ε≤|x|≤2ε

1
xm(n−1) dx

󰀕󰁝

Z

󰁴
det(ââ∗(0, z))dz

󰀖
(1 + O(ε)) (174)

= 2(1 + O(ε))σ̂(Z)
󰁝 2ε

ε

1
xm(n−1) dx (175)

The factor 2 is due to the fact that the coordinate x can assume positive and
negative values. The result now follows from the definition of Minkowski dimension
and regularized measure.

The next example shows that the results of Proposition 5.2 do not hold, in
general, if one weakens the strongly regular condition (151). In particular, one
can have ARS where all geometric quantities have an arbitrarily fast polynomial
explosion to ±∞.
Example 5.1 (Worst case curvature explosion). The example is in dimension n =
3, then it is sufficient to take the metric product with an Euclidean space of the
appropriate dimension to obtain the analogue example in dimension n. We stress
that the forthcoming example respects the k-regular condition (153).

Let k ≥ 1, and consider the structure defined locally in coordinates (x, z) ∈
R × R2 by the vector fields

X0 = ∂x, X1 = ∂z1 + x∂z2 , X2 = xk∂z2 . (176)
In other words, Xi = aji∂zi

, for i = 1, 2, with

a =
󰀣

1 0
x xk

󰀤

. (177)

The most singular terms in the curvature arise all from the first equation of (165).
In particular letting Ciℓ = cℓ

0i, we have

C = (a−1∂0a)∗ =
󰀣

0 1
xk

0 k
x

󰀤

. (178)

It follows that

δ = 1
2(C − C∗) =

󰀣
0 1

2xk

− 1
2xk 0

󰀤

, γ = 1
2(C + C∗) =

󰀣
0 1

2xk

1
2xk

k
x

󰀤

. (179)

Notice that, rewriting (163) in this notation, we obtain, for i = 1, 2,

Sec(X0 ∧ Xi) = (∂0γ + 2γδ − γ2)ii = diag
󰀣

− 3
4x2k

,
1

4x2k
− k(k + 1)

x2

󰀤

, (180)

and, for i, j = 1, 2,

Hess(d∂)(Xi, Xj) = −1
2

󰀣
0 1

2xk

1
2xk

k
x

󰀤

, (181)

whose eigenvalues obey h± = ± 1
2xk (1 + o(1)) as x → 0.
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5.2 Weyl asymptotics for ARS
We now apply the theory developed in the previous sections to ARS. We recall that
the notation f ≍ g means that f/g has finite and positive lim sup and lim inf.

Theorem 5.3 (Weyl asymptotics for ARS). Consider the Laplace-Beltrami operator
of an m-strongly regular ARS on an n-dimensional compact manifold. Then, with
the exception of the case n = 2 and m = 1, we have

N(λ) ≍ λd/2, λ → +∞, (182)

where d = (n − 1)(m + 1) > n is the Minkowski dimension of the singular region.
In the special case n = 2 and m = 1, in which d = n, we have

lim
λ→+∞

N(λ)
λ log λ

= |σ̂(Z)|
4π

. (183)

Proof. As we discussed at the beginning of this section, a strongly regular ARS has
regular metric boundary. Furthermore, by Proposition 5.2, it respects all assump-
tions of Theorem 4.3. Notice that, since the boundaries of the truncations M∞

ε

are strictly convex, we applied Proposition 4.8, to avoid a direct estimate of the
injectivity radius (see Remark 4.1). In particular, we can apply Corollary 4.5, using
the fact that the Minkowski dimension of the singular region (equivalently, of the
metric boundary) is d = (n − 1)(m + 1). The stronger estimate given by Theorem
4.6 holds when d = n, that is n = 2 and m = 1.

5.3 A non-regular ARS
In this section, we present an example of non-regular structure that still satisfies all
curvature bounds of Theorem 4.3.

Let M be a 2D smooth manifold endowed with a non-complete metric g, such
that 󰁦M is compact, and ∂M = S1. Assume, moreover, that in a collar neighborhood
of ∂M with coordinates (x, θ) ∈ (0, ε0) × S1, an orthonormal basis for g is given by

X0 = ∂x, X1 = x
󰀓
x2 + sin2(θ/2)

󰀔
∂θ. (184)

This structure is non-regular, since (151) is not satisfied uniformly for θ ∈ S1.
Nevertheless, we have the following.

Proposition 5.4. Up to reducing ε0, for d̂∂ ≤ ε0 it holds

− 3
d̂2

∂

≤ Sec(X0, X1) ≤ 0, − 3
d̂∂

≤ Hess(d̂∂) < 0. (185)

Moreover, the Minkowski dimension of ∂M is 3. As a consequence, we have

N(λ) ≍ λ3/2, λ → +∞. (186)
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Proof. By (163) and (164) we have

Sec(X0 ∧ X1) = − 3
x2 + 4 sin2(θ/2) (6x2 + 1 − cos θ)

x2 (2x2 + 1 − cos θ)2 , (187)

Hess(d̂∂) = −3
x

+ 2 sin2(θ/2)
x3 + x sin2(θ/2) . (188)

The first part of the statement follows easily.
To conclude the proof, by Proposition 4.8 and Corollary 4.5, it suffices to directly

integrate the measure dµ = dx dθ
x(x2+sin2(θ/2)) . Indeed, for any ε > 0, we have

󰁝

[ε,2ε]×S1
dµ =

󰁝 2ε

ε

2π

x2
√

x2 + 1
dx = π

ε
+ O(ε).

A Auxiliary geometric estimates
On the n-dimensional Riemannian space form MK of curvature K ∈ R, the heat
kernel depends only on t and on the distance d(x, y), hence with a slight abuse
of notation we denote it with pK(t, r). Here and below r ∈ [0, diam(MK)], where
diam(MK) = +∞ if K ≤ 0, and diam(MK) = π/

√
K if K > 0.

Lemma A.1 (Uniform heat kernel for model spaces). Let MK be the n-dimensional
space form of curvature K ∈ R. Then, for all T > 0 there exists a constant C > 0
such that

|(4πt)n/2pK(t, 0) − 1| ≤ C|K|t, ∀t ≤ T/|K|; (189)

The constant C depends only on n and T .

Proof. If K = 0, the estimate is trivially verified. Let us consider K ∕= 0. For a
general Riemannian manifold (M, g), define gα := α2g. Then, Sec(gα) = α−2 Sec(g),
and p(M,gα)(t, x, y) = α−dp(M,g)(t/α2, x, y). This immediately implies

(4πt)n/2pK(t, r) = (4πt|K|)n/2p±1(t|K|, r
󰁴

|K|), (190)

where ±1 is the sign of K. Moreover, by the Minakshisundaram-Pleijel asymptotics5,
we deduce that for all T > 0 there exist a constant C > 0 such that

|(4πt)n/2p±1(t, 0) − 1| ≤ Ct, ∀t ≤ T. (191)

where C depends only on n and T . Together with (190), this proves the statement.

5We refer to the following simplified statement, valid for any complete n-dimensional Rieman-
nian manifold: for all T > 0 and x ∈ M there exists C > 0 such that

󰀏󰀏(4πt)n/2p(t, x, x) − 1
󰀏󰀏 ≤ Ct,

for all t ∈ (0, T ]. For a proof in the compact case see e.g. [29, Prop. 3.23]. The extension to the
non compact case is done via a localization argument (as in (39)) and Varadhan’s formula.
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Lemma A.2 (Li-Yau inequality). Let (M, g) be a complete n-dimensional Rieman-
nian manifold with convex boundary, and Ric(g) ≥ −K(n − 1), for some K ≥ 0.
Then there exist constants C1, C2, C3 > 0, depending only on n, such that

p(t, x, y) ≤ C1󰁴
vol(Bx(

√
t))vol(By(

√
t))

eC2Kt−C3
d2(x,y)

4t , ∀(t, x, y) ∈ R+ × M × M.

(192)
Furthermore, let H ≥ 0 be such that −H ≤ Hess(d∂) for d∂ < inj∂M , let K ≥ 0 such
that Sec(M) ≤ K, and let

√
t0 = min

󰀫
inj∂M

2 , injM ,
π√
K

1
H

󰀬

. (193)

Then, there exists a constant C4 > 0, depending only on n, such that

(4πt)n/2p±(t, x, y) ≤ C4e
−C3

d2(x,y)
4t , ∀(t, x, y) ∈ (0, t0) × M × M. (194)

Proof. The first inequality is [22, Corollary 3.1], where the parameters ε and α are
fixed in the allowed ranges. For the case with boundary, see [30, Thm. 4.7].

To prove the second part of the theorem, it suffices to uniformly bound from
below the volumes of the balls appearing at the denominator of (192). Since

√
t0

is smaller than the r0 appearing in Lemma A.3, the latter implies the existence of
a constant C1 > 0, depending only on n, such that vol(Bz(

√
t)) ≥ C1vol(BK(

√
t))

for all z ∈ M . Then, to complete the proof, it suffices to observe that the bound√
t0 ≤ π√

K
implies that vol(BK(

√
t)) ≥ C2t

n/2 for some dimensional constant C2 > 0.
This follows by elementary computations, as done in the proof of Lemma A.4.

In the next Lemma we show that for any ball Bx(r) there always exists a spherical
sector which points away from the boundary and whose size does not depend on the
point. This yields a uniform lower bound to the measure of sufficiently small balls.

Lemma A.3 (Uniform volume lower bound for manifolds with boundary). Let
(M, g) be a smooth compact n-dimensional Riemannian manifold with boundary.
Let H ≥ 0 be such that −H ≤ Hess(d∂) for d∂ < inj∂M . Let

r0 = min
󰀝

injM ,
inj∂M

2 ,
1
H

󰀞
. (195)

Then for any x ∈ M and r ≤ r0 there exists an open set Sx(r) ⊂ Bx(r) such that

• if Bx(r) does not intersect ∂M , then Sx(r) = Bx(r);

• if Bx(r) intersects ∂M , then the closest point of Sx(r) to ∂M is x.

Let, moreover, K ≥ 0 be such that Sec(g) ≤ K on Sx(r). Then, there exists a
constant C ∈ (0, 1/2), depending only on n, such that

vol(Bx(r)) ≥ vol(Sx(r)) ≥ Cvol(BK(r)), ∀r ≤ r0. (196)
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Proof. If d∂(x) > r, the ball does not intersect the boundary, and we set Sx(r) =
Bx(r). By the upper bound on Sec and since the balls lie within the injectivity
radius from their center, we have that their volumes are bounded from below by
the volume of the metric ball with the same radius on the space form with constant
curvature equal to K:

vol(Bx(r)) ≥ vol(BK(r)). (197)
If d∂(x) ≤ r, the ball hits the boundary of ∂M . The condition r < inj∂M /2

implies that Bx(r) lies in the region where d∂ is smooth and −H ≤ Hess(d∂). Con-
sider a length parametrized geodesic γ emanating from x, and directed towards the
direction where d∂ increases, that is with θ ∈ [−π/2, π/2], where cos θ = g(γ̇, ∇d∂).
Hence

d∂(γ(t)) ≥ −H

2 sin2(θ)t2 + cos(θ)t + d∂(x), ∀t ≤ r. (198)

Therefore, minimizing geodesics emanating from x and with length smaller than r
do not cross the boundary ∂M provided that, e.g.,

cos θ ≥ Hr

2 . (199)

Thanks to the assumption r < 1/H the above inequality holds if |θ| < π/3. Let
Sx(r) ⊂ Bx(r) be the corresponding spherical sector of radius r. By construction,
x is the closest point to ∂M . Since r < r0 ≤ inj(x), we can fix normal polar
coordinates (s, Ω) ∈ [0, r0] × Sn−1 at x. Therefore

vol(Bx(r)) ≥ vol(Sx(r)) =
󰁝

S̄x(r)
sn−1A(s, Ω)dsdΩ, (200)

where S̄(r) is the Euclidean spherical sector corresponding to Sx(r) in these coor-
dinates, and rn−1A(ρ, Ω) is the Jacobian determinant of the exponential map. By
standard comparison arguments, the assumption Sec ≤ K yields A(s, Ω) ≥ AK(s),
where the latter is the corresponding object on the n-dimensional space form with
constant curvature equal to K. Hence

vol(Sx(r)) ≥
󰁝

S̄(r)
sn−1AK(s)dsdΩ. (201)

Without loss of generality we can fix coordinates (θ, ϕ) ∈ (−π/2, π/2) × Sd−2 such
that S̄(r) = {|θ| < π/3, s < r}. In these coordinates dΩ = sin(θ)d−2dθdϕ, where
dϕ is the standard measure on Sd−2. Therefore

vol(Sx(r)) ≥
󰁝 r

0
sn−1AK(s)ds

󰁝 π/3

0
dθ sin(θ)d−2vol(Sd−2) = Cvol(BK(r)). (202)

Simple symmetry considerations imply that C ∈ (0, 1/2).

Lemma A.4. Let K ≥ 0, and let BK(r) be the ball of radius r ≤ π/
√

K on the
space form with constant curvature equal to K and dimension n. Then, there exists
a constant C > 0, depending only on the dimension, such that

vol(BK(r)) ≥ Crn, ∀r ≤ π/
√

K. (203)
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Proof. By Bishop-Gromov, and since K ≥ 0, the function

r 󰀁→ vol(BK(r))/vol(B0(r)) (204)

is non-increasing. Hence, by the same rescaling argument used to prove Lemma A.1,

vol(BK(r))
vol(B0(r)) = vol(B1(r

√
K))√

K
nvol(B0(r))

= vol(B1(r
√

K))
vol(B0(r

√
K))

≥ vol(B1(π))
vol(B0(π)) . (205)

To conclude the proof it suffices to observe that vol(B0(r)) = rn(vol(B0(1)). In
particular, C = vol(B1(π))/πn.

B Hardy inequality and discreteness of the spec-
trum

In this section we prove in a sligthly more general version of the Hardy inequality of
Proposition 2.4 and present a (mostly) self-contained argument for the compactness
of the resolvent of the operators considered in Section 4.

Proposition B.1 (Hardy inequality). Let M be a Riemannian manifold, and 󰂄 :
M → (0, +∞) be a Lipschitz function such that |∇󰂄| ≡ 1 and −∆󰂄 ≥ 0 in the sense
of distributions. Then,

󰁝

M
|∇u|2dµg ≥ 1

4

󰁝

M

|u|2
󰂄2 dµg, ∀u ∈ C∞

c (M). (206)

Remark B.1. Propositon 2.4 follows from the above by choosing M = Mε
0 and

󰂄 = d̂∂.

Proof. Let u ∈ C∞
c (Mε

0). Since the function 󰂄 is Lipschitz and strictly positive, it
can be approximated on supp u by a sequence (󰂄n)n∈N of positive C∞

c (Mε
0) functions.

Since −∆󰂄 ≥ 0 in the sense of distributions, we have

0 ≤ −
󰁝

Mε
0

|u|2󰂄−1
n ∆󰂄 dµg

=
󰁝

Mε
0

g
󰀓
∇

󰀓
|u|2󰂄−1

n

󰀔
, ∇󰂄

󰀔
dµg

= −
󰁝

Mε
0

|u|2
󰂄2

n

g(∇󰂄n, ∇󰂄) dµg + 2
󰁝

Mε
0

u

󰂄n

g(∇u, ∇󰂄) dµg.

(207)

Passing to the limit as n → +∞, recalling that |∇󰂄| ≡ 1, and applying the Cauchy-
Schwarz inequality we obtain

󰁝

Mε
0

|u|2
󰂄2 dµg ≤ 2

󰀣󰁝

Mε
0

|u|2
󰂄2 dµg

󰀤1/2 󰀣󰁝

Mε
0

|∇u|2 dµg

󰀤1/2

, (208)

which implies the statement.

The proof of the following result essentially follows the arguments in [28, Prop. 3.7].
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Proposition B.2 (Discreteness of the spectrum). Let M be a non-complete Rie-
mannian manifold satisfying (󰂏), with compact metric completion. Assume that the
boundaries ∂M∞

ε are mean convex, for 0 < ε ≤ ε0. Then for any open Ω ⊂ M
such that ∂Ω ∩ M is smooth, the self-adjoint operator −∆±

Ω has compact resolvent.
Therefore, its spectrum is discrete and consists of eigenvalues with finite multiplicity
accumulating at infinity.

Proof. All the operators −∆±
Ω are positive. Furthermore, since C∞

c (Ω) ⊂ C∞
c (M)

and C∞(Ω) ∩ C∞
c (M) ⊂ C∞

c (M), we have that ∆ = ∆−
M is an extension of ∆±

Ω for
any Ω. It follows that for any z > 0 the resolvent (∆−z)−1 is a bounded operator on
L2(M, dµ) which extends the corresponding resolvent of ∆±

Ω, defined on L2(Ω, dω).
Hence, it is sufficient to prove the compactness of the resolvent of ∆.

We also observe that, in order to prove the statement, it suffices to show that
there exists z ∈ R such that the resolvent (∆ − z)−1 on L2(M) is compact. Indeed,
this implies the compactness of (∆ − w)−1 for all w in the resolvent set by the first
resolvent formula and the fact that compact operators form an ideal in the bounded
ones.

By Proposition 2.4, thanks to the mean convexity assumption we have the fol-
lowing Hardy inequality for any ε ∈ (0, ε0):

󰁝

Mε
0

|∇u|2dµg ≥ 1
4

󰁝

Mε
0

|u|2

d̂2
∂

dµg, ∀u ∈ C∞
c (Mε

0). (209)

With a localization argument based on the IMS formula, (see, e.g., the proof of [28,
Proposition 3.3]), the above yields the global weak Hardy inequality:

󰁝

Mε
0

|∇u|2dµg ≥ 1
4

󰁝

Mε
0

|u|2

d̂2
∂

dµg + c
󰁝

M
|u|2dµg, ∀u ∈ C∞

c (M), (210)

with c ∈ R independent of ε ∈ (0, ε0). By density, the above holds for u ∈ H1
0 (M).

Let z < c. By (210) and the fact that ∆ is self-adjoint, the resolvent (∆−z)−1 is
well defined on L2(M) and satisfies 󰀂(∆−z)−1󰀂 ≤ 1/(c−z). Consider then (ψn)n∈N
to be a bounded sequence in L2(M), and let un = (∆ − z)−1ψn ∈ D(∆). Without
loss of generality we can assume 󰀂ψn󰀂 ≤ c − z, which yields 󰀂un󰀂 ≤ 1. One has
to prove that (un)n∈N ⊂ L2(M) admits a convergent subsequence. To this end, we
consider separately the behavior close and far away from the metric boundary. Let
ε ∈ (0, ε0) and consider the piecewise linear function χ1 : [0, +∞) → [0, 1] such that
χ1 ≡ 0 on [0, ε/2], and χ1 ≡ 1 on [ε, +∞]. Define χ2 : [0, +∞) → [0, 1] as 1 − χ1.
Then, χ2 ≡ 1 on [0, ε/2], and χ2 ≡ 0 on [ε, +∞], χ1 and χ2 are Lipschitz functions
such that χ1 + χ2 ≡ 1. Then, let un = un,1 + un,2, where un,i = φiu for φi = χi ◦ d̂∂,
i = 1, 2. Observe that, since un ∈ D(∆) ⊂ H1

0 (M), we have un,1, un,2 ∈ H1
0 (M).

We start by considering un,2. Since the metric completion of M is compact, the
support of φ2 is compact in M, say supp φ2 ⊂ U with U ⋐ M. A straightforward
application of Leibniz rule (see, e.g., [28, Lemma 3.5]) yields
󰁝

U
|∇(φ2u)|2 dµg = Re

󰀕󰁝

U
g(∇u, ∇(φ2

2u)) dµg

󰀖
+

󰁝

U
|u|2|∇φ2|2 dµg, ∀u ∈ C∞

c (M).
(211)
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By density, the above is true for any u ∈ H1
0 (M). We then obtain,

󰁝

U
|∇un,2|2 dµg = Re

󰀕󰁝

U
g(∇un, ∇(φ2

2un)) dµg

󰀖
+

󰁝

U
|un|2|∇φ2|2 dµg. (212)

Since un ∈ D(∆) and φ2
2un ∈ H1(U), integrating by parts in the above, we get

󰁝

U
|∇un,2|2 dµg = Re

󰀕󰁝

U
φ2

2un∆un dµg

󰀖
+

󰁝

U
|un|2|∇φ2|2 dµg

= z󰀂φ2un󰀂2 + Re
󰀕󰁝

U
φ2

2unψn dµg

󰀖
+

󰁝

U
|un|2|∇φ2|2 dµg

≤ z󰀂un󰀂2 + 󰀂un󰀂󰀂ψn󰀂 + 4
ε2 󰀂un󰀂2

≤ c + 4
ε2 .

(213)

This shows that (un,2)n∈N is a bounded sequence in H1
0 (U). By compact embedding

of H1
0 (U) in L2(U) [17, Cor. 10.21] we finally have that (un,2)n∈N converges up to

subsequences in L2(U), and thus in L2(M).
We now turn to un,1. Since un ∈ D(∆) ⊂ H1

0 (M) and φ1 ≤ 1, by density and
integration by parts we obtain

󰁝

Mε
0

|un,1|2dµg ≤
󰁝

Mε
0

|un|2dµg

≤ 4ε2
󰀣󰁝

Mε
0

|∇un|2dµg − c
󰁝

M
|un|2dµg

󰀤

= 4ε2
󰀣󰁝

Mε
0

unψndµg + (z − c)
󰁝

M
|un|2dµg

󰀤

≤ 4ε2 (c − z) .

(214)

Here, in the last inequality we used the Cauchy-Schwarz inequality.
Summing up, since ε can be arbitrary small, by considering εk = (2k

√
c − z)−1

we obtain that for any k ∈ N there exists a subsequence n 󰀁→ γk(n) such that uγk(n) =
uγk(n),1 + uγk(n),2 with 󰀂uγk(n),1󰀂 ≤ 1/k and (uγk(n),2)n∈N convergent in L2(M). By
the same arguments used at the end of the proof of [28, Prop. 3.7], this implies that
(un)n∈N admits a subsequence that converges in L2(M), concluding the proof.
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