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Abstract

The aim of this paper is to study the global existence of solutions to a coupled wave-Klein-
Gordon system in space dimension two when initial data are small, smooth and mildly decaying
at infinity. Some physical models strictly related to general relativity have shown the importance
of studying such systems, but very few results are know at present in low space dimension. We
study here a model two-dimensional system, in which the non-linearity writes in terms of “null
forms”, and show the global existence of small solutions. Our goal is to prove some energy
estimates on the solution when a certain number of Klainerman vector fields is acting on it, and
some optimal uniform estimates. The former ones are obtained using systematically quasi-linear
normal forms, in their para-differential version; the latter ones are recovered by deducing a new
coupled system of a transport equation and an ordinary differential equation from the starting
PDE system, by means of a semi-classical micro-local analysis of the problem. We expect the
strategy developed here to be robust enough to enable us, in the future, to treat the case of the
most general non-linearities.
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Introduction

The result we present in this paper concerns the global existence of solutions to a quadratic
quasi-linear coupled system of a wave equation and a Klein-Gordon equation in space dimension
two, when initial data are small smooth and mildly decaying at infinity. We prove this result for
a model non-linearity with the aim of extend it, in the future, to the most general case. Keeping
this long term objective in mind, we shall try to develop a fairly general approach in spite of the
fact that we are treating here a simple model. The Cauchy problem we consider is the following

(1)

{
(∂2
t −∆x)u(t, x) = Q0(v, ∂1v) ,

(∂2
t −∆x + 1)v(t, x) = Q0(v, ∂1u) ,

(t, x) ∈]1,+∞[×R2

with initial conditions

(2)

{
(u, v)(1, x) = ε(u0(x), v0(x)) ,

(∂tu, ∂tv)(1, x) = ε(u1(x), v1(x)) ,

where ε > 0 is a small parameter, and Q0 is the null form:

Q0(v, w) = (∂tv)(∂tw)− (∇xv) · (∇xw) .

We also suppose that, for some n ∈ N sufficiently large, (∇xu0, u1) is in the unit ball of
Hn(R2,R)×Hn(R2,R), (v0, v1) in the unit ball of Hn+1(R2,R)×Hn(R2,R), and that

(3)
∑

1≤|α|≤3

(
‖xα∇xu0‖H|α| + ‖xαv0‖H|α|+1 + ‖xαu1‖H|α| + ‖xαv1‖H|α|

)
≤ 1.

Some physical models, especially related to general relativity, have shown the importance of
studying such systems to which several recent works have been dedicated. Most of the results
known at present concern wave-Klein-Gordon systems in space dimension 3. One of the first ones
goes back to Georgiev [9]. He observed that the vector fields’ method developed by Klainerman
was not well adapted to handle at the same time massless and massive wave equations because
of the fact that the scaling vector field S = t∂t +x ·∇x is not a Killing vector field for the Klein-
Gordon equation. To overcome this difficulty he adapted Klainerman’s techniques, introducing a
strong null condition to be satisfied by semi-linear nonlinearities that ensures global existence. In
2012 Katayama [18] showed the global existence of small amplitude solutions to coupled systems
of wave and Klein-Gordon equations under certain suitable conditions on the non-linearity that
include the null condition of Klainerman ([19]) on self-interactions between wave components,
and are weaker than the strong null condition of Georgiev. Consequently, the result he obtains
applies also to certain other physical systems such as Dirac-Klein-Gordon equations, Dirac-
Proca equations and Klein-Gordon-Zakharov equations. Later, this problem was also studied by
LeFloch, Ma [22] and Wang [31] as a model for the full Einstein-Klein-Gordon system (E-KG){

Ricαβ = DαψDβψ + 1
2ψ

2gαβ

�gψ = ψ
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The authors prove global existence of solutions to wave-Klein-Gordon systems with quasi-linear
quadratic non-linearities satisfying suitable conditions, when initial data are small, smooth and
compactly supported, using the so-called hyperboloidal foliation method introduced by Le Foch,
Ma in [22]. Global stability for the full (E-KG) has been then proved by LeFloch-Ma [21, 20] in
the case of small smooth perturbations that agree with a Scharzschild solution outside a compact
set (see also Wang [30]). In a recent paper [17] Ionescu and Pausader prove global regularity
and modified scattering in the case of small smooth initial data that decay at suitable rates at
infinity, but not necessarily compactly supported. The quadratic quasi-linear problem they deal
with is the following {

−�u = Aαβ∂αv∂βv +Dv2

−(�+ 1)v = uBαβ∂α∂bv

where Aαβ, Bαβ, D are real constants. The system keeps the same linear structure as (E-KG)
in harmonic gauge, but only keeps quadratic non-linearities that involve the massive scalar field
v (semilinear in the wave equation, quasi-linear in the Klein-Gordon equation). Moreover, the
non-linearity they consider does not present a null structure but shows a particular resonant
pattern. Their result relies, on the one hand, on a combination of energy estimates to control
high Sobolev norms and weighted norms involving the admissible vector fields; on the other hand,
on a Fourier analysis, in connection with normal forms and analysis of resonant sets, to prove
dispersive estimates and decay in suitable lower regularity norms. The only results we know
about global existence of small amplitude solutions in lower space dimension are due to Ma. In
space dimension 2 he considers the case of compactly supported Cauchy data and adapts the
hyperboloidal foliation method mentioned above to 2 + 1 spacetime wave-Klein-Gordon systems
(see [26]). In particular, in [25] he combines this method with a normal form argument to treat
some quasi-linear quadratic non-linearities, while in [24] he studies the case of some semi-linear
quadratic interactions. In a very recent paper [23] he also tackles the one-dimensional problem,
studying a model semi-linear cubic wave-Klein-Gordon system. In this work he finally overcomes
the restriction on the support of initial data and generalizes the hyperboloidal foliation method,
combining the hyperboloidal foliation of the translated light cone with the standard time-constant
foliation outside of it. The analysis of the problem and the deduction of the estimates of interest
is then made separately inside and outside the mentioned light cone.

The result we prove in this paper is the following:

Theorem 1. There exists ε0 > 0 such that for any ε ∈]0, ε0[, system (1) with initial data satisfy-
ing (2), (3) admits a unique global solution defined on [1,+∞[, with ∂t,xu ∈ C0([1,+∞[;Hn(R2))
and (v, ∂tv) ∈ C0([1,+∞[;Hn+1(R2)×Hn(R2)).

We describe below the strategy of the theorem’s proof. First of all, we rewrite system (1) in
terms of unkowns

(4) u± = (Dt ± |Dx|)u, v± = (Dt ± 〈Dx〉) v,

where Dt,x = −i∂t,x, and introduce the admissible Klainerman vector fields for this problem, i.e.

Ω = x1∂2 − x2∂1, Zj = xj∂t + t∂j , j = 1, 2.

We also denote by Z = {Γ1, . . . ,Γ5} the family made by above vector fields together with the
two spatial derivatives, and if I = (i1, . . . , ip) is an element of {1, . . . , 5}p, ΓIw is the function
obtained letting Γi1 , . . . ,Γip act successively on w. We then set

(5) uI± = (Dt ± |Dx|) ΓIu, vI± = (Dt ± 〈Dx〉) ΓIv,
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and introduce the following energies:

E0(t;u±, v±) =

∫
R2

(
|u+(t, x)|2 + |u−(t, x)|2 + |v+(t, x)|2 + |v−(t, x)|2

)
dx,

then for n ≥ 3,
En(t;u±, v±) =

∑
|α|≤n

E0(t;Dα
xu±, D

α
xv±),

which controls the Hn regularity of u±, v±, and finally, for any integer k between 0 and 2,

Ek3 (t;u±, v±) =
∑

|α|+|I|≤3
|I|≤3−k

E0(t;Dα
xu

I
±, D

α
xv

I
±)

that takes into account the decay in space of u±, v± and of at most three of their spatial deriva-
tives. By a local existence argument, an a-priori estimate on En on a certain time interval will
be enough to ensure the extension of the solution to that interval. For this reason, we are led to
prove a result as the following one, in which R = (R1,R2) denotes the Riesz transform:

Theorem 2. Let K1,K2 two constants strictly bigger than 1. There exist two integers n� ρ�
1, ε0 ∈]0, 1[ small enough, some small real 0 < δ � δ2 � δ1 � δ0 � 1 and two constants A,B
sufficiently large such that, if functions u±, v±, defined by (4) from a solution to (1), satisfy

‖〈Dx〉ρ+1u±(t, ·)‖L∞ + ‖〈Dx〉ρ+1Ru±(t, ·)‖L∞ ≤ Aεt−
1
2

‖〈Dx〉ρv±‖L∞ ≤ Aεt−1

En(t;u±, v±) ≤ B2ε2t2δ

Ek3 (t;u±, v±) ≤ B2ε2t2δk , 0 ≤ k ≤ 2,

(6)

for every t ∈ [1, T ], then on the same interval [1, T ] we have

‖〈Dx〉ρ+1u±(t, ·)‖L∞ + ‖〈Dx〉ρ+1Ru±(t, ·)‖L∞ ≤
A

K1
εt−

1
2

‖〈Dx〉ρv±‖L∞ ≤
A

K1
εt−1

En(t;u±, v±) ≤ B2

K2
2

ε2t2δ

Ek3 (t;u±, v±) ≤ B2

K2
2

ε2t2δk , 0 ≤ k ≤ 2.

(7)

The proof of the theorem consists, on the one hand, to prove that (6) implies the latter two
estimates in (7) by means of an energy inequality. On the other hand, by reduction of the starting
problem to a coupled system of an ordinary differential equation and a transport equation, we
prove that (6) implies the first two estimates in (7).

In order to recover the mentioned energy inequality that allows us to propagate the a-priori
energy estimates, we let family ΓI of vector fields act on (1) and then pass to unknowns (5). We
obtain a new system of the form

(Dt ∓ |Dx|)uI± = NLw(vI±, v
I
±)

(Dt ∓ |Dx|)vI± = NLkg(vI±, u
I
±)

where the non-linearities (whose explicit expression may be found in the right hand side of
(2.1.2)) are bilinear quantities of their arguments. Because of the quasi-linear nature of our
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problem, the first step towards the derivation of the mentioned inequality is to highlight the very
quasi-linear contribution to above non-linearities and make sure that it does not lead to a loss
of derivatives. For this reason, we write the above system in a vectorial fashion by introducing
vectors

U I =


uI+
0
uI−
0

 , V I =


0
vI+
0
vI−

 , W I = U I + V I ,

and successively para-linearize the vectorial equation satisfied byW I (using the tools introduced
in subsection 1.2.1) to stress out the quasi-linear contribution to the non-linearity. Finally, we
symmetrize it (in the sense of subsection 2.1.3) by introducing some new unknownW I

s comparable
to W I . What we would need to show in order to prove the last two inequalities in (7) is that,
using the estimates in (6), the derivative in time of the L2 norm to the square of W I

s is bounded
by Cε

t ‖W
I‖L2 . By analysing the semi-linear contributions in the symmetrized equation satisfied

by W I
s , we find out that the L2 norm of some of those ones can only be estimated making

appear the L∞ norm on the wave factor and the L2 norm on the Klein-Gordon one. Because
of the very slow decay in time of the wave solution (the decay rate being t−1/2, as assumed in
the first inequality of (6)), we are hence very far away from the wished estimate. Consequently,
the second step for the derivation of the right energy inequality consists in performing a normal
form argument to get rid of those quadratic terms and replace them with cubic ones. For that,
we first use a Shatah’ normal form adapted to quasi-linear equations (see subsection 2.2.1) as
already used by several authors (we cite [28, 5, 4, 6] for quasi-linear Klein-Gordon equations,
and [13, 12, 16, 1, 15] for quasi-linear equations arising in fluids mechanics), but also a semi-
linear normal form argument to treat some other terms on which we are allowed to lose some
derivatives (see subsection 2.2.2). These two normal forms’ steps lead us to define some new
energies Ẽn(t;u±, v±), Ẽk3 (t;u±, v±), equivalent to the starting ones En(t;u±, v±), Ẽk3 (t;u±, v±),
that we are able to propagate. That concludes the first part of the proof.

The last thing that remains to prove is that (6) implies the first two estimates in (7). The
strategy we employ is very similar to the one developed in [29]: we deduce from the starting
system (1) a new coupled one of an ordinary differential equation, coming from the Klein-Gordon
equation, and of a transport equation, derived from the wave one. The study of this system will
provide us with the wished L∞ estimates. We start our analysis by another normal form in
order to replace almost all quadratic non-linear terms in the equations satisfied by u±, v± with
cubic ones. The only contributions that cannot be eliminated are those depending on (v+, v−)
which are resonant and should be suitably treated. We do not use directly the normal forms
obtained in the previous step. In fact, our aim is basically to obtain an L∞ estimate for at most
ρ derivatives of the solution, having a control on their Hs norm for s � ρ. This permits us to
lose some derivatives in the normal form reduction, so the fact that the system is quasi-linear is
no longer important.

We define two new unknowns uNF , vNF by adding some quadratic perturbations to u−, v−, in
such a way that they are solution to

(8) (Dt + |Dx|)uNF = qw + cw + rNFw , (Dt + |Dx|)vNF = rNFkg ,

where rNFw , cw, r
NF
kg are cubic terms, whereas qw is the mentioned bilinear expression in v+, v−

that cannot be eliminated by normal forms but whose structure will successively provide us with
remainder terms. Then, if we define

(9) ũ(t, x) = tuNF (t, tx), ṽ(t, x) = tvNF (t, tx),

8



and introduce h := t−1 the semi-classical parameter, we obtain that ũ, ṽ verify

(Dt −Opwh (x · ξ − |ξ|))ũ = h−1
[
qw(t, tx) + cw(t, tx) + rNFw (t, tx)

]
(Dt −Opwh (x · ξ − 〈ξ〉))ṽ = h−1rNFkg (t, tx)

(10)

where Opwh is the Weyl quantization introduced, along with the semi-classical pseudo-differential
calculus, in subsection 1.2.1. We also consider the following operators

Mj =
1

h

(
xj |ξ| − ξj

)
, Lj =

1

h

(
xj −

ξj
〈ξ〉

)
,

whose symbols are given respectively (up to the multiplication by |ξ| for the former case) by the
derivative with respect to ξ of symbols x · ξ − |ξ| and x · ξ − 〈ξ〉 in (10). Using the equation
satisfied by uNF (resp. vNF ), we can express Mj ũ (resp. Lj ṽ) in terms of ZjuNF (resp. ZjvNF )
and of qw, cw, rNFw (resp. rNFkg ). As done in [29], we first introduce the lagrangian

Λkg =
{

(x, ξ) : x− ξ

〈ξ〉
= 0
}

which is the graph of ξ = −dφ(x), with φ(x) =
√

1− |x|2, and decompose ṽ into the sum of
a contribution micro-localised on a neighbourhood of size

√
h of Λkg, and another one micro-

localised out of that neighbourhood (in the spirit of [14]). The second contribution can be
basically estimated in L∞ by h

1
2
−0 times the L2 norm of some iterates of operator L acting on

ṽ (which are controlled by the L2 hypothesis in theorem 2). The main contribution to ṽ is then
represented by ṽΛkg , which appears to be solution to

[Dt −Opwh (x · ξ − 〈ξ〉)]ṽΛkg = controlled terms.

Developing the symbol in the above left hand side on Λkg we finally obtain the wished ODE,
which combined with the a-priori estimate of the “controlled terms” allows us to deduce from (6)
the second estimate in (7) (with ρ = 0, the general case being treated in the same way up to few
more technicalities).

The same strategy is employed to obtain some uniform estimates on ũ. We introduce the la-
grangian

Λw =
{

(x, ξ) : x− ξ

|ξ|
= 0
}

which, differently from Λkg, is not a graph but projects on the basis as an hypersurface. For
this reason, the classical problem associated to the first equation in (10) is rather a transport
equation than an ordinary differential equation. It is obtained in a similar way by decomposing
ũ into two contributions: one denoted by ũΛw and micro-localised in a neighbourhood of size
h

1
2
−σ (for some small σ > 0) of Λw; another one micro-localised away from this neighbourhood.

As for the Klein-Gordon component, this latter contribution can be easily controlled thanks to
the L2 estimates that the last two inequalities in (6) infer on the iterates of Mj acting on ũ. By
micro-localisation we derive that ũΛw satisfies

[Dt −Opwh (x · ξ − |ξ|)]ũΛw = controlled terms,

and by developing symbol x · ξ− |ξ| on Λw we obtain the wished transport equation. Integrating
this equation by the method of characteristics, we finally recover the first estimate in (6) and
conclude the proof of theorem 2.
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Chapter 1

Main Theorem and Preliminary Results

1.1 Statement of the main theorem

Notations: We warn the reader that, throughout the paper, we will often denote ∂t (resp. ∂xj ,
j = 1, 2) by ∂0 (resp. ∂j , j = 1, 2), while symbol ∂ without any subscript will stand for one of
the three derivatives ∂a, a = 0, 1, 2. ∇xf is the classical spatial gradient of f , D := −i∂ and Rj

denotes the Riesz operator Dj |Dx|−1, for j = 1, 2. We will also employ notation ‖∂t,xw‖ with
the meaning ‖∂tw‖+ ‖∂xw‖ and ‖Rw‖ =

∑
j ‖Rjw‖.

We consider the following quadratic, quasi-linear, coupled wave-Klein-Gordon system

(1.1.1)

{
(∂2
t −∆x)u(t, x) = Q0(v, ∂1v) ,

(∂2
t −∆x + 1)v(t, x) = Q0(v, ∂1u) ,

(t, x) ∈]1,+∞[×R2

with initial conditions

(1.1.2)

{
(u, v)(1, x) = ε(u0(x), v0(x)) ,

(∂tu, ∂tv)(1, x) = ε(u1(x), v1(x)) ,

where ε > 0 is a small parameter, and Q0 is the null form:

(1.1.3) Q0(v, w) = (∂tv)(∂tw)− (∇xv) · (∇xw) .

Our aim is to prove that there is a unique solution to Cauchy problem (1.1.1)-(1.1.2) provided
that ε is sufficiently small and u0, v0, u1, v1 decay rapidly enough at infinity. The theorem we are
going to demonstrate is the following:

Theorem 1.1.1 (Main Theorem). There exist an integer n sufficiently large and ε0 ∈]0, 1[
sufficiently small such that, for any ε ∈]0, ε0[, any real valued u0, v0, u1, v1 satisfying:

(1.1.4)

‖∇xu0‖Hn + ‖v0‖Hn+1 + ‖u1‖Hn + ‖v1‖Hn ≤ 1,

2∑
|α|=1

(‖xα∇xu0‖H|α| + ‖xαv0‖H|α|+1 + ‖xαu1‖H|α| + ‖xαv1‖H|α|) ≤ 1,

system (1.1.1)-(1.1.2) admits a unique global solution (u, v) with ∂t,xu ∈ C0
(
[1,∞[;Hn(R2)

)
,

v ∈ C0
(
[1,∞[;Hn+1(R2)

)
∩ C1

(
[1,∞[;Hn(R2)

)
.

11



The proof of the main theorem is based on the introduction of four new functions u+, u−, v+, v−,
defined in terms of u, v as follows:

(1.1.5)

{
u+ := (Dt + |Dx|)u ,
u− := (Dt − |Dx|)u ,

{
v+ := (Dt + 〈Dx〉)v ,
v− := (Dt − 〈Dx〉)v ,

and on the propagation of some a-priori estimates made on them in some interval [1, T ], for a
fixed T > 1. In order to state this result we consider the admissible Klainerman vector fields for
the wave-Klein-Gordon system:

(1.1.6) Ω := x1∂2 − x2∂1 , Zj := xj∂t + t∂j , j = 1, 2

and denote by Γ a generic vector field in Z = {Ω, Zj , ∂j , j = 1, 2}. If Z is assumed ordered, i.e.

(1.1.7)
Z = {Γ1, . . . ,Γ5}

with Γ1 = Ω, Γj = Zj−1 for j = 2, 3, Γj = ∂j−3 for j = 4, 5,

then for a multi-index I = (i1, . . . , in), ij ∈ {1, . . . , 5} for j = 1, . . . , n, we define the length of I
as |I| := n, and ΓI := Γi1 · · ·Γin the product of vector fields Γij ∈ Z, j = 1, . . . , n.

Vector fields Γ have two relevant properties: they act like derivations on non-linear terms; they
exactly commute with the linear part of both wave and Klein-Gordon equation. This is the
reason why we exclude of our consideration the scaling vector field S = t∂t +

∑
j xj∂j , which is

always considered in the so-called Klainerman vector fields’ method for the wave equation, as it
does not commute with the Klein-Gordon operator.

We also introduce the energy of (u+, u−, v+, v−) at time t ≥ 1 as

(1.1.8) E0(t;u±, v±) :=

∫ (
|u+(t, x)|2 + |u−(t, x)|2 + |v+(t, x)|2 + |u−(t, x)|2

)
dx,

together with the generalized energies

(1.1.9a) En(t;u±, v±) :=
∑
|α|≤n

E0(t;Dα
xu±, D

α
xv±), ∀n ∈ N, n ≥ 3,

and

(1.1.9b) Ek3 (t;u±, v±) :=
∑

|α|+|I|≤3
|I|≤3−k

E0(t;Dα
xu

I
±;Dα

xv
I
±), 0 ≤ k ≤ 2,

where, for any multi-index I,

(1.1.10) uI± := (Dt ± |Dx|)ΓIu, vI± := (Dt ± 〈Dx〉)ΓIv.

Energy En(t;u±, v±), for n ≥ 3, is introduced with the aim of controlling the Sobolev norm
Hn of u±, v± for large values of n. The reason of dealing with Ek3 (t;u±, v±) is, instead, to
control the L2 norm of ΓIu±,Γ

Iv±, for any general Γ ∈ Z and |I| ≤ 3. In particular, su-
perscript k indicates that we are considering only products ΓI containing at most 3 − k vec-
tor fields in {Ω, Zm,m = 1, 2}. For instance, the L2 norms of Ω3u±,ΩZ

2
1v± are bounded by

E0
3(t;u±, v±) but not by E1

3(t;u±, v±), while the L2 norms of Z2
1u±, ∂2ΩZ2v± are controlled by

both E1
3(t;u±, v±), E0

3(t;u±, v±), etc. The interest of distinguishing between k = 0, 1, 2, is to
take into account the different growth in time of the L2 norm of such terms depending on the
number of vector fields Ω, Zm acting on u±, v±, as emerges from a-priori estimate (1.1.11d).
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Theorem 1.1.2 (Bootstrap Argument). Let K1,K2 > 1 and Hρ,∞ be the space defined in 1.2.1
(iii). There exist two integers n � ρ sufficiently large, some 0 < δ � δ2 � δ1 � δ0 � 1 small,
two constants A,B > 1 sufficiently large and ε0 ∈]0, (2A+B)−1[ such that, for any 0 < ε < ε0, if
(u, v) is solution to (1.1.1)-(1.1.2) on some interval [1, T ], for a fixed T > 1, and u±, v± defined
in (1.1.5) satisfy:

‖u±(t, ·)‖Hρ+1,∞ + ‖Ru±(t, ·)‖Hρ+1,∞ ≤ Aεt−
1
2 ,(1.1.11a)

‖v±(t, ·)‖Hρ,∞ ≤ Aεt−1,(1.1.11b)

En(t;u±, v±)
1
2 ≤ Bεt

δ
2 ,(1.1.11c)

Ek3 (t;u±, v±)
1
2 ≤ Bεt

δk
2 , ∀ 0 ≤ k ≤ 2,(1.1.11d)

for every t ∈ [1, T ], then in the same interval they verify also

‖u±(t, ·)‖Hρ+1,∞ + ‖Ru±(t, ·)‖Hρ+1,∞ ≤
A

K1
εt−

1
2 ,(1.1.12a)

‖v±(t, ·)‖Hρ,∞ ≤ A

K1
εt−1,(1.1.12b)

En(t;u±, v±)
1
2 ≤ B

K2
εt

δ
2 ,(1.1.12c)

Ek3 (t;u±, v±)
1
2 ≤ B

K2
εt

δk
2 , ∀ 0 ≤ k ≤ 2.(1.1.12d)

The a-priori estimates on the uniform norm of u±,Ru±, v± made in the above theorem translate
in terms of u±, v± the sharp decay in time we expect for the solution (u, v) to starting problem
(1.1.1). Indeed, from definitions (1.1.5) it appears that

Dtu =
u+ + u−

2
, Dxu = R

(
u+ − u−

2

)
,

Dtv =
v+ + v−

2
, v = 〈Dx〉−1

(
v+ − v−

2

)
,

so (1.1.11a), (1.1.11b) imply

‖∂t,xu(t, ·)‖Hρ,∞ ≤ Aεt−
1
2 , ‖∂tv(t, ·)‖Hρ,∞ + ‖v(t, ·)‖Hρ+1,∞ ≤ Aεt−1.

Furthermore, the following quantity

‖∂tu(t, ·)‖Hn + ‖∇xu(t, ·)‖Hn + ‖∂tv(t, ·)‖Hn + ‖∇xv(t, ·)‖Hn + ‖v(t, ·)‖Hn

is equivalent to the square root of En(t;u±, v±), which implies that the propagation of a-priori
energy estimate (1.1.11c) is equivalent to the propagation of a certain estimate on the above
Sobolev norms. For this reason, the propagation of the a-priori estimate on En(t;u±, v±) and a
local existence argument will imply theorem 1.1.1.

Before ending this section and going into the core of the subject, we briefly remind the general
definition of null condition for a multilinear form on R1+n and a result by Hörmander (see [11]).

Definition 1.1.3. A k-linear form G on R1+n is said to satisfy the null condition if and only if,
for all ξ ∈ Rn, ξ = (ξ0, . . . , ξn) such that ξ2

0 −
∑n

j=1 ξ
2
j = 0,

(1.1.13) G(ξ, . . . , ξ︸ ︷︷ ︸
k

) = 0.
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Example: The trilinear form ξ2
0ξa−

∑
j=1,2

ξ2
j ξa associated toQ0(v, ∂aw) satisfies the null condition

(1.1.13), for any a = 0, 1, 2. This is the most common example of null form.

Lemma 1.1.4 (Hörmander [10], Lemma 6.6.5.). Let G be a k-linear form on R1+n, k = k1 +
· · ·+kr, with kj positive integers, and Γ ∈ Z. For all uj ∈ Ck+1(R1+n), all αj ∈ N1+n, |αj | = kj,
and u(kj)

j := ∂αjuj,

ΓG(u
(k1)
1 , . . . , u(kr)

r ) = G((Γu1)(k1), . . . , u(kr)
r ) + . . .

+G(u
(k1)
1 , . . . , (Γur)

(kr)) +G1(u
(k1)
1 , . . . , u(kr)

r ) ,
(1.1.14)

where G1 satisfies the null condition.

Remark 1.1.5. Previous lemma simplifies when the multi-linear form G satisfying the null
condition is Q0(v, ∂aw), for any a = 0, 1, 2. Indeed, the structure of the null form is not modified
by the action of vector field Γ in the sense that

(1.1.15) ΓQ0(v, ∂aw) = Q0(Γv, ∂aw) +Q0(v, ∂aΓw) +G1(v, ∂w) ,

where G1(v, ∂w) = 0 if Γ = ∂m, m = 1, 2, and

(1.1.16) G1(v, ∂w) =



−Q0(v, ∂mw), if a = 0,Γ = Zm,m ∈ {1, 2},
0, if a = 0,Γ = Ω,

−Q0(v, ∂tw), if a 6= 0,Γ = Za,

0, if a 6= 0,Γ = Zm,m ∈ {1, 2} \ {a},
(−1)aQ0(v, ∂mw), with m ∈ {1, 2} \ {a}, if a 6= 0,Γ = Ω.

If ΓI contains at least k ≤ |I| space derivatives then

(1.1.17) ΓIQ0(v, ∂1w) =
∑

|I1|+|I2|=|I|

Q0(ΓI1v, ∂1ΓI2w) +
∑

k≤|I1|+|I2|<|I|

cI1,I2Q0(ΓI1v, ∂ΓI2w),

with cI1,I2 ∈ {−1, 0, 1}. In the above equality we should think of multi-index I1 (resp. I2) as
obtained by extraction of a |I1|-tuple (resp. |I2|-tuple) from I = (i1, . . . in), in such a way that
each ij appearing in I and corresponding to a spatial derivative (e.g. Γij = Dm, for m ∈ {1, 2}),
appears either in I1 or in I2, but not in both. For further references, we define

(1.1.18) I(I) := {(I1, I2)|I1, I2 multi-indices obtained as described above} .

1.2 Preliminary Results

The aim of this section is to introduce most of the technical tools that will be used throughout
the paper. In particular, subsections 1.2.1 and 1.2.2 are devoted to recall some definitions and
results about paradifferential and pseudo-differential calculus respectively; subsection 1.2.3 and
1.2.4 are dedicated to the introduction of some special operators that we will frequently use when
dealing with the wave and the Klein-Gordon component. Subsections 1.2.1, 1.2.2 barely contain
proofs (we refer for that to [3], [27], [8], [32]), whereas subsections 1.2.3, 1.2.4 are much longer
and richer in proofs and technicalities.
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1.2.1 Paradifferential calculus

In the current subsection we recall some definitions and properties that will be useful in chapter 2.
We first recall the definition of some spaces (Sobolev, Lipschitz and Hölder spaces) in dimension
d ≥ 1 and afterwards some results concerning symbolic calculus and the action of paradifferential
operators on Sobolev spaces (see for instance [27]). We warn the reader that we will use both
notations ŵ(ξ) and Fx 7→ξw for the Fourier transform of a function w = w(x).

Definition 1.2.1 (Spaces). (i) Let s ∈ R. Hs(Rd) denotes the space of tempered distribu-
tions w ∈ S′(Rd) such that ŵ ∈ L2

loc(Rd) and

‖w‖2Hs(Rd) :=
1

(2π)d

∫
(1 + |ξ|2)s|ŵ(ξ)|2dξ < +∞;

(ii) For ρ ∈ N, W ρ,∞(Rd) denotes the space of distributions w ∈ D′(Rd) such that ∂αxw ∈
L∞(Rd), for any α ∈ Nd with |α| ≤ ρ, endowed with the norm

‖w‖W ρ,∞ :=
∑
|α|≤ρ

‖∂αxw‖L∞ ;

(iii) For ρ ∈ N, we also introduce Hρ,∞(Rd) as the space of tempered distributions w ∈ S′(Rd)
such that

‖w‖Hρ,∞ := ‖〈Dx〉ρw‖L∞ < +∞.

Definition 1.2.2. An operator T is said of order ≤ m ∈ R if it is a bounded operator from
Hs+m(Rd) to Hs(Rd) for all s ∈ R.

Definition 1.2.3 (Smooth symbols). Let m ∈ R.

(i) Sm0 (Rd) denotes the space of functions a(x, η) on Rd ×Rd which are C∞ with respect to η
and such that, for all α ∈ Nd, there exists a constant Cα > 0 and

‖∂αη a(·, η)‖L∞ ≤ Cα(1 + |η|)m−|α|, ∀η ∈ Rd.

Σm
0 (Rd) denotes the subclass of symbols a ∈ Sm0 (Rd) satisfying

(1.2.1) ∃ε < 1 : Fx→ξa(ξ, η) = 0 for |ξ| > ε(1 + |η|).

Sm0 is equipped with seminorm Mm
0 (a;n) given by

(1.2.2) Mm
0 (a;n) = sup

|β|≤n
sup
η∈R2

∥∥(1 + |η|)|β|−m∂βη a(·, η)
∥∥
L∞
.

(ii) For r ∈ N, Smr (Rd) denotes more generally the space of symbols a ∈ Sm0 (Rd) such that, for
all α ∈ Nd and all η ∈ Rd, function x→ ∂αη a(x, η) belongs to W r,∞(Rd) and there exists a
constant Cα > 0 such that

‖∂αη a(·, η)‖W r,∞ ≤ Cα(1 + |η|)m−|α|, ∀η ∈ Rd.

Σm
r (Rd) denotes the subclass of symbols a ∈ Smr (Rd) satisfying the spectral condition

(1.2.1). Smr is equipped with seminorm Mm
r (a;n), given by

(1.2.3) Mm
r (a;n) = sup

|β|≤n
sup
η∈R2

∥∥(1 + |η|)|β|−m∂βη a(·, η)
∥∥
W r,∞ .
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These definitions extend to matrix valued symbols a ∈ Smr (a ∈ Σm
r ), m ∈ R, r ∈ N. If a ∈ Smr

(resp. a ∈ Σm
r ), it is said of order m.

Definition 1.2.4. An admissible cut-off function ψ(ξ, η) is a C∞ function on Rd×Rd such that

(i) there are 0 < ε1 < ε2 < 1 and

(1.2.4)

{
ψ(ξ, η) = 1, for |ξ| ≤ ε1(1 + |η|)
ψ(ξ, η) = 0, for |ξ| ≥ ε2(1 + |η|);

(ii) for all (α, β) ∈ Nd × Nd there is a constant Cα,β > 0 such that

(1.2.5) |∂αξ ∂βηψ(ξ, η)| ≤ Cα,β(1 + |η|)−|α|−|β|, ∀(ξ, η).

Example: If χ is a smooth cut-off function such that χ(z) = 1 for |z| ≤ ε1 and is supported in
the open ball Bε2(0), with 0 < ε1 < ε2 < 1, function ψ(ξ, η) := χ

( ξ
〈η〉
)
is an admissible cut-off

function in the sense of definition 1.2.4. We will only consider this type of admissible cut-off
functions for the rest of the paper and refer (abusively) to χ itself as an admissible cut-off.

Definition 1.2.5. Let χ be an admissible cut-off function and a(x, η) ∈ Smr , m ∈ R, r ∈ N. The
Bony quantization (or paradifferential quantization) OpB(a(x, η)) associated to symbol a and
acting on a test function w is defined as

OpB(a(x, η))w(x) :=
1

(2π)d

∫
Rd
eix·ησχa (x, η)ŵ(η)dη ,

with σχa (x, η) :=
1

(2π)d

∫
Rd
ei(x−y)·ζχ

(
ζ

〈η〉

)
a(y, η)dydζ .

The operator defined above depends on the choice of the admissible cut-off function χ. However,
if a ∈ Smr for some m ∈ R, r ∈ N, a change of χ modifies OpB(a) only by the addition of a
r-smoothing operator (i.e. an operator which is bounded from Hs to Hs+r, see [3]), so the choice
of χ will be substantially irrelevant as long as we can neglect r-smoothing operators. For this
reason, we will not indicate explicitly the dependence of OpB (resp. of σχa ) on χ to keep notations
as light as possible. Let us also observe that, with such a definition, the Fourier transform of
OpB(a)w has the following simple expression

(1.2.6) Fx→ξ

(
OpB(a(x, η))w(x)

)
(ξ) =

1

(2π)d

∫
χ

(
ξ − η
〈η〉

)
ây(ξ − η, η)ŵ(η)dη ,

where ây(ξ, η) := Fy→ξ
(
a(y, η)

)
, and the product of two functions u, v can be developed as

(1.2.7) uv = OpB(u)v +OpB(v)u+R(u, v),

where remainder R(u, v) writes on the Fourier side as

(1.2.8) R(u, v)
∧

(ξ) =
1

(2π)d

∫ (
1− χ

(
ξ − η
〈η〉

)
− χ

(
η

〈ξ − η〉

))
û(ξ − η)v̂(η)dη.

We remark that frequencies η and ξ − η in the above integral are either bounded or equivalent,
and R(u, v) = R(v, u). With the aim of having uniform notations, we introduce the operator
OpBR associated to a symbol a(x, η) and acting on a function w as

OpBR(a(x, η))w(x) :=
1

(2π)d

∫
eix·ηδχa (x, η)ŵ(η)dη ,

with δχa (x, η) :=
1

(2π)d

∫
ei(x−y)·ζ

(
1− χ

(
ζ

〈η〉

)
− χ

(
η

〈ζ〉

))
a(y, η)dydζ .

(1.2.9)
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For future references, we recall the definition of the Littlewood-Paley decomposition of a function
w.

Definition 1.2.6 (Littlewood-Paley decomposition). Let χ : R2 → [0, 1] be a smooth decaying
radial function, supported for |x| ≤ 2 − 1

10 and identically equal to 1 for |x| ≤ 1 + 1
10 . Let also

ϕ(ξ) := χ(ξ) − χ(2ξ) ∈ C∞0 (R2 \ {0}), supported for 1
2 < |ξ| < 2, and ϕk(ξ) := ϕ(2−kξ) for all

k ∈ N∗, with the convention that ϕ0 := χ. Then
∑

k∈N ϕ(2−kξ) = 1, and for any w ∈ S′(Rd)

(1.2.10) w =
∑
k∈N

ϕk(Dx)w

is the Littlewood-Paley decomposition of w.

The following proposition is a classical result about the action of para-differential operators on
Sobolev spaces (see [3] for further details). Proposition 1.2.8 shows, instead, that some results
of continuity over L2 hold also for operators whose symbol a(x, η) is not a smooth function of η,
and that map (u, v) 7→ R(u, v) is continuous from H4,∞ × L2 to L2.

Proposition 1.2.7 (Action). Let m ∈ R. For all s ∈ R and a ∈ Sm0 , OpB(a) is a bounded
operator from Hs+m(Rd) to Hs(Rd). In particular,

(1.2.11) ‖OpB(a)w‖Hs .Mm
0

(
a;
[d

2

]
+ 1
)
‖w‖Hs+m .

Proposition 1.2.8. (i) Let a(x, η) = a1(x)b(η), with a1 ∈ L∞(R2) and b(η) bounded, sup-
ported in some ball centred in the origin and such that |∂αb(η)| .α |η|−|α|+1 for any α ∈ N2

with |α| ≥ 1. Then OpB(a(x, η)) : L2 → L2 is bounded and for any w ∈ L2(R2)

‖OpB(a(x, η))w‖L2 . ‖a1‖L∞‖w‖L2 .

The same result is true for OpBR(a(x, η));

(ii) Map (u, v) ∈ H4,∞ × L2 7→ R(u, v) ∈ L2 is well defined and continuous.

Proof. As concerns (i) we have that

OpB(a(x, η))w(x) =

∫
K(x− z, x− y)a1(y)w(z)dydz

with
K(x, y) :=

1

(2π)4

∫
eix·η+iy·ζχ

( ζ

〈η〉

)
b(η)dηdζ

and χ is an admissible cut-off function. After the hypothesis on b we have that for every α, β ∈ N2,∣∣∣∂βζ [χ( ζ

〈η〉

)
b(η)

]∣∣∣ . 1{|η|.1}|gβ(ζ)|,∣∣∣∂αη ∂βζ [χ( ζ

〈η〉

)
b(η)

]∣∣∣ . 1{|η|.1}|η|1−|α||gβ(ζ)|, |α| ≥ 1,

for some bounded and compactly supported functions gβ . Lemma A.1 (i) and corollary A.2 (i)
of appendix A imply that |K(x, y)| . |x|−1〈x〉−2〈y〉−3 for any (x, y), and statement (i) follows
by an inequality such as (A.8) with L = L2.

In order to prove assertion (ii) we consider a cut-off function ψ ∈ C∞0 (R2) equal to 1 in some
closed ball BC(0), for a C � 1, and decompose R(u, v) as follows, using (1.2.8):

R(u, v) =

∫
K0(x− y, y − z)u(y)v(z)dydz +

∫
K1(x− y, y − z)[〈Dx〉4u](y)v(z)dydz,
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with

K0(x, y) =
1

(2π)2

∫
eix·ξ+iy·η

(
1− χ

(
ξ − η
〈η〉

)
− χ

(
η

〈ξ − η〉

))
ψ(η)dξdη,

K1(x, y) =
1

(2π)2

∫
eix·ξ+iy·η

(
1− χ

(
ξ − η
〈η〉

)
− χ

(
η

〈ξ − η〉

))
(1− ψ)(η)〈ξ − η〉−4dξdη.

Since frequencies ξ, η are both bounded on the support of
(

1− χ
(
ξ−η
〈η〉

)
− χ

(
η

〈ξ−η〉

))
ψ(η), one

can show through some integration by parts that |K0(x, y)| . 〈x〉−3〈y〉−3 for any (x, y), to then
deduce that ∥∥∥∥∫ K0(x− y, y − z)u(y)v(z)dydz

∥∥∥∥
L2(dx)

. ‖u‖L∞‖v‖L2 .

Kernel K1(x, y) can be split using a Littlewood-Paley decomposition as follows

K1(x, y) =
∑
k≥1

1

(2π)2

∫
eix·ξ+iy·η

(
1− χ

(
ξ − η
〈η〉

)
− χ

(
η

〈ξ − η〉

))
(1− ψ)(η)ϕ(2−kη)〈ξ − η〉−4dξdη︸ ︷︷ ︸

K1,k(x,y)

,

for a suitable ϕ ∈ C∞0 (R2\{0}). On the support of
(

1− χ
(
ξ−η
〈η〉

)
− χ

(
η

〈ξ−η〉

))
(1−ψ)(η)ϕ(2−kη),

frequencies η, ξ − η are either bounded or equivalent and of size 2k (which implies in particular
that 〈ξ − η〉−4 . 〈ξ〉−3〈η〉−1). After a change of coordinates and some integration by parts one
can show that |K1,k(x, y)| . 2k〈x〉−3〈2ky〉−3, for any k ≥ 1, and therefore that∥∥∥∥∫ ei(x−y)·ξ+i(y−z)·ηK1(x− y, y − z)[〈Dx〉4u](y)v(z)dydz

∥∥∥∥
L2(dx)

.
∑
k≥1

2k
∥∥∥∥∫ 〈x− y〉−3〈2k(y − z)〉−3|〈Dx〉4u(y)||w(z)|dydz

∥∥∥∥
L2(dx)

.
∑
k≥1

2k
∫
〈y〉−3〈2kz〉−3‖[〈Dx〉4u](· − y)w(· − y − z)‖L2(dx)dydz . ‖u‖H4,∞‖w‖L2 ,

which concludes the proof of statement (ii).

The last results of this subsection are stated without proofs. All the details can be found in
chapter 6 of [27] (see theorems 6.1.1, 6.1.4, 6.2.1, 6.2.4).

Proposition 1.2.9 (Composition). Consider a ∈ Smr , b ∈ Sm′r , r ∈ N∗, m,m′ ∈ R.

(i) Symbol a]b :=
∑
|α|<r

1

α!
∂αξ a(x, ξ)Dα

x b(x, ξ) is well defined in
∑

j<r S
m+m′−j
r−j ;

(ii) OpB(a)OpB(b) − OpB(a]b) is an operator of order ≤ m + m′ − r, and for all s ∈ R, there
exists a constant C > 0 such that, for all a ∈ Smr (Rd), b ∈ Sm′r (Rd), and w ∈ Hs+m+m′−r(Rd),

‖OpB(a)OpB(b)w −OpB(a]b)w‖Hs

≤ C
(
Mm
r (a;n)Mm′

0 (b;n0) +Mm
0 (a;n)Mm′

r (b;n0)
)
‖w‖Hs+m+m′−r ,

where n0 =
[
d
2

]
+ 1, n = n0 + r. Moreover, OpB(a)OpB(b)−OpB(a]b) = σ̃r(x,Dx) with

σ̃r(x, ξ) = (σa]σb)(x, ξ)− σa]b(x, ξ)

+
∑
|α|=r

1

r!(2π)d

∫
ei(x−y)·ζ

(∫ 1

0
∂αξ σa(x, ξ + tζ)(1− t)r−1dt

)
θ(ζ, ξ)Dα

xσb(y, ξ)dydζ
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with θ ≡ 1 in a neighbourhood of the support of Fy 7→ησb(η, ξ).

These results extend to matrix valued symbols and operators.

Remark 1.2.10. If symbol a(x, ξ) only depends on ξ then σa]σb − σa]b = 0 and σ̃r reduces to
the only integral term. Moreover,

(1.2.12) Fx 7→ησ̃r(η, ξ) =
∑
|α|=r

1

r!

(∫ 1

0
∂αξ a(ξ + tη)(1− t)[r]+−1dt

)
χ
( η

〈ξ〉

)
ηαb̂y(η, ξ),

where χ
( η
〈ξ〉
)
is the admissible cut-off function defining σb.

Corollary 1.2.11. For d = 2 and all s ∈ R, there exists a constant C > 0 such that, for
a ∈ Smr , b ∈ Sm

′
r , r ∈ N∗, and w ∈ Hs+m+m′−1,

‖OpB(a)OpB(b)w −Op(ab)w‖Hs

≤ C
(
Mm

1 (a; 3)Mm′
0 (b; 2) +Mm

0 (a; 3)Mm′
1 (b; 2)

)
‖w‖Hs+m+m′−1 .

Proposition 1.2.12 (Adjoint). Consider a ∈ Smr (Rd), denote by OpB(a)∗ the adjoint operator
of OpB(a) and by a∗(x, ξ) = a(x, ξ) the complex conjugate of a(x, ξ).

(i) Symbol b(x, ξ) :=
∑
|α|<r

1

α!
Dα
x∂

α
ξ a
∗(x, ξ) is well defined in

∑
j<r S

m−j
r−j ;

(ii) Operator OpB(a)∗ −OpB(b) is of order ≤ m− r. Precisely, for all s ∈ R there is a constant
C > 0 such that, for all a ∈ Smr (Rd) and w ∈ Hs+m−r(Rd),∥∥OpB(a)∗w −OpB(b)w

∥∥
Hs ≤ CMm

r (a;n)‖w‖Hs+m−r ,

with n0 =
[
d
2

]
+ 1, n = n0 + r.

These results extend to matrix valued symbols a, with a∗(x, ξ) denoting the adjoint of matrix
a(x, ξ).

Corollary 1.2.13. For d = 2 and all s ∈ R, there exists a constant C > 0 such that, for a ∈ Smr ,
r ∈ N∗ and w ∈ Hs+m−1,

‖OpB(a)∗w −Op(a∗)w‖Hs ≤ CMm
1 (a; 3)‖w‖Hs+m−1 .

1.2.2 Semi-classical pseudodifferential calculus

In this subsection we recall some definitions and results about semi-classical symbolic calculus
in general space dimension d ≥ 1 which will be used in section 3.2. We refer the reader to [8]
and [32] for more details.

Definition 1.2.14. An order function on Rd × Rd is a smooth map from Rd × Rd to R+ :
(x, ξ)→M(x, ξ) such that there exist N0 ∈ N, C > 0 and for any (x, ξ), (y, η) ∈ Rd × Rd

(1.2.13) M(y, η) ≤ C〈x− y〉N0〈ξ − η〉N0M(x, ξ) ,

where 〈x〉 =
√

1 + |x|2.

Definition 1.2.15. Let M be an order function on Rd × Rd, δ, σ ≥ 0. One denotes by Sδ,σ(M)
the space of smooth functions

(x, ξ, h)→ a(x, ξ, h)

Rd × Rd×]0, 1]→ C
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satisfying for any α1, α2 ∈ Nd, k,N ∈ N

(1.2.14) |∂α1
x ∂α2

ξ (h∂h)ka(x, ξ, h)| .M(x, ξ)h−δ(|α1|+|α2|)(1 + σhσ|ξ|)−N .

A key role in this paper will be played by symbols a verifying (1.2.14) withM(x, ξ) = 〈x+f(ξ)√
h
〉−N ,

for N ∈ N and a certain smooth function f(ξ). This function M is no longer an order function
because of the term h−

1
2 , but nevertheless we keep writing a ∈ Sδ,σ(〈x+f(ξ)√

h
〉−N ).

Definition 1.2.16. In the semi-classical setting we say that a(x, ξ, h) is a symbol of order r if
a ∈ Sδ,σ(〈ξ〉r), for some δ, σ ≥ 0.

Let us observe that when σ > 0 the symbol decays rapidly in hσ|ξ|, which implies the following
inclusion for r ≥ 0:

Sδ,σ(〈ξ〉r) ⊂ h−σrSδ,σ(1).

This means that, up to a small loss in h, this type of symbols can be always considered as symbols
of order zero. In the rest of the paper we will not indicate explicitly the dependence of symbols
on h, referring to a(x, ξ, h) simply as a(x, ξ).

Definition 1.2.17. Let a ∈ Sδ,σ(M) for some order function M , some δ, σ ≥ 0.

(i) We can define the Weyl quantization of a to be the operator Opwh (a) = aw(x, hD) acting
on u ∈ S(Rd) by the following formula:

Opwh (a(x, ξ))u(x) =
1

(2πh)d

∫
Rd

∫
Rd
e
i
h

(x−y)·ξa
(x+ y

2
, ξ
)
u(y) dydξ ;

(ii) We define also the standard quantization of a:

Oph(a(x, ξ))u(x) =
1

(2πh)d

∫
Rd

∫
Rd
e
i
h

(x−y)·ξa(x, ξ)u(y) dydξ .

It is clear from the definition that the two quantizations coincide when the symbol does not
depend on x. We also introduce a semi-classical version of Sobolev spaces on which the above
operators act naturally.

Definition 1.2.18. (i) Let ρ ∈ N. We define the semi-classical Sobolev space Hρ,∞
h (Rd) as

the space of tempered distributions w such that 〈hD〉ρw := Oph(〈ξ〉ρ)w ∈ L∞, endowed
with norm

‖w‖Hρ,∞
h

= ‖〈hD〉ρw‖L∞ ;

(ii) Let s ∈ R. We define the semi-classical Sobolev space Hs
h(Rd) as the space of tempered

distributions w such that 〈hD〉sw := Oph(〈ξ〉s)w ∈ L2, endowed with norm

‖w‖Hs = ‖〈hD〉sw‖L2 .

For future references, we write down the semi-classical Sobolev injection in space dimension 2:

(1.2.15) ‖vh‖Hρ,∞
h (R2) .σ h

−1‖vh‖Hρ+1+σ
h (R2)

, ∀σ > 0 .

The following two propositions are stated without proof. They concern the adjoint and the
composition of pseudo-differential operators. All related details are provided in chapter 7 of [8]
or in chapter 4 of [32].
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Proposition 1.2.19 (Self-Adjointness). If a(x, ξ) is a real symbol its Weyl quantization is self-
adjoint, i.e. (

Opwh (a)
)∗

= Opwh (a) .

Proposition 1.2.20 (Composition for Weyl quantization). Let a, b ∈ S(Rd). Then

Opwh (a) ◦Opwh (b) = Opwh (a]b) ,

where

(1.2.16) a]b (x, ξ) :=
1

(πh)2d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
e

2i
h
σ(y,η; z,ζ)a(x+ z, ξ + ζ)b(x+ y, ξ + η) dydηdzdζ,

and
σ(y, η; z, ζ) = η · z − y · ζ .

It is often useful to derive an asymptotic expansion for a]b, as it allows easier computations than
integral formula (1.2.16). This expansion is usually obtained by applying the stationary phase
argument when a, b ∈ Sδ,σ(M), δ ∈ [0, 1

2 [ (as shown in [32]). Here we provide an expansion at
any order even when one of two symbols belongs to S 1

2
,σ1

(M) (still having the other in Sδ,σ2(M)

for δ < 1
2 , and σ1, σ2 either equal or, if not, one of them equal to zero), whose proof is based on

the Taylor development of symbols a, b, and can be found in the appendix of [29] (for d = 1).

Proposition 1.2.21. Let M1,M2 be two order functions and a ∈ Sδ1,σ1(M1), b ∈ Sδ2,σ2(M2),
δ1, δ2 ∈ [0, 1

2 ], δ1 + δ2 < 1, σ1, σ2 ≥ 0 such that

(1.2.17) σ1 = σ2 ≥ 0 or
[
σ1 6= σ2 and σi = 0 , σj > 0 , i 6= j ∈ {1, 2}

]
.

Then a]b ∈ Sδ,σ(M1M2), where δ = max{δ1, δ2}, σ = max{σ1, σ2}. Moreover,

(1.2.18) a]b =
∑

α=(α1,α2)
|α|=0,...,N−1

(−1)|α1|

α!

( h
2i

)|α|
∂α1
x ∂α2

ξ a(x, ξ) ∂α2
x ∂α1

ξ b(x, ξ) + rN ,

where rN ∈ hN(1−(δ1+δ2))Sδ,σ(M1M2) and

(1.2.19) rN (x, ξ) =

(
h

2i

)N N

(πh)2d

∑
α=(α1,α2)
|α|=N

(−1)|α1|

α!

∫
R4

e
2i
h

(η·z−y·ζ)

×
(∫ 1

0
∂α1
x ∂α2

ξ a(x+ tz, ξ + tζ)(1− t)N−1dt
)
∂α2
x ∂α1

ξ b(x+ y, ξ + η) dydηdzdζ ,

or

(1.2.20) rN (x, ξ) =

(
h

2i

)N N

(πh)2d

∑
α=(α1,α2)
|α|=N

(−1)|α1|

α!

∫
R4

e
2i
h

(η·z−y·ζ)∂α1
x ∂α2

ξ a(x+ z, ξ + ζ)

×
(∫ 1

0
∂α2
x ∂α1

ξ b(x+ ty, ξ + tη)(1− t)N−1dt
)
dydηdzdζ .

More generally, if hNδ1∂αa ∈ Sδ1,σ1(MN
1 ), hNδ2∂αb ∈ Sδ2,σ2(MN

2 ), for |α| = N and some order
functions MN

1 ,M
N
2 , then rN ∈ hN(1−(δ1+δ2))Sδ,σ(MN

1 M
N
2 ).
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Remark 1.2.22. From the previous proposition it follows that, if symbols a ∈ Sδ1,σ1(M1),
b ∈ Sδ2,σ2(M2) are such that suppa ∩ suppb = ∅, then a]b = O(h∞), meaning that, for every
N ∈ N, a]b = rN with rN ∈ hN(1−(δ1+δ2))Sδ,σ(M1M2).

Remark 1.2.23. We draw the reader’s attention to the fact that symbol ] is used simultaneously
in Bony calculus (see proposition 1.2.9) and in Weyl semi-classical calculus (as in (1.2.18)) with
two different meaning. However, we avoid to introduce different notations as it will be clear by
the context if we are dealing with the former or the latter one.

The result of proposition 1.2.21 and remark 1.2.22 are still true even when one of the two order
functions, or both, has the form 〈x+f(ξ)√

h
〉−1, for a smooth function f(ξ), ∇f(ξ) bounded, as

stated below (see the appendix of [29]).

Lemma 1.2.24. Let f(ξ) : Rd → R be a smooth function, with |∇f(ξ)| bounded. Consider a ∈
Sδ1,σ1(〈x+f(ξ)√

h
〉−m), m ∈ N, and b ∈ Sδ2,σ2(M), for M order function or M(x, ξ) = 〈x+f(ξ)√

h
〉−n,

n ∈ N, some δ1 ∈ [0, 1
2 ], δ2 ∈ [0, 1

2 [, σ1, σ2 ≥ 0 as in (1.2.17). Then a]b ∈ Sδ,σ(〈x+f(ξ)√
h
〉−mM),

where δ = max{δ1, δ2}, σ = max{σ1, σ2}, and the asymptotic expansion (1.2.18) holds, with
rN ∈ hN(1−(δ1+δ2))Sδ,σ(〈x+f(ξ)√

h
〉−mM) given by (1.2.19) (or equivalently (1.2.20)).

More generally, if hNδ1∂αa ∈ Sδ1,σ1(〈x+f(ξ)√
h
〉−m′) and hNδ2∂αb ∈ Sδ2,σ2(MN ), |α| = N , MN

order function or MN (x, ξ) = 〈x+f(ξ)√
h
〉−n′ , for some m′, n′ ∈ N, then remainder rN belongs to

hN(1−(δ1+δ2))Sδ,σ(〈x+f(ξ)√
h
〉−m′MN ).

1.2.3 Semi-classical Operators for the Wave Solution: Some Estimates

From now on we place ourselves in space dimension d = 2. This technical subsection focuses on
the introduction and the analysis of some particular operators that we will use when dealing with
the wave component in the semi-classical framework (subsection 3.2.2). More precisely, lemma
1.2.25 will be often recalled to prove that some operator belongs to L(L2;L∞) and compute its
norm; propositions 1.2.27, 1.2.30 concern the continuity of some important operators like Γw,k

defined in (3.2.44), while propositions 1.2.28, 1.2.31 are devoted to prove the continuity of some
other operators often arising when considering the quantization of symbolic integral remainders.
Finally, lemmas 1.2.33 and 1.2.35 deal with the development of some special symbolic products.
While 1.2.33 will be used several times throughout the paper, lemma 1.2.35 is stated explicitly
on purpose to prove lemma 3.2.13.

Lemma 1.2.25. There exists a constant C > 0 such that, for any function A(x, ξ) with ∂αx ∂
β
ξ A ∈

L2(R2 × R2) for |α|, |β| ≤ 3, and any function w ∈ L2(R2),

(1.2.21)
∣∣Opwh

(
A(x, ξ)

)
w(x)

∣∣ ≤ C‖w‖L2

∫
R2

〈x− y〉−3
∑

|α|,|β|≤3

∥∥∥∂αy ∂βξ [A(x+ y

2
, hξ
)]∥∥∥

L2(dξ)
dy.

Moreover, if A(x, ξ) is compactly supported in x there exists a smooth function, supported in a
neighbourhood of suppA, such that

(1.2.22)
∣∣Opwh

(
A(x, ξ)

)
w(x)

∣∣ ≤ C‖w‖L2

∫
R2

∣∣∣θ′(x+ y

2

)∣∣∣ ∑
|α|≤3

∥∥∥∂αy [A(x+ y

2
, hξ
)]∥∥∥

L2(dξ)
dy.

Proof. Let us prove the statement for A ∈ S(R2×R2) and w ∈ S(R2). The density of S(R2×R2)

into {A ∈ L2(R2 × R2)|∂αx ∂
β
ξ A ∈ L

2(R2 × R2), |α|, |β| ≤ 3} and of S(R2) into L2(R2) will then

22



justify the definition of Opwh (A(x, ξ))w for A and w as in the statement, together with inequalities
(1.2.21), (1.2.22).

Using integration by parts, Cauchy-Schwarz inequality, and Young’s inequality for convolutions,
we can write the following:

|Opwh (A(x, ξ))w(x)| = 1

(2π)2

∣∣∣∣∫
R4

ei(x−y)·ξA
(x+ y

2
, hξ
)
w(y) dydξ

∣∣∣∣
=

1

(2π)4

∣∣∣∣∫
R2

ŵ(η)

∫
R2

∫
R2

ei(x−y)·ξ+iy·ηA
(x+ y

2
, hξ
)
dydξ dη

∣∣∣∣
=

1

(2π)4

∣∣∣∣∣
∫
R2

ŵ(η)

∫
R2

∫
R2

(
1− i(x− y) · ∂ξ

1 + |x− y|2

)3(1 + i(ξ − η) · ∂y
1 + |ξ − η|2

)3

ei(x−y)·ξ+iy·η

×A
(x+ y

2
, hξ
)
dydξ dη

∣∣∣∣
.
∫
R2

|ŵ(η)|
∫
R2

∫
R2

〈x− y〉−3〈ξ − η〉−3
∑

|α|,|β|≤3

∣∣∣∂αy ∂βξ [A(x+ y

2
, hξ
)]∣∣∣dydξ dη

. ‖ŵ‖L2(dη)‖〈η〉−3‖L1(dη)

∫
R2

〈x− y〉−3
∑

|α|,|β|≤3

∥∥∥∂αy ∂βξ [A(x+ y

2
, hξ
)]∥∥∥

L2(dξ)
dy

. ‖w‖L2

∫
R2

〈x− y〉−3
∑

|α|,|β|≤3

∥∥∥∂αy ∂βξ [A(x+ y

2
, hξ
)]∥∥∥

L2(dξ)
dy .

If symbol A(x, ξ) is compactly supported in x we can consider a smooth function θ′ ∈ C∞0 (R),
identically equal to 1 on the support of A(x, ξ), and write

|Opwh (A(x, ξ))w(x)| = 1

(2π)2

∣∣∣∣∣
∫
R2

ŵ(η)dη

∫
R2

∫
R2

(
1 + i(ξ − η) · ∂y

1 + |ξ − η|2

)3

ei(x−y)·ξ+iy·η

×A
(x+ y

2
, hξ
)
dydξ

∣∣∣∣
.
∫
R2

|ŵ(η)| dη
∫
R2

∫
R2

∣∣∣θ′(x+ y

2

)∣∣∣〈ξ − η〉−3
∑
|α|≤3

∣∣∂αy [A(x+ y

2
, hξ
)]∣∣∣dydξ

. ‖w‖L2

∫
R2

∣∣∣θ′(x+ y

2

)∣∣∣ ∑
|α|≤3

∥∥∂αy [A(x+ y

2
, hξ
)]∥∥∥

L2(dξ)
dy .

A very important role in this subsection and in subsection 3.2.2 will be played by functions of the
form γ

( x|ξ|−ξ
h1/2−σ

)
ψ(2−kξ), where γ ∈ C∞(R2) is such that |∂αγ(z)| . 〈z〉−|α|, ψ ∈ C∞0 (R2 − {0}),

σ > 0 is a small fixed constant and k is an integer belonging to set K, with

(1.2.23) K := {k ∈ Z : h . 2k . h−σ}.

In various results, such as proposition 1.2.30, we will need a more decaying smooth function γ1

verifying that |∂αγ1(z)| . 〈z〉−(1+|α|). We introduce here some notations we will keep throughout
the whole paper:
Notation 1. For any n ∈ N, γn denotes a smooth function in R2 such that |∂αγn(z)| .α
〈z〉−(n+|α|), for any α ∈ N2. We use the simplest notation γ for γ0;
Notation 2. For any integer m ∈ Z, bm(ξ) will denote any function satisfying |∂βbm(ξ)| .β
|ξ|m−|β|, for any ξ in its domain, any β ∈ N2.
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The following lemma is a useful reference when we need to deal with some derivatives of γ
( x|ξ|−ξ
h1/2−σ

)
.

Lemma 1.2.26. Let σ ∈ R and n ∈ N. For any multi-indices α, β ∈ N2 we have that

(1.2.24) ∂αx ∂
β
ξ

[
γn

(x|ξ| − ξ
h1/2−σ

)]
=

|β|∑
k=0

h−(|α|+k)( 1
2
−σ)γn+|α|+k

(x|ξ| − ξ
h1/2−σ

)
b|α|+k−|β|(ξ).

Furthermore, if θ = θ(x) ∈ C∞0 (R2), there exists a set {θk(x)}1≤k≤|β| of smooth compactly
supported functions such that

(1.2.25) θ(x)∂αx ∂
β
ξ

[
γn

(x|ξ| − ξ
h1/2−σ

)]
=

|β|∑
k=1

h−(|α|+k)( 1
2
−σ)γn+|α|+k

(x|ξ| − ξ
h1/2−σ

)
θk(x)b|α|+k−|β|(ξ).

Proof. Let δij be the Kronecker delta and
∑′ be a concise notation to indicate a linear combi-

nation. For i = 1, 2,

∂ξi

[
γn

(x|ξ| − ξ
h1/2−σ

)]
= h−( 1

2
−σ)

2∑
j=1

(∂jγn)
(x|ξ| − ξ
h1/2−σ

)
(xjξi|ξ|−1 − δij)

=
2∑
j=1

(∂jγn)
(x|ξ| − ξ
h1/2−σ

)(xj |ξ| − ξj
h1/2−σ

)
ξi|ξ|−2 +

2∑
j=1

h−( 1
2
−σ)(∂jγn)

(x|ξ| − ξ
h1/2−σ

)
[ξiξj |ξ|−2 − δij ],

(1.2.26)

which can be summarized saying that

∂ξi

[
γn

(x|ξ| − ξ
h1/2−σ

)]
=
∑′

γn

(x|ξ| − ξ
h1/2−σ

)
b−1(ξ) + h−( 1

2
−σ)γn+1

(x|ξ| − ξ
h1/2−σ

)
b0(ξ),

for some new functions γn, γn+1, b0, b−1. Iterating this argument one finds that, for all β ∈ N2,

∂βξ

[
γn

(x|ξ| − ξ
h1/2−σ

)]
=

∑
k=0,...,|β|

′
h−k( 1

2
−σ)γn+k

(x|ξ| − ξ
h1/2−σ

)
bk−|β|(ξ),

and obtains (1.2.24) using that, for any m ∈ N, α ∈ N2,

(1.2.27) ∂αx

[
γm

(x|ξ| − ξ
h1/2−σ

)]
= h−|α|(

1
2
−σ)(∂αγm)

(x|ξ| − ξ
h1/2−σ

)
|ξ||α|.

Equality (1.2.25) is obtained replacing (1.2.26) with

θ(x)∂ξi

[
γn

(x|ξ| − ξ
h1/2−σ

)]
= h−( 1

2
−σ)

2∑
j=1

(∂jγn)
(x|ξ| − ξ
h1/2−σ

)
(θ(x)xjξi|ξ|−1 − θ(x)δij)

=
∑′

h−( 1
2
−σ)γn+1

(x|ξ| − ξ
h1/2−σ

)
θ1(x)b0(ξ),

where θ1(x) is a new compactly supported function. By iteration one finds that, for any β ∈ N2,
there is a set of |β| compactly supported functions θk(x), 1 ≤ k ≤ |β|, such that

θ(x)∂βξ

[
γn

(x|ξ| − ξ
h1/2−σ

)]
=

|β|∑
k=1

h−k( 1
2
−σ)γn+k

(x|ξ| − ξ
h1/2−σ

)
θk(x)bk−|β|(ξ),

which combined with (1.2.27) gives (1.2.25).
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In some of the following results we denote by Θh the operator of change of coordinates

Θhw(x) = w(
√
hx),

for any h ∈]0, 1], and use that for any symbol a(x, ξ),

(1.2.28) Opwh
(
a(x, ξ)

)
= ΘhOpwh

(
ã(x, ξ)

)
Θ−1
h ,

with ã(x, ξ) = a
(

x√
h
,
√
hξ
)
.

Proposition 1.2.27 (Continuity on L2). Let σ > 0 be sufficiently small, K be the set defined in
(1.2.23), k ∈ K and p ∈ Z. Let also ψ ∈ C∞0 (R2 \ {0}) and a(x) be a smooth function, bounded
together with all its derivatives. Then Opwh

(
γ
( x|ξ|−ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

)
: L2 → L2 is bounded

and

(1.2.29)
∥∥∥Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

)∥∥∥
L(L2)

. 2kp.

Proof. Let A(x, ξ) = γ
( x|ξ|−ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ). For indices k ∈ K such that h1/2−σ . 2k .

h−σ the statement follows from the fact that A(x, ξ) ∈ 2kpS 1
2
,0(1) and by theorem 7.11 of [8].

For k ∈ K such that h ≤ 2k ≤ h1/2−σ, Ã(x, ξ) := A( x√
h
,
√
hξ) ∈ 2kpS 1

2
,0(1) and the result follows

by theorem 7.11 of [8] and equality (1.2.28).

Proposition 1.2.28. Let σ, k, p be as in the previous proposition. Let also q ∈ Z, ψ̃ ∈ C∞0 (R2 \
{0}), a′(x) be a smooth function, bounded together with all its derivatives, and f ∈ C(R). Define

(1.2.30)

Ikp,q(x, ξ) :=
1

(πh)4

∫
e

2i
h

(η·z−y·ζ)
[∫ 1

0

(
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

)
|(x+tz,ξ+tζ)f(t)dt

×ψ̃(2−k(ξ + η))a′(x+ y)bq(ξ + η)
]
dydzdηdζ

and

(1.2.31) Jkp,q(x, ξ) :=
1

(πh)4

∫
e

2i
h

(η·z−y·ζ)
[∫ 1

0
ψ̃(2−k(ξ + tζ))a′(x+ tz)bq(ξ + tζ)f(t)dt

×
(
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

)
|(x+y,ξ+η)

]
dydzdηdζ.

Then Opwh (Ikp,q(x, ξ)) and Opwh (Jkp,q(x, ξ)) are bounded operators on L2 and∥∥∥Opwh (Ikp,q(x, ξ))
∥∥∥
L(L2)

+
∥∥∥Opwh (Jkp,q(x, ξ))

∥∥∥
L(L2)

. 2k(p+q).

The same results holds also if q = 0 and ψ̃(2−kξ)bq(ξ) ≡ 1.

Proof. We show the result for Opwh (Ikp,q), leaving the reader to check that a similar argument can
be used for Opwh (Jkp,q).

We distinguish between two ranges of frequencies. For indices k ∈ K such that h1/2−σ ≤ 2k .
h−σ we observe that Ikp,q(x, ξ) ∈ 2k(p+q)S 1

2
,0(1). Indeed, γ

( x|ξ|−ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ) ∈ 2kpS 1

2
,σ(1)
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by lemma 1.2.26 while ψ̃(2−kξ)a′(x)bq(ξ) ∈ 2kqS 1
2
−σ,σ(1). Hence performing a change of variables

y 7→
√
hy, z 7→

√
hz, η 7→

√
hη, ζ 7→

√
hζ, writing

(1.2.32)

e2i(η·z−y·ζ) =

(
1 + 2iy · ∂ζ
1 + 4|y|2

)3(1− 2iz · ∂η
1 + 4|z|2

)3(1− 2iη · ∂z
1 + 4|η|2

)3(1 + 2iζ · ∂y
1 + 4|ζ|2

)3

e2i(η·z−y·ζ),

and integrating by parts in all variables, we get that∣∣∣Ikp,q(x, ξ)∣∣∣ . 2k(p+q)

∫
〈y〉−3〈z〉−3〈η〉−3〈ζ〉−3 dydzdηdζ . 2k(p+q),

without any loss in h−δ due to the fact that we are considering symbols A(x, ξ) ∈ Sδ,σ(1) with
δ ∈ {0, 1/2−σ, 1/2}, and the derivatives of A(x+

√
hy, ξ+

√
hη) (resp. of A(x+t

√
hz, ξ+t

√
hζ))

with respect to y and η (resp. with respect to z and ζ). In a similar way one can also prove that
|∂αx ∂

β
ξ I

k
p,q(x, ξ)| .α,β h−

1
2

(|α|+|β|)2k(p+q), for any α, β ∈ N2. Theorem 7.11 of [8] implies then the
statement in this case.

For indices k ∈ K such that h . 2k ≤ h1/2−σ we observe that

γ
( x|ξ|
h1/2−σ − h

σξ
)
ψ(2−k

√
hξ)a

( x√
h

)
bp(
√
hξ) ∈ 2kpS 1

2
,σ(1),

ψ̃(2−k
√
hξ)a′

( x√
h

)
bq(
√
hξ) ∈ 2kqS 1

2
,σ(1).

Then Ĩkp,q(x, ξ) = Ikp,q

(
x√
h
,
√
hξ
)
∈ 2k(p+q)S 1

2
,0(1) and theorem 7.11 of [8] along with equality

(1.2.28) imply that Opwh (Ikp,q) : L2 → L2 is bounded, uniformly in h.

The last part of the statement can be proved following an analogous scheme, after having previ-
ously made an integration in dzdη (or in dydζ if dealing with Jkp,0).

Proposition 1.2.29 (Continuity on Lp). Let 1 ≤ p ≤ +∞, γ ∈ C∞0 (R2) be radial, ψ ∈ C∞0 (R2 \
{0}), a(x) be a smooth function, bounded together with all its derivatives. Let also σ > 0 be small,
k ∈ K with K given by (1.2.23) and q ∈ Z. Then Opwh

(
γ
( x|ξ|−ξ
h1/2−σ

)
ψ(2−kξ)a(x)bq(ξ)

)
: Lp → Lp

is a bounded operator with∥∥∥∥Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bq(ξ)

)∥∥∥∥
L(Lp)

. 2kq.

Proof. In order to prove the result of the statement we need to show that kernel Kk(x, y) asso-
ciated to Opwh

(
γ
( x|ξ|−ξ
h1/2−σ

)
ψ(2−kξ)a(x)bq(ξ)

)
, i.e.

(1.2.33) Kk(x, y) :=
1

(2πh)2

∫
e
i
h

(x−y)·ξγ
((x+y

2

)
|ξ| − ξ

h1/2−σ

)
ψ(2−kξ)a

(x+ y

2

)
bq(ξ)dξ,

is such that
sup
x

∫
|Kk(x, y)|dy . 2kq, sup

y

∫
|Kk(x, y)|dx . 2kq.

From the symmetry between variables x, y, it will be enough to show that one of the two above
inequalities is satisfied. To do that we study Kk separately in different spatial regions, distin-
guishing also between indices k ∈ K such that 2k ≤ h1/2−σ and 2k > h1/2−σ. We hence introduce
three smooth cut-off functions θs, θb, θ, supported respectively for |x| ≤ m � 1, |x| ≥ M � 1,
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0 < m′ ≤ |x| ≤ M ′ < +∞, for some constants m,m′,M,M ′, and such that θs + θb + θ ≡ 1.
Denoting concisely by Ak(x, ξ) the multiplier in (1.2.33), we split it as follows

Ak(x, ξ) = Aks(x, ξ) +Akb (x, ξ) +Ak1(x, ξ),

with Aks(x, ξ) := Ak(x, ξ)θs(x), Akb (x, ξ) := Ak(x, ξ)θb(x) and Ak1(x, ξ) := Ak(x, ξ)θ(x).

Case I: Let us consider k ∈ K such that h . 2k ≤ h1/2−σ. According to the above decomposition
we have that

Kk(x, y) = Kk
s (x, y) +Kk

b (x, y) +Kk
1 (x, y),

with clear meaning of kernels Kk
s ,K

k
b ,K

k
1 . Let us first prove that

(1.2.34) sup
x

∫
|Kk

s (x, y)|dy + sup
x

∫
|Kk

b (x, y)|dy . 2kq.

For |x| � 1 (resp. |x| � 1),
∣∣ x|ξ|−ξ
h1/2−σ

∣∣ & h−1/2+σ|ξ| (resp.
∣∣ x|ξ|−ξ
h1/2−σ

∣∣ & h−1/2+σ|ξ||x| & h−1/2+σ|ξ|)
so by lemma 1.2.26

(1.2.35)
∣∣∣∣∂βξ [γ(x|ξ| − ξh1/2−σ

)]∣∣∣∣ . |β|∑
j=0

h−j(
1
2
−σ)

〈
x|ξ| − ξ
h1/2−σ

〉−j
|bj−|β|(ξ)| . |ξ|−|β|.

Therefore

(1.2.36)
∣∣∣∂βξ Aks(x, 2kξ)∣∣∣ . ∑

|β1|≤|β|

2k|β||2kξ|−|β1|2−k(|β|−|β1|)+kq1|ξ|∼1 . 2kq1|ξ|∼1,

so making a change of coordinates ξ 7→ 2kξ and some integration by parts we derive that

|Kk
s (x, y)| . 2kq(2kh−1)2

〈
2kh−1(x− y)

〉−3
,

for every (x, y) ∈ R2 × R2. The same argument applies to Kk
b (x, y), hence taking the L1 norm

we obtain (1.2.34).

As concerns kernel Kk
1 (x, y), we deduce from lemma 1.2.26, the fact that θ1(x) is supported for

|x| ∼ 1, and that 2k . h1/2−σ, the following inequality:

∣∣∣∣∂βξ [Ak1(x+ y

2
, 2kξ

)]∣∣∣∣ . 2k|β|
[
2k(q−|β|) +

|β|∑
j=1

h−j(
1
2
−σ)|bj−|β|+q(2kξ)|

]
. 2kq.

Performing a change of coordinates ξ 7→ 2kξ and making some integration by parts one finds
that

|Kk
1 (x, y)| . 2kq(2kh−1)2

〈
2kh−1(x− y)

〉−3
, ∀(x, y),

and consequently that

sup
x

∫
|Kk(x, y)|dy . 2kq.

Summing up with (1.2.34), this gives us that

Opwh (Ak(x, ξ)) = Opwh (Aks(x, ξ)) + Opwh (Akb (x, ξ)) + Opwh (Ak1(x, ξ))

is a bounded operator on Lp, for every 1 ≤ p ≤ +∞, with norm O(2kq).
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Case II: Let us now suppose that k ∈ K is such that h1/2−σ < 2k ≤ h−σ. From (1.2.35) we
have that Ãks(x, ξ) = Aks

(
x√
h
,
√
hξ
)
satisfies∣∣∣∂βξ Ãks(x, ξ)∣∣∣ . ∑

|β1|≤|β|

h
|β|
2 |
√
hξ|−|β1|2−k(|β|−|β1|)+kq1|ξ|∼2kh−1/2 ,

for every (x, ξ) ∈ R2 × R2, and hence∣∣∣∂βξ Ãks(x, 2kh−1/2ξ)
∣∣∣ . ∑

|β1|≤|β|

2k|β||2kξ|−|β1|2−k(|β|−|β1|)+kq1|ξ|∼1 . 2kq1|ξ|∼1.

By making a change of coordinates ξ 7→ 2kh−1/2ξ, some integrations by parts and using the
above inequality, one can show that kernel K̃k

s (x, y) associated to Opwh (Ãks(x, ξ)), i.e.

K̃k
s (x, y) =

1

(2πh)2

∫
e
i
h

(x−y)·ξÃks

(x+ y

2
, ξ
)
dξ,

is such that
|K̃k

s (x, y)| . 2kq(2kh−
3
2 )2
〈

2kh−
3
2 (x− y)

〉−3
∀(x, y),

which implies that supx
∫
|K̃k

s (x, y)|dy . 2kq. The same argument and result hold for K̃k
b (x, y)

so Opwh (Aks) and Opwh (Akb ) verify the statement.

The last thing to prove is that Opwh (A1(x, ξ)) ∈ L(Lp) for every 1 ≤ p ≤ +∞. Let Kk
1 (x, y) be

its associated kernel, i.e.

(1.2.37) Kk
1 (x, y) =

1

(2πh)2

∫
e
i
h

(x−y)·ξγ
((x+y

2

)
|ξ| − ξ

h1/2−σ

)
ψ(2−kξ)a

(x+ y

2

)
bq(ξ)dξ,

and assume, without loss of generality, that γ(x) = γ(|x|2). Set

x+ y

2
= r[cos θ, sin θ],

with m′ ≤ r ≤M ′ on the support of θ1

(x+y
2

)
, and for fixed r, θ let

(1.2.38) ξ = ρ[cos θ, sin θ] + rΩ[− sin θ, cos θ].

We immediately notice that [∂(ξ1,ξ2)
∂(ρ,Ω) ] = r ∼ 1 and that |ξ|2 = ρ2 + r2Ω2. Moreover,∣∣∣(x+ y

2

)
|ξ| − ξ

∣∣∣2 =
[
r
√
ρ2 + r2Ω2 − ρ

]2
+ r2Ω2.

If the support of γ is of size 0 < α � 1 sufficiently small, from the above equality and the fact
that |ξ| ∼ 2k on the support of ψ(2−kξ), with h1/2−σ < 2k . h−σ, we deduce that

rΩ ≤
√
αh1/2−σ and |ρ| ∼ |ξ| ∼ 2k and

rΩ

|ρ|
≤
√
α.

Consequently

αh1−2σ ≥
[
r
√
ρ2 + r2Ω2 − ρ

]2
& ρ2|r − 1|2.

The above left inequality implies that ρ > 0, inferring so the right one. Moreover

αh1−2σ ≥
[
r
√
ρ2 + r2Ω2 − ρ

]2
+ r2Ω2 = ρ2

[
(r − 1) + r

[√
1 +

r2Ω2

ρ2
− 1

]]2

+ r2Ω2

= ρ2|r − 1|2 + r2Ω2 [1 + a(r,Ω, ρ)] ,
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with a(r,Ω, ρ) bounded such that, for any l,m, n ∈ N,

|∂lr∂mΩ ∂nρ a(r,Ω, ρ)| = O(ρ−(m+n)).

If

Γh := γ
(ρ2|r − 1|2

h1−2σ
+

r2Ω2

h1−2σ
[1 + a(r,Ω, ρ)]

)
ψ(2−k

√
ρ2 + r2Ω2)a(r, θ)bq(ρ),

from all the observations made above along with the fact that h−1/2+σ . ρ−1 we deduce that,
for any m,n ∈ N,

(1.2.39)
∣∣∂mρ Γh

∣∣ = O(2kqρ−m) and |∂nΩΓh| = O(2kqρ−n).

With the change of coordinates considered in (1.2.38), and setting w := x− y, eθ := [cos θ, sin θ],
kernel Kk

1 (x, y) transforms into

1

(2πh)2

∫
e
i
h
ρw·eθ+ i

h
rΩw·e⊥θ Γh rdρdΩ

and is restricted to |ρ| ∼ 2k, |Ω| . h1/2−σ, so by making some integrations by parts, using
(1.2.39), and reminding that |r − 1| � 2−kh1/2−σ � 1 on the support of Γh, we find that, for
any N ∈ N,

|Kk
1 (x, y)| . h−

3
2
−σ2k

〈
2k

h
w · eθ

〉−N 〈
2k

h
w · e⊥θ

〉−N
1||x+y

2
|−1|�1.

Now, as w = (x − y), eθ = x+y
|x+y| , and |x + y| = 2r ∼ 1 on the support of Γh, we have that

|w · eθ| ∼ ||x|2 − |y|2|, |w · e⊥θ | ∼ |(x+ y)(x+ y)⊥| ∼ 2|x · y⊥| = 2|x1y2 − x2y1|, and consequently

|Kk
1 (x, y)| . h−

3
2
−σ2k(1+q)

〈
2k

h

∣∣|x|2 − |y|2∣∣〉−N 〈2k

h
(x1y2 − x2y1)

〉−N
1||x+y

2
|−1|�1.

Successively, taking the L1(dy) norm of Kk
1 (x, y) and using the above estimate we find that:

• if |x| � |y| or |x| � |x|,〈
2k

h

∣∣|x|2 − |y|2∣∣〉−N 1||x+y
2
|−1|�1 . h

N( 1
2

+σ),

as follows from the fact that h2−k < h1/2+σ. We obtain that

sup
x

∫
|Kk

1 (x, y)|dy . h−
3
2 2k(1+q)hN( 1

2
+σ) . 1

by taking N ∈ N sufficiently large (e.g. N > 3) and σ > 0 small.

• if |x| ∼ |y|, we deduce that |x| ≥ c > 0 from the fact that
∣∣∣∣x+y

2

∣∣ − 1
∣∣ ≤ √αh1/2−σ2−k on

the support of Γh. Without loss of generality we can assume that x = λe1 (this always being
possible by making a rotation) and |λ| ≥ c > 0. If w := x+ y,

|x|2 − |y|2 = w · (x− y) = w · (2x− w) = w · (2λe1 − w) = 2λw1 − w2
1 − w2

2,

and then ∣∣|x|2 − |y|2∣∣
h

= −(w1 − λ)2 − λ2

h
+
( w2√

h

)2
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while
x1y2 − x2y1 = λw2.

This implies that

|Kk
1 (x, y)| . h−

3
2
−σ2k(1+q)

〈
2k

h

(
(w1 − λ)2 − λ2

)〉−N 〈2k

h
w2

〉−N
.

Since
∫
|Kk

1 (x, y)|dy =
∫
|Kk

1 (x, y)|dw, from the above estimate (with a fixed N ∈ N sufficiently
large) this integral is bounded by 2kq when restricted to |x| ∼ |y|. Indeed, when the integral
is taken in a neighbourhood of w1 = 0 or w1 = 2λ, (w1 − λ2) − λ2 can be considered as the
variable of integration, and by a change of coordinates along with the fact that 2−k < h−1/2+σ

one deduces that ∫
U0∪U2λ

|Kk
1 (x, y)|dw . h−

3
2
−σ2k(1+q)h22−2k . 2kq,

where U0 (resp. U2λ) is a neighbourhood of w1 = 0 (resp. of w1 = 2λ). Outside of U0 ∪ U2λ,〈
2k

h

(
(w1 − λ)2 − λ2

)〉−N
. (h2−k)N 〈w1〉−N . hN( 1

2
+σ)〈w1〉−N ,

so ∫
(U0∪U2λ){

|Kk
1 (x, y)|dw . h−

3
2
−σ2k(1+q)h2−khN( 1

2
+σ) . 2kq.

This finally proves that also Opwh (Ak1(x, ξ)) is a bounded operator on Lp with norm O(2kq).

Let us introduce the Euclidean rotation in the semi-classical setting

(1.2.40) Ωh := x1hD2 − x2hD1 = Opwh (x1ξ2 − x2ξ1).

Proposition 1.2.30. Under the same assumptions as in proposition 1.2.27, with γ replaced by
γ1, we have that for any w ∈ L2(R2) such that Ωhw ∈ L2

loc(R2)

(1.2.41)
∥∥∥Opwh

(
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

)
w
∥∥∥
L∞
. 2kph−

1
2
−σ (‖w‖L2 + ‖θ0Ωhw‖L2) ,

where θ0 is a smooth function supported in some annulus centred in the origin.

Proof. We prove the statement distinguishing between three spatial regions. For that, we
introduce three cut-off functions: θs(x) supported for |x| ≤ m � 1; θb(x) supported for
|x| ≥ M ′ � 1; θ(x) supported for m′ ≤ |x| ≤ M ′, for some 0 < m′ � 1,M � 1, such
that θs + θb + θ ≡ 1. We define respectively Aks(x, ξ) := γ1

(
x|ξ|−ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)θs(x),

Akb (x, ξ) := γ1

(
x|ξ|−ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)θb(x), and Ak(x, ξ) := γ1

(
x|ξ|−ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)θ(x),

so that
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ) = Aks(x, ξ) +Akb (x, ξ) +Ak(x, ξ).

The fact that Opwh (Aks),Opwh (Akb ) ∈ L(L2;L∞) and their norm is a O(2kph−1/2−σ) follows from
lemmas 1.2.25 and 1.2.26. Indeed, when |x| � 1 (resp. |x| � 1) we have that

∣∣ x|ξ|−ξ
h1/2−σ

∣∣ &
h−1/2+σ|ξ| (resp.

∣∣ x|ξ|−ξ
h1/2−σ

∣∣ & h−1/2+σ|ξ||x| & h−1/2+σ|ξ|), so from lemma 1.2.26 we derive that

∣∣∣∣∂αx ∂βξ [γ1

(x|ξ| − ξ
h1/2−σ

)]∣∣∣∣ . |β|∑
j=0

h−(|α|+j)( 1
2
−σ)

∣∣∣∣x|ξ| − ξh1/2−σ

∣∣∣∣−1−|α|−j
|b|α|+j−|β|(ξ)| . h

1
2
−σ|ξ|−1−|β|.
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Consequently, as 2−kh ≤ 1, we deduce that |∂αx ∂
β
ξ

[
Aks(

x+y
2 , hξ)

]
| . 2kph−1/2−σ|ξ|−1 for any

α, β ∈ N2. Therefore∥∥∥∥∂αy ∂βξ [Aks(x+ y

2
, hξ
)]∥∥∥∥

L2(dξ)

. 2kph−
1
2
−σ

(∫
|ξ|∼2kh−1

|ξ|−2dξ

) 1
2

. 2kph−
1
2
−σ.

The same holds for Akb (x, ξ) so, injecting these estimates in inequality (1.2.21), we derive that
‖Opwh (Aks(x, ξ))w‖L∞ + ‖Opwh (Akb (x, ξ))w‖L∞ ≤ C2kph−

1
2
−σ‖w‖L2 .

A different analysis is needed for Opwh (Ak(x, ξ))w, since it is no longer true that there exists
a positive constant C such that |x|ξ| − ξ| ≥ C|ξ| on the support of Ak(x, ξ). In this case we
exploit the fact that Ak(x, ξ) is supported in an annulus to perform a change of variables. If
θ0 ∈ C∞0 (R2 \ {0}) is a cut-off function equal to 1 on the support of θ we have that, for any
N ∈ N, Ak(x, ξ) = θ0(x)]Ak(x, ξ) + rkN (x, ξ) by means of proposition 1.2.21, where

rkN (x, ξ) =

(
h

2i

)N N

(πh)4

∑
|α|=N

(−1)|α|

α!

∫
e

2i
h

(η·z−y·ζ)
∫ 1

0
∂αx θ0(x+ tz)(1− t)N−1dt

× (∂αξ A
k)(x, ξ + η) dydzdηdζ.

If we take N sufficiently large it turns out that the quantization of rkN satisfies a better estimate
than (1.2.41). Indeed, using lemma 1.2.26 and integrating in dydζ, it can be rewritten as

(1.2.42) rkN (x, ξ) =
∑
j≤N

hN−j(
1
2
−σ)

(πh)2

∫
e

2i
h
η·z
∫ 1

0
θ0(x+ tz)(1− t)N−1dt

× γ1+j

(x|ξ + η| − (ξ + η)

h1/2−σ

)
ψ(2−k(ξ + η))θj(x)a(x)bp+j−N (ξ + η) dzdη,

for some new functions θ0, γ1+j , ψ, θj , a, bp+j−N . As it is compactly supported in x, by lemma
1.2.25 there is a new cut-off function (that we still call θ) such that

|Opwh (rkN (x, ξ))w| . ‖w‖L2

∫ ∣∣∣θ(x+ y

2

)∣∣∣ ∑
|α′|≤3

∥∥∥∂α′y [rkN(x+ y

2
, hξ
)]∥∥∥

L2(dξ)
dy.

One can check that the action of ∂α′y on rkN (x+y
2 , hξ) makes appear factors (h−1/2+σh|ξ+η|)i, for

i ≤ |α′|, without changing the underlining structure of rkN , and these are bounded by (h−1/2+σ2k)i

on the support of ψ(2−kh(ξ + η)). After a change of variables η 7→ hη in (1.2.42), we use that

e2iη·z =
(

1−2iη·∂z
1+4|η|2

)3 (1−2iz·∂η
1+4|z|2

)3
e2iη·z, integrate by parts, apply Young’s inequality for convolu-

tions, and fix N > 7, in order to deduce the following chain of inequalities:∥∥∥∥∂α′y rkN(x+ y

2
, hξ
)∥∥∥∥2

L2(dξ)

.
∑

i≤|α′|,j≤N

h2N−2j( 1
2
−σ)
(
h−

1
2

+σ2k
)2i

22k(p+j−N)

∫
dξ

∣∣∣∣∫ 〈z〉−3〈η〉−3|ψ(2−kh(ξ + η))|dzdη
∣∣∣∣2

.
∑

i≤|α′|,j≤N

h2N−2j( 1
2
−σ)
(
h−

1
2

+σ2k
)2i

22k(p+j−N)

∫
|ψ(2−khξ)|2dξ

.
∑

i≤|α′|,j≤N

h2N−2j( 1
2
−σ)
(
h−

1
2

+σ2k
)2i

22k(p+j−N)
(
h−12k

)2
. 22kp,
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and that ‖Opwh (rkN )‖L(L2;L∞) . 2kp. We can then focus on the analysis of the L∞ norm of
θ0(x)Opwh (Ak(x, ξ))w. In polar coordinates x = ρeiα operator Ωh reads as Dα, so using the
classical one-dimensional Sobolev injection with respect to variable α, the one-dimensional semi-
classical Sobolev injection with respect to variable ρ, and successively returning back to coordi-
nates x, we deduce that∣∣θ0(x)Opwh (Ak(x, ξ))w

∣∣ . h− 1
2

[
‖Opwh (Ak)w‖L2(dx) + ‖Opwh (ξ)Opwh (Ak)w‖L2(dx)

+ ‖Ωhθ0Opwh (Ak)w‖L2(dx) + ‖Opwh (ξ)Ωhθ0Opwh (Ak)w‖L2(dx)

]
. 2kph−

1
2
−σ[‖w‖L2 + ‖θ0Ωhw‖L2 ] .

The latter of above inequalities is derived observing that the commutator between Ωh and
Opwh (Ak) is a semi-classical pseudo-differential operator whose symbol is linear combination of
terms of the form

γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)θ(x)bp(ξ),

for some new γ1, ψ, a, θ, bp, and from the fact that operators Opwh (Ak(x, ξ)), Opwh (ξAk(x, ξ)) are
bounded on L2 (see proposition 1.2.27), with norm O(2kp), O(2k(p+1)) respectively, and that
2k ≤ h−σ.

Proposition 1.2.31. Under the same hypothesis as proposition 1.2.28, Opwh (Ikp,q(x, ξ)) and
Opwh (Jkp,q(x, ξ)) are bounded operators from L∞ to L2, with
(1.2.43)∥∥∥Opwh (Ikp,q(x, ξ))

∥∥∥
L(L2;L∞)

+
∥∥∥Opwh (Jkp,q(x, ξ))

∥∥∥
L(L2;L∞)

.
∑
i≤6

2k(p+q)(h−
1
2

+σ2k)i(h−12k).

The same result holds if q = 0 and ψ̃(2−kξ)bq(ξ) ≡ 1.

Proof. As in proposition 1.2.28, we prove the statement only for Opwh (Ikp,q), leaving to the reader
to check that the result is true also for Opwh (Jkp,q).

Let w ∈ L2. After lemma 1.2.25 we should prove that
∥∥∥∂αy ∂βξ [Ikp,q(x+y

2 , hξ)
]∥∥∥

L2(dξ)
is estimated

by the right hand side of (1.2.43), for any |α|, |β| ≤ 3. A change of variables η 7→ hη, ζ 7→ hζ
allows us to write Ikp,q(

x+y
2 , hξ) as

1

π4

∫
e2i(η·z−y′·ζ)

[∫ 1

0

(
γ
(
h

1
2

+σ(x|ξ| − ξ)
)
ψ(2−khξ)a(x)bp(hξ)

)
|(x+y

2
+tz,ξ+tζ)f(t)dt

×ψ̃(2−kh(ξ + η))a′
(x+ y

2
+ y′

)
bq(h(ξ + η))

]
dy′dzdηdζ.

We observe that, while on the one hand the action of ∂αy on the above integral makes appear a
factor (h−

1
2

+σ|h(ξ + tζ)|)i, with i ≤ |α|, on the other hand that of ∂βξ has basically no effect on
the L2 norm that we want to estimate as one can check using lemma 1.2.26 and the fact that
2−kh ≤ 1. With this in mind, we can reduce to the study of the L2(dξ) norm of an integral
function as

∑
i≤3

(h−
1
2 +σ2k)i

∫
e2i(η·z−y′·ζ)

[∫ 1

0

(
γ
(
h

1
2 +σ(x|ξ| − ξ)

)
ψ(2−khξ)a(x)bp(hξ)

)
|( x+y2 +tz,ξ+tζ)f(t)dt

× ψ̃(2−kh(ξ + η))a′
(x+ y

2
+ y′

)
bq(h(ξ + η))

]
dy′dzdηdζ,
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for some new functions γ, ψ, a, bp, ψ̃, a′, bq, with the same properties as their previous homonyms.
We use that

e2i(ηz−y′·ζ) =

(
1 + 2iy′ · ∂ζ
1 + 4|y′|2

)3(1− 2iη · ∂z
1 + 4|η|2

)3(1− 2iz · ∂η
1 + 4|z|2

)3(1 + 2iζ · ∂y′
1 + 4|ζ|2

)3

e2i(η·z−y′·ζ)

and make some integration by parts to obtain the integrability in dy′dzdηdζ, up to new factors
(h−

1
2

+σ|h(ξ+ tζ)|)j , with j ≤ 3, coming out from the derivation of the integrand with respect to
z. Then, using that functions hjbp−j(h(ξ + tζ)) (resp. hjbq−j(h(ξ + η))), j ≤ 3, appearing from
the derivation of bp(h(ξ+ tζ)) with respect to ζ (resp. the derivation of bq(h(ξ+η)) with respect
to η), are such that |hjbp−j(h(ξ + tζ))| ≤ hj2k(p−j) . 2kp on the support of ψ(2−kh(ξ + tζ))

(resp. |hjbq−j(h(ξ + η))| ≤ 2kq on the support of ψ̃(2−kh(ξ + η))), and the fact that∥∥∥∫ 〈η〉−3|ψ̃(2−kh(ξ + η))|dη
∥∥∥
L2(dξ)

≤ ‖ψ̃(2−kh·)‖L2 . h−12k,

we obtain the result of the statement.

The last part of the statement can be proved following an analogous scheme, after having previ-
ously made an integration in dzdη (or in dydζ if dealing with Jkp,0).

Lemma 1.2.32. Let σ > 0 be sufficiently small, k ∈ K with K given by (1.2.23) and p, q ∈ N.
Let also ψ, ψ̃ ∈ C∞0 (R2 \ {0}), a(x) be either a smooth compactly supported function or a ≡ 1,
and f ∈ C(R). For a fixed integer N > 2(p+ q) + 9 we define

(1.2.44) rkN,p(x, ξ) :=
hN

(πh)4

∑
|α|=N

∫
e

2i
h (η·z−y·ζ)

[∫ 1

0

∂αx

(
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

)
|(x+tz,ξ+tζ)

× f(t)dt
]
∂αξ
(
bq(ξ)ψ̃(2−kξ)

)
|(x+y,ξ+η) dydzdηdζ,

and

(1.2.45)

r̃kN,p(x, ξ) :=
hN

(πh)4

∑
|α1|+|α2|=N

∫
e

2i
h (η·z−y·ζ)

[∫ 1

0

∂α1
x ∂α2

ξ

(
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

)
|(x+tz,ξ+tζ)

× f(t)dt
]
∂α2
x ∂α1

ξ

(
xnbq(ξ)ψ̃(2−kξ)

)
|(x+y,ξ+η) dydzdηdζ .

Then
(1.2.46)
‖Opwh (rkN,p)‖L(L2) + ‖Opwh (r̃kN,p)‖L(L2) + ‖Opwh (rkN,p)‖L(L2;L∞) + ‖Opwh (r̃kN,p)‖L(L2;L∞) . h

p+q.

Proof. We remind definition (1.2.30) of integral Ikp,q(x, ξ) for general k ∈ K, p, q ∈ Z. After
an explicit development of the derivatives appearing in (1.2.44) we find that rkN,p(x, ξ) may be
written as ∑

j≤N
hN−j(

1
2
−σ)Ikp+j,q−N (x, ξ)

where γ is replaced with γ1 and a′ ≡ 1 in Ikp+j,q−N . Propositions 1.2.28 and 1.2.31, combined
with the fact that h ≤ 2k ≤ h−σ, imply respectively that

‖Opwh (rkN,p)‖L(L2) .
∑
j≤N

hN−j(
1
2
−σ)2k(p+j+q−N)

.
∑
j≤N

p+j+q≤N

hN−j(
1
2
−σ)+p+j+q−N +

∑
j≤N

p+j+q>N

hN−j(
1
2
−σ)−σ(p+j+q−N) . hp+q
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and

‖Opwh (rkN,p)‖L(L2;L∞) .
∑

i≤6,j≤N
hN−j(

1
2
−σ)2k(p+j+q−N)(h−

1
2

+σ2k)i(h−12k)

.
∑

i≤6,j≤N
p+i+j+q≤N−1

hN−1−(i+j)( 1
2
−σ)+p+i+j+q−N+1 +

∑
i≤6,j≤N

p+i+j+q>N−1

hN−1−(i+j)( 1
2
−σ)−σ(p+i+j+q−N+1)

. hp+q,

as N > 2(p+ q) + 9.

As regards (1.2.45), we first observe that index α2 is such that |α2| ≤ 1 since xnbq(ξ)ψ̃(2−kξ)
is linear in xn. An explicit development of derivatives in (1.2.45), combined with lemma 1.2.26,
shows that r̃kN,p(x, ξ) splits into two contributions:

J0(x, ξ) =
hN

(πh)4

∑
i≤N

h−i(
1
2−σ)

∫
e

2i
h (η·z−y·ζ)

∫ 1

0

(
γ1+i

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp+i(ξ)

)
|(x+tz,ξ+tζ)f(t)dt

×(xn + yn)bq−N (ξ + η)ψ̃(2−k(ξ + η)) dydzdηdζ,

for some new functions a, ψ, ψ̃ and clear meaning for γi, bp+i, bq−N , coming out when |α2| = 0;

J1(x, ξ) =
hN

(πh)4

∑
i≤N−1,j≤1

h−(i+j)( 1
2
−σ)

∫
e

2i
h

(η·z−y·ζ)

×
∫ 1

0

(
γ1+i+j

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp+i+j−1(ξ)

)
|(x+tz,ξ+tζ)f(t)dt

× bq−N+1(ξ + η)ψ̃(2−k(ξ + η)) dydzdηdζ,

for some new other a, ψ, ψ̃, corresponding instead to |α2| = 1. One has that

J1(x, ξ) =
∑

i≤N−1,j≤1

hN−(i+j)( 1
2
−σ)Ikp+i+j−1,q−N+1(x, ξ),

with γ replaced with γ1 and a′ ≡ 1, so propositions 1.2.28 and 1.2.31, along with the fact that
N > 2(p+ q) + 9, imply

‖Opwh (J1(x, ξ))‖L(L2) .
∑

i≤N−1,j≤1

hN−(i+j)( 1
2
−σ)2k(p+i+j+q−N) . hp+q,

‖Opwh (J1(x, ξ))‖L(L2;L∞) .
∑

i≤N−1,j≤1
l≤6

hN−(i+j)( 1
2
−σ)2k(p+i+j+q−N)(h−

1
2

+σ2k)l(h−12k) . hp+q.

In order to derive the same estimates for J0(x, ξ) we split the sum xn+yn and analyse separately
the two out-coming integrals, that we denote J0,x(x, ξ), J0,y(x, ξ). In the latter one, we use that
yne
− 2i
h
y·ζ = − h

2i∂ζne
− 2i
h
y·ζ and successively integrate by parts in dζn obtaining, with the help of

lemma 1.2.26, that

(1.2.47) J0,y(x, ξ) =
∑

i≤N,j≤1

hN+1−(i+j)( 1
2
−σ)

∫
e

2i
h

(η·z−y·ζ)

×
∫ 1

0

(
γ1+i+j

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp+i+j−1(ξ)

)
|(x+tz,ξ+tζ)f(t)dt

× bq−N (ξ − η)ψ̃(2−k(ξ + η)) dydzdηdζ
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for some new functions a, ψ, ψ̃, f . Again by propositions 1.2.28, 1.2.31 and the fact that h ≤
2k ≤ h−σ, N > 2(p+ q) + 9, we deduce that:

(1.2.48a) ‖Opwh (J0,y(x, ξ))‖L(L2) .
∑

i≤N,j≤1

hN+1−(i+j)( 1
2−σ)2k(p+i+j+q−N−1) . hp+q,

(1.2.48b)
‖Opwh (J0,y(x, ξ))‖L(L2;L∞) .

∑
i≤N,j≤1
l≤6

hN+1−(i+j)( 1
2−σ)2k(p+i+j+q−N−1)(h−

1
2−σ2k)l(h−12k) . hp+q.

In J0,x(x, ξ) we first integrate in dydζ and then we split the occurring integral into two other
contributions, called J0,x+tz(x, ξ), J0,tz(x, ξ), by writing xn = (xn + tzn)− tzn. Similarly to what
done above, we use that zne

2i
h
η·z = h

2i∂ηne
2i
h
η·z in J0,tz, and successively integrate by parts in

dηn: as 2−kh ≤ 1, we obtain that J0,tz has the same form as (1.2.47) for some new bq−N , ψ̃, and
verifies (1.2.48). Finally, using that xn + tzn = h

1
2
−σ( (xn+tzn)|ξ|−ξn

h1/2−σ

)
|ξ|−1 + ξn|ξ|−1, we derive

that

J0,x+tz(x, ξ)

=
∑
i≤N

hN−(i−1)( 1
2
−σ)

∫
e

2i
h
η·z
∫ (

γi

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp+i−1(ξ)

)
|(x+tz,ξ)f(t)dt

× bq−N (ξ + η)ψ̃(2−k(ξ + η))dzdη,

+
∑
i≤N

hN−i(
1
2
−σ)

∫
e

2i
h
η·z
∫ (

γ1+i

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp+i(ξ)

)
|(x+tz,ξ)f(t)dt

× bq−N (ξ + η)ψ̃(2−k(ξ + η))dzdη,

so by propositions 1.2.28 and 1.2.31

‖Opwh (J0,x+tz(x, ξ))‖L(L2) .
∑
i≤N

hN−i(
1
2
−σ)2k(p+i+q−N) . hp+q,

‖Opwh (J0,x+tz(x, ξ))‖L(L2;L∞) .
∑

i≤N,l≤3

hN−i(
1
2
−σ)2k(p+i+q−N)(h−

1
2

+σ2k)l(h−12k) . hp+q.

That concludes the proof as r̃kN,p = J0,x+tz + J0,tz + J0,y + J1.

We introduce the following operator:

(1.2.49) Mj :=
1

h
Opwh (xj |ξ| − ξj), j = 1, 2

and use the notation ‖Mγw‖ = ‖Mγ1
1 M

γ2
2 w‖ for any γ = (γ1, γ2) ∈ N2. We have now all the

ingredients to state and prove the following two results.

Lemma 1.2.33. Let σ, k, p, ψ, a be as in lemma 1.2.32 and ã(x) such that

(a ≡ 1)⇒ (ã ≡ 1),

(a compactly supported )⇒ [(ã ≡ 1) or (ã compactly supported and ãa ≡ a)].

We have that

(1.2.50) Opwh

(
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)(xn|ξ| − ξn)

)
= Opwh

(
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

)
ã(x)hMn + Opwh (rkp(x, ξ)),
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where

(1.2.51a)
∥∥Opwh (rkp(x, ξ))w

∥∥
L2 . h

1−β‖w‖L2 ,

(1.2.51b)
∥∥Opwh (rkp(x, ξ))w

∥∥
L∞
. h

1
2
−β(‖w‖L2 + ‖θ0Ωhw‖L2),

for some θ ∈ C∞0 (R2 \ {0}) and a small β > 0, β → 0 as σ → 0. Moreover

(1.2.52a)
∥∥∥Opwh

(
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)(xn|ξ| − ξn)

)
w
∥∥∥
L2
. h1−β(‖w‖L2 + ‖Mnw‖L2

)
,

(1.2.52b)
∥∥∥Opwh

(
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)(xn|ξ| − ξn)

)
w
∥∥∥
L∞

. h
1
2
−β

1∑
µ=0

(
‖(θ0Ωh)µw‖L2 + ‖(θ0Ωh)µMnw‖L2

)
.

Proof. The proof of the statement is basically made of tedious calculations and the application
of propositions 1.2.27, 1.2.30 along with lemma 1.2.32.

Let ψ̃ ∈ C∞0 (R2 \ {0}) such that ψ̃ ≡ 1 on the support of ψ. From formulas (1.2.18), (1.2.19)
and the hypothesis of the statement we derive that for a fixed N ∈ N, and up to negligible
multiplicative constants,

[
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

]
]
[
(xn|ξ| − ξn)ã(x)ψ̃(2−kξ)

]
= γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)(xn|ξ| − ξn)

+ h

{
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ), (xn|ξ| − ξn)

}
+

∑
2≤|α|<N
|α1|+|α2|=|α|

h|α|∂α1
x ∂α2

ξ

[
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

]
∂α2
x ∂α1

ξ

[
(xn|ξ| − ξn)

]
+ rkN,p(x, ξ),

(1.2.53)

with

(1.2.54)

rkN,p(x, ξ) =
hN

(πh)4

∑
|α1|+|α2|=N

∫
e

2i
h (η·z−y·ζ)

[∫ 1

0

∂α1
x ∂α2

ξ

[
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

]
|(x+tz,ξ+tζ)

× (1− t)N−1dt
]
∂α2
x ∂α1

ξ

[
(xn|ξ| − ξn)ã(x)ψ̃(2−kξ)

]
|(x+y,ξ+η) dydzdηdζ .

If ã ≡ 1 above rkN,p can be decomposed into the sum of integrals of the form (1.2.44) and (1.2.45)
with q = 1, so

(1.2.55)
∥∥∥Opwh (rkN,p)

∥∥∥
L(L2)

+
∥∥∥Opwh (rkN,p)

∥∥∥
L(L2;L∞)

. h1+p

if N is taken sufficiently large (e.g. N > 2p+11). The same is true if functions a, ã are compactly
supported as follows by propositions 1.2.28 and 1.2.31, since from lemma 1.2.26 and definition
(1.2.30) of Ikp,q for general k ∈ K, p, q ∈ Z

rkN,p(x, ξ) =
∑

|α1|+|α2|=N
i≤|α1|,1≤j≤|α2|

hN−(i+j)( 1
2
−σ)Ikp+i+j−|α2|,1−|α1|(x, ξ).
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An explicit computation of the Poisson bracket in (1.2.53) shows that it is equal to

(1.2.56) h(∂γ1)
(x|ξ| − ξ
h1/2−σ

)(x1ξ2 − x2ξ1

h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

+
∑′

hγ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ),

where
∑′ is a concise notation to indicate a linear combination, and ψ, a, bp are some new

functions with the same features of their homonyms. After writing

(1.2.57) (x1ξ2 − x2ξ1) = (x1|ξ| − ξ1)ξ2|ξ|−1 − (x2|ξ| − ξ2)ξ1|ξ|−1,

we recognize that the quantization of (1.2.56) verifies estimates (1.2.51) thanks to propositions
1.2.27, 1.2.30 and the fact that 2kp ≤ h−σp.
Let us denote concisely by tkα the |α|-order contributions in (1.2.53), for 2 ≤ |α| < N . As factor
xn|ξ| − ξn is affine in xn, the length of multi-index α2 is less or equal than 1 and, using lemma
1.2.26, tkα appears to be the sum of two terms. The first one corresponds to |α2| = 0 and has the
form ∑

i≤|α|
µ=0,1

′
h|α|−i(

1
2
−σ)γ1+i

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp+i+1−|α|(ξ)x

µ
n,

for some new functions ψ, a. Observe that µ = 0 if a ≡ 1 because the derivation of γ1

( x|ξ|−ξ
h1/2−σ

)
|α1|-times with respect to x makes appear, inter alia, a factor |ξ||α1| that allows us to rewrite
∂α1
ξ (xn|ξ|−ξn) from (xn|ξ|−ξn)+b0(ξ), for some new b0, and ∂α1

z γ1(z)zn is of the form γ|α1|(z)).
The second term, corresponding instead to |α2| = 1, is given by

∑
i≤|α|−1,j≤1

′
h|α|−(i+j)( 1

2
−σ)γ1+i+j

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp+i+j+1−|α|(ξ),

for some new other functions ψ, a. From propositions 1.2.27, 1.2.30 we then deduce that

‖Opwh (tkα)w‖L2 . (h
|α|
2
−β + h1+p)‖w‖L2 ,(1.2.58a)

‖Opwh (tkα)w‖L∞ . (h
|α|−1

2
−β + h

1
2

+p)(‖w‖L2 + ‖θΩhw‖L2),(1.2.58b)

which concludes that[
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

]
]
[
(xn|ξ| − ξn)ã(x)ψ̃(2−kξ)

]
= γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)(xn|ξ| − ξn) + rkp(x, ξ),

with rkp satisfying (1.2.51).

Finally, by symbolic calculus we have that, up to some multiplicative constants,

Opwh
(
(xn|ξ| − ξn)ã(x)ψ̃(2−kξ)

)
= ã(x)Opwh

(
(xn|ξ| − ξn)ψ̃(2−kξ)

)
+ Opwh (rk(x, ξ))

= Opwh (ψ̃(2−kξ))ã(x)hMn + hã(x)Opwh ((∂ψ̃)(2−kξ)(2−k|ξ|))
+ Opwh (r̃k(x, ξ))hMn + Opwh (rk(x, ξ)),
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where

rk(x, ξ) =
h

(2π)2

∫
e

2i
h
η·z
∫
∂xã(x+ tz)dt ∂ξ

[
(xn|ξ| − ξn)ψ̃(2−kξ)

]
|(x,ξ+η)dzdη,

r̃k(x, ξ) =
h2−k

(2π)2

∫
e

2i
h
η·z
∫
∂xã(x+ tz)dt (∂ξψ̃)(2−k(ξ + η))dzdη,

are such that ‖Opwh (rk1)‖L(L2) = O(h), ‖Opwh (r̃k1)‖L(L2) = O(1). An explicit computation shows
also that ‖[Ωh,Opwh (rk)]‖L(L2) = O(h) and ‖[Ωh,Opwh (r̃k)]‖L(L2) = O(1). Therefore, since ψ̃ ≡ 1
on the support of ψ, ã ≡ 1 on the support of a, one can use remark 1.2.22 together with
propositions 1.2.28, 1.2.31, and also propositions 1.2.27, 1.2.30, to show that

Opwh

(
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

)
Opwh

(
(xn|ξ| − ξn)ã(x)ψ̃(2−kξ)

)
= Opwh

(
γ1

(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

)
ã(x)hMn + Opwh (rkp(x, ξ)),

for a new Opwh (rkp(x, ξ)) satisfying (1.2.51a). This concludes the proof of (1.2.50) and of the
entire statement by applying propositions 1.2.27, 1.2.30 to the first operator in the above right
hand side.

Lemma 1.2.34. Let σ > 0 be small, k ∈ K with K given by (1.2.23) and p ∈ N. Let also
γ ∈ C∞0 (R2) be equal to 1 in a neighbourhood of the origin, ψ ∈ C∞0 (R2 \ {0}), and a ∈ C∞0 (R2).
For any function w ∈ L2(R2) such that Mw ∈ L2(R2), any m,n = 1, 2, we have that

Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)(xm|ξ| − ξm)(xn|ξ| − ξn)

)
w

= Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)(xm|ξ| − ξm)

)
[hMnw] +OL2

(
h2−β(‖w‖L2 + ‖Mw‖L2)

)
,

with β > 0 small, β → 0 as σ → 0.

Proof. Let γ̃(z) := γ(z)zm and ψ̃ ∈ C∞0 (R2 \ {0}) be identically equal to 1 on the support of ψ.
We saw in the proof of the previous lemma that the symbolic product[

γ̃
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)

]
][(xn|ξ| − ξn)ψ̃(2−kξ)]

develops as in (1.2.53), (1.2.54), with γ1 replaced with γ̃ and ã ≡ 1. From (1.2.56), the fact that

{xm|ξ| − ξm, xn|ξ| − ξn} =

{
0 if m = n,

(−1)m+1(x1ξ2 − ξ2x1) if m 6= n,

and that (x1ξ2 − ξ2x1) = (x1|ξ| − ξ1)ξ2|ξ|−1 − (x2|ξ| − ξ2)ξ1|ξ|−1, we derive that the first order
term of the mentioned symbolic development is a linear combination of products of the form

h
3
2γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)(xj |ξ| − ξj),

for some new functions γ, ψ, a, and its quantization acting on w is a remainder as in the statement
after estimate (1.2.52a).
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The second order term is given, up to some negligible multiplicative constants, by

h1+2σ
∑
|α|=2

(∂αγ)
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a1(x)bp+1(ξ)(xm|ξ| − ξm)

+ h
3
2

+σ
∑
|α|=1

(∂αγ)
(x|ξ| − ξ
h1/2−σ

)
ψ2(2−kξ)a2(x)bp+1(ξ)

+ h2
∑′

γ
(x|ξ| − ξ
h1/2−σ

)
ψ3(2−kξ)a3(x)bp+1(ξ),

for some new smooth compactly supported ψ2, ψ3, a1, a2, a3, and as the derivatives of γ vanish in
a neighbourhood of the origin we can replace (∂αγ)(z) with

∑
j γ

j
1(z)zj , γ1

j (z) := (∂αγ)(z)zj |z|−2,
when |α| = 1. The third order one is given by

h
3
2

+3σ
∑
|α|=3

(∂αγ)
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a1(x)bp+1(ξ)(xm|ξ| − ξm)

+ h2
∑′

γ1

(x|ξ| − ξ
h1/2−σ

)
ψ1(2−kξ)a2(x)bp+1(ξ),

for some other ψ1, a1, a2 and a new γ1 ∈ C∞0 (R2). Using estimate (1.2.52a) for the summations
in α and proposition 1.2.27 for the remaining terms in the above expressions we obtain that the
quantizations of the second and third order term are also a OL2

(
h2−β(‖w‖L2 + ‖Mw‖L2)

)
when

acting on w, for a small β > 0, β → 0 as σ → 0.

In all the other |α|-order terms, with 4 ≤ |α| ≤ N − 1, and in integral remainder rkN,p, we look
at γ

( x|ξ|−ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)(xm|ξ| − ξm) as a symbol of the form

γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp+1(ξ)

for a new a1 ∈ C∞0 (R2). From (1.2.58a) and (1.2.55) when N > 11, we derive that the quanti-
zations of these terms are also a OL2

(
h2−β(‖w‖L2 + ‖Mw‖L2)

)
when acting on w.

We finally obtain that

Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)(xm|ξ| − ξm)(xn|ξ| − ξn)

)
w

= Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)a(x)bp(ξ)(xm|ξ| − ξm)

)
Opwh

(
(xn|ξ| − ξn)ψ̃(2−kξ)

)
+OL2

(
h2−β(‖w‖L2 + ‖Mw‖L2)

)
,

and the conclusion of the proof comes then from the fact that, by symbolic calculus,

Opwh
(
(xn|ξ| − ξn)ψ̃1(2−kξ)

)
= hOpwh (ψ̃1(2−kξ))Mn −

h

2i
Opwh

(
(∂ψ̃1)(2−kξ) · (2−kξ)

)
,

and by remark 1.2.22 as all derivatives of ψ̃ vanish on the support of ψ.

The following lemma is introduced especially for the proof of lemma 3.2.13. Even if quite similar
to lemma 1.2.33, we are going to see that the particular structure of symbolic product in the
left hand side of (1.2.59) allows for a remainder rkp satisfying enhanced estimate (1.2.60b) rather
than (1.2.51b).
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Lemma 1.2.35. Let us take σ > 0 sufficiently small, k ∈ K and p, q ∈ N. Let also γ ∈ C∞0 (R2)

such that γ ≡ 1 in a neighbourhood of the origin, ψ, ψ̃ ∈ C∞0 (R2 \ {0}) such that ψ ≡ 1 on the
support of ψ̃, a(x) be a smooth compactly supported function. Then

(1.2.59)
[
(xn|ξ| − ξn)ψ̃(2−kξ)a(x)bp(ξ)

]
]
[
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)

]
= γ

(x|ξ| − ξ
h1/2−σ

)
ψ̃(2−kξ)a(x)bp(ξ)(xn|ξ| − ξn) + rkp(x, ξ),

where

(1.2.60a)
∥∥∥Opwh (rkp(x, ξ))w

∥∥∥
L2
. h

3
2
−β(‖w‖L2 + ‖Mw‖L2) + h1+p‖w‖L2 ,

(1.2.60b)
∥∥∥Opwh (rkp(x, ξ))w

∥∥∥
L∞
. h1−β

1∑
µ=0

(
‖(θ0Ωh)µw‖L2 + ‖(θ0Ωh)µMw‖L2

)
,

for some θ ∈ C∞0 (R2 \ {0}), and a small β > 0, β → 0 as σ → 0.

Proof. Using proposition 1.2.21, for a fixedN ∈ N and up to multiplicative constants independent
of h, k, we have the following symbolic development:

[
(xn|ξ| − ξn)ψ̃(2−kξ)a(x)bp(ξ)

]
]
[
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)

]
= γ

(x|ξ| − ξ
h1/2−σ

)
ψ̃(2−k)a(x)bp(ξ)(xn|ξ| − ξn)

+ h

{
(xn|ξ| − ξn)ψ̃(2−kξ)a(x)bp(ξ), γ

(x|ξ| − ξ
h1/2−σ

)}
+

∑
α=(α1,α2)
2≤|α|<N

h|α|∂α1
x ∂α2

ξ

[
(xn|ξ| − ξn)ψ̃(2−kξ)a(x)bp(ξ)

]
∂α2
x ∂α1

ξ

[
γ
(x|ξ| − ξ
h1/2−σ

)]
+ rkN,p(x, ξ),

(1.2.61)

with

rkN,p(x, ξ) =
hN

(πh)4

∑
|α1|+|α2|=N

∫
e

2i
h (η·z−y·ζ)

[∫ 1

0

∂α1
x ∂α2

ξ

[
(xn|ξ| − ξn)a(x)bp(ξ)ψ̃(2−kξ)

]
|(x+tz,ξ+tζ)

× (1− t)N−1dt
]
∂α2
x ∂α1

ξ

[
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)

]
|(x+y,ξ+η) dydzdηdζ.

For sake of simplicity, we denote by tk1 (resp. tkα, |α| = 2, . . . , N − 1) the Poisson brackets (resp.
the |α|-th contribution) in (1.2.61). An explicit computation of tk1, combined with the fact that
x1ξ2−x2ξ1 = (x1|ξ|−ξ1)ξ2|ξ|−1−(x2|ξ|−ξ2)ξ1|ξ|−1, shows that it is linear combination of terms
of the form

h(∂γ)
(x|ξ| − ξ
h1/2−σ

)(xj |ξ| − ξj
h1/2−σ

)
ψ̃(2−kξ)a(x)bp(ξ),

for j ∈ {1, 2} and some new functions ψ̃, a, bp, so by inequalities (1.2.52) we derive that

(1.2.62a)
∥∥∥Opwh (tk1)w

∥∥∥
L2
. h

3
2
−β (‖w‖L2 + ‖Mw‖L2) ,
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(1.2.62b)
∥∥∥Opwh (tk1)w

∥∥∥
L∞
. h1−β

1∑
µ=0

(‖(θ0Ωh)µw‖L2 + ‖(θ0Ωh)µMw‖L2).

The improvement of these estimates with respect to (1.2.51) is attributable to the choice of
ψ identically equal to 1 on the support of ψ̃. All derivatives of ψ vanish against ψ̃, so in the
development of tk1 we avoid terms like γ

(x|ξ|−ξ|
h1/2−σ

)
ψ̃(2−kξ)a(x)bp(ξ)(∂ψ)(2−kξ)(2−k|ξ|), coming out

from {xn|ξ| − ξn, ψ(2−kξ)}γ
(x|ξ|−ξ|
h1/2−σ

)
ψ̃(2−kξ)a(x)bp(ξ), that do not enjoy estimates like (1.2.62).

Using formula (1.2.25) and looking at (xn|ξ| − ξn)ψ̃(2−kξ)a(x)bp(ξ) as a linear combination of
terms ψ̃(2−kξ)a(x)bp+1(ξ), for some new ψ̃, a, bp+1, we realize that, for any 2 ≤ |α| < N ,

tkα =
∑

|α1|+|α2|=|α|
1≤j≤|α1|

h|α|−(j+|α2|)( 1
2
−σ)γj+|α2|

(x|ξ| − ξ
h1/2−σ

)
ψ̃(2−kξ)aj(x)bp+j+1−|α1|(ξ),

for some new other ψ̃, aj , with aj compactly supported, and then that

‖Opwh (tkα)w‖L2 .
∑

|α1|+|α2|=|α|
1≤j≤|α1|

h|α|−(j+|α2|)( 1
2
−σ)2k(p+j+1−|α1|)‖w‖L2 ,

‖Opwh (tkα)w‖L∞

.
∑

|α1|+|α2|=|α|
1≤j≤|α1|

h|α|−(j+|α2|)( 1
2
−σ)2k(p+j+1−|α1|)h−

1
2
−σ

1∑
µ=0

(‖(θ0Ωh)µw‖L2 + ‖(θ0Ωh)µMw‖L2),

after propositions 1.2.27, 1.2.30. For |α| ≥ 3, the above estimates imply ‖Opwh (tkα)‖L(L2) . h
3
2
−β

and ‖Opwh (tkα)w‖L∞ . h1−β∑1
µ=0(‖(θ0Ωh)µw‖L2 + ‖(θ0Ωh)µMw‖L2). For |α| = 2, we exploit

the fact that functions γj+|α2| vanish in a neighbourhood of the origin, as they come from γ’s
derivatives, and define γij+|α2|(z) := γj+|α2|(z)zi|z|−2, i = 1, 2, so that

tkα =
∑

|α1|+|α2|=|α|
1≤j≤|α1|,i=1,2

h|α|−(j+|α2|)( 1
2−σ)γij+|α2|

(x|ξ| − ξ
h1/2−σ

)(xi|ξ| − ξi
h1/2−σ

)
ψ̃(2−kξ)aj(x)bp+j+1−|α1|(ξ),

to which we can then apply lemma 1.2.33. After inequalities (1.2.52), Opwh (tkα) with |α| = 2 also
satisfies (1.2.62).

Finally, reminding definition (1.2.31) of Jkp,q(x, ξ) for general k ∈ K, p, q ∈ Z, and developing
derivatives in rkN,p using lemma 1.2.26, we observe that

rkN,p =
∑

|α1|+|α2|=N
0≤j≤|α1|

hN−(|α2|+j)( 1
2
−σ)Jkp+1−|α2|,|α2|+j−|α1|(x, ξ),

hence propositions 1.2.28 and 1.2.31 give that

‖Opwh (rkN,p)‖L(L2) .
∑

|α1|+|α2|=N
0≤j≤|α1|

hN−(|α2|+j)( 1
2
−σ)2k(p+1+j−|α1|) . h1+p,

‖Opwh (rkN,p)‖L(L2;L∞) .
∑

|α1|+|α2|=N
0≤j≤|α1|,i≤6

hN−(|α2|+j)( 1
2
−σ)2k(p+1+j−|α1|)(h−

1
2

+σ2k)i(h−12k) . h1+p,
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if N is chosen sufficiently large (e.g. N > 10 + 2p). We should also highlight the fact that, at
the difference of (1.2.60b), (1.2.60a) does not improve (1.2.51a): if we get a h

3
2
−β factor in front

of the first term in the right hand side, the second term h1+p‖w‖L2 is just a O(h1−β) in the case
p = 0, coming from |α1| = N , j = |α2| = 0, p = 0 above.

1.2.4 Operators for the Klein-Gordon solution: some estimates

This subsection is mostly devoted to the introduction of some symbols and operators, along
with their properties, that we will often use in the paper when dealing with the Klein-Gordon
component of the solution to starting system (1.1.1). From now on we will use the notation
p(ξ) :=

√
1 + |ξ|2 (thus, p′(ξ) denotes the gradient of p(ξ), p′′(ξ) = (∂2

ijp(ξ))ij the 2× 2 Hessian
matrix of p(ξ)).

Proposition 1.2.36 is a general result about continuity on spacesHs
h(R2) of operators with symbols

of order r ∈ R and generalises theorem 7.11 in [8]. Proposition 1.2.37 is a result of continuity
from L2 to Hρ,∞

h of a particular class of operators that will act on the Klein-Gordon component.
In the spirit of [14] for the Schrödinger equation, it allows to pass from uniform norms to the
L2 norm losing only a power h−

1
2
−β for a small β > 0 instead of a h−1 as for the semi-classical

Sobolev injection. Proposition 1.2.39 is, instead, a result of uniform Lp − Lp continuity of such
operators, for every 1 ≤ p ≤ +∞.

Proposition 1.2.36 (Continuity on Hs
h). Let s ∈ R. Let a ∈ Sδ,σ(〈ξ〉r), r ∈ R, δ ∈ [0, 1

2 ], σ ≥ 0.
Then Opwh (a) is uniformly bounded : Hs

h(R2) → Hs−r
h (R2) and there exists a positive constant

C independent of h such that

‖Opwh (a)‖L(Hs
h;Hs−r

h ) ≤ C , ∀h ∈]0, 1] .

Proposition 1.2.37 (Continuity from L2 to Hρ,∞
h ). Let ρ ∈ N. Let a ∈ Sδ,σ(〈x−p

′(ξ)√
h
〉−1),

δ ∈ [0, 1
2 ], σ > 0. Then Opwh (a) is bounded : L2(R2) → Hρ,∞

h (R2) and there exists a positive
constant C independent of h such that

‖Opwh (a)‖L(L2;Hρ,∞
h ) ≤ Ch−

1
2
−β , ∀h ∈]0, 1] ,

where β > 0 depends linearly on σ.

Proof. We first remark that, after definition 1.2.18 (i) of the Hρ,∞
h norm,

‖Opwh (a)w‖Hρ,∞
h

= ‖〈hDx〉ρOpwh (a)w‖L∞ ,

and that, by symbolic calculus of lemma 1.2.24, 〈ξ〉ρ]a(x, ξ) belongs to Sδ,σ(〈ξ〉ρ
〈x−p′(ξ)√

h

〉−1
) ⊂

h−ρσSδ,σ(
〈x−p′(ξ)√

h

〉−1
). This means that estimating the Hρ,∞

h norm of an operator whose symbol
is rapidly decaying in |hσξ| corresponds actually to estimate the L∞ norm of an operator asso-
ciated to another symbol (namely, ã(x, ξ) = 〈ξ〉ρ]a(x, ξ)) which is still in the same class as a, up
to a small loss h−ρσ.

From definition 1.2.17 (i) of Opwh (a)w, and using a change of coordinates y 7→
√
hy, ξ 7→

√
hξ,

integration by part, Cauchy-Schwarz inequality, and Young’s inequality for convolutions, we
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derive what follows:

|Opwh (a)w| =

=

∣∣∣∣∣ 1

(2π)2

∫ ∫
e
i( x√

h
−y)·ξ

a
(x+

√
hy

2
,
√
hξ
)
w(
√
hy) dydξ

∣∣∣∣∣
=

∣∣∣∣∣ 1

(2π)4h

∫
ŵ
( η√

h

)
dη

∫ ∫
e
i( x√

h
−y)·ξ+iη·y

a
(x+

√
hy

2
,
√
hξ
)
dydξ

∣∣∣∣∣
=

∣∣∣∣∣∣ 1

(2π)4h

∫
ŵ
( η√

h

)∫ ∫ (1− i
(
x√
h
− y
)
· ∂ξ

1 + | x√
h
− y|2

)3(
1 + i(ξ − η) · ∂y

1 + |ξ − η|2

)3

e
i( x√

h
−y)·ξ+iη·y

× a
(x+

√
hy

2
,
√
hξ
)
dydξdη

∣∣∣∣∣
.

1

h

∫ ∣∣∣∣ŵ( η√
h

)∣∣∣∣ ∫ ∫ 〈 x√
h
− y
〉−3
〈ξ − η〉−3〈hσ

√
hξ〉−N

〈 x+
√
hy

2 − p′(
√
hξ)

√
h

〉−1
dydξdη

.
1

h

∥∥∥∥ŵ( ·√h
)∥∥∥∥

L2

‖〈η〉−3‖L1(η)

∥∥∥∥∥
∫ 〈 x√

h
− y
〉−3
〈hσ
√
hξ〉−N

〈 x+
√
hy

2 − p′(
√
hξ)

√
h

〉−1
dy

∥∥∥∥∥
L2(dξ)

. h−
1
2 ‖w‖L2

∫ 〈
x√
h
− y
〉−3 ∥∥∥〈hσ√hξ〉−N〈 x+

√
hy

2 − p′(
√
hξ)

√
h

〉−1∥∥∥
L2(ξ)

dy ,

(1.2.63)

where N > 0 will be properly chosen later. We draw attention to two facts: in the third equality
in (1.2.63) we use that

(
1− i( x√

h
− y) · ∂ξ

1 + ( x√
h
− y)2

)3(
1 + i(ξ − η) · ∂y

1 + (ξ − η)2

)3 [
e
i( x√

h
−y)·ξ+iη·y

]
= e

i( x√
h
−y)·ξ+iη·y

so, integrating by part, derivatives ∂y, ∂ξ fall on 〈 x√
h
− y〉−1, 〈ξ − η〉−1 (giving rise to more

decreasing factors) and/or on a
(
x+
√
hy

2 ,
√
hξ
)
; symbol a belongs to Sδ,σ(1) with δ ≤ 1

2 , but the

loss of h−δ is offset by the factor
√
h coming from the derivation of a(x+

√
hy

2 ,
√
hξ) with respect

to y and ξ.

In order to estimate
∥∥〈hσ√hξ〉−N〈 x+√hy2

−p′(
√
hξ)√

h

〉−1∥∥
L2
ξ
we first introduce a smooth cut-off func-

tion χ(x+
√
hy

2 ), with χ supported in some ball BC(0), to distinguish between the case when x+
√
hy

2

is bounded from the one where |x+
√
hy

2 | → +∞. In the latter situation, say for |x+
√
hy

2 | > 2, we

have
〈 x+√hy

2
−p′(
√
hξ)√

h

〉−1
.
√
h and

∣∣∣(1− χ)
(x+

√
hy

2

)∣∣∣∥∥∥〈hσ√hξ〉−N〈 x+
√
hy

2 − p′(
√
hξ)

√
h

〉−1∥∥∥
L2(dξ)

. h−σ.

On the other hand, when x+
√
hy

2 is bounded we consider a Littlewood-Paley decomposition and
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write

∥∥∥∥∥〈hσ√hξ〉−N〈 x+
√
hy

2 − p′(
√
hξ)

√
h

〉−1
∥∥∥∥∥

2

L2(ξ)

= h−1
∑
k≥0

∫
〈hσξ〉−2N

〈 x+
√
hy

2 − p′(ξ)
√
h

〉−2
ϕk(ξ)dξ

= h−1
∑
k≥0

Ik

(1.2.64)

where

I0 =

∫
〈hσξ〉−2N

〈 x+
√
hy

2 − p′(ξ)
√
h

〉−2
ϕ0(ξ)dξ

and

Ik =

∫
〈hσξ〉−2N

〈 x+
√
hy

2 − p′(ξ)
√
h

〉−2
ϕ(2−kξ)dξ

= 22k

∫
〈hσ2kξ〉−2N

〈 x+
√
hy

2 − p′(2kξ)
√
h

〉−2
ϕ(ξ)dξ

. 2(−2N+2)kh−2σN

∫ 〈 x+
√
hy

2 − p′(2kξ)
√
h

〉−2
ϕ(ξ)dξ .

k ≥ 1(1.2.65)

For a fixed k0 and any k ≤ k0, |det(p′′(2kξ))| ≥ C > 0 on the support of ϕ. For k ≥ k0, function
ξ → gk(ξ) = 23k(x+

√
hy

2 ) − 23kp′(2kξ) is such that det(g′k(ξ)) = 24k

(1+|2kξ|2)2
and |det(g′k(ξ))| ∼ 1

on the support of ϕ. We may thus split the dξ integral in a finite number (independent of
k) of integrals, computed on compact domains, on which ξ 7→ gk(ξ) is a change of variables
with Jacobian of size 1. We are then reduced to estimate 2(−2N+2)kh−2σN

∫
|z|≤C〈

z+gk(ξ0)

23k
√
h
〉−2dz,

where C is a positive constant and ξ0 is in suppϕ. Since we assumed that x+
√
hy

2 is bounded,
|gk(ξ0)| = O(23k) and we get

Ik . 2(−2N+2)kh−2σN

∫
|z|.23k

〈 z

23k
√
h

〉−2
dz

. 2(−2N+8)kh−2σNh

∫
|z|.h−1/2

〈z〉−2dz

. 2(−2N+8)kh−2σN+1 log(h−1) .

Taking the sum of all Ik for k ≥ 0 we then deduce that∥∥∥∥∥〈hσ√hξ〉−N〈 x+
√
hy

2 − p′(
√
hξ)

√
h

〉−1
∥∥∥∥∥
L2(ξ)

. h−σN−δ
(∑
k≥0

2(−2N+8)k
) 1

2
. h−σN−δ ,

for δ > 0 as small as we want, if we choose N > 0 such that −2N + 8 < 0 (e.g. N = 5). Finally

‖Opwh (a)‖L(L2;Hρ,∞
h ) = O(h−

1
2
−β) ,

where β(σ) = (N + ρ)σ + δ.

The following lemma is as simple as useful and will be largely recalled from subsection 3.2.1 on.
It is also useful to introduce now the following manifold

(1.2.66) Λkg := {(x, ξ) ∈ R2 × R2 : x− p′(ξ) = 0}

which appears to be the graph of function ξ = −dφ(x), with φ(x) =
√

1− |x|2 (see picture 3.1).
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Lemma 1.2.38. Let γ, χ ∈ C∞0 (R2) be equal to 1 in a neighbourhood of the origin and with
sufficiently small support, and σ > 0 be small. There exists a family of smooth functions θh(x),
real valued, equal to 1 for |x| ≤ 1− ch2σ and supported for |x| ≤ 1− c1h

2σ, for some 0 < c1 < c,
with ‖∂αθh‖L∞ = O(h−2|α|σ) and (h∂h)kθh bounded for every k ∈ N, such that

(1.2.67) γ

(
x− p′(ξ)√

h

)
χ(hσξ) = θh(x)γ

(
x− p′(ξ)√

h

)
χ(hσξ).

Proof. Straightforward after observing that function γ
(x−p′(ξ)√

h

)
χ(hσξ) is localized around man-

ifold Λkg, meaning that its support is included in {(x, ξ)||ξ| . h−σ, |x| ≤ 1 − ch2σ}, for a small
c > 0.

Proposition 1.2.39 (Continuity from Lp to Lp). Let γ, χ ∈ C∞0 (R2) be equal to 1 in a neigh-
bourhood of the origin and with sufficiently small support, Σ(ξ) = 〈ξ〉ρ with ρ ∈ N, and σ > 0.
Then Opwh

(
γ
(x−p′(ξ)√

h

)
χ(hσξ)Σ(ξ)

)
: Lp → Lp is bounded and its L(Lp) norm is estimated by

h−σρ−β, for a small β > 0, β → 0 as σ → 0, for every 1 ≤ p ≤ +∞.

Proof. From lemma 1.2.38 and the fact that γ
(
x−p′(ξ)√

h

)
χ(hσξ) is supported in a neighbourhood

of Λkg introduced above, we can find a new smooth cut-off function γ1, suitably supported, so
that

Opwh

(
γ

(
x− p′(ξ)√

h

)
χ(hσξ)Σ(ξ)

)
= Opwh

(
γ

(
x− p′(ξ)√

h

)
χ(hσξ)Σ(ξ)γ1

(ξ + dφ(x)

h1/2−β

)
θh(x)

)
where β > 0 is a small constant, β → 0 as σ → 0, that takes into account the degeneracy of
the equivalence between the two equations of Λkg when approaching the boundary of suppθh.
Denoting γ

(
x−p′(ξ)√

h

)
χ(hσξ)Σ(ξ) concisely by A(x, ξ) and looking at the kernel associated to the

above operator

K(x, y) :=
1

(2πh)2

∫
e
i
h

(x−y)·ξA

(
x+ y

2
, ξ

)
γ1

(ξ + dφ(x+y
2 )

h1/2−β

)
θh

(x+ y

2

)
dξ

=
e−

i
h

(x−y)·dφ(x+y
2

)

(2πh)2
θh

(x+ y

2

)∫
e
i
h

(x−y)·ξA

(
x+ y

2
, ξ − dφ

(x+ y

2

))
γ1

( ξ

h1/2−β

)
dξ,

we observe that, since ( x√
h

)α
e
i
h

(x−y)·ξ =
(√h
i

)|α|
∂αξ e

i
h

(x−y)·ξ

and h|α|/2∂αξ A(x+y
2 , ξ) is bounded by h−σρ for any α ∈ N2, by making some integration by parts∣∣∣∣( x√

h

)α
K(x, y)

∣∣∣∣ . h−2−σρ
∫
|ξ|.h1/2−β

dξ . h−1−σρ−2β, ∀(x, y) ∈ R2 × R2.

This means in particular that

|K(x, y)| . h−1−σρ−2β
〈 x√

h

〉−3
, |K(x, y)| . h−1−σρ−2β

〈 y√
h

〉−3
, ∀(x, y)

implying that

sup
x

∫
|K(x, y)|dy . h−σρ−2β, sup

y

∫
|K(x, y)|dx . h−σρ−2β.

The operator associated to K(x, y) is hence bounded on Lp with norm O(h−σρ−2β), for every
1 ≤ p ≤ +∞.
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The following lemma shows that we have nice upper bounds for operators whose symbol is
supported for large frequencies |ξ| ≥ h−σ, σ > 0, when acting on functions w that belong to Hs

h,
for some large s. We state it in space dimension 2 but it is clear that it holds true in general
space dimension d ≥ 1. This result is useful when we want to reduce to symbols rapidly decaying
in |hσξ|, for example in the intention of using proposition 1.2.37 or when we want to pass from a
symbol of a certain positive order to another one of order zero, up to small losses of order O(h−β),
β > 0 depending linearly on σ. We can always split a symbol using that 1 = χ(hσξ)+(1−χ)(hσξ),
for a smooth χ equal to 1 close to the origin, and consider as remainders all contributions coming
from the latter.

Lemma 1.2.40. Let s′ ≥ 0 and χ ∈ C∞0 (R2), χ ≡ 1 in a neighbourhood of zero. Then

‖Opwh ((1− χ)(hσξ))w‖
Hs′
h
≤ Chσ(s−s′)‖w‖Hs

h
, ∀s > s′ .

Proof. The result is a simple consequence of the fact that (1−χ)(hσξ) is supported for |ξ| & h−σ,
because

‖Opwh ((1− χ)(hσξ))w‖2
Hs′
h

=

∫
(1 + |hξ|2)s

′ |(1− χ)(hσhξ)|2|ŵ(ξ)|2dξ

=

∫
(1 + |hξ|2)s(1 + |hξ|2)s

′−s|(1− χ)(hσhξ)|2|ŵ(ξ)|2dξ

≤ Ch2σ(s−s′)‖w‖2Hs
h
,

where the last inequality follows from an integration on |hξ| & h−σ and from the fact that
s′ − s < 0, (1 + |hξ|2)s

′−s ≤ Ch−2σ(s′−s).

We introduce the following operator:

(1.2.68) Lj :=
1

h
Opwh (x− p′j(ξ)), j = 1, 2,

and use the notation ‖Lγw‖ = ‖Lγ11 L
γ2
2 w‖ for any γ = (γ1, γ2) ∈ N2.

Lemma 1.2.41. Let γ ∈ C∞0 (R2) be equal to 1 in a neighbourhood of the origin, c(x, ξ) ∈ Sδ,σ(1)

with δ ∈ [0, 1
2 [ and σ > 0. Then γ(x−p

′(ξ)√
h

)c(x, ξ) belongs to S 1
2
,σ(1)

(
〈x−p

′(ξ)√
h
〉−N

)
, for all N ≥ 0.

Proof. Straightforward.

Lemma 1.2.42. Let n ∈ N and γn(z) be a smooth function such that |∂αγn(z)| . 〈z〉−|α|−n for
all α ∈ N2. Let also c(x, ξ) ∈ Sδ,σ(1), with δ ∈ [0, 1

2 [, σ > 0, be supported for |ξ| . h−σ. Up to
some multiplicative constants independent of h, we have the following equality:

(1.2.69)
[
c(x, ξ)γn

(x− p′(ξ)√
h

)]
]
(
xj − p′j(ξ)

)
= c(x, ξ)γn

(x− p′(ξ)√
h

)(
xj − p′j(ξ)

)
+hγn

(x− p′(ξ)√
h

)[
(∂ξjc) + (∂xc) · (∂ξp′j)

]
+h

∑
|α|=2

(∂αγn)
(x− p′(ξ)√

h

)
c(x, ξ)(∂αξ p

′
j)(ξ) + r(x, ξ),

with r ∈ h3/2−δS 1
2
,σ

(
〈x−p

′(ξ)√
h
〉−n
)
, and if χ ∈ C∞0 (R2) is such that χ(hσξ) ≡ 1 on the support of

c(x, ξ),

(1.2.70a)
∥∥∥∥Opwh

(
c(x, ξ)γn

(x− p′(ξ)√
h

)
(xj − p′j(ξ))

)
ṽ

∥∥∥∥
L2

.
1∑
|γ|=0

h1−β‖Opwh (χ(hσξ))Lγ ṽ‖L2 ,
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(1.2.70b)
∥∥∥∥Opwh

(
c(x, ξ)γn

(x− p′(ξ)√
h

)
(xj − p′j(ξ))

)
ṽ

∥∥∥∥
L∞
.

1∑
|γ|=0

h
1
2
δn−β‖Opwh (χ(hσξ))Lγ ṽ‖L2 ,

where δn = 1 if n > 0, 0 otherwise, and β > 0 is small, β → 0 as δ, σ → 0.

Moreover, if n ∈ N∗ and ∂αγn vanishes in a neighbourhood of the origin whenever |α| ≥ 1, we
also have that

(1.2.71a)
∥∥∥∥Opwh

(
c(x, ξ)γn

(x− p′(ξ)√
h

)
(xi − p′i(ξ))(xj − p′j(ξ))

)
ṽ

∥∥∥∥
L2

.∑
0≤|γ|≤2

h2−β‖Opwh (χ(hσξ))Lγ ṽ‖L2 ,

(1.2.71b)
∥∥∥∥Opwh

(
c(x, ξ)γn

(x− p′(ξ)√
h

)
(xi − p′i(ξ))(xj − p′j(ξ))

)
ṽ

∥∥∥∥
L∞
.∑

0≤|γ|≤2

h
3
2
−β‖Opwh (χ(hσξ))Lγ ṽ‖L2 .

Proof. As c(x, ξ)γn
(
x−p′(ξ)√

h

)
∈ S 1

2
,σ

(
〈x−p

′(ξ)√
h
〉−n
)
and ∂αx,ξ(xj − p′j(ξ)) ∈ S0,0(1) for any |α| ≥ 1,

equality (1.2.69) follows from the last part of lemma 1.2.24 and symbolic development (1.2.18)
until order 2, after having observed that

(1.2.72)
{
c(x, ξ)γn

(x− p′(ξ)√
h

)
, xj − p′j(ξ)

}
= γn

(x− p′(ξ)√
h

)[
(∂ξjc) + (∂xc) · (∂ξp′j)

]
,

and that, up to some multiplicative negligible,

h2
∑
|α|=2

∂αx

[
c(x, ξ)γn

(x− p′(ξ)√
h

)]
(∂αξ p

′
j)(ξ) = h

∑
|α|=2

(∂αγn)
(x− p′(ξ)√

h

)
c(x, ξ)(∂αξ p

′
j)(ξ)

+ h
3
2

∑
|α|=2

|α1|,|α2|=1

(∂α1γn)
(x− p′(ξ)√

h

)
(∂α2
x c)(x, ξ)(∂αξ p

′
j)(ξ) + h2

∑
|α|=2

γn

(x− p′(ξ)√
h

)
(∂αx c)(x, ξ)(∂

α
ξ p
′
j)(ξ)

︸ ︷︷ ︸
∈h

3
2
−δS 1

2
,σ

(〈
x−p′(ξ)√

h

〉−n)
.

If χ is a cut-off function as in the statement, its derivatives vanish on the support of c(x, ξ), and
from remark 1.2.22

(1.2.73) c(x, ξ)γn

(x− p′(ξ)√
h

)
=

[
c(x, ξ)γn

(x− p′(ξ)√
h

)]
]χ(hσξ) + r∞(x, ξ)

with r∞ ∈ hNS 1
2
,σ(〈x−p

′(ξ)√
h
〉−n), N ∈ N as large as we want. Estimates (1.2.70) follow then as a

straight consequence of (1.2.69), definition (1.2.68) of Lj , proposition 1.2.36 and semi-classical
Sobolev’s injection (1.2.15) (resp. proposition 1.2.37) when n = 0 (resp. n > 0).

In order to prove the last part of the statement (estimates (1.2.71)) we use equality (1.2.69) with
γn replaced by γ̃n−1(z) = γn(z)zi, where |∂αγ̃n−1(z)| . 〈z〉−|α|−(n−1), which gives that

c(x, ξ)γn

(x− p′(ξ)√
h

)
(xi − p′i(ξ))(xj − p′j(ξ)) =

[
c(x, ξ)γn

(x− p′(ξ)√
h

)
(xi − p′i(ξ))

]
](xj − p′j(ξ))

−hγn
(x− p′(ξ)√

h

)
(xi − p′i(ξ))

[
(∂ξjc) + (∂xc) · (∂ξp′j)

]
−h

3
2

∑
|α|=2

(∂αγ̃n−1)
(x− p′(ξ)√

h

)
c(x, ξ)(∂αξ p

′
j)(ξ)−

√
hr(x, ξ),
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with r ∈ h
3
2
−δS 1

2
,σ

(
〈x−p

′(ξ)√
h
〉−(n−1)

)
. As ∂αγ̃n−1 vanishes in a neighbourhood of the origin for

|α| = 2 by the hypothesis made on γn, we can rewrite it as
∑2

l=1 γ̃
l
n+2(z)zl, where γ̃ln+2(z) :=

(∂αγ̃n−1)(z)zl|z|−2 is such that |∂β γ̃ln+2(z)| . 〈z〉−|β|−(n+2). Then, using again equality (1.2.69)
for all products different from r(x, ξ) in the above right hand side (with c replaced with hδ[(∂ξjc)−
(∂xc) · (∂ξp′j)] in the second addend, and γn and c replaced with γ̃ln+2 and c(∂αξ p

′
j) respectively

in the third one, l = 1, 2) we find that

c(x, ξ)γn

(x− p′(ξ)√
h

)
(xi − p′i(ξ))(xj − p′j(ξ)) =[

c(x, ξ)γn

(x− p′(ξ)√
h

)]
](xi − p′i(ξ))](xj − p′j(ξ)) + hr1(x, ξ)](xj − p′j(ξ))−

√
hr(x, ξ),

for a new r1 ∈ h−δS 1
2
,σ

(
〈x−p

′(ξ)√
h
〉−n
)
. Estimates (1.2.71) are then obtained using (1.2.73) and

propositions 1.2.36, 1.2.37).

We will also need the following result, which is detailed in lemma 1.2.6 in [7] for the one-
dimensional case.

Lemma 1.2.43. Let γ ∈ C∞0 (R2), and φ(x) =
√

1− |x|2. If the support of γ is sufficiently
small,

(xk − p′k(ξ))γ
(
〈ξ〉2(x− p′(ξ))

)
=

2∑
l=1

ekl (x, ξ)(ξl + dlφ(ξ)),(1.2.74a)

(ξk + dkφ(x))γ
(
〈ξ〉2(x− p′(ξ))

)
=

2∑
l=1

ẽkl (x, ξ)(xl − p′l(ξ)),(1.2.74b)

for any k = 1, 2, where functions ekl (x, ξ), ẽ
k
l (x, ξ) are such that, for any α, β ∈ N2,

|∂αx ∂
β
ξ e

k
l (x, ξ)| .αβ 〈ξ〉−3+2|α|−|β| ,(1.2.75a)

|∂αx ∂
β
ξ ẽ

k
l (x, ξ)| .αβ 〈ξ〉3+2|α|−|β| ,(1.2.75b)

for any k, l = 1, 2.
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Chapter 2

Energy Estimates

The aim of this chapter is to write an energy inequality for En(t;u±, v±) and Ek3 (t;u±, v±)
respectively, which allows us to propagate the a-priori energy estimates made in theorem 1.1.2,
i.e. to pass from (1.1.11) to (1.1.12c), (1.1.12d). Such an inequality is in general derived by
computing and estimating the derivative in time of the energy, i.e. of the L2 norm to the square
of uI±, vI±. As this computation makes use of the system of equations satisfied by (uI±, v

I
±) (see

(2.1.2)), two main difficulties arise due to the quasi-linear nature of the starting problem and the
very slow decay in time (1.1.11a) of the wave solution.

On the one hand, among all quadratic terms appearing in the right hand side of (2.1.2) we
find the quasi-linear ones Qw

0 (v±, D1v
I
±) and Qkg

0 (v±, D1u
I
±), whose L2 norm is bounded by

‖v±(t, ·)‖H1,∞(‖uI±(t, ·)‖H1 +‖vI±(t, ·)‖H1), as usual for this kind of terms. This means that they
are at the wrong energy level, in the sense that they cannot be controlled in L2 by En(t;u±, v±) or
Ek3 (t;u±, v±). This causes a "loss of derivatives" in the energy inequality if we roughly estimate

1

2
∂t

(
‖uI±(t, ·)‖2L2 + ‖vI±(t, ·)‖2L2

)
= −=

[
〈Qw

0 (v±, D1v
I
±), uI±〉+ 〈Qkg

0 (v±, D1u
I
±), vI±〉+ . . .

]
using the Cauchy-Schwarz inequality. This issue is however only technical. In fact, by writing
system (2.1.2) in a vectorial fashion and para-linearising it in order to stress out the very trou-
blesome terms (see subsection 2.1.1) we are able to symmetrize it, i.e. to derive an equivalent
system in which the quasi-linear contribution is represented by a self-adjoint operator of order 1
(see subsection 2.1.3, proposition 2.1.5). As this operator is self-adjoint it essentially disappears
in the energy inequality, replaced with an operator of order 0 whose action on uI±, vI± is bounded
in L2 by En(t;u±, v±) or Ek3 (t;u±, v±), depending on the multi-index I we are dealing with.

On the other hand, the L2 norm of some semi-linear contributions to the right hand side of
(2.1.2) decays very slowly in time. It is the case, for instance, of Qkg

0 (vI±, D1u±), whose L2

norm is bounded by ‖u±(t, ·)‖H2,∞‖vI±(t, ·)‖L2 and only has the slow decay (1.1.11a) of the wave
component u±. Since we want to prove that

∂tEn(t;u±, v±) = O
(
εt−1+ δ

2En(t;u±, v±)
1
2
)
, ∂tE

k
3 (t;u±, v±) = O

(
εt−1+

δk
2 Ek3 (t;u±, v±)

1
2
)

we need to get rid of such terms by means of normal forms (see section 3.1). Because of the
quasi-linear nature of our problem, some of them will be eliminated by an adapted quasi-linear
normal form argument (see subsection 2.2.1), while the remaining ones can be treated with an
usual semi-linear one (see subsection 2.2.2). At that point we will be able to prove proposition
2.2.13 and to derive estimates (1.1.12c), (1.1.12d).
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2.1 Paralinearization and Symmetrization

As anticipated above, the first step towards the derivation of the right energy inequality is to
handle the quasi-linear terms appearing in the right hand side of (2.1.2) in order to avoid any
loss of derivatives. We realize that the very quasi-linear contribution to our system appears
in equation (2.1.20) through a para-differential operator whose symbol is a real non symmetric
matrix. As we need this operator to be self-adjoint (up to an operator of order 0), we symmetrize
equation (2.1.20) by defining a new function W I

s in terms of W I , that will be solution to a new
equation in which the symbol of the quasi-linear contribution is a real symmetric matrix (see
subsection 2.1.3). Also, we set aside subsection 2.1.2 to the estimate of the L2 norms of the
non-linear terms in the right hand side of (2.1.20).

2.1.1 Paralinearization

Let us remind definitions (1.1.10) and (1.1.18). Since admissible vector fields considered in
Z = {Ω, Zj , ∂j , j = 1, 2} exactly commute with the linear part of system (1.1.1), we deduce from
remark 1.1.5 and (1.1.17) that, for any multi-index I, (ΓIu,ΓIv) is solution to

(
∂2
t −∆x

)
ΓIu =

∑
(I1,I2)∈I(I)
|I1|+|I2|=|I|

Q0(ΓI1v, ∂1ΓI2v) +
∑

(I1,I2)∈I(I)
|I1|+|I2|<|I|

cI1,I2Q0(ΓI1v, ∂ΓI2v),

(
∂2
t −∆x + 1

)
ΓIv =

∑
(I1,I2)∈I(I)
|I1|+|I2|=|I|

Q0(ΓI1v, ∂1ΓI2u) +
∑

(I1,I2)∈I(I)
|I1|+|I2|<|I|

cI1,I2Q0(ΓI1v, ∂ΓI2u),

with coefficients cI1,I2 ∈ {−1, 0, 1} such that cI1,I2 = 1 for |I1| + |I2| = |I|, in which case the
derivative ∂ acting on ΓI2v (resp. on ΓI2u) is equal to ∂1, and ∂ representing one of the partial
derivatives ∂a, a ∈ {0, 1, 2}. Let us remind that, if ΓI contains at least k (≤ |I|) space derivatives,
above summations are taken over indices I1, I2 such that k ≤ |I1|+ |I2| ≤ |I|. Hence, introducing
from (1.1.3), (1.1.5),

Qw
0 (v±, Dav±) :=

i

4

[
(v+ + v−)Da(v+ + v−)− Dx

〈Dx〉
(v+ − v−) · DxDa

〈Dx〉
(v+ − v−)

]
,

Qkg
0 (v±, Dau±) :=

i

4

[
(v+ + v−)Da(u+ + u−)− Dx

〈Dx〉
(v+ − v−) · DxDa

|Dx|
(u+ − u−)

]
,

(2.1.1)

for any a = 0, 1, 2, we deduce that (uI+, v
I
+, u

I
−, v

I
−) is solution to

(2.1.2)



(Dt − |Dx|)uI+(t, x) =
∑

(I1,I2)∈I(I)
|I1|+|I2|=|I|

Qw
0 (vI1± , D1v

I2
± ) +

∑
(I1,I2)∈I(I)
|I1|+|I2|<|I|

cI1,I2Q
w
0 (vI1± , Dv

I2
± )

(Dt − 〈Dx〉)vI+(t, x) =
∑

(I1,I2)∈I(I)
|I1|+|I2|=|I|

Qkg
0 (vI1± , D1u

I2
± ) +

∑
(I1,I2)∈I(I)
|I1|+|I2|<|I|

cI1,I2Q
kg
0 (vI1± , Du

I2
± )

(Dt + |Dx|)uI−(t, x) =
∑

(I1,I2)∈I(I)
|I1|+|I2|=|I|

Qw
0 (vI1± , D1v

I2
± ) +

∑
(I1,I2)∈I(I)
|I1|+|I2|<|I|

cI1,I2Q
w
0 (vI1± , Dv

I2
± )

(Dt + 〈Dx〉)vI−(t, x) =
∑

(I1,I2)∈I(I)
|I1|+|I2|=|I|

Qkg
0 (vI1± , D1u

I2
± ) +

∑
(I1,I2)∈I(I)
|I1|+|I2|<|I|

cI1,I2Q
kg
0 (vI1± , Du

I2
± )

The quasi-linear structure of the above system can be emphasized by using (1.2.7) and decom-
posing Qw

0 (v±, D1v
I
±), Qkg

0 (v±, D1u
I
±) as follows:

(2.1.3) Qw
0 (v±, D1v

I
±) = (QL)1 + (SL)1, Qkg

0 (v±, D1u
I
±) = (QL)2 + (SL)2,
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with

(QL)1 :=
i

4

[
OpB

(
(v+ + v−)η1

)
(vI+ + vI−)−OpB

( Dx

〈Dx〉
(v+ − v−) · ηη1

〈η〉

)
(vI+ − vI−)

]
,

(SL)1 :=
i

4

[
OpB

(
D1(vI+ + vI−)

)
(v+ + v−)−OpB

(DxD1

〈Dx〉
(vI+ − vI−) · η

〈η〉

)
(v+ − v−)

+OpBR
(
(v+ + v−)η1

)
(vI+ + vI−)

)
−OpBR

( Dx

〈Dx〉
(v+ − v−) · ηη1

〈η〉

)
(vI+ − vI−)

]
,

(QL)2 :=
i

4

[
OpB

(
(v+ + v−)η1

)
(uI+ + uI−)−OpB

( Dx

〈Dx〉
(v+ − v−) · ηη1

|η|

)
(uI+ − uI−)

]
,

(SL)2 :=
i

4

[
OpB

(
D1(uI+ + uI−)

)
(v+ + v−)−OpB

(DxD1

|Dx|
(uI+ − uI−) · η

〈η〉

)
(v+ − v−)

+OpBR
(
(v+ + v−)η1

)
(uI+ + uI−)−OpBR

( Dx

〈Dx〉
(v+ − v−) · ηη1

|η|

)
(uI+ − uI−)

]
,

where the Bony quantization OpB (resp. OpBR) has been defined in 1.2.5 (resp. in (1.2.9)). We
do a similar decomposition also for the semi-linear contribution Qkg

0 (vI±, D1u±), for this term
will thereafter be the object of the two normal forms mentioned at the beginning of this section:

Qkg
0 (vI±, D1u±) =

i

4

[
OpB

(
(vI+ + vI−)η1

)
(u+ + u−)−OpB

( Dx

〈Dx〉
(vI+ − vI−) · ηη1

|η|

)
(u+ − u−)

]
+
i

4

[
OpB

(
D1(u+ + u−)

)
(vI+ + vI−)−OpB

(DxD1

|Dx|
(u+ − u−) · η

〈η〉

)
(vI+ − vI−)

]
+
i

4

[
OpBR

(
(vI+ + vI−)η1

)
(u+ + u−)−OpBR

( Dx

〈Dx〉
(vI+ − vI−) · ηη1

|η|

)
(u+ − u−)

]
.

(2.1.4)

In order to handle system (2.1.2) in the most efficient way we proceed to write it in a vectorial
fashion. To this purpose, we introduce the following matrices:

(2.1.5) A(η) =


|η| 0 0 0
0 〈η〉 0 0
0 0 −|η| 0
0 0 0 −〈η〉

 , A′(V ; η) :=


0 akη1 0 bkη1

a0η1 0 b0η1 0
0 akη1 0 bkη1

a0η1 0 b0η1 0

 ,

(2.1.6) A′′(V I ; η) :=


0 0 0 0

aI0η1 0 bI0η1 0
0 0 0 0

aI0η1 0 bI0η1 0

 ,

(2.1.7) C ′(W I ; η) :=


0 cI0 0 dI0
0 eI0 0 f I0
0 cI0 0 dI0
0 eI0 0 f I0

 , C ′′(U ; η) :=


0 0 0 0
0 e0 0 f0

0 0 0 0
0 e0 0 f0


where

(2.1.8)


ak = ak(v±; η) := i

4

[
(v+ + v−)− Dx

〈Dx〉(v+ − v−) · η
〈η〉
]

bk = bk(v±; η) := i
4

[
(v+ + v−) + Dx

〈Dx〉(v+ − v−) · η
〈η〉
]

a0 = a0(v±; η) := i
4

[
(v+ + v−)− Dx

〈Dx〉(v+ − v−) · η|η|
]

b0 = b0(v±; η) := i
4

[
(v+ + v−) + Dx

〈Dx〉(v+ − v−) · η|η|
]
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(2.1.9)


c0 = c0(v±; η) := i

4

[
D1(v+ + v−)− DxD1

〈Dx〉 (v+ − v−) · η
〈η〉
]

d0 = d0(v±; η) := i
4

[
D1(v+ + v−) + DxD1

〈Dx〉 (v+ − v−) · η
〈η〉
]

e0 = e0(u±; η) := i
4

[
D1(u+ + u−)− DxD1

|Dx| (u+ − u−) · η
〈η〉
]

f0 = f0(u±; η) := i
4

[
D1(u+ + u−) + DxD1

|Dx| (u+ − u−) · η
〈η〉
]

(2.1.10)
aI0 = a0(vI±; η), bI0 = b0(vI±; η), cI0 = c0(vI±; η), dI0 = d0(vI±; η),

eI0 = e0(uI±; η), f I0 (uI±; η),

vectors W,U, V :

(2.1.11) W :=


u+

v+

u−
v−

 , V :=


0
v+

0
v−

 , U :=


u+

0
u−
0

 ,
along with W I (resp. V I , U I) defined from W (resp. V,U) by replacing u±, v± with uI±, vI±; and
finally

(2.1.12) QI0(V,W ) =



∑
(I1,I2)∈I(I)
|I2|<|I|

cI1,I2Q
w
0 (vI1± , Dv

I2
± )∑

(I1,I2)∈I(I)
|I1|,|I2|<|I|

cI1,I2Q
kg
0 (vI1± , Du

I2
± )∑

(I1,I2)∈I(I)
|I2|<|I|

cI1,I2Q
w
0 (vI1± , Dv

I2
± )∑

(I1,I2)∈I(I)
|I1|,|I2|<|I|

cI1,I2Q
kg
0 (vI1± , Du

I2
± )


The quantization OpB (resp. OpBR) of a matrix A = (aij)1≤i,j≤n is meant as a matrix of ope-
rators OpB(A) = (OpB(aij))1≤i,j≤n (resp. OpBR(A) = (OpBR(aij))1≤i,j≤n), and for a vector
Y = [y1, . . . , yn],

OpB(A)Y † =



n∑
j=1

OpB(a1j)yj

...
n∑
j=1

OpB(anj)yj


,

Y † being the transpose of Y . We also remind that

‖A‖L2 =
(∑

i,j

|aij |2
) 1

2
, ‖A‖L∞ = sup

ij
|aij |.

With notations introduced above, system (2.1.2) writes in the following compact fashion which
has the merit to well highlight, among all non-linear terms, the very quasi-linear contributions
(QL)1, (QL)2, represented below by OpB(A′(V ; η))W I :

DtW
I = A(D)W I +OpB(A′(V ; η))W I +OpB(C ′(W I ; η))V +OpBR(A′(V ; η))W I

+OpB(A′′(V I ; η))U +OpB(C ′′(U ; η))V I +OpBR(A′′(V I ; η))U +QI0(V,W ).
(2.1.13)
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The energies defined in (1.1.9) take the form

En(t;u±, v±) =
∑
|α|≤n

‖Dα
xW (t, ·)‖L2 , ∀n ∈ N, n ≥ 3,(2.1.14a)

Ek3 (t;u±, v±) =
∑

|α|+|I|≤3
|I|≤3−k

‖Dα
xW

I(t, ·)‖2L2 , ∀ 0 ≤ k ≤ 2,(2.1.14b)

and we can refer to them, respectively, as En(t;W ), Ek3 (t;W ). We also notice that, since

(2.1.15a) [Γ, Dt ± |Dx|] =

{
0 if Γ ∈ {Ω, ∂j , j = 1, 2},
∓ Dm
|Dx|(Dt ± |Dx|) if Γ = Zm,m = 1, 2,

(2.1.15b) [Γ, Dt ± 〈Dx〉] =

{
0 if Γ ∈ {Ω, ∂j , j = 1, 2},
∓ Dm
〈Dx〉(Dt ± 〈Dx〉) if Γ = Zm,m = 1, 2,

and operators Dm|Dx|−1, Dm〈Dx〉−1 are continuous on L2 for m = 1, 2, there exists a constant
C > 0 such that

(2.1.16) C−1
∑
I∈Ik3

‖ΓIW (t, ·)‖2L2 ≤ Ek3 (t;W ) ≤ C
∑
I∈Ik3

‖ΓIW (t, ·)‖2L2 ,

where, for any integer 0 ≤ k ≤ 2,

(2.1.17) Ik3 :=
{
|I| ≤ 3 : ΓI = Dα

xΓJ with |α|+ |J | = |I|, |J | ≤ 3− k
}
.

For convenience, we also introduce the following set:

(2.1.18) In :=
{
|I| ≤ n : ΓI = Dα

x with |α| = |I|
}
, n ∈ N, n ≥ 3.

Matrices A(η), A′(V ; η), A′′(V I ; η) are of order 1 and A′(V ; η), A′′(V I ; η) are singular at η = 0
(i.e. some of their elements are singular at η = 0), while C ′(W I ; η), C ′′(U ; η) are of order 0.
Since we will need to do some symbolic calculus on A′(V ; η), we need to isolate the mentioned
singularity. We hence define
(2.1.19)

A′1(V ; η) :=


0 a0η1 0 b0η1

a0η1 0 b0η1 0
0 a0η1 0 b0η1

a0η1 0 b0η1 0

 , A′−1(V ; η) :=


0 (ak − a0)η1 0 (bk − b0)η1

0 0 0 0
0 0 0 0
0 (ak − a0)η1 0 (bk − b0)η1

 ,
A′1(V ; η) being a matrix of order 1, A′−1(V ; η) of order −1, both singular at η = 0, and write
A′1(V ; η) = A′1(V ; η)(1− χ)(η) +A′1(V ; η)χ(η), where χ ∈ C∞0 (R2) is equal to 1 in the unit ball.
Equation (2.1.13) can be the rewritten as follows

DtW
I = A(D)W I +OpB(A′1(V ; η)(1− χ)(η))W I +OpB(A′1(V ; η)χ(η))W I

+OpB(A′−1(V ; η))W I +OpB(C ′(W I ; η))V +OpBR(A′(V ; η))W I +OpB(A′′(V I ; η))U

+OpB(C ′′(U ; η))V I +OpBR(A′′(V I ; η))U +QI0(V,W ),

(2.1.20)

and the symbol A′1(V ; η)(1−χ)(η) associated to the quasi-linear contribution is no longer singular
at η = 0. We observe that this matrix is real since i(v+ + v−) = 2∂tv, i Dx〈Dx〉(v+ − v−) = 2∂xv
and v is a real solution, but it is not symmetric and such a lack of symmetry could lead to a loss
of derivatives when writing an energy inequality for W I . The issue is however only technical, in
the sense that A1(V ; η)(1 − χ)(η) can be replaced with a real, symmetric matrix, as explained
in subsection 2.1.3 (see proposition 2.1.5). Before proving such result, we need to derive some
L2 estimates for the semi-linear terms in the right hand side of (2.1.20).
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2.1.2 Estimates of quadratic terms

In this subsection we recover some estimates for the L2 norm of the non-linear terms in the right
hand side of equation (2.1.20).

Lemma 2.1.1. Let I be a fixed multi-index and χ ∈ C∞0 (R2) equal to 1 in a neighbourhood of
the origin. The following estimates hold:

(2.1.21a)
∥∥∥[OpB(A′1(V ; η)χ(η)

)
+OpB

(
A′−1(V ; η)

)]
W I(t, ·)

∥∥∥
L2
. ‖V (t, ·)‖H1,∞‖W I(t, ·)‖L2 ;

(2.1.21b)
∥∥OpB(C ′(W I ; η))V (t, ·)

∥∥
L2 . ‖V (t, ·)‖H6,∞‖W I(t, ·)‖L2 ;

(2.1.21c) ‖OpBR(A′(V ; η))W I(t, ·)‖L2 . ‖V (t, ·)‖H7,∞‖W I(t, ·)‖L2 ;

(2.1.21d) ‖OpB(A′′(V I ; η))U(t, ·)‖L2 + ‖OpBR(A′′(V I ; η))U(t, ·)‖L2

.
(
‖R1U(t, ·)‖H6,∞ + ‖U(t, ·)‖H6,∞

)
‖V I(t, ·)‖L2 ;

(2.1.21e) ‖OpB(C ′′(U ; η))V I(t, ·)‖L2 .
(
‖R1U(t, ·)‖H2,∞ + ‖U(t, ·)‖H2,∞

)
‖W I(t, ·)‖L2 ;

Proof. • Inequality (2.1.21a) follows applying proposition 1.2.7 toOpB
(
A′−1(V ; η)(1− χ)(η)

)
W I

whose symbol A′−1(V ; η)(1− χ)(η) is of order −1 and has M−1
0 seminorm bounded from above

by ‖V (t, ·)‖H1,∞ , after definitions (1.2.2), (2.1.8) and (2.1.19).

• Since from definition (2.1.7) of matrix C ′(W I ; η)

∥∥OpB(C ′(W I ; η))V
∥∥
L2 .

∥∥OpB(D1(vI+ + vI−))v±
∥∥
L2 +

∥∥∥∥OpB(DxD1

〈Dx〉
(vI+ − vI−) · η

〈η〉

)
v±

∥∥∥∥
L2

+
∥∥OpB(D1(uI+ + uI−)

)
v±
∥∥
L2 +

∥∥∥∥OpB(DxD1

|Dx|
(uI+ − uI−) · η

〈η〉

)
v±

∥∥∥∥
L2

,

we reduce to prove inequality (2.1.21b) for OpB
(
DxD1
〈Dx〉 (vI+−vI−)· η〈η〉

)
v+, the same argument being

applicable to all other L2 norms appearing in the above right hand side. Using equality (1.2.6),
and considering a new admissible cut-off function χ1 identically equal to 1 on the support of χ,
we first derive that

OpB
(
DxD1
〈Dx〉 (vI+ + vI−) · η

〈η〉

)
v+

∧

(ξ) =
1

(2π)2

∫
χ
(ξ − η
〈η〉

)
DxD1
〈Dx〉 (vI+ + vI−)
∧

(ξ − η) · Dx
〈Dx〉v+

∧

(η)dη

=
1

(2π)2

∫
χ
(ξ − η
〈η〉

)(ξ1 − η1

〈η〉

)
Dx
〈Dx〉(v

I
+ + vI−)
∧

(ξ − η) ·Dxv+

∧
(η)dη

=
1

(2π)2

∫
χ1

(ξ − η
〈η〉

)[
χ
(
Dx
〈η〉

)
D1
〈η〉

Dx
〈Dx〉(v

I
+ + vI−)

]∧
(ξ − η) ·Dxv+

∧
(η)dη

= OpB
(
χ
(
Dx
〈η〉

)
D1
〈η〉

Dx
〈Dx〉(v

I
+ + vI−)

)
Dxv+

∧

(ξ).

Successively, by decomposition (1.2.7) and the fact that R(u, v) is symmetric in (u, v), we have
that

OpB
(
χ
(Dx

〈η〉

)D1

〈η〉
Dx

〈Dx〉
(vI+ + vI−)

)
Dxv+ = χ

(Dx

〈η〉

)D1

〈η〉
Dx

〈Dx〉
(vI+ + vI−) ·Dxv+

−
[
OpB(Dxv+) +OpBR(Dxv+)

] [
χ
(Dx

〈η〉

)D1

〈η〉
Dx

〈Dx〉
(vI+ + vI−)

]
,
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so propositions 1.2.7, 1.2.8 (ii), and the fact that χ
(
Dx
〈η〉

)
D1
〈η〉

Dx
〈Dx〉 is an operator uniformly bounded

on L2, imply that∥∥∥∥OpB(DxD1

〈Dx〉
(vI+ + vI−) · η

〈η〉

)
v+

∥∥∥∥
L2

. ‖V (t, ·)‖H6,∞‖V I(t, ·)‖L2 .

• By definition (2.1.5) of A′(V ; η),∥∥OpBR(A′(V ; η)
)
W I(t, ·)

∥∥
L2 .

∥∥OpBR(v+ + v−)vI±
∥∥
L2 +

∥∥∥∥OpBR( Dx

〈Dx〉
(v+ − v−) · η

〈η〉

)
vI±

∥∥∥∥
L2

+
∥∥OpBR(v+ + v−)uI±

∥∥
L2 +

∥∥∥∥OpBR( Dx

〈Dx〉
(v+ − v−) · η

|η|

)
uI±

∥∥∥∥
L2

.

Let us only show that inequality (2.1.21c) holds for OpB
(
Dx
〈Dx〉(v+ − v−) · ηη1|η|

)
uI+. For a smooth

cut-off function φ equal to 1 in the unit ball we write

OpBR

(
Dx

〈Dx〉
(v+ − v−) · ηη1

|η|

)
uI+ = OpBR

( Dx

〈Dx〉
(v+ − v−) · ηη1

|η|
φ(η)

)
uI+

+OpBR

( Dx

〈Dx〉
(v+ − v−) · ηη1

|η|
(1− φ)(η)

)
uI+,

where by proposition 1.2.8 (i)∥∥∥∥OpBR( Dx

〈Dx〉
(v+ − v−) · ηη1

|η|
φ(η)

)
uI+

∥∥∥∥
L2

.

∥∥∥∥ Dx

〈Dx〉
(v+ − v−)(t, ·)

∥∥∥∥
L∞
‖uI+(t, ·)‖L2

. ‖V (t, ·)‖H1,∞‖W I(t, ·)‖L2 .

On the other hand

OpBR

( Dx

〈Dx〉
(v+ − v−) · ηη1

|η|
(1− φ)(η)

)
uI+ =

∫
eix·ξm(ξ, η)

[
〈Dx〉7(v̂+ − v̂−)(ξ − η)

]
ûI+(η)dξdη,

where

m(ξ, η) :=
1

(2π)2

(
1− χ

(
ξ − η
〈η〉

)
− χ

(
η

〈ξ − η〉

))
(1− φ)(η)

ξ − η
〈ξ − η〉8

· ηη1

|η|

and frequencies ξ−η and η are either bounded or equivalent on the support of m(ξ, η). Therefore
m(ξ, η) satisfies the hypothesis of lemma A.1 (i) |∂αξ ∂

β
ηm(ξ, η)| . 〈ξ〉−3〈η〉−3 for any α, β ∈ N2,

and by inequality (A.4a)∥∥∥∥OpBR( Dx

〈Dx〉
(v+ − v−) · ηη1

|η|
(1− φ)(η)

)
uI+

∥∥∥∥
L2

. ‖V (t, ·)‖H7,∞‖W I(t, ·)‖L2 .

• From definition (2.1.6) of A′′(V ; η),∥∥OpB(A′′(V ; η)
)
U(t, ·)

∥∥
L2 .

∥∥OpB((vI+ + vI−)η1

)
u±
∥∥
L2 +

∥∥∥∥OpB( Dx

〈Dx〉
(vI+ − vI−) · ηη1

|η|

)
u±

∥∥∥∥
L2

,

(the same inequality holds evidently when OpB is replaced by OpBR). As done for previous cases,
we reduce to show (2.1.21d) for OpB

(
Dx
〈Dx〉(v

I
+− vI−) · ηη1|η|

)
u+ (resp. for OpB replaced with OpBR).

Using decomposition (1.2.7) and the fact that R(u, v) is symmetric in (u, v) we find that

OpB
( Dx

〈Dx〉
(vI+ − vI−) · ηη1

|η|

)
u+ =

Dx

〈Dx〉
(vI+ − vI−) · DxD1

|Dx|
u+

−OpB
(DxD1

|Dx|
u+ ·

η

〈η〉

)
(vI+ − vI−)−OpBR

(DxD1

|Dx|
u+ ·

η

〈η〉

)
(vI+ − vI−),
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and
OpBR

( Dx

〈Dx〉
(vI+ − vI−) · ηη1

|η|

)
u+ = OpBR

(DxD1

|Dx|
u+ ·

η

〈η〉

)
(vI+ − vI−),

so a direct application of propositions 1.2.7 and 1.2.8 (ii) gives that the L2 norm of the above right
hand sides is bounded by

∥∥∥DxD1
|Dx| u+

∥∥∥
H4,∞

‖V I(t, ·)‖L2 , and hence by ‖R1U(t, ·)‖H6,∞‖V I(t, ·)‖L2 ,
which gives inequality (2.1.21d).

• From definition (2.1.7) of matrix C ′′(U ; η),

‖OpB(C ′′(U ; η))V I‖L2 .∥∥OpB(D1(u+ + u−))(vI+ + vI−)
∥∥
L2 +

∥∥∥∥OpB (DxD1

|Dx|
(u+ − u−) · η

〈η〉

)
(vI+ − vI−)

∥∥∥∥
L2

,

so estimate (2.1.21e) follows immediately from proposition 1.2.7.

Lemmas 2.1.2 and 2.1.3 below are introduced with the aim of deriving an estimate of the L2

norm of vectorQI0(V,W ) defined in (2.1.12) (see corollary 2.1.4). We remind that the summations
defining QI0(V,W ) come from the action of family ΓI of admissible vector fields on the quadratic
non-linearities Q0(v, ∂1v) and Q0(v, ∂1u) in (1.1.1) (or, in terms of u±, v±, on Qw

0 (v±, D1v±) and
Qkg

0 (v±, D1u±)). According to remark 1.1.5, if I ∈ In and ΓI is a product of spatial derivatives
only the action of ΓI on Qw

0 (v±, D1v±) (resp. on Qkg
0 (v±, D1u±)) "distributes" entirely on its

factors, meaning that

ΓIQw
0 (v±, D1v±) =

∑
(I1,I2)∈I(I)
|I1|+|I2|=|I|

Qw
0 (vI1± , D1v

I2
± ),

(the same for ΓIQkg
0 (v±, D1u±)), and all coefficients cI1,I2 in the right hand side of (2.1.2) are

equal to 0. On the contrary, if I ∈ Ik3 for 0 ≤ k ≤ 2 and ΓI contains some Klainerman vector fields
Ω, Zm,m = 1, 2, the commutation between ΓI and the null structure gives rise to new quadratic
contributions in which the derivative D1 is eventually replaced with D2, Dt. As already seen in
(1.1.17), in this case we have

(2.1.22) ΓIQw
0 (v±, D1v±) =

∑
(I1,I2)∈I(I)
|I1|+|I2|=|I|

Qw
0 (vI1± , D1v

I2
± ) +

∑
(I1,I2)∈I(I)
|I1|+|I2|<|I|

cI1,I2Q
w
0 (vI1± , Dv

I2
± ),

with some of the coefficients cI1,I2 being equal to 1 or −1, and D ∈ {D1, D2, Dt} depending on
the addend we are considering (similarly for ΓIQkg

0 (v±, D1u±)). For our scopes, there will be no
difference between the case D = D1 and D = D2, the two associated quadratic contributions
enjoying the same L2 and L∞ estimates. When D = Dt, we should make use of the equation
satisfied by vI2± (resp. by uI2± ) in system (2.1.2) to replace Qw

0 (vI1± , Dtv
I2
± ) (resp. Qkg

0 (vI1± , Dtu
I2
± ))

with

(2.1.23)
Qw

0 (vI1± , 〈Dx〉vI2± ) +Qw
0

(
vI1± ,Γ

I2Qkg
0 (v±, D1u±)

)
,(

resp. with Qkg
0 (vI1± , |Dx|uI2± ) +Qkg

0

(
vI1± ,Γ

I2Qw
0 (v±, D1v±)

))
,

where the left hand side quadratic terms are given by
(2.1.24)

Qw
0 (vI1± , 〈Dx〉vI2± ) = (vI1+ + vI1− )〈Dx〉(vI2+ − v

I2
− )− Dx

〈Dx〉
(vI1+ − v

I1
− ) ·Dx(vI2+ + vI2− ),(

resp. Qkg
0 (vI1± , |Dx|uI2± ) = (vI1+ + vI1− )|Dx|(uI2+ − u

I2
− )− Dx

〈Dx〉
(vI1+ − v

I1
− ) ·Dx(uI2+ + uI2− )

)
,
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while the right hand side ones in (2.1.23) are cubic. On the Fourier side, these new quadratic
contributions write as∑

j1,j2∈{+,−}

∫
j2

(
1− j1j2

ξ − η
〈ξ − η〉

· η
〈η〉

)
〈η〉v̂I1j1 (ξ − η)v̂I2j2 (η)dξdη,

resp.
∑

j1,j2∈{+,−}

∫
j2

(
1− j1j2

ξ − η
〈ξ − η〉

· η
|η|

)
|η|v̂I1j1 (ξ − η)ûI2j2(η)dξdη

 ,

and have basically the same nature of the starting ones, as

Qw
0 (vI1± , D1v

I2
± )

∧

(ξ) =
∑

j1,j2∈{+,−}

∫ (
1− j1j2

ξ − η
〈ξ − η〉

· η
〈η〉

)
η1v̂

I1
j1

(ξ − η)v̂I2j2 (η)dξdη,

resp. Qkg
0 (vI1± , D1u

I2
± )

∧

(ξ) =
∑

j1,j2∈{+,−}

∫ (
1− j1j2

ξ − η
〈ξ − η〉

· η
|η|

)
η1v̂

I1
j1

(ξ − η)ûI2j2(η)dξdη

 .

For this reason, as long as we can neglect the cubic terms in (2.1.23), we will not pay attention
to the value of D ∈ {D1, D2, Dt} in the second sum in the right hand side of (2.1.22). Lemma
2.1.3 is meant to show that the mentioned cubic terms are, indeed, remainders.

Before proving lemmas 2.1.2, 2.1.3, we need to introduce a new set of indices. According to the
order established in Z at the beginning of section 1.1 (see (1.1.7)), we define

(2.1.25) K := {I = (i1, i2) : i1, i2 = 1, 2, 3}

as the set of indices I such that ΓI is the product of two Klainerman vector fields only, together
with

(2.1.26) Vk := {I ∈ Ik3 : ∃(I1, I2) ∈ I(I) with I1 ∈ K},

which is evidently empty when k = 2. We also warn the reader that, in inequality (2.1.30) with
k = 2, E3

3(t;W ) stands for E3(t;W ), this double notation allowing us to combine in one line all
cases k = 0, 1, 2.

Lemma 2.1.2. (i) Let n ∈ N, n ≥ 3 and I ∈ In. Then
(2.1.27)∑
(I1,I2)∈I(I)
|I2|<n

∥∥∥Qw
0 (vI1± , Dxv

I2
± )
∥∥∥
L2

+
∑

(I1,I2)∈I(I)
|I1|≤[n

2
],|I2|<n

∥∥∥Qkg
0 (vI1± , Dxu

I2
± )
∥∥∥
L2
. ‖V (t, ·)‖

H[n2 ]+2,∞En(t;W )
1
2 ,

(2.1.28)∑
(I1,I2)∈I(I)
|I1|>[n

2
]

∥∥∥Qkg
0 (vI1± , Dxu

I2
± )
∥∥∥
L2
.
(
‖U(t, ·)‖

H[n2 ]+2,∞ + ‖R1U(t, ·)‖
H[n2 ]+2,∞

)
En(t;W )

1
2 .

(ii) Let 0 ≤ k ≤ 2 and I ∈ Ik3. There exists a constant C > 0 such that, if we assume a-priori
estimates (1.1.11a), (1.1.11b) satisfied and 0 < ε0 < (2A + B)−1 small, for any χ ∈ C∞0 (R2)
equal to 1 in a neighbourhood of the origin and σ > 0 small we have∑

(I1,I2)∈I(I)
|I2|<3

Qw
0 (vI1± , Dxv

I2
± ) = Rk

3(t, x),(2.1.29a)

∑
(I1,I2)∈I(I)
|I1|,|I2|<3

Qkg
0 (vI1± , Dxu

I2
± ) = δVk

∑
(I1,I2)∈I(I)
I1∈K,|I2|≤1

Qkg
0

(
vI1± , χ(t−σDx)Dxu

I2
±

)
+ Rk

3(t, x),(2.1.29b)
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where δVk = 1 if I ∈ Vk, 0 otherwise, and

(2.1.30) ‖Rk
3(t, ·)‖L2 ≤ C(A+B)εt−1Ek3 (t,W )

1
2 + CBεt−

5
4 ,

with β > 0 small, β → 0 as σ → 0, for all t ∈ [1, T ]. The same result holds with Dxv
I2
± (resp.

Dxu
I2
± ) replaced with 〈Dx〉vI2± (resp. |Dx|uI2± ).

Proof. (i) The proof of follows straightly from (2.1.1) with a = 1, 2, by bounding the L2 norm
of each product with the L∞ norm of the factor indexed in J ∈ {I1, I2} such that |J | ≤

[ |I|
2

]
,

times the L2 norm of the remaining one.

(ii) Let I ∈ Ik3. One immediately sees that:

(2.1.31)
∑

(J,0)∈I(I)

‖Qw
0 (vJ±, Dxv±)‖L2 +

∑
(J,0)∈I(I)
|J |<3

(
‖Qw

0 (v±, Dxv
J
±)‖L2 + ‖Qkg

0 (v±, Dxu
J
±)‖L2

)

. ‖V (t, ·)‖H2,∞Ek3 (t;W )
1
2 ;

if (I1, I2) ∈ I(I) is such that |I2| < 3 and either ΓI1 or ΓI2 is a product of spatial derivatives only

(2.1.32) ‖Qw
0 (vI1± , Dxv

I2
± )‖L2 . ‖V (t, ·)‖H4,∞Ek3 (t;W )

1
2 ;

if (I1, I2) ∈ I(I) is such that |I2| < 3 and ΓI1 is a product of spatial derivatives only

(2.1.33) ‖Qkg
0 (vI1± , Dxu

I2
± )‖L2 . ‖V (t, ·)‖H3,∞Ek3 (t;W )

1
2 .

Hence, the remaining quadratic contributions to be estimated are those corresponding to indices
(I1, I2) ∈ I(I), with |I2| < 3, such that: both ΓI1 and ΓI2 contain at least one Klainerman vector
field, in the left hand side of (2.1.29a); ΓI1 contains one or two Klainerman vector fields, in the
left hand side of (2.1.29b).

The idea to estimate the L2 norm of the Qw
0 (vI1± , Dv

I2
± ), for indices I1, I2 just mentioned above,

is to decompose the Klein-Gordon component carrying exactly one Klainerman vector field in
frequencies, by means of a truncation χ(t−σDx) for some smooth cut-off function χ and σ > 0
small. Basically, the L∞ norm of the contribution truncated for large frequencies |ξ| & tσ can
be bounded by making appear a power of t as negative as we want, while that of the remaining
one, localized for |ξ| . tσ, enjoys the sharp Klein-Gordon decay t−1 as proved in lemma B.4.14
in appendix B. The same argument can be applied to Qkg

0 (vI1± , Dxu
I2
± ) with I1 such that ΓI1

contains exactly one Klainerman vector field. Then, by lemma B.2.4 in appendix B with L = L2

we find that, for some χ ∈ C∞0 (R2), the following: if ΓI1 contains exactly one Klainerman vector
field,∥∥∥Qw

0 (vI1± , Dxv
I2
± )(t, ·)

∥∥∥
L2
.
∥∥∥χ(t−σDx)vI1± (t, ·)

∥∥∥
H1,∞

‖vI2± (t, ·)‖H1

+ t−N(s) (‖v±(t, ·)‖Hs + ‖Dtv±(t, ·)‖Hs)
( 1∑
|µ|=0

‖xµvI2± (t, ·)‖H1 + t‖vI2± (t, ·)‖H1

)
and∥∥∥Qkg

0 (vI1± , Dxu
I2
± )(t, ·)

∥∥∥
L2
.
∥∥∥χ(t−σDx)vI1± (t, ·)

∥∥∥
H1,∞

‖uI2± (t, ·)‖H1

+ t−N(s) (‖v±(t, ·)‖Hs + ‖Dtv±(t, ·)‖Hs)
( 1∑
|µ|=0

‖xµDxu
I2
± (t, ·)‖L2 + t‖uI2± (t, ·)‖H1

)
;

58



if ΓI2 contains exactly one Klainerman vector field,

∥∥∥Qw
0 (vI1± , Dxv

I2
± )(t, ·)

∥∥∥
L2
.
∥∥∥χ(t−σDx)vI2± (t, ·)

∥∥∥
H2,∞

‖vI1± (t, ·)‖L2

+ t−N(s) (‖v±(t, ·)‖Hs + ‖Dtv±(t, ·)‖Hs)
( 1∑
|µ|=0

‖xµvI1± (t, ·)‖L2 + t‖vI1± (t, ·)‖L2

)
,

where, in all above inequalities, N(s) ≥ 3 if s > 0 is large enough. From inequalities (B.1.5a),
(B.1.6a), estimates (B.1.17), lemma B.4.14 and the boostrap assumptions (1.1.11), together with
the fact δ, δj � 1 are small, for j = 0, 1, 2, we derive that there is a positive constant C such
that, for multi-indices I1, I2 considered in above inequalities,∥∥∥Qw

0 (vI1± , Dv
I2
± )(t, ·)

∥∥∥
L2

+
∥∥∥Qkg

0 (vI1± , Du
I2
± )(t, ·)

∥∥∥
L2
≤ CBεt−1Ek3 (t;W )

1
2 + CBεt−

5
4 .

The remaining quadratic terms are Qkg
0 (vI1± , Dxu

I2
± ) with I1 ∈ K (and hence |I2| ≤ 1) if Vk is

non empty. Applying lemma B.2.4 with L = L2, w = u and the same s as before, and making
use of estimates (1.1.11), (B.1.17), together with inequality (B.1.5a), we see that

∥∥∥Qkg
0 (vI1± , Dxu

I2
± )(t, ·)

∥∥∥
L2
.
∥∥∥Qkg

0

(
vI1± , χ(t−σDx)Dxu

I2
±

)
(t, ·)

∥∥∥
L2

+ t−3
( 1∑
|µ|=0

‖xµvI1± (t, ·)‖L2 + t‖vI1± (t, ·)‖L2

)
(‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

.
∥∥∥Qkg

0

(
vI1± , χ(t−σDx)Dxu

I2
±

)
(t, ·)

∥∥∥
L2

+ CBεt−
5
4 ,

which hence concludes the proof of (ii). We should highlight the fact that the quadratic con-
tribution in the above left hand side is treated differently from the previous ones, because we
do not have a sharp decay O(t−1) for vI1± when I1 ∈ K (neither when truncated for moderate
frequencies), but only a control in O(t−1+β′), for some small β′ > 0 (see lemma B.4.2). Moreover,
the decay enjoyed by the uniform norm of χ(t−σDx)Dxu

I2
± , appearing in the quadratic term in

the above right hand side, is very weak (only t−1/2+β′ , see lemma B.2.10). Such terms, that
contribute to the energy and decay slowly in time, will be successively eliminated by a normal
form argument (see subsection 2.2.2).

Lemma 2.1.3. Let 0 ≤ k ≤ 2 and I ∈ Ik3. For any χ ∈ C∞0 (R2) equal to 1 in a neighbourhood
of the origin and σ > 0 small ∑

(I1,I2)∈I(I)
|I1|+|I2|≤2

Qw
0 (vI1± , Dtv

I2
± ) = Rk

3(t, x),(2.1.34a)

∑
(I1,I2)∈I(I)
|I1|+|I2|≤2

Qkg
0 (vI1± , Dtu

I2
± ) = δVk

∑
(J,0)∈I(I)
J∈K

Qkg
0 (vJ±, χ(t−σDx)|Dx|u±) + Rk

3(t, x),(2.1.34b)

with δVk = 1 if I ∈ Vk, 0 otherwise, and Rk
3(t, x) satisfying (2.1.30).

Proof. Using the equation satisfied by vI2± and uI2± respectively in system (2.1.2) with I = I2 we
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see that

(2.1.35a)
∑

(I1,I2)∈I(I)
|I1|+|I2|≤2

Qw
0 (vI1± , Dtv

I2
± ) =

∑
(I1,I2)∈I(I)
|I1|+|I2|≤2

Qw
0 (vI1± , 〈Dx〉vI2± )

+
∑

(I1,I2)∈I(I)
|I1|+|I2|≤2

∑
(J1,J2)∈I(I2)

cJ1,J2Q
w
0

(
vI1± , Q

kg
0 (vJ1± , Du

J2
± )
)
,

(2.1.35b)
∑

(I1,I2)∈I(I)
|I1|+|I2|≤2

Qkg
0 (vI1± , Dtu

I2
± ) =

∑
(I1,I2)∈I(I)
|I1|+|I2|≤2

Qkg
0 (vI1± , |Dx|uI2± )

+
∑

(I1,I2)∈I(I)
|I1|+|I2|≤2

∑
(J1,J2)∈I(I2)

cJ1,J2Q
kg
0

(
vI1± , Q

w
0 (vJ1± , Dv

J2
± )
)
,

with coefficients cJ1,J2 ∈ {−1, 0,−1} such that cJ1,J2 = 1 whenever |J1| + |J2| = |I2|, and
Qw

0 (vI1± , 〈Dx〉vI2± ) (in which case D = D1), Q
kg
0 (vI1± , |Dx|uI2± ) given explicitly by (2.1.24). After

lemma 2.1.2 (ii) we know that∑
(I1,I2)∈I(I)
|I1|+|I2|≤2

[
Qw

0 (vI1± , 〈Dx〉vI2± ) +Qkg
0 (vI1± , |Dx|uI2± )

]
=

∑
(J,0)∈I(I)
J∈K

Qkg
0 (vJ±, |Dx|u±) + Rk

3(t, x),

with Rk
3 verifying (2.1.30). The only thing to prove is that the cubic terms in the right hand

side of (2.1.35) are remainders Rk
3. We focus on those in the right hand side of (2.1.35a) as the

same argument applies to the ones in (2.1.35b).

First, let us consider cubic terms corresponding to indices I1, I2 such that |I1| = 2 and |I2| = 0.
In this case we evidently have that |J1| = |J2| = 0, and by (B.1.4e) with s = 1 and θ � 1 small,
together with a-priori estimate (1.1.11),∥∥∥Qw

0

(
vI1± , Q

kg
0 (v±, D1u±)

)∥∥∥
L2
. ‖vI1± (t, ·)‖L2‖Qkg

0 (v±, D1u±)‖H1,∞ ≤ CBεt−
3
2

+β′ ,

for some β′ > 0 small as long as σ, δ0 are small.

Let us now consider indices I1, I2 such that ΓI1 ∈ {Ω, Zm,m = 1, 2}. As we also require that
(I1, I2) ∈ I(I) with |I2| ≤ 2, we have in this case that |I2| ≤ 1 and consequently, for each
(J1, J2) ∈ I(I2), either |J1| = 0 or |J2| = 0. Using lemma B.2.4 in appendix B with L = L2 and
w = v, we derive that for any χ ∈ C∞0 (R2) as in the statement and σ > 0 small∑

(J1,J2)∈I(I2)

∥∥∥Qw
0

(
vI1± , Q

kg
0 (vJ1± , Du

J2
± )
)

(t, ·)
∥∥∥
L2

.
∑

(J1,J2)∈I(I2)

∥∥∥χ(t−σDx)vI1± (t, ·)
∥∥∥
L∞

∥∥∥Qkg
0 (vJ1± , Du

J2
± )(t, ·)

∥∥∥
L2

+
∑

(J1,J2)∈I(I2)

t−N(s) (‖v±(t, ·)‖Hs + ‖Dtv±(t, ·)‖Hs)

×
( 1∑
|µ|=0

∥∥∥xµQkg
0 (vJ1± , Du

J2
± )(t, ·)

∥∥∥
L2

+ t
∥∥∥Qkg

0 (vJ1± , Du
J2
± )(t, ·)

∥∥∥
L2

)
,
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with N(s) ≥ 3 is s > 0 is sufficiently large. Here∑
(J1,J2)∈I(I2)

∥∥∥xQkg
0 (vJ1± , Du

J2
± )(t, ·)

∥∥∥
L2

.
∑
|µ|=0,1
|J |≤1

[∥∥∥∥x( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞

(
‖uJ±(t, ·)‖H1 + ‖Dtu

J
±(t, ·)‖L2

)

+‖xvJ±(t, ·)‖L2 (‖Rµu±(t, ·)‖H2,∞ + ‖DtR
µu±(t, ·)‖H1,∞)

]
≤ C(A+B)Bε2t

1
2

+
δ2
2

and

(2.1.36)
∑

(J1,J2)∈I(I2)

∥∥∥Qkg
0 (vJ1± , Du

J2
± )(t, ·)

∥∥∥
L2

.
∑
|J |≤1

[
‖vJ±(t, ·)‖L2

( 1∑
|µ|=0

‖Rµu±(t, ·)‖H2,∞ + ‖DtR
µu±(t, ·)‖H1,∞

)
+ ‖v±(t, ·)‖H1,∞

(
‖uJ±(t, ·)‖H1 + ‖Dtu

J
±(t, ·)‖L2

)]
≤ C(A+B)Bε2t−

1
2

+
δ2
2

by (B.1.5a), (B.1.5b), (B.1.5c), (B.1.7) and estimates (1.1.11), (B.1.10), (B.1.17), so together
with lemma B.4.14 and (B.1.6a), these inequalities give∑

(J1,J2)∈I(I2)

∥∥∥Qw
0

(
vI1± , Q

kg
0 (vJ1± , Du

J2
± )
)

(t, ·)
∥∥∥
L2
≤ CBεt−

3
2

+β′ ,

for some new β′ > 0 small, β′ → 0 as σ, δ0 → 0.

Finally, for indices I1, I2 such that ΓI1 ∈ {Dα
x , |α| ≤ 1}

(2.1.37)∑
(J1,J2)∈I(I2)

∥∥∥Qw
0

(
vI1± , Q

kg
0 (vJ1± , Du

J2
± )
)∥∥∥

L2
.

∑
(J1,J2)∈I(I2)

‖v±(t, ·)‖H2,∞

∥∥∥Qkg
0 (vJ1± , Du

J2
± )
∥∥∥
L2
.

For (J1, J2) ∈ I(I2) such that |J1|+ |J2| = |I2| we have by lemma 2.1.2 (ii) and a-priori estimates
(1.1.11) that

‖Qkg
0 (vJ1± , D1u

J2
± )‖L2 . ‖Rk

3(t, ·)‖L2 +
∑
J∈K
‖Qkg

0 (vJ±, D1χ(t−σDx)u±)‖L2

. ‖Rk
3(t, ·)‖L2 + tβ

1∑
|µ|=0

‖Rµ
1u±(t, ·)‖L∞E1

3(t;W )
1
2

≤ CBεt−
1
2

+β+
δ1
2 ,

with β > 0 small, β → 0 as σ → 0, while for (J1, J2) ∈ I(I2) such that |J1| + |J2| < |I2| (hence
< 2) an estimate such as (2.1.36) holds. These estimates, together with (1.1.11b), imply that
the right hand side of (2.1.37) is bounded by CABε2t−

3
2

+β′ , for a new small β′ > 0, β′ → 0 as
σ, δ0 → 0, and that concludes the proof of the statement.

Corollary 2.1.4. Let QI0(V,W ) be the vector defined in (2.1.12). There exists a constant C > 0
such that, if we assume that a-priori estimates (1.1.11) are satisfied in interval [1, T ], for some
fixed T > 1, with ε0 < (2A+B)−1 small:

(i) if I ∈ In with n ≥ 3:

(2.1.38) ‖QI0(V,W )‖L2 ≤ CAεt−
1
2

+ δ
2 ;
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(ii) if I ∈ Ik3, with 0 ≤ k ≤ 2,

(2.1.39) ‖QI0(V,W )‖L2 ≤ C(A+B)εt−
1
2

+
δk
2 .

Proof. (i) Inequality (2.1.38) is straightforward after definition (2.1.12) (all coefficients cI1,I2 are
equal to 0 when I ∈ In), lemma 2.1.2 (i), and a-priori estimates (1.1.11a), (1.1.11b).

(ii) If I ∈ Ik3 for a fixed 0 ≤ k ≤ 2 we have by definition (2.1.12) and lemmas 2.1.2, 2.1.3 that

(2.1.40)
∑

(I1,I2)∈I(I)
|I2|<|I|

Qw
0 (vI1± , Dxv

I2
± ) +

∑
(I1,I2)∈I(I)

|I1|+|I2|≤2,|I2|<|I|

Qw
0 (vI1± , Dtv

I2
± ) = Rk

3(t, x),

with Rk
3(t, x) satisfying (2.1.30). Moreover, for some smooth χ ∈ C∞0 (R2), equal to 1 in a

neighbourhood of the origin and σ > 0 small,

(2.1.41)

∑
(I1,I2)∈I(I)
|I2|<|I|

Qkg
0 (vI1± , Dxu

I2
± ) = δVk

∑
(I1,I2)∈I(I)
I1∈K,|I2|≤1

Qkg
0

(
vI1± , χ(t−σDx)Dxu

I2
±

)
+ Rk

3(t, x),

∑
(I1,I2)∈I(I)

|I1|+|I2|≤2,|I2|<|I|

Qkg
0 (vI1± , Dtu

I2
± ) = δVk

∑
(J,0)∈I(I)
J∈K

Qkg
0

(
vJ±, χ(t−σDx)|Dx|u±

)
+ Rk

3(t, x),

with sets K,Vk given, respectively, by (2.1.25), (2.1.26), δVk = 1 if I ∈ Vk, 0 otherwise (remind
that V2 is empty). Observe that, if k = 0, 1, I ∈ Ik3 and (I1, I2) ∈ I(I) with I1 ∈ K, two
situations may occur: if ΓI2 ∈ {Dα

x , |α| ≤ 1} then product ΓI1 contains exactly the same number
of Klainerman vector fields as in ΓI and V I1 would be at the same energy level as V I (i.e. its
L2 norm being controlled by Ek3 (t;W )1/2). In this case, from a-priori estimates (1.1.11a)

‖vI1± (t, ·)‖L2

(
‖χ(t−σDx)uI2± (t, ·)‖Hρ,∞ + ‖χ(t−σDx)RuI2± (t, ·)‖Hρ,∞

)
≤ Aεt−

1
2Ek3 (t;W )

1
2 .

(2.1.42)

If instead I2 is such that ΓI2 ∈ {Ω, Zm,m = 1, 2} is a Klainerman vector field, we automatically
have that ΓI is a product of three Klainerman vector fields and that V I1 is at an energy level
strictly lower than V I (i.e. its L2 norm is controlled by E1

3(t;W )1/2 whereas that of V I is
bounded by E0

3(t;W )1/2). From lemma B.2.10 we deduce that

(2.1.43) ‖vI1± (t, ·)‖L2

(
‖χ(t−σDx)uI2± (t, ·)‖Hρ,∞ + ‖χ(t−σDx)RuI2± (t, ·)‖Hρ,∞

)
≤ C(A+B)εt−

1
2

+β+
δ1
2 E1

3(t;W )
1
2 ,

for a small β > 0, β → 0 as σ → 0. Summing up (2.1.40) to (2.1.43) and using (2.1.30) we obtain
that there is a positive constant C such that

(2.1.44) ‖QI0(V,W )‖L2 ≤ δkC(A+B)εt−
1
2

[
Ek3 (t;W )

1
2 + δ0t

β+
δ1
2 E1

3(t;W )
1
2

]
+ CBεt−

5
4 ,

with δk = 1 for k = 0, 1, equal to 0 when k = 2, and δ0 = 1 only when k = 0, 0 otherwise.
Finally, taking σ > 0 small so that β + δ1/2 � δ0/2 and using a-priori estimates (1.1.11d) we
deduce estimate (2.1.39) from (2.1.44).
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2.1.3 Symmetrization

Proposition 2.1.5. As long as H1,∞ norm of V (t, ·) is sufficiently small, there exists a real
matrix P (V ; η) of order 0 and a real symmetric matrix Ã1(V ; η) of order 1, vanishing at order 1
at V = 0, such that

(2.1.45) W I
s := OpB

(
P (V ; η)

)
W I

is solution to

DtW
I
s = A(D)W I

s +OpB(Ã1(V ; η))W I
s +OpB(A′′(V I ; η))U

+OpB(C ′′(U ; η))V I +OpBR(A′′(V I ; η))U +QI0(V,W ) + R(U, V ),
(2.1.46)

where R(U, V ) satisfies, for any θ ∈]0, 1[,

‖R(U, V )(t, ·)‖L2 .
[
‖V (t, ·)‖H7,∞ + ‖V (t, ·)‖1−θ

H1,∞‖V (t, ·)‖θH3 (‖U(t, ·)‖H2,∞ + ‖R1U(t, ·)‖H2,∞)

+ ‖V (t, ·)‖L∞
(
‖U(t, ·)‖1−θ

H2,∞ + ‖R1U(t, ·)‖1−θ
H2,∞

)
‖U(t, ·)‖θH4

]
‖W I(t, ·)‖L2

+ ‖V (t, ·)‖H1,∞

(
‖W (t, ·)‖H7,∞ + ‖RU(t, ·)‖H6,∞

)
‖W I(t, ·)‖L2

+ ‖V (t, ·)‖H1,∞‖QI0(V,W )‖L2 .

(2.1.47)

Moreover, for any n, r ∈ N,

M0
r (P (V ; η)− I4;n) . ‖V (t, ·)‖H1+r,∞ ,(2.1.48)

M1
r

(
Ã1(V ; η);n

)
. ‖V (t, ·)‖H1+r,∞ ,(2.1.49)

and as long as the H2,∞ norm of V (t, ·) is small there is a constant C > 0 such that

(2.1.50) C−1‖W I(t, ·)‖L2 ≤ ‖W I
s (t, ·)‖L2 ≤ C‖W I(t, ·)‖L2 .

In order to prove proposition 2.1.5, we first need to introduce the following lemma.

Lemma 2.1.6. Let α, β ∈ R, L ∈M2(R) and M0, N(α, β) ∈M4(R) given by

L =

[
0 1
1 0

]
, M0 =

[
I2 0
0 −I2

]
, N(α, β) =

[
αL βL
αL βL

]
=


0 α 0 β
α 0 β 0
0 α 0 β
α 0 β 0

 .
There exist a small δ > 0 and a smooth function defined on open ball Bδ(0) of radius δ,

(α, β) ∈ Bδ(0)→ P (α, β) ∈ Sym4(R),

with values in the space of real, symmetric, 4 × 4 matrices Sym4(R), such that P (0, 0) = I4,
P (α, β) = I4 +O(|α|+ |β|) and P (α, β)−1

(
M0 +N(α, β)

)
P (α, β) is symmetric for any (α, β) ∈

Bδ(0). Furthermore P−1(α, β) = I4 +O(|α|+ |β|).

Proof. Let E be the vector space of 2× 2 matrices B(α, β) = αI2 + βL and F be the set of 4× 4
matrices of the form [

F11 F12

F21 F22

]
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with Fij ∈ E. We look for a matrix P of the form

(2.1.51) P (B) = (I2 −B2)−
1
2

[
I2 −B
−B I2

]
with B ∈ E close to zero (so that in particular (I2 − B2)1/2 is well defined). We remark that
matrix P (B)−1 has the form

P (B)−1 = (I2 −B2)−
1
2

[
I2 B
B I2

]
and that P (0) = P−1(0) = I4. We consider Φ : R2 × E → F defined by Φ(α, β,B) :=
P (B)−1

[
M0 + N(α, β)

]
P (B) =

(
Φij(α, β,B)

)
1≤i,j≤2

, where Φij ∈ E as E is a commutative

sub-algebra of M2(R). We also define Ψ(α, β,B) := Φ12(α, β,B)−Φ†21(α, β,B) with Φ†21 denot-
ing the transpose of Φ21. We have that Ψ(0, 0, 0) = 0 and

DBΦ(0, 0, 0) ·B =

[
0 B
B 0

]
M0 −M0

[
0 B
B 0

]
= 2

[
0 −B
B 0

]
from which follows that DBΨ(0, 0, 0) ·B = −4B, i.e. DBΨ(0, 0, 0) = −4I. Therefore, there exist
a small δ > 0 and a smooth function (α, β) ∈ Bδ(0)→ B(α, β) ∈ E such that B(0, 0) = 0 (which
implies P (B(0, 0)) = I4), and Ψ(α, β,B(α, β)) = 0 ∀(α, β) ∈ Bδ(0). This is equivalent to say
that Φ(α, β,B(α, β)) is symmetric and moreover P (B(α, β)), P (B(α, β))−1 = I4 +O(|α|+ |β|).
Defining P (α, β) := P (B(α, β)) concludes the proof of the statement.

Proof of proposition 2.1.5. With notations introduced in lemma 2.1.6 and in (2.1.5), (2.1.19),
A(η) = 〈η〉M0 + S(η) and A′1(V ; η)(1− χ)(η) = 〈η〉N(α, β), with

S(η) =


|η| − 〈η〉 0 0 0

0 0 0 0
0 0 −(|η| − 〈η〉) 0
0 0 0 0

whose elements are O(|η|−1), |η| → +∞,

and α = a0(v±; η) η1〈η〉(1 − χ)(η), β = b0(v±; η) η1〈η〉(1 − χ)(η), a0, b0 defined in (2.1.8). Since
supη

(
|α| + |β|

)
. ‖V (t, ·)‖H1,∞ , by lemma 2.1.6 we have that, as long as ‖V (t, ·)‖H1,∞ is suf-

ficiently small, there exists a real symmetric matrix P = P (V ; η) of the form (2.1.51) such
that P (V ; η)−1

[
M0 + N(α, β)

]
P (V ; η) is real and symmetric. Moreover P = I4 + Q(V ; η) and

P−1 = I4 + Q′(V ; η), where Q(V ; η), Q′(V ; η) are matrices depending smoothly on α, β (which
are symbols of order 0), null at order 1 at V = 0, verifying for any n, r ∈ N

M0
r (Q(V ; η);n) +M0

r

(
Q′(V ; η);n

)
. ‖V (t, ·)‖H1+r,∞ .

We define the following matrix of order 1

Ã1(V ; η) := P (V ; η)−1
[
〈η〉
(
M0 +N(α, β)

)]
P (V ; η)− 〈η〉M0

and W I
s := OpB(P−1(V ; η))W I . From the fact that Ã1(V ; η) also writes as

〈η〉
[
Q′(V ; η)M0 + P−1(V ; η)M0Q(V ; η) + P−1(V ; η)N(α, β)P (V ; η)

]
we see that it vanishes at order 1 at V = 0 and is such that M1

r (Ã1(V ; η);n) . ‖V (t, ·)‖H1+r,∞ .
Moreover, from proposition 1.2.9 (ii) with r = 1 it follows that

(2.1.52) I = OpB(P (V ; η))OpB(P−1(V ; η)) + T−1(V ),
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where operator T−1(V ) is of order less or equal than −1 whose L(L2) norm is a O(‖V (t, ·)‖H2,∞).
Therefore W I = OpB(P (V ; η))W I

s + T−1(V )W I and from proposition 1.2.7 the L2 norms of
W I ,W I

s are equivalent as long as the H2,∞ norm of V is small. Using equation (2.1.20) we find
that:

DtW
I
s = OpB(P−1(V ; η))OpB

(
A(η) +A′1(V ; η)(1− χ)(η)

)
W I

+OpB(P−1(V ; η))
[
OpB

(
A′1(V ; η)χ(η)

)
+OpB

(
A′−1(V ; η)

)]
W I

+OpB(P−1(V ; η))
[
OpB(C ′(W I ; η))V +OpBR(A′(V ; η))W I

]
+OpB(P−1(V ; η))

[
OpB(A′′(V I ; η))U +OpB(C ′′(U ; η))V I +OpBR(A′′(V I ; η))U

]
+OpB(P−1(V ; η))QI0(V,W ) +OpB(DtP

−1(V ; η))W I

(2.1.53)

where

OpB(P−1(V ; η))OpB
(
A(η) +A′1(V ; η)(1− χ)(η)

)
W I

= OpB(P−1(V ; η))OpB
(
〈η〉
(
M0 +N(α, β)

))
W I +OpB(S(η))W I +OpB(Q′(V ; η))OpB(S(η))W I

= OpB(P−1(V ; η))OpB
(
〈η〉
(
M0 +N(α, β)

))
OpB(P (V ; η))W I

s

+OpB(P−1(V ; η))OpB
(
〈η〉
(
M0 +N(α, β)

))
T−1(V )W I +OpB(S(η))W I

s

+OpB(S(η))OpB(Q(V ; η))W I
s +OpB(S(η))T−1(V )W I +OpB(Q′(V ; η))OpB(S(η))W I

=OpB(A(η) + Ã1(V ; η))W I
s + T̃0(V )W I

s + T̃ ′0(V )W I

(2.1.54)

with T̃0(V ), T̃ ′0(V ) operators of order 0 and L(L2) norm O(‖V (t, ·)‖H2,∞). Last equality follows
indeed from the fact that, by proposition 1.2.9 (ii) with r = 1 and proposition 1.2.7,

OpB(P−1(V ; η))OpB
[
〈η〉
(
M0 +N(α, β)

)]
OpB(P (V ; η))

= OpB
(
P (V ; η)−1

[
〈η〉
(
M0 +N(α, β)

)]
P (V ; η)

)
+ T̃0(V )

and OpB(S(η))OpB(Q(V ; η)), OpB(Q′(V ; η))OpB(S(η)) are operator of order 0, too (the former
of the form T̃0(V ), the latter of the form T0(V )), while OpB(S(η))T−1(V ) is of order −1 (and
can be included in T0(V )). The equivalence between the L2 norms of W I

s and W I implies that
T̃0(V )W I

s + T̃ ′0(V )W I in (2.1.54) is a remainder R(U, V ).

All operators appearing in the second and third line of (2.1.53) are also remainders R(U, V )
because, from proposition 1.2.7, the fact thatM0

0 (P−1(V ; η); 2) = O(1) and lemma 2.1.1, their L2

norm is bounded by ‖V (t, ·)‖H7,∞‖W I(t, ·)‖L2 . Last term in (2.1.53) also contributes to R(U, V )
for matrix DtP

−1(V ; η) is of order 0, its M0
0 (·, 2) seminorm is bounded by ‖DtV (t, ·)‖H1,∞ and

for any θ ∈ [0, 1]

‖DtV (t, ·)‖H1,∞ . ‖V (t, ·)‖H2,∞ + ‖V (t, ·)‖1−θ
H1,∞‖V (t, ·)‖θH3 (‖U(t, ·)‖H2,∞ + ‖R1U(t, ·)‖H2,∞)

+ ‖V (t, ·)‖L∞
(
‖U(t, ·)‖1−θ

H2,∞ + ‖R1U(t, ·)‖1−θ
H2,∞

)
‖U(t, ·)‖θH4 ,

as follows from (B.1.6b) with s = 1. Finally, in remaining contributions in (2.1.53) we replace
OpB(P−1(V ; η)) with I+OpB(Q′(V ; η)) and observe that the terms on which OpB(Q′(V ; η)) acts
are remainders R(U, V ) after proposition 1.2.7, the fact thatM0

0 (Q′(V ; η); 2) = O(‖V (t, ·)‖H1,∞)
and lemma 2.1.1. Interchanging the notation of P (V ; η) and P−1(V ; η), we obtain the result of
the statement.
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2.2 Normal forms and energy estimates

Before going further in writing an energy inequality for W I
s we should make few remarks. As

we previously anticipated, the L2 norm of some of the semi-linear terms appearing in equation
(2.1.46) have a very slow decay in time. On the one hand, it is the case of OpB(A′′(V I ; η))U ,
OpB(C ′′(U ; η))V I and OpBR(A′′(V ; η))U , whose L2 norms are estimated in (2.1.21d), (2.1.21e)
in terms of the uniform norms of U,R1U . On the other hand, also some of the contributions to
QI0(V,W ) are only a OL2(t−1/2+β′), for some small β′ > 0, after corollary 2.1.4. Nevertheless,
we are going to see that OpB(A′′(V I ; η))U , OpBR(A′′(V ; η))U and the mentioned contributions
to QI0(V,W ) can be easily eliminated by performing a semi-linear normal form argument in
the energy inequality (see subsection 2.2.2). Such an argument is however not well adapted to
handle OpB(C ′′(U ; η))V I , for it leads to a loss of derivatives linked to the quasi-linear nature of
the problem, i.e. to the fact that matrix Ã1(V ; η) in the right hand side of (2.1.46) is of order
1. This latter contribution should instead be eliminated through a suitable normal form applied
directly on equation (2.1.46), which is the object of the subsection 2.2.1.

2.2.1 A first normal forms transformation and the energy inequality

First of all, we replace OpB(C ′′(U ; η))V I in equation (2.1.46) with OpB(C ′′(U ; η))V I
s , having

defined V I
s := OpB(P−1(V ; η))V I , and remind that from (2.1.48) with r = 0 and (2.1.52) the

L2 norm of V I and V I
s are equivalent as long as the H2,∞ norm of V (t, ·) is small (assumption

compatible with (1.1.11b) if ρ ≥ 2). We will rather deal with

(Dt −A(D))W I
s = OpB(Ã1(V ; η))W I

s +OpB(A′′(V I ; η))U +OpB(C ′′(U ; η))V I
s

+OpBR(A′′(V I ; η))U +QI0(V,W ) + R(U, V ),
(2.2.1)

for a new R(U, V ) satisfying (2.1.47) and show how to get rid of OpB(C ′′(U ; η))V I
s in the above

right hand side. More precisely, we are going to prove the following result:

Proposition 2.2.1. Let N ∈ N∗. There exist three matrices E0
d(U ; η), E−1

d (U ; η), End(U ; η)
linear in (u+, u−), with E0

d(U ; η) real diagonal of order 0 and E−1
d (U ; η), End(U ; η) of order -1,

and, as long as ‖R1U(t, ·)‖H2,∞ is small, a real diagonal matrix F 0
d (U ; η) of order 0 such that, if

(2.2.2)
W̃ I
s := OpB(I4 + E(U ; η))W I

s ,

with E(U ; η) := E0
d(U ; η) + E−1

d (U ; η) + End(U ; η),

then

(Dt −A(D))W̃ I
s = OpB

(
(I4 + E0

d(U ; η))Ã1(V ; η)(I4 + F 0
d (U ; η))

)
W̃ I
s

+OpB(A′′(V I ; η))U +OpBR(A′′(V I ; η))U +QI0(V,W ) + T−N (U)W I
s + R′(U, V ).

(2.2.3)

In the above right hand side T−N (U) = (σij(U,Dx))ij is a pseudo-differential operator of order
less or equal than −N , with

(2.2.4) ‖T−N (U)‖L(Hs−N ;Hs) . ‖R1U(t, ·)‖HN+2,∞ + ‖U(t, ·)‖HN+6,∞ ,

for any s ∈ R and such that

(2.2.5a) Fx 7→ξ(σij(U, η))(ξ) =

{
σ+
ij(ξ, η)û+(ξ) + σ−ij(ξ, η)û−(ξ), i, j ∈ {2, 4},

0, otherwise,

66



with σ±ij(ξ, η) supported for |ξ| ≤ ε〈η〉 for a small ε > 0, and for any α, β ∈ N2

(2.2.5b) |∂αξ ∂βη σ±ij(ξ, η)| .α,β |ξ|N+1−|α|〈η〉−N−|β|, i, j ∈ {2, 4}.

Also, R′(U, V ) is a remainder satisfying, for any θ ∈]0, 1[

‖R′(U, V )(t, ·)‖L2 . (1 + ‖U(t, ·)‖H5,∞)‖R(U, V )‖L2

+ (‖R1U(t, ·)‖H1,∞ + ‖U(t, ·)‖H5,∞)
[
‖QI0(V,W )‖L2

+ (‖RU(t, ·)‖H6,∞ + ‖U(t, ·)‖H6,∞) ‖W I(t, ·)‖L2

]
+ ‖V (t, ·)‖2−θ

H5,∞‖V (t, ·)‖θH7‖W I(t, ·)‖L2 ,

(2.2.6)

with R(U, V ) verifying (2.1.47).

For any n, r ∈ N, any χ ∈ C∞0 (R2) equal to 1 close to the origin and supported in open ball
Bε(0), with ε > 0 sufficiently small, we have that

(2.2.7a) M0
r

(
E0
d

(
χ

(
Dx

〈η〉

)
U ; η

)
;n

)
. ‖R1U(t, ·)‖H1+r,∞ ,

(2.2.7b) M−1
r

(
E−1
d

(
χ

(
Dx

〈η〉

)
U ; η

)
;n

)
. ‖U(t, ·)‖H5+r,∞ ,

(2.2.7c) M−1
r

(
End

(
χ

(
Dx

〈η〉

)
U ; η

)
;n

)
. ‖U(t, ·)‖H5+r,∞ ;

and

(2.2.8) M0
r

(
F 0
d

(
χ

(
Dx

〈η〉

)
U ; η

)
;n

)
. ‖R1U(t, ·)‖H1+r,∞ .

Finally, as long as ‖R1U(t, ·)‖H2,∞ + ‖U(t, ·)‖H5,∞ is small, there is a constant C > 0 such that

(2.2.9) C−1‖W I
s (t, ·)‖L2 ≤ ‖W̃ I

s (t, ·)‖L2 ≤ C‖W I
s (t, ·)‖L2 .

Remark 2.2.2. From propositions 2.1.5 and 2.2.1 it follows that, as long as ‖R1U(t, ·)‖H2,∞ ,
‖U(t, ·)‖H5,∞ and ‖V (t, ·)‖H2,∞ are small, there is a constant C > 0 such that

(2.2.10) C−1‖W I(t, ·)‖L2 ≤ ‖W̃ I
s (t, ·)‖L2 ≤ C‖W I(t, ·)‖L2 .

This implies that, if

Ẽn(t;W ) :=
∑
|α|≤n

∥∥OpB(I4 + E(U ; η))OpB(P (V ; η))Dα
xW (t, ·)

∥∥
L2 , ∀n ∈ N, n ≥ 3,(2.2.11a)

Ẽk3 (t;W ) :=
∑

|α|+|I|≤3
|I|≤3−k

∥∥OpB(I4 + E(U ; η))OpB(P (V ; η))Dα
xW

I(t, ·)
∥∥
L2 ,∀ 0 ≤ k ≤ 2,(2.2.11b)

there exists a constant C1 > 0 such that

(2.2.12)
C−1

1 En(t;W ) ≤ Ẽn(t;W ) ≤ C1En(t;W ), ∀n ≥ 3,

C−1
1 Ek3 (t;W ) ≤ Ẽk3 (t;W ) ≤ C1E

k
3 (t;W ), ∀ 0 ≤ k ≤ 2.

Thanks to the above equivalence, the propagation of some suitable estimates on Ẽn(t;W ) and
Ẽk3 (t;W ) will provide us with (1.1.12c) and (1.1.12d) respectively, so we can rather focus on the
derivation of an energy inequality for Ẽn(t;W ), Ẽk3 (t;W ).
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In order to get rid of OpB(C ′′d (U ; η))V I
s in (2.2.1)we introduce matrices

(2.2.13) C ′′d (U ; η) =


0 0 0 0
0 e0 0 0
0 0 0 0
0 0 0 f0

 , C ′′nd(U ; η) =


0 0 0 0
0 0 0 f0

0 0 0 0
0 e0 0 0


so that

C ′′(U ; η) = C ′′d (U ; η) + C ′′nd(U ; η),

and proceed to eliminate OpB(C ′′d (U ; η))V I
s and OpB(C ′′nd(U ; η))V I

s separately.

Lemma 2.2.3. Let N ∈ N∗. There exists a diagonal matrix Ed(U ; η) of order 0, linear in
(u+, u−), such that

(2.2.14) OpB(C ′′d (U ; η))V I
s +OpB(DtEd(U ; η))W I

s − [A(D), OpB(Ed(U ; η))]W I
s

= T−N (U)W I
s + R′(V, V ),

where R′(V, V ) satisfies, for any θ ∈]0, 1[,

(2.2.15) ‖R′(V, V )(t, ·)‖L2 . ‖V (t, ·)‖2−θ
H5,∞‖V (t, ·)‖θH7‖V I(t, ·)‖L2 ,

and T−N (U) is a pseudo-differential operator of order less or equal than −N such that, for any
s ∈ R,

(2.2.16) ‖T−N (U)‖L(Hs−N ;Hs) . ‖R1U(t, ·)‖HN+2,∞ + ‖U(t, ·)‖HN+6,∞ ,

whose symbol σ(U, η) = (σij(U, η))1≤i,j≤4 is such that

(2.2.17a) Fx7→ξ(σij(U, η))(ξ) =

{
σ+
ii (ξ, η)û+(ξ) + σ−ii (ξ, η)û−(ξ), i = j ∈ {2, 4},

0, otherwise,

with σ±ii (ξ, η) supported for |ξ| ≤ ε〈η〉 for a small ε > 0, and verifying, for any α, β ∈ N2,

(2.2.17b) |∂αξ ∂βη σ±ii (ξ, η)| .α,β |ξ|N+1−|α|〈η〉−N−|β|, for i = 2, 4.

Moreover, if χ ∈ C∞0 (R2) is equal to 1 close to the origin and has a sufficiently small support,

(2.2.18) Ed

(
χ

(
Dx

〈η〉

)
U ; η

)
= E0

d

(
χ

(
Dx

〈η〉

)
U ; η

)
+ E−1

d

(
χ

(
Dx

〈η〉

)
U ; η

)
,

the former matrix in the above right hand side being real of order 0 and satisfying (2.2.7a), the
latter being of order −1 and verifying (2.2.7b).

Proof. Because of the diagonal structure of A(η) and C ′′d (U ; η) we look for a matrix Ed =
(eij)1≤i,j≤4 satisfying (2.2.14) such that eij = 0 for all i, j but i = j ∈ {2, 4}, and we also require
symbols e22, e44 to be of order 0 and linear in (u+, u−). If we remind that matrix A(η) in (2.1.5)
is of order 1 and make the ansatz that Ed is of order 0, then by symbolic calculus of proposition
1.2.9 we have that

(2.2.19) − [A(D), OpB(Ed(U ; η))] = −
N∑
|α|=1

1

α!
OpB

(
∂αηA(η)Dα

xEd(U ; η)
)

+ T−N (U)
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with T−N (U) pseudo-differential operator of order less or equal than −N such that, for any
s ∈ R,
(2.2.20)
‖T−N (U)‖L(Hs−N ;Hs) .M

1
N+1(A(η);N + 3)M0

0 (Ed(U ; η); 2) +M1
0 (A(η);N + 3)M0

N+1(Ed(U ; η); 2)

and whose symbol σ(U, η) = (σij(U, η))ij is such that σij(U, η) = 0 for all i, j but i = j ∈ {2, 4}.
Therefore, for any fixed χ ∈ C∞0 (R2) equal to 1 in Bε1(0) and supported in Bε2(0), for some
0 < ε1 < ε2 � 1, we look for Ed(U ; η) such that

χ

(
Dx

〈η〉

)C ′′d (U ; η) +DtEd(U ; η)−
N∑
|α|=1

1

α!
∂αηA(η)Dα

xEd(U ; η)

 = 0.

Since Ed(U ; η) is required to be linear in (u+, u−), we should write it rather as Ed(u+, u−; η) to
then realize that, as u+ (resp. u−) is solution to the first (resp. to the third) equation in (2.1.2)
with |I| = 0,

DtEd(u+, u−; η) = Ed(|Dx|u+,−|Dx|u−; η) + Ed
(
Qw

0 (v±, D1v±), Qw
0 (v±, D1v±); η

)
,

Dα
xEd(u+, u−; η) = Ed(D

α
xu+, D

α
xu−; η), ∀α ∈ N2.

If we temporarily neglecting contribution Ed
(
Qw

0 (v±, D1v±), Qw
0 (v±, D1v±); η

)
, we are lead to

solve the following equation

χ

(
Dx

〈η〉

)C ′′d (U ; η) + Ed(|Dx|u+,−|Dx|u−; η)−
N∑
|α|=1

1

α!
∂αηA(η)Ed(D

α
xu+, D

α
xu−; η)

 = 0,

which is equivalent to system

e22

χ(Dx〈η〉)(|Dx| −
N∑
|α|=1

1

α!
∂αη (〈η〉)Dα

x

)
u+,−χ

(
Dx

〈η〉

)(
|Dx|+

N∑
|α|=1

1

α!
∂αη (〈η〉)Dα

x

)
u−; η


= −χ

(
Dx
〈η〉

)
e0

e44

χ(Dx〈η〉)(|Dx|+
N∑
|α|=1

1

α!
∂αη (〈η〉)Dα

x

)
u+,−χ

(
Dx

〈η〉

)(
|Dx| −

N∑
|α|=1

1

α!
∂αη (〈η〉)Dα

x

)
u−; η


= −χ

(
Dx
〈η〉

)
f0,

with e0, f0 defined in (2.1.9). Then, if we look for eii of the form

(2.2.21) eii(u+, u−; η) =

∫
eix·ξαii(ξ, η)û+(ξ)dξ +

∫
eix·ξβii(ξ, η)û−(ξ)dξ,

this system implies, inter alia, that

∫
eix·ξχ

(
ξ

〈η〉

)(
|ξ| −

N∑
|α|=1

1

α!
∂αη (〈η〉)ξα

)
α22(ξ, η)û+(ξ)dξ =

− i

4

∫
eix·ξχ

(
ξ

〈η〉

)(
1− η

〈η〉
· ξ
|ξ|

)
ξ1û+(ξ)dξ.

As 1∓
N∑
|α|=1

1

α!
∂αη (〈η〉)ξ

α

|ξ|

 = 1∓
N∑
k=1

1

k!
(ξ · ∇η)k(〈η〉)
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and

(∂η1ξ1 + ∂η2ξ2)k〈η〉 =
|ξ|k

〈η〉k−1

(
1−

(
η

〈η〉
· ξ
|ξ|

)2
)
bk(ξ, η), 2 ≤ k ≤ N,

with bk(ξ, η) polynomial of degree k − 2 in η
〈η〉 ·

ξ
|ξ| , we derive that

(2.2.22)

1∓
N∑
|α|=1

1

α!
∂αη (〈η〉)ξ

α

|ξ|

 =

(
1∓ η

〈η〉
· ξ
|ξ|

)
(1∓ b±(ξ, η))

with

(2.2.23)
b±(ξ, η) :=

N∑
k=2

1

k!
|ξ|k−1〈η〉−(k−1)

(
1± η

〈η〉
· ξ
|ξ|

)
bk(ξ, η),

|∂µξ ∂
ν
η b±(ξ, η)| .µ,ν |ξ|1−|µ|〈η〉−1−|ν|, ∀µ, ν ∈ N2,

and we can then choose α22(ξ, η) in (2.2.21) such that, when |ξ| ≤ ε2〈η〉,

(2.2.24) α22(ξ, η) = − i
4

(1− b+(ξ, η))−1 ξ1

|ξ|
.

Similarly, we choose multipliers β22, α44, β44 such that, as long as |ξ| ≤ ε2〈η〉,

β22(ξ, η) =
i

4
(1 + b−(ξ, η))−1 ξ1

|ξ|
,

α44(ξ, η) = − i
4

(1 + b−(ξ, η))−1 ξ1

|ξ|
, β44(ξ, η) =

i

4
(1− b+(ξ, η))−1 ξ1

|ξ|
.

These multipliers are all well defined for |ξ| ≤ ε2〈η〉 as b±(ξ, η) = O(|ξ|〈η〉−1). Moreover, using
that (1± b∓(ξ, η))−1 = 1∓ b∓(ξ, η) +O(|ξ|2〈η〉−2) as long as |ξ| ≤ ε2〈η〉, we have that

α22(ξ, η) = − i
4

ξ1

|ξ|
+ α−1

22 (ξ, η), β22(ξ, η) =
i

4

ξ1

|ξ|
+ β−1

22 (ξ, η),

α44(ξ, η) = − i
4

ξ1

|ξ|
+ α−1

44 (ξ, η), β44(ξ, η) =
i

4

ξ1

|ξ|
+ β−1

44 (ξ, η),

with |∂µξ ∂
ν
ηα
−1
ii |+ |∂

µ
ξ ∂

ν
ηβ
−1
ii | .µ,ν |ξ|1−|µ|〈η〉−1−|ν| for any µ, ν ∈ N2. Injecting the above αii, βii,

i ∈ {2, 4}, in (2.2.21) we find that

e22

(
χ

(
Dx

〈η〉

)
u+, χ

(
Dx

〈η〉

)
u−; η

)
= − i

4
R1(u+ − u−) + e−1

22

(
χ

(
Dx

〈η〉

)
u+, χ

(
Dx

〈η〉

)
u−; η

)
,

e44

(
χ

(
Dx

〈η〉

)
u+, χ

(
Dx

〈η〉

)
u−; η

)
= − i

4
R1(u+ − u−) + e−1

44

(
χ

(
Dx

〈η〉

)
u+, χ

(
Dx

〈η〉

)
u−; η

)
,

where, for i ∈ {2, 4},

e−1
ii

(
χ

(
Dx

〈η〉

)
u+, χ

(
Dx

〈η〉

)
u−; η

)
=∫

eix·ξχ

(
ξ

〈η〉

)
α−1
ii (ξ, η)û+(ξ)dξ +

∫
eix·ξχ

(
ξ

〈η〉

)
β−1
ii (ξ, η)û−(ξ)dξ.

70



After lemma A.1 (i) and above estimates for α−1
ii , β

−1
ii , kernels

Ki
+(x, η) :=

∫
eix·ξχ

(
ξ

〈η〉

)
α−1
ii (ξ, η)〈ξ〉−4dξ, Ki

−(x, η) :=

∫
eix·ξχ

(
ξ

〈η〉

)
β−1
ii (ξ, η)〈ξ〉−4dξ

are such that, for any β ∈ N2, |∂βηKi
±(x, η)| . |x|−1〈x〉−2〈η〉−1−|β| for every (x, η). This implies

that∣∣∣∣∂βη e−1
ii

(
χ

(
Dx

〈η〉

)
u+, χ

(
Dx

〈η〉

)
u−; η

)∣∣∣∣ ≤∣∣∣∣∫ ∂βηK
i
+(x− y, η)[〈Dx〉4u+](y)dy

∣∣∣∣+

∣∣∣∣∫ ∂βηK
i
−(x− y, η)[〈Dx〉4u−](y)dy

∣∣∣∣ . ‖U(t, ·)‖H4,∞〈η〉−1−|β|

and e−1
ii is a symbol of order −1, for i = 2, 4. Moreover, using definition (1.2.3) and the fact that

space W r,∞ injects in Hr+1,∞, one can check that for any r, n ∈ N,

M−1
r

(
e−1
ii

(
χ

(
Dx

〈η〉

)
u+, χ

(
Dx

〈η〉

)
u−; η

)
;n

)
. ‖U(t, ·)‖H5+r,∞

and therefore that

M0
r

(
eii

(
χ

(
Dx

〈η〉

)
u+, χ

(
Dx

〈η〉

)
u−; η

)
;n

)
. ‖R1U(t, ·)‖H1+r,∞ + ‖U(t, ·)‖H5+r,∞ .

Defining

E0
d(U ; η) =


0 0 0 0
0 − i

4R1(u+ − u−) 0 0
0 0 0 0
0 0 0 − i

4R1(u+ − u−)

 , E−1
d (U ; η) =


0 0 0 0

0 e−1
22 0 0

0 0 0 0

0 0 0 e−1
44

 ,
decomposition (2.2.18) and estimate (2.2.7a), (2.2.7b) hold. Consequently, as

Ed
(
Qw

0 (v±, D1v±), Qw
0 (v±, D1v±); η

)
= E−1

d

(
Qw

0 (v±, D1v±), Qw
0 (v±, D1v±); η

)
for any n ∈ N and θ ∈]0, 1[, we derive from (B.1.3d) with s = 4 that

M0
0

(
Ed
(
Qw

0 (v±, D1v±), Qw
0 (v±, D1v±); η

)
;n
)
. ‖Qw

0 (v±, D1v±)‖H4,∞

. ‖V (t, ·)‖2−θ
H5,∞‖V (t, ·)‖θH7 ,

and hence that the quantization of Ed
(
Qw

0 (v±, D1v±), Qw
0 (v±, D1v±); η

)
acting on V I

s verifies
(2.2.15) after proposition 1.2.7. Also, (2.2.16) is deduced from (2.2.20) while properties (2.2.17)
are obtained using essentially (1.2.12).

Lemma 2.2.4. Let N ∈ N∗. There exists a purely imaginary matrix End(U ; η), linear in (u+, u−)
and of order −1, satisfying estimate (2.2.7c), such that

(2.2.25) OpB(C ′′nd(U ; η))V I
s +OpB(DtEnd(U ; η))W I

s − [A(D), OpB(End(U ; η))]W I
s

= T−N (U)W I
s + R′(V, V ),

where R′(V, V ) is a remainder satisfying (2.2.15) and T−N (U) is a pseudo-differential operator
of order less or equal than −N such that, for any s ∈ R,

(2.2.26) ‖T−N (U)‖L(Hs−N ;Hs) . ‖U(t, ·)‖HN+6,∞ .
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Moreover, its symbol σ(U, η) = (σij(U, η))1≤i,j≤4 is such that

(2.2.27a) Fx 7→ξ(σij(U, η))(ξ) =

{
σ+
ij(ξ, η)û+(ξ) + σ−ij(ξ, η)û−(ξ), (i, j) ∈ {(2, 4), (4, 2)},

0, otherwise,

with σ±ij supported for |ξ| ≤ ε〈η〉 for a small ε > 0, and verifying, for any α, β ∈ N2,

(2.2.27b) |∂αξ ∂βη σ±ij(ξ, η)| .α,β |ξ|N+2−|α|〈η〉−N−1−|β|,

for (i, j) ∈ {(2, 4), (4, 2)}.

Proof. Because of the structure of C ′′nd(U ; η), we seek for a matrix End(U ; η) satisfying (2.2.25),
of the form End(U ; η) = (eij)1≤i,j≤4 with eij = 0 for all i, j, except (i, j) ∈ {(2, 4), (4, 2)}. If
we make the ansatz that End(U ; η) is linear in (u+, u−), of order −1, and remind that A(η) in
(2.1.5) is of order 1, from symbolic calculus of proposition 1.2.9 we have that

−[A(D), OpB(End(U ; η))] =−OpB(A(η)End(U ; η)− End(U ; η)A(η))

−
N∑
|α|=1

1

α!
OpB(∂αηA(η) ·Dα

xEnd(U ; η)) + T−N (U),

where T−N (U) is a pseudo-differential operator of order less or equal than −N , such that, for
any s ∈ R,
(2.2.28)
‖T−N (U)‖L(Hs−N ;Hs) .M

1
N+1(A(η);N + 3)M−1

0 (End(U ; η); 2) +M1
0 (A(η);N + 3)M−1

N+1(End(U ; η); 2),

and whose symbol σ(U, η) = (σij(U, η))ij is such that σij = 0 for all i, j but (i, j) ∈ {(2, 4), (4, 2)}.
Hence, for any fixed χ ∈ R2 equal to 1 in Bε1(0) and supported in Bε2(0), for some 0 < ε1 <
ε2 � 1, we look for End(U ; η) such that

(2.2.29) χ

(
Dx

〈η〉

)[
C ′′nd(U ; η) +DtEnd(U ; η)−A(η)End(U ; η) + End(U ; η)A(η)

−
N∑
|α|=1

1

α!
∂αηA(η) ·Dα

xEnd(U ; η)
]

= 0.

Furthermore, as End(U ; η) = End(u+, u−; η) is linear in (u+, u−) and u+ (resp. u−) is solution
to the first (resp. the third) equation in (2.1.2) with |I| = 0, we have that

DtEnd(u+, u−; η) = End(|Dx|u+,−|Dx|u−; η) + End
(
Qw

0 (v±, D1v±), Qw
0 (v±, D1v±); η

)
,

Dα
xEnd(u+, u−; η) = End(D

α
xu+, D

α
xu−; η), ∀α ∈ N2

while

−A(η)End(U ; η) + End(U ; η)A(η) =


0 0 0 0
0 0 0 −2〈η〉e24

0 0 0 0
0 2〈η〉e42 0 0

 .
Then we rather search for symbols e24 and e42 such that

χ
(
Dx
〈η〉

)
e2,4

(|Dx| −
N∑
|α|=1

1

α!
∂α(〈η〉)Dα

x − 2〈η〉
)
u+,−

(
|Dx|+

N∑
|α|=1

1

α!
∂α(〈η〉)Dα

x + 2〈η〉
)
u−; η


= −χ

(
Dx
〈η〉

)
f0,

χ
(
Dx
〈η〉

)
e4,2

(|Dx|+
N∑
|α|=1

1

α!
∂α(〈η〉)Dα

x + 2〈η〉
)
u+,−

(
|Dx| −

N∑
|α|=1

1

α!
∂α(〈η〉)Dα

x − 2〈η〉
)
u−; η


= −χ

(
Dx
〈η〉

)
e0,
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with e0, f0 given by (2.1.9), neglecting contribution End
(
Qw

0 (v±, D1v±), Qw
0 (v±, D1v±); η

)
whose

quantization acting on W I
s gives rise to a remainder R′(V, V ), as we will see at the end of the

proof. We look for eij of the form

eij(u+, u−; η) =

∫
eix·ξαij(ξ, η)û+(ξ)dξ +

∫
eix·ξβij(ξ, η)û−(ξ)dξ,

for (i, j) ∈ {(2, 4), (4, 2)}, and reminding (2.2.22), (2.2.23) we choose the above multipliers such
that, as long as |ξ| ≤ ε2〈η〉,

α24(ξ, η) = − i
4

(
1 +

η

〈η〉
· ξ
|ξ|

)((
1− η

〈η〉
· ξ
|ξ|

)
(1− b+(ξ, η))− 2

〈η〉
|ξ|

)−1 ξ1

|ξ|
,

β24(ξ, η) = − i
4

(
1− η

〈η〉
· ξ
|ξ|

)((
1 +

η

〈η〉
· ξ
|ξ|

)
(1 + b−(ξ, η)) + 2

〈η〉
|ξ|

)−1 ξ1

|ξ|
,

α42(ξ, η) = β24, β42(ξ, η) = α24(ξ, η).

One can check that, on the support of χ
( ξ
〈η〉
)
and for any µ, ν ∈ N2, |∂µξ ∂

ν
ηαij |+ |∂

µ
ξ ∂

ν
ηβij | .µ,ν

|ξ|1−|µ|〈η〉−1−|ν|, and then that, if

Kij
+ (x, η) :=

∫
eix·ηχ

( ξ

〈η〉

)
αij(ξ, η)〈ξ〉−4dξ, Kij

− (x, η) :=

∫
eix·ηχ

( ξ

〈η〉

)
βij(ξ, η)〈ξ〉−4dξ,

for (i, j) ∈ {(2, 4), (4, 2)}, |∂βηKij
± (x, η)| . |x|−1〈x〉−2〈η〉−1−|β|, for any β ∈ N2 and (x, η) ∈

R2 × R2, as a consequence of lemma A.1. Therefore∣∣∣∣∂βη eij (χ(Dx

〈η〉

)
u+, χ

(
Dx

〈η〉

)
u−; η

)∣∣∣∣ ≤∣∣∣∣∫ ∂βηK
ij
+ (x− y, η)[〈Dx〉4u+](y)dy

∣∣∣∣+

∣∣∣∣∫ ∂βηK
ij
− (x− y, η)[〈Dx〉4u−](y)dy

∣∣∣∣ . ‖U(t, ·)‖H4,∞〈η〉−1−|β|,

which implies that e24, e42 are symbols of order −1. Also, for (i, j) ∈ {(2, 4), (4, 2)} and any
n, r ∈ N, one can prove that

M−1
r

(
eij

(
χ

(
Dx

〈η〉

)
u+, χ

(
Dx

〈η〉

)
u−; η

)
;n

)
. ‖U(t, ·)‖H5+r,∞

using definition (1.2.3) and the fact that space W r,∞ injects in Hr+1 for any r ∈ N. Estimate
(2.2.26) follows from (2.2.28) and symbol σ(U ; η) associated to T−N (U) satisfies (2.2.27), as one
can check using (1.2.12) and the estimates derived above for αij , βij . Finally, from (B.1.3d) with
s = 4 we deduce that, for any θ ∈]0, 1[,

M−1
0

(
End

(
Qw

0 (v±, D1v±), Qw
0 (v±, D1v±); η

)
;n
)
. ‖V (t, ·)‖2−θ

H5,∞‖V (t, ·)‖θH7 ,

and the quantization of End
(
Qw

0 (v±, D1v±), Qw
0 (v±, D1v±) acting onW I

s is a remainder verifying
(2.2.15) by proposition 1.2.7.

Proof of Proposition 2.2.1. Lemmas 2.2.3 and 2.2.4 show that there exist two matrices Ed(U ; η)
and End(U ; η), linear in (u+, u−), satisfying equations (2.2.14) and (2.2.25) respectively. After
definition (2.2.2) of W̃ I

s and equalities (2.2.1), (2.2.14) and (2.2.25) we deduce that

(Dt −A(D))W̃ I
s = OpB(Ã1(V ; η))W I

s +OpB(A′′(V I ; η))U +OpBR(A′′(V I ; η))U

+QI0(V,W ) + R(U, V ) +OpB(E(U ; η))
[
OpB(Ã1(V ; η))W I

s +OpB(A′′(V I ; η))U

+OpB(C ′′(U ; η))V I
s +OpBR(A′′(V I ; η))U +QI0(V,W ) + R(U, V )

]
+ T−N (U)W I

s + R′(V, V )
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where R(U, V ) satisfies (2.1.47), R′(V, V ) satisfies (2.2.15), and T−N (U) is a pseudo-differential
operator of order less or equal than −N verifying (2.2.5), (2.2.4). Contribution

OpB(E(U ; η))
[
OpB(A′′(V I ; η))U +OpB(C ′′(U ; η))V I

s +OpBR(A′′(V I ; η))U

+QI0(V,W ) + R(U, V )
]

is a remainder of the form R′(U, V ) satisfying estimate (2.2.6) as a consequence of proposition
1.2.7, estimates (2.2.7) with r = 0, lemma 2.1.1, and the fact that the L2 norms of V I

s and V I

are equivalent as long as ‖V (t, ·)‖H2,∞ is small.

According to the definition of E(U ; η) and decomposition (2.2.18)

OpB(E(U ; η))OpB(Ã1(V ; η)) = OpB(E0
d(U ; η))OpB(Ã1(V ; η))

+OpB
(
E−1
d (U ; η) + End(U ; η)

)
OpB(Ã1(V ; η)).

Proposition 1.2.7 and estimates (2.1.49), (2.2.7b), (2.2.7c) with r = 0, imply that the latter
addend in the above right hand side is a bounded operator on L2 whose L(L2) norm is esti-
mated by ‖U(t, ·)‖H5,∞‖V (t, ·)‖H1,∞ . The former one writes instead as OpB(E0

d(U ; η)Ã1(V ; η))+
T0(U, V ), for an operator T0(U, V ) of order less or equal than 0 and L(L2) norm controlled by
‖R1U(t, ·)‖H2,∞‖V (t, ·)‖H2,∞ , as follows from corollary 1.2.11 and estimates (2.1.49), (2.2.7a)
with r = 1. Hence,

OpB(E(U ; η))OpB(Ã1(V ; η))W I
s = OpB(E0

d(U ; η)Ã1(V ; η))W I
s + R′(U, V ),

for a new R′(U, V ) satisfying (2.2.6).

After (2.2.7a) matrix I4 + E0
d

(
χ(Dx〈η〉 )U ; η

)
is invertible as long as ‖R1U(t, ·)‖H1,∞ is small and

F 0
d (U ; η) :=

[
I4 + E0

d

(
χ(Dx〈η〉 )U ; η

)]−1 − I4 is such that, for any n, r ∈ N,

M0
r

(
F 0
d

(
χ
(Dx

〈η〉

)
U ; η

)
;n

)
. ‖R1U(t, ·)‖H1+r,∞ .

Moreover, F 0
d (U ; η) is a real diagonal matrix of order 0, and by corollary 1.2.11 with r = 1

OpB(I4 + F 0
d (U ; η))OpB(I4 + E0

d(U ; η)) = Id+ T−1(U),

with T−1(U) of order less or equal than 0 and L(Hs−1;Hs) norm bounded by ‖R1U(t, ·)‖H2,∞ ,
for any s ∈ R. This implies that

OpB(I4 + F 0
d (U ; η))W̃ I

s = W I
s + T̃−1(U)W I

s , T̃−1(U) = T−1(U) +OpB(E−1
d (U ; η) + End(U ; η))

with T̃−1(U) of order less or equal than −1 and

(2.2.30) ‖T̃−1(U)‖L(Hs−1;Hs) . ‖R1U(t, ·)‖H2,∞ + ‖U(t, ·)‖H5,∞

for any s ∈ R. Hence, as long as this quantity is small, there exists a positive constant C such
that (2.2.9) holds. Also,

OpB(I4 + E0
d(U ; η))OpB(Ã1(V ; η))W I

s

= OpB(I4 + E0
d(U ; η))OpB(Ã1(V ; η))OpB(I4 + F 0

d (U ; η))W̃ I
s

−OpB(I4 + E0
d(U ; η))OpB(Ã1(V ; η))T̃−1(U)W I

s ,
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where from proposition 1.2.7, (2.1.49), (2.2.7a), (2.2.30) and (2.1.50) the L2 norm of the latter
term in the above right hand side is estimated by

(2.2.31) ‖V (t, ·)‖H1,∞ (‖R1U(t, ·)‖H2,∞ + ‖U(t, ·)‖H5,∞) ‖W I(t, ·)‖L2 .

On the other hand, by corollary 1.2.11 with r = 1 we get that

OpB(I4 + E0
d(U ; η))OpB(Ã1(V ; η))OpB(I4 + F 0

d (U ; η))W̃ I
s

= OpB
(
(I4 + E0

d(U ; η))Ã1(V ; η)(I4 + F 0
d (U ; η))

)
W̃ I
s

+OpB(I4 + E0
d(U ; η))T0(U, V )W̃ I

s + T̃0(U, V )W̃ I
s ,

with T0(U, V ), T̃0(U, V ) operators of order less or equal than 0 and L(L2) norm controlled,
respectively, by ‖R1U(t, ·)‖H2,∞‖V (t, ·)‖H2,∞ and (2.2.31), so the last two terms in above right
hand side are also remaindersR′(U, V ) by proposition 1.2.7 and estimate (2.2.7a). That concludes
the proof of the statement.

2.2.2 A second normal forms transformation.

In proposition 2.2.1 in previous subsection we showed that one can get rid of the slow-decaying-
in-time semi-linear contribution OpB

(
C ′′(U ; η)

)
V I
s in (2.1.46) by introducing a new function W̃ I

s ,
defined in (2.2.2) in terms of W I

s and solution to equation (2.2.3). That naturally led us to the
introduction of new energies Ẽn(t;W ), for n ∈ N, n ≥ 3, and Ẽk3 (t;W ), for k ∈ N, 0 ≤ k ≤ 2, (see
(2.2.11a)) which are respectively equivalent to starting En(t;W ) and Ek3 (t;W ) whenever some
uniform norms of U, V are sufficiently small. However, these new energies do not allow us yet to
recover enhanced estimates (1.1.12c) and (1.1.12d) as it is not true that

(2.2.32)
∣∣∣∂tẼn(t;W )

∣∣∣ = O
(
εt−1+ δ

2En(t;W )
1
2

)
,
∣∣∣∂tẼk3 (t;W )

∣∣∣ = O
(
εt−1+ δ

2Ek3 (t;W )
1
2

)
.

This is do to the fact that we still have to deal with semi-linear slow-decaying contributions
OpB(A′′(V I ; η))U , OpBR(A′′(V I ; η))U , QI0(V,W ) to the right hand side of (2.2.3), together with
the new T−N (U)W I

s whose L2 norm is also a O(t−
1
2 ‖W I(t, ·)‖L2) after (2.2.4) and (1.1.11a). The

aim of the current subsection is hence to perform a new normal form argument to replace the
mentioned terms with more decaying ones. This is actually done at the energy level, meaning
that we are going to add some suitable cubic perturbations to Ẽn(t;W ) and Ẽk3 (t;W ) so that
the new energies so defined satisfy estimates as in (2.2.32).

Let us first focus on the slow decaying terms that appear when computing

∂tẼn(t;W ) =
∑
I∈In

〈
∂tW̃

I
s , W̃

I
s

〉
for any integer n ≥ 3. Using equation (2.2.3) and rewriting W̃ I

s in terms of W I we find, on the
one hand, the contribution

(2.2.33) −
∑
I∈In

=
[
〈OpB(A′′(V I ; η))U +OpBR(A′′(V I ; η))U,W I〉+ 〈T−N (U)W I ,W I〉

]
,

which is a O(εt−1/2En(t;W )) after Cauchy-Schwarz inequality, lemma 2.1.1 and a-priori esti-
mates (1.1.11). But we also have

(2.2.34) −
∑
I∈In

∑
(I1,I2)∈I(I)

[
|I|
2

]<|I1|<|I|

=
[
〈Qkg

0 (vI1± , D1u
I2
± ), vI+ + vI−〉

]
,
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which enjoys the same decay as the previous one, as can be immediately seen using again Cauchy-
Schwarz inequality along with (2.1.28) and (1.1.11a). From definition (2.1.6) of matrix A′′(V I , η),
Plancherel’s formula, (1.2.6) and the fact that vI+ = −vI−

〈OpB(A′′(V I ; η))U,W I〉 = 〈OpB(a0(vI±; η)η1)u+ +OpB(b0(vI±; η)η1)u−, v
I
+ + vI−〉

= − i

4(2π)2

∫
χ

(
ξ − η
〈η〉

)[
(vI+ + vI−

∧

)(ξ − η)(u+ + u−
∧

)(η)− ξ − η
〈ξ − η〉

· η
|η|

(vI+ − vI−
∧

)(ξ − η)

×(u+ − u−
∧

)(η)
]
η1(vI− + vI−

∧

)(−ξ)dξdη,

with χ denoting a smooth function equal to 1 in Bε1(0) and supported in Bε2(0), for some
0 < ε1 < ε2 � 1. Hence

(2.2.35) −=
[
〈OpB(A′′(V I ; η))U,W I〉

]
=

∑
jk∈{+,−}

CI(j1,j2,j3)

with
(2.2.36)

CI(j1,j2,j3) =
1

4(2π)2

∫
χ
(ξ − η
〈η〉

)(
1− j1j2

ξ − η
〈ξ − η〉

· η
|η|

)
η1v̂

I
j1(ξ − η)ûj2(η)v̂Ij3(−ξ)dξdη,

for any j1, j2, j3 ∈ {+,−}. Analogously, from equality (1.2.8)

(2.2.37) −=
[
〈OpBR(A′′(V I ; η))U,W I〉

]
=

∑
jk∈{+,−}

CI,R(j1,j2,j3)

with

(2.2.38) CI,R(j1,j2,j3) =
1

4(2π)2

∫ [
1− χ

(ξ − η
〈η〉

)
− χ

( η

〈ξ − η〉

)](
1− j1j2

ξ − η
〈ξ − η〉

· η
|η|

)
η1

× v̂Ij1(ξ − η)ûj2(η)v̂Ij3(−ξ)dξdη.

After proposition 2.2.1, T−N (U) = (σij(U,Dx))ij with symbols σij(U, η) satisfying (2.2.5). In-
troducing ρ : {+,−} → {2, 4} such that ρ(+) = 2, ρ(−) = 4 and using the convention that
−jk ∈ {+,−} \ {jk}, we have that

〈T−N (U)W I ,W I〉 =
∑

i,j∈{+,−}

〈σρ(i)ρ(j)(U,Dx)vIj , v
I
i 〉

= − 1

(2π)2

∑
jk∈{+,−}

∫
σj2ρ(j3),ρ(j1)(η, ξ − η)v̂Ij1(ξ − η)ûj2(η)v̂I−j3(−ξ)dξdη,

(2.2.39)

where multipliers σj2ρ(j3),ρ(j1)(η, ξ − η) are supported for |η| ≤ ε|ξ − η| and such that, for any
α, β ∈ N2, ∣∣∣∂αξ ∂βη σj2ρ(j3),ρ(j1)(η, ξ − η)

∣∣∣ .α,β |η|N+1−|β|〈ξ − η〉−N−|α|,

for any (ξ, η) ∈ R2 × R2, any j1, j2, j3 ∈ {+,−}. Moreover, by (2.1.1) we have that

−=
[
〈Qkg

0 (vI1± , D1u
I2
± ), vI+ + vI−〉

]
=

∑
jk∈{+,−}

CI1,I2(j1,j2,j3)(2.2.40)
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with

(2.2.41) CI1,I2(j1,j2,j3) :=
1

4(2π)2

∫ (
1− j1j2

ξ − η
〈ξ − η〉

· η
|η|

)
η1 v̂

I1
j1

(ξ − η)ûI2j2(η)v̂Ij3(−ξ)dξdη.

The above equalities lead us to introduce the following multipliers

(2.2.42) Bk
(j1,j2,j3)(ξ, η) :=

1

j1〈ξ − η〉+ j2|η|+ j3〈ξ〉

(
1− j1j2

ξ − η
〈ξ − η〉

· η
|η|

)
ηk, k = 1, 2

and

(2.2.43) σ̃N(j1,j2,j3)(ξ, η) :=
σj2ρ(j3),ρ(j1)(η, ξ − η)

j1〈ξ − η〉+ j2|η| − j3〈ξ〉
,

together with the following integrals

(2.2.44a) DI
(j1,j2,j3) :=

i

4(2π)2

∫
χ

(
ξ − η
〈η〉

)
B1

(j1,j2,j3)(ξ, η)v̂Ij1(ξ − η)ûj2(η)v̂Ij3(−ξ) dξdη,

(2.2.44b) DI,R
(j1,j2,j3) :=

i

4(2π)2

∫ [
1− χ

(
ξ − η
〈η〉

)
− χ

(
η

〈ξ − η〉

)]
B1

(j1,j2,j3)(ξ, η)

× v̂Ij1(ξ − η)ûj2(η)v̂Ij3(−ξ)dξdη,

(2.2.44c) D
I,T−N
(j1,j2,j3) := Re

[
1

(2π)2

∫
σ̃N(j1,j2,j3)(ξ, η)v̂Ij1(ξ − η)ûj2(η)v̂I−j3(−ξ)dξdη

]
and

(2.2.45) DI1,I2
(j1,j2,j3) :=

i

4(2π)2

∫
B1

(j1,j2,j3)(ξ, η)v̂I1j1 (ξ − η)ûI2j2(η)v̂Ij3(−ξ) dξdη

for any triplet (j1, j2, j3) ∈ {+,−}3. We warn the reader that definitions (2.2.44) and (2.2.45)
are given here for any general multi-indices I, I1, I2.

Definition 2.2.5. For every integer n ≥ 3 we define the second modified energy Ẽ†n(t;W ) as

(2.2.46) Ẽ†n(t;W ) := Ẽn(t;W ) +
∑
I∈In

ji∈{+,−}

(
DI

(j1,j2,j3) +DI,R
(j1,j2,j3) +D

I,T−N
(j1,j2,j3)

)

+
∑
I∈In

ji∈{+,−}

∑
(I1,I2)∈I(I)

[
|I|
2

]<|I1|<|I|

DI1,I2
(j1,j2,j3).

Let us now analyse the time derivative of Ẽk3 (t;W ) for integers 0 ≤ k ≤ 2. As in the previous
case, from equation (2.2.3) we see appear the same contribution as in (2.2.33), but with the sum
over In replaced with that on Ik3. We also find

(2.2.47) −
∑
I∈Ik3

=[〈QI0(V,W ),W I〉]

which is a O(εt−(1+δk)/2Ek3 (t;W )1/2) from Cauchy-Schwarz inequality and estimate (2.1.39). To
be more precise, the slow decay in time of the above scalar product is due to some particular
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quadratic term appearing in QI0(V,W ). In fact, according to definition (2.1.12) and to (2.1.29a),
(2.1.30), (2.1.34a), (1.1.11d), for any I ∈ Ik3

(2.2.48)
∑

(I1,I2)∈I(I)
|I2|<|I|

∣∣∣〈Qw
0 (vI1± , Dxv

I2
± ), uI+ + uI−〉

∣∣∣+
∑

(I1,I2)∈I(I)
|I1|+|I2|≤2,|I2|<|I|

∣∣∣〈Qw
0 (vI1± , Dtv

I2
± ), uI+ + uI−〉

∣∣∣
. ‖Rk

3(t, ·)‖L2‖U I(t, ·)‖L2 ≤ C(A+B)εt−1+
δk
2 Ek3 (t;W )

1
2 .

Also, after (2.1.29b) and (2.1.34b) we have that for all I /∈ Vk, with Vk defined in (2.1.26),

(2.2.49)∑
(I1,I2)∈I(I)
|I1|,|I2|<|I|

∣∣∣〈Qkg
0 (vI1± , Dxu

I2
± ), vI+ + vI−

〉∣∣∣+
∑

(I1,I2)∈I(I)
|I1|+|I2|≤2,|I1|,|I2|<|I|

∣∣∣〈Qkg
0 (vI1± , Dtu

I2
± ), vI+ + vI−

〉∣∣∣
. ‖Rk

3(t, ·)‖L2‖V I(t, ·)‖L2 ≤ C(A+B)εt−1+
δk
2 Ek3 (t;W )

1
2 .

Observe that the decay rate O(t−1+δk/2) in the right hand side of the two above inequalities
is the slowest one that allows us to propagate a-priori estimate (1.1.11d) and it gives us back
exactly the slow growth in time tδk/2 enjoyed by Ek3 (t;W )1/2, for 0 ≤ k ≤ 2. On the other hand,
for I ∈ Vk with k = 0, 1, we have that, for some smooth cut-off function χ and some σ > 0 small,∑

(I1,I2)∈I(I)
|I1|,|I2|<|I|

cI1,I2Q
kg
0 (vI1± , Dxu

I2
± ) =

∑
(I1,I2)∈I(I)
I1∈K,|I2|≤1

cI1,I2Q
kg
0

(
vI1± , χ(t−σDx)Dxu

I2
±

)
+ Rk

3(t, x),

∑
(I1,I2)∈I(I)

|I1|+|I2|≤2,|I1|,|I2|<|I|

cI1,I2Q
kg
0 (vI1± , Dtu

I2
± ) =

∑
(J,0)∈I(I)
J∈K

cJ,0Q
kg
0 (vJ±, χ(t−σDx)|Dx|u±) + Rk

3(t, x).

The L2 norms of the summations in the above right hand sides are bounded by∑
J |≤1

(
‖χ(t−σDx)uJ±(t, ·)‖H2,∞ + ‖χ(t−σDx)RuJ±(t, ·)‖H2,∞

)
Ek3 (t;W )

1
2

and hence by εt−1/2Ek3 (t;W )1/2 as follows by sharp estimate (B.2.57) derived in appendix B.
Therefore, the very contribution to (2.2.47) that has to be eliminated from ∂tẼ

k
3 (t;W ) appears

only for k = 0, 1 and is

(2.2.50) −
∑
I∈Vk

∑
(I1,I2)∈I(I)
I1∈K,|I2|≤1

cI1,I2=
[〈
Qkg

0

(
vI1± , χ(t−σDx)Dxu

I2
±

)
, vI+ + vI−

〉]

−
∑
I∈Vk

∑
(J,0)∈I(I)
J∈K

cJ,0=
[〈
Qkg

0

(
vJ±, χ(t−σDx)|Dx|u±

)
, vI+ + vI−

〉]
.

As

(2.2.51)

−=
[
〈Qkg

0 (vI1± , χ(t−σDx)Dlu
I2
± ), vI+ + vI−〉

]
=

∑
ji∈{+,−}

F I1,I2,l(j1,j2,j3), l = 1, 2

−=
[
〈Qkg

0 (vI1± , χ(t−σDx)|Dx|uI2± ), vI+ + vI−〉
]

=
∑

ji∈{+,−}

F I1,I2,3(j1,j2,j3),
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with

(2.2.52) F I1,I2,l(j1,j2,j3) =
1

4(2π)2

∫ (
1− j1j2

ξ − η
〈ξ − η〉

· η
|η|

)
ηl v̂

I1
j1

(ξ−η)χ(t−σDx)uI2j2

∧

(η)v̂Ij3(−ξ)dξdη,

for any ji ∈ {+,−}, l = 1, 2, 3, and η3 := j2|η|, we introduce a new multiplier

(2.2.53) B3
(j1,j2,j3)(ξ, η) :=

j2
j1〈ξ − η〉+ j2|η|+ j3〈ξ〉

(
1− j1j2

ξ − η
〈ξ − η〉

· η
|η|

)
|η|

together with integrals

(2.2.54) GI1,I2,l(j1,j2,j3) =
i

4(2π)2

∫
Bl

(j1,j2,j3)(ξ, η) v̂I1j1 (ξ − η)χ(t−σDx)uI2j2

∧

(η)v̂Ij3(−ξ)dξdη

for any l = 1, 2, 3, (j1, j2, j3) ∈ {+,−}3, with multipliers Bl
(j1,j2,j3) given by (2.2.42) when l = 1, 2,

and by (2.2.53) when l = 3. We warn the reader that in what follows we will sometimes refer to
multipliers Bl

(j1,j2,j3) (resp. integrals F
I1,I2,l
(j1,j2,j3) and G

I1,I2,l
(j1,j2,j3)) simply as B(j1,j2,j3) (resp. F

I1,I2
(j1,j2,j3)

and GI1,I2(j1,j2,j3)) forgetting about superscript l. This choice reveals to be convenient when we do
not need to distinguish between l = 1, 2, 3.

Definition 2.2.6. For every integer 0 ≤ k ≤ 2 we define the second modified energy Ẽk,†3 (t;W )
as

(2.2.55) Ẽk,†3 (t;W ) := Ẽk3 (t;W ) +
∑
I∈Ik3

ji∈{+,−}

(
DI

(j1,j2,j3) +DI,R
(j1,j2,j3) +D

I,T−N
(j1,j2,j3)

)

+ δk<2

∑
I∈Vk

ji∈{+,−}

∑
(I1,I2)∈I(I)
I1∈K,|I2|≤1

cI1,I2G
I1,I2
(j1,j2,j3),

with δk<2 = 1 if k = 0, 1, 0 otherwise, and coefficients cI1,I2 ∈ {−1, 0, 1}.

In view of the lemmas to follow it is useful to remind that, after system (2.1.2), for any multi-
index I vector (ûI+, v̂

I
+, û

I
−, v̂

I
−) is solution to

(2.2.56)
(Dt − |ξ|)ûI+(t, ξ) =

∑
|I1|+|I2|=|I|Q

w
0 (vI1± , D1v

I2
± )

∧

+
∑
|I1|+|I2|<|I| cI1,I2Q

w
0 (vI1± , Dv

I2
± )

∧

(Dt − 〈ξ〉)v̂I+(t, ξ) =
∑
|I1|+|I2|=|I|Q

kg
0 (vI1± , D1u

I2
± )

∧

+
∑
|I1|+|I2|<|I| cI1,I2Q

kg
0 (vI1± , Du

I2
± )

∧

(Dt + |ξ|)ûI−(t, x) =
∑
|I1|+|I2|=|I|Q

w
0 (vI1± , D1v

I2
± )

∧

+
∑
|I1|+|I2|<|I| cI1,I2Q

w
0 (vI1± , Dv

I2
± )

∧

(Dt + 〈ξ〉)v̂I−(t, x) =
∑
|I1|+|I2|=|I|Q

kg
0 (vI1± , D1u

I2
± )

∧

+
∑
|I1|+|I2|<|I| cI1,I2Q

kg
0 (vI1± , Du

I2
± )

∧

with coefficients cI1,I2 ∈ {−1, 0, 1} and indices I1, I2 in above right hand side such that (I1, I2) ∈
I(I). In lemmas 2.2.9 and 2.2.10 we will check that, with definitions 2.2.5, 2.2.6, the slow decaying
contributions highlighted in (2.2.33) are replaced in ∂tẼ

†
n(t;W ), ∂tẼ

k,†
3 (t;W ) by some new quartic

terms. These latter ones are obtained from integrals (2.2.44) by replacing each factor v̂Ij1 , ûj2 , v̂
I
j3

at a time with the non-linearity appearing in the equation that factor satisfies in (2.2.56). Lemma
2.2.11 (resp. lemma 2.2.12) shows that the same is for troublesome contributions (2.2.34) in
∂tẼ

†
n(t;W ) (resp. for (2.2.50) in ∂tẼ

k,†
3 (t;W )). We are also going to see that, if N ∈ N∗ is

chosen sufficiently large (e.g. N = 18), all these quartic terms suitably decay in time, and that
modified energies Ẽ†n(t;W ), Ẽk,†3 (t;W ) are equivalent, respectively, to En(t;W ), Ek3 (t,W ). We
point out the fact that the normal form’s step performed in previous section was necessary to
avoid here some problematic quartic contributions coming from quasi-linear terms in (2.2.56)
and that could lead to some loss of derivatives. Before proving the mentioned lemmas, we need
to introduce two preliminary results, that will be useful in the proof of lemmas 2.2.9, 2.2.11.
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Lemma 2.2.7. For any ji ∈ {+,−}, i = 1, 2, 3, let Bk
(j1,j2,j3)(ξ, η) be the multiplier defined

in (2.2.42) when k = 1, 2 and in (2.2.53) when k = 3, and ψ1, ψ2, ψ3 be three smooth cut-off
functions such that ψ1(x) is supported for |x| ≤ c, ψ2(x) is supported for c′ ≤ |x| ≤ C ′, ψ3(x) is
supported for |x| ≥ C, for some 0 < c, c′ � 1, C,C ′ � 1, and ψ1 + ψ2 + ψ3 ≡ 1. Let also δk be
equal to 1 for k = 1, 2, 0 for k = 3.
(i) For any j1, . . . , j5 ∈ {+,−}, i = 1, 2, and any u1, u2, u3, u4 such that u1 ∈ H4,∞(R2),
u2, u4 ∈ L2(R2), u3 ∈ H11,∞(R2) and δkRku3 ∈ H7,∞(R2),

(2.2.57)∣∣∣∣∫ ψi

(ξ − η
〈η〉

)
Bk(j1,j2,j3)(ξ, η)

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1û1(ξ − η − ζ)û2(ζ)û3(η)û4(−ξ)dξdηdζ

∣∣∣∣
. ‖u1‖H4,∞‖u2‖L2 (‖u3‖H11,∞ + δk‖Rku3‖H7,∞) ‖u4‖L2 ;

(ii) For any j1, . . . , j5 ∈ {+,−}, and any u1, u2, u3, u4 such that u1 ∈ H7,∞(R2), u2 ∈ H1(R2),
u4 ∈ L2(R2), u3 ∈ H4,∞(R2) and δkRku3 ∈ L∞(R2),

(2.2.58)∣∣∣∣∫ ψ3

(ξ − η
〈η〉

)
Bk(j1,j2,j3)(ξ, η)

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1û1(ξ − η − ζ)û2(ζ)û3(η)û4(−ξ)dξdηdζ

∣∣∣∣
. ‖u1‖H7,∞‖u2‖H1 (‖u3‖H4,∞ + δk‖Rku3‖L∞) ‖u4‖L2 .

Proof. Let k = 1, 2. We are going to refer to Bk
(j1,j2,j3) (resp. ηk and Rk) simply as B(j1,j2,j3)

(resp. η and R) and rather use a superscript to define a decomposition of this multiplier (see
(2.2.60))

Let us observe that, as

B(j1,j2,j3)(ξ, η) =
j1〈ξ − η〉+ j2|η| − j3〈ξ〉

2j1j2〈ξ − η〉|η|
η,

we can write

(2.2.59) B(j1,j2,j3)(ξ, η) = B0
(j1,j2,j3)(ξ, η)

η

|η|
+B1

(j1,j2,j3)(ξ, η)〈η〉4,

where for any smooth cut-off function φ, equal to 1 in a neighbourhood of the origin,

(2.2.60)
B0

(j1,j2,j3)(ξ, η) :=
j1〈ξ − η〉+ j2|η| − j3〈ξ〉

2j1j2〈ξ − η〉
φ(η),

B1
(j1,j2,j3)(ξ, η) :=

j1〈ξ − η〉+ j2|η| − j3〈ξ〉
2j1j2〈ξ − η〉|η|

η〈η〉−4(1− φ)(η).

According to decomposition (2.2.59) we have that, for any i = 1, 2, 3,

∫
ψi

(ξ − η
〈η〉

)
B(j1,j2,j3)(ξ, η)

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1û1(ξ − η − ζ)û2(ζ)û3(η)û4(−ξ)dξdηdζ

=

∫
ψi

(ξ − η
〈η〉

)
B0

(j1,j2,j3)(ξ, η)

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1û1(ξ − η − ζ)û2(ζ)R̂u3(η)û4(−ξ)dξdηdζ

+

∫
ψi

(ξ − η
〈η〉

)
B1

(j1,j2,j3)(ξ, η)

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1û1(ξ − η − ζ)û2(ζ) ̂〈Dx〉4u3(η)û4(−ξ)

dξdηdζ

=: I0
i + I1

i .

(2.2.61)
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(i) The first thing we observe concerning integral Iki for k = 0, 1, i = 1, 2, is that |ξ−η|, |ξ| . 〈η〉
on the support of ψi

( ξ−η
〈η〉
)
and that |ζ| ≤ 〈ξ − η − ζ〉〈η〉. Therefore, introducing the following

multipliers

Bi,k
(j1,...,j5)(ξ, η, ζ) := ψi

(ξ − η
〈η〉

)
Bk

(j1,j2,j3)(ξ, η)

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1〈η〉−7〈ξ − η − ζ〉−4,

for any j1, . . . j5 ∈ {+,−}, k = 0, 1, i = 1, 2, a straight computation shows that, for any
α, β, γ ∈ N2,

(2.2.62)

∣∣∣∂αξ ∂βηBi,k
(j1,...,j5)(ξ, η, ζ)

∣∣∣ . 〈ζ〉−3|gα,β(ξ, η)|,∣∣∣∂αξ ∂βη ∂γζBi,k
(j1,...,j5)(ξ, η, ζ)

∣∣∣ . (|ζ|〈ζ〉−1)1−|γ|〈ζ〉−3|gα,β(ξ, η)|, |γ| ≥ 1,

with

(2.2.63)
|gα,0(ξ, η)| .α 〈η〉−3〈ξ〉−3,

|gα,β(ξ, η)| .α,β (|η|〈η〉−1)1−|β|〈η〉−3〈ξ〉−3, |β| ≥ 1.

If
Ki,k

(j1,...,j5)(x, y, z) :=

∫
eix·ξ+iy·η+iz·ζBi,k

(j1,...,j5)(ξ, η, ζ)dξdηdζ,

by lemma A.1 (i) we first find that, for any α, β ∈ N2,∣∣∣∣∂αξ ∂βη ∫ eiz·ζBi,k
(j1,...,j5)(ξ, η, ζ)dζ

∣∣∣∣ . |z|−1〈z〉−2|gα,β(ξ, η)|

and successively that∣∣∣∣∂αξ ∫ eiy·η+iz·ζBi,k
(j1,...,j5)(ξ, η, ζ)dηdζ

∣∣∣∣ . |y|−1〈y〉−2|z|−1〈z〉−2〈ξ〉−3,

for every ξ ∈ R2, (y, z) ∈ R2 × R2. Corollary A.2 (i) hence implies that

|Ki,k
(j1,...,j5)(x, y, z)| . 〈x〉

−3|y|−1〈y〉−2|z|−1〈z〉−2, ∀(x, y, z) ∈ (R2)3.

As for i = 1, 2

I0
i =

∫
Bi,0

(j1,...,j5)(ξ, η, ζ) ̂〈Dx〉4u1(ξ − η − ζ)û2(ζ)〈Dx〉7Ru3

∧

(η)û4(−ξ) dξdηdζ,

=

∫
Ki,0

(j1,...,j5)(t− x, x− z, x− y)[〈Dx〉4u1](x)u2(y)[〈Dx〉7Ru3](z)u4(t)dxdydzdt,

I1
i =

∫
Bi,1

(j1,...,j5)(ξ, η, ζ) ̂〈Dx〉4u1(ξ − η − ζ)û2(ζ) ̂〈Dx〉11u3(η)û4(−ξ) dξdηdζ

=

∫
Ki,1

(j1,...,j5)(t− x, x− z, x− y)[〈Dx〉4u1](x)u2(y)[〈Dx〉11u3](z)u4(t)dxdydzdt,

inequality (2.2.57) follows by the fact that, for any ũ1, . . . ũ4 ∈ L2∩L∞, any f, g, h ∈ L1, integrals
such as

(2.2.64)
∫
f(t− x)g(x− z)h(x− y)|ũ1(x)||ũ2(y)||ũ3(z)||ũ4(t)|dxdydzdt

can be bounded from above by the product of the L2 norm of any two functions ũk times the
L∞ norm of the remaining ones.
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(ii) For a cut-off function φ as the one introduced at the beginning of the proof we decompose
integral Ik3 , k = 0, 1, distinguishing between |ζ| . 1 and |ζ| & 1. On the one hand, for any
j1, . . . , j5, k = 0, 1, we consider

B3,k
(j1,...,j5)(ξ, η, ζ) := ψ3

(ξ − η
〈η〉

)
φ(ζ)Bk

(j1,j2,j3)(ξ, η)

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1〈ξ − η − ζ〉−3

and observe that, since |ξ| ≤ 〈ξ − η − ζ〉 on the support of ψ3

( ξ−η
〈η〉
)
φ(ζ), the above multiplier

satisfies estimates (2.2.62), (2.2.63). From the same argument as before this implies that

(2.2.65)
∣∣∣∣J0

3 :=

∫
B3,0

(j1,...,j5)(ξ, η, ζ) ̂〈Dx〉3u1(ξ − η − ζ)û2(ζ)R̂u3(η)û4(−ξ)dξdηdζ
∣∣∣∣

. ‖u1‖H3,∞‖u2‖L2‖Ru3‖L∞‖u4‖L2

together with

(2.2.66)
∣∣∣∣J1

3 :=

∫
B3,1

(j1,...,j5)(ξ, η, ζ) ̂〈Dx〉3u1(ξ − η − ζ)û2(ζ) ̂〈Dx〉4u3(η)û4(−ξ)dξdηdζ
∣∣∣∣

. ‖u1‖H3,∞‖u2‖L2‖u3‖H4,∞‖u4‖L2 .

On the other hand, we make a further decomposition on the integral restricted to |ζ| & 1 by
means of functions ψi, i = 1, 2, 3, distinguishing between three regions: for |ζ| ≤ c〈ξ − η〉, for
c′〈ξ − η〉 ≤ |ζ| ≤ C ′〈ξ − η〉 and |ζ| > C〈ξ − η〉. For any j1, . . . , j5 ∈ {+,−}, k = 0, 1, we hence
introduce the following multipliers

B̃3,i,k
(j1,...,j5)(ξ, η, ζ) := ψ3

(ξ − η
〈η〉

)
(1− φ)(ζ)ψi

( ζ

〈ξ − η〉

)
×Bk

(j1,j2,j3)(ξ, η)

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1〈ξ − η − ζ〉−7;

for i = 1m, 3, and

(2.2.67) B̃3,2,k
(j1,...,j5)(ξ, η, ζ) := ψ3

(ξ − η
〈η〉

)
(1− φ)(ζ)ψ2

( ζ

〈ξ − η〉

)
×Bk

(j1,j2,j3)(ξ, η)

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1〈ζ〉−1.

Since |ξ| ∼ |ξ − η| ∼ |ξ − η − ζ| on the support of ψ3

( ξ−η
〈η〉
)
(1 − φ)(ζ)ψ1

( ζ
〈ξ−η〉

)
(resp. |ξ| ∼

|ξ−η| . |ζ| ∼ |ξ−η− ζ| on the support of ψ3

( ξ−η
〈η〉
)
(1−φ)(ζ)ψ3

( ζ
〈ξ−η〉

)
), a straight computation

shows that above multipliers verify (2.2.62), (2.2.63), from which follows that

(2.2.68)
∣∣∣∣J̃ i,03 :=

∫
B̃3,i,0

(j1,...,j5)(ξ, η, ζ) ̂〈Dx〉7u1(ξ − η − ζ)û2(ζ)R̂u3(η)û4(−ξ)dξdηdζ
∣∣∣∣

. ‖u1‖H7,∞‖u2‖L2‖Ru3‖L∞‖u4‖L2

along with

(2.2.69)
∣∣∣∣J̃ i,13 :=

∫
B̃3,i,1

(j1,...,j5)(ξ, η, ζ) ̂〈Dx〉7u1(ξ − η − ζ)û2(ζ) ̂〈Dx〉4u3(η)û4(−ξ)dξdηdζ
∣∣∣∣

. ‖u1‖H7,∞‖u2‖L2‖u3‖H4,∞‖u4‖L2 ,
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for i = 1, 3. Finally, on the support of ψ3

( ξ−η
〈η〉
)
(1−φ)(ζ)ψ2

( ζ
〈ξ−η〉

)
we have that |ξ| ∼ |ξ−η| ∼ |ζ|

and |ξ − η − ζ| . |ζ|. Replacing ζ with ξ − ζ by a change of coordinates we find that, for any
α, β, γ ∈ N2,

(2.2.70)

∣∣∣∂αξ ∂γζ B̃3,2,k
(j1,...,j5)(ξ, η, ξ − ζ)

∣∣∣ .α,γ 〈η〉−3〈ξ〉−|α|,∣∣∣∂αξ ∂βη ∂γζ B̃3,2,k
(j1,...,j5)(ξ, η, ξ − ζ)

∣∣∣ . (|η|〈η〉−1)1−|β|〈η〉−3〈ξ〉−|α|, |β| ≥ 1.

If we introduce a Littlewood-Paley decomposition such that

B̃3,2,k
(j1,...,j5)(ξ, η, ξ − ζ) =

∑
l≥1

B̃3,2,k
(j1,...,j5)(ξ, η, ξ − ζ)ϕ(2−lξ),

one can check, using lemma A.1 (i) to obtain the decay in y, making a change of coordinates
ξ 7→ 2lξ, some integration by parts, and using inequalities (2.2.70), that

Kk,l
(j1,...,j5)(x, y, z) :=

∫
eix·ξ+iy·η+iz·ζB̃3,2,k

(j1,...,j5)(ξ, η, ξ − ζ)ϕ(2−lξ)dξdηdζ

is such that

(2.2.71) |Kk,l
(j1,...,j5)(x, y, z)| . 22l〈2lx〉−3|y|−1〈y〉−2〈z〉−3, ∀(x, y, z) ∈ (R2)3.

Moreover, since |ξ| ∼ |ξ − ζ| on the support of B̃3,2,k
(j1,...,j5)(ξ, η, ζ) there are two other suitably

supported cut-off functions ϕ1, ϕ2 such that ϕ(2−lξ) = ϕ(2−lξ)ϕ1(2−lξ)ϕ2(2−l(ξ − ζ)), for any
l ≥ 1. If ∆l

jw := ϕj(2
−lDx)w, we finally obtain that

J̃2,0
3 :=

∫
B̃3,2,0

(j1,...,j5)(ξ, η, ζ)û1(ξ − η − ζ)〈̂Dx〉u2(ζ)R̂u3(η)û4(−ξ)dξdηdζ

=

∫
B̃3,2,0

(j1,...,j5)(ξ, η, ξ − ζ)û1(ζ − η)〈̂Dx〉u2(ξ − ζ)R̂u3(η)û4(−ξ)dξdηdζ

=
∑
l≥1

∫
K0,l

(j1,...,j5)(t− y, x− z, y − x)u1(x)[∆l
1〈Dx〉u2](y)[Ru3](z)[∆l

2u4](t)dxdydzdt,

and by (2.2.71) together with Cauchy-Schwarz inequality we derive that
(2.2.72)
|J̃2,0

3 | . ‖u1‖L∞‖R1u3‖L∞
∑
l≥1

‖∆l
1〈Dx〉u2‖L2‖∆l

2u4‖L2 . ‖u1‖L∞‖u2‖H1‖R1u3‖L∞‖u4‖L2 .

In a similar way we obtain that

J̃2,1
3 :=

∫
B̃3,2,1

(j1,...,j5)(ξ, η, ξ − ζ)û1(ζ − η)〈̂Dx〉u2(ξ − ζ) ̂〈Dx〉4u3(η)û4(−ξ)dξdηdζ

satisfies

(2.2.73) |J̃2,1
3 | . ‖u1‖L∞‖u2‖H1‖u3‖H4,∞‖u4‖L2 .

The result of statement (ii) follows then from inequalities (2.2.65), (2.2.66), (2.2.68), (2.2.69),
(2.2.72), (2.2.73), after having recognized that∫

ψ3

(ξ − η
〈η〉

)
B(j1,j2,j3)(ξ, η)

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1û1(ξ − η − ζ)û2(ζ)û3(η)û4(−ξ)dξdηdζ

=

1∑
k=0

Jk3 +

1∑
k=0

3∑
i=1

J̃ i,k3 .
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In conclusion, the same proof of above applies to multiplier B3
(j1,j2,j3) introduced in (2.2.53),

which can be decomposed as

j2B
0
(j1,j2,j3)(ξ, η) + B̃1

(j1,j2,j3)(ξ, η)〈η〉4

with the same B0
(j1,j2,j3) as in (2.2.60) and

B̃1
(j1,j2,j3)(ξ, η) :=

j1〈ξ − η〉+ j2|η| − j3〈ξ〉
2j1〈ξ − η〉

〈η〉−4(1− φ)(η).

The lack of factor η1|η|−1 againstB0
(j1,j2,j3), in comparison to decomposition (2.2.59), is the reason

why inequality (2.2.57) (resp. (2.2.58)) holds with ‖u3‖H11,∞ + ‖Ru3‖H7,∞ (resp. ‖u3‖H4,∞ +
‖Ru3‖L∞) replaced with ‖u3‖H11,∞ (resp. with ‖u3‖H4,∞).

Lemma 2.2.8. Under the same assumptions as in lemma 2.2.7 we have that:
(i) for any j1, . . . , j5 ∈ {+,−}, i = 1, 2, and any u1, u2, u3, u4 such that u1 ∈ H4,∞(R2), u2, u4 ∈
L2(R2), u3 ∈ H11,∞(R2) and δkRku3 ∈ H7,∞(R2),

(2.2.74)
∣∣∣∣∫ ψi

(ξ − η
〈η〉

)
Bk(j1,j2,j3)(ξ, η)

(
1 + j4j5

ξ + ζ

〈ξ + ζ〉
· ζ
|ζ|

)
ζ1û1(−ξ − ζ)û2(ζ)û3(η)û4(ξ − η)dξdηdζ

∣∣∣∣
. ‖u1‖H4,∞‖u2‖L2 (‖u3‖H11,∞ + δk‖Rku3‖H7,∞) ‖u4‖L2 ;

(ii) for any j1, . . . , j5 ∈ {+,−}, and any u1, u2, u3, u4 such that u1 ∈ H7,∞(R2), u2 ∈ L2(R2),
u4 ∈ H1(R2), u3 ∈ H4,∞(R2) and δkRku3 ∈ L∞(R2),

(2.2.75)
∣∣∣∣∫ ψ3

(ξ − η
〈η〉

)
Bk(j1,j2,j3)(ξ, η)

(
1 + j4j5

ξ + ζ

〈ξ + ζ〉
· ζ
|ζ|

)
ζ1û1(−ξ − ζ)û2(ζ)û3(η)û4(ξ − η)dξdηdζ

∣∣∣∣
. ‖u1‖H7,∞‖u2‖L2 (‖u3‖H4,∞ + δk‖Rku3‖L∞) ‖u4‖H1 .

Proof. The proof of the statement is analogous to that of lemma 2.2.7 after a change of coordi-
nates −ξ 7→ ξ − η. In (2.2.75) we take the H1 norm on u4 instead of u2, as done in (2.2.58), by
replacing multiplier B̃3,2,k

(j1,j2,j3) in (2.2.67) with

ψ3

(ξ − η
〈η〉

)
(1− φ)(ζ)ψ2

( ζ

〈ξ − η〉

)
Bk

(j1,j2,j3)(ξ, η)

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1〈ξ〉−1.

Lemma 2.2.9 (Analysis of quartic terms. I). For any general multi-index I, any jk ∈ {+,−},
k = 1, 2, 3, let CI(j1,j2,j3), C

I,R
(j1,j2,j3) be the integrals defined in (2.2.36), (2.2.38) respectively, and

DI
(j1,j2,j3), D

I,R
(j1,j2,j3) introduced in (2.2.44a), (2.2.44b). Then

(2.2.76) ∂t

[
DI

(j1,j2,j3) +DI,R
(j1,j2,j3)

]
= −CI(j1,j2,j3) − C

I,R
(j1,j2,j3) + DI

quart,

where DI
quart satisfies∣∣DI

quart(t)
∣∣

.
[
‖V (t, ·)‖

7
4

H10,∞‖V (t, ·)‖
1
4

H12 + ‖V (t, ·)‖H4,∞ (‖U(t, ·)‖H11,∞ + ‖R1U(t, ·)‖H7,∞)
]
‖W I(t, ·)‖2L2

+
∑

(I1,I2)∈I(I)
|I2|<|I|

‖Qkg
0 (vI1± , Du

I2
± )(t, ·)‖L2 (‖U(t, ·)‖H11,∞ + ‖R1U(t, ·)‖H7,∞) ‖V I(t, ·)‖L2 .

(2.2.77)
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Proof. Using definitions (2.2.36), (2.2.44a), (2.2.42) with k = 1, and system (2.2.56), we find
that

− 4(2π)2
[
∂tD

I
(j1,j2,j3) + CI(j1,j2,j3)

]
=

∫
χ

(
ξ − η
〈η〉

)
B1

(j1,j2,j3)(ξ, η)

 ∑
(I1,I2)∈I(I)

cI1,I2Q
kg
0 (vI1± , Du

I2
± )

∧
 (ξ − η)ûj2(η)v̂Ij3(−ξ)dξdη

+

∫
χ

(
ξ − η
〈η〉

)
B1

(j1,j2,j3)(ξ, η) v̂Ij1(ξ − η)Qw
0 (v±, D1v±)
∧

(η)v̂Ij3(−ξ)dξdη

+

∫
χ

(
ξ − η
〈η〉

)
B1

(j1,j2,j3)(ξ, η)v̂Ij1(ξ − η)ûj2(η)

 ∑
(I1,I2)∈I(I)

cI1,I2Q
kg
0 (vI1± , Du

I2
± )

∧
 (−ξ)dξdη

=: S1 + S2 + S3,

(2.2.78)

where coefficients cI1,I2 ∈ {−1, 0, 1} are such that cI1,I2 = 1 when |I1|+ |I2| = |I| (in which case
D = D1) and χ ∈ C∞0 (R2) is equal to 1 close to the origin and has a sufficiently small support.
All integrals in the above right hand side are quartic terms for they involve the quadratic non-
linearities of (2.2.56).

The fact that S2 is a remainder DI
quart satisfying (2.2.77) follows by inequalities (A.17), (B.1.3d)

with s = 7, and the fact that

(2.2.79) ‖R1Q
w
0 (v±, D1v±)‖H7,∞ . ‖V (t, ·)‖2−(2−θ)θ

H10,∞ ‖V (t, ·)‖(2−θ)θ
H12 ,

for any θ ∈]0, 1[. The above inequality is justified by the fact that, for any function w ∈
W 1,∞ ∩H1, ρ ∈ N and any θ ∈]0, 1[, setting p = 2

θ ∈]2,∞[,

(2.2.80) ‖〈Dx〉ρR1w‖L∞ . ‖〈Dx〉ρR1w‖W 1,p . ‖〈Dx〉ρw‖W 1,p . ‖〈Dx〉ρw‖1−θW 1,∞‖〈Dx〉ρw‖θH1

. ‖〈Dx〉ρw‖1−θH2,∞‖〈Dx〉ρw‖θH1 ,

as a consequence of Morrey’s inequality, continuity of R1 : Lp → Lp for p < +∞, interpolation
inequality, and the injection of W 1,∞ into H2,∞. This implies that

(2.2.81) ‖R1Q
w
0 (v±, D1v±)‖Hρ,∞ . ‖Qw

0 (v±, D1v±)‖1−θ
Hρ+2,∞‖Qw

0 (v±, D1v±)‖θHρ+1 ,

for any ρ ∈ N, and gives (2.2.79) when ρ = 7 after inequalities (B.1.3c) with s = 8, (B.1.3d) with
s = 9. Therefore, for any θ ∈]0, 1[,

|S2| .
(
‖V (t, ·)‖2−θ

H8,∞‖V (t, ·)‖θH10 + ‖V (t, ·)‖2−(2−θ)θ
H10,∞ ‖V (t, ·)‖(2−θ)θ

H12

)
‖V I(t, ·)‖2L2 ,

so choosing θ � 1 small (e.g. θ ≤ 1/8) and keeping in mind estimates (1.1.11b), (1.1.11c) we
deduce that S2 is controlled by the first term in the right hand side of (2.2.77).

Inequality (A.17) allows also to estimate all integrals in summations S1, S3 corresponding to
indices (I1, I2) ∈ I(I) with |I2| < |I|, and to bound them with the latter term in the right
hand side of (2.2.77). This is not the case for integrals with I2 = I involving quasi-linear term
Qkg

0 (v±, D1u
I
±), because a straight application of that inequality would give a bound at the wrong

energy level n+ 1, as ‖Qkg
0 (v±, D1u

I
±)‖L2 . ‖V (t, ·)‖H1,∞‖D1U

I(t, ·)‖L2 . Instead, since

(2.2.82) Qkg
0 (v±, D1u

I
±)

∧

(ξ) =
i

4

∑
j4,j5∈{+,−}

∫ (
1− j4j5

ξ − ζ
〈ξ − ζ〉

· ζ
|ζ|

)
ζ1v̂j4(ξ − ζ)ûIj5(ζ)dζ,
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we can rather write those integrals as the sum over jk ∈ {+,−}, k = 1, . . . 4, of the following:
(2.2.83a)∫

χ
(ξ − η
〈η〉

)
B1

(j1,j2,j3)(ξ, η)
(

1− j4j5
ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1v̂j4(ξ−η−ζ)ûIj5(ζ)ûj2(η)v̂Ij3(−ξ) dξdηdζ,

(2.2.83b)∫
χ
(ξ − η
〈η〉

)
B1

(j1,j2,j3)(ξ, η)
(

1 + j4j5
ξ + ζ

〈ξ + ζ〉
· ζ
|ζ|

)
ζ1v̂

I
j1(ξ − η)ûj2(η)v̂j4(−ξ − ζ)ûIj5(ζ) dξdηdζ,

and estimate them by using inequalities (2.2.57) and (2.2.74) respectively. We hence obtain that

|S1|+ |S3| . ‖V (t, ·)‖H4,∞ (‖U(t, ·)‖H11,∞ + ‖R1U(t, ·)‖H7,∞) ‖W I(t, ·)‖2L2

+
∑

(I1,I2)∈I(I)
|I2|<|I|

‖Qkg
0 (vI1± , Du

I2
± )(t, ·)‖L2 (‖U(t, ·)‖H11,∞ + ‖R1U(t, ·)‖H7,∞) ‖V I(t, ·)‖L2 ,

and, since the same argument applies to ∂tD
I,R
(j1,j2,j3), this also concludes the proof of the state-

ment.

Lemma 2.2.10 (Analysis of quartic terms. II). For any general multi-index I, any jk ∈ {+,−},
k = 1, 2, 3, let DI,T−N

(j1,j2,j3) be defined as in (2.2.44c). Then

(2.2.84) ∂tD
I,T−N
(j1,j2,j3) = =

[
〈T−N (U)W I ,W I

]
+ DI,N

quart

and if N ≥ 18 DI,N
quartsatisfies∣∣∣DI,N

quart

∣∣∣ . ‖V (t, ·)‖
7
4

HN+4,∞‖V (t, ·)‖
1
4

HN+6‖W I(t, ·)‖2L2

+
∑

(I1,I2)∈I(I)
|I2|<|I|

∥∥∥Qkg
0 (vI1± , Du

I2
± )
∥∥∥
L2
‖U(t, ·)‖HN+3,∞‖V I(t, ·)‖L2 .(2.2.85)

Proof. For any triplet (j1, j2, j3), we compute the time derivative of DI,T−N by making use of
system (2.2.56). Recalling (2.2.39) and (2.2.43), we find that

∂t

 ∑
jk∈{+,−}

D
I,T−N
(j1,j2,j3)

−=[〈T−N (U)W I ,W I〉] =

= Re

 1

(2π)2

∫
σ̃N(j1,j2,j3)(ξ, η)

 ∑
(I1,I2)∈I(I)

cI1,I2Q
kg
0 (vI1± , Du

I2
± )

∧

(ξ − η)

 ûj2(η)v̂I−j3(−ξ)dξdη

+
1

(2π)2

∫
σ̃N(j1,j2,j3)(ξ, η)v̂Ij1(ξ − η)Qw

0 (v±, D1v±)
∧

(η)v̂I−j3(−ξ)dξdη

+
1

(2π)2

∫
σ̃N(j1,j2,j3)(ξ, η)v̂Ij1(ξ − η)ûj2(η)

 ∑
(I1,I2)∈I(I)

cI1,I2Q
kg
0 (vI1± , Du

I2
± )

∧

(−ξ)

 dξdη


=: S
T−N
1 + S

T−N
2 + S

T−N
3 ,

(2.2.86)

with coefficients cI1,I2 ∈ {−1, 0, 1} such that cI1,I2 = 1 whenever |I1| + |I2| = |I| (in which case
D = D1). After lemma A.6 and inequality (B.1.3d) with s = N + 3 we deduce that, if N ≥ 15,
for any θ ∈]0, 1[

|ST−N2 | . ‖V (t, ·)‖2−θ
HN+4,∞‖V (t, ·)‖θHN+6‖V I(t, ·)‖2L2 .
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Choosing θ � 1 small (e.g. θ ≤ 1/8) we then obtain that ST−N2 is a remainder DI,N
quart satisfying

(2.2.85). Also, the same lemma implies that each contribution in ST−N1 , S
T−N
3 corresponding to

(I1, I2) ∈ I(I) with |I2| < |I| is bounded by∥∥∥Qkg
0 (vI1± , Du

I2
± )
∥∥∥
L2
‖U(t, ·)‖HN+3,∞‖V I(t, ·)‖L2 .

Reminding instead (2.2.82), we find that the remaining contribution to ST−N1 , corresponding to
I2 = I, is equal to the sum over j1, . . . , j5 ∈ {+,−} of the (imaginary part) of the following
integrals:

(2.2.87)
∫
σ̃N(j1,j2,j3)(ξ, η)

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1v̂j4(ξ−η− ζ)ûIj5(ζ)ûj2(η)v̂Ij3(−ξ) dξdηdζ.

Analogously, the contribution corresponding to I2 = I in ST−N3 is the sum over jk ∈ {+,−}, k =
1, . . . , 5 of

(2.2.88)
∫
σ̃N(j1,j2,j3)(ξ, η)

(
1 + j4j5

ξ + ζ

〈ξ + ζ〉
· ζ
|ζ|

)
ζ1v̂

I
j1(ξ − η)ûj2(η)v̂j4(−ξ − ζ)ûIj5(ζ) dξdηdζ.

Since σ̃N(j1,j2,j3)(ξ, η) satisfies (A.23) and is supported for |η| ≤ ε|ξ − η|, for a small 0 < ε � 1,
we rewrite above integrals, respectively, as

(2.2.89)
∫
σ̃N(j1,j2,j3)(ξ, η)〈η〉−N−3

(
1− j4j5

ξ − η − ζ
〈ξ − η − ζ〉

· ζ
|ζ|

)
ζ1〈ξ − η − ζ〉−4

× 〈Dx〉4v
∧

j4
(ξ − η − ζ)ûIj5(ζ)〈Dx〉N+3u
∧

j2
(η)v̂Ij3(−ξ) dξdηdζ,

and

(2.2.90)
∫
σ̃N(j1,j2,j3)(ξ, η)〈η〉−N−7

(
1 + j4j5

ξ + ζ

〈ξ + ζ〉
· ζ
|ζ|

)
ζ1〈ξ + ζ〉−4

× v̂Ij1(ξ − η)〈Dx〉N+7u
∧

j2
(η)〈Dx〉4v
∧

j4
(−ξ − ζ)ûIj5(ζ) dξdηdζ.

With such a choice, the new multipliers, that we denote concisely by σ̃N,k(j1,...,j5)(ξ, η, ζ), k = 0, 1,
verify, for any α, β, γ ∈ N2, ∣∣∣∂αξ ∂βη σ̃N,k(j1,...,j5)(ξ, η, ζ)

∣∣∣ . 〈ζ〉−3|gNα,β(ξ)|,∣∣∣∂αξ ∂βη ∂γζ σ̃N,k(j1,...,j5)(ξ, η, ζ)
∣∣∣ . (|ζ|〈ζ〉−1)1−|γ|〈ζ〉−3|gNα,β(ξ)|, |γ| ≥ 1,

with gNα,β(ξ, η) supported for |η| ≤ ε|ξ − η| and such that

|gNα,β(ξ, η)| . 〈ξ − η〉6−N+|α|+2|β||η|N−|β|〈η〉−N−3, ∀(ξ, η) ∈ R2 × R2.

If N ∈ N∗ is sufficiently large (e.g. N ≥ 18), the above estimate implies that, for any α, β ∈ N2

of length less or equal than 3,
|gNα,β(ξ, η)| . 〈η〉−3〈ξ〉−3,

so by lemma A.1 (i) together with corollary A.2 (i) we obtain that, for any k = 0, 1,

KN,k
(j1,...,j5)(x, y, z) :=

∫
eix·ξ+iy·η+iz·ζ σ̃N,k(j1,...,j5)(ξ, η, ζ)dξdηdζ
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is such that

(2.2.91) |KN,k
(j1,...,j5)(x, y, z)| . 〈x〉

−3|y|−1〈y〉−2|z|−1〈z〉−2, ∀(x, y, z) ∈ (R2)3.

By (2.2.89), (2.2.90), integrals (2.2.87), (2.2.88) are respectively equal to∫
KN,0

(j1,...,j5)(t− x, x− z, x− y)[〈Dx〉4vj4 ](x)uIj5(y)[〈Dx〉N+3uj2 ](z)vIj3(t)dxdydzdt

and ∫
KN,1

(j1,...,j5)(z − x, x− y, z − t)v
I
j1(x)[〈Dx〉N+7uj2 ](y)[〈Dx〉4vj4 ](z)uIj5(t)dxdydzdt.

Using (2.2.91) and the fact that integrals such as (2.2.64) can be bounded from above by the
product of the L2 norm of any two functions ũk times the L∞ norm of the remaining ones, they
are estimated by

‖V (t, ·)‖H4,∞‖U(t, ·)‖HN+7,∞‖W I(t, ·)‖2L2 ,

which concludes the proof of the statement.

Lemma 2.2.11 (Analysis of quartic terms. III). Let n ∈ N, n ≥ 3, I ∈ In and (I1, I2) ∈ I(I) be
such that [ |I|2 ] < |I1| < |I|. Let also CI1,I2(j1,j2,j3), D

I1,I2
(j1,j2,j3) be the integrals defined, respectively, in

(2.2.41), (2.2.45), for any jk ∈ {+,−}, k = 1, 2, 3. Then

(2.2.92) ∂tD
I1,I2
(j1,j2,j3) = −CI1,I2(j1,j2,j3) + DI1,I2

quart,

where DI1,I2
quart satisfies

(2.2.93)
∣∣∣DI1,I2

quart(t)
∣∣∣ . [(‖W (t, ·)‖

H[n2 ]+12,∞ + ‖R1U(t, ·)‖
H[n2 ]+8,∞

)2

+‖V (t, ·)‖
7
4

H[n2 ]+11,∞‖V (t, ·)‖
1
4

H[n2 ]+12

]
En(t;W ).

Proof. We compute the time derivative of DI1,I2
(j1,j2,j3) by making use of system (2.2.56). We remind

that, after remark 1.1.5 and definition (1.1.18), if ΓI is a product of spatial derivatives then all
couples of indices (I1, I2) belonging to I(I) are such that |I1| + |I2| = |I| and ΓI1 ,ΓI2 are also
products of spatial derivatives. Therefore, all coefficients cI1,I2 appearing in the right hand side
of (2.2.56) are equal to 0. By definitions (2.2.42) with k = 1, (2.2.41), (2.2.45), we find that

−4(2π)2
[
∂tD

I1,I2
(j1,j2,j3) + CI1,I2(j1,j2,j3)

]
=∫

B1
(j1,j2,j3)(ξ, η)

 ∑
(J1,J2)∈I(I1)

Qkg
0 (vJ1± , D1u

J2
± )

∧

(ξ − η)

 ûI2j2(η)v̂Ij3(−ξ)dξdη

+

∫
B1

(j1,j2,j3)(ξ, η) v̂I1j1 (ξ − η)

 ∑
(J1,J2)∈I(I2)

Qw
0 (vJ1± , D1v

J2
± )

∧

(η)

 v̂Ij3(−ξ)dξdη

+

∫
B1

(j1,j2,j3)(ξ, η)v̂I1j1 (ξ − η)ûI2j2(η)

 ∑
(J1,J2)∈I(I)

Qkg
0 (vJ1± , D1u

J2
± )

∧
 (−ξ)dξdη

=:SI1,I21 + SI1,I22 + SI1,I23 .

(2.2.94)
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Since |J1|+ |J2| = |I1| < |I| ≤ n in SI1,I21 , we can estimate all its contributions using inequality
(A.17). Using lemma 2.1.2 (i), the fact that |I2| ≤ [n2 ] by the hypothesis and, hence, that

‖uI2± (t, ·)‖H7,∞ + ‖R1u
I2
± (t, ·)‖H7,∞ . ‖U(t, ·)‖

H[n2 ]+8,∞ ,

we deduce that∣∣∣SI1,I21

∣∣∣ . (‖W (t, ·)‖
H[n2 ]+2 + ‖R1U(t, ·)‖

H[n2 ]+2,∞

)
‖U(t, ·)‖

H[n2 ]+8,∞En(t;W ),

and above estimate holds also for all integrals in SI1,I23 corresponding to |J2| < |I|. The same
inequality (A.17), combined with (2.2.81) applied to Qw

0 (vJ1± , D1v
J2
± ) and with corollary A.4 in

appendix A, gives that, for any θ ∈]0, 1[,

|SI1,I22 |

.
∑

|J1|+|J2|=|I2|

[∥∥∥Qw
0 (vJ1± , D1v

J2
± )
∥∥∥
H7,∞

+
∥∥∥Qw

0 (vJ1± , D1v
J2
± )
∥∥∥1−θ

H9,∞

∥∥∥Qw
0 (vJ1± , D1v

J2
± )
∥∥∥θ
H8

]
En(t;W )

. ‖V (t, ·)‖2−(2−θ)θ
H[n2 ]+11,∞‖V (t, ·)‖(2−θ)θ

H[n2 ]+12En(t;W ).

Finally, the last remaining integral in SI1,I23 , corresponding to indices J1 = 0, J2 = I, can be
written using (2.2.82) as

∑
j4,j4∈{+,−}

∫
B1

(j1,j2,j3)(ξ, η)

(
1 + j4j5

ξ + ζ

〈ξ + ζ〉
· ζ
|ζ|

)
ζ1v̂

I1
j1

(ξ − η)ûI2j2(η)v̂j4(−ξ − ζ)ûIj5(ζ)dξdηdζ,

and is estimated, after lemma 2.2.8 and the fact that |I1| < |I|, by

‖V (t, ·)‖H7,∞

(
‖U(t, ·)‖

H[n2 ]+12,∞ + ‖R1U(t, ·)‖
H[n2 ]+8,∞

)
En(t;W ).

This gives that ∣∣∣SI1,I23

∣∣∣ . (‖W (t, ·)‖
H[n2 ]+12,∞ + ‖R1U(t, ·)‖

H[n2 ]+8,∞

)2
En(t;W )

and concludes the proof of the statement.

Lemma 2.2.12 (Analysis of quartic terms. IV). Let k = 0, 1, K,Vk be the sets introduced
in (2.1.25), (2.1.26) respectively, I ∈ Vk and (I1, I2) ∈ I(I) be such that I1 ∈ K, |I2| ≤ 1.
Let also F I1,I2,l(j1,j2,j3), G

I1,I2,l
(j1,j2,j3) be the integrals defined in (2.2.52), (2.2.54), for any l = 1, 2, 3,

ji ∈ {+,−}, i = 1, 2, 3. For any l = 1, 2, 3, any triplet (j1, j2, j3), we have that

(2.2.95) ∂tG
I1,I2,l
(j1,j2,j3) = −F I1,I2,l(j1,j2,j3) + GI1,I2

quart,

and there is a constant C > 0 such that, if a-priori estimates (1.1.11) are satisfied in interval
[1, T ] for a fixed T > 1, with ε0 < (2A+B)−1 small,

(2.2.96) |GI1,I2
quart(t)| ≤ C(A+B)2ε2t−1+

δk
2

[
Ek3 (t;W )

1
2 + δV0tβ+

δ1
2 E1

3(t;W )
1
2 + t−

1
4
− δk

2

]
,

for every t ∈ [1, T ], with δV0 = 1 if I ∈ V0, 0 otherwise, and β > 0 as small as we want.
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Proof. First of all, it is useful to remind that from (2.1.42), (2.1.43) and a-priori estimate
(1.1.11d), for any k = 0, 1, I ∈ Ik3, (I1, I2) ∈ I(I) such that I1 ∈ K, |I2| ≤ 1, and σ > 0
sufficiently small
(2.2.97)
‖V I1(t, ·)‖L2

(
‖χ(t−σDx)U I2(t, ·)‖Hρ,∞ + ‖χ(t−σDx)RU I2(t, ·)‖Hρ,∞

)
≤ C(A+B)Bε2t−

1
2

+
δk
2 ,

for every t ∈ [1, T ].

For any fixed (j1, j2, j3), any l = 1, 2, 3, we compute ∂tG
I1,I2,l
(j1,j2,j3) recurring to system (2.2.56)

along with its compact form{
(Dt ∓ 〈Dx〉)vI± = ΓIQw

0 (v±, D1v±),

(Dt ∓ |Dx|)uI± = ΓIQkg
0 (v±, D1u±),

and using that [Dt, χ(t−σDx)] = t−1χ1(t−σDx) with χ1(ξ) := iσ(∂χ)(ξ) · ξ. We find that

− 4(2π)2
[
∂tG

I1,I2,l
(j1,j2,j3) + F I1,I2,l(j1,j2,j3)

]
=

∫
Bl(j1,j2,j3)(ξ, η)

[
ΓI1Qkg

0 (v±, D1u±)

∧

(ξ − η)
]
χ(t−σDx)uI2j2

∧

(η)v̂Ij3(−ξ)dξdη

+

∫
Bl(j1,j2,j3)(ξ, η)v̂I1j1 (ξ − η)

[
χ(t−σDx)ΓI2Qw

0 (v±, D1v±)
∧

(η) + t−1χ1(t−σDx)uI2j2

∧

(η)
]
v̂Ij3(−ξ)dξdη

+

∫
Bl(j1,j2,j3)(ξ, η)v̂I1j1 (ξ − η)χ(t−σDx)uI2j2

∧

(η)
[ ∑

(J1,J2)∈I(I)

cJ1,J2Q
kg
0 (vJ1± , Du

J2
± )

∧

(−ξ)
]
dξdη

=: SI1,I2,l1 + SI1,I2,l2 + SI1,I2,l3 ,

with Bl
(j1,j2,j3) given by (2.2.42) when l = 1, 2 or (2.2.53) when l = 3.

Applying (A.17) to SI1,I2,l2 , using (2.2.80) with w = ΓI2Qw
0 (v±, D1v±) and ρ = 7, together with

the fact that operators χ(t−σDx), χ1(t−σDx) are bounded from L∞ to Hρ,∞ for any ρ ≥ 0 with
norm O(tσρ), and from L2 to Hs for any s ≥ 0 with norm O(tσs), we deduce that, for any
θ ∈]0, 1[,

(2.2.98) |SI1,I2,l2 | . tβ‖V I1(t, ·)‖L2‖V I(t, ·)‖L2

×
[
‖ΓI2Qw

0 (v±, D1v±)‖L∞ + δl‖ΓI2Qw
0 (v±, D1v±)‖1−θL∞ ‖Γ

I2Qw
0 (v±, D1v±)‖θL2

+t−1
(
‖χ1(t−σDx)uI2± (t, ·)‖L∞ + ‖χ1(t−σDx)RuI2± (t, ·)‖L∞

)]
,

for some β > 0 small, β → 0 as σ → 0, and with δl = 1 if l = 1, 2, 0 otherwise. When |I2| = 0 the
above right hand side can be estimated using (B.1.3a), (B.1.3b) and a-priori estimates (1.1.11).
When |I2| = 1 we derive from (1.1.15) that

ΓI2Qw
0 (v±, D1v±) = Qw

0 (vI2± , D1v±) +Qw
0 (v±, D1v

I2
± ) +Gw1 (v±, Dv±)

with Gw1 (v±, Dv±) = G1(v, ∂v) given by (1.1.16). Using lemma B.2.4 in appendix B with L = L∞

to estimate the L∞ norm of the first two quadratic terms in the above right hand side, we find
that, for some new χ ∈ C∞0 (R2) and σ > 0 small, there is a constant C > 0 such that

‖ΓI2Qw
0 (v±, D1v±)‖L∞ .

∥∥∥χ(t−σDx)vI2± (t, ·)
∥∥∥
H2,∞

‖v±(t, ·)‖H2,∞

+ t−N(s) (‖v±(t, ·)‖Hs + ‖Dtv±(t, ·)‖Hs)
( 1∑
|µ|=0

‖xµv±(t, ·)‖H1 + t‖v±(t, ·)‖H1

)
+ ‖v±(t, ·)‖H1,∞ (‖v±(t, ·)‖H2,∞ + ‖Dtv±(t, ·)‖H1,∞)

≤ CABε2t−2,
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where last inequality is obtained by picking s > 0 sufficiently large so that N(s) ≥ 4 and using
(B.1.6a), (B.1.6b), (B.1.10a), lemma B.4.14, together with a-priori estimates. Also, by (B.1.6a)
with s = 0 and a-priori estimates

‖ΓI2Qw
0 (v±, D1v±)‖L2 . ‖V (t, ·)‖H2,∞

(
‖V I2(t, ·)‖H1 + ‖DtV (t, ·)‖L2

)
≤ CABε2t−1+

δ2
2 .

Therefore, using lemma B.2.10 and taking θ, σ > 0 sufficiently small we deduce from (2.2.98)
and the above estimates that, for any l = 1, 2, 3 and a new C > 0,

(2.2.99) |SI1,I2,l2 | ≤ CABε2t−
5
4Ek3 (t;W )

1
2 .

We make use of inequality (A.17) to estimate SI1,I2,l1 , too. From (1.1.17) we have that

ΓI1Qkg
0 (v±, D1u±) = Qkg

0 (vI1± , D1u±) +
∑

(J1,J2)∈I(I1)
|J1|<|I1|

cJ1,J2Q
kg
0 (vJ1± , Du

J2
± )

with cJ1,J2 ∈ {−1, 0, 1}, and then from (2.1.29b), (2.1.34b) and the fact that I1 ∈ K,

ΓI1Qkg
0 (v±, D1u±) = Qkg

0 (vI1± , χ(t−σDx)D1u±) + Rk
3(t, x),

with Rk
3 satisfying (2.1.30) and

‖Qkg
0 (vI1± , χ(t−σDx)D1u±)‖L2 ≤ (‖U(t, ·)‖H2,∞ + ‖RU(t, ·)‖H2,∞) ‖V I1(t, ·)‖L2 .

So from (2.1.30), (2.2.97), lemma B.2.10 and priori estimates (1.1.11)

|SI1,I2,l1 | .
[
(‖U(t, ·)‖H2,∞ + ‖RU(t, ·)‖H2,∞) ‖V I1(t, ·)‖L2 + ‖Rk

3(t, ·)‖L2

]
×
(
‖χ(t−σDx)U I2(t, ·)‖H7,∞ + ‖χ(t−σDx)RU I2(t, ·)‖H7,∞

)
‖V I(t, ·)‖L2

≤ CABε2t−1+
δk
2 Ek3 (t;W )

1
2 .

(2.2.100)

Let us now consider all the addends in SI1,I2,l3 with |J2| < |I|, which by inequality (A.17) are
bounded by

‖V I1(t, ·)‖L2

( 1∑
|µ|=0

‖χ(t−σDx)RµU I2(t, ·)‖H7,∞

) ∑
(J1,J2)∈I(I)
|J2|<|I|

∥∥∥cJ1,J2Qkg
0 (vJ1± , Du

J2
± )
∥∥∥
L2
.

As the latter above factor is bounded by the L2 norm of QI0(V,W ) (see definition (2.1.12)),
inequalities (2.1.44) and (2.2.97) imply that those integrals are remainders GI1,I2

quart satisfying
(2.2.96). Finally, the last contribution to SI1,I2,l3 , corresponding to |J1| = 0, J2 = I, for which
D = D1, can be rewritten using (2.2.82) as the sum over j4, j5 ∈ {+,−} of∫

B1
(j1,j2,j3)(ξ, η)

(
1 + j4j5

ξ + ζ

〈ξ + ζ〉
· ζ
|ζ|

)
ζ1v̂4(−ξ − ζ)ûIj5(ζ)χ(t−σDx)uI2j2

∧

(η)v̂I1j1 (ξ − η)dξdη.

By means of lemma 2.2.8 it is bounded by

‖V (t, ·)‖H7,∞

( 1∑
|µ|=0

‖χ(t−σDx)D1RµUJ2(t, ·)‖H11,∞

)
‖V I1(t, ·)‖H1‖U I(t, ·)‖L2

for every t ∈ [1, T ], and hence by CA(A + B)ε2t−
3
2

+β′Ek3 (t;W ), with β′ > 0 small as long as
σ, δ0 are small, as follows by a-priori estimate (1.1.11b) and lemma B.2.10.
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2.2.3 Propagation of the energy estimate

Proposition 2.2.13 (Propagation of the energy estimate). Let us fix K2 > 0. There exist
two integers n � ρ � 1 sufficiently large, two constants A,B > 1 sufficiently large, ε0 ∈
]0, (2A+B)−1[ sufficiently small, and some 0 < δ � δ2 � δ1 � δ0 � 1 small such that, for any
0 < ε < ε0, if (u, v) is solution to (1.1.1)-(1.1.2) in some interval [1, T ] for a fixed T > 1, and
u±, v± defined in (1.1.5) satisfy a-priori estimates (1.1.11) for every t ∈ [1, T ], then they also
verify (1.1.12c), (1.1.12d) on the same interval [1, T ].

Proof. For any integer k, n ∈ N, with n ≥ 3 and 0 ≤ k ≤ 2, let Ẽn(t;W ), Ẽk3 (t;W ) be the
first modified energies introduced in (2.2.11) and Ẽ†n(t;W ), Ẽk,†3 (t;W ) be the second modified
energies, introduced in (2.2.46) and (2.2.55) respectively. Let also DI

(j1,j2,j3), D
I,R
(j1,j2,j3), D

I,T−N
(j1,j2,j3)

be the integrals defined in (2.2.44), DI1,I2
(j1,j2,j3) in (2.2.45), and GI1,I2,l(j1,j2,j3) in (2.2.54). Fix N = 18.

The first thing we observe is that, as long as estimates (1.1.11a), (1.1.11b) are satisfied and ρ ∈ N
is sufficiently large (e.g. ρ ≥ max{[n2 ] + 8, 21}), there is a constant C > 0 such that for every
t ∈ [1, T ]

C−1En(t;W ) ≤ Ẽ†n(t;W ) ≤ CEn(t;W ),(2.2.101a)

C−1Ek3 (t;W ) ≤ Ẽk,†3 (t;W ) ≤ CEk3 (t;W ).(2.2.101b)

Above equivalences follow from (2.2.12), a-priori estimates (1.1.11a), (1.1.11b), the fact that for
a general multi-index I (I ∈ In or I ∈ Ik3 for 0 ≤ k ≤ 2)∑

ji∈{+,−}

∣∣∣DI
(j1,j2,j3)

∣∣∣+
∣∣∣DI,R

(j1,j2,j3)

∣∣∣ . (‖U(t, ·)‖H7,∞ + ‖R1U(t, ·)‖H7,∞) ‖V I(t, ·)‖2L2

by inequality (A.17), ∑
jk∈{+,−}

∣∣∣DI,T−18

(j1,j2,j3)

∣∣∣ . ‖U(t, ·)‖H21,∞‖W I(t, ·)‖2L2

by inequality (A.24), and:

• as concerns especially (2.2.101a), from the fact that for any I ∈ In, any (I1, I2) ∈ I(I) with
[ |I|2 ] < |I1| < |I|, by (A.17)

∑
ji∈{+,−}

∣∣∣DI1,I2
(j1,j2,j3)

∣∣∣ . (‖U I2(t, ·)‖H7,∞ + ‖R1U
I2(t, ·)‖H7,∞

)
‖V I1(t, ·)‖L2‖V I(t, ·)‖L2

.
(
‖U(t, ·)‖

H[n2 ]+8,∞ + ‖R1U(t, ·)‖
H[n2 ]+8,∞

)
En(t;W );

• as concerns especially (2.2.101b), the fact that for any I ∈ Vk (see definition (2.1.26)), any
(I1, I2) ∈ I(I) with I1 ∈ K (see (2.1.25)) and |I2| ≤ 1, and any l = 1, 2, 3, by (A.17) and (2.2.97)

∑
ji∈{+,−}

∣∣∣GI1,I2,l(j1,j2,j3)

∣∣∣ . 1∑
|µ|=0

‖χ(t−σDx)RµU I2(t, ·)‖H7,∞‖V I1(t, ·)‖L2‖V I(t, ·)‖L2

≤ C(A+B)Bε2t−
1
2

+
δk
2 Ek3 (t;W )

1
2 .

(2.2.102)
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Let us now consider a general multi-index I. From equation (2.2.3) we deduce the following
equality:

1

2
∂t‖W̃ I

s (t, ·)‖2L2 = −=
[
〈DtW̃

I
s , W̃

I
s 〉
]

= −=
[
〈A(D)W̃ I

s , W̃
I
s 〉+

〈
OpB

(
(I4 + E0

d(U ; η))Ã1(V ; η)(I4 + F 0
d (U ; η))

)
W̃ I
s , W̃

I
s

〉
+〈OpB(A′′(V I ; η))U +OpBR(A′′(V I ; η))U, W̃ I

s 〉+ 〈QI0(V,W ), W̃ I
s 〉

+〈T−18(U)W I
s , W̃

I
s 〉+ 〈R′(U, V ), W̃ I

s 〉
]

(2.2.103)

and immediately notice that =[〈A(D)W̃ I
s , W̃

I
s 〉] = 0 because of the fact that A(η), introduced in

(2.1.5), is real diagonal matrix and its quantization is a self-adjoint operator.

Matrix (I4 + E0
d(U ; η))Ã1(V ; η)(I4 + F 0

d (U ; η)) is real, symmetric, of order 1, with semi-norm

M1
1

((
I4 + E0

d(U ; η))Ã1(V ; η)(I4 + F 0
d (U ; η)

)
, 3
)
. (1 + ‖R1U(t, ·)‖H2,∞)2‖V (t, ·)‖H2,∞

as follows by estimate (2.2.7a) on E0
d , (2.2.8) of F

0
d , and (2.1.49) on Ã1(V ; η). Corollary 1.2.13

and a-priori estimates (1.1.11a), (1.1.11b) imply then that the second term in the right hand side
of (2.2.103) reduces to 〈T0(U, V )W̃ I

s , W̃
I
s 〉, with T0(U, V ) operator of order less or equal than 0

such that

‖T0(U, V )‖L(L2) .M
1
1

((
I4 + E0

d(U ; η))Ã1(V ; η)(I4 + F 0
d (U ; η)

)
, 3
)
≤ CAεt−1,

so after Cauchy-Schwarz inequality and equivalence (2.2.10) it is a remainder R(t) satisfying, for
every t ∈ [1, T ]

(2.2.104) |R(t)| ≤ CAεt−1‖W I(t, ·)‖2L2 .

Observe that, by the definition of W̃ I
s in (2.2.2) and of W I

s in (2.1.45), we have that

∥∥∥(W̃ I
s −W I)(t, ·)

∥∥∥
L2
≤ ‖OpB(P (V ; η)− I4)W I‖L2 + ‖OpB(E(U ; η))W I

s ‖L2

. (‖V (t, ·)‖H1,∞ + ‖U(t, ·)‖H5,∞ + ‖R1U(t, ·)‖H1,∞) ‖W I(t, ·)‖L2 ,

(2.2.105)

the latter inequality following from proposition 1.2.7, estimate (2.1.48), the fact that E(U ; η)
verifies, after (2.2.7) and for any admissible cut-off function χ,

M0
0

(
E
(
χ
(Dx

〈η〉

)
U ; η

)
;n

)
. ‖U(t, ·)‖H5,∞ + ‖R1U(t, ·)‖H1,∞ ,

and equivalence (2.1.50). Therefore, third and fifth brackets in the right hand side of (2.2.103)
can be replaced with

〈OpB(A′′(V I ; η))U +OpBR(A′′(V I ; η))U,W I〉+ 〈T−18(U)W I ,W I〉

up to some new remainders R(t), satisfying (2.2.104) after Cauchy-Schwarz inequality, estimates
(2.1.21d), (2.2.4), (2.2.105) and (1.1.11a), (1.1.11b).

Summing up, equality (2.2.103) reduces to:

1

2
∂t‖W̃ I

s (t, ·)‖L2 = −=
[
〈OpB(A′′(V I ; η))U +OpBR(A′′(V I ; η))U,W I〉

+ 〈QI0(V,W ), W̃ I
s 〉+ 〈T−18(U)W I

s , W̃
I
s 〉+ 〈R′(U, V ), W̃ I

s 〉
]

+R(t).

(2.2.106)
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In order to analyse the behaviour of the second and fourth brakets in above right hand side we
need, at this point, to distinguishing between indices I ∈ In and I ∈ Ik3.

Propagation of a-priori estimate (1.1.11c): Let us suppose that I ∈ In. Using (2.2.105) and
estimate (2.1.38) we find that

(2.2.107) 〈QI0(V,W ), W̃ I
s 〉 = 〈QI0(V,W ),W I〉+Rn(t)

where, for a new constant C > 0 and every t ∈ [1, T ],

(2.2.108) |Rn(t)| ≤ CAεt−1+ δ
2En(t;W )

1
2 .

Reminding definition (2.1.12) of QI0(V,W ) and the fact that coefficients cI1,I2 are all equal to 0
when I ∈ In, we notice that some of the contributions to the scalar product in the right hand
side of (2.2.107) are also remainders Rn(t). These are precisely the following ones:∑

(I1,I2)∈I(I)

〈Qw
0 (vI1± , D1v

I2
± ), uI+ + uI−〉+

∑
(I1,I2)∈I(I)
|I1|≤[

|I|
2

]

〈Qkg
0 (vI1± , D1u

I2
± ), vI+ + vI−〉

in consequence of Cauchy-Schwarz inequality and estimates (2.1.27), (1.1.11b), (1.1.11c). More-
over, 〈R′(U, V ), W̃ I〉 in the right hand side of (2.2.106) is also a remainder Rn(t) because of
Cauchy-Schwarz, (2.2.105), a-priori estimates (1.1.11a), (1.1.11b), and the fact that

‖R′(U, V )‖L2 ≤ CAεt−1+ δ
2 ,

which follows choosing θ � 1 in (2.2.6), using (2.1.38) and (1.1.11a)-(1.1.11c).

Since remainder R(t) in (2.2.106) (verifying (2.2.104)) can be enclosed in Rn(t) after (1.1.11c),
we obtain that equality (2.2.106) can be further reduced to

1

2
∂t‖W̃ I

s (t, ·)‖2L2 = −=
[
〈OpB(A′′(V I ; η))U +OpBR(A′′(V I ; η))U,W I〉

+
∑

(I1,I2)∈I(I)
[
|I|
2

]<|I1|<|I|

〈Qkg
0 (vI1± , D1u

I2
± ), vI+ + vI−〉+ 〈T−18(U)W I ,W I〉

]
+Rn(t).

From definition (2.2.46), equalities (2.2.35), (2.2.37), (2.2.39) with N = 18, (2.2.40), together
with (2.2.76), (2.2.84) with N = 18, (2.2.92), we deduce that

1

2

∣∣∣∂tẼ†n(t;W )
∣∣∣ . |Rn(t)| +

∑
I∈In

(∣∣DI
quart(t)

∣∣+
∣∣∣DI,18

quart(t)
∣∣∣) +

∑
I∈In

∑
(I1,I2)∈I(I)

[
|I|
2

]<|I1|<|I|

∣∣∣DI1,I2
quart(t)

∣∣∣ ,

where quartic terms DI
quart,D

I,18
quart,D

I1,I2
quart satisfy, respectively, (2.2.77), (2.2.85) with N = 18,

(2.2.93). These latter ones can also be considered as remainders Rn(t) thanks to lemma 2.1.2 (i)
and a-priori estimates (1.1.11), which implies that, for some new C > 0 and every t ∈ [1, T ],∣∣∣∂tẼ†n(t;W )

∣∣∣ ≤ CAεt−1+ δ
2En(t;W )

1
2 .

Then

Ẽ†n(t;W )
1
2 ≤ Ẽ†n(1;W )

1
2 +

∫ t

1
CAετ−1+ δ

2dτ,

94



so after equivalence (2.2.101a) and a-priori estimate (1.1.11c)

En(t;W )
1
2 ≤ CEn(1;W )

1
2 +

∫ t

1
CAετ−1+ δ

2dτ

≤ CEn(1;W )
1
2 +

2CAε

δ
t
δ
2 ,

again for a new C > 0. Taking B > 1 sufficiently large so that En(1;W )
1
2 ≤ Bε

2CK2
and 2CA

δ < B
2K2

we finally obtain (1.1.12c).

Propagation of a-priori estimate (1.1.11d): Let us now suppose that I ∈ Ik3 for 0 ≤ k ≤ 2.
After (2.1.39) and (2.2.105) we have that

〈QI0(V,W ), W̃ I
s 〉 = 〈QI0(V,W ),W I〉+Rk3(t)

with

(2.2.109) |Rk3(t)| ≤ CA(A+B)ε2t−1+
δk
2 Ek3 (t;W )

1
2 ,

and moreover

−=
[
〈QI0(V,W ),W I〉

]
=− δVk

∑
(I1,I2)∈I(I)
I1∈K,|I2|≤1

cI1,I2=
[〈
Qkg

0

(
vI1± , χ(t−σDx)Dxu

I2
±

)
, vI+ + vI−

〉]

− δVk
∑

(J,0)∈I(I)
J∈K

cJ,0=
[〈
Qkg

0

(
vJ±, χ(t−σDx)|Dx|u±

)
, vI+ + vI−

〉]
+Rk3(t),

(2.2.110)

with δVk = 1 if I ∈ Vk, 0 otherwise, as already seen in (2.2.50). Also, 〈R′(U, V ), W̃ I
s 〉 in the

right hand side of (2.2.106) and R(t) are remainders Rk3(t) in consequence of the same argument
used in the previous case, but with estimate (2.1.38) replaced with (2.1.39). Therefore, we can
further reduce (2.2.106) to the following equality:

1

2
∂t‖W̃ I

s (t, ·)‖2L2 =−=
[
〈OpB(A′′(V I ; η))U +OpBR(A′′(V I ; η))U, W̃ I〉+ 〈T−18(U)W I ,W I〉

]
− δVk

∑
(I1,I2)∈I(I)
I1∈K,|I2|≤1

cI1,I2=
[〈
Qkg

0

(
vI1± , χ(t−σDx)DuI2±

)
, vI+ + vI−

〉]

− δVk
∑

(J,0)∈I(I)
J∈K

cJ,0=
[〈
Qkg

0

(
vJ±, χ(t−σDx)|Dx|u±

)
, vI+ + vI−

〉]
+Rk3(t),

and deduce from definition (2.2.55), equalities (2.2.35), (2.2.37), (2.2.39) with N = 18, (2.2.51),
together with (2.2.76), (2.2.84) with N = 18, and (2.2.95), that∣∣∣∂tẼk,†3 (t;W )

∣∣∣ . |Rk3(t)|+
∑
I∈Ik3

(∣∣DI
quart(t)

∣∣+
∣∣∣DI,18

quart(t)
∣∣∣)+ δk<2

∑
I∈Vk

ji∈{+,−}

∑
(I1,I2)∈I(I)
I1∈K,|I2|≤1

∣∣∣GI1,I2
(j1,j2,j3)

∣∣∣
with δk<2 = 1 for k < 2, 0 otherwise. On the one hand, quartic terms DI

quart,D
I,18
quart satisfy,

respectively, (2.2.77) and (2.2.85) with N = 18, and are remainders Rk3(t) after (2.1.39) and
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a-priori estimates. On the other hand, GI1,I2
(j1,j2,j3) verifies estimate (2.2.96). Consequently, there

is a constant C > 0 such that

Ẽk,†3 (t;W ) ≤ Ẽk,†3 (1;W ) + C(A+B)2ε2

∫ t

1
τ−1+

δk
2 Ek3 (tτ ;W )

1
2dτ

+ δk<2C(A+B)2ε2

[
δk=0

∫ t

1
τ−1+

δ0
2

+β+
δ1
2 E1

3(τ ;W )
1
2dτ +

∫ t

1
τ−

5
4dτ

]
with δk=0 = 1 if k = 0, 0 otherwise, β > 0 as small as we want, and after equivalence (2.2.101b)

Ek3 (t;W ) ≤ CEk3 (1;W ) + C(A+B)2ε2

∫ t

1
τ−1+

δk
2 Ek3 (τ ;W )

1
2dτ

+ δk<2C(A+B)2ε2

[
δk=0

∫ t

1
τ−1+

δ0
2

+β+
δ1
2 E1

3(τ ;W )
1
2dτ +

∫ t

1
τ−

5
4dτ

]
,

for a new C > 0. Injecting (1.1.11d) in the above inequality and integrating in dτ , we obtain
that

Ek3 (t;W ) ≤ CEk3 (1;W ) + C(A+B)2Bε3

[
1

δk
tδk + δk=0

1
δ0
2 + β + δ1

t
δ0
2

+β+δ1

]
,

and taking β sufficiently small so that β+δ1 ≤ δ0/2, B > 1 sufficiently large so that Ek3 (1;W ) ≤
B2ε2

2CK2
2
and B ≥ A, and ε0 > 0 sufficiently small so that

ε0 ≤
1

8BCK2
2

[ 1

δk
+ δk=0

1
δ0
2 + β + δ1

]−1
,

we finally derive enhanced estimate (1.1.12d) and the conclusion of the proof.
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Chapter 3

Uniform Estimates

3.1 Semilinear normal forms

In proposition 2.2.13 of the previous chapter we proved the propagation of the a-priori the energy
estimates, i.e. that there exist some constants A,B > 1 large and ε0 > 0 small, such that (1.1.11)
implies (1.1.12c), (1.1.12d). To conclude the proof of theorem 1.1.2 it only remains to show that
(1.1.11) also implies (1.1.12a), (1.1.12b). In particular, as u+ = −u− and v+ = −u−, it will be
enough to prove this result for (u−, v−), which is solution to

(3.1.1)

{
(Dt + |Dx|)u− = Qw

0 (v±, D1v±),

(Dt + 〈Dx〉) v− = Qkg
0 (v±, D1u±),

with Qw
0 (v±, D1v±), Qkg

0 (v±, D1u±) given by (2.1.1).

As for the simpler case of the one-dimensional Klein-Gordon equation (see [29]), the main idea is
to reformulate system (3.1.1) in terms of two new functions ũ, ṽ, defined from u−, v− and living
in a new framework (the semi-classical framework), and to deduce a new simpler system, made
of a transport equation and an ODE. Through this new system we will be able to recover the
required enhanced estimates (1.1.12a), (1.1.12b).

Before introducing the semi-classical framework in which we will work for the rest of the paper,
we need to replace almost all quadratic non-linearities in (3.1.1) with cubic ones by a normal
forms. This is the object of the following two subsections. We highlight the fact that we do not
make use directly of the normal forms obtained in the proof of the energy inequality, because
our goals and constraints are henceforth different. In fact, we want to obtain a L∞ estimate for
essentially ρ derivatives of our solution, having a control on its Hs norm for s � ρ. Therefore,
we are allowed to lose some derivatives in the normal form reduction, which means that we do
not care any more about the quasi-linear nature of our problem.

We warn the reader that, for seek of compactness, we will often use the notation NLw (resp.
NLkg) when referring to Qw

0 (v±, D1v±) (resp. to Qkg
0 (v±, D1u±)).

3.1.1 Normal forms for the Klein-Gordon equation

The aim of this subsection is to introduce a new unknown vNF , defined in terms of v−, in such
a way it is solution to a cubic half Klein-Gordon equation instead of the quadratic one satisfied
by v− in (3.1.1). This normal form is motivated by the fact that the L2 norm of Qkg

0 (v±, D1u±)
decays too slowly in time (only t−1+δ/2), as follows from (B.1.4a) and a-priori estimates (1.1.11b),
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(1.1.11c), and this decay is not enough in view of proposition 3.2.7 (the required one being strictly
faster than t−3/2).

It is fundamental to observe that, after (1.1.11) and inequality (3.1.7b) below with θ � 1 small
enough (e.g. θ < (2 + δ)−1), vNF and v− are comparable, in the sense that there is a positive
constant C such that

(3.1.2)
∣∣‖v−(t, ·)‖Hρ,∞ − ‖vNF (t, ·)‖Hρ,∞

∣∣ ≤ Cε2t−1.

Then bootstrap assumption (1.1.11b) implies that the new unknown vNF disperses in time at
the same rate t−1 as v−, and the propagation of a suitable estimate of the Hρ,∞ norm of vNF

will provide us with enhanced (1.1.12b).

Proposition 3.1.1. Assume that (u, v) is solution to (1.1.1) in [1, T ] for a fixed T > 1, consider
(u+, v+, u−, v−) defined in (1.1.5) and solution to (2.1.2) with |I| = 0, and remind definition
(2.1.11) of vectors U, V . Let

(3.1.3) vNF := v− −
i

4(2π)2

∑
j1,j2∈{+,−}

∫
eix·ξB1

(j1,j2,+)(ξ, η)v̂j1(ξ − η)ûj2(η)dξdη,

with B1
(j1,j2,+)(ξ, η) given by (2.2.42) with k = 1 and j3 = +. Then for every t ∈ [1, T ] vNF is

solution to

(3.1.4) (Dt + 〈Dx〉) vNF (t, x) = rNFkg (t, x),

where

(3.1.5) rNFkg (t, x) = − i

4(2π)2

∑
j1,j2∈{+,−}

∫
eix·ξB1

(j1,j2,+)(ξ, η)

×
[
N̂Lkg(ξ − η)ûj2(η) + v̂j1(ξ − η)N̂Lw(η)

]
dξdη

satisfies

‖rNFkg (t, ·)‖L2 .
1∑

µ=0

‖V (t, ·)‖H1,∞‖Rµ
1U(t, ·)‖L∞‖U(t, ·)‖H1 + ‖V (t, ·)‖2H2,∞‖V (t, ·)‖H2 ,(3.1.6a)

‖χ(t−σDx)rNFkg (t, ·)‖L∞ . ‖V (t, ·)‖H1,∞

( 1∑
µ=0

‖Rµ
1U(t, ·)‖H2,∞

)2
+ tσ‖V (t, ·)‖3H2,∞ ,(3.1.6b)

for any χ ∈ C∞0 (R2), σ > 0. Moreover, for every s, ρ ≥ 0, any θ ∈]0, 1[,

(3.1.7a)
∥∥(vNF − v−)(t, ·)

∥∥
Hs .

1∑
µ=0

‖V (t, ·)‖Hs‖Rµ
1U(t, ·)‖L∞ + ‖V (t, ·)‖L∞‖U(t, ·)‖Hs+1 ,

∥∥(vNF − v−)(t, ·)
∥∥
Hs,∞ .

1∑
µ=0

‖V (t, ·)‖1−θHs,∞‖V (t, ·)‖θHs+2‖Rµ
1U(t, ·)‖L∞

+
1∑

µ=0

‖V (t, ·)‖L∞‖Rµ
1U(t, ·)‖1−θ

Hs+1,∞‖U(t, ·)‖θHs+3 ,

(3.1.7b)
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∥∥Ω(vNF − v−)(t, ·)
∥∥
L2 .

1∑
µ,ν=0

[‖ΩµV (t, ·)‖L2‖Rν
1U(t, ·)‖L∞ + ‖V (t, ·)‖L∞‖ΩµU(t, ·)‖H1 ]

+ ‖ΩV (t, ·)‖H2‖U(t, ·)‖H1 + ‖V (t, ·)‖L2‖ΩU(t, ·)‖H2 ,

(3.1.7c)

and

(3.1.8a)
∥∥χ(t−σDx)(vNF − v−)(t, ·)

∥∥
L2 . t

σ‖V (t, ·)‖H1,∞‖U(t, ·)‖L2 ,

(3.1.8b)
∥∥χ(t−σDx)Ω(vNF − v−)(t, ·)

∥∥
L2

. tσ

 1∑
µ=0

‖ΩV (t, ·)‖L2‖Rµ
1U(t, ·)‖L∞ + ‖V (t, ·)‖H1,∞‖ΩµU(t, ·)‖L2

 .
Proof. From definition (3.1.3) of vNF , system (2.1.2) with |I| = 0, and the fact that

(3.1.9) Qkg
0 (v±, D1u±) =

i

4(2π)2

∑
j1,j2∈{+,−}

∫
eix·ξ

(
1−j1j2

ξ − η
〈ξ − η〉

· η
|η|

)
η1v̂j1(ξ−η)ûj2(η)dξdη,

it immediately follows that vNF is solution to (3.1.4) with rNFkg given by (3.1.5). We observe
that, after formula (A.15), we have the following explicit expressions:

vNF − v− = − i
8

[
(v+ + v−)R1(u+ − u−)− D1

〈Dx〉
(v+ − v−)(u+ + u−)

+D1

[
[〈Dx〉−1(v+ − v−)](u+ + u−)

]
− 〈Dx〉

[
[〈Dx〉−1(v+ − v−)]R1(u+ − u−)

]]
(3.1.10)

and

(3.1.11) rNFkg = − i
4

[
NLkg R1(u+ − u−)− Dx

〈Dx〉
(v+ − v−)NLw +D1

[
〈Dx〉−1(v+ − v−)NLw

]]
.

Inequalities (3.1.7a), (3.1.7b) are straightforward from (3.1.10) and corollary A.4 in appendix A.
Inequality (3.1.7c) is also obtained from corollary A.4, after having applied Ω to (3.1.10) and
used the Leibniz rule, and from bounding the L∞ norm of Ωu±,Ωv± with their H2 norm by
means of the classical Sobolev injection. Inequalities (3.1.8a), (3.1.8b) are also straightforward if
one observes that operator χ(t−σDx), with χ ∈ C∞0 (R2) and σ > 0, is L2 −H1 continuous with
norm O(tσ).

As concerns rNFkg , from (3.1.11) and corollary A.4 we find that

‖rNFkg (t, ·)‖L2 .
1∑

µ=0

‖NLkg(t, ·)‖L2‖Rµ
1U(t, ·)‖L∞ + ‖V (t, ·)‖L2‖NLw(t, ·)‖L∞

+ ‖V (t, ·)‖L∞‖NLw(t, ·)‖H1

and

‖χ(t−σDx)rNFkg (t, ·)‖L∞ .
1∑

µ=0

‖NLkg(t, ·)‖L∞‖Rµ
1U(t, ·)‖L∞ + tσ‖V (t, ·)‖H1,∞‖NLw(t, ·)‖L∞ .

Inequalities (3.1.6a) and (3.1.6b) follow then by (B.1.3c) with s = 1, (B.1.3b), (B.1.4a) and
(B.1.4b).
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3.1.2 Normal forms for the wave equation

We now focus on the wave equation satisfied by u−:

(Dt + |Dx|)u−(t, x) = Qw
0 (v±, D1v±),

and perform a normal form argument in order to replace (a part of) the quadratic non-linearity
in the above right hand side with a cubic non-local one. The fundamental reason for that is to be
found in lemma 3.2.14, where we have to prove that the L2 norm of some operator, acting on the
non-linearity of the equation satisfied by u−, decays like t−1/2+β , for a small β > 0. That decay
is obtained if the L2 norm of the mentioned non-linearity is a O(t−3/2+β′), for some new small
β′ > 0, which is not the case for Qw

0 (v±, D1v±), as follows from (B.1.3a), (1.1.11b), (1.1.11c).
This normal form can be actually performed only on contributions depending on (v+, v+) and
(v−, v−) but not on (v+, v−), which are resonant. Nevertheless, the structure of these latter
contributions allows us to recover the right mentioned time decay for their L2 norm (see lemmas
3.2.15 and 3.2.16).

Thanks to inequalities (3.1.20b), (3.1.20c) and a-priori estimates (1.1.11), the new unknown uNF

we define in (3.1.15) below is equivalent to the former u−, meaning that there exists a positive
constant C such that

(3.1.12)
1∑

κ=0

∣∣‖Rκ
1u−(t, ·)‖Hρ+1,∞ − ‖Rκ

1u
NF (t, ·)‖Hρ,∞

∣∣ ≤ Cε2t−1+ δ
2 .

After (1.1.11a) this means that uNF and R1u
NF decay in the Hρ+1,∞ norm at the same rate

t−1/2 as u−,R1u−, and the propagation of a suitable estimate of this norm will provide us with
enhanced (1.1.12a).

Let us rewrite Qw
0 (v±, D1v±) as follows

Qw
0 (v±, D1v±) = −1

2
=
[
v+D1v− +

Dx

〈Dx〉
v+ ·

DxD1

〈Dx〉
v−

]
+

i

4(2π)2

∑
j∈{+,−}

∫
eix·ξ

(
1− ξ − η
〈ξ − η〉

· η
〈η〉

)
η1v̂j(ξ − η)v̂j(η)dξdη,

(3.1.13)

and introduce, for any j ∈ {+,−},

(3.1.14) Dj(ξ, η) :=

(
1− ξ−η

〈ξ−η〉 ·
η
〈η〉

)
η1

j〈ξ − η〉+ j〈η〉+ |ξ|
.

Proposition 3.1.2. Assume that (u, v) is solution to (1.1.1) in [1, T ] for a fixed T > 1, consider
(u+, v+, u−, v−) defined in (1.1.5) and solution to (2.1.2) with |I| = 0, remind definition (2.1.11)
of vectors U, V and (3.1.3) of vNF . Let

(3.1.15) uNF := u− −
i

4(2π)2

∑
j∈{+,−}

∫
eix·ξDj(ξ, η)v̂j(ξ − η)v̂j(η)dξdη,

with multiplier Dj defined in (3.1.14). For every t ∈ [1, T ] uNF is solution to

(3.1.16) (Dt + |Dx|)uNF (t, x) = qw(t, x) + cw(t, x) + rNFw (t, x),

where quadratic term qw is given by

(3.1.17) qw(t, x) =
1

2
=
[
vNF D1v

NF − Dx

〈Dx〉
vNF · DxD1

〈Dx〉
vNF

]
,
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while cubic terms cw, rNFw are equal, respectively, to

cw(t, x) =
1

2
=
[
(v− − vNF )D1v− + vNF D1(v− − vNF )

− Dx

〈Dx〉
(v− − vNF ) · DxD1

〈Dx〉
v− −

Dx

〈Dx〉
vNF · DxD1

〈Dx〉
(v− − vNF )

]
,

(3.1.18)

and
(3.1.19)

rNFw (t, x) = − i

4(2π)2

∑
j∈{+,−}

∫
eix·ξDj(ξ, η)

[
N̂Lkg(ξ − η)v̂j(η) + v̂j(ξ − η)N̂Lkg(η)

]
dξdη.

For any s, ρ ≥ 0, any t ∈ [1, T ],

(3.1.20a) ‖uNF (t, ·)− u−(t, ·)‖Hs . ‖V (t, ·)‖L∞‖V (t, ·)‖Hs+15 ,

(3.1.20b) ‖uNF (t, ·)− u−(t, ·)‖Hρ+1,∞ . ‖V (t, ·)‖L∞‖V (t, ·)‖Hρ+18 ,

(3.1.20c) ‖Rju
NF (t, ·)− Rju−(t, ·)‖Hρ+1,∞ . ‖V (t, ·)‖L∞‖V (t, ·)‖Hρ+8 , j = 1, 2.

Moreover, for any cut-off function χ ∈ C∞0 (R2) and σ > 0 there exists some χ1 ∈ C∞0 (R2) and
s > 0 such that

∥∥χ(t−σDx)cw(t, ·)
∥∥
L2 . t

σ
∥∥χ1(t−σDx)(vNF − v−)(t, ·)

∥∥
L2

(
‖V (t, ·)‖H2,∞ + ‖vNF (t, ·)‖H1,∞

)
+ t−N(s)

∥∥(vNF − v−)(t, ·)
∥∥
H1

(
‖V (t, ·)‖Hs + ‖vNF (t, ·)‖Hs

)
,

(3.1.21a)

∥∥χ(t−σDx)cw(t, ·)
∥∥
L∞
. tσ

∥∥χ1(t−σDx)
(
vNF − v−

)
(t, ·)

∥∥
L∞

(
‖V (t, ·)‖H2,∞ + ‖vNF (t, ·)‖H1,∞

)
+ t−N(s)

∥∥(vNF − v−)(t, ·)
∥∥
H1

(
‖V (t, ·)‖Hs + ‖vNF (t, ·)‖Hs

)
(3.1.21b)

∥∥χ(t−σDx)Ωcw(t, ·)
∥∥
L2 . t

σ
∥∥χ1(t−σDx)Ω(vNF − v−)(t, ·)

∥∥
L2

(
‖V (t, ·)‖H2,∞ + ‖vNF (t, ·)‖H1,∞

)
+ t−N(s)

∥∥Ω(vNF − v−)(t, ·)
∥∥
L2

(
‖V (t, ·)‖Hs + ‖vNF (t, ·)‖Hs

)
+ tσ

∥∥(vNF − v−)(t, ·)
∥∥
H1,∞ ×

1∑
µ=0

(
‖ΩµV (t, ·)‖H1 + ‖ΩµvNF (t, ·)‖L2

)

(3.1.21c)

with N(s) > 0 as large as we want as long as s > 0 is large, and

(3.1.22a) ‖χ(t−σDx)rNFw (t, ·)‖L2 . ‖V (t, ·)‖2H13,∞‖U(t, ·)‖H1 ,

(3.1.22b) ‖χ(t−σDx)rNFw (t, ·)‖L∞ . ‖V (t, ·)‖2H13,∞ (‖U(t, ·)‖H2,∞ + ‖R1U(t, ·)‖H2,∞) ,

and for any θ ∈]0, 1[,

‖χ(t−σDx)ΩrNFw (t, ·)‖L2 . tβ
[
‖V (t, ·)‖1−θ

H15,∞‖V (t, ·)‖θH17 (‖U(t, ·)‖H1,∞ + ‖R1U(t, ·)‖H1,∞)

+ ‖V (t, ·)‖L∞
(
‖U(t, ·)‖1−θ

H16,∞ + ‖R1U(t, ·)‖1−θ
H16,∞

)
‖U(t, ·)‖θH18

]
‖ΩV (t, ·)‖L2

+ tβ
[
‖V (t, ·)‖H1,∞ (‖U(t, ·)‖H1 + ‖ΩU(t, ·)‖H1)

+ (‖U(t, ·)‖H2,∞ + ‖R1U(t, ·)‖H2,∞) (‖V (t, ·)‖L2 + ‖ΩV (t, ·)‖L2)
]
‖V (t, ·)‖H17,∞ .

(3.1.22c)
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Proof. By definition (3.1.15) of uNF , system (2.1.2) with |I| = 0, (3.1.13) and (3.1.14), it follows
that uNF is solution to

(Dt + |Dx|)uNF (t, x) = −1

2
=
[
v+D1v− +

Dx

〈Dx〉
v+ ·

DxD1

〈Dx〉
v−

]
+ rNFw (t, x),

with rNFw given by (3.1.19). Reminding that v+ = −v− and replacing each occurrence of v− in
the quadratic contribution to the above right hand side, we find that uNF is solution to (3.1.16).

The first part of lemma A.8 and the fact that any Hρ+1,∞ injects into Hρ+3 by Sobolev inequality
immediately imply estimates (3.1.20) and

‖χ(t−σDx)rNFw (t, ·)‖L2 . ‖NLkg(t, ·)‖L2‖V (t, ·)‖H13,∞ ,

‖χ(t−σDx)rNFw (t, ·)‖L∞ . ‖NLkg(t, ·)‖L∞‖V (t, ·)‖H13,∞ ,

for any s, ρ ≥ 0. Moreover, from (A.37a) we derive that

‖χ(t−σDx)ΩrNFw (t, ·)‖L2 . tβ (‖NLkg(t, ·)‖L2 + ‖ΩNLkg(t, ·)‖L2) ‖V (t, ·)‖H17,∞

+ tβ‖NLkg(t, ·)‖H15,∞‖ΩV (t, ·)‖L2 ,

so estimates (3.1.22) are obtained using (B.1.4a), (B.1.4e) with s = 15, and (B.1.4f).

Finally, inequality (3.1.21a) (resp. (3.1.21b)) is obtained using lemma B.2.2 in appendix B with
L = L2 (resp. L = L∞), w = v− − vNF , and the fact that χ1(t−σDx) is continuous from L2 to
H1 (resp. from L∞ to H1,∞) with norm O(tσ). Inequality (3.1.21c) is deduced applying Ω to
(3.1.18) and using the Leibniz rule. The L2 norm of products in which Ω is acting on v− − vNF
is estimated by means of lemma B.2.2 with L = L2, w = v− − vNF , whereas the L2 norm of the
remaining products is simply estimated by taking the L∞ norm on v−− vNF times the L2 norm
of the remaining factor.

3.2 From PDEs to ODEs

In the previous section we showed that, if (u−, v−) is solution to system (3.1.1) in some interval
[1, T ], for a fixed T > 1, one can define two new functions, vNF as in (3.1.3) and uNF as in
(3.1.15), respectively comparable to v− and u− in the sense of (3.1.2) and (3.1.12), such that
(uNF , vNF ) is solution to a new wave-Klein-Gordon system:

(3.2.1)

{
(Dt + |Dx|)uNF (t, x) = qw(t, x) + cw(t, x) + rNFw (t, x),

(Dt + 〈Dx〉) vNF (t, x) = rNFkg (t, x),

for every (t, x) ∈ [1, T ] × R2, where quadratic inhomogeneous term qw is given by (3.1.17) and
cubic ones cw, rNFw and rNFkg respectively by (3.1.18), (3.1.19) and (3.1.5).

As anticipated before, our aim is to deduce from (3.2.1) a system made of a transport equation
and an ODE, from which it will be possible to deduce suitable estimates on (uNF , vNF ) (and
consequently on (u−, v−)). Thanks to (3.1.2) and (3.1.12) these estimates will allow us to close
the bootstrap argument and prove theorem 1.1.2.

In subsection 3.2.1 we focus on the deduction of the mentioned ODE starting from the Klein-
Gordon equation satisfied by vNF , while in subsection 3.2.2 we show how to derive a transport
equation from the wave equation satisfied by uNF . The framework in which this plan takes place
is the semi-classical framework, introduced below.
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Let us introduce the semi-classical parameter h := t−1 together with the following two new
functions:

(3.2.2) ũ(t, x) := tuNF (t, tx), ṽ(t, x) := tvNF (t, tx),

and observe that, from definition (3.2.2) and inequalities (3.1.12), (3.1.2), a-priori estimates
(1.1.11a), (1.1.11b) are equivalent respectively to

‖ũ(t, ·)‖
Hρ+1,∞
h

+
∥∥Opwh (ξ|ξ|−1)ũ(t, ·)

∥∥
Hρ+1,∞
h

≤ Cεh−
1
2 ,(3.2.3a)

‖ṽ(t, ·)‖Hρ,∞
h
≤ Cε,(3.2.3b)

for some positive constant C. A suitable propagation of the above estimates will therefore provide
us with (1.1.12a) and (1.1.12b).

A straight computation shows that (ũ, ṽ) satisfies the following coupled system of semi-classical
pseudo-differential equations:

(3.2.4)

{ [
Dt −Opwh (x · ξ − |ξ|)

]
ũ(t, x) = h−1

[
qw(t, tx) + cw(t, tx) + rNFw (t, tx)

][
Dt −Opwh (x · ξ − 〈ξ〉)

]
ṽ(t, x) = h−1rNFkg (t, tx),

where Opwh denotes the semi-classical Weyl quantization introduced in 1.2.17 (i). Moreover, if
Mj (resp. Lj), j = 1, 2, is the operator introduced in (1.2.49) (resp. (1.2.68)), Mj ũ (resp. Lj ṽ)
can be expressed in term of ZjuNF (resp. ZjvNF ). We have the following general result:

Lemma 3.2.1. (i) Let w(t, x) be a solution to the inhomogeneous half wave equation

(3.2.5) [Dt + |Dx|]w(t, x) = f(t, x),

and w̃(t, x) = tw(t, tx). For any j = 1, 2,

(3.2.6) Zjw(t, y) = ih

[
−Mjw̃(t, x) +

1

2i
Opwh

(
ξj
|ξ|

)
w̃(t, x)

]
|x= y

t
+ iyjf(t, y);

(ii) If w(t, x) is solution to the inhomogeneous half Klein-Gordon equation

(3.2.7) [Dt + 〈Dx〉]w(t, x) = f(t, x),

then

(3.2.8) Zjw(t, y) = ih

[
−Opwh (〈ξ〉)Ljw̃(t, x) +

1

i
Opwh

( ξj
〈ξ〉

)
w̃(t, x)

]
|x= y

t
+ iyjf(t, y).

Proof. (i) If w is solution to half wave equation (3.2.5) then w̃(t, x) satisfies[
Dt −Opwh (x · ξ − |ξ|)

]
w̃(t, x) = h−1f(t, tx),

so, for any i = 1, 2,

Zjw(t, y) =

ih−1

[
xjDt + Opwh (ξj − xjx · ξ) +

3h

2i
xj

](
1

t
w̃(t, x)

) ∣∣∣
x= y

t

= i

[
xjDt + Opwh (ξj − xjx · ξ) +

h

2i
xj

]
w̃(t, x)

∣∣∣
x= y

t

= i

[
xjOpwh (x · ξ − |ξ|)w̃(t, x) + Opwh (ξj − xjx · ξ)w̃(t, x) +

h

2i
xj ũ(t, x) + h−1xjf(t, tx)

] ∣∣
x= y

t

= ih

[
−Mjw̃(t, x) +

1

2i
Opwh

(
ξj
|ξ|

)
w̃(t, x)

]
|x= y

t
+ iyjf(t, y).
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We should specify that last equality is obtained by a trivial version of symbolic calculus (1.2.18),
that applies also to symbols b(ξ) singular at ξ = 0. Indeed, if symbol a = a(x, ξ) is linear in x,
and b(ξ) is lipschitz, the development a]b is actually finite:

a]b(x, ξ) = a(x, ξ)b(ξ)− h

2i
∂xa(x, ξ) · ∂ξb(ξ).

(ii) The result is analogous to the previous one, after observing that w̃ satisfies[
Dt −Opwh (x · ξ − 〈ξ〉)

]
w̃(t, x) = h−1f(t, tx).

As a straight consequence of lemma 3.2.1 and system (3.2.4) we have that
(3.2.9a)

Zju
NF (t, y) = ih

[
−Mj ũ(t, x) +

1

2i
Opwh

(
ξj
|ξ|

)
ũ(t, x)

]
|x= y

t
+ iyj

[
qw + cw + rNFw

]
(t, y),

(3.2.9b) Zjv
NF (t, y) = ih

[
−Opwh (〈ξ〉)Lj ṽ(t, x) +

1

i
Opwh

( ξj
〈ξ〉

)
ṽ(t, x)

] ∣∣∣
x= y

t

+ iyjr
NF
kg (t, y).

In view of lemma 3.2.14, it is also useful to write down the analogous relation between (ZmZnu)−
and M[t(Znu)−(t, tx)]. As (Znu)− is solution to(

Dt + |Dx|
)
(Znu)− = ZnNLw(t, x),

from equality (3.2.6) with w = (Znu)− and the commutation between Zm and Dt − |Dx| (see
(2.1.15a)) we find that

(3.2.10) (ZmZnu)−(t, y) = ih
[
−Mmũ

J(t, x) +
1

2i
Opwh

(ξm
|ξ|

)
ũJ(t, x)

]∣∣
x= y

t
+ iymZnNLw(t, y)

− Dm

|Dy|
(Znu)−(t, y),

where J is the index such that ΓJ = Zn and ũJ(t, x) := t(Znu)−(t, tx). Also, observe that from
(1.1.15), (1.1.16), (1.1.5) and (1.1.10)

ZnNLw = Qw
0

(
(Znv)±, D1v±

)
+Qw

0

(
v±, D1(Znv)±

)
− δ1

nQ
w
0 (v±, Dtv±)

with δ1
n = 1 for n = 1, and that from inequality (B.1.6a) with s = 0,

(3.2.11) ‖ZnNLw(t, ·)‖L2 . ‖ZnV (t, ·)‖H1‖V (t, ·)‖H2,∞ +
[
‖V (t, ·)‖H1

+ ‖V (t, ·)‖L2 (‖U(t, ·)‖H1,∞ + ‖R1U(t, ·)‖H1,∞) + ‖V (t, ·)‖L∞‖U(t, ·)‖H1

]
‖V (t, ·)‖H1,∞ .

Moreover, from the definition of Mj and Lj we see that

hMjw̃(t, x) =

[
yj |Dy| − tDj +

1

2i

Dj

|Dy|

]
w(t, y)|y=tx,

hOpwh (〈ξ〉)Ljw̃(t, x) =

[
yj〈Dy〉 − tDj − i

Dj

〈Dy〉

]
w(t, y)|y=tx,

so lemma 3.2.1 implies that, if w is solution to half wave equation (3.2.5) (resp. to half Klein-
Gordon (3.2.7)),[

yj |Dy| − tDj +
1

2i

Dj

|Dy|

]
w(t, y) = iZjw(t, y) +

1

2i

Dj

|Dy|
w(t, y) + yjf(t, y),(3.2.12a) (

resp. [〈Dy〉yj − tDj ]w(t, y) = iZjw(t, y)− i Dj

〈Dy〉
w(t, y) + yjf(t, y)

)
.(3.2.12b)
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3.2.1 Derivation of the ODE and propagation of the uniform estimate on the
Klein-Gordon component

Let us firstly deal with the semi-classical Klein-Gordon equation satisfied by ṽ:

(3.2.13)
[
Dt −Opwh (x · ξ − p(ξ))

]
ṽ(t, x) = h−1rNFkg (t, tx),

where p(ξ) = 〈ξ〉 and rNFkg is given by (3.1.5) and satisfies (3.1.6). We remind that p′(ξ) denotes
the gradient of p(ξ) while p′′(ξ) is its 2×2 Hessian matrix, and that Lj is the operator introduced
in (1.2.68) for j = 1, 2. We also remind definition (1.2.66) of manifold Λkg, represented in
dimension 1 by picture 3.1 below, and decompose ṽ into the sum of two contributions: one
localized in a neighbourhood of Λkg of size

√
h (in the spirit of [14]), the other localized out of

this neighbourhood. The contribution localized away from Λkg appears to be a O(h1/2−0) if we

x

ξ

−1 1

Λkg

Figure 3.1: Lagrangian for the Klein-Gordon equation

assume a moderate growth for the L2 norm of Lµṽ, with 0 ≤ |µ| ≤ 2, and has hence a better
decay in time than the one expected for ṽ (remind h = t−1). Thus the main contribution to ṽ is
the one localized around Λkg. We are going to show that this latter one is solution to an ODE
(see proposition 3.2.6) and that its Hρ,∞

h norm is uniformly bounded in time, which will finally
enable us to propagate (3.2.3b) and obtain (1.1.11b) (see proposition 3.2.7).

For any fixed ρ ∈ Z let Σ(ξ) := 〈ξ〉ρ, and for some γ, χ ∈ C∞0 (R2) equal to 1 close to the origin,
σ > 0 small (e.g. σ < 1

4) let

(3.2.14) Γkg := Opwh

(
γ

(
x− p′(ξ)√

h

)
χ(hσξ)

)
.

We also introduce the following notations:

(3.2.15) ṽΣ := Opwh (Σ(ξ))ṽ,

together with

(3.2.16a) ṽΣ
Λkg

:= ΓkgṽΣ,

(3.2.16b) ṽΣ
Λckg

:= Opwh

(
1− γ

(
x− p′(ξ)√

h

)
χ(hσξ)

)
ṽΣ,

so that ṽΣ = ṽΣ
Λkg

+ ṽΣ
Λckg

, and remind that ‖Lγw‖ = ‖Lγ11 L
γ2
2 w‖, for any γ = (γ1, γ2) ∈ N2.
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Lemma 3.2.2. Let γ̃ ∈ C∞(R2) vanish in a neighbourhood of the origin and be such that
|∂αz γ̃(z)| . 〈z〉−|α|. Let c(x, ξ) ∈ Sδ,σ(1) with δ ∈ [0, 1

2 ], σ > 0, be supported for |ξ| . h−σ. For
any χ ∈ C∞0 (R2) such that χ(hσξ) ≡ 1 on the support of c(x, ξ),∥∥∥∥Opwh

(
γ̃
(x− p′(ξ)√

h

)
c(x, ξ)

)
w

∥∥∥∥
L2

.
1∑
|µ|=0

h
1
2
−β ‖Opwh (χ(hσξ))Lµw‖L2 ,(3.2.17a)

∥∥∥∥Opwh

(
γ̃
(x− p′(ξ)√

h

)
c(x, ξ)

)
w

∥∥∥∥
L∞
.

1∑
|µ|=0

h−β ‖Opwh (χ(hσξ))Lµw‖L2 ,(3.2.17b)

and ∥∥∥∥Opwh

(
γ̃
(x− p′(ξ)√

h

)
c(x, ξ)

)
w

∥∥∥∥
L2

.
2∑
|µ|=0

h1−β ‖Opwh (χ(hσξ))Lµw‖L2 ,(3.2.18a)

∥∥∥∥Opwh

(
γ̃
(x− p′(ξ)√

h

)
c(x, ξ)

)
w

∥∥∥∥
L∞
.

2∑
|µ|=0

h
1
2
−β ‖Opwh (χ(hσξ))Lµw‖L2 ,(3.2.18b)

for a small β > 0, β → 0 as σ → 0.

Proof. The proof of (3.2.17) (resp. of (3.2.18)) follows straightly by inequalities (1.2.70) (resp.
(1.2.71)), after observing that, as γ̃ vanishes in a neighbourhood of the origin,

γ̃
(x− p′(ξ)√

h

)
c(x, ξ) =

2∑
j=1

γ̃j1

(x− p′(ξ)√
h

)(xj − p′j(ξ)√
h

)
c(x, ξ),

where γ̃j1(z) := γ̃(z)zj |z|−2 is such that |∂αz γ̃
j
1(z)| . 〈z〉−1−|α| (resp.

γ̃
(x− p′(ξ)√

h

)
c(x, ξ) =

2∑
j=1

γ̃2

(x− p′(ξ)√
h

)(x− p′(ξ)√
h

)2
c(x, ξ),

where γ̃2(z) := γ̃(z)|z|−2 is such that |∂αz γ̃(z)| . 〈z〉−2−|α|).

Corollary 3.2.3. There exists s > 0 sufficiently large such that

(3.2.19a)
∥∥∥ṽΣ

Λckg
(t, ·)

∥∥∥
L2
. h1−β

‖ṽ(t, ·)‖Hs
h

+
∑

1≤|µ|≤2

‖Opwh (χ(hσξ))Lµṽ(t, ·)‖L2

 ,

(3.2.19b)
∥∥∥ṽΣ

Λckg
(t, ·)

∥∥∥
L∞
. h

1
2
−β

‖ṽ(t, ·)‖Hs
h

+
∑

1≤|µ|≤2

‖Opwh (χ(hσξ))Lµṽ(t, ·)‖L2

 .

for a small β > 0, β → 0 as σ → 0.

Proof. Since symbol 1− γ
(x−p′(ξ)√

h

)
χ(hσξ) is supported for |x−p

′(ξ)√
h
| ≥ d1 > 0 or |hσξ| ≥ d2 > 0,

for some small d1, d2 > 0, we may consider a smooth cut-off function χ̃ equal to 1 close to the
origin and such that χ̃χ ≡ χ̃, so that 1− γ

(x−p′(ξ)√
h

)
χ(hσξ) writes as[

1− γ
(
x− p′(ξ)√

h

)]
χ̃(hσξ) +

[
1− γ

(
x− p′(ξ)√

h

)
χ(hσξ)

]
(1− χ̃)(hσξ),
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the first symbol being supported in {(x, ξ) : |x−p
′(ξ)√
h
| ≥ d1, |ξ| . h−σ}, the second one for large

frequencies |ξ| & h−σ.

Using lemma 1.2.24 and the fact that γ
(
x−p′(ξ)√

h

)
χ(hσξ) ∈ S 1

2
,σ

(〈x−p′(ξ)√
h

〉−M), for any M ∈ N,
we have that, for a fixed N ∈ N∗,[

1− γ
(x− p′(ξ)√

h

)
χ(hσξ)

] (
1− χ̃(hσξ)

)
=
(
1− χ̃(hσξ)

)
]

[
1− γ

(x− p′(ξ)√
h

)
χ(hσξ)

]
+

∑
1≤j<N

χ̃j(h
σξ)]aj(x, ξ) + rN (x, ξ),

where function χ̃j(hσξ) is still supported for large frequencies |ξ| & h−σ, for every 1 ≤ j < N ,
up to negligible multiplicative constants,

aj(x, ξ) = hj(
1
2

+σ)
∑
|α|=j

(∂αγ)
(x− p′(ξ)√

h

)
χ(hσξ) ∈ hj(

1
2

+σ)S 1
2
,σ

(〈x− p′(ξ)√
h

〉−M)
,

and rN ∈ hN( 1
2

+σ)S 1
2
,σ

(〈x−p′(ξ)√
h

〉−M). Lemma 1.2.40, proposition 1.2.36, and the semi-classical
Sobolev injection imply that∥∥∥∥Opwh

([
1− γ

(x− p′(ξ)√
h

)
χ(hσξ)

]
(1− χ̃)(hσξ)

)
ṽΣ(t, ·)

∥∥∥∥
L2

. hN(s)‖ṽ(t, ·)‖Hs
h
,∥∥∥∥Opwh

([
1− γ

(x− p′(ξ)√
h

)
χ(hσξ)

]
(1− χ̃)(hσξ)

)
ṽΣ(t, ·)

∥∥∥∥
L∞
. hN

′(s)‖ṽ(t, ·)‖Hs
h
,

where N(s), N ′(s) ≥ 1 if s > 2 is sufficiently large.

On the other hand, as function (1 − γ)
(x−p′(ξ)√

h

)
vanishes in a neighbourhood of the origin and

is such that |∂αz (1 − γ)(z)| . 〈z〉−|α|, by inequalities (3.2.18) and the fact that, using symbolic
calculus to commute L with Σ(ξ),

(3.2.20) ‖Opwh (χ(hσξ))LµṽΣ(t, ·)‖L2 . h−ν
∑
|µ1|≤|µ|

‖Opwh (χ(hσξ))Lµ1 ṽ(t, ·)‖L2

with ν = ρσ if ρ ≥ 0, 0 otherwise, we have that∥∥∥∥Opwh

(
(1− γ)

(x− p′(ξ)√
h

)
χ(hσξ)

)
ṽΣ(t, ·)

∥∥∥∥
L2

.
∑
|µ|≤2

h1−β ‖Opwh (χ(hσξ))Lµṽ(t, ·)‖L2 ,∥∥∥∥Opwh

(
(1− γ)

(x− p′(ξ)√
h

)
χ(hσξ)

)
ṽΣ(t, ·)

∥∥∥∥
L∞
.
∑
|µ|≤2

h
1
2
−β ‖Opwh (χ(hσξ))Lµṽ(t, ·)‖L2 ,

for a small β > 0, β → 0 as σ → 0.

In the following lemma we show how to develop the symbol a(x, ξ) associated to an operator
acting on Γkgw, for some suitable function w, at ξ = −dφ(x), where φ(x) =

√
1− |x|2.

Lemma 3.2.4. Let a(x, ξ) be a real symbol in Sδ,0(〈ξ〉q), q ∈ R, for some δ > 0 small, Σ(ξ) =
〈ξ〉ρ for some fixed ρ ∈ Z, Γkg the operator introduced in (3.2.14) and w = w(t, x) such that
Lµw(t, ·) ∈ L2(R2) for any |µ| ≤ 2. Let us also introduce wΣ

Λkg
:= ΓkgOpwh (Σ)w. There exists a

family (θh(x))h of C∞0 functions real valued, equal to 1 on the closed ball B1−ch2σ(0) and supported
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in B1−c1h2σ(0), for some small 0 < c1 < c, σ > 0, with ‖∂αx θh‖L∞ = O(h−2|α|σ) and (h∂h)kθh
bounded for every k, such that

(3.2.21) Opwh (a)wΣ
Λkg

= θh(x)a(x,−dφ(x))wΣ
Λkg

+R1(w) ,

where R1(w) satisfies

(3.2.22a) ‖R1(w)(t, ·)‖L2 . h1−β

‖w(t, ·)‖Hs
h

+
∑
|γ|=1

‖Opwh (χ(hσξ))Lγw(t, ·)‖L2

 ,

(3.2.22b) ‖R1(w)(t, ·)‖L∞ . h
1
2
−β

‖w(t, ·)‖Hs
h

+
∑
|γ|=1

‖Opwh (χ(hσξ))Lγw(t, ·)‖L2

 ,

with β = β(σ, δ) > 0, β → 0 as σ, δ → 0. Moreover, if ∂ξa(x, ξ) vanishes at ξ = −dφ(x), the
above estimates can be improved and R1(w) is rather a remainder R2(w) such that

(3.2.23a) ‖R2(w)(t, ·)‖L2 . h2−β

‖w(t, ·)‖Hs
h

+
∑

1≤|γ|≤2

‖Opwh (χ(hσξ))Lγw(t, ·)‖L2

 ,

(3.2.23b) ‖R2(w)(t, ·)‖L∞ . h
3
2
−β

‖w(t, ·)‖Hs
h

+
∑

1≤|γ|≤2

‖Opwh (χ(hσξ))Lγw(t, ·)‖L2

 .

Proof. After lemma 1.2.38 we know that there exists a family of functions θh(x) as in the state-
ment such that equality (1.2.67) holds. We highlight the fact that any derivative of θh vanishes
on the support of γ

(x−p′(ξ)√
h

)
χ(hσξ) and its derivatives. After remark 1.2.22, this implies that

wΣ
Λkg

= θh(x)wΣ
Λkg

+ r∞, r∞ ∈ hNS 1
2
,σ(〈x〉−∞)

and hence that
Opwh (a)wΣ

Λkg
= Opwh (a)θh(x)wΣ

Λkg
+ Opwh (ra∞)wΣ

Λkg
,

with ra∞ = a]r∞ ∈ hN−γS 1
2
,σ(〈x〉−∞) and γ = qσ if q ≥ 0, 0 otherwise. From proposition 1.2.36

and the semi-classical Sobolev injection it follows at once that Opwh (ra∞)wΣ
Λkg

satisfies enhanced
estimates (3.2.23) if N is taken sufficiently large. Up to negligible multiplicative constants, a
further application of symbolic calculus gives also that

Opwh (a(x, ξ))θh(x)wΣ
Λkg

= Opwh (a(x, ξ)θh(x))wΣ
Λkg

+

N−1∑
|α|=1

h|α|Opwh
(
∂αξ a(x, ξ)∂αx θh(x)

)
wΣ

Λkg

+ Opwh (rN (x, ξ))wΣ
Λkg

,

where rN ∈ hN−βSδ′,0(〈ξ〉q−N 〈x〉−∞) for a new small β = β(δ, σ) and δ′ = max{δ, σ}. From
the same argument as above Opwh (rN )wΣ

Λkg
verifies enhanced estimates (3.2.23) if N is suit-

ably chosen. Also, since the support of ∂αξ a(x, ξ) · ∂αx θh(x) has empty intersection with that of

γ
(
x−p′(ξ)√

h

)
χ(hσξ) for any |α| ≥ 1, all the |α|-order terms in the above equality are remainders

R1(w).
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Now, as symbol a(x, ξ)θh(x) is supported for |x| ≤ 1 − c1h
2σ < 1, we are allowed to develop it

at ξ = −dφ(x):

a(x, ξ)θh(x) = a(x,−dφ(x))θh(x) +
∑
|α|=1

∫ 1

0
(∂αξ a)(x, tξ + (1− t)dφ(x))dt θh(x)(ξ + dφ(x))α

= a(x,−dφ(x))θh(x) +
2∑
j=1

bj(x, ξ)(xj − p′j(ξ)),(3.2.24)

with
(3.2.25)

bj(x, ξ) =
∑
|α|=1

∫ 1

0
(∂αξ a)(x, tξ + (1− t)dφ(x))dt θh(x)

(ξ + dφ(x))α(xj − p′j(ξ))
|x− p′(ξ)|2

, j = 1, 2.

If χ1 ∈ C∞0 (R2) is a new cut-off function equal to 1 close to the origin, we can reduce our-
selves to the analysis of symbol bj(x, ξ)(xj − p′j(ξ))χ1(hσξ). In fact, as bj(x, ξ)(xj − p′j(ξ))(1 −
χ1)(hσξ) is supported for large frequencies, one can prove that its operator acting on wΣ

Λkg
is a

OL2∩L∞(hN‖w(t, ·)‖Hs
h
) with N > 0 large as long as s > 0 is large, by using the semi-classical

Sobolev injection, symbolic calculus of proposition 1.2.21, lemma 1.2.40 and proposition 1.2.36.
Furthermore, if we consider a smooth cut-off function γ̃ ∈ C∞0 (R2), equal to 1 close to the origin
and such that γ̃

(
〈ξ〉2(x − p′(ξ))

)
≡ 1 on the support of γ

(x−p′(ξ)√
h

)
χ(hσξ) (which is possible if

σ < 1/4), we have that

bj(x, ξ)(xj − p′j(ξ))χ1(hσξ) = bj(x, ξ)(xj − p′j(ξ))χ1(hσξ)γ̃
(
〈ξ〉2(x− p′(ξ))

)
+ bj(x, ξ)(xj − p′j(ξ))χ1(hσξ)(1− γ̃)

(
〈ξ〉2(x− p′(ξ))

)
.

Since bj(x, ξ)(xj−p′j(ξ))χ1(hσξ)(1−γ̃)
(
〈ξ〉2(x−p′(ξ))

)
∈ h−βSδ,σ(1), for some new small β, δ > 0,

and its support has empty intersection with that of γ
(x−p′(ξ)√

h

)
(which instead belongs to class

S 1
2
,0(〈x−p

′(ξ)√
h
〉−M ), for M ∈ N as large as we want), its quantization acting on wΣ

Λkg
is also an

enhanced remainder R2(w).

The very contribution that only enjoys estimates (3.2.22) is Opwh
(
c(x, ξ)(xj − p′j(ξ))

)
wΣ

Λkg
, with

c(x, ξ) := bj(x, ξ)χ1(hσξ)γ̃
(
〈ξ〉2(x − p′(ξ))

)
∈ h−βS2σ,σ(1) and β depending linearly on σ. In

fact, if we assume that the support of χ1 is sufficiently small so that χ1χ ≡ χ1 and all derivatives
of χ vanish on that support, by using symbolic development (1.2.18) until a sufficiently large
order N and observing that{

c(x, ξ)(xj − p′j(ξ)), γ
(x− p′(ξ)√

h

)}
=

{
c(x, ξ), γ

(x− p′(ξ)√
h

)}
(xj − p′j(ξ))

=

[
(∂ξc) · (∂γ)

(x− p′(ξ)√
h

)
+ (∂xc) · (∂γ)

(x− p′(ξ)√
h

)
p′′(ξ)

](xj − p′j(ξ)√
h

)
does not lose any power h−1/2, we derive that, up to negligible constants,

[
c(x, ξ)(xj − p′j(ξ))

]
]
[
γ
(x− p′(ξ)√

h

)
χ(hσξ)

]
= γ

(x− p′(ξ)√
h

)
χ(hσξ)c(x, ξ)(xj − p′j(ξ))

+
∑′

hγ̃
(x− p′(ξ)√

h

)
c̃(x, ξ) + rN (x, ξ).
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In the above equality
∑′ is a concise notation to indicate a linear combination, γ̃ ∈ C∞0 (R2\{0}),

c̃ ∈ h−βSδ,σ(1) for some new small β, δ > 0, and rN ∈ h(N+1)/2−βS 1
2
,σ

(〈x−p′(ξ)√
h

〉−(M−1)) as

c(x, ξ)(xj − p′j(ξ)) ∈ h1/2−βS2σ,σ

(
〈x−p

′(ξ)√
h
〉
)
. From inequalities (1.2.70) and (3.2.20) we deduce

that Opwh
(
γ
(x−p′(ξ)√

h

)
χ(hσξ)c(x, ξ)(xj−p′j(ξ))

)
Opwh (Σ)w is a remainder R1(w) satisfying (3.2.22).

The quantization of all the addends in
∑′ acting on Opwh (Σ)w is estimated by using that γ̃(z)

vanishes in a neighbourhood of the origin and can be rewritten as
∑

j=1,2 γ̃2(z)z2
j , with γ̃2(z) :=

γ̃(z)|z|−2 such that |∂αz γ̃2(z)| . 〈z〉−2−|α|. Inequalities (1.2.71) and the successive commutation
of Lγ with Σ, for |γ| = 1, 2, give then that hOpwh

(
γ̃
(x−p′(ξ)√

h

)
c̃(x, ξ)

)
Opwh (Σ)w is a remainder

R2(w). Finally, as

rN (x, ξ)]Σ(ξ) ∈ h
N
2
−β−µS 1

2
,σ(〈x− p

′(ξ)√
h
〉−(M−1))

with µ = σρ if ρ ≥ 0, 0 otherwise, Opwh (rN )Opwh (Σ)w is also a remainder R2(w) just from 1.2.36,
1.2.37, fixing N ∈ N sufficiently large (e.g. N = 3).

If symbol a(x, ξ) is such that ∂ξa|ξ=−dφ = 0, instead of equality (3.2.24) with bj given by (3.2.25),
we have

a(x, ξ)θh(x) = a(x,−dφ(x))θh(x) +
∑
j=1,2

b(x, ξ)(xj − p′j(ξ))2,

with

b(x, ξ) =
∑
|α|=2

2

α!

∫ 1

0
(∂αξ a)(tξ − (1− t)dφ(x))(1− t)dt θh(x)

(ξ + dφ(x))α

|x− p′(ξ)|2
.

The same argument as before can be applied to Opwh
(
b(x, ξ)θh(x)(xj−p′j(ξ))2

)
wΣ

Λkg
to show that

it reduces to

Opwh

(
b(x, ξ)θh(x)(xj − p′j(ξ))2χ1(hσξ)γ̃

(
〈ξ〉2(x− p′(ξ))

))
wΣ

Λkg
+R2(w),

with R2(w) satisfying (3.2.23). If

B(x, ξ) := b(x, ξ)θh(x)χ1(hσξ)γ̃
(
〈ξ〉2(x− p′(ξ))

)
then B(x, ξ)(xj−p′j(ξ))2 ∈ h−βSδ′,σ(1) by lemma 1.2.43, for some new small β, δ′ > 0 depending
on σ, δ. Using lemma 1.2.24, symbolic development (1.2.18) until order 4, and assuming that the
support of χ1 is sufficiently small so that χχ1 ≡ χ, we derive that

[
B(x, ξ)(xj − p′j(ξ))2

]
]
[
γ
(x− p′(ξ)√

h

)
χ(hσξ)

]
= B(x, ξ)γ

(x− p′(ξ)√
h

)
(xj − p′j(ξ))2

+
h

i

2∑
i=1

(∂iγ)
(x− p′(ξ)√

h

)(xj − p′j(ξ)√
h

)(∂ξiB) +
∑
j

(∂xjB)p′′ij(ξ)

 (xj − p′j(ξ))

+
∑

2≤|α|≤3

′
h
|α|
2
−2δ′−βγα

(x− p′(ξ)√
h

)
Bα(x, ξ) + r4(x, ξ),

where γα ∈ C∞0 (R2 \ {0}), Bα(x, ξ) ∈ Sδ′,σ(1), and r4(x, ξ) ∈ h2−4δ′−βS 1
2
,σ

(
〈x−p

′(ξ)√
h
〉−M

)
. As

r4(x, ξ)]Σ(ξ) ∈ h2−β′S 1
2
,σ

(
〈x−p

′(ξ)√
h
〉−M

)
, for β′ = 2 − 4δ′ − β − ρσ if ρ ≥ 0, β′ = 2 − 4δ′ −

β otherwise, it immediately follows from propositions 1.2.36 and 1.2.37 that Opwh (r4)ṽΣ is a
remainder R2(w). After inequalities (1.2.71) with γn = γ and c = B (resp. inequalities (1.2.70)
with γn(z) = ∂iγ(z)zj and c = hδ

′
[(∂ξiB) + (∂xB) · (∂ξp′1 + ∂ξp

′
2)] ∈ Sδ′,σ(1), for i, j = 1, 2), and
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(3.2.20), we deduce that the quantization of the first (resp. the second) contribution in above
symbolic development is a remainder R2(w), when acting on Opwh (Σ)w. Finally, as γα vanishes
in a neighbourhood of the origin, we write

γα

(x− p′(ξ)√
h

)
=

2∑
k=1

h−1 γα

(x− p′(ξ)√
h

)∣∣∣x− p′(ξ)√
h

∣∣∣−2

︸ ︷︷ ︸
γ̃α
(
x−p′(ξ)√

h

) ×(xk − p′k(ξ))2, |α| = 2,

γα

(x− p′(ξ)√
h

)
=

2∑
k=1

h−
1
2 γα

(x− p′(ξ)√
h

)(xk − p′k(ξ)√
h

)∣∣∣x− p′(ξ)√
h

∣∣∣−2

︸ ︷︷ ︸
γ̃kα

(
x−p′(ξ)√

h

) ×(xk − p′k(ξ)), |α| = 3

and obtain that the quantization of α-th order term with |α| = 2 (resp. |α| = 3) is a remainder
R2(w) when acting on Opwh (Σ)w, after inequalities (1.2.71) (resp. (1.2.70)) with γn = γ̃α (resp.
γn = γ̃kα, k = 1, 2) and c = Bα.

The following two results allow us to finally derive the ODE satisfied by ṽΣ
Λkg

.

Lemma 3.2.5. We have that

(3.2.26)
[
Dt −Opwh (x · ξ − p(ξ)),Γkg

]
= Opwh (b),

where

b(x, ξ) = − h
2i

(∂γ)
(x− p′(ξ)√

h

)
·
(x− p′(ξ)√

h

)
χ(hσξ)− σh

i
γ
(x− p′(ξ)√

h

)
(∂χ)(hσξ) · (hσξ)

+
i

24
h

3
2

∑
|α|=3

(∂αγ)
(x− p′(ξ)√

h

)
(∂αξ p

′(ξ))χ(hσξ) + r(x, ξ)

(3.2.27)

and r ∈ h5/2S 1
2
,σ(〈x−p

′(ξ)√
h
〉−N ) for any N ≥ 0. Therefore, function ṽΣ

Λkg
is solution to

(3.2.28)
[
Dt −Opwh (x · ξ − p(ξ))

]
ṽΣ

Λkg
= ΓkgOpwh (Σ(ξ))

[
h−1rNFkg (t, tx)

]
+R2(ṽ)

with R2(ṽ) satisfying estimates (3.2.23).

Proof. Recalling the definition (3.2.14) of Γkg, one can prove by a straight computation that

[
Dt,Γ

kg
]

=
h

i
Opwh

(
(∂γ)

(x− p′(ξ)√
h

)
· p
′′(ξ)ξ√
h

χ(hσξ)
)

+
h

2i
Opwh

(
(∂γ)

(x− p′(ξ)√
h

)
·
(x− p′(ξ)√

h

)
χ(hσξ)

)
− (1 + σ)h

i
Opwh

(
γ
(x− p′(ξ)√

h

)
(∂χ)(hσξ) · (hσξ)

)
.

Since the development of a commutator’s symbol only contains odd-order terms, lemma 1.2.24
gives that the symbol associated to

[
Γkg,Opwh (x · ξ − p(ξ))

]
writes as

h

i

{
γ
(x− p′(ξ)√

h

)
χ(hσξ), x · ξ − p(ξ)

}
+

i

24
h

3
2

∑
|α|=3

(∂αγ)
(x− p′(ξ)√

h

)
χ(hσξ)(∂αξ p(ξ)) + r5(x, ξ)
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with r5 ∈ h5/2S 1
2
,σ(〈x−p

′(ξ)√
h
〉−N ) for any N ≥ 0. Developing the above Poisson bracket one finds

that

[
Γkg,Opwh (x · ξ − p(ξ))

]
= −h

i
Opwh

(
(∂γ)

(x− p′(ξ)√
h

)
· p
′′(ξ)ξ√
h

χ(hσξ)
)

− h

i
Opwh

(
(∂γ)

(x− p′(ξ)√
h

)
·
(x− p′(ξ)√

h

)
χ(hσξ)

)
+
h

i
Opwh

(
γ
(x− p′(ξ)√

h

)
(∂χ)(hσξ) · (hσξ)

)
+

i

24
h

3
2

∑
|α|=3

Opwh

(
(∂αγ)

(x− p′(ξ)√
h

)
(∂αξ p

′(ξ))χ(hσξ)
)

+ Opwh (r5(x, ξ)),

which summed to the previous commutator gives (3.2.27).

The last part of the statement follows applying to equation (3.2.13) operators Opwh (Σ(ξ)) (which
commutes exactly with the linear part of the equation, evident in non semi-classical coordinates)
and Γkg. Since

hOpwh

(
(∂γ)

(x− p′(ξ)√
h

)
·
(x− p′(ξ)√

h

)
χ(hσξ)

)
ṽΣ

=

2∑
k=1

Opwh

(
γk
(x− p′(ξ)√

h

)
· (x− p′(ξ))(xk − p′k(ξ))

)
ṽΣ

with γk(z) := (∂γ)(z)zk|z|−2, and

h
3
2 Opwh

(
(∂αγ)

(x− p′(ξ)√
h

)
(∂αξ p

′(ξ))
)

= hOpwh

(
γkα

(ξ − p′(ξ)√
h

)
(∂αξ p

′(ξ))(xk − p′k(ξ))
)
ṽΣ

with γkα(z) := (∂αγ)(z)zk|z|−2, we obtain from inequalities (1.2.71) (resp. (1.2.70)) and (3.2.20)
that hOpwh

(
(∂γ)

(x−p′(ξ)√
h

)
·
(x−p′(ξ)√

h

)
χ(hσξ)

)
ṽΣ (resp. h3/2Opwh

(
(∂αγ)

(x−p′(ξ)√
h

)
(∂αξ p

′(ξ))
)
, |α| = 3)

is a remainder R2(ṽ). The same holds true for Opwh
(
γ
(x−p′(ξ)√

h

)
(∂χ)(hσξ) · (hσξ)

)
ṽΣ, as follows

combining symbolic calculus and lemma 1.2.40, because its symbol is supported for large fre-
quencies |ξ| & h−σ. From propositions 1.2.36 and 1.2.37 it immediately follows that Opwh (r5)ṽΣ

satisfies (3.2.23a) and (3.2.23b).

Proposition 3.2.6 (Deduction of the ODE). There exists a family (θh(x))h of C∞0 functions,
real valued, equal to 1 on the closed ball B1−ch2σ(0) and supported in B1−c1h2σ(0), for some small
0 < c1 < c, σ > 0, with ‖∂αx θh‖L∞ = O(h−2|α|σ) and (h∂h)kθh bounded for every k, such that

(3.2.29) Opwh (x · ξ − p(ξ))ṽΣ
Λkg

= −φ(x)θh(x)ṽΣ
Λkg

+R2(ṽ),

where φ(x) =
√

1− |x|2 and R2(ṽ) satisfies estimates (3.2.23). Therefore, ṽΣ
Λkg

is solution of the
following non-homogeneous ODE:

(3.2.30) Dtṽ
Σ
Λkg

= −φ(x)θh(x)ṽΣ
Λkg

+ ΓkgOpwh (Σ(ξ))
[
h−1rNFkg (t, tx)

]
+R2(ṽ),

with rNFkg given by (3.1.5).

Proof. The proof of the statement follows directly from lemma 3.2.4 if we observe that ∂ξ(x · ξ−
p(ξ)) = 0 at ξ = −dφ(x) and x · (−dφ(x))− p(−dφ(x)) = −φ(x). Therefore, (3.2.29) holds and,
injecting it in (3.2.28), we obtain (3.2.30).
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Proposition 3.2.7 (Propagation of the uniform estimate on V ). Let us fix K1 > 0. There
exist two integers n � ρ � 1 sufficiently large, two constants A,B > 1 sufficiently large,
ε0 ∈]0, (2A + B)−1[ sufficiently small, and 0 � δ � δ2 � δ1 � δ0 � 1 small, such that, for
any 0 < ε < ε0, if (u, v) is solution to (1.1.1)-(1.1.2) in some interval [1, T ] for a fixed T > 1,
and u±, v± defined in (1.1.5) satisfy a-priori estimates (1.1.11) for every t ∈ [1, T ], then it also
verify (1.1.12b) in the same interval [1, T ].

Proof. We warn the reader that, throughout the proof, we will denote by C, β (resp. β′) two
positive constants such that β → 0 as σ → 0 (resp. β′ → 0 as δ0, σ → 0). These constants may
change line after line. We also remind that h = 1/t.

In proposition 3.1.1 we introduced function vNF , defined from v− through (3.1.3), and proved
that its Hρ,∞ norm differs from that of v− by a quantity satisfying (3.1.7b). Hence, from a-priori
estimates (1.1.11a), (1.1.11b), (1.1.11c) and for θ ∈]0, 1[ sufficiently small (e.g. θ < 1/4)

(3.2.31) ‖v−(t, ·)‖Hρ,∞ ≤ ‖vNF (t, ·)‖Hρ,∞ + CA2−θBθε2t−
5
4 .

We successively introduced ṽ in (3.2.2) and decomposed it into the sum of functions ṽΣ
Λkg

and
ṽΣ

Λckg
(see (3.2.16)). We will show in lemma B.2.14 of appendix B that, for any s ≤ n,

(3.2.32) ‖ṽ(t, ·)‖Hs
h

+
2∑
|γ|=1

‖Opwh (χ(hσξ))Lγ ṽ(t, ·)‖L2 ≤ CBεh−β
′

for all t ∈ [1, T ], so inequality (3.2.19b) gives that

(3.2.33) ‖ṽΣ
Λckg

(t, ·)‖L∞ ≤ CBεh
1
2
−β′ .

As concerns ṽΣ
Λkg

, we proved in proposition 3.2.6 that it is solution to ODE (3.2.30), with rNFkg
given by (3.1.5) and satisfying (3.1.6), and R2(ṽ) verifying (3.2.23). From (3.2.32), we then have
that

‖R2(ṽ)(t, ·)‖L∞ ≤ CBεt−
3
2

+β′ .

We also have that

(3.2.34)
∥∥∥ΓkgOpwh (Σ(ξ))[trNFkg (t, tx)]

∥∥∥
L∞(dx)

≤ C(A+B)ABε3t−
3
2

+β′ .

In fact, by symbolic calculus of lemma 1.2.24 we derive that, for a fixed N ∈ N (e.g. N > ρ) and
up to negligible multiplicative constants,

ΓkgOpwh (Σ(ξ)) =

N−1∑
|α|=0

h
|α|
2 Opwh

(
(∂αγ)

(x− p′(ξ)√
h

)
χ(hσξ)(∂αΣ)(ξ)

)
+ Opwh (rN (x, ξ)),

where rN ∈ h
N
2 S 1

2
,σ(〈x−p

′(ξ)√
h
〉−1). Choosing N sufficiently large, we deduce from proposition

1.2.37, the fact that ‖tw(t, t·)‖L2 = ‖w(t, ·)‖L2 , inequality (3.1.6a) and a-priori estimates, that
for every t ∈ [1, T ] ∥∥∥Opwh (rN (x, ξ))[trNFkg (t, tx)]

∥∥∥
L∞(dx)

≤ CA2Bε3t−2.
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Using, instead, proposition 1.2.39 with p = +∞, inequality (B.3.25) in appendix B, and that
h = t−1, we deduce that

N−1∑
|α|=0

h
|α|
2

∥∥∥∥Opwh

(
(∂αγ)

(x− p′(ξ)√
h

)
χ(hσξ)(∂αΣ)(ξ)

)
Opwh (χ1(hσξ))[trNFkg (t, tx)]

∥∥∥∥
L∞

. t1+β
∥∥χ(t−σDx)rNFkg (t, ·)

∥∥
L∞
≤ C(A+B)ABε3t−

3
2

+β′ .

Summing up, ΓkgOpwh (Σ(ξ))[t−1rNFkg (t, tx)] +R2(ṽ) = Fkg(t, x) with

‖Fkg(t, ·)‖L∞ ≤ [C(A+B)ABε3 + CBε]t−
3
2

+β′ ,

Using equation (3.2.30) we deduce that

(3.2.35)
1

2
∂t|ṽΣ

Λkg
(t, x)|2 = =

(
ṽΣ

Λkg
DtṽΣ

Λkg

)
≤ |ṽΣ

Λkg
(t, x)||Fkg(t, x)|

and hence that

‖ṽΣ
Λkg

(t, ·)‖L∞ ≤ ‖ṽΣ
Λkg

(1, ·)‖L∞ +

∫ t

1
‖Fkg(τ, ·)‖L∞dτ

≤ ‖ṽΣ
Λkg

(1, ·)‖L∞ + C(A+B)ABε3 + CBε.

As ‖ṽΣ
Λkg

(1, ·)‖L∞ . ‖ṽ(1, ·)‖L2 ≤ CBε by proposition 1.2.37 and a-priori estimate (1.1.11c), the
above inequality together with(3.2.33) and definition (3.2.2) of ṽ, gives that

‖vNF (t, ·)‖L∞ ≤ (C(A+B)ABε3 + CBε)t−1,

which injected in (3.2.31) leads finally to (1.1.12b) if we take A > 1 sufficiently large such that
CB < A

3K1
, and ε0 > 0 sufficiently small to verify C(A+B)Bε2

0 + CA1−θBθε0 ≤ 1
3K1

.

3.2.2 The derivation of the transport equation

We now focus on the semi-classical wave equation satisfied by ũ:

(3.2.36)
[
Dt −Opwh (x · ξ − |ξ|)

]
ũ(t, x) = h−1

[
qw(t, tx) + cw(t, tx) + rNFw (t, tx)

]
,

with qw, cw, r
NF
w given by (3.1.17), (3.1.18), (3.1.19) respectively, and on the derivation of the

mentioned transport equation. As we will make use several times of proposition 1.2.30 and
inequalities (1.2.52), we remind the reader about definition (1.2.40) of Ωh and (1.2.49) of Mj .
Also, θ0(x) denotes a smooth radial cut-off function (often coming with operator Ωh) while
χ ∈ C∞0 (R2) is equal to 1 in a neighbourhood of the origin and suitably supported.

In order to recover a sharp estimate for ũ such as (3.2.3a), we study the behaviour of this function
separately in different regions of the phase space (x, ξ) ∈ R2×R2. We start by fixing ρ ∈ Z, and
by introducing

(3.2.37) Σj(ξ) :=

{
〈ξ〉ρ, for j = 0,

〈ξ〉ρξj |ξ|−1, for j = 1, 2.

Taking a smooth cut-off function χ0 equal to 1 in a neighbourhood of the origin, a Littlewood-
Paley decomposition, and a small σ > 0, we write the following for any j ∈ {0, 1, 2}:

(3.2.38)
Opwh (Σj(ξ))ũ = Opwh (Σj(ξ)χ0(h−1ξ))ũ+

∑
k

Opwh
(
Σj(ξ)(1− χ0)(h−1ξ)ϕ(2−kξ)χ0(hσξ)

)
ũ

+ Opwh (Σj(ξ)(1− χ0)(hσξ))ũ,
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observing that the sum over k is actually finite and restricted to set of indices K := {k ∈ Z : h .
2k . h−σ}. From the classical Sobolev injection and the continuity on L2 of the Riesz operator

(3.2.39) ‖Opwh (Σj(ξ)χ0(h−1ξ))ũ(t, ·)‖L∞ = ‖Σj(hD)χ0(D)ũ(t, ·)‖L∞ . ‖ũ(t, ·)‖L2 ,

while from the semi-classical Sobolev injection along with lemma 1.2.40

(3.2.40) ‖Opwh (Σj(ξ)(1− χ0)(hσξ))‖L∞ . hN‖ũ(t, ·)‖Hs
h
,

where N = N(s) ≥ 0 if s > 0 is sufficiently large. The remaining terms in the right hand side of
(3.2.38), localised for frequencies |ξ| ∼ 2k, need a sharper analysis because a direct application
of semi-classical Sobolev injection only gives that∥∥∥Opwh

(
Σj(ξ)(1− χ0)(h−1ξ)ϕ(2−kξ)χ0(hσξ)

)
ũ
∥∥∥
L∞
≤ 2kh−1−µ‖ũ‖L2 ,

with µ = σρ if ρ ≥ 0, 0 otherwise, and factor 2kh−1−µ may grow too much when h→ 0.

For any fixed k ∈ K, ρ ∈ Z and j ∈ {0, 1, 2}, let us introduce

(3.2.41) ũΣj ,k(t, x) := Opwh
(
Σj(ξ)(1− χ0)(h−1ξ)ϕ(2−kξ)χ0(hσξ)

)
ũ(t, x)

and observe that, from the commutation of the above operator with the linear part of equation
(3.2.36), we get that ũΣj ,k is solution to

[Dt −Opwh (x · ξ − |ξ|)]ũΣj ,k(t, x)

= h−1Opwh
(
Σj(ξ)(1− χ0)(h−1ξ)ϕ(2−kξ)χ0(hσξ)

) [
qw(t, tx) + cw(t, tx) + rNFw (t, tx)

]
− ihOpwh

(
Σj(ξ)(∂χ0)(h−1ξ) · (h−1ξ)ϕ(2−kξ)

)
ũ− iσhOpwh

(
Σj(ξ)ϕ(2−kξ)(∂χ0)(hσξ)) · (hσξ)

)
ũ.

(3.2.42)

We introduce the following manifold (see picture 3.2)

(3.2.43) Λw :=

{
(x, ξ) : x− ξ

|ξ|
= 0

}
,

together with operator

(3.2.44) Γw,k := Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)

)
,

for some γ ∈ C∞0 (R2) equal to 1 close to the origin and ψ ∈ C∞0 (R2 \ {0}) equal to 1 on suppϕ,
whose symbol is localized in a neighbourhood of Λw ∩ {|ξ| ∼ 2k} of size h1/2−σ. We also define

(3.2.45a) ũ
Σj ,k
Λw

:= Γw,kũΣj ,k ,

(3.2.45b) ũ
Σj ,k
Λcw

:= Opwh

((
1− γ

)(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)

)
ũΣj ,k,

so that ũΣj ,k = ũ
Σj ,k
Λw

+ ũ
Σj ,k
Λcw

. We are going to prove that, if we suitably control the L2 norm of

(θ0Ωh)µMν ũΣj ,k, for any µ, |ν| ≤ 1, then ũΣj ,k
Λwc

is a OL∞(h−0) (see proposition 3.2.8). As h = t−1,
this means that ũΣj ,k

Λcw
grows in time at a rate slower than the one expected for ũΣj ,k (that is

t1/2 after (3.2.3a)). Analogously to the Klein-Gordon case discussed in the previous subsection,
the main contribution to ũΣj ,k is hence the one localized around Λw and represented by ũΣj ,k

Λw
.

We will show that this function is solution to a transport equation (see proposition 3.2.17), from
which we will be able to derive a suitable estimate of its uniform norm and to finally propagate
(3.1.12) (see proposition 3.3.7).
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−1 1

Λw

Figure 3.2: Lagrangian for the wave equation

Proposition 3.2.8. There exists a constant C > 0 such that, for any h ∈]0, 1], k ∈ K,

(3.2.46a) ‖ũΣj ,k
Λcw

(t, ·)‖L2 ≤ Ch
1
2
−β(‖ũΣj ,k(t, ·)‖L2 + ‖MũΣj ,k(t, ·)‖L2

)
,

(3.2.46b) ‖ũΣj ,k
Λcw

(t, ·)‖L∞ ≤ Ch−β
1∑

µ=0

(
‖(θ0Ωh)µũΣj ,k(t, ·)‖L2 + ‖(θ0Ωh)µMũΣj ,k(t, ·)‖L2

)
,

for a small β > 0, β → 0 as σ → 0.

Proof. The proof is straightforward if one writes

ũ
Σj ,k
Λcw

=

2∑
j=1

Opwh

(
γj1

(x|ξ| − ξ
h1/2−σ

)(xj |ξ| − ξj
h1/2−σ

)
ψ(2−kξ)

)
ũΣj ,k,

where γj1(z) :=
(1−γ)(z)zj
|z|2 is such that |∂αz γ

j
1(z)| . 〈z〉−(|α|+1), and uses inequalities (1.2.52) with

a(x) = bp(ξ) ≡ 1.

Lemma 3.2.9. Let ϕ̃ ∈ C∞0 (R2 \{0}) be such that ϕ̃ ≡ 1 on suppϕ and have a sufficiently small
support so that ψϕ̃ ≡ ψ. Then for any k ∈ K

(3.2.47)
[
Γw,k, Dt −Opwh

(
(x · ξ − |ξ|)ϕ̃(2−kξ)

)]
Opwh (ϕ(2−kξ)) = Opwh (b(x, ξ)),

where, for any w ∈ L2 such that θ0Ωhw, (θ0Ωh)µMw ∈ L2(R2), for µ = 0, 1,

(3.2.48a) ‖Opwh (b(x, ξ))w‖L2 . h1−β (‖w‖L2 + ‖Mw‖L2) ,

(3.2.48b) ‖Opwh (b(x, ξ))w‖L∞ . h1−β
1∑

µ=0

(
‖(θ0Ωh)µw‖L2 + ‖(θ0Ωh)µMw‖L2

)
,

with β > 0 small, β → 0 as σ → 0.
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Proof. We warn the reader that most of the terms arising from the development of the commu-
tator in the left hand side of (3.2.47) satisfy a better L2 estimate than (3.2.48a), namely

(3.2.49) ‖ · ‖L2 . h
3
2
−β(‖w‖L2 + ‖Mw‖L2

)
.

The only contribution whose L2 norm is only a O(h‖w‖L2) is the integral remainder called r̃kN ,
appearing in symbolic development (3.2.51).

Since ∂t = −h2∂h, an easy computation shows that

[Γw,k, Dt] =
(1

2
+ σ

)h
i

Opwh

(
(∂γ)

(x|ξ| − ξ
h1/2−σ

)
·
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)

)
+
h

i
Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
(∂ψ)(2−kξ) · (2−kξ)

)
.

(3.2.50)

The first term in the above right hand side satisfies (3.2.49) and (3.2.48b) after inequalities
(1.2.52). The same estimates hold also for the latter one when it acts on Opwh (ϕ(2−kξ))w, for the
derivatives of ψ vanish on the support of ϕ̃ (and then of ϕ) as a consequence of our assumptions.
In fact, if we introduce a smooth function ψ̃ ∈ C∞0 (R2 \ {0}), equal to 1 on the support of ∂ψ
and such that suppψ̃ ∩ suppϕ = ∅, and use symbolic calculus we find that, for any fixed N ∈ N,

Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
(∂ψ)(2−kξ) · (2−kξ)

)
Opwh (ϕ(2−kξ))

= Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
(∂ψ)(2−kξ) · (2−kξ)

)
Opwh

(
ψ̃(2−kξ)ϕ(2−kξ)

)
−Opwh (rkN ),

where the first term in the above right hand side is 0, and integral remainder rkN is given by

rkN =
( h

2i

)N ∑
|α|=N

N(−1)|α|

α!(πh)4

∫
e

2i
h (η·z−y·ζ)

∫ 1

0

∂αx

[
γ
(x|ξ| − ξ
h1/2−σ

)
(∂ψ)(2−kξ) · (2−kξ)

]
|(x+tz,ξ+tζ)dt

× ∂αξ
(
ψ̃(2−kξ)

)
|(ξ+η) dydzdηdζ.

Developing explicitly the above derivatives and reminding definition (1.2.30) of integrals Ikp,q, for
general k ∈ K, p, q ∈ Z, one recognizes that, up to some multiplicative constants, rkN has the
form

hN−N( 1
2
−σ)2−kNIkN,0(x, ξ),

with a, a′, bq ≡ 1, p = N and ψ(2−kξ) replaced with (∂ψ)(2−kξ) · (2−kξ). Propositions 1.2.28 and
1.2.31 imply then that

‖Opwh (rkN )‖L(L2) + ‖Opwh (rkN )‖L(L2;L∞) . h

if N ∈ N is chosen sufficiently large (e.g. N > 9), which implies that the L(L2) and L(L2;L∞)
norms of the latter operator in the right hand side of (3.2.50) is bounded by h2.

As regards [Γw,k,Opwh ((x · ξ − |ξ|)ϕ̃(2−kξ))], we first remind that the symbolic development of
a commutator’s symbol only contains odd order terms. Consequently, for a new fixed N ∈ N
and up to multiplicative constants independent of h, k, the symbol of the considered commutator
writes as

(3.2.51) h
{
γ
(x|ξ| − ξ
h1/2−σ

)
, (x · ξ − |ξ|)ϕ̃(2−kξ)

}
+

∑
3≤|α|<N
|α|=|α1|+|α2|

h|α|∂α1
x ∂α2

ξ

[
γ
(x|ξ| − ξ
h1/2−σ

)]
∂α2
x ∂α1

ξ

[
(x · ξ − |ξ|)ϕ̃(2−kξ)

]
+ r̃kN (x, ξ),
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with

r̃kN (x, ξ) =
( h

2i

)N ∑
|α1|+|α2|=N

N(−1)|α1|

α!(πh)4

∫
e

2i
h (η·z−y·ζ)

∫ 1

0

∂α1
x ∂α2

ξ

[
γ
(x|ξ| − ξ
h1/2−σ

)
ψ(2−kξ)

]∣∣
(x+tz,ξ+tζ)

dt

× ∂α2
x ∂α1

ξ

[
(x · ξ − |ξ|)ϕ̃(2−kξ)

]
|(x+y,ξ+η) dydzdηdζ .

Since
{
γ
(
x|ξ|−ξ
h1/2−σ

)
, x · ξ − |ξ|

}
= 0 the Poisson braket in the above sum reduces to

h
∑
j,l

(∂jγ)
(x|ξ| − ξ
h1/2−σ

)
(∂jϕ̃)(2−kξ)

(xl|ξ| − ξl
h1/2−σ

)
(2−kξl)

and its quantization acting on Opwh (ϕ(2−kξ))w satisfies (3.2.49), (3.2.48b) because ∂ϕ̃ vanishes
on the support of ϕ.

An explicit calculation of terms of order 3 ≤ |α| < N , with the help of lemma 1.2.26 and the
observation that |α2| ≤ 1 because (x · ξ − |ξ|)ϕ̃(2−kξ) is affine in x, shows that they are linear
combination of products

h|α|−|α|(
1
2
−σ)γ|α|

(x|ξ| − ξ
h1/2−σ

)
ϕ̃(2−kξ)xνb1(ξ)

and
h|α|−(|α|−1)( 1

2
−σ)γ̃

(x|ξ| − ξ
h1/2−σ

)
ϕ̃(2−kξ)b0(ξ)

for two new cut-off functions γ̃, ϕ̃, |∂βb0(ξ)| .β |ξ|−|β|, and ν ∈ N2 of length at most 1. Further-
more, for j = 1, 2,

h|α|−|α|(
1
2
−σ)γ|α|

(x|ξ| − ξ
h1/2−σ

)
ϕ̃(2−kξ)xjb1(ξ) = h|α|−(|α|−1)( 1

2
−σ)γ̃j|α|

(x|ξ| − ξ
h1/2−σ

)
ϕ̃(2−kξ)b0(ξ)

+ h|α|−|α|(
1
2
−σ)γ|α|

(x|ξ| − ξ
h1/2−σ

)
ϕ̃(2−kξ)ξjb0(ξ),

with γ̃j|α|(z) := γ|α|(z)zj . From propositions 1.2.27, 1.2.30, the fact that |α| ≥ 3 and 2k ≤ h−σ we
deduce that the quantization of these |α|-order terms acting on Opwh (ϕ(2−kξ))w satisfies (3.2.49),
(3.2.48b).

Finally, we notice that integral remainder r̃kN can be actually seen as the sum of two contributions,
one of the form (1.2.44), the other like (1.2.45), with a ≡ 1 and p = 1. Lemma 1.2.32 implies
then that the L(L2) and L(L2;L∞) norms of Opwh (r̃kN ) are bounded by h as foretold, which
concludes the proof of the statement.

Lemma 3.2.10. Function ũΣj ,k
Λw

is solution to the following equation:

[
Dt −Opwh

(
(x · ξ − |ξ|)ϕ̃(2−kξ)

)]
ũ

Σj ,k
Λw

(t, x) = fwk (t, x)

+ h−1Γw,kOpwh
(
Σj(ξ)(1− χ0)(h−1ξ)ϕ(2−kξ)χ0(hσξ)

) [
qw(t, tx) + cw(t, tx) + rNFw (t, tx)

]
− ihΓw,kOpwh

(
Σj(ξ)(∂χ0)(h−1ξ) · (h−1ξ)ϕ(2−kξ)

)
ũ

− iσhΓw,kOpwh
(
Σj(ξ)ϕ(2−kξ)(∂χ0)(hσξ)) · (hσξ)

)
ũ,

(3.2.52)

where ϕ̃ ∈ C∞0 (R2 \ {0}) is equal to 1 on suppϕ, and there exist two constants C,C ′ > 0 such
that, for any h ∈]0, 1], k ∈ K,

(3.2.53a) ‖fwk (t, ·)‖L2 ≤ Ch1−β(‖ũΣj ,k(t, ·)‖L2 + ‖MũΣj ,k(t, ·)‖L2

)
,
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(3.2.53b) ‖fwk (t, ·)‖L∞ ≤ C ′h1−β
1∑

µ=0

(
‖(θ0Ωh)µũΣj ,k(t, ·)‖L2 + ‖(θ0Ωh)µMũΣj ,k(t, ·)‖L2

)
,

with β > 0 small, β → 0 as σ → 0.

Proof. If we consider a cut-off function ϕ̃ ∈ C∞0 (R2 \ {0}) such that ϕ̃ ≡ 1 on the support of ϕ
(ϕ being the truncation on ũΣj ,k’s frequencies), we have the exact equality

Opwh (x · ξ − |ξ|)ũΣj ,k = Opwh ((x · ξ − |ξ|)ϕ̃(2−kξ))ũΣj ,k.

Moreover, if we assume that its support is sufficiently small so that ψϕ̃ ≡ ϕ̃, and apply operator
Γw,k to equation (3.2.42), lemma 3.2.9 gives us the result of the statement.

The transport equation we talked about at the beginning of this section will be deduced from
equation (3.2.52) by suitably developing symbol (x · ξ − |ξ|)ϕ̃(2−kξ). To do that, we first need
to restrict the support of that symbol to bounded values of x through the introduction of a new
cut-off function θ(x). We remind that Σ′ is a concise notation that we use to indicate a linear
combination of a finite number of terms of the same form.

Lemma 3.2.11. Let 0 < D1 < D2 and θ = θ(x) be a smooth function equal to 1 for |x| ≤ D1

and supported for |x| ≤ D2. Then,

(3.2.54)
Opwh

(
(x ·ξ−|ξ|)ϕ̃(2−kξ)

)
= Opwh

(
θ(x)(x ·ξ−|ξ|)ϕ̃(2−kξ)

)
+(1−θ)(x)Opwh ((x ·ξ−|ξ|)ϕ̃(2−kξ))

+
∑′

θ̃(x)Opwh (ϕ̃1(2−kξ)) + Opwh (r(x, ξ)),

where θ̃ is a smooth function supported for D1 < |x| < D2, ϕ̃1 ∈ C∞0 (R2 \ {0}) and

‖Opwh (r)‖L(L2) + ‖Opwh (r)‖L(L2;L∞) . h.

Therefore, ũΣj ,k
Λkg

verifies

[
Dt −Opwh

(
θ(x)(x · ξ − |ξ|)ϕ̃(2−kξ)

)]
ũ

Σj ,k
Λw

(t, x) = fwk (t, x)

+ (1− θ)(x)Opwh ((x · ξ − |ξ|)ϕ̃(2−kξ))ũ
Σj ,k
Λw

+
∑′

θ̃(x)Opwh (ϕ̃1(2−kξ))ũ
Σj ,k
Λw

+ h−1Γw,kOpwh
(
Σ(ξ)(1− χ0)(h−1ξ)ϕ(2−kξ)χ0(hσξ)

) [
qw(t, tx) + cw(t, tx) + rNFw (t, tx)

]
− ihΓw,kOpwh

(
Σ(ξ)(∂χ0)(h−1ξ) · (h−1ξ)ϕ(2−kξ)

)
ũ

− iσhΓw,kOpwh
(
Σ(ξ)ϕ(2−kξ)(∂χ0)(hσξ)) · (hσξ)

)
ũ,

(3.2.55)

where fwk satisfies estimates (3.2.53).

Proof. Let θ(x) be the cut-off function of the statement. By proposition 1.2.21 we have that

(1− θ)(x)(x · ξ − |ξ|)ϕ̃(2−kξ) = (1− θ)(x)]
[
(x · ξ − |ξ|)ϕ̃(2−kξ)

]
− h

2i
∂θ(x) ·

(
x− ξ

|ξ|

)
ϕ̃(2−kξ)− 2−kh

2i
(x · ξ − |ξ|)∂θ(x) · (∂ϕ̃)(2−kξ) + rk2 (x, ξ)

= (1− θ)(x)]
[
(x · ξ − |ξ|)ϕ̃(2−kξ)

]
− h

2i

[
∂θ(x) · x

]
] ϕ̃(2−kξ) +

h

2i

2∑
l=1

∂lθ(x)]
[ ξl
|ξ|
ϕ̃(2−kξ)

]
− h

2i

2∑
j,l=1

[
∂jθ(x)xl

]
]
[
(∂jϕ̃)(2−kξ)(2−kξl)

]
+
h

2i

2∑
l=1

∂lθ(x)]
[
(2−k|ξ|)(∂lϕ̃)(2−kξ)

]
+ rk2 (x, ξ) + r̃k2 (x, ξ),

(3.2.56)
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where ∂θ is supported for D1 < |x| < D2, and rk2(t, x) (resp. r̃k2(t, x)) is a linear combination of
integrals of the form

h22−k

(πh)2

∫
e

2i
h
η·z
∫ 1

0
θ(x+ tz)(1− t)2dt xνϕ̃(2−k(ξ + η))dzdη,

with |ν| = 0, 1 (resp. |ν| = 0), for some new θ, ϕ̃ ∈ C∞0 (R2 \ {0}). By writing x as (x+ tz)− tz,
using that ze

2i
h
η·z =

(
h
2i

)
∂ξe

2i
h
η·z, and making an integration by parts, one can expressrk2(t, x) as

the sum over |ν| = 0, 1 of integrals such as

h22−k(h2−k)ν

(πh)2

∫
e

2i
h
η·z
∫ 1

0
θ(x+ tz)f(t)dt ϕ̃(2−k(ξ + η))dzdη,

for some new smooth θ, f, ϕ̃, and show that for any α, β ∈ N2

∣∣∂αx ∂βξ [(rk2 + r̃k2)(x, hξ)
]∣∣ .α,β h22−k .α,β h.

Thus (rk2 + r̃k2)(x, hξ) ∈ hS0(1), which means, by classical results on pseudo-differential operators
(see for instance [11]), that

Opwh ((rk2 + r̃k2)(x, ξ)) = Opw((rk2 + r̃k2)(x, hξ)) ∈ L(L2)

with norm O(h). Furthermore, one can also show that ‖Opwh (rk2 + r̃k2)‖L(L2;L∞) . h using lemma
1.2.25 and the fact that, by making some integrations by parts, for any multi-indices α, β ∈ N2

and a new ϕ̃ ∈ C∞0 (R2 \ {0})∥∥∥∥∂αy ∂βξ [(rk2 + r̃k2)
(x+ y

2
, hξ
)]∥∥∥∥

L2(dξ)

. h22−k
∥∥∥∥∫ 〈η〉−3|ϕ̃(2−kh(ξ + η))|dη

∥∥∥∥
L2(dξ)

. h.

These considerations, along with the continuity of Γw,k on L2, uniformly in h and k (see propo-
sition 1.2.27), imply that Opwh (rk2 + r̃k2)ũ

Σj ,k
Λw

is a remainder fwk .

Lemma 3.2.12. We have that

|ξ| − x · ξ =
1

2
(1− |x|2)x · ξ + e(x, ξ)

with

(3.2.57) e(x, ξ) =
1

2
|ξ|
∣∣∣x− ξ

|ξ|

∣∣∣2 +
1

2

((
x− ξ

|ξ|

)
· ξ
)(
x− ξ

|ξ|

)
·
(
x+

ξ

|ξ|

)
.

Proof.

|ξ| − xξ =
1

2
|ξ|
∣∣∣∣x− ξ

|ξ|

∣∣∣∣2 +
1

2
|ξ|(1− |x|2)

=
1

2
|ξ|
∣∣∣∣x− ξ

|ξ|

∣∣∣∣2 +
1

2
(|ξ| − x · ξ)(1− |x|2) +

1

2
(1− |x|2)x · ξ

=
1

2
|ξ|
∣∣∣∣x− ξ

|ξ|

∣∣∣∣2 +
1

2

((
ξ

|ξ|
− x
)
· ξ
)(

ξ

|ξ|
− x
)
·
(
ξ

|ξ|
+ x

)
︸ ︷︷ ︸

e(x,ξ)

+
1

2
(1− |x|2)x · ξ .
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Lemma 3.2.13. Let γ, θ ∈ C∞0 (R2) and ϕ̃ ∈ C∞0 (R2 \ {0}) be such that ϕ̃ ≡ 1 on the support of
ϕ and have a sufficiently small support so that ψϕ̃ ≡ ϕ̃. Let also

(3.2.58) B(x, ξ) := γ
(x|ξ| − ξ
h1/2−σ

)
ϕ̃(2−kξ)θ(x)

(
xm −

ξm
|ξ|

)
, m ∈ {1, 2}.

For any function w ∈ L2(R2) such that Mw ∈ L2(R2), any m,n ∈ {1, 2},

(3.2.59a)
∥∥∥∥Opwh

(
θ(x)ϕ̃(2−kξ)

(
xm −

ξm
|ξ|

)
(xn|ξ| − ξn)

)
Γw,kw

∥∥∥∥
L2

. h1−β(‖w‖L2 + ‖Mw‖L2

)
,

(3.2.59b)
∥∥∥∥Opwh

(
θ(x)ϕ̃(2−kξ)

(
xm −

ξm
|ξ|

)
(xn|ξ| − ξn)

)
Γw,kw

∥∥∥∥
L∞
.

h1−β(‖w‖L2 + ‖Mw‖L2

)
+ h−β‖Opwh

(
B(x, ξ)ξ

)
Mw‖L2 ,

with β > 0 small, β → 0 as σ → 0.

Proof. After lemma 1.2.35 with p = 0 we have that

Opwh

(
θ(x)ϕ̃(2−kξ)

(
xm −

ξm
|ξ|

)
(xn|ξ| − ξn)

)
Γw,kw = Opwh (B(x, ξ)(xn|ξ| − ξn))w + Opwh (rk0 (x, ξ))w,

and the L2 (resp. L∞) norm of the latter term in the above right hand side is bounded by
the right hand side of (3.2.59a) (resp. of (3.2.59b)) after inequality (1.2.60a) (resp. (1.2.60b)).
Moreover, the L2 norm of Opwh

(
B(x, ξ)(xn|ξ| − ξn)

)
w is also bounded by the right hand side of

(3.2.59a) as straightly follows from emma 1.2.33. It only remains to prove that the L∞ norm of
this term is bounded by the right hand side of (3.2.59b).

We first consider a new cut-off function ϕ̃1 ∈ C∞0 (R2 \ {0}), equal to 1 on suppϕ̃ so that its
derivatives vanish against ϕ, and use symbolic calculus to write

Opwh
(
B(x, ξ)(xn|ξ| − ξn)

)
= Opwh (ϕ̃1(2−kξ))Opwh

(
B(x, ξ)(xn|ξ| − ξn)

)
+ Opwh (rkN,1(x, ξ)),

where rkN,1(x, ξ) is obtained using (1.2.20). Up to interchange the role of variables y and z (resp. η

and ζ) and to consider e
2i
h

(y·ζ−η·ζ) instead of e
2i
h

(η·z−y·ζ) (which does not affect estimate (1.2.46)),
rkN,1 is analogous to integral (1.2.45) with p = 1. Therefore, if N ∈ N is chosen sufficiently large
(e.g. N > 11), lemma 1.2.32 implies that ‖Opwh (rkN,1)‖L(L2;L∞) = O(h).

Since ϕ̃1 localises frequencies ξ in an annulus, the classical Sobolev injection gives that∥∥∥Opwh (ϕ̃1(2−kξ))Opwh
(
B(x, ξ)(xn|ξ| − ξn)

)
w
∥∥∥
L∞

. log h
∥∥Opwh

(
B(x, ξ)(xn|ξ| − ξn)

)
w
∥∥
L2 +

∥∥DxOpwh
(
B(x, ξ)(xn|ξ| − ξn)

)
w
∥∥
L2 .

As previously said, the former norm in the above right hand side satisfies inequality (3.2.59a).
As concerns the latter one, we remark that thanks to the specific structure of symbol B(x, ξ) its
first derivative with respect to x does not lose any factor h−1/2+σ, as
(3.2.60)

∂x

[
γ
(x|ξ| − ξ
h1/2−σ

)]
ϕ̃(2−kξ)θ(x)

(
xm −

ξm
|ξ|

)
= (∂γ)

(x|ξ| − ξ
h1/2−σ

)
ϕ̃(2−kξ)θ(x)

(xm|ξ| − ξm
h1/2−σ

)
.

Consequently, by using symbolic calculus we derive that

DxOpwh
(
B(x, ξ)(xn|ξ| − ξn)

)
w = h−1Opwh

(
B(x, ξ)(xn|ξ| − ξn)ξ

)
w

+
∑′

Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
ϕ̃(2−kξ)a(x)b0(ξ)(xj |ξ| − ξj)

)
w,
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where
∑′ is a concise notation to indicate linear combinations, j ∈ {m,n} and γ, ϕ̃, a are some

new smooth functions with a(x) compactly supported. Again by lemma 1.2.33 the L2 norms of
latter contributions in the above right hand side are bounded by h1−β(‖w‖L2 + ‖Mw‖L2).

Finally, we observe that symbol B(x, ξ)ξ can be seen as

(3.2.61) γ
(x|ξ| − ξ
h1/2−σ

)
(xm|ξ| − ξm)ϕ̃(2−kξ)θ(x)b0(x),

which implies, after lemma 1.2.34, that

h−1Opwh
(
B(x, ξ)(xn|ξ| − ξn)ξ

)
w = Opwh

(
B(x, ξ)ξ

)
Mnw +OL2(h1−β(‖w‖L2 + ‖Mw‖L2)).

Lemma 3.2.14. Let e(x, ξ) be the symbol defined in (3.2.57), θ ∈ C∞0 (R2), and ϕ̃ ∈ C∞0 (R2\{0})
with sufficiently small support so that ψϕ̃ ≡ ϕ̃. If a-priori estimates (1.1.11) are satisfied for
every t ∈ [1, T ], for some fixed T > 1, there exists a constant C > 0 such that
(3.2.62)∥∥∥Opwh

(
θ(x)ϕ̃(2−kξ)e(x, ξ)

)
ũ

Σj ,k
Λw

(t, ·)
∥∥∥
L2

+
∥∥∥Opwh

(
θ(x)ϕ̃(2−kξ)e(x, ξ)

)
ũ

Σj ,k
Λw

(t, ·)
∥∥∥
L∞
≤ CBεh1−β′

for every t ∈ [1, T ], with β > 0 small, β → 0 as σ → 0.

Proof. We warn the reader that, throughout this proof, C, β and β′ will denote three positive
constants that may change line after line, with β → 0 as σ → 0 (resp. β′ → 0 as σ, δ1 → 0).

Since symbol e(x, ξ) writes as

e(x, ξ) =
1

2

2∑
m=1

(
xm −

ξm
|ξ|

)
(xm|ξ| − ξm) +

1

2

2∑
m,n=1

(
xm −

ξm
|ξ|

)
(xn|ξ| − ξn)

(ξm
|ξ|

ξn
|ξ|

+ xn
ξm
|ξ|

)
,

it follows that the L2 norm of Opwh
(
θ(x)ϕ̃(2−kξ)e(x, ξ)

)
ũ

Σj ,k
Λw

satisfies inequality (3.2.62) after
lemmas 3.2.13 and B.2.1 in appendix B. Moreover, from lemma 3.2.13∥∥∥Opwh

(
θ(x)ϕ̃(2−kξ)e(x, ξ)

)
ũ

Σj ,k
Λw

∥∥∥
L∞
. h1−β

(
‖ũΣj ,k(t, ·)‖L2 + ‖MũΣj ,k(t, ·)‖L2

)
+ h−β‖Opwh

(
B(x, ξ)ξ

)
MũΣj ,k(t, ·)‖L2 ,

with B(x, ξ) defined in (3.2.58). The aim of the proof is then to show that the L2 norm of
Opwh

(
B(x, ξ)ξ

)
MũΣj ,k is estimated by the right hand side of (3.2.62).

First of all, we remind that B(x, ξ)ξ can be seen as a symbol of the form (3.2.61). From
proposition 1.2.27 we hence have that

(3.2.63a) ‖Opwh
(
B(x, ξ)ξ

)
‖L(L2) = O(h

1
2
−β),

while from inequality (1.2.52a)

(3.2.63b) ‖Opwh
(
B(x, ξ)ξ

)
w‖L2 . h1−β(‖w‖L2 + ‖Mw‖L2).

We also recall definition (3.2.41) of ũΣj ,k, use the concise notation φjk(ξ) for its symbol Σj(ξ)(1−
χ0)(h−1ξ)ϕ(2−kξ)χ0(hσξ), and observe that

(3.2.64)

[
Mn,Opwh (φjk(ξ))

]
= − 1

2i
Opwh

(
|ξ|∂nφjk(ξ)

)
,∥∥∥[Mn,Opwh (φjk(ξ))

]∥∥∥
L(L2)

= O(h−σ),
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after propositions 1.2.21 and 1.2.27.

Using (3.2.64) and recalling relation (3.2.9a), we find that for any n = 1, 2,

‖Opwh
(
B(x, ξ)ξ

)
Mnũ

Σj ,k(t, ·)‖L2 . ‖Opwh
(
B(x, ξ)ξ

)
Opwh (φjk(ξ))[t(Znu

NF )(t, tx)]‖L2(dx)

+
∥∥∥Opwh

(
B(x, ξ)ξ

)
Opwh

(
ξn|ξ|−1φjk(ξ))ũ(t, ·)

∥∥∥
L2

+
∥∥∥Opwh

(
B(x, ξ)ξ

)
Opwh

(
|ξ|∂nφjk(ξ)

)
ũ(t, ·)

∥∥∥
L2

+
∥∥∥Opwh

(
B(x, ξ)ξ

)
Opwh (φjk(ξ))

[
t(txn)

[
qw(t, tx) + cw(t, tx) + rNFw (t, tx)

]]∥∥∥
L2(dx)

,

with uNF defined in (3.1.15), qw, cw and rNFw given by (3.1.17), (3.1.18) and (3.1.19) respec-
tively. Evidently, after (3.2.63b) and a further commutation of M with Opwh

(
ξn|ξ|−1φjk(ξ)

)
and

Opwh
(
|ξ|∂nφjk(ξ)

)
respectively, the second and third L2 norm in the above right hand side are

estimated by

h1−β(‖ũ(t, ·)‖L2 + ‖Opwh (χ(hσξ))Mũ(t, ·)‖L2),

for some χ ∈ C∞0 (R2). They are hence bounded by CBεh1−β′ by lemma B.2.1.

• Estimate of ‖Opwh
(
B(x, ξ)ξ)Opwh (φjk(ξ))[t(Znu

NF )(t, tx)]‖L2: This L2 norm is basically esti-
mated in terms of the L2 norm of (Zµu)−, for |µ| ≤ 2. In fact, after definition (3.1.15) and
equality (2.1.15a)

(3.2.65) (Znu
NF )(t, tx) = (Znu)−(t, tx) +

( Dn

|Dx|
u−

)
(t, tx)

− i

4(2π)2

∑
l∈{+,−}

[
Zn

∫
eiy·ξDl(ξ, η)v̂l(ξ − η)v̂l(η)dξdη

]∣∣
y=tx

,

with Dl given by (3.1.14). On the one hand, taking a new smooth cut-off function θ1 equal to 1
on the support of θ, using (1.2.50) with ã = θ1, together with (1.2.51a), proposition 1.2.27, and
(3.2.64), we deduce that

‖Opwh
(
B(x, ξ)ξ)Opwh (φjk(ξ))[t(Znu)−(t, tx)]‖L2(dx)

.
2∑

m=1

h‖θ1(x)Opwh (φjk(ξ))Mm[t(Znu)−(t, tx)]‖L2(dx) + h1−β‖(Znu)−(t, ·)‖L2 .

After relation (3.2.10),

‖θ1(x)Opwh (φjk(ξ))Mm[t(Znu)−(t, tx)]‖L2 . ‖(ZmZnu)−(t, ·)‖L2 + ‖(Znu)−(t, ·)‖L2

+
∥∥∥θ1

(x
t

)
φjk(Dx) [xmZnNLw] (t, ·)

∥∥∥
L2
.

Moreover,

θ1

(x
t

)
φjk(Dx)xm = tθ1,m

(x
t

)
φjk(Dx) + θ1

(x
t

)
[φjk(Dx), xm],

where θ1,m(z) = θ1(z)zm, and [φjk(Dx), xm] is a bounded operator on L2 with norm O(t), as one
can check computing its associated symbol and using that 2−k . h−1 = t. Therefore, using also
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inequality (3.2.11) together with a-priori estimates (1.1.11) we deduce that

∥∥∥Opwh
(
B(x, ξ)ξ)Opwh (φjk(ξ))

[
t(Znu)−(t, tx)

]∥∥∥
L2(dx)

.
2∑
|µ|=1

h‖(Zµu)−(t, ·)‖L2 + ‖ZnV (t, ·)‖H1‖V (t, ·)‖H2,∞ +
[
‖V (t, ·)‖H1

+ ‖V (t, ·)‖L2 (‖U(t, ·)‖H1,∞ + ‖R1U(t, ·)‖H1,∞) + ‖V (t, ·)‖L∞‖U(t, ·)‖H1

]
‖V (t, ·)‖H1,∞

≤ CBεh1− δ1
2 .

(3.2.66)

On the other hand, it is a straight consequence of (3.2.63b), (3.2.64) and lemma B.2.1 that

(3.2.67)
∥∥∥Opwh

(
B(x, ξ)ξ)Opwh (φjk(ξ))[t(Dn|Dx|−1u)−(t, tx)]

∥∥∥
L2

. h1−β(‖ũ(t, ·)‖L2 + ‖Opwh (χ(hσξ))Mũ(t, ·)‖L2) ≤ CBεh1− δ2
2 .

Finally, by symbolic calculus and (3.2.60) we have that

(3.2.68) Opwh (B(x, ξ)ξ) = Opwh (B(x, ξ))(hDx) +
h

2i
Opwh

(
∂xB(x, ξ)

)
,

where ∂xB is of the form

(3.2.69) γ
(x|ξ| − ξ
h1/2−σ

)
ϕ̃(2−kξ)θ(x)b0(ξ)

for some new γ, θ ∈ C∞0 (R2). Consequently, by proposition 1.2.27

(3.2.70)
∥∥∥Opwh (B(x, ξ)ξ)Opwh (φjk(ξ))

[
tZn

∫
eiy·ξDl(ξ, η)v̂l(ξ − η)v̂l(η)dξdη

]∣∣
y=tx

∥∥∥
L2(dx)

.
∥∥∥χ(t−σDx)DxZn

∫
eix·ξDl(ξ, η)v̂l(ξ − η)v̂l(η)dξdη

∥∥∥
L2(dx)

+ h
∥∥∥χ(t−σDx)Zn

∫
eix·ξDl(ξ, η)v̂l(ξ − η)v̂l(η)dξdη

∥∥∥
L2(dx)

and the above right hand side is bounded by

h−β (‖V (t, ·)‖H1 + ‖V (t, ·)‖L2(‖U(t, ·)‖H1,∞ + ‖R1U(t, ·)‖H1,∞) + ‖V (t, ·)‖L∞‖U(t, ·)‖H1)

× (‖V (t, ·)‖H14,∞ + h‖V (t, ·)‖H13) + h−β‖ZnV (t, ·)‖L2‖V (t, ·)‖H17,∞

after inequalities (A.37b), (A.37c) and (B.1.6a) with s = 0. From a-priori estimates (1.1.11)
we then deduce that the left hand side of (3.2.70) is bounded by CBεh1−β′ , which implies,
together with equality (3.2.65) and estimates(3.2.66), (3.2.67), that the L2 norm of contribution
Opwh

(
B(x, ξ)ξ)Opwh (φjk(ξ))[t(Znu

NF )(t, tx)] is estimated with the right hand side of (3.2.62).

• Estimate of ‖Opwh (B(x, ξ)ξ) [t(txn)qw(t, tx)] ‖L2(dx): After definition (3.1.17) of qw(t, x) and
(3.2.2) of ṽ, we first notice that

(3.2.71) tqw(t, tx) =
h

2
=
[
ṽOpwh (ξ1)ṽ −Opwh

( ξ1

〈ξ〉

)
ṽ ·Opwh

(ξξ1

〈ξ〉

)
ṽ

]
(t, x) =: q̃w(t, x),

where

(3.2.72) ‖q̃w(t, ·)‖L2 . h‖ṽ(t, ·)‖H1,∞‖ṽ(t, ·)‖H1 .
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Then

‖Opwh (B(x, ξ)ξ)Opwh (φjk(ξ)) [t(txn)qw(t, tx)] ‖L2(dx) = h−1‖Opwh (B(x, ξ)ξ)Opwh (φjk(ξ)) [xnq̃w(t, x)] ‖L2(dx).

Since B(x, ξ) is compactly supported in x and∥∥∥[Opwh
(
B(x, ξ)ξ

)
Opwh (φjk(ξ)), xn

]∥∥∥
L(L2)

= O(h
1
2
−β),

as follows from symbolic calculus, (3.2.63a), equality (1.2.25) and proposition 1.2.27, we can
morally reduce ourselves to the study of the L2 norm of

h−1Opwh (B(x, ξ)ξ)Opwh (φjk(ξ))q̃w(t, x)

up to a OL2(h−1/2−β‖q̃w‖L2). Using (3.2.68), (3.2.69), together with proposition 1.2.27, we
deduce that

h−1
∥∥∥Opwh (B(x, ξ)ξ)Opwh (φjk(ξ))q̃w(t, ·)

∥∥∥
L2
. h−1‖Opwh (φjk(ξ))(hDx)q̃w(t, ·)‖L2 + ‖q̃w(t, ·)‖L2 ,

so from lemma 3.2.15 below, estimates (3.2.72), (3.2.3b), and lemmas B.2.14, B.3.7 in appendix
B, we conclude that

(3.2.73) h−1‖Opwh (φjk(ξ))(hDx)q̃w(t, ·)‖L2

. h1−β
(
‖ṽ(t, ·)‖Hs +

2∑
|µ|=1

‖Opwh (χ(hσξ))Lµṽ(t, ·)‖L2

)
‖ṽ(t, ·)‖H1,∞ ≤ CBεh1−β′ ;

• Estimate of ‖Opwh (B(x, ξ)ξ)Opwh (φjk(ξ))(t(txn)cw(t, tx)‖L2(dx): As for the previous estimate,
we can reduce to the study of the L2 norm of

Opwh (B(x, ξ)ξ)Opwh (φjk(ξ))[t
2cw(t, tx)],

up to a OL2

(
h−1/2−β‖Opwh (χ(hσξ))[tcw(t, tx)]‖L2(dx)

)
for some χ ∈ C∞0 (R2). So using (3.2.63a),

the fact that ‖tw(t, t·)‖L2 = ‖w(t, ·)‖L2 , and (3.1.21a) with s > 0 sufficiently large so that
N(s) > 2, we obtain that for a new χ1 ∈ C∞0 (R2)

‖Opwh (B(x, ξ)ξ)Opwh (φjk(ξ))[t
2cw(t, t·)]‖L2 . h−

1
2
−β ∥∥χ(t−σDx)cw(t, ·)

∥∥
L2

. h−
1
2
−β ∥∥χ1(t−σDx)(vNF − v−)(t, ·)

∥∥
L2

(
‖V (t, ·)‖H2,∞ + ‖vNF (t, ·)‖H1,∞

)
+ h

3
2

∥∥(vNF − v−)(t, ·)
∥∥
H1

(
‖V (t, ·)‖Hs + ‖vNF (t, ·)‖Hs

)
.

(3.2.74)

Then inequalities (3.1.7a) with s = 1 and (3.1.8a), together with a-priori estimates, give that

‖Opwh (B(x, ξ)ξ)Opwh (φjk(ξ))[t
2cw(t, t·)]‖L2 ≤ CBεh1−β′ .

• Estimate of ‖Opwh (B(x, ξ)ξ)Opwh (φjk(ξ))(t(txn)rNFw (t, tx)‖L2(dx): Analogously, from (3.1.22a)
and (1.1.11) we obtain that

(3.2.75) ‖Opwh (B(x, ξ)ξ)Opwh (φjk(ξ))[t
2rNFw (t, t·)]‖L2 . h−

1
2
−β‖χ(t−σDx)rNFw (t, ·)‖L2

. h−
1
2
−β‖V (t, ·)‖2H13,∞‖U(t, ·)‖H1 ≤ CBεh

3
2
−β′ .
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Lemma 3.2.15. Let ϕ ∈ C∞0 (R2 \ {0}), k ∈ K and aj(ξ) be two smooth real symbols of order
j = 0, 1. Then

(3.2.76)
∥∥∥Opwh (ϕ(2−kξ))(hDx)

[
a0(hDx)ṽ a1(hDx)ṽ

]
(t, ·)

∥∥∥
L2

. h1−β
(
‖ṽ(t, ·)‖Hs

h
+

2∑
|µ|=1

‖Opwh (χ(hσξ))Lµṽ(t, ·)‖L2

)
‖ṽ(t, ·)‖

H1,∞
h

.

Proof. Let us split both ṽ in the left hand side of (3.2.76) into the sum ṽΛkg+ṽΛckg
, with ṽΛkg , ṽΛckg

introduced in (3.2.16) with Σj ≡ 1. Remind that ṽΛckg
satisfies inequality (3.2.19a) and that

‖a0(hDx)ṽ(t, ·)‖L∞ + ‖a0(hDx)ṽΛkg(t, ·)‖L∞ . h
−β‖ṽ(t, ·)‖

H1,∞
h

,

for a small β > 0, β → 0 as σ → 0, as follows from lemma 1.2.39 with p = +∞ and the
uniform continuity of a0(hDx) from H1,∞ to L∞. Therefore, using the continuity on L2 of
Opwh (ϕ(2−kξ))(hDx) with norm O(2k) and the fact that 2k . h−σ we deduce that, for any
w1, w2 ∈ {ṽ, ṽΛkg , ṽΛckg

} with at least one wj equal to ṽΛckg
,∥∥∥Opwh (ϕ(2−kξ))(hDx)

[
a0(hDx)w1a1(hDx)w2

]∥∥∥
L2

. h1−β
(
‖ṽ(t, ·)‖Hs

h
+

2∑
|µ|=1

‖Opwh (χ(hσξ))Lµṽ(t, ·)‖L2

)
‖ṽ(t, ·)‖

H1,∞
h

.

We are thus reduced to proving inequality (3.2.76) for∥∥∥Opwh (ϕ(2−kξ))(hDx)
[
a0(hDx)ṽΛkg a1(hDx)ṽΛkg

]
(t, ·)

∥∥∥
L2
.

Furthermore, by means of lemma 3.2.4 we can replace the action of aj(hDx) in the above L2

norm, for j = 0, 1, with the multiplication operator by a real function, up to new remainders
bounded in L2 by the right hand side of (3.2.76). In fact,

aj(hDx)ṽΛkg = θh(x)aj(−dφ(x))ṽΛkg +R1(ṽ), j = 0, 1,

where θh is a smooth cut-off function as in the statement of lemma 3.2.4 and R1(ṽ) satisfies
(3.2.22a). Now

hDx|ṽΛkg |
2 =

[
Opwh (ξ + dφ(x)θh(x))ṽΛkg

]
ṽΛkg − ṽΛkg

[
Opwh (ξ + dφ(x)θh(x))ṽΛkg

]
,

and from lemma 3.2.16 below

‖Opwh (ξ + dφ(x)θh(x))ṽΛkg(t, ·)‖L2 . h1−β
1∑
|µ|=0

‖Opwh (χ(hσξ))Lµṽ(t, ·)‖L2 .

This implies, after having applied the Leibniz rule and proposition 1.2.39, that∥∥hDx

[
a0(−dφ(x))a1(−dφ(x))θ2

h(x)|ṽΛkg |
2(t, ·)

]∥∥
L2

. h1−β
(
‖ṽ(t, ·)‖Hs

h
+

2∑
|µ|=1

‖Opwh (χ(hσξ))Lµṽ(t, ·)‖L2

)
‖ṽ(t, ·)‖L∞

and the conclusion of the statement.
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Lemma 3.2.16. Let γ, χ ∈ C∞0 (R2) be equal to 1 in a neighbourhood of the origin, σ > 0 small,
(θh(x))h be a family of C∞0 (B1(0)) functions, equal to 1 on the support of γ

(x−p′(ξ)√
h

)
χ(hσξ), with

‖∂αx θh‖L∞ = O(h−2|α|σ) and (h∂h)kθh bounded for every k. Let also φ(x) =
√

1− |x|2. Then for
every j = 1, 2∥∥∥∥Opwh (ξj + djφ(x)θh(x))Opwh

(
γ
(x− p′(ξ)√

h

)
χ(hσξ)

)
ṽ(t, ·)

∥∥∥∥
L2

. h1−β
2∑
|µ|=0

‖Opwh (χ(hσξ))Lµṽ(t, ·)‖L2 ,

with β > 0 small, β → 0 as σ → 0.

Proof. By symbolic calculus of lemma 1.2.24 and the fact that θh ≡ 1 on the support of
γ
(x−p′(ξ)√

h

)
χ(hσξ), we have that, for any j = 1, 2,

Opwh (ξj+djφ(x)θh(x))Opwh

(
γ
(x− p′(ξ)√

h

)
χ(hσξ)

)
ṽ = Opwh

(
γ
(x− p′(ξ)√

h

)
χ(hσξ)(ξj + djφ(x))

)
ṽ

+

√
h

2i
Opwh

(
(∂jγ)

(x− p′(ξ)√
h

)
χ(hσξ)

)
ṽ

−
√
h

2i

2∑
k,l=1

Opwh

(
(∂lγ)

(x− p′(ξ)√
h

)
p′′k,l(ξ)∂k(djφ(x)θh(x))χ(hσξ)

)
ṽ

+
h1+σ

2i

2∑
k=1

Opwh

(
γ
(x− p′(ξ)√

h

)
∂k(djφ(x)θh(x))(∂kχ)(hσξ)

)
ṽ + Opwh (r2(x, ξ))ṽ,

(3.2.77)

with r2 ∈ h1−4σS 1
2
,σ(〈x−p

′(ξ)√
h
〉−1). On the one hand, as

Opwh

(
γ
(x− p′(ξ)√

h

)
χ(hσξ)(ξj−djφ(x))

)
ṽ =

2∑
k=1

Opwh

(
γ
(x− p′(ξ)√

h

)
χ(hσξ)ẽjk(x, ξ)(xk−p

′
k(ξ))

)
ṽ,

with ẽjk satisfying (1.2.75b) on the support of γ
(x−p′(ξ)√

h

)
χ(hσξ), the L2 norm of the first term in

the right hand side of (3.2.77) can be estimated using (1.2.71a).

On the other hand, as ∂γ vanishes in a neighbourhood of the origin, the L2 norm of the second
and third term in the right hand side of (3.2.77) can be estimated using (3.2.17a).

The two remaining contributions to the right hand side of (3.2.77), that already carry the right
power of h, can be estimated with h1−β‖ṽ(t, ·)‖L2 simply by proposition 1.2.36.

We can finally state the following result:

Proposition 3.2.17 (Deduction of the transport equation). For any fixed T > 1, D > 0, let
CTD := {(t, x) : 1 ≤ t ≤ T, |x| ≤ D} be the truncated cylinder, and assume that estimates (1.1.11)
are satisfied in time interval [1, T ]. Then function

(3.2.78) ũ
Σj
Λw

(t, x) :=
∑
k

ũ
Σj ,k
Λw

(t, x)

127



is solution to the following transport equation:

(3.2.79)
[
Dt +

1

2
(1− |x|2)x · (hDx) +

h

2i
(1− 2|x|2)

]
ũΣ

Λw(t, x) = Fw(t, x), ∀(t, x) ∈ CTD,

and there exists some constant C > 0 such that

(3.2.80) ‖Fw(t, ·)‖L∞ ≤ CBεh1−β′

for some β′ > 0 small, β′ → 0 as σ, δ1 → 0.

Proof. By the assumption in the statement, all that we are going to say is to be meant in time
interval [1, T ]. We remind the reader that, by the definition of ũΣj ,k

Λw
in (3.2.45a) and of ũΣj ,k in

(3.2.41), the sum defining ũΣj
Λw

is finite and restricted to indices k ∈ K := {k ∈ Z : h . 2k . h−σ}.
Also, we warn the reader that, throughout the proof, C and β will denote two positive constants
that may change line after line, with β → 0 as σ → 0.

In lemma 3.2.11 we proved that function ũΣj ,k
Λw

is solution to (3.2.55) with fwk verifying (3.2.53).
Hence, by lemma B.2.1 we derive that fwk is a remainder of the form Fw satisfying (3.2.80).

For seek of compactness, we denote symbol Σj(ξ)(1−χ0)(h−1ξ)ϕ(2−kξ)χ0(hσξ) in the right hand
side of (3.2.55) by φjk(ξ). On the one hand, reminding (3.2.71) and using the L∞−L∞ continuity
of operator Γw,k (see proposition 1.2.29), together with the classical Sobolev injection, the fact
that

(3.2.81)
∥∥∥Opwh (φjk(ξ))

∥∥∥
L(L2)

= O(h−µ),

with µ = σρ if ρ ≥ 0, 0 otherwise, estimates (3.2.72),(3.2.73) and (3.2.3b), we find that

∥∥∥Γw,kOpwh (Σj(ξ)(1− χ0)(h−1ξ)ϕ(2−kξ)χ0(hσξ)) [tqw(t, tx)]
∥∥∥
L∞

. h−β‖q̃w(t, ·)‖L2 + h−1−β‖Opwh (ϕ(2−kξ))(hDx)q̃w(t, ·)‖L2 ≤ CBεh1−β′ .
(3.2.82)

On the other hand, using proposition 1.2.30, estimate (3.2.81), the fact that the commutator
between Opwh (φjk(ξ)) and Ωh is also continuous on L2 with norm O(h−µ), equality ‖tw(t, t·)‖L2 =
‖w(t, ·)‖L2 , and (3.1.21a), (3.1.21c) (in which we choose s > 0 large enough to have, say, N(s) ≥
2), we deduce that there is a χ ∈ C∞0 (R2) such that

‖Γw,kOpwh
(
φjk(ξ)

)
(h−1cw(t, tx))‖L∞(dx)

. t
1
2

+β
∥∥χ(t−σDx)(vNF − v−)(t, ·)

∥∥
L2

(
‖V (t, ·)‖H2,∞ + ‖vNF (t, ·)‖H1,∞

)
+ t−

3
2

+β
∥∥(vNF − v−)(t, ·)

∥∥
H1

(
‖V (t, ·)‖Hs + ‖vNF (t, ·)‖Hs

)
+ t

1
2

+β
∥∥χ(t−σDx)Ω(vNF − v−)(t, ·)

∥∥
L2

(
‖V (t, ·)‖H2,∞ + ‖vNF (t, ·)‖H1,∞

)
+ t−

3
2

+β
∥∥Ω(vNF − v−)(t, ·)

∥∥
L2

(
‖V (t, ·)‖Hs + ‖vNF (t, ·)‖Hs

)
+ t

1
2

+β
∥∥(vNF − v−)(t, ·)

∥∥
H1,∞ ×

1∑
µ=0

(
‖ΩµV (t, ·)‖H1 + ‖ΩµvNF (t, ·)‖L2

)
.

(3.2.83)
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Also, from (3.1.22a), (3.1.22c) we get that for every θ ∈]0, 1[

‖Γw,kOpwh
(
φjk(ξ)

)
(h−1rNFw (t, tx))‖L∞ . t

1
2

+β‖V (t, ·)‖2H13,∞‖U(t, ·)‖H1

+ t
1
2

+β
[
‖V (t, ·)‖1−θ

H15,∞‖V (t, ·)‖θH17 (‖U(t, ·)‖H1,∞ + ‖R1U(t, ·)‖H1,∞)

+ ‖V (t, ·)‖L∞
(
‖U(t, ·)‖1−θ

H16,∞ + ‖R1U(t, ·)‖1−θ
H16,∞

)
‖U(t, ·)‖θH18

]
‖ΩV (t, ·)‖L2

+ t
1
2

+β
[
‖V (t, ·)‖H1,∞ (‖U(t, ·)‖H1 + ‖ΩU(t, ·)‖H1)

+ (‖U(t, ·)‖H2,∞ + ‖R1U(t, ·)‖H2,∞) ‖ΩV (t, ·)‖L2

]
‖V (t, ·)‖H17,∞ .

(3.2.84)

Therefore, using (3.1.7) with s = 1, (3.1.8a), (1.1.11), and choosing θ � 1 sufficiently small, we
derive that h−1Γw,kOpwh

(
φjk(ξ)

)
(cw(t, tx)+rNFw (t, tx)) is a remainder Fw(t, x) satisfying (3.2.80).

Since function (∂χ0)(h−1ξ) is localized for frequencies of size h, its product with ψ(2−kξ) is
non-zero only for values of k ∈ Z such that 2k ∼ h. In that case, by commutating Γw,k with
Opwh

(
(∂χ0)(h−1ξ)·(h−1ξ)ψ(2−kξ)

)
and using the classical Sobolev injection, together with propo-

sition 1.2.27, we find that

(3.2.85)
∥∥∥ihΓw,kOpwh

(
(∂χ0)(h−1ξ) · (h−1ξ)ψ(2−kξ)

)
ũ(t, ·)

∥∥∥
L∞
. h‖ũ(t, ·)‖L2 .

Since (∂χ0)(hσξ) is, instead, localized for frequencies larger than h−σ, by applying the semi-
classical Sobolev injection and lemma 1.2.40 we find that

(3.2.86)
∥∥∥iσhΓw,kOpwh

(
ψ(2−kξ)(∂χ0)(hσξ)) · (hσξ)

)
ũ(t, ·)

∥∥∥
L∞
. hN‖ũ(t, ·)‖Hs

h
,

with N = N(s) > 1 as long as s > 0 is sufficiently large. By lemma B.2.1 we obtain that also
the fifth and sixth addend in the right hand side of (3.2.55) are remainders Fw(t, x).

Finally, after lemma 3.2.12

−Opwh
(
θ(x)(x · ξ − |ξ|)ϕ̃(2−kξ)

)
ũ

Σj ,k
Λw

=
1

2
Opwh

(
θ(x)(1− |x|2)x · ξϕ̃(2−kξ)

)
ũ

Σj ,k
Λw

+ Opwh (θ(x)e(x, ξ)ϕ̃(2−kξ))ũ
Σj ,k
Λw

with e(x, ξ) given by (3.2.57), and latter term in the above right hand side satisfies (3.2.62).
Using symbolic calculus of proposition 1.2.21 until order N ∈ N we find that

1

2
Opwh

(
θ(x)(1−|x|2)x · ξϕ̃(2−kξ)

)
ũ

Σj ,k
Λw

= θ(x)
[1

2
(1−|x|2)x · (hDx) +

h

2i
(1−2|x|2)

]
Opwh (ϕ̃(2−kξ))ũ

Σj ,k
Λw

+
h

4i
(∂θ)(x) · x(1− |x|2)Opwh (ϕ̃(2−kξ))ũ

Σj ,k
Λw

+
∑′

hθ1(x)Opwh (ϕ̃1(2−kξ))ũ
Σj ,k
Λw

+ Opwh (r(Nx, ξ))ũ
Σj ,k
Λw

,

with
∑′ being a concise notation to indicate a linear combination, ∂θ(x) supported for |x| > D1,

θ1 ∈ C∞0 (R2), ϕ̃1 ∈ C∞0 (R2 \ {0}) coming out from the derivatives of ϕ̃, and rN (x, ξ) integral
remainder of the form

hN

(πh)2

∫
e

2i
h
η·z
∫ 1

0
θN (x+ tz)(1− t)N−1dt ϕ̃N (2−k(ξ + η))dzdη,

for some other θN ∈ C∞0 (R2), ϕ̃N ∈ C∞0 (R2 \ {0}), verifying that

(3.2.87) ‖Opwh (rN (x, ξ))‖L(L2;L∞) = O(h)

if N is taken sufficiently large. Therefore, from proposition 1.2.27, (3.2.81) and (B.2.1a)∥∥∥Opwh (r(x, ξ))ũ
Σj ,k
Λw

(t, ·)
∥∥∥
L∞
. h1−β‖ũ(t, ·)‖L2 ≤ CBεh1−β′ .
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Moreover, since ϕ̃ ≡ 1 on the support of ϕ (which defines ũΣj ,k), by commutating Opwh (ϕ̃(2−kξ))
with Γw,k and using remark 1.2.22 we find that, for any N ∈ N as large as we want,

Opwh (ϕ̃(2−kξ))ũ
Σj ,k
Λw

= ũ
Σj ,k
Λw

+OL∞(hN‖ũ‖L2).

Also, since ϕ̃1 is obtained from the derivatives of ϕ̃ and vanishes on the support of ϕ,

θ1(x)Opwh (ϕ̃1(2−kξ))ũ
Σj ,k
Λw

= OL∞(hN‖ũ‖L2).

Therefore, again from (B.2.1a) we deduce that

−Opwh
(
θ(x)(x · ξ − |ξ|)ϕ̃(2−kξ)

)
ũ

Σj ,k
Λw

= θ(x)
[1

2
(1− |x|2)x · (hDx) +

h

2i
(1− 2|x|2)

]
ũ

Σj ,k
Λw

+
h

4i
(∂θ)(x) · x(1− |x|2)ũ

Σj ,k
Λw

+ Opwh
(
θ(x)ϕ̃(2−kξ)e(x, ξ)

)
ũ

Σj ,k
Λw

+OL∞(h1−β′),

which implies, summed up with estimates from (3.2.82) to (3.2.86), that ũΣj ,k
Λw

is solution to[
Dt + θ(x)

1

2
(1− |x|2)x · (hDx) + θ(x)

h

2i
(1− 2|x|2)

]
ũ

Σj ,k
Λw

(t, x) = F kw(t, x)

+
[
(1−θ)(x)Opwh ((x·ξ−|ξ|)ϕ̃(2−kξ))+ θ̃(x)Opwh (ϕ̃1(2−kξ))− h

4i
(∂θ)(x)·x(1−|x|2)

]
ũ

Σj ,k
Λw

(t, x) ,

where F kw(t, x) satisfies (3.2.80). Choosing D1 = D, we obtain that ũΣj
Λw

is solution to (3.2.79) in
cylinder CTD, with Fw(t, x) :=

∑
k F

k
w(t, x) (this sum being finite and restricted to indices k ∈ K)

satisfying the same L∞ estimate as F kw, up to an additional factor h−σ.

3.3 Analysis of the transport equation and end of the proof

In previous section (see proposition 3.2.7) we firstly showed how to propagate a-priori uniform
estimate (1.1.11b) on the Klein-Gordon component v−, in the sense of deducing (1.1.12b) from
estimates (1.1.11). We then passed to the study of the wave equation and proved that, if
(u−, v−) is solution to (3.1.1) in some interval [1, T ], function ũΣj

Λw
defined in (3.2.78) is solution

to transport equation (3.2.79) in truncated cylinder CTD := {(t, x) : 1 ≤ t ≤ T, |x| ≤ D}, for any
D > 0. The aim of this section is to study such a transport equation in order to deduce some
information on the uniform norm of its solutions. This will allow us to finally propagate a-priori
estimate (1.1.11a) on the wave component u− and to close the bootstrap argument. A short
proof of main theorem 1.1.1 is given at the end of this section.

3.3.1 The inhomogeneous transport equation

The aim of this subsection is to study the behaviour of a solution w to the following transport
equation

(3.3.1)
[
Dt +

1

2
(1− |x|2)x · (hDx)− i

2t
(1− 2|x|2)

]
w = f ,

in a cylinder C = {(t, x) : t ≥ 1, |x| ≤ D} for a large constant D � 1, where the inhomogeneous
term f is a OL∞(εt−1+β), for some ε > 0 small and 0 ≤ β < 1/2. We distinguish in C two
subregions:

I1 :=
{

(t, x) : t ≥ 1, |x| <
( t

t− 1

) 1
2
, |x| ≤ D

}
, I2 :=

{
(t, x) : t > 1,

( t

t− 1

) 1
2 ≤ |x| ≤ D

}
,
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Figure 3.3: Regions I1 and I2 in space dimension 1

and denote by I1,t, I2,t their sections at a fixed time t ≥ 1,

I1,t :=
{
x : |x| <

( t

t− 1

) 1
2
, |x| ≤ D

}
, I2,t :=

{
x :
( t

t− 1

) 1
2 ≤ |x| ≤ D

}
.

The result we prove is the following.

Proposition 3.3.1. Let ε > 0 be small and w be the solution to the following Cauchy problem

(3.3.2)

{ [
Dt + 1

2(1− |x|2)x · (hDx)− i
2t(1− 2|x|2)

]
w = f ,

w(1, x) = εw0(x) ,

with f = OL∞(εt−1+β), for some fixed 0 ≤ β < 1/2. Let us suppose that |w0(x)| . 〈x〉−2 and
that |w(t, x)| . εtβ′ for some β′ > 0 whenever |x| > D � 1. Therefore,

(3.3.3) |w(t, x)| . ε‖w0‖L∞tβ
′′
(1 + |x|)−

1
2 (t−1 + |1− |x||)−

1
2

+β′′ ,

for every (t, x) ∈ CD = {(t, x)|t ≥ 1, |x| ≤ D}, with β′′ = max{β, β′}.

We observe that, if W (t, x) = t−1w(t, t−1x), the above inequality implies that

|W (t, x)| . ε‖w0‖L∞(t+ |x|)−
1
2 (1 + |t− |x||)−

1
2

+β′′ ,

showing that the uniform norm of W (t, ·) decays in time at a rate t−1/2, enhanced to t−1+β′′ out
of the light cone t = |x|.
In order to prove the result of proposition 3.3.1 we fix T ≥ 1, x ∈ BD(0), and look for the
characteristic curve of (3.3.2) with initial point (T, x), i.e. map t 7→ X(t;T, x) solution of

(3.3.4)

{
d
dtX(t;T, x) = 1

2t

(
1− |X(t;T, x)|2

)
X(t;T, x)

X(T ;T, x) = x
t ≥ T.

Lemma 3.3.2. Solution X(t;T, x) to (3.3.4) writes explicitly as

(3.3.5) X(t;T, x) =

√
tx

(T − (T − t)|x|2)
1
2

and it is well defined for all t > T (1 − |x|−2). Moreover, for any fixed t > T , map x ∈ R2 7→
X(t;T, x) ∈

{
|x| <

(
t

t−T
) 1

2

}
is a diffeomorphism of inverse Y (t, y) =

√
Ty

(t+(T−t)|y|2)
1
2
.
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Proof. Multiplying equation (3.3.4) by 2X(t;T, x) we deduce that |X(t;T, x)|2 satisfies the equa-
tion

d

dt
|X(t;T, x)|2 =

1

t

(
1− |X(t;T, x)|2

)
|X(t;T, x)|2 ,

from which follows that 1 − |X(t;T, x)|2 = T (1−|x|2)
T−(T−t)|x|2 . Injecting this result in (3.3.4) and

integrating in time, we obtain expression (3.3.5) and observe that the obtained map is well
defined for all t > T (1− |x|−2).

In order to prove the second part of the statement, we fix t > T , y ∈
{
|x| ≤

(
t

t−T
) 1

2

}
and look

for Y (t, y) such that X(t;T, Y (t, y)) = y. In other words,

y =

√
tY (t, y)

(T − (T − t)|Y (t, y)|2)
1
2

,

which implies that Y (t, y) =
√
Ty

(t+(T−t)|y|2)
1
2
. This map is well defined as long as |y| <

(
t

t−T
) 1

2 .

Along the characteristic curve X(t;T, x) function w satisfies

d

dt
w
(
t,X(t;T, x)

)
= − 1

2t

(
1− 2|X(t;T, x)|2

)
w
(
t,X(t;T, x)

)
+ if

(
t,X(t;T, x)

)
= − 1

2t

T − T |x|2 − t|x|2

T − (T − t)|x|2
w
(
t,X(t;T, x)

)
+ if

(
t,X(t;T, x)

)
and hence

(3.3.6)
d

dt

[(
exp

∫ t

T

1

2τ

T − T |x|2 − τ |x|2

T − (T − τ)|x|2
dτ

)
w
(
t,X(t;T, x)

)]
= i

(
exp

∫ t

T

1

2τ

T − T |x|2 − τ |x|2

T − (T − τ)|x|2
dτ

)
f
(
t,X(t;T, x)

)
.

Lemma 3.3.3.

(3.3.7) exp

∫ t

T

1

2τ

T − T |x|2 − τ |x|2

T − (T − τ)|x|2
dτ =

( t
T

) 1
2
(T − T |x|2 + t|x|2

T

)−1
.

Proof. The result follows writing

1

2τ

T − T |x|2 − τ |x|2

T − (T − τ)|x|2
=

1

2τ
− |x|2

T − T |x|2 + τ |x|2
,

taking the integral over τ ∈ [T, t] and then passing to its exponential.

Let us first study the behaviour of w, solution to (3.3.2), in region I1. We fix T = 1 and,
integrating equality (3.3.6) over [1, t], we find that

(3.3.8)
(

exp

∫ t

1

1

2τ

1− |x|2 − τ |x|2

1− (1− τ)|x|2
dτ

)
w
(
t,X(t; 1, x)

)
= w(1, x) + i

∫ t

1

(
exp

∫ s

1

1

2τ

1− |x|2 − s|x|2

1− (1− s)|x|2
ds

)
f
(
s,X(s; 1, x)

)
ds.
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Using (3.3.7) and the fact that f = OL∞(εt−1+β), we then obtain that

(3.3.9)
∣∣w(t,X(t; 1, x))

∣∣ ≤ t− 1
2 (1− |x|2 + t|x|2)|w(1, x)|

+ Cεt−
1
2 (1− |x|2 + t|x|2)

∫ t

1

ds

(1− |x|2 + s|x|2)s
1
2
−β

,

for some positive constant C.

Lemma 3.3.4. For any fixed 0 ≤ β < 1/2

(3.3.10)
∫ t

1

ds

(1− |x|2 + s|x|2)s
1
2
−β
.

t
1
2

+β

(1 +
√
t|x|)1+2β

(1 + |x|)−1+2β+β′ ,

for all t ≥ 1 and β′ > 0 as small as we want.

Proof. For
√
t|x| ≤ 1, we have that∫ t

1

ds

(1− |x|2 + s|x|2)s
1
2
−β
. t

1
2

+β .
t
1
2

+β

(1 +
√
t|x|)1+2β

(1 + |x|)−1+2β+β′ ,

for any β′ ≥ 0. Suppose then that
√
t|x| > 1. For t ≤ 2∫ t

1

ds

(1− |x|2 + s|x|2)s
1
2
−β
. (1 + |x|)−2 log(1 + |x|2)

and |x|−2 log(1 + |x|2)
(1 +

√
t|x|)1+2β

t
1
2

+β
. (1 + |x|)−1+2β log(1 + |x|2),

which immediately implies inequality (3.3.10). For t ≥ 2∫ t

1

ds

(1− |x|2 + s|x|2)s
1
2
−β

=

∫ 2

1

ds

(1− |x|2 + s|x|2)s
1
2
−β

+

∫ t

2

ds

(1− |x|2 + s|x|2)s
1
2
−β

,

where the first integral is bounded from the right hand side of (3.3.10). The second one is less
or equal than

∫ t−1
1

ds

(1+s|x|2)s
1
2−β

, so for |x| ≥ 1 it follows that

∫ t−1

1

ds

(1 + s|x|2)s
1
2
−β
≤ |x|−2

∫ t−1

1

ds

s
3
2
−β
. (1 + |x|)−2.

Since (1+
√
t|x|)1+2β

t
1
2+β

≤ (1 + |x|)1+2β , from the above inequality we deduce the right bound of the
statement. For |x| < 1, a change of variables gives that∫ t−1

1

ds

(1 + s|x|2)s
1
2−β

= |x|−1−2β

∫ (t−1)|x|2

|x|2

ds

(1 + s)s
1
2−β

. |x|−1−2β (t|x|2)
1
2 +β

(1 + t|x|2)
1
2 +β

≤ t
1
2 +β

(1 + t|x|2)
1
2 +β

.

If initial condition w0(x) is sufficiently decaying in space, e.g. |w0(x)| . 〈x〉−2, we deduce
from inequalities (3.3.9) and (3.3.10) the following bound for w along the characteristic curve
X(t; 1, x):

(3.3.11)
∣∣w(t,X(t; 1, x))

∣∣ . ε‖w0‖L∞tβ(1 +
√
t|x|)1−2β(1 + |x|)−1+2β+β′ ,

for any β′ > 0 as small as we want.
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Figure 3.4: Characteristic curves of initial point (Ti, xi) ∈ I1, i = 1, 2, in space dimension 1

Proposition 3.3.5. Let w be the solution to transport equation (3.3.2), with ‖f(t, ·)‖L∞ .
εt−1+β for some fixed 0 ≤ β < 1/2, and initial condition |w0(x)| . 〈x〉−2, ∀x ∈ R2. Then

(3.3.12) |w(t, x)| . εtβ
[
t−1 + |1− |x||

]− 1
2

+β

for every (t, x) ∈ I1 = {(t, x) : t ≥ 1, |x| <
(

t
t−1

) 1
2 , |x| ≤ D}.

Proof. In lemma 3.3.2 we proved that, for any fixed t > T = 1, map x ∈ R2 7→ X(t; 1, x) ∈
{
x :

|x| < ( t
t−1)

1
2

}
is a diffeomorphism with inverse Y (t, y) = y(t+ (1− t)|y|2)−1/2. From inequality

(3.3.11) we hence deduce that, for any y such that |y| <
(

t
t−1

) 1
2 ,

|w(t, y)| . εtβ
(
1 +
√
t|Y (t, y)|

)1−2β(
1 + |Y (t, y)|

)−1+2β+β′
.

In particular, as t(1 − |y|2) + |y|2) ∼ t|1 − |y|2| + |y|2 when |y| <
(

t
t−1

) 1
2 and t ≥ t0 > 1, and

t|1− |y|2|+ |y|2 ∼ t|1− |y||+ |y| when |y| ≤ D, we find for those values of (t, y) that

|w(t, y)| . εtβ
(

1 +

√
t|y|

(t|1− |y||+ |y|)
1
2

)1−2β

. εtβ
[
t−1 + |1− |y||

]− 1
2

+β
,

simply using that (1 + |Y (t, y)|)−1+2β+β′ ≤ 1. Moreover, for t→ 1 and |y| ≤ D,

|w(t, y)| . ε . εtβ
[
t−1 + |1− |y||

]− 1
2

+β
.

Proposition 3.3.6. Let ε > 0 be small and w be the solution to transport equation (3.3.2), with
‖f(t, ·)‖L∞ . εt−1+β for some fixed 0 ≤ β < 1/2, and suppose that |w(t, x)| . εtβ

′ for some
β′ > 0 whenever |x| ≥ D. Then

|w(t, x)| . εtβ′′(|x|2 − 1)β
′′− 1

2 ,

for every (t, x) ∈ I2 = {(t, x) : t > 1,
(

t
t−1

) 1
2 ≤ |x| ≤ D}, where β′′ = max{β, β′}.
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Figure 3.5: Characteristic curve of initial point (T, x) ∈ I2

Proof. For a fixed (T, x) ∈ I2 we look at X(t;T, x), solution to (3.3.4) and given by the explicit
expression (3.3.5). We observe that there exists a time T ∗, 1 < T ∗ < T , such that X(t;T, x)
hits the boundary |y| = D at t = T ∗. In other words, t = T ∗ is the first time when X(t;T, x)
enters in the region {(t, x) : t ≥ 1, |x| ≤ D}, to never leave it again for function t 7→ |X(t;T, x)|
is strictly decreasing. A simple computation shows that

(3.3.13) T ∗ =
D2

D2 − 1
(1− |x|−2)T < T .

Integrating expression (3.3.6) over [T ∗, T ] and using (3.3.7), we find that

(3.3.14) w(T, x) =
(T ∗
T

) 1
2
( T − T (1− |x|−2)

T ∗ − T (1− |x|−2)

)
w(T ∗, X(T ∗;T, x))

+ i

∫ T

T ∗

( t
T

) 1
2
(T − T (1− |x|−2)

t− T (1− |x|−2)

)
f
(
t,X(t;T, x)

)
dt .

From (3.3.13)

T ∗ − T (1− |x|−2) =
1

D2 − 1
(1− |x|−2)T and

T ∗

T
=

D2

D2 − 1
(1− |x|−2)

so since |w(t, x)| . εtβ
′ whenever |x| ≥ D, for some β′ > 0 by the hypothesis, we find that the

first term in right hand side of (3.3.14) is bounded by Cε(|x|2 − 1)−
1
2 (T ∗)β

′ , for some constant
C > 0. Setting c = 1

D2−1
, by the hypothesis on f we derive that

∣∣∣ ∫ T

T ∗

( t
T

) 1
2
(T − T (1− |x|−2)

t− T (1− |x|−2)

)
f
(
t,X(t;T, x)

)
dt
∣∣∣ . εT 1

2

∫ T

T ∗

(
t− T (1− |x|−2)

)−1
t−

1
2

+βdt

= εT
1
2

∫ T

T ∗

(
t− T ∗ + c(1− |x|−2)T

)−1
t−

1
2

+βdt

≤ εT
1
2

∫ T−T ∗

0

dt(
t+ c(1− |x|−2)T

)
t
1
2
−β

. εT
1
2
(
(1− |x|−2)T

)β− 1
2 = εT β(1− |x|−2)β−

1
2 .
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3.3.2 Propagation of the uniform estimate on the wave component

Proposition 3.3.7 (Propagation of the a-priori estimate on U,RU). Let us fix K1 > 0. There
exist two integers n � ρ � 1 sufficiently large„ two constants A,B > 1 sufficiently large, some
small 0 < δ � δ2 � δ1 � δ0, and ε0 ∈]0, 1[ sufficiently small, such that, for any 0 < ε < ε0, if
(u, v) is solution to (1.1.1)-(1.1.2) in some interval [1, T ], for a fixed T > 1, and u±, v± defined
in (1.1.5) satisfy a-priori estimates (1.1.11), for every t ∈ [1, T ], then it also verify (1.1.12a) in
the same interval [1, T ].

Proof. We warn the reader that, throughout the proof, C, β, β′ will denote some positive con-
stants that may change line after line, such that β → 0 as σ → 0 (resp. β′ → 0 as δ1, σ → 0).
We also remind that h = 1/t.

In proposition 3.1.2 we introduced function uNF , defined from u− through (3.1.15), and showed
that its Hρ+1,∞ norm (resp. the Hρ+1,∞ norm of RuNF ) differs from that of u− (resp. of Ru−)
by a quantity satisfying (3.1.20b) (resp. (3.1.20c)). If n is sufficiently large with respect to ρ (at
least n ≥ ρ+ 18), a-priori estimates (1.1.11b), (1.1.11c) give that, for every t ∈ [1, T ],

(3.3.15) ‖u−(t, ·)‖Hρ+1,∞ +
2∑
j=1

‖Rju−(t, ·)‖Hρ+1,∞

≤ ‖uNF (t, ·)‖Hρ+1,∞ +

2∑
j=1

‖Rju
NF (t, ·)‖Hρ,∞ + 2ABε2t−1+ δ

2 .

We successively considered ũ(t, x) := tũNF (t, tx) and decomposed it as in (3.2.38), with Σj given
by (3.2.37), showing that it satisfies (3.2.39) (resp. (3.2.40)) when restricted to small frequencies
|ξ| . t−1 (resp. large frequencies |ξ| & tσ). We then focused on ũΣj ,k defined in (3.2.41), which is
localized for frequencies supported in an annulus of size 2k with k ∈ K = {k ∈ Z : h . 2k . h−σ},
and further split it into the sum of functions ũΣj ,k

Λw
, ũΣj ,k

Λcw
(see (3.2.45)). On the one hand, from

inequality (3.2.46b) and lemma B.2.1 we have that there is a positive constant C such that, for
every t ∈ [1, T ],

‖ũΣj ,k
Λcw

(t, ·)‖L∞ ≤ Cεtβ
′
.

On the other hand, we proved in proposition 3.2.17 that, for anyD > 0 and any (t, x) in truncated
cylinder CTD = {(t, x) : 1 ≤ t ≤ T, |x| ≤ D}, ũΣj

Λw
(t, x) defined in (3.2.78) is solution to inho-

mogeneous transport equation (3.2.79), with inhomogeneous term Fw(t, x) satisfying (3.2.80).
Observe that, by definition (1.2.49) of M, symbolic calculus, and proposition 1.2.36, we have
that

‖ũΣj
Λw

(1, ·)‖L2 + ‖xũΣj
Λw

(1, ·)‖L2 . ‖ũ(1, ·)‖L2 + ‖Opwh (χ(hσξ))Mũ(1, ·)‖L2 ≤ Cε,

which means that ε−1〈x〉ũΣj
Λw

(1, x) ∈ L2. That hence implies that |ũΣj
Λw

(1, x)| . ε〈x〉−2 for every
x ∈ R2 (if not, we would have ‖〈·〉−1‖L2 ≤ ε−1‖〈·〉ũΣj

Λw
(1, ·)‖L2). Moreover, ifD � 1 is sufficiently

large, from lemma 3.3.9 below and B.2.1 in appendix B we deduce that

(3.3.16) |1|x|≥Dũ
Σj
Λw

(t, x)| ≤ C log |x|
|x|

h−β
(
‖Opwh (χ(hσξ))ũ(t, ·)‖L2 + ‖Opwh (χ(hσξ))Mũ(t, ·)‖L2

)
≤ Cε log |x|

|x|
tβ
′
.
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Therefore, from proposition 3.3.1 we obtain that

|ũΣj
Λw

(t, x)| . Cεtβ′(1 + |x|)−
1
2
(
t−1 + |1− |x||

)− 1
2

+β′
, ∀(t, x) ∈ CTD.

Summing up, denoting by 1CTD
the characteristic function of cylinder CTD,

|ũΣ(t, x)| ≤ Cε1CTD
tβ
′
(1 + |x|)−

1
2
(
t−1 + |1− |x||

)− 1
2

+β′
+ Cεtβ

′
, ∀(t, x) ∈ [1, T ]× R2.

Returning back to function uNF via (3.2.2), this means that, for every (t, x) ∈ [1, T ]× R2,

(3.3.17)
∣∣〈Dx〉ρuNF (t, x)

∣∣+
2∑
j=1

∣∣〈Dx〉ρRjuNF (t, x)
∣∣

≤ Cε1{|x|≤Dt}(t+ |x|)−
1
2 (1 + |t− |x||)−

1
2

+β′ + Cεt−1+β′ .

Finally, reminding definition 1.2.1 (iii) of space Hρ,∞, injecting the above inequality in (3.3.15),
and choosing A > 1 sufficiently large such that C < A

3K1
, ε0 > 0 sufficiently small so that

CBε0 < (3K1)−1, we deduce enhanced estimate (1.1.12a).

Remark 3.3.8. Beside the propagation of estimate (1.1.11a), by combining inequalities (3.3.15),
(3.3.17), and (1.1.5), we also deduce the following inequality

|∂tu(t, x)|+ |∇xu(t, x)| ≤ Cε1{|x|≤Dt}(t+ |x|)−
1
2 (1 + |t− |x||)−

1
2

+β′ + Cεt−1+β′ ,

with β′ > 0 small as long as σ, δ1 are small, which almost corresponds to the optimal decay in
time and space enjoyed by the linear wave in space dimension two.

Lemma 3.3.9. Let χ ∈ C∞0 (R2) be equal to 1 in a neighbourhood of the origin and σ > 0 be small.
Let also ϕ ∈ C∞0 (R2 \ {0}). There exists a constant C > 0 such that for every h ∈]0, 1[, R � 1,
and any function w(t, x) with w(t, ·),Opwh (χ(hσξ))Mw(t, ·) ∈ L2(R2),
(3.3.18)∥∥∥ϕ( ·

R

)
Opwh (χ(hσξ))w(t, ·)

∥∥∥
L∞
≤ CR−1(logR+ | log h|)

1∑
|γ|=0

‖Opwh (χ(hσξ))Mγw(t, ·)‖L2 .

Proof. Let us fix R� 1 and, for seek of compactness, denote Opwh (χ(hσξ))w by wχ. For a new
smooth cut-off function χ1 equal to 1 on the support of χ, we have that

ϕ
( x
R

)
Opwh (χ(hσξ))w = Opwh (χ1(hσξ))

[
ϕ
( x
R

)
wχ
]

+
[
ϕ
( x
R

)
,Opwh (χ1(hσξ))

]
wχ,

where the symbol associated to above commutator is given by

rR(x, ξ) = −h
1+σR−1

i(πh)2

∫
e

2i
h
η·z
[∫ 1

0
(∂ϕ)

(x+ tz

R

)
dt

]
(∂χ1)(hσ(ξ + η))dzdη,

as follows from (1.2.19) and integration in dy, dζ. Since (∂χ1)(hσξ) is supported for frequencies
|ξ| ≤ h−σ, and R−1, h1+σ ≤ 1, by making a change of coordinates η/h 7→ η and using that
e2iη·z =

(1−2iη·∂z
1+4|η|2

)(1−2iz·∂η
1+4|z|2

)
e2iη·z, together with some integration by parts, one can check that∥∥∥∥∂αy ∂βξ [rR(

x+ y

2
, hξ)

]∥∥∥∥
L2(dξ)

. R−1
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for any α, β ∈ N2, and hence obtain from lemma 1.2.25 that

‖Opwh (rkR(x, ξ))wχ(t, ·)‖L∞ . R−1‖wχ(t, ·)‖L2 .

Successively, taking a Littlewood-Paley decomposition such that

χ1(hσξ) ≡

φ(R
h
ξ
)

+
∑

hR−1≤2j≤h−σ
(1− φ)

(R
h
ξ
)
ψ(2−jξ)

χ1(hσξ),

with φ ∈ C∞0 (R2), equal to 1 close to the origin and ψ ∈ C∞0 (R2 \ {0}), we derive that

(3.3.19)
∥∥∥Opwh (χ1(hσξ))

[
ϕ
( x
R

)
wχ
]
(t, ·)

∥∥∥
L∞
.

∥∥∥∥Opwh

(
φ
(R
h
ξ
)
χ1(hσξ)

)[
ϕ
( x
R

)
wχ
]
(t, ·)

∥∥∥∥
L∞

+
∑

hR−1≤2j≤h−σ

∥∥∥∥Opwh

(
(1− φ)

(R
h
ξ
)
ψ(2−jξ)χ1(hσξ)

)[
ϕ
( x
R

)
wχ
]
(t, ·)

∥∥∥∥
L∞

,

and immediately notice that

(3.3.20)
∥∥∥∥Opwh

(
φ
(R
h
ξ
)
χ1(hσξ)

)[
ϕ
( x
R

)
wχ
]
(t, ·)

∥∥∥∥
L∞

=
∥∥∥φ(RDx)Opwh (χ1(hσξ))

[
ϕ
( x
R

)
wχ
]
(t, ·)

∥∥∥
L∞
. R−1‖wχ(t, ·)‖L2 ,

just by the classical Sobolev injection and the uniform continuity of Opwh (χ1(hσξ))ϕ
(
x
R

)
on

L2. Introducing operators ΘR,Θ
−1
R , where ΘRu(x) := u(Rx), Θ−1

R u(x) := u
(
x
R

)
, we have the

following equality

(3.3.21) Opwh

(
(1− φ)

(R
h
ξ
)
ψ(2−jξ)χ1(hσξ)

)[
ϕ
( x
R

)
wχ
]

=
[
Θ−1
R OpwhRj

(
(1− φ)

( ξ

hRj

)
ψ(ξ)χ1(hσ2jξ)

)
ϕ(x)ΘR

]
wχ

with hRj := h
R2j
≤ 1, and by hRj-symbolic calculus (that is proposition 1.2.21 with h replaced

by hRj),

OpwhRj

(
(1− φ)

( ξ

hRj

)
ψ(ξ)χ1(hσ2jξ)

)
ϕ(x) =

OpwhRj

(
(1− φ)

( ξ

hRj

)
ψ(ξ)χ1(hσ2jξ)ϕ(x)

)
+OpwhRj (r(x, ξ))

with

r(x, ξ) =
hRj

2i(πhRj)2

∫
e
− 2i
hRj

y·ζ
[∫ 1

0
∂ξ

[
(1− φ)

( ξ

hRj

)
ψ(ξ)χ1(hσ2jξ)

]∣∣
(ξ+tζ)

dt

]
(∂ϕ)(x+ y)dydζ.

Similarly as before, one can prove that∥∥∥∥∂αx ∂βξ [r(x+ y

2
, hξ)

]∥∥∥∥
L2(dξ)

. 1

for any α, β ∈ N2, observing that no negative power of hRj appears in the right hand side
of this inequality for the product of ψ(ξ) with any derivative of (1 − φ)( ξ

hRj
) is supported for
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hRj ∼ |ξ| ∼ 1. Hence lemma 1.2.25 gives that operator OpwhRj (r(x, ξ)) is uniformly bounded
from L2 to L∞ and∥∥OpwhRj (r(x, ξ))ΘRw

χ(t, ·)
∥∥
L∞
. ‖ΘRw

χ(t, ·)‖L2 . R−1‖wχ(t, ·)‖L2 .

Since symbol (1− φ)
( ξ
hRj

)
ψ(ξ)χ1(hσ2jξ)ϕ(x) is supported for |x| ∼ |ξ| ∼ 1,

(1− φ)
( ξ

hRj

)
ψ(ξ)χ1(hσ2jξ)ϕ(x)

=

2∑
l=1

(1− φ)
( ξ
hRj

)
ψ(ξ)χ1(hσ2jξ)ϕ(x)(Rxl|2jξ| − 2jξl)

|Rx|2jξ| − 2jξ|2︸ ︷︷ ︸
al(x,ξ)

(
Rxl|2jξ| − 2jξl

)
,

with al(x, ξ) ∈ R−12−jS0,0(1) as long as R� 1, and by hRj-symbolic calculus

(1− φ)
( ξ

hRj

)
ψ(ξ)χ1(hσ2jξ)ϕ(x) =

2∑
l=1

al(x, ξ)]
[
(Rxl|2jξ| − 2jξl)ψ̃(ξ)

]
+ rRj(x, ξ),

with ψ̃ ∈ C∞0 (R2 \ {0}) such that ψ̃ψ ≡ ψ, and rRj ∈ hRjS0,0(1). From semi-classical Sobolev
injection

‖OpwhRj (rRj(x, ξ))ΘRw
χ(t, ·)‖L∞ . ‖ΘRw

χ(t, ·)‖L2 ≤ R−1‖wχ(t, ·)‖L2

while

OpwhRj (al(x, ξ))Op
w
hRj

(
(Rxl|2jξ| − 2jξ)ψ̃(ξ)

)
ΘRw

χ

= OpwhRj (al(x, ξ))ΘR

[
Opwh

(
(xl|ξ| − ξ)ψ̃(2−jξ)

)
wχ
]

= OpwhRj (al(x, ξ))ΘR

[
Opwh (ψ̃(2−jξ))Opwh (xl|ξ| − ξ)wχ −

h

2i
Opwh ((2−jξ) · (∂ψ̃)(2−jξ))wχ

]
.

(3.3.22)

The last thing to do to conclude the proof of the statement is to study continuity of operator
OpwhRj (al(x, ξ)).

Lemma 3.3.10. We have that OpwhRj (al(x, ξ)) : L2 → L∞ is bounded with norm∥∥∥OpwhRj (al(x, ξ))∥∥∥L(L2;L∞)
. h−1.

Proof. The result comes straightly from lemma 1.2.25. Indeed, since symbol al(x, ξ) is compactly
supported in x there is a smooth cut-off function ϕ1 ∈ C∞0 (R2 \ {0}), with ϕ1ϕ ≡ ϕ, such that∣∣∣OpwhRj (al(x, ξ))w∣∣∣ . ‖w‖L2(dx)

∫ ∣∣∣ϕ1

(x+ y

2

)∣∣∣ ∑
|α|≤3

∥∥∥∥∂αy [al(x+ y

2
, hRjξ

)]∥∥∥∥
L2(dξ)

dy,

and for |α| ≤ 3∥∥∥∥∂αy [al(x+ y

2
, hRjξ

)]∥∥∥∥
L2(dξ)

.
R

h

∥∥∥∥∥∂αy
[

(1− φ)(ξ)ψ(hRjξ)χ1(hRjh
σ2jξ)ϕ1(x+y

2 )

|R(x+y
2 )|ξ| − ξ|2

(
R
(xl + yl

2

)
|ξ| − ξl

)]∥∥∥∥∥
L2(dξ)

.
|ϕ̃(x+y

2 )|
h

(∫ |ψ(hRjξ)|2

|ξ|2
dξ

) 1
2

.
|ϕ̃(x+y

2 )|
h

,

where ϕ̃ ∈ C∞0 (R2 \ {0}).
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Finally, summing up all formulas from (3.3.21) to (3.3.22) and using lemma 3.3.10, we obtain
that∥∥∥Opwh

(
(1− φ)

(R
h
ξ
)
ψ(2−jξ)χ1(hσξ)

)[
ϕ
( x
R

)
wχ(t, ·)

]∥∥∥
L∞
. R−1(‖wχ(t, ·)‖L2 + ‖Mwχ(t, ·)‖L2),

for any index j ∈ Z such that hR−1 ≤ 2j ≤ h−σ. Injecting (3.3.20) and the above inequality in
(3.3.19), and using that [M,Opwh (χ(hσξ))] = iOpwh ((∂χ)(hσξ)(hσ|ξ|)) is uniformly continuous on
L2, we deduce (3.3.18) (the loss in logR + | log h| arising from the fact that we are considering
a sum over indices j, with log h− logR . j . log(h−1)).

3.3.3 Proof of the main theorems

Proof of theorem 1.1.2. Straightforward after propositions 2.2.13, 3.2.7, 3.3.7.

Proof of theorem 1.1.1. Let us prove that, for small enough data satisfying (1.1.4), Cauchy prob-
lem (1.1.1)-(1.1.2) has a unique global solution. This result follows by a local existence argument,
after having proved that there exist two integers n� ρ� 1, two constants A′, B′ > 1 sufficiently
large, ε0 > 0 sufficiently small, and 0 < δ � δ2 � δ1 � δ0 small, such that, for any 0 < ε < ε0, if
(u, v) is solution to (1.1.1)-(1.1.2) in [1, T ]×R2, for some T > 1, with ∂t,xu ∈ C0([1, T ];Hn(R2)),
v ∈ C0([1, T ];Hn+1(R2)) ∩ C1([1, T ];Hn(R2)), and satisfies

‖∂tu(t, ·)‖Hρ+1,∞ + ‖∇xu(t, ·)‖Hρ+1,∞ + ‖|Dx|u(t, ·)‖Hρ+1,∞ +
2∑
j=1

‖Rj∂tu(t, ·)‖Hρ+1,∞ ≤ A′εt−
1
2 ,

(3.3.23a)

‖∂tv(t, ·)‖Hρ,∞ + ‖v(t, ·)‖Hρ+1,∞ ≤ A′εt−1,(3.3.23b)

‖∂tu(t, ·)‖Hn + ‖∇xu(t, ·)‖Hn + ‖∂tv(t, ·)‖Hn + ‖∇xv(t, ·)‖Hn + ‖v(t, ·)‖Hn ≤ B′εt
δ
2 ,(3.3.23c)

(3.3.23d)
∑
|I|=k

[
‖∂tΓIu(t, ·)‖L2 + ‖∇xΓIu(t, ·)‖L2 + ‖∂tΓIv(t, ·)‖L2 + ‖∇xΓIv(t, ·)‖L2

+‖ΓIv(t, ·)‖L2

]
≤ B′εt

δ3−k
2 , 1 ≤ k ≤ 3,

for every t ∈ [1, T ], then in the same interval it satisfies

‖∂tu(t, ·)‖Hρ+1,∞ + ‖∇xu(t, ·)‖Hρ+1,∞ + ‖|Dx|u(t, ·)‖Hρ+1,∞ +
2∑
j=1

‖Rj∂tu(t, ·)‖Hρ+1,∞ ≤
A′

2
εt−

1
2 ,

(3.3.24a)

‖∂tv(t, ·)‖Hρ,∞ + ‖v(t, ·)‖Hρ+1,∞ ≤
A′

2
εt−1,(3.3.24b)

‖∂tu(t, ·)‖Hn + ‖∇xu(t, ·)‖Hn + ‖∂tv(t, ·)‖Hn + ‖∇xv(t, ·)‖Hn + ‖v(t, ·)‖Hn ≤ B′

2
εt

δ
2 ,(3.3.24c)

(3.3.24d)

(3.3.24e)
∑
|I|=k

[
‖∂tΓIu(t, ·)‖L2 + ‖∇xΓIu(t, ·)‖L2 + ‖∂tΓIv(t, ·)‖L2 + ‖∇xΓIv(t, ·)‖L2

+‖ΓIv(t, ·)‖L2

]
≤ B′

2
εt

δ3−k
2 , 1 ≤ k ≤ 3.
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We remind that, if I = (i1, . . . , in) is a multi-index of length |I| = n, with ij ∈ {1, . . . , 5},
ΓI = Γi1 · · ·Γin is a product of vector fields in family Z = {Ω, Zj , ∂j |j = 1, 2}.
We can immediately observe that the above bounds are verified at time t = 1 after (1.1.4) and
Sobolev injection. By definition (1.1.5) we also notice that

(3.3.25a) ‖u±(t, ·)‖Hρ+1,∞ +

2∑
j=1

‖Rju±(t, ·)‖Hρ+1,∞ ≤ 2‖∂tu(t, ·)‖Hρ+1,∞ + 2‖|Dx|u(t, ·)‖Hρ+1,∞

+ 2
2∑
j=1

(‖∂ju(t, ·)‖Hρ+1,∞ + ‖Rj∂tu(t, ·)‖Hρ+1,∞) ,

(3.3.25b) ‖v±(t, ·)‖Hρ,∞ ≤ 2‖∂tv(t, ·)‖Hρ,∞ + 2‖v(t, ·)‖Hρ+1,∞ ,

and, conversely,

(3.3.26a)

‖∂tu(t, ·)‖Hρ+1,∞ + ‖|Dx|u(t, ·)‖Hρ+1,∞ +

2∑
j=1

(‖∂ju(t, ·)‖Hρ+1,∞ + ‖Rj∂tu(t, ·)‖Hρ+1,∞)

≤ ‖u+(t, ·)‖Hρ+1,∞ + ‖u−(t, ·)‖Hρ+1,∞ +
2∑
j=1

(‖Rju+(t, ·)‖Hρ+1,∞ + ‖Rju−(t, ·)‖Hρ+1,∞) ,

(3.3.26b) ‖∂tv(t, ·)‖Hρ,∞ + ‖v(t, ·)‖Hρ+1,∞ ≤ ‖v+(t, ·)‖Hρ,∞ + ‖v−(t, ·)‖Hρ,∞ .

Moreover, reminding definition (1.1.9) of generalized energies En(t;u±, v±), Ek3 (t;u±, v±), for
n ≥ 3 and 0 ≤ k ≤ 2, and of set Ik3 in (2.1.17), there is a constant C > 0 such that

(3.3.27a) C−1En(t;u±, v±) ≤
[
‖∂tu(t, ·)‖2Hn + ‖∇xu(t, ·)‖2Hn

+‖∂tv(t, ·)‖2Hn + ‖∇xv(t, ·)‖2Hn + ‖v(t, ·)‖2Hn

]
≤ CEn(t;u±, v±),

and for any 0 ≤ k ≤ 2,

(3.3.27b) C−1Ek3 (t;u±, v±) ≤
∑
I∈Ik3

[
‖∂tΓIu(t, ·)‖2L2 + ‖∇xΓIu(t, ·)‖2L2

+‖∂tΓIv(t, ·)‖2L2 + ‖∇xΓIv(t, ·)‖2L2 + ‖ΓIv(t, ·)‖2L2

]
≤ CEk3 (t;u±, v±).

Therefore, after (3.3.25), (3.3.27), and (3.3.23), we deduce that estimates (1.1.11) are satisfied
with A = 2A′, B = C1B

′, for some new C1 > 0, so choosing for instance K1 = 4 and K2

sufficiently large, theorem 1.1.2 and inequalities (3.3.26), (3.3.27) imply (3.3.24).
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Appendix A

The aim of this appendix is to prove the continuity of some trilinear integral operators (see
lemmas A.5 and A.6) that arise in subsection 2.2.2 when performing a normal form argument at
the energy level, and of some bilinear integral operators (see lemma A.8) that instead appear in
subsection 3.1.2 when we perform a normal form the wave equation (see proposition 3.1.2). All
the other results of this chapter are stated and proved in view of the above mentioned lemmas.

Lemma A.1. Let ǎ(x) denote the inverse transform of a function a(ξ).

(i) If a : R2 → C is such that, for any α ∈ N2 with 1 ≤ |α| ≤ 4,

|a(ξ)| . 〈ξ〉−3 and |∂αa(ξ)| .α (|ξ|〈ξ〉−1)1−|α|〈ξ〉−3 ∀ξ ∈ R2

then
|ǎ(x)| . |x|−1〈x〉−2, ∀x ∈ R2.

(ii) If a is such that, for any α ∈ N2 with |α| ≤ 3,

|∂αa(ξ)| . (|ξ|〈ξ〉−1)−|α|〈ξ〉−3, ∀ξ ∈ R2

then
|ǎ(x)| . 〈x〉−2, ∀x ∈ R2;

(iii) Let N ∈ N. If for any α ∈ N2 with |α| ≤ N there exists fα ∈ L1(R2) such that |∂αa(ξ)| .α
|fα(ξ)| then

|ǎ(x)| . 〈x〉−N , ∀x ∈ R2.

Proof. (i) We consider a cut-off function φ ∈ C∞0 (R2) equal to 1 in the unit ball and write

(A.1)
ǎ(x) = K0(x) +K1(x)

with K0(x) :=
1

(2π)2

∫
eix·ξa(ξ)φ(ξ)dξ, K1(x) :=

1

(2π)2

∫
eix·ξa(ξ)(1− φ)(ξ)dξ.

On the one hand, since |∂αa(ξ)| .α 〈ξ〉−3 on the support of (1 − φ)(ξ) for any |α| ≤ 4, we
immediately deduce by integration by parts that |K1(x)| . 〈x〉−4 for any x ∈ R2. On the other
hand, again an integration by parts gives that

xK0(x) =

∫
eix·ξa1(ξ)dξ

with a1(ξ) supported for |ξ| . 1 and such that |∂αa1(ξ)| .α |ξ|−|α| for any ξ ∈ R2, any |α| ≤ 3.
This implies that |xK0(x)| . 1 for any x ∈ R2. Moreover, |xαx K0(x)| .α 1 for any |α| ≤ 3. This
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is obvious in the unit ball. Out of the unit ball we consider a Littlewood-Paley decomposition
in frequencies so that

φ(ξ) = φ(ξ)

ϕ0(2−L0ξ) +
0∑

k=L0+1

ϕ(2−kξ)

 ,
with suppϕ0 ⊂ B1(0), ϕ ∈ C∞0 (R2 \ {0}) and L0 < 0 such that 2L0 ∼ |x|−1, and write

xK0(x) = K0
0 (x) +

0∑
k=L0+1

Kk
0 (x)

with K0
0 (x) :=

∫
eix·ξa1(ξ)ϕ0(2−L0ξ)dξ, Kk

0 (x) :=

∫
eix·ξa1(ξ)ϕk(2

−kξ)dξ.

Performing a change of coordinates and making some integrations by parts we deduce that

|K0
0 (x)| . 22L0 and |Kk

0 (x)| . 22k〈2kx〉−3, L0 + 1 ≤ k ≤ 0

for any x ∈ R2, which finally implies |xK0(x)| . 22L0 ∼ |x|−2.

(ii) The result follows splitting ǎ as in (A.1) and applying toK0(x) the same argument previously
used for xK0(x).

(iii) The result follows straightly from integration by parts and the fact that fα ∈ L1(R2) for
any |α| ≤ N .

Corollary A.2. Let d ∈ N∗, N ∈ N and gβ ∈ L1(Rd) for every |β| ≤ N .

(i) If a(ξ, η) : R2 × Rd → C is such that, for any β ∈ Nd with |β| ≤ N ,

(A.2)
|∂βη a(ξ, η)| .β 〈ξ〉−3|gβ(η)|,

|∂αξ ∂βη a(ξ, η)| .α,β (|ξ|〈ξ〉−1)1−|α|〈ξ〉−3|gβ(η)|, 1 ≤ |α| ≤ 4.

for any (ξ, η) ∈ R2 × Rd, then

(A.3)
∣∣∣∣∫ eix·ξ+iy·ηa(ξ, η)dξdη

∣∣∣∣ . |x|−1〈x〉−2〈y〉−N , ∀(x, y) ∈ R2 × Rd.

Moreover, if d = 2 and N = 3, for any u, v ∈ L2(R2) ∩ L∞(R2)

(A.4a)
∥∥∥∥∫ eix·ξa(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L2(dx)

. ‖u‖L2‖v‖L∞ (or . ‖u‖L∞‖v‖L2)

and

(A.4b)
∥∥∥∥∫ eix·ξa(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L∞(dx)

. ‖u‖L∞‖v‖L∞ .

(ii) If a(ξ, η) is such that, for any α ∈ N2 with |α| ≤ 3, β ∈ Nd with |β| ≤ N ,

(A.5) |∂αξ ∂βη a(ξ, η)| .α,β (|ξ|〈ξ〉−1)−|α|〈ξ〉−3|gβ(η)|,

for any (ξ, η) ∈ R2 × Rd, then

(A.6)
∣∣∣∣∫ eix·ξ+iy·ηa(ξ, η)dξdη

∣∣∣∣ . 〈x〉−2〈y〉−N , ∀(x, y) ∈ R2 × Rd.
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Moreover, if d = 2, N = 3, for any u, v ∈ L2(R2)

(A.7a)
∥∥∥∥∫ eix·ξa(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L2(dx)

. ‖u‖L2‖v‖L2

while if u ∈ L2(R2), v ∈ L∞(R2),

(A.7b)
∥∥∥∥∫ eix·ξa(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L∞(dx)

. ‖u‖L2‖v‖L∞ .

Proof. Let

K(x, η) :=

∫
eix·ξa(ξ, η)dξ and K̃(x, y) :=

∫
eix·ξK(x, η)dη.

By the hypothesis on a(ξ, η) and lemma A.1 (i) (resp. (ii)) we derive that, for any β ∈ Nd with
|β| ≤ N ,

|∂βηK(x, η)| . |x|−1〈x〉−2|gβ(η)|
(
resp. |∂βηK(x, η)| . 〈x〉−2|gβ(η)|

)
∀(x, η) ∈ R2 × Rd.

Hence (A.3) (resp. (A.6)) follows applying lemma A.1 (iii) to K̃(x, y).

(i) If d = 2, N = 3, inequality (A.4a) from the fact that∫
eix·ξa(ξ, η)û(ξ − η)v̂(η)dη =

∫
K̃(x− y, y − z)u(y)v(z)dydx,

and by (A.3), for L = L2 or L = L∞,

∥∥∥∥∫ K̃(x− y, y − z)ũ(y)ṽ(z)dydz

∥∥∥∥
L(dx)

.

∥∥∥∥∫ |x− y|−1〈x− y〉−2〈y − z〉−3ũ(y)ṽ(z)dydz

∥∥∥∥
L(dx)

.
∫
|y|−1〈y〉−2〈z〉−3‖ũ(· − y)ṽ(· − y − z)‖L(dx)dydz

. ‖ũ‖L∞‖ṽ‖L (or . ‖ũ‖L‖ṽ‖L∞).

(A.8)

(ii) By inequality (A.6)∥∥∥∥∫ K̃(x− y, y − z)u(y)v(z)dydz

∥∥∥∥
L2(dx)

.

∥∥∥∥∫ 〈x− y〉−2〈y − z〉−3|u(y)||v(z)|dydz
∥∥∥∥
L2(dx)

.
∫
〈y − z〉−3|u(y)||v(z)|dydz .

∫
|v(z)|

(∫
〈y − z〉−3dy

) 1
2
(∫
〈y − z〉−3|u(y)|2dy

) 1
2

dz

. ‖v‖L2

(∫
〈y − z〉−3|u(y)|2dydz

) 1
2

. ‖u‖L2‖v‖L2

and∥∥∥∥∫ K̃(x− y, y − z)u(y)v(z)dydz

∥∥∥∥
L∞(dx)

.

∥∥∥∥∫ 〈x− y〉−2〈y − z〉−3|u(y)||v(z)|dydz
∥∥∥∥
L∞(dx)

. ‖v‖L∞
∥∥∥∥∫ 〈x− y〉−2|u(y)|dy

∥∥∥∥
L∞(dx)

. ‖u‖L2‖v‖L∞ .
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Lemma A.3 (Sobolev norm of a product). Let s ∈ N∗. For any u, v ∈ Hs(R2) ∩ L∞(R2),

(A.9) ‖uv‖Hs . ‖u‖Hs‖v‖L∞ + ‖u‖L∞‖v‖Hs ;

for any u, v ∈ Hs,∞(R2) ∩Hs+2(R2), any θ ∈]0, 1[,

(A.10) ‖uv‖Hs,∞ . ‖u‖1−θHs,∞‖u‖θHs+2‖v‖L∞ + ‖u‖L∞‖v‖1−θHs,∞‖v‖θHs+2 .

Proof. Inequality (A.9) is a classical result (see, for instance, [2]).

In order to deduce (A.10) we decompose product uv as follows:

(A.11) uv = Tuv + Tvu+R(u, v),

where Tuv is the para-product of u times v defined by

Tuv := S−3uS0v +
∑
k≥1

Sk−3u∆kv,

with Sk = χ(2−kDx), χ ∈ C∞0 (R2) such that χ(ξ) = 1 for |ξ| ≤ 1/2, χ(ξ) = 0 for |ξ| ≥ 1, ∆0 = S0

and ∆k = Sk−Sk−1 for k ≥ 1, and R(u, v) =
∑

k ∆ku∆̃kv, with ∆̃k = ∆k−1 + ∆k + ∆k+1. Since

Tuv =
∑
j≥0

∆j(Tuv) =
∑
j,k

|j−k|≤N0

∆j [Sk−3u∆kv]

for a certain N0 ∈ N, by definition 1.2.1 (iii) of the Hs,∞ norm and the fact that ‖∆kv‖L∞ .
2k‖∆kv‖L2 we deduce that, for any fixed θ ∈]0, 1[,

‖Tuv‖Hs,∞ = ‖〈Dx〉sTuv‖L∞ ≤
∑
j,k

|j−k|≤N0

2js‖∆j [Sk−3u∆kv]‖L∞

≤
∑
j,k

|j−k|≤N0

2js‖Sk−3u‖L∞‖∆kv‖L∞ ≤
∑
j,k

|j−k|≤N0

2js‖u‖L∞(2−ks‖∆k〈Dx〉sv‖L∞)1−θ(2k‖∆kv‖L2)θ

.
∑
j,k

|j−k|≤N0

2(j−k)s‖u‖L∞‖∆k〈Dx〉sv‖1−θL∞

(
2−k‖∆k〈Dx〉s+2v‖L2

)θ
. ‖u‖L∞‖v‖1−θHs,∞‖v‖θHs+2 .

(A.12)

Similarly,
‖Tvu‖Hs,∞ + ‖R(u, v)‖Hs,∞ . ‖u‖1−θHs,∞‖u‖θHs+2‖v‖L∞ .

Corollary A.4. Let s ∈ N∗, a1(ξ) ∈ Sm1
0 (R2), a2(ξ) ∈ Sm2

0 (R2), for some m1,m2 ≥ 0. For any
u ∈ Hs+m1(R2) ∩Hm1,∞(R2), v ∈ Hs+m2(R2) ∩Hm2,∞(R2),

(A.13) ‖[a1(Dx)u] [a2(Dx)v]‖Hs . ‖u‖Hs+m1‖v‖Hm2,∞ + ‖u‖Hm1,∞‖v‖Hs+m2 ;

for any u ∈ Hs+m1,∞(R2) ∩Hs+m1+2(R2), v ∈ Hs+m2,∞(R2) ∩Hs+m2+2(R2), any θ ∈]0, 1[,

(A.14) ‖[a1(Dx)u] [a2(Dx)v]‖Hs,∞

. ‖u‖1−θ
Hs+m1,∞‖u‖

θ
Hs+m1+2‖v‖Hm2,∞ + ‖u‖Hm1,∞‖v‖1−θHs+m2,∞‖v‖

θ
Hs+m2+2 .
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Proof. The result of the statement follows writing [a1(Dx)u] [a2(Dx)v] in terms of para-products
as in (A.11), and using that Ta1(D)u(a2(D)v), Ta2(D)v(a1(D)u) and remainder R

(
a1(D)u, a2(D)v

)
can be written from ũ = 〈Dx〉m1u, ṽ = 〈Dx〉m2v, as done below for the former of these terms:

Ta1(D)u(a2(D)v) = [S−3a1(D)〈Dx〉−m1 ũ][S0a2(D)〈Dx〉−m2 ṽ]

+
∑
k

[Sk−3a1(D)〈Dx〉−m1 ũ][∆ka2(D)〈Dx〉−m2 ṽ].

Since aj(ξ)〈ξ〉−mj ∈ S0
0(R2), j = 1, 2, operators Skaj(D)〈Dx〉−mj , ∆kaj(D)〈Dx〉−mj have the

same spectrum (i.e. the support of the Fourier transform) up to a negligible constant of Sk and
∆k respectively.

In the following lemma we prove a result of continuity for a trilinear integral operator defined
from multiplier Bk

(j1,j2,j3)(ξ, η) given by (2.2.42) (resp. by (2.2.53)) for k = 1, 2 (resp. k = 3),
any j1, j2, j3 ∈ {+,−}. It is useful to observe that, since

Bk
(j1,j2,j3)(ξ, η) =

j1〈ξ − η〉+ j2|η| − j3〈ξ〉
2j1j2〈ξ − η〉|η|

ηk, k = 1, 2

from (2.2.42), while

B3
(j1,j2,j3)(ξ, η) = j1

j1〈ξ − η〉+ j2|η| − j3〈ξ〉
2〈ξ − η〉

(2.2.53), we have that

(A.15)
1

(2π)2

∫
eix·ξBk

(j1,j2,j3)(ξ, η)û(ξ − η)v̂(η)dξdη =
j2
2

(uRkv)(x)− j1
2

[( D1

〈Dx〉
u
)
v
]
(x)

+
j1
2
D1

[
(〈Dx〉−1u)v

]
(x)− j3

2j1j2
〈Dx〉[(〈Dx〉−1u)(Rkv)](x)

for k = 1, 2, while for k = 3

(A.16)
1

(2π)2

∫
eix·ξB3

(j1,j2,j3)(ξ, η)û(ξ − η)v̂(η)dξdη =
1

2
(uv)(x) +

j1j2
2

[(〈Dx〉−1u)|Dx|v](x)

− j1j3
2
〈Dx〉

[
(〈Dx〉−1u)v

]
(x).

Lemma A.5. Let Bk
(j1,j2,j3)(ξ, η) be given by (2.2.42) when k = 1, 2, and by (2.2.53) when

k = 3, for any j1, j2, j3 ∈ {+,−}. Let also δk = 1 if k ∈ {1, 2}, δk = 0 if k = 3. For any
u,w ∈ L2(R2), v ∈ H2,∞(R2) such that δkRkv ∈ H2,∞(R2),

(A.17)
∣∣∣∣∫ Bk

(j1,j2,j3)(ξ, η)û(ξ − η)v̂(η)ŵ(−ξ)dξdη
∣∣∣∣ . ‖u‖L2 (‖v‖H7,∞ + δk‖Rkv‖H7,∞) ‖w‖L2 .

Proof. First of all we observe that for k ∈ {1, 2}

(A.18a)∫
Bk(j1,j2,j3)(ξ, η)û(ξ − η)v̂(η)ŵ(−ξ)dξdη =

j2
2

∫
u(Rkv)
∧

(ξ)ŵ(−ξ)dξ − j1
2

∫ [(
Dx
〈Dx〉u

)
v
]∧
(ξ)ŵ(−ξ)dξ

+
j1
2

∫
ξ1

〈ξ − η〉
û(ξ − η)v̂(η)ŵ(−ξ)dξdη − j3

2j1j2

∫
〈ξ〉
〈ξ − η〉

û(ξ − η)R̂kv(η)ŵ(−ξ)dξdη,
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while for k = 3,

(A.18b)
∫
B3

(j1,j2,j3)(ξ, η)û(ξ − η)v̂(η)ŵ(−ξ)dξdη =
1

2

∫
uv
∧

(ξ)ŵ(−ξ)dξ

+
j1j2

2

∫ [
(〈Dx〉−1u)|Dx|v

]∧
(ξ)ŵ(−ξ)dξ − j1j3

2

∫
〈ξ〉
〈ξ − η〉

û(ξ − η)v̂(η)ŵ(−ξ)dξ.

Hölder’s inequality shows immediately that the first two addends in both above right hand sides are
bounded by the right hand side of (A.17). Then the result of the statement follows by proving that
inequality (A.17) is satisfied by integrals such as∫

a(ξ, η)û1(ξ − η)û2(η)û3(−ξ)dξdη

with a(ξ, η) = ξ1〈ξ − η〉−1 or a(ξ, η) = 〈ξ〉〈ξ − η〉−1, and some general functions u1, u3 ∈ L2(R2), u2 ∈
L∞(R2). By taking a Littlewood-Paley decomposition we can split the above integral as

(A.19)
∑
k,l≥0

∫
a(ξ, η)ϕk(ξ)ϕl(η)û1(ξ − η)û2(η)û3(−ξ)dξdη,

with ϕ0 ∈ C∞0 (R2), ϕ ∈ C∞0 (R2 \ {0}) and ϕk(ζ) = ϕ(2−kζ) for any k ∈ N∗. Since frequencies ξ, η are
bounded on the support of ϕ0(ξ)ϕ0(η), kernel

K0(x, y) :=

∫
eix·ξ+iy·ηa(ξ, η)ϕ0(ξ)ϕ0(η)dξdη

is such that |K0(x, y)| . 〈x〉−3〈y〉−3 for any (x, y), after the first part of corollary A.2 (i). Therefore∣∣∣∣∫ a(ξ, η)ϕ0(ξ)ϕ0(η)û1(ξ − η)û2(η)û3(−ξ)dξdη
∣∣∣∣

=

∣∣∣∣∫ K0(z − x, x− y)u1(x)u2(y)u3(z)dxdydz

∣∣∣∣
.
∫
〈z − x〉−3〈x− y〉−3|u1(x)||u2(y)||u3(z)|dxdydz

. ‖u2‖L∞
∫
〈x〉−3|u1(z − x)||u3(z)|dxdz . ‖u1‖L2‖u2‖L∞‖u3‖L2 ,

where last inequality obtained by Hölder inequality.

For positive indices l, k such that l > k + N0 ≥ 0 (resp. |l − k| ≤ N0), for a suitably large integer
N0 > 1, we have that |ξ| < |η| ∼ |ξ − η| (resp. |ξ| ∼ |η|) on the support of ϕk(ξ)ϕl(η). If we define
al>k+N0(ξ, η) := a(ξ, η)〈η〉−1 and a|l−k|≤N0

(ξ, η) := a(ξ, η)〈η〉−7, it is a computation to check that, for
any α, β ∈ N2 with |α|, |β| ≤ 3,

|∂αξ ∂βη [al>k+N0
(2kξ, 2lη)]|+ |∂αξ ∂βη a|l−k|≤N0

(ξ, η)| . 2−l.

Hence, their associated kernels Kl>k+N0
(x, y) and K|l−k|≤N0

(x, y) are such that

|Kl>k+N0
(x, y)|+ |K|l−k|≤N0

(x, y)| . 22k2l〈2kx〉−3〈2ly〉−3, ∀(x, y) ∈ R2 × R2

as follows after a change of coordinates and some integrations by parts, and for any l > k +N0∣∣∣∣∫ a(ξ, η)ϕk(ξ)ϕl(η)û1(ξ − η)û2(η)û3(−ξ)dξdη
∣∣∣∣

=

∣∣∣∣∫ Kl>k+N0
(z − x, x− y)u1(x)[〈Dx〉u2](y)u3(z)dxdydz

∣∣∣∣
.22k2l

∣∣∣∣∫ 〈2k(z − x)〉−3〈2l(x− y)〉−3|u1(x)||〈Dx〉u2(y)||u3(z)|dxdydz
∣∣∣∣

.2−
k
2 2−

l
2 ‖u1‖L2‖u2‖H1,∞‖u3‖L2 ,

(A.20)
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while for |l − k| ≤ N0∣∣∣∣∫ a(ξ, η)ϕl(ξ)ϕl(η)û1(ξ − η)û2(η)û3(−ξ)dξdη
∣∣∣∣

=

∣∣∣∣∫ K|l−k|≤N0
(z − x, x− y)u1(x)[〈Dx〉7u2](y)u3(z)dxdydz

∣∣∣∣
.23l

∣∣∣∣∫ 〈2l(z − x)〉−3〈2l(x− y)〉−3|u1(x)||〈Dx〉7u2(y)||u3(z)|dxdydz
∣∣∣∣

.2−l‖u1‖L2‖u2‖H7,∞‖u3‖L2 .

(A.21)

Finally, when positive indices l, k are such that k > l −N0 we observe that frequencies ξ and ξ − η are
equivalent and of size 2k on the support of ϕk(ξ)ϕl(η). If we take ak>l−N0

(ξ, η) equal to al>k+N0
(ξ, η),

denote by Kk>l−N0
(x, y) its associated kernel (which is hence equal to Kl>k+N0

(x, y)), and introduce two
new smooth cut-off function ϕ1, ϕ2 ∈ C∞0 (R2) equal to 1 on the support of ϕ, together with operators
∆1
k := ϕ1(2−kDx),∆2

k := ϕ2(2−kDx), we deduce that∣∣∣∣∫ a(ξ, η)ϕk(ξ)ϕl(η)û1(ξ − η)û2(η)û3(−ξ)dξdη
∣∣∣∣

=

∣∣∣∣∫ Kk>l−N0
(z − x, x− y)[∆1

ku1](x)[〈Dx〉u2](y)[∆2
ku3](z)dxdydz

∣∣∣∣
.22k2l

∣∣∣∣∫ 〈2k(z − x)〉−3〈2l(x− y)〉−3|[∆1
ku1](x)||〈Dx〉u2(y)||[∆2

ku3](z)|dxdydz
∣∣∣∣

.2−l‖∆1
ku1‖L2‖u2‖H1,∞‖∆2

ku3‖L2 .

Combining decomposition (A.19) together with (A.20), (A.21) and Cauchy-Schwarz inequality we finally
obtain that ∣∣∣∣∫ a(ξ, η)û1(ξ − η)û2(η)û3(−ξ)dξdη

∣∣∣∣ . ‖u1‖L2‖u2‖H7,∞‖u3‖L2 ,

Lemma A.6. Let ε > 0 be small, N ∈ N∗, and σN (ξ, η) : R2 × R2 → C be supported for
|ξ| ≤ ε〈η〉 and such that, for any α, β ∈ N2,

|∂αξ ∂βη σN (ξ, η)| . |ξ|N+1−|α|〈η〉−N−|β|, ∀(ξ, η) ∈ R2 × R2.

For any (j1, j2, j3) ∈ {+,−}3 let also

(A.22) σ̃N(j1,j2,j3)(ξ, η) :=
σN (η, ξ − η)

j1〈ξ − η〉+ j2|η| − j3〈ξ〉
.

Then for any α, β ∈ N2

(A.23)
∣∣∣∂αξ ∂βη σ̃N(j1,j2,j3)(ξ, η)

∣∣∣ .α,β 〈ξ − η〉2−N+|α|+2|β||η|N−|β|, ∀(ξ, η) ∈ R2 × R2

and if N ≥ 15, for any u,w ∈ L2(R2), v ∈ HN+3,∞(R2),

(A.24)
∣∣∣∣∫ σ̃N(j1,j2,j3)(ξ, η)û(ξ − η)v̂(η)ŵ(−ξ)dξdη

∣∣∣∣ . ‖u‖L2‖v‖HN+3,∞‖w‖L2 .

Proof. From definition (A.22) function σ̃N(j1,j2,j3) can be written as follows

σ̃N(j1,j2,j3)(ξ, η) =
j1〈ξ − η〉+ j2|η|+ j3〈ξ〉

2j1j2〈ξ − η〉|η| − 2(ξ − η) · η
σN(j1,j2,j3)(η, ξ − η).
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We observe that

[j1j2〈ξ − η〉|η| − (ξ − η) · η]−1 . 〈ξ − η〉|η|−1, ∀(ξ, η) ∈ R2 × R2

and that for any multi-indices α, β ∈ N2 of positive length∣∣∂αξ [(j1j2〈ξ − η〉|η| − (ξ − η) · η)−1
]∣∣

.
∑

1≤|α1|≤|α|

|j1j2〈ξ − η〉|η| − (ξ − η) · η|−1−|α1| |η||α1|〈ξ − η〉−(|α|−|α1|),

∣∣∣∂βη [(j1j2〈ξ − η〉|η| − (ξ − η) · η)−1
]∣∣∣

.
∑

0≤|β1|<|β|

|j1j2〈ξ − η〉|η| − (ξ − η) · η|−1−(|β|−|β1|)
∑

i+j=|β|−2|β1|
i,j≤|β|−|β1|

〈ξ − η〉i|η|j .

From above inequalities we hence deduce that on the support of σN(j1,j2,j3)(η, ξ − η) (i.e. for
|η| ≤ ε|ξ − η|), for any α, β ∈ N2,∣∣∣∂αξ ∂βη [(j1j2〈ξ − η〉|η| − (ξ − η) · η)−1

]∣∣∣ .α,β 〈ξ − η〉1+|α|+2|β||η|−1−|β|,

and therefore that∣∣∣∣∂αξ ∂βη [ j1〈ξ − η〉+ j2|η|+ j3〈ξ〉
2j1j2〈ξ − η〉|η| − 2(ξ − η) · η

]∣∣∣∣ .α,β 〈ξ − η〉2+|α|+2|β||η|−1−|β| + 〈ξ〉〈ξ − η〉1+|α|+2|β||η|−1−|β|.

The above estimates, summed up with the fact

|∂αξ ∂βη [σN(j1,j2,j3)(η, ξ − η)]| .α,β 〈ξ − η〉−N−|α||η|N+1−|β|,

gives the first part of the statement.

Let us now suppose that N ≥ 15 and take χ ∈ C∞0 (R2) equal to 1 in a neighbourhood of the
origin. We have that∫

σ̃N(j1,j2,j3)(ξ, η)û(ξ − η)v̂(η)ŵ(−ξ)dξdη =

∫
KN

0 (z − x, x− y)u(x)v(y)w(z)dxdydz

+

∫
KN

1 (z − x, x− y)u(x)[〈Dx〉N+3v](y)w(z)dxdydz,

with

KN
k (x, y) :=

∫
eix·ξ+iy·ησ̃N,k(j1,j2,j3)(ξ, η)dξdη,

σ̃N,0(j1,j2,j3)(ξ, η) = σ̃N(j1,j2,j3)(ξ, η)χ(η) and σ̃N,1(j1,j2,j3)(ξ, η) = σ̃N(j1,j2,j3)(ξ, η)〈η〉−N−3(1− χ)(η).

Then inequality (A.23) is obtained using the fact that, for any ũ, w̃ ∈ L2, ṽ ∈ L∞,∫
〈z − x〉−3〈x− y〉−3|ũ(x)||ṽ(y)||w̃(z)|dxdydz . ‖v‖L∞

∫
〈z〉−3|ũ(x)||w̃(z − x)|dxdz

. ‖u‖L2‖v‖L∞‖w‖L2 .
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In the following lemma we derive some results on the Sobolev continuity of the bilinear integral
operator

(u, v) 7→
∫
eix·ξD(j1,j2)(ξ, η)û(ξ − η)v̂(η)dξdη,

with D(j1,j2) defined in (3.1.14). We warn the reader that we are not going to take advantage
of factor (1 − ξ−η

〈ξ−η〉 ·
η
〈η〉) in D(j1,j2)(ξ, η) when deriving the estimates mentioned below, since

the Sobolev continuity of the above integral operator does not depend on the null structure
Q0(v, ∂1v) we chose for the Klein-Gordon self-interaction in the wave equation in system (1.1.1).

Lemma A.7. Let ρ ∈ N and D(ξ, η) a function satisfying, for any multi-indices α, β ∈ N2, the
following:

(i) if |ξ| . 1,

|∂βηD(ξ, η)| .β 〈η〉ρ+|β|,

|∂αξ ∂βηD(ξ, η)| .α,β 〈η〉ρ+|α|+|β| +
∑

|α1|+|α2|=|α|

|ξ|1−|α1|〈η〉ρ+|α2|+|β|, |α| ≥ 1;

(ii) for |ξ| & 1, |η| . 〈ξ − η〉,

|∂αξ ∂βηD(ξ, η)| .α,β 〈ξ − η〉ρ+|α|+|β|;

(iii) for |ξ| & 1, |η| & 〈ξ − η〉:

|∂αξ ∂βηD(ξ, η)| .α,β 〈η〉ρ+|α|+|β|.

Then for any s ≥ 0, any u, v ∈ Hs+ρ+13(R2) ∩ L∞(R2) (resp. u, v ∈ Hs+ρ+13,∞(R2) ∩ L2(R2))∥∥∥∥∫ eix·ξD(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
Hs(dx)

. ‖u‖Hs+ρ+13‖v‖L∞ + ‖u‖L∞‖v‖Hs+ρ+13

(or . ‖u‖Hs+ρ+13,∞‖v‖L2 + ‖u‖L2‖v‖Hs+ρ+13,∞),

(A.25a)

and for any u, v ∈ Hs+ρ+13,∞(R2)
(A.25b)∥∥∥∥∫ eix·ξD(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
Hs,∞(dx)

. ‖u‖Hs+ρ+13,∞‖v‖L∞ + ‖u‖L∞‖v‖Hs+ρ+13,∞ .

Furthermore, if φ ∈ C∞0 (R2), t ≥ 1, σ > 0 small, there exists δ > 0 depending linearly on σ,
such that ∥∥∥∥φ(t−σDx)

∫
eix·ξD(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
Hs(dx)

. tδ‖u‖Hρ+13‖v‖L∞

(or . tδ‖u‖Hρ+13,∞‖v‖L2)

(or . tδ‖u‖L∞‖v‖Hρ+13),

(or . tδ‖u‖L2‖v‖Hρ+13,∞),

(A.26a)

∥∥∥∥φ(t−σDx)

∫
eix·ξD(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
Hs,∞

. tδ‖u‖Hρ+13,∞‖v‖L∞

(or . tδ‖u‖L∞‖v‖Hρ+13,∞).

(A.26b)

Finally, if for any α, β ∈ N2 D(ξ, η) satisfies (ii), (iii) when |ξ| & 1, together with:
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(̃i) if |ξ| . 1

|∂αξ ∂βη D̃(ξ, η)| .α,β 〈η〉ρ+|α|+|β| +
∑

|α1|+|α2|=|α|

|ξ|−|α1|+1〈η〉ρ+|α2|+|β|,

then, for any u, v ∈ Hs+ρ+13(R2) ∩ L∞(R2),

(A.27a)∥∥∥∥∫ eix·ξD(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
Hs(dx)

. ‖u‖Hρ+10‖v‖L2 + ‖u‖Hs+ρ+13‖v‖L∞ + ‖u‖L∞‖v‖Hs+ρ+13

(or . ‖u‖L2‖v‖Hρ+10 + ‖u‖Hs+ρ+13,∞‖v‖L2 + ‖u‖L2‖v‖Hs+ρ+13,∞),

and for any u, v ∈ Hs+ρ+13,∞(R2), with u ∈ Hρ+10(R2) (or u ∈ L2(R2)),

(A.27b)
∥∥∥∥∫ eix·ξD(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
Hs,∞(dx)

.

‖u‖Hρ+10‖v‖L∞ + ‖u‖Hs+ρ+13,∞‖v‖L∞ + ‖u‖L∞‖v‖Hs+ρ+13,∞

(or . ‖u‖L2‖v‖Hρ+10,∞ + ‖u‖Hs+ρ+13,∞‖v‖L∞ + ‖u‖L∞‖v‖Hs+ρ+13,∞).

Proof. Let L(R2) denote either the L2(R2) space or the L∞(R2) one. After definition 1.2.1 (i)
of space Hs (resp. (iii) of Hs,∞), we should prove that the L2 norm (resp. the L∞) norm of

(A.28)
∫
eix·ξDs(ξ, η)û(ξ − η)v̂(η)dξdη,

with Ds(ξ, η) := D(ξ, η)〈ξ〉s, is bounded by the right hand side of (A.25a) and (A.26a) (resp.
(A.25b) and (A.26b)). Let us first take χ ∈ C∞0 (R2) equal to 1 in a neighbourhood of the origin
and split the above integral, distinguishing between bounded and unbounded frequencies ξ, as

(A.29)
∫
eix·ξDs(ξ, η)χ(ξ)û(ξ − η)v̂(η)dξdη +

∫
eix·ξDs(ξ, η)(1− χ)(ξ)û(ξ − η)v̂(η)dξdη.

On the support of χ(ξ) frequencies ξ − η, η are either bounded or equivalent, thus if

as0(ξ, η) :=


Ds(ξ, η)χ(ξ)〈ξ − η〉−ρ−10

or
Ds(ξ, η)χ(ξ)〈η〉−ρ−10

as0(ξ, η) satisfies (A.2) with gβ(η) = 〈η〉−3 for any |β| ≤ 3, after hypothesis (i) on D(ξ, η). Then
by (A.4) and depending on the choice of as0(ξ, η), we have that

(A.30a)∥∥∥∥∫ eix·ξDs(ξ, η)χ(ξ)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L(dx)

=

∥∥∥∥∫ eix·ξas0(ξ, η)〈Dx〉ρ+10u
∧

(ξ − η)v̂(η)dξdη

∥∥∥∥
L(dx)

. ‖〈Dx〉ρ+10u‖L‖v‖L∞(or ‖〈Dx〉ρ+10u‖L∞‖v‖L),

or

(A.30b)∥∥∥∥∫ eix·ξDs(ξ, η)χ(ξ)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L(dx)

=

∥∥∥∥∫ eix·ξas0(ξ, η)û(ξ − η)〈Dx〉ρ+10v
∧

(η)dξdη

∥∥∥∥
L(dx)

. ‖u‖L∞‖〈Dx〉ρ+10v‖L(or ‖u‖L‖〈Dx〉ρ+10v‖L∞).
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Successively, we consider a Littlewood-Paley decomposition in order to write

(A.31)
∫
eix·ξDs(ξ, η)(1− χ)(ξ)û(ξ − η)v̂(η)dξdη

=
∑

k≥1,l≥0

∫
eix·ξDs(ξ, η)(1− χ)(ξ)ϕk(ξ)ϕl(η)û(ξ − η)v̂(η)dξdη,

where ϕ0 ∈ C∞0 (R2), ϕk(ζ) = ϕ(2−kζ) with ϕ ∈ C∞0 (R2 \ {0}) for any k ∈ N∗. When positive
indices l, k are such that k > l +N0 for a certain large N0 ∈ N∗, we have that |η| < |ξ − η| and
|ξ − η| ∼ |ξ| ∼ 2k on the support of ϕk(ξ)ϕl(η). If

ask>l+N0
(ξ, η) := Ds(ξ, η)ϕk(ξ)ϕl(η)〈ξ − η〉−s−ρ−13,

by hypothesis (ii) we deduce that, for any α, β ∈ N2 of length less or equal than 3,

|∂αξ ∂βη [ask>l+N0
(2kξ, 2lη)]| . 2−k, ∀(ξ, η) ∈ R2 × R2

and its associated kernel

Ks
k>l+N0

(x, y) :=

∫
eix·ξ+iy·ηask>l+N0

(ξ, η)dξdη

verifies that
|Ks

k>l+N0
(x, y)| . 2k22l〈2kx〉−3〈2ly〉−3, ∀(x, y) ∈ R2 × R2

as one can check doing some integration by parts. Therefore∥∥∥∥∫ eix·ξDs(ξ, η)ϕk(ξ)ϕl(η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L(dx)

=

∥∥∥∥∫ Ks
k>l+N0

(x− y, y − z)[〈Dx〉s+ρ+13u](y)v(z)dydz

∥∥∥∥
L(dx)

. 2k22l

∥∥∥∥∫ 〈2k(x− y)〉−3〈2l(y − z)〉−3|〈Dx〉s+ρ+13u(y)||v(z)|dydz
∥∥∥∥
L(dx)

. 2k22l

∫
〈2ky〉−3〈2lz〉−3‖[〈Dx〉s+ρ+13u](· − y)v(· − y − z)‖L(dx)dydz

. 2−
k
2 2−

l
2 ‖〈Dx〉s+ρ+13u‖L‖v‖L∞ ( or 2−

k
2 2−

l
2 ‖〈Dx〉s+ρ+13u‖L∞‖v‖L).

(A.32)

For indices l, k such that 1 ≤ k ≤ l+N0 we have that |ξ− η| . |η| on the support of ϕk(ξ)ϕl(η).
If

ask≤l+N0
(ξ, η) := Ds(ξ, η)ϕk(ξ)ϕl(η)〈η〉−s−ρ−13

by hypothesis (iii) for any multi-indices α, β of length less or equal than 3,

|∂αξ ∂βη [ask≤l+N0
(2kξ, 2lη)]| .α,β 2−l,

and its associated kernel Ks
k≤l+N0

(x, y) is such that

Ks
k≤l+N0

(x, y)| . 22k2l〈2kx〉−3〈2ly〉−3, ∀(x, y) ∈ R2 × R2.

Consequently ∥∥∥∥∫ eix·ξDs(ξ, η)ϕk(ξ)ϕl(η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L(dx)

. 2−
k
2 2−

l
2 ‖u‖L∞‖〈Dx〉s+ρ+13v‖L (or 2−

k
2 2−

l
2 ‖u‖L‖〈Dx〉s+ρ+13v‖L∞),

(A.33)
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and inequality (A.25a) (resp. (A.25b)) is hence obtained by combining inequalities (A.30),
(A.32), (A.33) with L = L2 (resp. L = L∞), and taking the sum over k ≥ 1, l ≥ 0.

In order to derive inequalities (A.26), we first observe that we can reduce to study the L2 and
L∞ norm of (A.28) with s = 0 and D(ξ, η) multiplied by φ(t−σξ), up to a factor tsσ. Here we use
again decompositions (A.29), (A.31), and only need to modify some of the multipliers defined
above, depending on if we want derivatives falling entirely on u or rather on v. In fact, in order
to prove the first two inequalities in (A.26a) and the first one in (A.26b) we introduce

aφl≤k+N0
(ξ, η) := D(ξ, η)χ(t−σξ)ϕk(ξ)ϕl(η)

aφl>k+N0
(ξ, η) := D(ξ, η)χ(t−σξ)ϕk(ξ)ϕl(η)〈ξ − η〉−ρ−13

and deduce from hypothesis (ii) − (iii) on D(ξ, η) and the fact that |ξ| . tσ on the support of
φ(t−σξ) that, for any α, β ∈ N2 of length less or equal than 3,

|∂αξ ∂βη [aφl≤k+N0
(2kξ, 2lη)]| . tδ2−k and |∂αξ ∂βη [aφl>k+N0

(2kξ, 2lη)]| . 2−l

with δ > 0, δ → 0 as σ → 0. On the one hand, kernel Kφ
l≤k+N0

(x, y) associated to aφl≤k+N0
(ξ, η)

verifies
|Kφ

l≤k+N0
(x, y)| . tδ2k22l〈2kx〉−3〈2ly〉−3, ∀(x, y) ∈ R2 × R2

and then for any l, k such that l ≤ k +N0∥∥∥∥∫ eix·ξD(ξ, η)φ(tσξ)ϕk(ξ)ϕl(η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L(dx)

=

∥∥∥∥∫ Kφ
l≤k+N0

(x− y, y − z)u(y)v(z)dydz

∥∥∥∥
L(dx)

. tδ2−
k
2 2−

l
2 ‖u‖L‖v‖L∞

(or . tδ2−
k
2 2−

l
2 ‖u‖L∞‖v‖L).

(A.34)

On the other hand, kernel Kφ
l>k+N0

(x, y) associated to aφl>k+N0
(ξ, η) satisfies

|Kφ
l>k+N0

(x, y)| . 22k2l〈2kx〉−3〈2ly〉−3, ∀(x, y) ∈ R2 × R2

so for indices l, k such that l > k +N0∥∥∥∥∫ eix·ξD(ξ, η)φ(tσξ)ϕl(ξ)ϕl(η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L(dx)

=

∥∥∥∥∫ Kφ
l>k+N0

(x− y, y − z)[〈Dx〉ρ+13u](y)v(z)dydz

∥∥∥∥
L(dx)

. 2−
k
2 2−

l
2 ‖〈Dx〉ρ+13u‖L‖v‖L∞

(or . 2−
k
2 2−

l
2 ‖〈Dx〉ρ+13u‖L∞‖v‖L)

)
.

Combining these two inequalities with (A.30a) and taking the sum over k ≥ 1, l ≥ 0 we obtain
the wished estimates.

Last two inequalities in (A.26a) and last one in (A.26b) are instead obtained combining (A.30b)
with (A.33) (that evidently holds for Ds(ξ, η) replaced with D(ξ, η)φ(tσξ)) and (A.34).

Finally, last part of the statement follows from the same argument of above, with the only
difference that, after hypothesis (̃i), multiplier ãs0(ξ, η) := D̃(ξ, η)χ(ξ)〈η〉−ρ−10 satisfies (A.5)
with |gβ(η)| . 〈η〉−3 for any |β| ≤ 3, then by (A.7) we have that∥∥∥∥∫ eix·ξD̃s(ξ, η)χ(ξ)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L(dx)

=

∥∥∥∥∫ eix·ξãs0(ξ, η)〈Dx〉ρ+10u
∧

(ξ − η)v̂(η)dξdη

∥∥∥∥
L(dx)

. ‖〈Dx〉ρ+10u‖L2‖v‖L,
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or ∥∥∥∥∫ eix·ξD̃s(ξ, η)χ(ξ)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L(dx)

=

∥∥∥∥∫ eix·ξãs0(ξ, η)û(ξ − η)〈Dx〉ρ+10v
∧

(η)dξdη

∥∥∥∥
L(dx)

. ‖u‖L2‖〈Dx〉ρ+10v‖L.

Lemma A.8. Let j ∈ {+,−}, φ ∈ C∞0 (R2), t ≥ 1, σ > 0, and Dj(ξ, η) be the multiplier
introduced in (3.1.14). For any s ≥ 0, i = 1, 2, Dj(ξ, η) and ξi

|ξ|Dj(ξ, η) satisfy inequalities
(A.25), (A.26) with ρ = 2, and

(A.35a)∥∥∥∥∫ eix·ξ∂ξDj(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
Hs(dx)

. ‖u‖H13‖v‖L2 + ‖u‖Hs+16‖v‖L∞ + ‖u‖L∞‖v‖Hs+16

(resp. . ‖u‖H13‖v‖L2 + ‖u‖Hs+16,∞‖v‖L2 + ‖u‖L2‖v‖Hs+16,∞),

(A.35b)
∥∥∥∥∫ eix·ξ∂ξDj(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
Hs,∞(dx)

. ‖u‖H13‖v‖L∞ + ‖u‖Hs+16,∞‖v‖L∞ + ‖u‖L∞‖v‖Hs+16,∞ ,

together with

(A.36a)
∥∥∥∥φ(t−σDx)

∫
eix·ξ∂ξDj(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
Hs(dx)

. tδ‖u‖H13 (‖v‖L2 + ‖v‖L∞)

(or . tδ‖u‖L2 (‖v‖H10 + ‖v‖H13,∞)),

(A.36b)∥∥∥∥φ(t−σDx)

∫
eix·ξ∂ξDj(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
Hs,∞(dx)

. tδ (‖u‖H13 + ‖u‖H16,∞) ‖v‖L∞

(or . tδ (‖u‖L2 + ‖u‖L∞) ‖v‖H16,∞).

Moreover, if Ω = x1∂2 − x2∂1 and Zn = xn∂t + t∂n, n = 1, 2,

(A.37a)
∥∥∥∥φ(t−σDx)Ω

∫
eix·ξDj(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L2(dx)

. tδ [(‖u‖L2 + ‖Ωu‖L2) ‖v‖H17,∞ + ‖u‖H15,∞‖Ωv‖L2 ] ,

(A.37b)
∥∥∥∥φ(t−σDx)Zn

∫
eix·ξDj(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L2(dx)

. tδ [‖∂tu‖L2‖v‖H13 + ‖u‖H13‖∂tv‖L2 + ‖Znu‖L2‖v‖H15,∞ + ‖u‖H15,∞‖Znv‖L2 ] ,

(A.37c)
∥∥∥∥φ(t−σDx)DjZn

∫
eix·ξDj(ξ, η)û(ξ − η)v̂(η)dξdη

∥∥∥∥
L2(dx)

. tδ [‖∂tu‖L2‖v‖H14,∞ + ‖u‖H14,∞‖∂tv‖L2 + ‖Znu‖L2‖v‖H17,∞ + ‖u‖H17,∞‖Znv‖L2 ] ,

with δ > 0, δ → 0 as σ → 0.
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Proof. The statement follows essentially from the observation that, for j ∈ {+,−}, functions
Dj(ξ, η) and [(ξi∂ξj )

k1(ηi∂ηj )
k2Dj ](ξ, η) satisfy hypothesis (i) − (iii) of lemma A.7 with ρ = 2

and ρ = 2 + 2(k1 + k2) respectively, while ∂ξDj(ξ, η) satisfies (̃i), (ii), (iii) with ρ = 3. In fact,
we first remark that, for every ξ, η, denominator 1 + 〈ξ − η〉〈η〉 − (ξ − η) · η is bounded from
below by a positive constant; secondly, the derivation of that denominator gives rise to losses in
〈ξ − η〉, 〈η〉, as

∂ξk(1 + 〈ξ − η〉〈η〉 − (ξ − η) · η) =
ξk − ηk
〈ξ − η〉

〈η〉+ ηk,

∂ηk(1 + 〈ξ − η〉〈η〉 − (ξ − η) · η) =
ξk − ηk
〈ξ − η〉

〈η〉+ 〈ξ − η〉 ηk
〈η〉

+ ηk − (ξk − ηk).

For |ξ| . 1 we have that 〈ξ − η〉 . 〈η〉, so for any α, β ∈ N2∣∣∣∣∂αξ ∂βη [ j〈ξ − η〉+ j〈η〉
1 + 〈ξ − η〉〈η〉 − (ξ − η) · η

η1

]∣∣∣∣ .α,β 〈η〉2+|α|+|β|,

while ∣∣∣∣∂βη [ |ξ|
1 + 〈ξ − η〉〈η〉 − (ξ − η) · η

η1

]∣∣∣∣ .β 〈η〉1+|β|,∣∣∣∣∂αξ ∂βη [ |ξ|
1 + 〈ξ − η〉〈η〉 − (ξ − η) · η

η1

]∣∣∣∣ .α,β ∑
|α1|+|α2|=|α|

|ξ|1−|α1|〈η〉1+|α2|+|β|, |α| ≥ 1.

For |ξ| & 1 and |η| . 〈ξ − η〉 (resp. |η| & 〈ξ − η〉) we have that |ξ| . |ξ − η| (resp.|ξ| . |η|), so
each time a derivative hits the denominator of Dj(ξ, η) we lose a factor 〈ξ−η〉 (resp. 〈η〉). Hence
lemma A.7 immediately implies inequalities (A.25), (A.26) with D = Dj and ρ = 2, together
with (A.35), (A.36), while inequalities (A.37) follow from (A.26) and the fact that, after some
integration by parts,

Ω

∫
eix·ξDj(ξ, η)û(ξ − η)v̂(η)dξdη

=
∑

k1+k2+k3+k4=1

∫
eix·ξ[(ξ1∂ξ2 − ξ2∂ξ1)k1(η1∂η2 − η2∂η1)k2Dj ](ξ, η)Ω̂k3u(ξ − η)Ωk4v

∧

(η)dξdη,

Zn

∫
eix·ξDj(ξ, η)û(ξ − η)v̂(η)dξdη

=

∫
eix·ξ[∂ξnDj ](ξ, η)Dt

[
û(ξ − η)v̂(η)

]
dξdη +

∫
eix·ξ[∂ηnDj ](ξ, η)û(ξ − η)D̂tv(η)dξdη

+

∫
eix·ξDj(ξ, η)Ẑnu(ξ − η)v̂(η)dξdη +

∫
eix·ξDj(ξ, η)û(ξ − η)Ẑnv(η)dξdη,

and, if δjn denotes the Kronecker delta,

DjZn

∫
eix·ξDj(ξ, η)û(ξ − η)v̂(η)dξdη

= δjn

∫
eix·ξDj(ξ, η)Dt [û(ξ − η)v̂(η)] dξdη

+

∫
eix·ξ∂ξn [ξjDj ](ξ, η)Dt

[
û(ξ − η)v̂(η)

]
dξdη +

∫
eix·ξ∂ηn [ξjDj ](ξ, η)û(ξ − η)D̂tv(η)dξdη

+

∫
eix·ξξjDj(ξ, η)Ẑnu(ξ − η)v̂(η)dξdη +

∫
eix·ξξjDj(ξ, η)û(ξ − η)Ẑnv(η)dξdη.

.
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Appendix B

The aim of this chapter is to show how, from the bootstrap assumptions (1.1.11), it is possible to
derive a moderate growth in time for the L2 norm of Lµṽ, with 0 ≤ |µ| ≤ 2, and of Ωµ

hM
ν ũΣ,k,

with µ, |ν| = 0, 1. These estimates are fundamentally used in propositions 3.2.7 and 3.3.7.
Moreover, we also prove in lemma B.4.14 a sharp decay estimate for the uniform norm of the
Klein-Gordon solution when one Klainerman vector field is acting on it (and when considered for
frequencies less or equal than tσ, with σ > 0 small). We are hence going to assume for the rest of
this chapter that a-priori estimates (1.1.11) are satisfied in interval [1, T ], for some fixed T > 1,
and that ε0 < (2A+B)−1. We remind that Γ generally denotes one of the admissible vector fields
belonging to Z (see (1.1.7)) and that, for a multi-index I = (i1, . . . , in) with ij ∈ {1, . . . , 5} for
j = 1, . . . , n, ΓI = Γi1 · · ·Γin . Also, we warn the reader that any norm X (X = L∞, Hs, Hs

h...)
of w = w(t, x) is here considered with respect to spatial variable x. We will often write ‖ · ‖X in
place of ‖ · ‖X(dx).

B.1 Some preliminary lemmas

In the current section we list, on the one hand, some inequalities concerning the Hs and Hs,∞

norm of the quadratic non-linearities Qw
0 (v±, D1v±), Qkg

0 (v±, D1u±) (see lemmas B.1.1, B.1.2),
as they are very frequently recalled in the second part of the paper. On the other hand, we
introduce some preliminary small results that will be useful in sections B.2 and B.3.

For seek of compactness, we denote Qw
0 (v±, D1v±) and Qkg

0 (v±, D1u±) by NLw and NLkg respec-
tively, i.e.

NLw :=
i

4

[
(v+ + v−)D1(v+ + v−)− Dx

〈Dx〉
(v+ − v−) · DxD1

〈Dx〉
(v+ − v−)

]
,(B.1.1a)

NLkg :=
i

4

[
(v+ + v−)D1(u+ + u−)− Dx

〈Dx〉
(v+ − v−) · DxD1

|Dx|
(u+ − u−)

]
.(B.1.1b)

We recall the result of lemma 1.2.40, that can be also stated in the classical setting and says
that, for any real positive s > s′ and w ∈ Hs(R2),

(B.1.2) ‖(1− χ)(t−σDx)w‖Hs′ ≤ Ct−σ(s−s′)‖w‖Hs , ∀s > s′.

It is also useful to remind, in view of upcoming lemmas, that the L2 norm of (ΓIu)± and (ΓIv)±
is estimated with:

En(t;W )
1
2 , whenever |I| ≤ n and ΓI is a product of spatial derivatives;

Ek3 (t;W )
1
2 , whenever |I| ≤ 3 and at most 3− k vector fields in ΓI , with 0 ≤ k ≤ 2

belong to {Ω, Zm,m = 1, 2}.
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As assumed in (1.1.11c), (1.1.11d), such energies have a moderate growth in time and a hierarchy
is established among them in the sense that

0 < δ � δ2 � δ1 � δ0 � 1.

We warn the reader that this hierarchy is often implicitly used throughout this chapter.

Lemma B.1.1. For any s ≥ 0, any θ ∈]0, 1[, NLw satisfies the following inequalities:

‖NLw(t, ·)‖L2 . ‖V (t, ·)‖H1,∞‖V (t, ·)‖H1 ,(B.1.3a)

‖NLw(t, ·)‖L∞ . ‖V (t, ·)‖2H2,∞ ,(B.1.3b)
‖NLw(t, ·)‖Hs . ‖V (t, ·)‖Hs+1‖V (t, ·)‖H1,∞ ,(B.1.3c)

‖NLw(t, ·)‖Hs,∞ . ‖V (t, ·)‖2−θ
Hs+1,∞‖V (t, ·)‖θHs+3 ,(B.1.3d)

‖ΩNLw(t, ·)‖L2 . ‖V (t, ·)‖H2,∞ (‖V (t, ·)‖L2 + ‖ΩV (t, ·)‖H1) ,(B.1.3e)

while for NLkg we have that:

‖NLkg(t, ·)‖L2 . ‖V (t, ·)‖H1,∞‖U(t, ·)‖H1 ,(B.1.4a)
‖NLkg(t, ·)‖L∞ . ‖V (t, ·)‖H1,∞ (‖U(t, ·)‖H2,∞ + ‖R1U(t, ·)‖H2,∞) ,(B.1.4b)

‖NLkg(t, ·)‖Hs . ‖V (t, ·)‖Hs (‖U(t, ·)‖H1,∞ + ‖R1U(t, ·)‖H1,∞) + ‖V (t, ·)‖L∞‖U(t, ·)‖Hs+1 ,
(B.1.4c)

(B.1.4d)

‖NLkg(t, ·)‖Hs,∞ . ‖V (t, ·)‖1−θHs,∞‖V (t, ·)‖θHs+2 (‖U(t, ·)‖H1,∞ + ‖R1U(t, ·)‖H1,∞)

+ ‖V (t, ·)‖L∞
(
‖U(t, ·)‖1−θ

Hs+1,∞ + ‖R1U(t, ·)‖1−θ
Hs+1,∞

)
‖U(t, ·)‖θHs+3 ,

(B.1.4e)

‖ΩNLkg(t, ·)‖L2 . (‖V (t, ·)‖L2 + ‖ΩV (t, ·)‖L2) (‖U(t, ·)‖H2,∞ + ‖R1U(t, ·)‖H2,∞)

+ ‖V (t, ·)‖H1,∞‖ΩU(t, ·)‖H1 .
(B.1.4f)

Proof. Inequalities (B.1.3a), (B.1.3b), (B.1.4a), and (B.1.4b) are straightforward. The same is
for (B.1.3e) and (B.1.4f) after commutation of Ω with the operators appearing in (2.1.1). All
other inequalities in the statement are rather derived using corollary A.4.

Lemma B.1.2. For any s ≥ 0, any θ ∈]0, 1[,

‖DtU(t, ·)‖Hs . ‖U(t, ·)‖Hs+1 + ‖V (t, ·)‖Hs+1‖V (t, ·)‖H1,∞ ,(B.1.5a)

‖DtU(t, ·)‖Hs,∞ . ‖U(t, ·)‖Hs+2,∞ + ‖V (t, ·)‖2−θ
Hs+1,∞‖V (t, ·)‖θHs+3 ,(B.1.5b)

‖DtR1U(t, ·)‖Hs,∞ . ‖R1U(t, ·)‖Hs+1,∞ + ‖V (t, ·)‖Hs+3‖V (t, ·)‖H1,∞ ,(B.1.5c)
‖DtΩU(t, ·)‖L2 ≤ ‖ΩU(t, ·)‖H1 + ‖V (t, ·)‖H2,∞ (‖V (t, ·)‖L2 + ‖ΩV (t, ·)‖H1) ,(B.1.5d)

while

‖DtV (t, ·)‖Hs . ‖V (t, ·)‖Hs+1 + ‖V (t, ·)‖Hs (‖U(t, ·)‖H1,∞ + ‖R1U(t, ·)‖H1,∞)

+ ‖V (t, ·)‖L∞‖U(t, ·)‖Hs+1 ,
(B.1.6a)

‖DtV (t, ·)‖Hs,∞ . ‖V (t, ·)‖Hs+1,∞ + ‖V (t, ·)‖1−θHs,∞‖V (t, ·)‖θHs+1 (‖U(t, ·)‖H1,∞ + ‖R1U(t, ·)‖H1,∞)

+ ‖V (t, ·)‖L∞
(
‖U(t, ·)‖1−θHs+1,∞ + ‖R1U(t, ·)‖1−θHs+1,∞

)
‖U(t, ·)‖θHs+3 ,

(B.1.6b)

‖DtΩV (t, ·)‖L2 ≤ ‖ΩV (t, ·)‖H1 + (‖V (t, ·)‖L2 + ‖ΩV (t, ·)‖L2) (‖U(t, ·)‖H2,∞ + ‖R1U(t, ·)‖H2,∞)

+ ‖V (t, ·)‖H1,∞‖ΩU(t, ·)‖H1 .

(B.1.6c)
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Proof. Straight consequence of the previous lemma and the fact that (u+, v+, u−, v−) is solution
to system (3.1.1). Observe that inequality (B.1.5c) is derived using that

‖R1NLw(t, ·)‖Hs,∞ . ‖NLw(t, ·)‖Hs+2

after classical Sobolev injection and continuity of R1 : Hs → Hs, for any s ≥ 0.

Lemma B.1.3. Let |I| = 1 be such that ΓI ∈ {Ω, Zm,m = 1, 2}. Then

(B.1.7) ‖DtU
I(t, ·)‖L2 . ‖U I(t, ·)‖H1 + ‖V (t, ·)‖H2,∞

[
‖V I(t, ·)‖H1

+ ‖V (t, ·)‖H1

(
1 +

1∑
µ=0

‖Rµ
1U(t, ·))‖H1,∞

)
+ ‖V (t, ·)‖L∞‖U(t, ·)‖H1

]
,

(B.1.8) ‖DtV
I(t, ·)‖L2 . ‖V I(t, ·)‖H1 +

1∑
µ=0

‖Rµ
1U(t, ·)‖H2,∞‖V I(t, ·)‖L2

+ ‖V (t, ·)‖H1,∞
(
‖U I(t, ·)‖H1 + ‖U(t, ·)‖H1 + ‖V (t, ·)‖H1,∞‖V (t, ·)‖H1

)
.

Proof. The result of the statement follows using the equation satisfied, respectively, by uI± and
vI±, together with (B.1.5a), (B.1.6a) with s = 0. In fact, by (1.1.15) with |I| = 1,

Dtu
I
± = ±|Dx|uI± +Qw

0 (vI±, D1v±) +Qw
0 (v±, D1v

I
±) +Gw

1 (v±, Dv±),

Dtv
I
± = ±〈Dx〉vI± +Qkg

0 (vI±, D1u±) +Qkg
0 (v±, D1u

I
±) +Gkg

1 (v±, Du±),

with Gw
1 (v±, ∂v±) = G1(v, ∂v), Gkg

1 (v±, Du±) = G1(v, ∂u) and G1 given by (1.1.16). Hence one
can estimate the L2 norm of the first two quadratic terms in above equalities with the L2 norm
of factors indexed in I times the L∞ norm of the remaining one, while the L2 norm of the latter
quadratic terms can be instead bounded by taking the L2 norm of one of the two factors times
the L∞ norm of the remaining one, indifferently. We choose here to consider the L2 norm of
factors Du±, Dv±, and use (B.1.5a), (B.1.6a) if the derivative D is a time derivative.

It is useful to remind that, if w(t, x) is solution to inhomogeneous half wave equation (3.2.5)
from (3.2.12a) we have that for any j, k ∈ {1, 2} and |µ| ≤ 1

xjDk

( Dx

|Dx|

)µ
w =

Dk

|Dx|

( Dx

|Dx|

)µ [
xj |Dx| − tDj +

1

2i

Dj

|Dx|

]
w + t

DjDk

|Dx|

( Dx

|Dx|

)µ
w

− 1

2i

DjDk

|Dx|2
( Dx

|Dx|

)µ
w + iOp

(
∂j

( ξk
|ξ|

( ξ
|ξ|

)µ)
|ξ|
)
w

= i
Dk

|Dx|

( Dx

|Dx|

)µ
Zjw +

Dk

|Dx|

( Dx

|Dx|

)µ
[xjf(t, x)]

+ t
DjDk

|Dx|

( Dx

|Dx|

)µ
w + iOp

(
∂j

( ξk
|ξ|

( ξ
|ξ|

)µ)
|ξ|
)
w.

(B.1.9a)

Analogously, if w(t, x) is solution to inhomogeneous half Klein-Gordon (3.2.7), from (3.2.12b)
we have that

xj

( Dx

〈Dx〉

)µ
w =

1

〈Dx〉

( Dx

〈Dx〉

)µ
[〈Dx〉xj − tDj ]w + t

Dj

〈Dx〉

( Dx

〈Dx〉

)µ
w + iOpwh

(
∂j

( ξ

〈ξ〉

)µ)
w

= i
1

〈Dx〉

( Dx

〈Dx〉

)µ
Zjw − i

Dj

〈Dx〉2
( Dx

〈Dx〉

)µ
w +

1

〈Dx〉

( Dx

〈Dx〉

)µ
[xjf(t, x)]

+ t
Dj

〈Dx〉

( Dx

〈Dx〉

)µ
w + iOpwh

(
∂j

( ξ

〈ξ〉

)µ)
w.

(B.1.9b)
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We also remind the reader about equivalence (2.1.16), so we won’t particularly care if we are
dealing with ΓIu±,Γ

Iv± instead of (ΓIu)±, (Γ
Iv)±, when we bound the L2 norm of those terms

with the energy defined in (1.1.9).

Lemma B.1.4. There exists a positive constant C > 0 such that, for every j = 1, 2, t ∈ [1, T ],

1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
H1

≤ CBεt1+ δ
2 ,(B.1.10a)

1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
H1,∞

≤ C(A+B)εt
δ2
2 ,(B.1.10b)

and

(B.1.11)
1∑
|µ|=0

∥∥∥∥xjDx

( Dx

|Dx|

)µ
u±(t, ·)

∥∥∥∥
L2

≤ CBεt1+ δ
2 .

Proof. We warn the reader that, throughout the proof, C will denote a positive constant that
may change line after line. As v+ = −v− (resp. u+ = −u−), it is enough to prove the statement
for v− (resp. for u−).

Since v− is solution to equation (3.2.7) with f = NLkg, from (B.1.9b) it immediately follows
that, for any |µ| ≤ 1,

(B.1.12a)
∥∥∥∥xj( Dx

〈Dx〉

)µ
v−(t, ·)

∥∥∥∥
H1

. ‖Zjv−(t, ·)‖L2 + t‖v−(t, ·)‖H1 + ‖xjNLkg(t, ·)‖L2(dx)

along with

(B.1.12b)
∥∥∥∥xj( Dx

〈Dx〉

)µ
v−(t, ·)

∥∥∥∥
H1,∞

≤ ‖Zjv−(t, ·)‖H2 + t‖v−(t, ·)‖H2,∞ + ‖xjNLkg(t, ·)‖L∞(dx),

derived by using the classical Sobolev injection. Observe that

(B.1.13a) ‖xjNLkg(t, ·)‖L∞ .
(
‖xjv−(t, ·)‖L∞ +

∥∥∥∥xj Dx

〈Dx〉
v−(t, ·)

∥∥∥∥
L∞

) 1∑
µ=0

‖Rµ
1U(t, ·)‖H2,∞ ,

but also

(B.1.13b) ‖xjNLkg(t, ·)‖L2 .
1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L2

(‖U(t, ·)‖H2,∞ + ‖R1U(t, ·)‖H2,∞) .

Thus, if ε0 > 0 is assumed sufficiently small to verify ε0 < (2A)−1, by injecting (B.1.13b) (resp.
(B.1.13a)) into (B.1.12a) (resp. in (B.1.12b)), and using a-priori estimates (1.1.11), we obtain
that

1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
H1

≤ C
[
E2

3(t;W )
1
2 + tE3(t;W )

1
2

]
+ ‖R1U(t, ·)‖H2,∞E0(t;W )

1
2

≤ CBεt1+ δ
2

(
resp.

1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
H1,∞

≤ CE2
3(t;W )

1
2 + t‖V (t, ·)‖H2,∞ ≤ C(A+B)εt

δ2
2

)
,
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and the conclusion of the proof of (B.1.10).

Analogously, from (B.1.9a) with w = u− and f = NLw,

1∑
|µ|=0

∥∥∥∥xjDk

( Dx

|Dx|

)µ
u−(t, ·)

∥∥∥∥
L2

. ‖Zju±(t, ·)‖L2 + t‖u±(t, ·)‖L2 + ‖xjNLw(t, ·)‖L2(dx)

≤ CBεt1+ δ
2 ,

as follows (1.1.11c), (1.1.11d), (B.1.10b) and the fact that

(B.1.14) ‖xjNLw(t, ·)‖L2 .
1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞
‖v±(t, ·)‖H1 .

Corollary B.1.5. There exists a constant C > 0 such that, for every j = 1, 2, t ∈ [1, T ],

‖xjNLkg(t, ·)‖L2 ≤ C(A+B)Bε2t
δ+δ2

2 ,(B.1.15a)

‖xjNLkg(t, ·)‖L∞ ≤ C(A+B)Bε2t−
1
2

+
δ2
2 ,(B.1.15b)

and

‖xjNLw(t, ·)‖L2 ≤ C(A+B)Bε2t
δ+δ2

2 ,(B.1.16a)

‖xjNLw(t, ·)‖L∞ ≤ C(A+B)Bε2t−1+
δ2
2 .(B.1.16b)

Proof. From

‖xjNLkg(t, ·)‖L2 .
1∑

µ=0

∥∥xj(Dx〈Dx〉−1)µv±(t, ·)
∥∥
L∞
‖u±(t, ·)‖H1 ,

and (B.1.13a), together with (B.1.14) and

‖xjNLw(t, ·)‖L∞ .
1∑

µ=0

∥∥xj(Dx〈Dx〉−1)µv±(t, ·)
∥∥
L∞
‖v±(t, ·)‖H2,∞ ,

we immediately derive the estimates of the statement using (B.1.10b) and a-priori estimates.

Lemma B.1.6. There exists a positive constant C > 0 such that, for any multi-index I of length
k, with 1 ≤ k ≤ 2, any j = 1, 2, t ∈ [1, T ],

(B.1.17)
1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
(ΓIv)±(t, ·)

∥∥∥∥
H1

+

∥∥∥∥xjDx

( Dx

|Dx|

)µ
(ΓIu)±(t, ·)

∥∥∥∥
L2

≤ CBεt1+
δ3−k

2 .

Proof. We warn the reader that, throughout the proof, C will denote a positive constant that
may change line after line. As ΓIw+ = −ΓIw−, for any I and w ∈ {v, u}, it is enough to prove
the statement for ΓIv−, ΓIu−.

From equalities (B.1.9) together with the fact that, for any multi-index I, (ΓIv)−, (ΓIu)− are
solution to

(B.1.18a) [Dt + 〈Dx〉](ΓIv)−(t, x) = ΓINLkg
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and

(B.1.18b) [Dt + 〈Dx〉](ΓIu)−(t, x) = ΓINLw

respectively, we derive that, for any j, k ∈ {1, 2},
(B.1.19a)

1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
(ΓIv)±(t, ·)

∥∥∥∥
H1

≤ ‖Zj(ΓIv)−(t, ·)‖L2 + t‖(ΓIv)−(t, ·)‖L2 + ‖xjΓINLkg(t, ·)‖L2

together with
(B.1.19b)

1∑
|µ|=0

∥∥∥∥xjDx

( Dx

|Dx|

)µ
(ΓIu)±(t, ·)

∥∥∥∥
L2

≤ ‖Zj(ΓIu)−(t, ·)‖L2+t‖(ΓIu)−(t, ·)‖L2+‖xjΓINLw(t, ·)‖L2 .

The first two quantities in above right hand sides are bounded by CBεt1+δ3−k/2 after (1.1.11d),
so the quantities that need to be estimated in order to prove the statement are the L2 norms of
xjΓ

INLkg, xjΓINLw, for 1 ≤ |I| ≤ 2.

We first prove (B.1.17) for |I| = 1 and ΓI = Γ, reminding that from (1.1.15),

(B.1.20a) ΓNLkg = Qkg
0

(
(Γv)±, D1u±

)
+Qkg

0

(
v±, D1(Γu)±

)
+Gkg

1

(
v±, Du±

)
and

(B.1.20b) ΓNLw = Qw
0

(
(Γv)±, D1v±

)
+Qw

0

(
v±, D1(Γv)±

)
+Gw

1

(
v±, Dv±

)
,

with Gkg
1

(
v±, Du±

)
= G1(v, ∂u), Gw

1

(
v±, Dv±

)
= G1(v, ∂v), and G1 given by (1.1.16).

By multiplying xj against the Klein-Gordon component in each product of ΓNLkg we find that

(B.1.21)

‖xjΓNLkg(t, ·)‖L2 .
1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
(Γv)−(t, ·)

∥∥∥∥
L2

(‖U(t, ·)‖H2,∞ + ‖R1U(t, ·)‖H2,∞)

+

1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞

(‖(Γu)±(t, ·)‖H1 + ‖u±(t, ·)‖H1 + ‖Dtu±(t, ·)‖L2) ,

which injected into (B.1.19a) with ΓI = Γ, together with (B.1.5a) with s = 0, (B.1.10b), and
a-priori estimates (1.1.11), gives that

1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
(ΓIv)±(t, ·)

∥∥∥∥
H1

≤ CBεt1+
δ2
2 .

Similarly, using the above estimate together with (B.1.6a) with s = 0, (B.1.10b) and a-priori
estimates, we derive that

‖xjΓNLw(t, ·)‖L2 .
1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
(Γv)−(t, ·)

∥∥∥∥
L2

‖v±(t, ·)‖H2,∞

+
1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞

(‖(Γv)±(t, ·)‖H1 + ‖v±(t, ·)‖H1 + ‖Dtv±(t, ·)‖L2)

≤ C(A+B)Bε2tδ2 .

(B.1.22)
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Plugging the above inequality in (B.1.19b) for ΓI = Γ and using again a-priori estimates we
deduce that

1∑
|µ|=0

∥∥∥∥xjDk

( Dx

|Dx|

)µ
(Γu)−(t, ·)

∥∥∥∥
L2

≤ CBεt1+
δ2
2 ,

and conclude the proof of (B.1.17) when |I| = 1.

When |I| = 2 we observe that, from (1.1.17),

(B.1.23) ΓINLkg = Qkg
0 (vI±, D1u±) +Qkg

0 (v±, D1u
I
±) +

∑
(I1,I2)∈I(I)
|I1|=|I2|=1

Qkg
0 (vI1± , D1u

I2
± )

+
∑

(I1,I2)∈I(I)
|I1|+|I2|≤1

cI1,I2Q
kg
0 (vI1± , Du

I2
± ),

with cI1,I2 ∈ {−1, 0, 1}. Since the L2 norm of terms indexed in I1, I2 with |I1| = |I2| = 1 can be
estimated using the Sobolev injection as follows:

(B.1.24)
∥∥∥xjQkg

0 (vI1± , D1u
I2
± )
∥∥∥
L2
.

1∑
|µ|=0

‖vI1± (t, ·)‖H2

∥∥∥∥xjD1

( Dx

|Dx|

)µ
uI2± (t, ·)

∥∥∥∥
L2

,

from (B.1.23) we derive that

‖xjΓINLkg‖L2 .
1∑
|J |≤2
|µ|,ν=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
(ΓJv)−(t, ·)

∥∥∥∥
L2

(
‖Rν

1u±(t, ·)‖H2,∞ + ‖DtR
ν
1u±(t, ·)‖H1,∞

)

+
1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞

[
‖uI±(t, ·)‖H1 +

∑
|J |≤1

(
‖uJ±(t, ·)‖H1 + ‖Dtu

J
±(t, ·)‖L2

)]
+

∑
|I1|=|I2|=1
|µ|=0,1

‖vI1± (t, ·)‖H2

∥∥∥∥xjD1

( Dx

|Dx|

)µ
uI2± (t, ·)

∥∥∥∥
L2

.

As before, injecting the above inequality into (B.1.19a), using a-priori estimates (1.1.11) and the
fact that ε0 < (2A)−1, together with (B.1.5a) with s = 0, (B.1.5b), (B.1.5c) with s = 1, (B.1.7),
(B.1.10b), and (B.1.17) with k = 1, we obtain that

(B.1.25)
1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
(ΓIv)−(t, ·)

∥∥∥∥
H1

≤ CBεt1+
δ1
2 .

Analogously, since

ΓINLw = Qw
0 (vI±, D1v±) +Qw

0 (v±, D1v
I
±) +

∑
(I1,I2)∈I(I)
|I1|=|I2|=1

Qw
0 (vI1± , D1v

I2
± )

+
∑

(I1,I2)∈I(I)
|I1|+|I2|<2

cI1,I2Q
w
0 (vI1± , Dv

I2
± ),
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we have that

‖xjΓINLw‖L2 .
∑
|J |≤2
|µ|=0,1

∥∥∥∥xj( Dx

〈Dx〉

)µ
(ΓJv)±(t, ·)

∥∥∥∥
L2

(
‖v±(t, ·)‖H2,∞ + ‖Dtv±(t, ·)‖H1,∞

)

+
1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
H1,∞

∑
|J |≤2

‖(ΓJv)±(t, ·)‖H1 +
∑
|J |≤1

‖Dtv
J
±(t, ·)‖L2


+

∑
|I1|=|I2|=1
|µ|=0,1

‖(ΓI1v)±(t, ·)‖H2

∥∥∥∥xj( Dx

〈Dx〉

)µ
(ΓI2v)±(t, ·)

∥∥∥∥
L2

,

so from (B.1.6a) with s = 0, (B.1.6b) with s = 1, (B.1.8), (B.1.10b), (B.1.17) with |I| = 1,
(B.1.25) and a-priori estimates (1.1.11), we deduce

1∑
|µ|=0

∥∥∥∥xjDk

( Dx

|Dx|

)µ
(ΓIu)−(t, ·)

∥∥∥∥
L2

. CBεt1+
δ1
2 ,

and hence conclude the proof of inequality (B.1.17) also for the case |I| = 2.

Corollary B.1.7. There exists a positive constant C > 0 such that, for any Γ ∈ Z, j = 1, 2,
and every t ∈ [1, T ],

‖xjΓNLkg(t, ·)‖L2 ≤ C(A+B)Bε2t
1
2

+
δ2
2 ,(B.1.26a)

‖xjΓNLw(t, ·)‖L2 ≤ C(A+B)Bε2tδ2 .(B.1.26b)

Proof. Estimate (B.1.26a) follows straightly from (B.1.21), (B.1.5a) with s = 0, and estimates
(1.1.11), (B.1.10b), and (B.1.17) with k = 1, while (B.1.26b) has already been proved in (B.1.22).

Lemma B.1.8. There exists a constant C > 0 such that, for every i, j = 1, 2, every t ∈ [1, T ],

1∑
|µ|=0

∥∥∥∥xjxk( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L2

≤ CBεt2+
δ2
2 ,(B.1.27a)

1∑
|µ|=0

∥∥∥∥xjxk( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞
≤ C(A+B)εt1+

δ2
2 .(B.1.27b)

Moreover, for any Γ ∈ Z,

(B.1.28)
1∑
|µ|=0

∥∥∥∥xixj( Dx

〈Dx〉

)µ
(Γv)±(t, ·)

∥∥∥∥
L2

≤ CBεt2+
δ2
2 .

Proof. The proof of the statement follows from the fact that, by multiplying (B.1.9b) by xi and
using that

‖xixjNLkg(t, ·)‖L2 .
1∑
|µ|=0

∥∥∥∥xixj( Dx

〈Dx〉

)µ
v−(t, ·)

∥∥∥∥
L2

(‖u±(t, ·)‖H2,∞ + ‖R1u±(t, ·)‖H2,∞)
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together with

‖xixjNLkg(t, ·)‖L∞ .
1∑
|µ|=0

∥∥∥∥xjxk( Dx

〈Dx〉

)µ
v−(t, ·)

∥∥∥∥
L∞

(‖u±(t, ·)‖H2,∞ + ‖R1u±(t, ·)‖H2,∞) ,

we derive that

1∑
|µ|=0

∥∥∥∥xjxk( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L2

.
1∑
|µ|=0

(‖xµi (Zjv)−(t, ·)‖L2 + t‖xµi v−(t, ·)‖L2)

+

1∑
µ=0

∥∥∥∥xixj( Dx

〈Dx〉

)µ
v−(t, ·)

∥∥∥∥
L2

(‖u±(t, ·)‖H2,∞ + ‖R1u±(t, ·)‖H2,∞) ,

and using that operator 〈Dx〉−1 is bounded from H1 to L∞

1∑
|µ|=0

∥∥∥∥xixj( Dx

〈Dx〉

)µ
v−(t, ·)

∥∥∥∥
L∞
.

1∑
k=0

(
‖xki (Zjv)−(t, ·)‖H1 + t‖xki v−(t, ·)‖H1,∞

)

+
1∑

k,|µ|=0

∥∥∥∥xki xj( Dx

〈Dx〉

)µ
v−(t, ·)

∥∥∥∥
L∞

(‖u±(t, ·)‖H2,∞ + ‖R1u±(t, ·)‖H2,∞) .

As ε0 > 0 verifies that ε0 < (2A)−1, inequality (B.1.10a), (B.1.17) with k = 1, and a-priori
estimates (1.1.11) imply that

1∑
|µ|=0

∥∥∥∥xixj( Dx

〈Dx〉

)µ
v−(t, ·)

∥∥∥∥
L2

. CBεt2+
δ2
2 ,

while from (B.1.10b), (B.1.17) with k = 1 and a-priori estimates,

1∑
|µ|=0

∥∥∥∥xixj( Dx

〈Dx〉

)µ
v−(t, ·)

∥∥∥∥
L∞
≤ C(A+B)εt1+

δ2
2 .

As v+ = −v−, that implies the first part of the statement.

Analogously, using (B.1.9b) with w = (Γv)− and multiplying that relation by xi we find that

(B.1.29)
1∑
|µ|=0

∥∥∥∥xixj( Dx

〈Dx〉

)µ
(Γv)−(t, ·)

∥∥∥∥
L2

.
1∑

µ=0

(
‖xµi Zj(Γv)−(t, ·)‖L2 + t‖xµi (Γv)−(t, ·)‖L2 + ‖xµi xjΓNLkg(t, ·)‖L2

)
,

and after (B.1.17), (B.1.26a) and a-priori estimates,

(B.1.30)
1∑

µ=0

(
‖xµi Zj(Γv)−(t, ·)‖L2 + t‖xµi (Γv)−(t, ·)‖L2

)
+ ‖xjΓNLkg(t, ·)‖L2 ≤ CBεt2+

δ2
2 .
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By multiplying both xi, xj against each Klein-Gordon factor in ΓNLkg (see equality (B.1.20a))
we derive that

‖xixjΓNLkg(t, ·)‖L2 .
1∑

|µ|ν=0

∥∥∥∥xixj( Dx

〈Dx〉

)µ
(Γv)−(t, ·)

∥∥∥∥
L2

‖Rν
1u±(t, ·)‖H2,∞

+
1∑
|µ|=0

∥∥∥∥xixj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞

(‖(Γu)±(t, ·)‖H1 + ‖u±(t, ·)‖H1 + ‖Dtu±(t, ·)‖L2) ,

so by (B.1.5a) with s = 0, (B.1.27b), a-priori estimates and the fact that ε0 < (2A)−1,

‖xixjΓNLkg(t, ·)‖L2 ≤
1

2
‖xixj(Γv)−(t, ·)‖L2 + C(A+B)Bε2t1+δ2 ,

which injected in (B.1.29), together with (B.1.30), implies (B.1.28).

Corollary B.1.9. There exists a constant C > 0 such that, for every i, j = 1, 2, every t ∈ [1, T ],
B.1.4,

(B.1.31) ‖xixjNLkg(t, ·)‖L2 + ‖xixjNLw(t, ·)‖L2 ≤ C(A+B)Bε2t1+
δ+δ2

2 .

Proof. Straightforward after (1.1.12c), (B.1.27b) and the following inequality

‖xixjNLkg(t, ·)‖L2 + ‖xixjNLw(t, ·)‖L2

.
1∑
|µ|=0

∥∥∥∥xixj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞

(‖u±(t, ·)‖H1 + ‖v±(t, ·)‖H1) .

Lemma B.1.10. There exists a constant C > 0 such that, for any i, j, k = 1, 2, every t ∈ [1, T ],
B.1.4,

(B.1.32)
1∑
|µ|=0

∥∥∥∥xixjxk( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L2

≤ CBεt3+
δ2
2 .

Proof. Using equality (B.1.9b) we derive that

‖xixjxkv−(t, ·)‖L2 .
1∑

µ1,µ2=0

(
‖xµ1i x

µ2
j (Zkv)−(t, ·)‖L2 + t‖xµ1i x

µ2
j v−(t, ·)‖L2

)

+
1∑

µ1,µ2,|µ|=0

∥∥∥∥xµ1i xµ2j xk( Dx

〈Dx〉

)µ
v−(t, ·)

∥∥∥∥
L2

(‖u±(t, ·)‖H2,∞ + ‖R1u±(t, ·)‖H2,∞) ,

so the result of the statement is a straight consequence of (B.1.10a), (B.1.17), (B.1.27a), (B.1.28),
a-priori estimates, and the fact that ε0 is smaller than (2A)−1.
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B.2 First range of estimates

The aim of this section is to show that, if a-priori estimates (1.1.11) are satisfied for every
t ∈ [1, T ], for some fixed T > 1, then in the same interval the semi-classical Sobolev norms of
the semi-classical functions ũ, ṽ introduced in (3.2.2) grow in time at a moderate rate tβ , for
some small β > 0. More precisely, in lemma B.2.1 we prove that this is the case for the Hs

h(R2)
norm of ũ, ũΣj ,k (see definition (3.2.41)) for any s ≤ n − 15, and for the L2(R2) norm of those
functions when operators Ωh and M, introduced in (1.2.40) and (1.2.49) respectively, are acting
on them and frequencies are less or equal than h−σ, for some small σ > 0. Lemma B.2.14 shows
that this moderate growth is also enjoyed by the Hs

h(R2) norm of ṽ, again for s ≤ n = 15, and
by the L2(R2) norm of Lṽ (see (1.2.68)) when restricted to frequencies |ξ| . h−σ. The proof of
this latter lemma will require some intermediate results, among which lemma B.2.8 that provides
us with a first non-sharp estimate of the L∞(R2) norm of Klein-Gordon functions v± when one
Klainerman vector field is acting on them (and again frequencies are localized for |ξ| . tσ). This
estimate will successively improved to the sharpest one (B.4.50) in lemma B.4.14 of section B.4.

As said at the beginning of this chapter, we prove the below results under the hypothesis that
a-priori estimates (1.1.11) are satisfied in some fixed [1, T ], with ε0 < (2A + B)−1. We remind
here that, if χ ∈ C∞0 (R2) and σ > 0, χ(t−σDx) is a bounded operator from Hs to L2 with norm
O(tσs), and on L∞ uniformly in time.

Lemma B.2.1. Let ũ, ũΣj ,k be defined, respectively, in (3.2.2) and (3.2.41), and s ≤ n − 15.
There exists a constant C > 0 such that, for any θ0, χ ∈ C∞0 (R2) and every t ∈ [1, T ],

‖ũ(t, ·)‖Hs
h

+ ‖ũΣj ,k(t, ·)‖Hs
h
≤ CBεt

δ
2

+κ,(B.2.1a)

‖Ωhũ
Σj ,k(t, ·)‖L2 ≤ CBεt

δ2
2

+κ,(B.2.1b) ∑
|µ|=1

(
‖Opwh (χ(hσξ))Mµũ(t, ·)‖L2 + ‖MµũΣj ,k(t, ·)‖L2

)
≤ C(A+B)εt

δ2
2

+κ,(B.2.1c)

∑
|µ|=1

‖θ0(x)ΩhM
µũΣj ,k(t, ·)‖L2 ≤ CBεt

δ1
2

+κ,(B.2.1d)

with κ = σρ if ρ ≥ 0, 0 otherwise.

Proof. We warn the reader that, throughout the proof, C and β will denote positive constants
that may change line after line, with β → 0 as σ → 0. We will also use the following concise
notation

φjk(ξ) := Σ(ξ)(1− χ0)(h−1ξ)ϕ(2−kξ)χ0(hσξ),

reminding that

(B.2.2)
∥∥∥Opwh (φjk(ξ))

∥∥∥
L(L2)

= O(h−κ),

with κ = σρ if ρ ≥ 0, 0 otherwise.

Inequality (B.2.1a) is straightforward after (B.2.2), definitions (3.2.2) and (3.1.15), inequality
(3.1.20a), and a-priori estimate (1.1.11b). By commutating Opwh (φjk(ξ)) withM (the commutator
with Ωh being zero if ϕ, χ0 are supposed to be radial) and using (B.2.2) we observe that there is
some χ ∈ C∞0 (R2) such that

‖Ωhũ
Σj ,k(t, ·)‖L2 . h−κ‖Opwh (χ0(hσξ))Ωhũ(t, ·)‖L2 ,

‖MũΣj ,k(t, ·)‖L2 . h−κ
1∑
|ν|=0

‖Opwh (χ(hσξ))Mν ũ(t, ·)‖L2 ,
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‖θ0(x)ΩhMũΣj ,k(t, ·)‖L2 . ‖θ0(x)Opwh (φjk(ξ))ΩhMũ(t, ·)‖L2 + h−κ
1∑

µ=0

‖Opwh (χ(hσξ))Ωµhũ(t, ·)‖L2 .

Therefore, as h = t−1, in order to prove (B.2.1b)-(B.2.1d) it is enough to show that, for any
χ ∈ C∞0 (R2),

‖Opwh (χ(hσξ))Ωhũ(t, ·)‖L2 ≤ CBεt
δ2
2 ,(B.2.3a)

‖Opwh (χ(hσξ))Mũ(t, ·)‖L2 ≤ C(A+B)εt
δ2
2 ,(B.2.3b)

‖θ0(x)Opwh (φjk(ξ))ΩhMũ(t, ·)‖L2 ≤ CBεt
δ1
2 .(B.2.3c)

Estimate (B.2.3a) follows from definitions (3.2.2) and (3.1.15), inequality (A.37a) with u = v =
v±, and a-priori estimates (1.1.11), as

‖Opwh (χ(hσξ))Ωhũ(t, ·)‖L2 . ‖(Ωu)−(t, ·)‖L2 + ‖χ(t−σDx)Ω(uNF − u−)(t, ·)‖L2

. ‖ΩU(t, ·)‖L2 + tβ (‖V (t, ·)‖L2 + ‖ΩV (t, ·)‖L2) ‖V (t, ·)‖H17,∞

≤ C(1 +Aεt−1+β)E2
3(t;W )

1
2 ≤ CBεt

δ2
2 .

From equality (3.2.9a) and definition (3.1.15) of uNF we deduce that

‖Opwh (χ(hσξ))Mnũ(t, ·)‖L2 . ‖ZnU(t, ·)‖L2 + ‖χ(t−σDx)Zn(uNF − u−)(t, ·)‖L2

+ ‖ũ(t, ·)‖L2 + ‖Opwh (χ(hσξ))[t(txj)[qw + cw](t, tx)]‖L2(dx) + ‖χ(t−σDx)(xnr
NF
w )(t, ·)‖L2 ,

(B.2.4)

with qw, cw and rNFw given by (3.1.17), (3.1.18) and (3.1.19) respectively. We first notice that,
after inequality (A.37b) with u = v = v±, (B.1.6a) with s = 0, a-priori estimates, and the fact
that Aε0 ≤ 1,

(B.2.5) ‖χ(t−σDx)Zn(uNF − u−)(t, ·)‖L2

. tβ (‖DtV (t, ·)‖L2‖V (t, ·)‖H13 + ‖V (t, ·)‖H15,∞‖ZnV (t, ·)‖L2) ≤ CBεtβ+δ.

Let us also observe that from (3.1.17), (3.1.18) we have that

qw(t, x) + cw(t, x) =
1

2
=
[
v−D1v− −

Dx

〈Dx〉
v− ·

DxD1

〈Dx〉
v−

]
(t, x)

=
h2

2
=
[
Ṽ Opwh (ξ1)Ṽ −Opwh

( ξ1

〈ξ〉

)
Ṽ ·Opwh

(ξξ1

〈ξ〉

)
Ṽ

](
t,
x

t

)
,

(B.2.6)

where Ṽ (t, x) := tv−(t, tx) is such that, for every s, ρ ≥ 0,

‖Ṽ (t, ·)‖Hs
h

= ‖v−(t, ·)‖Hs , ‖Ṽ (t, ·)‖Hρ,∞
h

= t‖v−(t, ·)‖Hρ,∞ .

Moreover, by (3.2.8) with w = v− and f = NLkg

‖Lj Ṽ (t, ·)‖H1
h
. ‖Zjv−(t, ·)‖L2 + ‖v−(t, ·)‖L2

+

(
‖xjv±(t, ·)‖L∞ +

∥∥∥∥xj Dx

〈Dx〉
v±(t, ·)

∥∥∥∥
L∞

)
‖U(t, ·)‖H1 .

(B.2.7)

Using (B.2.6) along with the definition of Lj in (1.2.68) we derive that

t(txj)[qw + cw](t, tx) =
1

2
=
[
ṼOpwh (ξ1)(hLj Ṽ ) + ṼOpwh

(ξ1ξj
〈ξ〉

)
Ṽ + Ṽ [xj ,Opwh (ξ1)]Ṽ

−Opwh

( ξ

〈ξ〉

)
Ṽ ·Opwh

(ξξ1

〈ξ〉

)
(hLj Ṽ )−Opwh

( ξ

〈ξ〉

)
Ṽ ·Opwh

(ξξ1ξj
〈ξ〉2

)
Ṽ

−Opwh

( ξ

〈ξ〉

)
Ṽ ·
[
xj ,Opwh

(ξξ1

〈ξ〉

)]
Ṽ

]
(t, x),

(B.2.8)
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so after estimates (1.1.11) and (B.1.10b)

‖t(txj)[qw + cw](t, t·)‖L2(dx) .
[
‖Ṽ (t, ·)‖H1

h
+ h‖Lj Ṽ (t, ·)‖H1

h

]
‖Ṽ (t, ·)‖

H1,∞
h

≤ CA(A+B)ε2t
δ
2 .

(B.2.9)

Moreover, from (3.1.19), the fact that xjeix·ξ = Dξje
ix·ξ, integration by parts, and inequalities

(A.26a) with ρ = 2 (after the first part of lemma A.8), (A.36a), we get that

‖χ(t−σDx)(xnr
NF
w )(t, ·)‖L2

. tβ [‖xnv−(t, ·)‖L∞‖NLkg(t, ·)‖H15 + ‖V (t, ·)‖H15‖xnNLkg(t, ·)‖L∞
+‖NLkg(t, ·)‖L2 (‖V (t, ·)‖H13 + ‖V (t, ·)‖H13,∞) + ‖V (t, ·)‖H13‖NLkg(t, ·)‖L∞ ]

≤ CBεt
δ2
2 ,

(B.2.10)

where last estimate follows from (B.1.10b), (B.1.15a), inequalities (B.1.4a), (B.1.4b), (B.1.4c)
with s = 15, and a-priori estimates (1.1.11). Consequently, from (B.2.4), (B.2.5), (B.2.9),
(B.2.10), (B.2.1a) and a-priori estimate (1.1.11d) with k = 2, we obtain (B.2.3b).

Let us now apply θ0

(
x
t

)
φjk(Dx)Ω to both sides of (3.2.9a) to deduce that

∥∥∥θ0(x)Opwh (φjk(ξ))ΩhMnũ(t, ·)
∥∥∥
L2
. ‖ΩZnU(t, ·)‖L2

+
∥∥∥θ0

(x
t

)
φjk(Dx)ΩZn(uNF − u−)(t, ·)

∥∥∥
L2

+

1∑
µ=0

‖Opwh (χ0(hσξ))Ωµhũ(t, ·)‖L2

+
∥∥∥θ0(x)Opwh (φjk(ξ))Ωh[t(txj)(qw + cw)(t, tx)]

∥∥∥
L2(dx)

+
∥∥∥θ0(x)Opwh (φjk(ξ))Ωh[t(txn)rNFw ](t, tx)]

∥∥∥
L2(dx)

.

(B.2.11)

In order to estimate the second addend in the above right hand side we first commute Zn to Ω,
reminding that

[Ω, Z1] = −Z2 and [Ω, Z2] = Z1,

and use that

θ0

(x
t

)
φjk(Dx)Zj =

[
tθj0

(x
t

)
φjk(Dx) + θ0

(x
t

)
[φjk(Dx), xj ]

]
∂t + tθ0

(x
t

)
φjk(Dx)∂j ,

with θj0(z) := θ0(z)zj . Observe that commutator [φjk(Dx), xj ] is bounded on L2 with norm O(t),
and that its symbol is still supported for moderate frequencies |ξ| . t−σ. Therefore, for some
new χ ∈ C∞0 (R2) we have that∥∥∥θ0

(x
t

)
φjk(Dx)ΩZn(uNF − u−)(t, ·)

∥∥∥
L2
. t
∥∥χ(t−σDx)∂t,x(uNF − u−)(t, ·)

∥∥
L2

+ t
∥∥χ(t−σDx)∂t,xΩ(uNF − u−)(t, ·)

∥∥
L2 ,

so using (A.26a) with ρ = 2 (because of first part of lemma A.8) and (A.37a), both considered
with u = ∂t,xv±, v = v±, and u = v±, v = ∂t,xv±, we obtain that the above right hand side is
estimated by

t1+β [(‖∂t,xV (t, ·)‖L2 + ‖Ω∂t,xV (t, ·)‖L2) ‖V (t, ·)‖H17,∞ + (‖V (t, ·)‖L2 + ‖ΩV (t, ·)‖L2) ‖∂t,xV (t, ·)‖H17,∞ ]

From (B.1.6a) and (B.1.6b) with s = 0, (B.1.6c) and a-priori estimates, we hence deduce that

(B.2.12)
∥∥∥θ0

(x
t

)
φjk(Dx)ΩZn(uNF − u−)(t, ·)

∥∥∥
L2
≤ CBεtβ+

δ2
2 .
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As concerns, instead, the estimate of the fourth L2 norm in the right hand side of (B.2.11), we
observe that from equality (B.2.8), Leibniz rule and (B.2.2)

(B.2.13)
∥∥∥θ0(x)Opwh (φjk(ξ))Ωh[t(txj)[qw + cw](t, tx)]

∥∥∥
L2
.

1∑
µ=0

h−κ‖Ṽ (t, ·)‖
H2,∞
h
‖Ωµ

hṼ (t, ·)‖H1
h

+

1∑
µ=0

h1−κ‖Ṽ (t, ·)‖
H1,∞
h
‖Ωµ

hLj Ṽ (t, ·)‖H1 + h1−κ‖ΩhṼ (t, ·)‖L∞‖Lj Ṽ (t, ·)‖H1
h
,

with κ = σρ if ρ ≥ 0, 0 otherwise. Using the semi-classical Sobolev injection, (B.2.7) and the
fact that ‖ΩhṼ (t, ·)‖Hs

h
= ‖Ωv−(t, ·)‖Hs for any s ≥ 0, together with (B.1.10b) and a-priori

estimates, we see that

(B.2.14) h‖ΩhṼ (t, ·)‖L∞‖Lj Ṽ (t, ·)‖H1
h
. ‖ΩṼ (t, ·)‖H2

h
‖Lj Ṽ (t, ·)‖H1

h
≤ CBεt

3δ2
2 .

Also, from (3.2.8) with w = v− and f = NLkg

‖ΩhLj Ṽ (t, ·)‖L2 . ‖ΩZjv−(t, ·)‖L2 +

1∑
µ=0

‖Ωµv−(t, ·)‖L2 + ‖Ω (xjNLkg) (t, ·)‖L2 ≤ C(A+B)Bε2t
1
2 +

δ2
2 ,

where last inequality is obtained using (1.1.11c), (1.1.11d) and estimates (B.1.15a), (B.1.26a).
Therefore

h‖Ṽ (t, ·)‖
H1,∞
h
‖ΩhLj Ṽ (t, ·)‖L2 ≤ CAB(A+B)ε3t−

1
2

+
δ2
2 ,

which combined with (B.2.13), (B.2.14) and a-priori estimates gives that

(B.2.15)
∥∥∥θ0(x)Opwh (φjk(ξ))Ωh[t(txj)[qw + cw](t, tx)]

∥∥∥
L2
≤ CBεt

3δ2
2 .

We estimate the latter L2 norm in (B.2.11) recalling definition (3.1.19) of rNFw , commutating Ω
and xn, and using that

θ0(x)Opwh (φjk(ξ))xn = θn0 (x)Opwh (φjk(ξ)) + θ0(x)[Opwh (φjk(ξ)), xn],

where
[Opwh (φjk(ξ)), xn] = −ihOpwh (∂nφ

j
k(ξ))

is uniformly bounded on L2. After (3.1.22a), (3.1.22c) with θ � 1 small, and a-priori estimates
(1.1.11) we derive that, for some χ ∈ C∞0 (R2),

∥∥∥θ0(x)Opwh (φjk(ξ))Ωh[t(txn)rNFw ](t, tx)]
∥∥∥
L2(dx)

.
1∑

µ=0

t‖χ(t−σDx)ΩµrNFw (t, ·)‖L2 ≤ CBε.

Combining (B.2.11), (B.2.12), (B.2.15) and above estimate together with (1.1.11d), (B.2.1a),
(B.2.3a), and assuming 3δ2 ≤ δ1, we finally obtain (B.2.3c) and the conclusion of the proof.

In the following lemma we explain how we estimate the L2 or the L∞ norm of products supported
for moderate frequencies |ξ| . tσ, when we have a control on high Sobolev norms of, at least, all
factors but one. This type of estimate will be frequently used in most of the results that follow.
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Lemma B.2.2. Let n ∈ N, n ≥ 2, and w1, . . . , wn such that w1 ∈ L2(R2), w2, . . . , wn ∈
L∞(R2)∩Hs(R2), for some large positive s. Let also χ ∈ C∞0 (R2) and σ > 0. There exists some
χ1 ∈ C∞0 (R2), equal to 1 on the support of χ, such that for L = L2 or L = L∞

∥∥χ(t−σDx) [w1 . . . wn]
∥∥
L
.

∥∥∥∥∥∥[χ1(t−σDx)w1

] n∏
j=2

χ(t−σDx)wj

∥∥∥∥∥∥
L(dx)

+ t−N(s)‖w1‖L2(dx)

n∑
j=2

∏
k 6=j
‖wk‖L∞‖wj‖Hs(dx),

with N(s) as large as we want as long as s > 0 is large.

Proof. The idea of the proof is to decompose each factor wj , for j = 2, . . . , n into

(B.2.16) χ(t−σDx)wj + (1− χ)(t−σDx)wj ,

and to estimate the L2 norm of product

(B.2.17) χ(t−σDx)

w1

∏
k=2,...,n
k 6=j

w̃k
[
(1− χ)(t−σDx)wj

] ,
where w̃k is either wk or χ(t−σDx)wk, with the L2 norm of w1 times the L∞ norm of all remaining
factors, reminding that χ(t−σDx) is uniformly bounded on L∞ and that by Sobolev injection
and (B.1.2),

(B.2.18)
∥∥(1− χ)(t−σDx)wj

∥∥
L∞(dx)

. t−N(s)‖wj‖Hs(dx),

with N(s) as large as we want as long as s > 0 is large. The L∞ norm of (B.2.17) is estimated
in the same way, using firstly the L2 −L∞ continuity of operator χ(t−σDx) acting on the entire
product.

The end of the statement follows from the observation that, if suppχ ⊂ BC(0) for some C > 0,
then

(B.2.19) suppŵ1 ⊂ {ξ : |ξ| ≥ C1 > nC} ⇒ χ(t−σDx)
[
w1

n∏
j=2

χ(t−σDx)wj

]
≡ 0.

Remark B.2.3. Property (B.2.19) is more general, meaning that if χ, χj ∈ C∞0 (R2) with
suppχ ⊂ BC(0), suppχj ⊂ BCj (0) for some C,Cj > 0, for every j = 2, . . . , n, then

suppŵ1 ⊂
{
ξ : |ξ| ≥ C1 > C +

n∑
j=2

Cj

}
⇒ χ(t−σDx)

[
w1

n∏
j=2

χj(t
−σDx)wj

]
≡ 0.

We have seen at the beginning of section B.1, and already used in the previous lemma’s proof,
that, if w ∈ Hs(R2) for some large s > 0, the L2 norm (resp. L∞ norm) of this function when
restricted to large frequencies |ξ| & tσ decays fast in time as t−σs (resp. t−σ(s−1)−1 after the
semi-classical Sobolev injection). The aim of the following lemma is to show that, even if we
don’t have a control on the Hs(R2) norm of (Γu)±, (Γv)±, for Γ ∈ {Ω, Zm,m = 1, 2} and s larger
than 2, the L2 norm (resp. L∞ norm) of products as in (B.2.21) still have a good decay in time.
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Lemma B.2.4. Let w ∈ {u, v} and for any Γ ∈ {Ω, Zm,m = 1, 2}

(Γw)± =

{
(Dt ± |Dx|)(Γu), if w = u,

(Dt ± 〈Dx〉)(Γv), if w = v.

Let also n ∈ N∗, w1, . . . , wn be such that w1, xw1 ∈ L2(R2) ∩ L∞(R2), wj ∈ L∞(R2) for
j = 2, . . . , n, χ ∈ C∞0 (R2), σ > 0, and a(Dx) = Dα

x

(
Dx
〈Dx〉

)β( Dx
|Dx|

)γ for any α, β, γ ∈ N2 with
|α|, |β|, |γ| ≤ 1. Then for L = L2 or L = L∞ we have that

‖a(Dx)(Ωw)±w1 . . . wn‖L(dx) .

∥∥∥∥∥∥[χ(t−σDx)a(Dx)(Ωw)±
] n∏
j=1

wj

∥∥∥∥∥∥
L(dx)

+ t−N(s)‖w±(t, ·)‖Hs

( 1∑
|µ|=0

‖xµw1‖L(dx)

) n∏
j=2

‖wj‖L∞(dx)

(B.2.20a)

and, for m = 1, 2,

(B.2.20b) ‖a(Dx)(Zmw)±w1 . . . wn‖L(dx) .

∥∥∥∥∥∥[χ(t−σDx)a(Dx)(Zmw)±
] n∏
j=1

wj

∥∥∥∥∥∥
L(dx)

+ t−N(s) (‖w±(t, ·)‖Hs + ‖Dtw±(t, ·)‖Hs)
( 1∑
µ=0

‖xµmw1‖L(dx) + t‖w1‖L(dx)

) n∏
j=2

‖wj‖L∞(dx),

with N(s) as large as we want as long as s > 0 is large.

Proof. Let us remind definition (1.1.6) of Klainerman vector fields Ω, Zm, for m = 1, 2, and
decompose factor a(Dx)(Γw)± in frequencies by means of operator χ(t−σDx). When dealing
with product

(B.2.21)
[
(1− χ)(t−σDx)a(Dx)(Γw)±

]
w1 · · ·wn

the idea is to discharge on w1 factors x and/or t defining Γ, after a previous commutation between
Dt ± |Dx| if w = u (resp. Dt ± 〈Dx〉 if w = v) and Γ, and between (1 − χ)(t−σDx)a(Dx) and
the mentioned factors x, t. For instance, if w = u and Γ = Z1

(B.2.22)
[
(1− χ)(t−σDx)a(Dx)(Z1u)±

]
w1 =

[
(1− χ)(t−σDx)a(Dx)(∂tu)±

]
(x1w1)

+
[
(1− χ)(t−σDx)a(Dx)(∂1u)±

]
(tw1) +

[
(1− χ)(t−σDx)a(Dx)

D1

|Dx|
u±

]
w1

+
[[

(1− χ)(t−σDx)a(Dx), x1

]
Dtu±

]
w1,

from which we deduce, using the Sobolev injection together with (B.1.2), that

∥∥[(1− χ)(t−σDx)a(Dx)(Z1u)±
]
w1

∥∥
L
. t−N(s) (‖u±(t, ·)‖Hs + ‖Dtu(t, ·)‖Hs)

( 1∑
µ=0

‖xµ1w1‖L + t‖w1‖L
)
,

with N(s) large as long as s is large. Analogous inequalities can be obtained for Γ = Ω, Z2 and/or
w = v. This concludes the proof of the statement since the L norm of (B.2.21) is bounded by
the L norm of

[
(1−χ)(t−σDx)a(Dx)(Z1u)±

]
w1 times the L∞ norm of the remaining factors.
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Corollary B.2.5. If the hypothesis of lemma B.2.4 are satisfied and in addition w1, . . . , wn ∈
Hs(R2), we have that

‖a(Dx)(Ωw)±w1 · · ·wn‖L .

∥∥∥∥∥∥[χ(t−σDx)a(Dx)(Ωw)±
] n∏
j=1

χ(t−σDx)wj

∥∥∥∥∥∥
L

+ t−N(s)‖w±(t, ·)‖Hs(dx)

( 1∑
|µ|=0

‖xµw1‖L
) n∏
j=2

‖wj‖L∞

+ t−N(s)‖(Ωw)±(t, ·)‖L2

n∑
j=1

∏
k 6=j

‖wk‖L∞‖wj‖Hs

(B.2.23a)

and, for m = 1, 2,

‖a(Dx)(Zmw)±w1 · · ·wn‖L .

∥∥∥∥∥∥[χ(t−σDx)a(Dx)(Zmw)±
] n∏
j=1

χ(t−σDx)wj

∥∥∥∥∥∥
L

+ t−N(s) (‖w±(t, ·)‖Hs + ‖Dtw±(t, ·)‖Hs)
( 1∑
µ=0

‖xµmw1‖L + t‖w1‖L
) n∏
j=2

‖wj‖L∞

+ t−N(s)‖(Zmw)±(t, ·)‖L2

n∑
j=1

∏
k 6=j
‖wk‖L∞‖wj‖Hs ,

(B.2.23b)

with N(s) as large as we want as long as s > 0 is large. Moreover, there exists χ1 ∈ C∞0 (R2)
such that, for any fixed j0 ∈ {1, . . . , n},∥∥χ(t−σDx)

[
a(Dx)(Ωw)±w1 · · ·wn

]∥∥
L

.

∥∥∥∥∥∥∥∥
[
χ(t−σDx)a(Dx)(Ωw)±

][
χ1(t−σDx)wj0

] ∏
j=1,...,n
j 6=j0

χ(t−σDx)wj

∥∥∥∥∥∥∥∥
L

+ t−N(s)‖w±(t, ·)‖Hs

( 1∑
|µ|=0

‖xµw1‖L
) n∏
j=2

‖wj‖L∞

+ t−N(s)‖(Ωw)±(t, ·)‖L2

∑
j=1,...,n
j 6=j0

∏
k 6=j
‖wk‖L∞‖wj‖Hs

(B.2.24a)

and, for m = 1, 2,∥∥χ(t−σDx)
[
a(Dx)(Zmw)±w1 · · ·wn

]∥∥
L

.

∥∥∥∥∥∥∥∥
[
χ(t−σDx)a(Dx)(Zmw)±

][
χ1(t−σDx)wj0

] ∏
j=1,...,n
j 6=j0

χ(t−σDx)wj

∥∥∥∥∥∥∥∥
L

+ t−N(s) (‖w±(t, ·)‖Hs + ‖Dtw±(t, ·)‖Hs)
( 1∑
µ=0

‖xµmw1‖L + t‖w1‖L
) n∏
j=2

‖wj‖L∞

+ t−N(s)‖(Zmw)±(t, ·)‖L2

∑
j=1,...,n
j 6=j0

∏
k 6=j
‖wk‖L∞‖wj‖Hs .

(B.2.24b)
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Proof. The inequalities of the statement mainly follows from (B.2.20). In fact, by decomposing
each factor wj appearing in the first norm in the right hand sides of (B.2.20) as in (B.2.16), and
then using the following inequality, for Γ ∈ {Ω, Zm,m = 1, 2} and w̃k either equal to wk or to
χ(t−σDx)wk,∥∥∥∥∥∥∥∥[χ(t−σDx)a(Dx)(Γw)±]

∏
k=1,...,n
k 6=j

w̃k
[
(1− χ)(t−σDx)wj

]∥∥∥∥∥∥∥∥
L

. t−N(s)‖(Γw)±(t, ·)‖L2

∏
k=1,...,n
k 6=j

‖wk‖L∞‖wj‖Hs ,

with N(s) as large as we want as long as s > 0, which is obtained from (B.1.2) together with
the L2 − L∞ and L∞ − L∞ continuity of operator χ(t−σDx), we obtain (B.2.23).

On the other hand, if the product in the left hand side of (B.2.20) is localized in frequencies by
means of operator χ(t−σDx), so it is for the product in the first norm of the same inequalities.
Inequalities (B.2.24) are then derived by bounding these L norms by means lemma B.2.2, where
the role of w1 is here played by wj0 , for some fixed j0 ∈ {1, . . . , n}.

The following two lemmas are stated and proved in view of lemma B.2.8, in which we recover a
first non-sharp estimate on the L∞ norm of the Klein-Gordon component when one Klainerman
vector field is acting on it and its frequencies are less or equal than tσ, for some small σ > 0.
This estimate will be successively refined in lemma B.4.14.

Lemma B.2.6. Let χ ∈ C∞0 (R2), σ > 0 small, and w = w(t, x) such that, if w̃(t, x) := tw(t, tx),
Opwh (χ(hσξ))Lµw̃(t, ·) ∈ L2(R2) for any |µ| ≤ 1. Then

(B.2.25)
∥∥χ(t−σDx)w(t, ·)

∥∥
L∞
. t−1+β

1∑
|µ|=0

‖Opwh (χ(hσξ))Lµw̃(t, ·)‖L2 ,

with β > 0 small, β → 0 as σ → 0.

Proof. Since
χ(t−σDx)w(t, y) = t−1Opwh (χ(hσξ))w̃(t, x)|x= y

t
,

the goal is to prove that

(B.2.26) ‖Opwh (χ(hσξ))w̃(t, ·)‖L∞ . h
−β

1∑
|µ|=0

‖Opwh (χ(hσξ))Lµw̃(t, ·)‖L2 ,

for a small β > 0, β → 0 as σ → 0. So let wχ := Opwh (χ(hσξ))w̃ and take χ1 ∈ C∞0 (R2) equal to
1 on the support of χ, so that

Opwh (χ(hσξ))w̃ = Opwh (χ1(hσξ))w̃χ.

For a γ ∈ C∞0 (R2), equal to 1 in a neighbourhood of the origin and with sufficiently small
support, we consider the following decomposition

Opwh

(
γ
(x− p′(ξ)√

h

)
χ1(hσξ)

)
w̃χ + Opwh

(
(1− γ)

(x− p′(ξ)√
h

)
χ1(hσξ)

)
w̃χ
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and immediately observe that, from inequality (3.2.17b),∥∥∥∥Opwh

(
(1− γ)

(x− p′(ξ)√
h

)
χ1(hσξ)

)
w̃χ(t, ·)

∥∥∥∥
L∞
. h−β

1∑
|µ|=0

‖Opwh (χ1(hσξ))Lµw̃χ(t, ·)‖L2 .

After lemma 1.2.38 there exists a family of smooth cut-off functions θh(x) such that equality
(1.2.67) holds. Then, if we also consider a new cut-off function χ2 equal to 1 on the support of
χ1 and a small σ1 > σ, by symbolic calculus and remark 1.2.22 we derive that for any N ∈ N

Opwh

(
γ

(
x− p′(ξ)√

h

)
χ1(hσξ)

)
w̃χ = θh(x)Opwh (χ2(hσξ))Opwh

(
γ

(
x− p′(ξ)√

h

)
χ1(hσξ)

)
w̃χ

+ Opwh (r∞(x, ξ))w̃χ + θh(x)Opwh (r1
∞(x, ξ))w̃χ

with r∞, r1
∞ ∈ hNS 1

2
,σ(〈x−p

′(ξ)√
h
〉−1). It is enough to take N = 1 to have, by proposition 1.2.37,

that
‖Opwh (r∞)w̃χ(t, ·)‖L∞ + ‖θh(x)Opwh (r1

∞)w̃χ(t, ·)‖L∞ ≤ h−β‖w̃χ(t, ·)‖L2 .

As function φ(x) :=
√

1− |x|2 is well defined on the support of θh we are allowed to to write the
following:∥∥∥∥θh(x)Opwh (χ2(hσ1ξ))Opwh

(
γ

(
x− p′(ξ)√

h

)
χ1(hσξ)

)
w̃χ(t, ·)

∥∥∥∥
L∞

=

∥∥∥∥e ihφθh(x)Opwh (χ2(hσ1ξ))Opwh

(
γ

(
x− p′(ξ)√

h

)
χ1(hσξ)

)
w̃χ(t, ·)

∥∥∥∥
L∞

.

∥∥∥∥Opwh (χ2(hσ1ξ))

[
e
i
h
φθh(x)Opwh

(
γ

(
x− p′(ξ)√

h

)
χ1(hσξ)

)
w̃χ
]∥∥∥∥

L∞
+ ‖Opwh (r∞)w̃χ(t, ·)‖L∞ ,

for a new r∞ ∈ hNS 1
2
,σ

(
〈x−p

′(ξ)√
h
〉−1
)
. This latter r∞ comes out from the commutation between

e
i
h
φθh(x) and Opwh (χ2(hσ1ξ)), whose symbol is computed using (1.2.18) until a large enough

order M . We notice that we gain a factor h|α|(σ1−σ) at each order of the mentioned asymptotic
development as σ1 > σ. Moreover, those terms write in terms of the derivatives of χ2 and hence
vanish on the support of χ1. By proposition 1.2.21 and remark 1.2.22 we then deduce that
the composition of the mentioned commutator with Opwh

(
γ
(x−p′(ξ)√

h

)
χ1(hσξ)

)
is an operator of

symbol r∞, with N as large as we want.
Using the classical Sobolev injection, symbolic calculus and lemma 3.2.16 we find that∥∥∥∥Opwh (χ2(hσ1ξ))

[
e
i
hφθh(x)Opwh

(
γ

(
x− p′(ξ)√

h

)
χ1(hσξ)

)
w̃χ
]∥∥∥∥

L∞

. | log h|

‖w̃χ(t, ·)‖L2 +

2∑
j=1

∥∥∥∥Dj

[
e
i
hφθh(x)Opwh

(
γ

(
x− p′(ξ)√

h

)
χ1(hσξ)

)
w̃χ
]∥∥∥∥

L2


. | log h|

‖w̃χ(t, ·)‖L2 +

2∑
j=1

h−1

∥∥∥∥Opwh
(
(ξj + djφ(x))θh(x)

)
Opwh

(
γ

(
x− p′(ξ)√

h

)
χ1(hσξ)

)
w̃χ
∥∥∥∥
L2


. | log h|

‖w̃χ(t, ·)‖L2 + h−β
1∑
|µ|=0

‖Opwh (χ1(hσξ))Lµw̃χ(t, ·)‖L2

 .
Finally, commutating L with Opwh (χ(hσξ)) defining w̃χ, and reminding that χ1 ≡ 1 on the
support of χ, we obtain

‖Opwh (χ(hσξ))w̃χ(t, ·)‖L∞ . h−β
1∑
|µ|=0

‖Opwh (χ(hσξ))Lµw̃(t, ·)‖L2 ,
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for every t ∈ [1, T ], and hence (B.2.26).

Lemma B.2.7. Let I be a multi-index of length j, with j = 1, 2, and
(B.2.27)

vI,NF(t, x) := (ΓIv)−(t, x)− i

4(2π)2

∑
j1,j2∈{+,−}

∫
eix·ξB1

(j1,j2,+)(ξ, η)v̂Ij1(ξ − η)ûj2(η)dξdη,

with B1
(j1,j2,+) given by (2.2.42) with j3 = + and k = 1. Then there exists a constant C > 0 such

that, for any χ ∈ C∞0 (R2), σ > 0 small, and every t ∈ [1, T ],

(B.2.28)
∥∥χ(t−σDx)

(
vI,NF − (ΓIv)−

)
(t, ·)

∥∥
L∞
≤ 1

2

∥∥χ(t−σDx)(ΓIv)−(t, ·)
∥∥
L∞

+ CBεt−1.

Moreover, for every m = 1, 2, t ∈ [1, T ],

(B.2.29)
∥∥χ(t−σDx)Zm

(
vI,NF − (ΓIv)−

)
(t, ·)

∥∥
L2 ≤ C(A+B)Bε2t2σ+

δ3−j+δ2
2 .

Proof. We first notice that, after definition (B.2.27) and inequalities (A.15), (1.1.10), we have
the following explicit expression:
(B.2.30)

vI,NF − (ΓIv)− = − i
2

[
(DtΓ

Iv)(D1u)− (D1ΓIv)(Dtu) +D1[(ΓIv)Dtu]− 〈Dx〉[(ΓIv)D1u]
]
.

From the above equality together with lemma B.2.2 with L = L∞ and w1 = (ΓIv)±, and (1.1.5),
(1.1.10), we deduce that there exists some χ1 ∈ C∞0 (R2), equal to 1 on the support of χ, and
s > 0 sufficiently large such that

∥∥χ(t−σDx)(vI,NF − vI−)(t, ·)
∥∥
L∞

. tσ
1∑

µ=0

∥∥[χ1(t−σDx)(ΓIv)±(t, ·)][χ(t−σDx)Rµ
1u±](t, ·)

∥∥
L∞

t−2‖(ΓIv)±(t, ·)‖L2‖u±(t, ·)‖Hs

. tσ
1∑

µ=0

∥∥[χ1(t−σDx)(ΓIv)±(t, ·)][χ(t−σDx)Rµ
1u±](t, ·)

∥∥
L∞

+B2ε2t−3/2,

(B.2.31)

where the latter inequality follows from after a-priori energy estimates (1.1.11c), (1.1.11d). Our
aim is to truncate factor (ΓIv)± in the above right hand side rather with the same operator
χ(t−σDx) appearing on the left hand side. We hence proceed by picking some κ ≥ 1 and
decomposing χ(t−σDx)Rµ

1u± as

(B.2.32) χ(t−σDx)Rµ
1u± = χ(tκDx)Rµ

1u± + (1− χ)(tκDx)χ(t−σDx)Rµ
1u±,

noticing that, as χ(tκξ) is supported for very small frequencies |ξ| . t−κ, by Sobolev injection
we have that

‖χ(tκDx)Rµ
1u±(t, ·)‖L∞ . t

−κ‖u±(t, ·)‖L2 .

Consequently, using the L2−L∞ continuity of χ1(t−σDx) along with a-priori estimates (1.1.11c),
(1.1.11d), we have that for any for µ = 0, 1∥∥[χ1(t−σDx)(ΓIv)±(t, ·)]χ(tκDx)Rµ

1u±(t, ·)
∥∥
L∞
. tσ−κ‖(ΓIv)±(t, ·)‖L2‖u±(t, ·)‖L2

≤ CBεt−κ+σ+
δ3−j+δ

2 .
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Choosing κ = 1 + σ + δ+δ1
2 we deduce from (B.2.32) and the above inequality that

(B.2.33)
∥∥[χ1(t−σDx)(ΓIv)±(t, ·)]χ(t−σDx)Rµ

1u±(t, ·)
∥∥
L∞

.
∥∥[χ1(t−σDx)(ΓIv)±(t, ·)](1− χ)(tκDx)χ(t−σDx)Rµ

1u±(t, ·)
∥∥
L∞

+ CBεt−1.

We then decompose (ΓIv)± in frequencies using the wished operator χ(t−σDx). In order to
estimate the L∞ norm of

[(1− χ)(t−σDx)χ1(t−σDx)(ΓIv)±](1− χ)(tκDx)χ(t−σDx)Rµ
1u±

we first commute ΓI to operator Dt± 〈Dx〉 (see (2.1.15b)) and successively look at it as a linear
combination of derivations of the form xαta∂αx ∂

b
t , with 1 ≤ |α| + a ≤ 2, 1 ≤ |β| + b ≤ 2.

By commutating xα to (1 − χ)(t−σDx)χ1(t−σDx), multiplying it against the wave factor, and
successively combining the classical Sobolev injection with inequality (B.1.2), we find that

(B.2.34)
∥∥[(1− χ)(t−σDx)χ1(t−σDx)(ΓIv)±(t, ·)](1− χ)(tκDx)χ(t−σDx)Rµ

1u±(t, ·)
∥∥
L∞

. t−N(s)
(
‖v±(t, ·)‖Hs + ‖Dtv±(t, ·)‖Hs + ‖D2

t v±(t, ·)‖Hs

)
×

∑
1≤|α|+a≤2
|µ|=0,1

∥∥xαta(1− χ)(tκDx)χ(t−σDx)Rµ
1u±

∥∥
L∞

.

Using system (2.1.2) with |I| = 0, (B.1.4c) with s = 1, (B.1.6a) and a-priori estimates, it is
straightforward to check that

(B.2.35) ‖v±(t, ·)‖Hs + ‖Dtv±(t, ·)‖Hs + ‖D2
t v±(t, ·)‖Hs ≤ CBεt

δ
2 .

Also,

(B.2.36) ta
∥∥(1− χ)(tκDx)χ(t−σDx)Rµ

1u±
∥∥
L∞
. ta+σ‖u±(t, ·)‖L2 ≤ CBεta+σ+ δ

2 ,

and for |α| ∈ {1, 2} we have that

(B.2.37)
∥∥xα(1− χ)(tκDx)χ(t−σDx)Rµ

1u±
∥∥
L∞
≤ CBεt|α|+|α|κ+ δ

2 .

In fact, when |α| = 1 this can be proved by commutating xα with (1−χ)(tκDx)χ(t−σDx), using
that

[xn, (1− χ)(tκDx)χ(t−σDx)] = −itκ(∂nχ)(tκDx) + it−σ(∂nχ)(t−σDx), n = 1, 2,

is bounded from L2 to L∞ uniformly in t, and together with estimates (1.1.11d), (B.1.16a), and
the following inequality∥∥(1− χ)(tκDx)χ(t−σDx)

[
xαRµ

1u±
]
(t, ·)

∥∥
L∞

. tκ

∑
|µ|=1

‖Zµu±(t, ·)‖L2 + t‖u±(t, ·)‖H1 + ‖xNLw(t, ·)‖L2

 ,
which is obtained by writing

(1− χ)(tκDx)χ(t−σDx)xnRµ
1

= tκχ̃1(tκDx)χ(t−σDx)xn|Dx|Rµ
1 + tκχ̃1(tκDx)χ(t−σDx)[|Dx|, x]Rµ

1

= tκχ̃1(tκDx)χ(t−σDx)Rµ
1

[
xn|Dx| − tDn +

1

2i

Dn

|Dx|

]
+ tκχ̃1(tκDx)χ(t−σDx)Rµ

1

[
tDn −

1

2i

Dn

|Dx|

]
+ δµ=1it

κχ̃1(tκDx)χ(t−σDx)Op(|ξ|∂n(ξ1|ξ|−1))

− itκχ̃1(tκDx)χ(t−σDx)RnRµ
1
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with χ̃(ξ) := (1− χ)(ξ)|ξ|−1 and using relation (3.2.12a) with w = u±. The proof for |α| = 2 is
analogous. It is based on the commutation of xα with (1− χ)(tκDx)χ(t−σDx) (the commutator
is here a L2 − L∞ bounded operator with norm O(tκ)), on the fact that we can rewrite (1 −
χ)(tκDx)χ(t−σDx)xαRµ

1 making appear (x|Dx| − tDx + 1
2i

Dx
|Dx|)

α by considering χ̃2(ξ) := (1 −
χ)(ξ)|ξ|−2 instead of previous χ̃1, and use relation (3.2.12a). Doing so we derive the following
inequality∥∥(1− χ)(tκDx)χ(t−σDx)

[
xαRµ

1u±
]
(t, ·)

∥∥
L∞

. t2κ

∑
|µ|=2

‖Zµu±(t, ·)‖L2 +
∑
|µ|≤1

t2−|µ|‖Zµu±(t, ·)‖H1 +

2∑
|µ|=1

‖xµNLw(t, ·)‖L2

 ≤ CBεt2+2κ+ δ
2 ,

last estimate following from a-priori estimates, (B.1.16a) and (B.1.31). Summing up (B.2.35),
(B.2.36), (B.2.37), together with the previous choice of κ and the fact that in (B.2.34) N(s) ≥ 6
if s > 0 is sufficiently large, we deduce that
(B.2.38)∥∥[(1− χ)(t−σDx)χ1(t−σDx)(ΓIv)±(t, ·)](1− χ)(tκDx)χ(t−σDx)Rµ

1u±(t, ·)
∥∥
L∞
≤ CBεt−

3
2 .

Therefore, from (B.2.31), (B.2.33),(B.2.38), and the uniform continuity on L∞ of χ(t−σDx), we
find that

∥∥χ(t−σDx)
(
vI,NF − vI−

)
(t, ·)

∥∥
L∞
.

1∑
µ=0

tσ‖χ(t−σDx)(ΓIv)±(t, ·)‖L∞‖Rµ
1u±(t, ·)‖L∞ + CBεt−1,

and as σ is small and ε0 < (2A)−1, from (1.1.11a) we obtain (B.2.28).

In order to prove (B.2.29) we apply Zm to equality (B.2.30) and apply the Leibniz rule. As

[Zm, Dt] = −Dm, [Zm, D1] = −δm1Dt, [Zm, 〈Dx〉] = −Dm〈Dx〉−1Dt,(B.2.39)

with δm1 the Kronecker delta, we find that

2iχ(t−σDx)Zm(vI,NF − vI−)

= χ(t−σDx)
[
(DtZmΓIv)(D1u)− (D1ZmΓIv)(Dtu) +D1[(ZmΓIv)(Dtu)]− 〈Dx〉[(ZmΓIv)(D1u)]

+ (DtΓ
Iv)(D1Zmu)− (D1ΓIv)(DtZmu) +D1[(ΓIv)(DtZmu)]− 〈Dx〉[(ΓIv)(D1Zmu)]

− (DmΓIv)(D1u) + δm1(DtΓ
Iv)(Dtu)− δm1Dt[(Γ

Iv)(Dtu)] +
Dm

〈Dx〉
Dt[(Γ

Iv)(D1u)]

− δm1(DtΓ
Iv)(Dtu) + (D1ΓIv)(Dmu)− δm1D1[(ΓIv)(Dtu)] + δm1〈Dx〉[(ΓIv)(Dtu)]

]
.

(B.2.40)

The L2 norm of all products in the above second, fourth and fifth line, i.e. those in which Zm is
not acting on the wave component u, is estimated by

(B.2.41)
1∑

µ=0

tσ
(
‖(ZmΓIv)±(t, ·)‖L2 + ‖(ΓIv)±(t, ·)‖L2

)
(‖Rµ

1u±(t, ·)‖L∞ + ‖Dtu±(t, ·)‖L∞)

≤ CABε2t−
1
2

+
δ0
2

+σ,

after inequality (B.1.5b) with s = 0 and a-priori estimates. The L2 norm of products appearing in
the second line are, instead, estimated by using (1.1.10) and (B.2.24b) with L = L2, Γw = Zmu,
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s > 0 sufficiently large so that N(s) ≥ 2. It is hence bounded by

tσ
∥∥χ(t−σDx)(ΓIv)±(t, ·)

∥∥
L∞
‖(Zmu)±(t, ·)‖L2

+ t−2
( 1∑
|µ|=0

‖xµ(ΓIv)±(t, ·)‖L2 + t‖(ΓIv)±(t, ·)‖L2

)
(‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

≤ CB2ε2t2σ+
δ3−j+δ2

2 ,

where the latter estimate is obtained using the fact that χ(t−σDx) is a bounded operator from L2

to L∞ with norm O(tσ), together with (B.1.5a), (B.1.17) and a-priori estimates. That concludes,
together with (B.2.41), the proof of (B.2.29) and of the statement.

Lemma B.2.8. There exists a constant C > 0 such that, for any ρ ∈ N, χ ∈ C∞0 (R2), equal to
1 in a neighbourhood of the origin, σ > 0 small, and every t ∈ [1, T ],

(B.2.42)
∑
|I|=1

‖χ(t−σDx)V I(t, ·)‖Hρ,∞ ≤ CBεt−1+β+
δ1
2 ,

with β > 0 small such that β → 0 as σ → 0.

Proof. Since χ(t−σDx) is a bounded operator from L∞ to Hρ,∞ with norm O(tσρ), for any
ρ ∈ N, it is enough to prove that the L∞ norm of χ(t−σDx)V I(t, ·) is bounded by the right
hand side of (B.2.42). Moreover, as this latter inequality is automatically satisfied when Γ
is a spatial derivative after a-priori estimate (1.1.11b) and the fact that operator χ(t−σDx) is
uniformly bounded on L∞, for the rest of the proof we will assume that Γ ∈ {Ω, Zj , j = 1, 2}
is a Klainerman vector field. We also warn the reader that, throughout the proof, C and β will
denote some positive constants that may change line after line, with β → 0 as σ → 0.

Instead of proving the result of the statement directly on χ(t−σDx)vI± we do it for χ(t−σDx)vI,NF,
where vI,NF has been introduced in (B.2.27) and is considered here for |I| = 1 and ΓI = Γ. In
fact, by (B.2.28)

(B.2.43)
∥∥χ(t−σDx)vI−(t, ·)

∥∥
L∞
≤ 2

∥∥χ(t−σDx)vI,NF(t, ·)
∥∥
L∞

+ CBεt−1.

The advantage of dealing with this new function is related to the fact that it is solution to a
half Klein-Gordon equation with a more suitable non-linearity (see (B.2.44)) than the equation
satisfied by vI−. In fact, it is a computation to show that from definition (B.2.27)

(B.2.44) [Dt + 〈Dx〉]vI,NF(t, x) = NLI,NF
kg ,

where

(B.2.45) NLI,NF
kg = rI,NF

kg (t, x) +Qkg
0 (v±, D1u

I
±) +Gkg

1 (v±, Du±),

Gkg
1 (v±, Du±) = G1(v, ∂u) with G1 given by (1.1.16), and

(B.2.46) rI,NF
kg (t, x) = − i

4(2π)2

×
∑

j1,j2∈{+,−}

∫
eix·ξB1

(j1,j2,+)(ξ, η)
[
ΓINLkg
∧

(ξ − η)ûj2(η)− v̂Ij1(ξ − η)N̂Lw(η)
]
dξdη,
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with B1
(j1,j2,+) given by (2.2.42) when j3 = + and k = 1. After (B.2.27) and (A.15) it appears

that rI,NF
kg has the following nice explicit expression

(B.2.47) rI,NF
kg = − i

2

[
(ΓINLkg)D1u− (D1ΓIv)NLw +D1[(ΓIv)NLw]

]
.

Using lemma B.2.6 and relation (3.2.8) with w = vI,NF, and reminding that ‖tw(t, t·)‖L2 =
‖w(t, ·)‖L2 , we find the following

(B.2.48)
∥∥χ(t−σDx)vI,NF(t, ·)

∥∥
L∞

. t−1+β
1∑
|µ|=0

∥∥χ(t−σDx)ZµvI,NF(t, ·)
∥∥
L2 +

2∑
j=1

t−1+β
∥∥∥χ(t−σDx)

[
xjNL

I,NF
kg

]
(t, ·)

∥∥∥
L2
.

From equality (B.2.30), along with (1.1.5), (1.1.10), and a-priori estimates (1.1.11a), (1.1.11d),
we immediately see that∥∥χ(t−σDx)(vI,NF − vI−)(t, ·)

∥∥
L2 . t

σ‖vI±(t, ·)‖L2 (‖u±(t, ·)‖L∞ + ‖R1u±(t, ·)‖L∞)

≤ CABε2t−
1
2

+
δ2
2

+σ,
(B.2.49)

and as σ, δ2 � 1 are small∥∥χ(t−σDx)vI,NF(t, ·)
∥∥
L2 ≤

∥∥χ(t−σDx)vI−(t, ·)
∥∥
L2 +

∥∥χ(t−σDx)(vI,NF − vI−)(t, ·)
∥∥
L2

≤ CBεt
δ2
2 .

(B.2.50)

Moreover, from (B.2.29) and a-priori estimate (1.1.11d) we have that, for every m = 1, 2, t ∈
[1, T ],

(B.2.51)
∥∥χ(t−σDx)Zmv

I,NF(t, ·)
∥∥
L2 ≤ CBεt

δ1
2 .

Finally, from (B.2.47), (1.1.5), (1.1.10), (B.1.10b), (B.1.26a) and a-priori estimates, we derive
that ∥∥∥χ(t−σDx)

[
xjr

I,NF
kg

]
(t, ·)

∥∥∥
L2
. ‖xjΓINLkg(t, ·)‖L2 (‖u±(t, ·)‖L∞ + ‖R1u±(t, ·)‖L∞)

+

1∑
µ=0

tσ
(
‖xµj v±(t, ·)‖L∞ +

∥∥∥∥xµj Dx

〈Dx〉
v±(t, ·)

∥∥∥∥
L∞

)
‖vI±(t, ·)‖L2‖v±(t, ·)‖H2,∞

≤ C(A+B)Bε2t
δ2
2 ,

(B.2.52)

while from (B.1.5a) with s = 0, (B.1.10b) and a-priori estimates∥∥∥χ(t−σDx)
[
xjQ

kg
0

(
v±, D1u

I
±
)]

(t, ·)
∥∥∥
L2

+
∥∥∥χ(t−σDx)

[
xjG

kg
1 (v±, Du±)

]
(t, ·)

∥∥∥
L2

.

(
‖xjv±(t, ·)‖L∞ +

∥∥∥∥xj Dx

〈Dx〉
v±(t, ·)

∥∥∥∥
L∞

)(
‖uI±(t, ·)‖H1 + ‖Dtu±(t, ·)‖L2

)
≤ C(A+B)Bεtδ2 .

Therefore, from (B.2.45) we deduce that

(B.2.53) ‖χ(t−σDx)
[
xjNL

I,NF
kg

]
(t, ·)‖L2 ≤ C(A+B)Bε2tδ2 ,

so injecting (B.2.50), (B.2.51), (B.2.53) into (B.2.48), and summing it up with (B.2.43), we
obtain the result of the statement.
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As done for the Klein-Gordon component in the above lemma, we also derive an estimate for
the uniform norm of the wave component when a Klainerman vector field acts on it and its
frequencies less or equal than tσ (see lemma B.2.10). We first need the following result.

Lemma B.2.9. Let Γ ∈ Z, index J be such that ΓJ = Γ, and ũJ(t, x) := t(Γu)−(t, tx). There
exists a constant C > 0 such that, for any θ0, χ ∈ C∞0 (R2), σ > 0, and every t ∈ [1, T ],

‖ũJ(t, ·)‖L2 ≤ CBεt
δ2
2 ,(B.2.54a)

‖Ωhũ
J(t, ·)‖L2 ≤ CBεt

δ1
2 ,(B.2.54b) ∥∥MũJ(t, ·)

∥∥
L2 ≤ CBεt

δ1
2 ,(B.2.54c) ∥∥θ0(x)Opwh (χ(hσξ))ΩhMũJ(t, ·)

∥∥
L2 ≤ CBεt

δ0
2 .(B.2.54d)

Proof. We warn the reader that, throughout the proof, C will denote a positive constant that
may change line after line. We also recall that

[Dt + 〈Dx〉](Γu)−(t, x) = ΓNLw(t, x).

Estimates (B.2.54a) and (B.2.54b) are straightforward after (1.1.11d) and the fact that

‖ũJ(t, ·)‖L2 = ‖(Γu)−(t, ·)‖L2 , ‖Ωhũ
J(t, ·)‖L2 = ‖(ΩΓu)−(t, ·)‖L2 .

From (3.2.6) with w = (Γu)− and f = ΓNLw, estimates (1.1.11d), (B.1.26b), along with the fact
that δ2 � δ1 (e.g. 2δ2 ≤ δ1), and (A+B)ε0 < 1, we obtain (B.2.54c). By (3.2.6) we also derive
that, for any n = 1, 2,

∥∥θ0(x)Opwh (χ(hσξ))ΩhMnũ
J(t, ·)

∥∥
L2 . ‖ΩZn(Γu)−(t, ·)‖L2 +

1∑
µ=0

‖Ωµ(Γu)−(t, ·)‖L2

+
∥∥∥θ0

(x
t

)
χ(t−σDx)Ω[xnΓNLw](t, ·)

∥∥∥
L2
.

(B.2.55)

The first two norms in the above right hand side are controlled by E0
3(t;W )1/2 and are hence

bounded by CBεt
δ0
2 . By commutating xn with χ(t−σDx)Ω, and using that θ0

(
x
t

)
xn = tθn0

(
x
t

)
,

with θn0 (z) := θ0(z)zn, we deduce that

∥∥∥θ0

(x
t

)
χ(t−σDx)Ω[xnΓNLw](t, ·)

∥∥∥
L2
. t

1∑
µ=0

‖χ1(t−σDx)ΩµΓNLw‖L2 ,

for some new χ1 ∈ C∞0 (R2). On the one hand, using (B.1.20b), (B.1.6a) with s = 0 and a-priori
estimates we derive that

t‖ΓNLw‖L2 . t‖v±(t, ·)‖H2,∞ (‖(Γv)±(t, ·)‖H1 + ‖v±(t, ·)‖H1 + ‖Dtv±(t, ·)‖L2) . CBεt
δ2
2 .

(B.2.56)

On the other hand, when we compute ΩΓNLw we find among the out-coming quadratic terms
the following ones

Qw
0 ((Ωv)±, D1(Γv)±) and Qw

0 ((Γv)±, D1(Ωv)±),

which we estimate in the L2 norm (when truncated for frequencies less or equal than tσ) by
means of (B.2.24a) with L = L2, Γw = Ωv, and s > 0 large enough to have N(s) ≥ 3. From
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(B.1.17), (B.2.42) and a-priori estimates, we obtain that∥∥χ(t−σDx)Qw
0 ((Ωv)±, D1(Γv)±)

∥∥
L2 +

∥∥χ(t−σDx)Qw
0 ((Γv)±, D1(Ωv)±)

∥∥
L2

. tσ‖χ(t−σDx)(Ωv)±(t, ·)‖L∞‖(Γv)±(t, ·)‖H1 +
1∑
|µ|=0

t−3‖v±(t, ·)‖Hs‖xµ(Γv)±(t, ·)‖H1

≤ CB2ε2t−1+β+
δ1+δ2

2 ,

with β > 0 small such that β → 0 as σ → 0. All remaining quadratic contributions to ΩΓNLw
are estimated with

‖(ΩΓv)±(t, ·)‖H1‖v±(t, ·)‖H2,∞ + ‖(Ωv)±(t, ·)‖L2 (‖v±(t, ·)‖H1,∞ + ‖Dtv±(t, ·)‖L∞)

+ ‖v±(t, ·)‖H1,∞ (‖(Ωv)±(t, ·)‖H1 + ‖Dt(Ωv)±(t, ·)‖L2) ,

and are hence bounded by C(A+B)Bε2t−1+
δ1
2 after (B.1.6b), (B.1.6c) and the a-priori estimates.

This finally implies that

t
∥∥χ(t−σDx)ΩΓNLw(t, ·)

∥∥
L2 ≤ C(A+B)Bε2tβ+

δ1+δ2
2 ,

which, together with (B.2.56) and the fact that β + δ1+δ2
2 ≤ δ0

2 , as δ2 � δ1 � δ0 and β > 0 is as
small as we want provided that σ is small, gives∥∥∥θ0

(x
t

)
χ(t−σDx)Ω[xnΓNLw](t, ·)

∥∥∥
L2
≤ CBεt

δ0
2 .

Lemma B.2.10. There exists a constant C > 0 such that, for any ρ ∈ N, χ ∈ C∞0 (R2) equal to
1 in a neighbourhood of the origin, σ > 0 small, and every t ∈ [1, T ],

(B.2.57)
∑
|J |=1

1∑
|µ|=0

‖χ(t−σDx)RµUJ(t, ·)‖Hρ,∞ ≤ C(A+B)εt−
1
2

+β+
δ1
2 ,

for a small β > 0, β → 0 as σ → 0.

Proof. We warn the reader that, throughout the proof, C and β will denote two positive constants
that may change line after line, with β → 0 as σ → 0. Moreover, since χ(t−σDx) is a bounded
operator from L∞ to Hρ,∞ with norm O(tσρ), for any ρ ∈ N, we can reduce to prove that the
L∞ norm of χ(t−σDx)RµUJ(t, ·) is bounded by the right hand side of (B.2.57). We observe
that this estimate is automatically satisfied when J is such that ΓJ is a spatial derivative, as a
consequence of a-priori estimate (1.1.11a). We therefore assume that ΓJ is one of the Klainerman
vector fields Ω, Zm, for m ∈ {1, 2}.
Introducing ũJ(t, x) := tuJ−(t, tx), passing to the semiclassical setting (t 7→ t, x 7→ x

t , and
h := 1/t), and reminding that uJ+ = −uJ−, inequality (B.2.57) becomes

(B.2.58)
1∑
|µ|=0

∥∥∥Opwh

(
χ(hσξ)(ξ|ξ|−1)µ

)
ũJ−(t, ·)

∥∥∥
L∞
≤ C(A+B)εh−

1
2
−β− δ1

2 .

We consider a Littlewood-Paley decomposition such that

(B.2.59) χ(hσξ) = χ̃(h−1ξ) +
∑
k

(1− χ̃)(h−1ξ)ψ(2−kξ)χ(hσξ),
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for some suitably supported χ̃ ∈ C∞0 (R2), ψ ∈ C∞0 (R2 \ {0}), and immediately observe that the
above sum is restricted to indices k such that h . 2k . h−σ. By the classical Sobolev injection,
the uniform continuity of Opwh (ξ|ξ|−1) on L2, and a-priori estimate (1.1.11d), we derive that for
any |µ| ≤ 1, every t ∈ [1, T ],∥∥Opwh

(
χ̃(h−1ξ)(ξ|ξ|−1)µ

)
ũJ(t, ·)

∥∥
L∞

= ‖χ(Dx)Opwh ((ξ|ξ|−1)µ)ũJ(t, ·)‖L∞

. ‖uJ−(t, ·)‖L2 ≤ CBεt
δ2
2 .

(B.2.60)

If we concisely denote by φk(ξ) the k-th addend in decomposition (B.2.59) and introduce two
smooth cut-off functions χ0, γ, with χ0 radial and equal to 1 on the support of φk, γ with
sufficiently small support, we can write

Opwh
(
φk(ξ)(ξ|ξ|−1)µ

)
ũJ = Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
φk(ξ)(ξ|ξ|−1)µ

)
Opwh (χ0(hσξ))ũJ

+ Opwh

(
(1− γ)

(x|ξ| − ξ
h1/2−σ

)
φk(ξ)(ξ|ξ|−1)µ

)
Opwh (χ0(hσξ))ũJ .

On the one hand, after proposition 1.2.30, the fact that 2k . h−σ, a-priori estimate (1.1.11d),
and the uniform L2 continuity of Opwh (χ0(hσξ)), we have that for any |µ| ≤ 1

(B.2.61)
∥∥∥∥Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
φk(ξ)(ξ|ξ|−1)µ

)
Opwh (χ0(hσξ))ũJ(t, ·)

∥∥∥∥
L∞

. h−
1
2
−β (‖Opwh (χ0(hσξ))ũJ(t, ·)‖L2 + ‖θ0(x)ΩhOpwh (χ0(hσξ))ũJ(t, ·)‖L2

)
. h−

1
2
−β (‖uJ−(t, ·)‖L2 + ‖ΩuJ−(t, ·)‖L2

)
≤ CBεh−

1
2
−β− δ1

2 .

On the other hand, using that (1−γ)(z) = γj1(z)zj , where γ
j
1(z) := (1−γ)(z)zj |z|−2 is such that

|∂αz γ
j
1(z)| ≤ 〈z〉−1−|α|, we derive from (1.2.52b), the commutation betweenM with Opwh (χ0(hσξ)),

and lemma B.2.9, that∥∥∥∥Opwh

(
(1− γ)

(x|ξ| − ξ
h1/2−σ

)
φk(ξ)(ξ|ξ|−1)µ

)
Opwh (χ0(hσξ))ũJ

∥∥∥∥
L∞

. h−β
1∑

γ,|ν|=0

‖(θ0(x)Ωh)γMνOpwh (χ0(hσξ))ũJ(t, ·)‖L2 ≤ CBεtβ+
δ0
2 .

Combining this estimate with (B.2.61) we deduce that

‖Opwh
(
φk(ξ)(ξ|ξ|−1)µ

)
ũJ(t, ·)‖L∞ ≤ C(A+B)εh−

1
2
−β− δ1

2 ,

for any |µ| ≤ 1, and hence (B.2.58) after (B.2.59), (B.2.60), up to a further loss | log h|, as a
consequence of the fact that the sum in (B.2.59) is finite and taken over indices k such that
log h . k . log h−1.

Lemma B.2.11. There exists a positive constant C > 0 such that, for any χ ∈ C∞0 (R2) equal
to 1 in a neighbourhood of the origin, σ > 0, and every t ∈ [1, T ],

(B.2.62)
1∑
|µ|=0

∥∥∥∥χ(t−σDx)

[
xj

( Dx

〈Dx〉

)µ
(Γv)±(t, ·)

]∥∥∥∥
L∞
≤ CBεtβ+

δ1
2 ,

with β > 0 small, β → 0 as σ → 0.
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Proof. We warn the reader that, throughout the proof, C and β will denote two positive constants
that may change line after line, with β → 0 as σ → 0. As Γv+ = −Γv−, it is enough to prove
the statement for Γv−.

If Γ is a spatial derivative, estimate (B.2.62) is just consequence of the uniform continuity of
χ(t−σDx) on L∞ and of (B.1.10b). We then assume that Γ ∈ {Ω, Zm,m = 1, 2} is a Klainerman
vector field. First of all, we observe that by (B.1.9b) with w = (Γv)− and f = ΓNLkg, along
with the classical Sobolev injection,
(B.2.63)

1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
(Γv)−(t, ·)

∥∥∥∥
L∞
. ‖Zj(Γv)−(t, ·)‖H1+t‖(Γv)−(t, ·)‖H2+

1∑
µ=0

‖xµj ΓNLkg(t, ·)‖L∞ .

From equality (B.1.20a) and lemma B.2.4 with L = L∞ and s > 0 large enough so that N(s) ≥
3, together with estimates (1.1.11), (B.1.5a), (B.1.5b), (B.1.5c), (B.1.6a), (B.1.10a), (B.1.11),
(B.2.42), and (B.2.57), we get that

‖ΓNLkg(t, ·)‖L∞

.
1∑

µ=0

(
‖χ(t−σDx)(Γv)±(t, ·)‖H1,∞‖Rµ

1u±(t, ·)‖H2,∞
)

+ ‖v±(t, ·)‖H1,∞
∥∥χ(t−σDx)(Γu)±(t, ·)

∥∥
H2,∞

+ ‖v±(t, ·)‖H1,∞ ×
1∑
|µ|=0

(‖Rµu±(t, ·)‖H2,∞ + ‖DtR
µu±(t, ·)‖H1,∞)

+ t−3 (‖v±(t, ·)‖Hs + ‖Dtv±(t, ·)‖Hs)
( 1∑
|µ|,|ν|=0

∥∥∥∥xµD1

( Dx

|Dx|

)ν
u±(t, ·)

∥∥∥∥
L2

+ t‖u±(t, ·)‖L2

)

+ t−3
( 1∑
|µ|=0

‖xµv±(t, ·)‖L2 + t‖v±(t, ·)‖L2

)
(‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

≤ CABε2t−
3
2 +β+

δ1
2 .

(B.2.64)

Moreover, as

(B.2.65)
∥∥∥xjQkg

0

(
(Γv)±, D1u±

)∥∥∥
L∞
.

1∑
|µ|,ν=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
(Γv)−(t, ·)

∥∥∥∥
L∞
‖Rν

1u±(t, ·)‖H2,∞ ,

(B.2.66)∥∥∥xjGkg
1

(
v±, Du±

)∥∥∥
L∞
.

1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞

(‖u±(t, ·)‖H2,∞ + ‖Dtu±(t, ·)‖H1,∞) ,

and by lemma B.2.4 with L = L∞, w = u, and s > 0 large enough so that N(s) ≥ 3,∥∥∥xjQkg
0 (v±, D1(Γu)±)

∥∥∥
L∞
.

1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞
‖χ(t−σDx)(Γu)±(t, ·)‖H2,∞

+ t−3
1∑

|µ|,ν=0

(∥∥xµxνj v±(t, ·)
∥∥
L2 + t‖xνj v±(t, ·)‖L2

)
(‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs) ,

(B.2.67)

we derive that
(B.2.68)

‖xjΓNLkg(t, ·)‖L∞ ≤ CAεt
− 1

2

1∑
|µ|,ν=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
(Γv)−(t, ·)

∥∥∥∥
L∞

+ C(A+B)Bε2t−
1
2

+β+
δ1+δ2

2 ,
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as follows using (B.1.5a), (B.1.5b) with s = 1, (B.1.10a), (B.1.10b),(B.1.27a), (B.2.57) and a-
priori estimates. By injecting the above inequality into (B.2.63) and using the fact that ε0 <
(2CA)−1, we initially obtain that

(B.2.69) ‖xj(Γv)−(t, ·)‖L∞ +

∥∥∥∥xj Dx

〈Dx〉
(Γv)−(t, ·)

∥∥∥∥
L∞
≤ CBεt1+

δ2
2 .

If we take any smooth cut-off function χ and use equality (B.1.9b), instead of (B.2.63) we find
that

(B.2.70)
1∑
|µ|=0

∥∥∥∥χ(t−σDx)
[
xj

( Dx

〈Dx〉

)µ
(Γv)−(t, ·)

]∥∥∥∥
L∞
. ‖Zj(Γv)−(t, ·)‖H1 + t‖χ(t−σDx)(Γv)−(t, ·)‖L∞

+
1∑

µ=0

∥∥∥χ(t−σDx)
[
xµj ΓNLkg(t, ·)

]∥∥∥
L∞

,

where now∥∥χ(t−σDx)
[
xjΓNLkg(t, ·)

]∥∥
L∞
. ‖xjΓNLkg(t, ·)‖L∞ ≤ C(A+B)Bε2t

1
2

+
δ2
2 ,

as follows injecting (B.2.69) into (B.2.68). Therefore, from (B.2.64), lemma B.2.8 and a-priori
estimate (1.1.11d) with k = 2, we find that

(B.2.71)
∥∥χ(t−σDx)

[
xj(Γv)−(t, ·)

]∥∥
L∞

+

∥∥∥∥χ(t−σDx)

[
xj

Dx

〈Dx〉
(Γv)−(t, ·)

]∥∥∥∥
L∞
≤ CBεt

1
2

+
δ2
2 .

Finally, by means of lemma B.2.2 with L = L∞, w1 = x(Γv)±, and s > 0 such that N(s) ≥ 2,
we derive that for any χ ∈ C∞0 (R2) there is some χ1 ∈ C∞0 (R2) such that∥∥∥χ(t−σDx)xjQ

kg
0 ((Γv)±, D1u±)

∥∥∥
L∞

.
1∑

|µ|,ν=0

∥∥∥∥χ1(t−σDx)

[
xj

( Dx

〈Dx〉

)µ
(Γv)−(t, ·)

]∥∥∥∥
L∞
‖χ(t−σDx)Rν

1u±(t, ·)‖H2,∞

+

1∑
µ=0

t−2
∥∥∥xµj (Γv)±(t, ·)

∥∥∥
L2
‖u±(t, ·)‖Hs .

Then, combining such inequality with (B.2.66), (B.2.67), together with (B.1.17), (B.2.71), and
all the other inequalities to which we already referred before, from (B.1.20a) we find that∥∥χ(t−σDx)

[
xjΓNLkg(t, ·)

]∥∥
L∞
≤ C(A+B)ε2tδ2 ,

which injected into (B.2.70) finally implies, together with (1.1.11d) with k = 2, lemma B.2.8,
and (B.2.64), the wished estimate (B.2.62).

Making use of lemmas B.2.8 and B.2.11, estimate (B.2.52) can be improved of a factor t−
1
2 . This

improvement, that will be useful to derive (B.4.30), is showed in the following lemma.

Lemma B.2.12. Let I be a multi-index of length 1 and rI,NF
kg be given by (B.2.46). There exists

a constant C > 0 such that, for any ρ ∈ N, χ ∈ C∞0 (R2), equal to 1 in a neighbourhood of the
origin, σ > 0 small, j = 1, 2, and every t ∈ [1, T ],

(B.2.72)
∥∥∥χ(t−σDx)

[
xjr

I,NF
kg

]
(t, ·)

∥∥∥
L2
≤ C(A+B)ABε3t−

1
2

+β+
δ+δ1

2 ,

with β > 0 small, β → 0 as σ → 0.
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Proof. Let us remind the explicit expression (B.2.47) of rI,NF
kg and consider the cubic term

xjΓ
INLkg(D1u). Reminding (1.1.5) and applying lemma B.2.2 with L = L2 and s > 0 suf-

ficiently large so that N(s) ≥ 2, together with (B.1.26a) and a-priori estimates, we derive that
there is some χ1 ∈ C∞0 (R2) such that

∥∥χ(t−σDx)
[
xjΓ

INLkg(D1u)
]

(t, ·)
∥∥
L2

.
∥∥χ1(t−σDx)

[
xjΓ

INLkg
]

(t, ·)
∥∥
L2 ‖R1u±(t, ·)‖L∞ + t−2‖xjΓINLkg(t, ·)‖L2‖u±(t, ·)‖Hs

≤ CAεt−
1
2

∥∥χ1(t−σDx)
[
xjNLIkg

]
(t, ·)

∥∥
L2 + C(A+B)Bε2t−1.

(B.2.73)

Then, recalling (B.1.20a) and using again lemma B.2.2 with L = L2, w1 = (Γv)±, and s as
before, in order to estimate the contribution coming from the first quadratic term in the right
hand side of (B.1.20a), we find that there is a new χ2 ∈ C∞0 (R2) such that∥∥χ1(t−σDx)

[
xjNLIkg

]
(t, ·)

∥∥
L2

.
1∑
|µ|=0

∥∥∥∥χ2(t−σDx)
[
xj

( Dx

〈Dx〉

)µ
(Γv)±

]
(t, ·)

∥∥∥∥
L∞
‖u±(t, ·)‖H1 + t−2‖xj(Γv)±(t, ·)‖L2‖u±(t, ·)‖Hs

+

1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞

(‖(Γu)±(t, ·)‖H1 + ‖u±(t, ·)‖H1 + ‖Dtu±(t, ·)‖L2)

≤ C(A+B)Bε2tβ+
δ+δ1

2 ,

where the latter estimate is obtained from (B.1.5a) with s = 0, (B.1.10b), (B.1.17) with k = 1,
(B.2.62) and a-priori estimates. This implies, combined with (B.2.73), that∥∥χ(t−σDx)

[
xjNLIkg(D1u)

]
(t, ·)

∥∥
L2 ≤ C(A+B)ABε3t−

1
2

+β+
δ+δ1

2 ,

and from (B.2.47), (B.1.10b) and a-priori estimates,∥∥∥χ(t−σDx)
[
xjr

I,NF
kg

]
(t, ·)

∥∥∥
L2
.
∥∥χ(t−σDx)

[
xjNLIkg(D1u)

]
(t, ·)

∥∥
L2

+
1∑

µ=0

tσ
(
‖xµj v±(t, ·)‖L∞ +

∥∥∥∥xµj Dx

〈Dx〉
v±(t, ·)

∥∥∥∥
L∞

)
‖vI±(t, ·)‖L2‖v±(t, ·)‖H2,∞

≤ C(A+B)ABε3t−
1
2

+β+
δ+δ1

2 ,

which concludes the proof of the statement.

Lemma B.2.13. Let I be a multi-index of length 2. There exists a constant C > 0 such that,
for every j = 1, 2, t ∈ [1, T ],

(B.2.74)
∥∥xjΓINLkg(t, ·)∥∥L2 ≤ C(A+B)Bε2t

1
2

+β+
δ1+δ2

2 ,

with β > 0 small, β → 0 as σ → 0.

Proof. We remind the reader about (B.1.23). Instead of using (B.1.24), which was obtained by
Sobolev injection, we apply lemma B.2.4 with L = L2, Γw = ΓI2u, s > 0 sufficiently large so
that N(s) ≥ 3, and exploit the fact that we have an estimate of the Hρ,∞ norm of D1u

I2 when
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truncated for frequencies less or equal than tσ (see lemma B.2.10). Therefore, for (I1, I2) ∈ I(I)
such |I1| = |I2| = 1 we obtain that∥∥∥xjQkg

0

(
vI1± , D1u

I2
±

)
(t, ·)

∥∥∥
L2
.

1∑
µ=0

∥∥∥xµj vI1± (t, ·)
∥∥∥
L2

∥∥∥χ(t−σDx)uI2± (t, ·)
∥∥∥
H2,∞

+ t−3 (‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

 2∑
|µ|=0

‖xµvI1± (t, ·)‖L2 +
1∑
|µ|=0

t‖xµvI1± (t, ·)‖L2


≤ C(A+B)Bε2t

1
2

+β+
δ1+δ2

2 ,

last estimate following from lemma B.2.10 together with (B.1.5a), (B.1.17) with k = 1, (B.1.28),
a-priori estimates, and the fact that δ1, δ2 � 1 are small. Consequently, from the following
inequality

‖xjΓINLkg(t, ·)‖L2 .
1∑

µ=0

‖Rµ
1u±(t, ·)‖H2,∞

∑
|J |≤2
µ=0,1

‖xµj (ΓJv)−(t, ·)‖L2

+

1∑
|µ|=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞

[
‖uI±(t, ·)‖H1 +

∑
|J |<2

(
‖uJ±(t, ·)‖H1 + ‖Dtu

J
±(t, ·)‖L2

)]
+

∑
|I1|=|I2|=1

∥∥∥xjQkg
0

(
vI1± , D1u

I2
±

)
(t, ·)

∥∥∥
L2
,

together with (B.1.10b), (B.1.5a) with s = 0, (B.1.7), and (B.1.17) with k = 1, we finally derive
(B.2.74).

Lemma B.2.14. Let us fix s ∈ N. There exists a constant C > 0 such that, if we assume that
a-priori estimates (1.1.11) are satisfied in some interval [1, T ], for a fixed T > 1, with n ≥ s+ 2,
then we have, for any χ ∈ C∞0 (R2) and σ > 0 small,

‖ṽ(t, ·)‖Hs
h
≤ CBεt

δ
2 ,(B.2.75a) ∑

|µ|=1

‖Opwh (χ(hσξ))Lµṽ(t, ·)‖L2 ≤ CBεt
δ2
2 ,(B.2.75b)

for every t ∈ [1, T ].

Proof. We warn the reader that, throughout the proof, C and β will denote two positive constants
that may change line after line, with β > 0 is small as long as σ is small.

It is straightforward to check that the Hs
h norm of ṽ is bounded by energy En(t;W )

1
2 whenever

n ≥ s + 2, after definitions (3.2.2), (3.1.3), inequality (3.1.7a), and a-priori estimates (1.1.11a),
(1.1.11b).

In order to prove (B.2.75b) we first use relation (3.2.9b) and definition (3.1.3) to derive that

‖Opwh (χ(hσξ))Lmṽ(t, ·)‖L2 . ‖ZmV (t, ·)‖L2 + ‖χ(t−σDx)Zm(vNF − v−)(t, ·)‖L2

+ ‖ṽ(t, ·)‖L2 + ‖χ(t−σDx)[xmr
NF
kg ](t, ·)‖L2 ,

(B.2.76)

with rNFkg given by (3.1.5). Using (1.1.5) we can rewrite (3.1.10) and (3.1.11) similarly to (B.2.30),
(B.2.47), as:

(B.2.77) vNF − v− = − i
2

[(Dtv)(D1u)− (D1v)(Dtu) +D1[vDtu]− 〈Dx〉[vD1u]]
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and

(B.2.78) rNFkg = − i
2

[NLkgD1u− (D1v)NLw +D1(vNLw)] .

From (B.2.78) and (1.1.5), together with estimates (1.1.11) and (B.1.10b),

‖χ(t−σDx)(xmr
NF
kg )(t, ·)‖L2 . tσ

(
‖xnv−(t, ·)‖L∞ +

∥∥∥∥xn Dx

〈Dx〉
v−(t, ·)

∥∥∥∥
L∞

)
×
[

(‖U(t, ·)‖H2,∞ + ‖R1U(t, ·)‖H2,∞) ‖U(t, ·)‖L2 + ‖V (t, ·)‖H2,∞‖V (t, ·)‖L2

]
+ ‖V (t, ·)‖2H1,∞‖V (t, ·)‖H1 ≤ C(A+B)ABε3t−

1
2

+σ+
(δ+δ2)

2 .

(B.2.79)

Similarly to (B.2.40),

2iχ(t−σDx)Zm(vNF − v−)

= χ(t−σDx)
[
(DtZmv)(D1u)− (D1Zmv)(Dtu) +D1[(Zmv)(Dtu)]− 〈Dx〉[(Zmv)(D1u)]

+ (Dtv)(D1Zmu)− (D1v)(DtZmu) +D1[v(DtZmu)]− 〈Dx〉[v(D1Zmu)]

− (Dmv)(D1u) + δm1(Dtv)(Dtu)− δm1Dt[v(Dtu)] +
Dm

〈Dx〉
Dt[v(D1u)]

− δm1(Dtv)(Dtu) + (D1v)(Dmu)− δm1D1[v(Dtu)] + δm1〈Dx〉[v(Dtu)]
]
.

(B.2.80)

We bound the L2 norm of all products in the first line of the above equality by means of lemma
B.2.2, and all the others by the L∞ norm of the Klein-Gordon factor times the L2 norm of the
wave one. In this way we get that, for some new χ1 ∈ C∞0 (R2) and s > 0 sufficiently large, we
derive that∥∥χ(t−σDx)Zm(vNF − v−)(t, ·)

∥∥
L2

. tσ
∥∥χ1(t−σDx)(Zmv)±(t, ·)

∥∥
L∞
‖u±(t, ·)‖L2 + t−1‖(Zmv)±(t, ·)‖L2‖u±(t, ·)‖Hs

+ tσ‖v±(t, ·)‖H1,∞ (‖(Zmu)±(t, ·)‖L2 + ‖u±(t, ·)‖L2 + ‖Dtu±(t, ·)‖L2) .

Consequently, using estimates (1.1.11), (B.1.5a) with s = 0, and (B.2.42), we obtain that

(B.2.81) ‖χ(t−σDx)Zm(vNF − v−)(t, ·)‖L2 ≤ C(A+B)Bε2t−1+β+
δ+δ1

2 ,

which plugged into (B.2.76), along with (B.2.79), (B.2.75a) and (1.1.11d), gives (B.2.75b).

B.3 Last range of estimates

The aim of this section is to show that a-priori estimates (1.1.11) also infer a moderate growth
in time of the L2(R2) norm of Lµṽ, for |µ| = 2, when this function is restricted to frequencies
less or equal than h−σ, for σ > 0 small. This is proved in lemma B.3.7. Lemmas from B.3.1 to
B.3.6 are intermediate technical results.

Lemma B.3.1. Let us consider vNF introduced in (3.1.3) and vI,NF as in (B.2.27) with |I| = 1
and ΓI = Zn, for n ∈ {1, 2}. There exists a constant C > 0 such that, for any χ ∈ C∞0 (R2),
σ > 0 small, and every t ∈ [1, T ],

(B.3.1)
∥∥χ(t−σDx)

[
(Znv)− − vI,NF](t, ·)∥∥

L2 ≤ C(A+B)Bε2t−1+β+
δ+δ1

2 ,
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(B.3.2)
∥∥χ(t−σDx)

[
xmZn(vNF − v−)(t, ·)

]∥∥
L2 +

∥∥χ(t−σDx)
[
xm
(
(Znv)− − vI,NF)](t, ·)∥∥

L2

≤ C(A+B)Bε2tβ+
δ1+δ2

2 .

The same estimates hold true when Zn is replaced with Ω.

Proof. By comparing equality (B.2.30), with |I| = 1 and ΓI = Zn, with (B.2.80) we see that
χ(t−σDx)(vI,NF− (Znv)−) corresponds to the first line in the right hand side of (B.2.80). There-
fore, inequality (B.3.1) is automatically satisfied after (B.2.81), which was obtained by estimating
the right hand side of (B.2.80) term by term. In order to prove (B.3.2), let us consider equality
(B.2.80) but with χ(t−σDx) replaced with χ(t−σDx)xm. The L2 norm of each product in the
second to fourth line is bounded by

tσ
1∑

µ,ν=0

∥∥∥∥xµm( Dx

〈Dx〉

)ν
v±(t, ·)

∥∥∥∥
L∞

(‖(Zmu)±(t, ·)‖L2 + ‖u±(t, ·)‖L2 + ‖Dtu±(t, ·)‖L2) ,

and then by the right hand side of (B.3.2) after (1.1.11), (B.1.5a) with s = 0, and (B.1.10b).
Using lemma B.2.2 with L = L2 and s > 0 large enough to have N(s) ≥ 2, we obtain that the
L2 norm of products in the first line of (the modified) (B.2.80) is bounded by

1∑
µ,ν=0

∥∥∥∥χ1(t−σDx)
[
xµm

( Dx

〈Dx〉

)ν
(Zmv)±(t, ·)

]∥∥∥∥
L∞
‖u±(t, ·)‖L2

+
1∑

µ=0

t−N(s)‖xµm(Zmv)±(t, ·)‖L2‖u±(t, ·)‖Hs ,

for some smooth cut-off χ1, and hence by the right hand side of (B.3.2) after (1.1.11), (B.1.17)
and (B.2.62) with Γ = Zm. This concludes the proof of (B.3.2).

When Zn is replaced with Ω, instead of referring to (B.2.80) one uses that

2iΩ
(
vNF − v−

)
= (DtΩv)(D1u)− (D1Ωv)(Dtu) +D1[(Ωv)(Dtu)]− 〈Dx〉[(Ωv)(D1u)]

+ (Dtv)(D1Ωu)− (D1v)(DtΩu) +D1[v(DtΩu)]− 〈Dx〉[v(D1Ωu)]

− (Dtv)(D2u) + (D2v)(Dtu)−D2[v(Dtu)] + 〈Dx〉[v(D2u)]

and applies the same argument as above to recover the wished estimates.

Lemma B.3.2. Let vNF be defined as in (3.1.3). There exists a constant C > 0 such that, for
any χ ∈ C∞0 (R2), σ > 0 small, m = 1, 2,

(B.3.3a)
∥∥Opwh (χ(hσξ))[tZnv

NF (t, tx)]
∥∥
L2(dx)

≤ CBεt
δ2
2 ,

(B.3.3b)
∥∥Opwh (χ(hσξ))Lm[tZnv

NF (t, tx)]
∥∥
L2(dx)

≤ CBεt
δ1
2 ,

for every t ∈ [1, T ].

Proof. Let us write ZnvNF as follows:

(B.3.4) Znv
NF = Zn(vNF − v−) +

[
(Znv)− − vI,NF]+ vI,NF +

Dn

〈Dx〉
vNF +

Dn

〈Dx〉
(v− − vNF ),
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with vI,NF given by (B.2.27) with |I| = 1 and ΓI = Zn. From the fact that ‖tw(t, t·)‖L2 =
‖w(t, ·)‖L2 and estimates (1.1.11), (3.1.8a), (B.2.50),(B.2.81), (B.3.1), along with the following
one

‖χ(t−σDx)Dn〈Dx〉−1vNF (t, ·)‖L2

≤ ‖χ(t−σDx)Dn〈Dx〉−1v−(t, ·)‖L2 + ‖χ(t−σDx)Dn〈Dx〉−1(v− − vNF )(t, ·)‖L2 ≤ CBεt
δ
2 ,

we immediately obtain (B.3.3a).

From (B.3.4) we also derive that

∥∥Opwh (χ(hσξ))Lm[tZnv
NF (t, tx)]

∥∥
L2(dx)

.
∥∥Opwh (χ(hσξ))Lm

[
tZn(vNF − v−)(t, tx)

]∥∥
L2(dx)

+
∥∥Opwh (χ(hσξ))Lm

[
t
(
(Znv)− − vI,NF)(t, tx)

]∥∥
L2(dx)

+
∥∥Opwh (χ(hσξ))Lm

[
tvI,NF(t, tx)

]∥∥
L2(dx)

+
∥∥Opwh (χ(hσξ))Lm

[
tDn〈Dx〉−1vNF (t, tx)

]∥∥
L2(dx)

+
∥∥Opwh (χ(hσξ))Lm

[
tDn〈Dx〉−1(v− − vNF )(t, tx)

]∥∥
L2(dx)

.

(B.3.5)

By relation (3.2.8) with w = vI,NF and estimates (B.2.50), (B.2.51), (B.2.53), it follows that

∥∥Opwh (χ(hσξ))Lm
[
tvI,NF(t, tx)

]∥∥
L2 ≤ CBεt

δ1
2 ,

while from (3.2.2) and (B.2.75b) we have that

∥∥Opwh (χ(hσξ))Lm
[
tDn〈Dx〉−1vNF (t, tx)

]∥∥
L2 ≤ CBεt

δ2
2 .

The remaining L2 norms in the right hand side of (B.3.5) are estimated reminding definition
(1.2.68) of Lm and using the fact that

(B.3.6) ‖Opwh (χ(hσξ))Lm[tw(t, tx)]‖L2(dx) . ‖χ(t−σDx)[xmw(t, ·)]‖L2 + t‖χ(t−σDx)w(t, ·)‖L2 .

Therefore, by (B.2.81) and lemma B.3.1 we derive that∥∥Opwh (χ(hσξ))Lm
[
tZn(vNF − v−)(t, tx)

]∥∥
L2(dx)

+
∥∥Opwh (χ(hσξ))Lm

[
t
(
(Znv)− − vI,NF)(t, tx)

]∥∥
L2(dx)

≤ C(A+B)Bε2tβ+
δ+δ1

2 ,

while from (3.1.8a), a-priori estimates, together with the following inequality

‖χ(t−σDx)[xm(v− − vNF )](t, ·)‖L2 .
1∑

µ,ν=0

tσ
∥∥∥∥xµm( Dx

〈Dx〉

)ν
v−(t, ·)

∥∥∥∥
L∞
‖u±(t, ·)‖L2

≤ C(A+B)Bε2tσ+
δ+δ2

2 ,

which follows by (B.2.77), (1.1.5), (B.1.10b), (1.1.11b), (1.1.11c), we derive

∥∥Opwh (χ(hσξ))Lm
[
tDn〈Dx〉−1(v− − vNF )(t, tx)

]∥∥
L2 ≤ C(A+B)Bε2tσ+

(δ+δ2)
2 .
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In the following lemma we are going to prove that the product of the semiclassical wave function
ũ with the Klein-Gordon one ṽ enjoys a better L2 (resp. L∞) estimate than the one roughly
obtained by taking the L2 (resp. L∞) norm of the former times the L∞ norm of the latter.
Estimates

‖ṽũ(t, ·)‖L2 . ‖ṽ(t, ·)‖L∞‖ũ(t, ·)‖L2 ≤ CABε2h−
δ
2 ,

‖ṽũ(t, ·)‖L∞ . ‖ṽ(t, ·)‖L∞‖ũ(t, ·)‖L∞ ≤ CA2ε2h−
1
2
− δ

2 ,

which follows from (B.2.1a), (B.3.8), (B.3.9), can be in fact improved of a factor h1/2 (see
(B.3.7)). This comes from the fact that the main contribution to ũ is localized around manifold
Λw introduced in (3.2.43), whereas ṽ concentrates around Λkg defined in (1.2.66), and these two
manifolds are disjoint.

x

ξ

−1 1

Λw

Λkg

Figure B.1: Manifolds Λkg and Λw.

Lemma B.3.3. Let h = t−1, ũ, ṽ be defined in (3.2.2), a0(ξ) ∈ S0,0(1), and b1(ξ) = ξj or b1(ξ) =
ξjξk|ξ|−1, with j, k ∈ {1, 2}. There exists a constant C > 0 such that, for any χ, χ1 ∈ C∞0 (R2),
σ > 0, and every t ∈ [1, T ], we have that

(B.3.7a)
∥∥[Opwh (χ(hσξ)a0(ξ))ṽ(t, ·)][Opwh (χ1(hσξ)b1(ξ))ũ(t, ·)]

∥∥
L2 ≤ C(A+B)Bε2h

1
2
−β− δ+δ1

2 ,

(B.3.7b)
∥∥[Opwh (χ(hσξ)a0(ξ))ṽ(t, ·)][Opwh (χ1(hσξ)b1(ξ))ũ(t, ·)]

∥∥
L∞
≤ C(A+B)Bε2h−β−

δ+δ1
2 ,

with β > 0 small, β → 0 as σ → 0.

Proof. Before entering in the details of the proof, we warn the reader that C and β denote two
positive constants that may change line after line, with β → 0 as σ → 0. Also, we will denote by
R(t, x) any contribution, in what follows, that satisfies inequalities (B.3.7), and by χ2 a smooth
cut-off function, identically equal to 1 on the support of χ1, so that

Opwh (χ1(hσξ))ũ = Opwh (χ1(hσξ))Opwh (χ2(hσξ))ũ,

assuming that at any time ũ can be replaced with Opwh (χ2(hσξ))ũ. Finally, it is useful to remind
that from (3.2.2), (3.1.15), (3.1.20b), (3.1.20c), and a-priori estimates,

(B.3.8) ‖ũ(t, ·)‖
Hρ+1,∞
h

+
∑
|µ|=1

‖Opwh
(
(ξ|ξ|−1)µ

)
ũ(t, ·)‖

Hρ+1,∞
h

≤ CAεh−
1
2 ,
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while by (3.1.3), (3.1.7b) (with θ � 1 small enough) and a-priori estimates,

(B.3.9) ‖ṽ(t, ·)‖Hρ,∞
h
≤ CAε,

for every t ∈ [1, T ].

First of all, we take γ ∈ C∞0 (R2) equal to 1 in a neighbourhood of the origin and with sufficiently
small support, and define

ṽΛkg(t, x) := Opwh

(
γ
(x− p′(ξ)√

h

)
χ(hσξ)a0(ξ)

)
ṽ(t, x),

ṽΛckg
(t, x) := Opwh

(
(1− γ)

(x− p′(ξ)√
h

)
χ(hσξ)a0(ξ)

)
ṽ(t, x),

with p(ξ) := 〈ξ〉, so that

(B.3.10) Opwh (χ(hσξ)a0(ξ))ṽ = ṽΛkg + ṽΛckg
.

The following estimates hold:

‖ṽΛkg(t, ·)‖L∞ ≤ CAεh
−β,(B.3.11a)

‖ṽΛckg
(t, ·)‖L∞ ≤ CBεh

1
2
−β− δ1

2 .(B.3.11b)

The former one is a straight consequence of proposition 1.2.39 with p = +∞ and (B.3.9). On
the other hand, if we write

(1− γ)
(x− p′(ξ)√

h

)
χ(hσξ)a0(ξ) =

2∑
j=1

γj1

(x− p′(ξ)√
h

)
χ(hσξ)a0(ξ)

(xj − p′j(ξ)√
h

)
with γj1(z) := (1− γ)(z)zj |z|−2 such that |∂αz γ

j
1(z)| . 〈z〉−1−|α|, and use (1.2.69) with c(x, ξ) =

χ(hσξ)a0(ξ), we obtain that

‖ṽΛckg
(t, ·)‖L∞ .

2∑
j=1

√
h

∥∥∥∥Opwh

(
γj1

(x− p′(ξ)√
h

)
χ(hσξ)a0(ξ)

)
Lj ṽ(t, ·)

∥∥∥∥
L∞

+
2∑
j=1

√
h

∥∥∥∥Opwh

(
γj1

(x− p′(ξ)√
h

)
∂j
(
χ(hσξ)a0(ξ)

))
ṽ(t, ·)

∥∥∥∥
L∞

+

2∑
j=1

∑
|α|=2

√
h

∥∥∥∥Opwh

(
(∂αγj1)

(x− p′(ξ)√
h

)
χ(hσξ)a0(ξ)(∂αξ p

′)(ξ)
)
ṽ(t, ·)

∥∥∥∥
L∞

+ ‖Opwh (r(x, ξ))ṽ(t, ·)‖L∞ ,

(B.3.12)

with r ∈ h1−βS 1
2
,σ(〈x−p

′(ξ)√
h
〉−1). Since γj1 vanishes in a neighbourhood of the origin, we derive

from inequality (3.2.17b), equation (3.1.4) and relation (3.2.8) with w = vNF , lemmas B.2.14,
B.3.2, and estimate (B.2.79), that the first sum in the above right hand side is bounded by the
right hand side of (B.3.7b). The same is true for the above second and third sums after (3.2.17b)
and lemma B.2.14, and for the above latter L∞ norm because of proposition 1.2.37 and estimate
(B.2.75a).

After decomposition (B.3.10) and estimates (B.2.1a), (B.3.8), and (B.3.11b), we see that

Opwh (χ(hσξ)a0(ξ))ṽOpwh (χ(hσξ)b1(ξ))ũ = ṽΛkgOpwh (χ(hσξ)b1(ξ))ũ+R(t, x).
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For some suitably supported χ0 ∈ C∞0 (R2), ϕ ∈ C∞0 (R2 \ {0}), we also consider the following
decomposition

Opwh (χ1(hσξ)b1(ξ))ũ = Opwh (χ0(h−1ξ)b1(ξ))ũ+
∑
k

Opwh
(
(1− χ0)(h−1ξ)ϕ(2−kξ)χ1(hσξ)b1(ξ)

)
ũ,

and observe that, from proposition 1.2.36 and the classical Sobolev injection,∥∥Opwh (χ0(h−1ξ)b1(ξ))ũ(t, ·)
∥∥
L2 +

∥∥Opwh (χ0(h−1ξ)b1(ξ))ũ(t, ·)
∥∥
L∞
. h‖ũ(t, ·)‖L2 .

Combining the above decomposition and estimate with (B.3.11a) and (B.2.1a) we derive that

(B.3.13) ṽΛkgOpwh (χ(hσξ)b1(ξ))ũ =
∑
k

ṽΛkgOpwh (φk(ξ)b1(ξ))ũ+R(t, x),

where φk(ξ) := (1− χ0)(h−1ξ)ϕ(2−kξ)χ(hσξ). We can further decompose Opwh (φk(ξ)b1(ξ))ũ by
defining

ũkΛw(t, x) := Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
φk(ξ)b1(ξ)

)
ũ(t, x),

ũkΛcw(t, x) := Opwh

(
(1− γ)

(x|ξ| − ξ
h1/2−σ

)
φk(ξ)b1(ξ)

)
ũ(t, x),

and observe that

∥∥∥ũkΛcw(t, ·)
∥∥∥
L2
. h

1
2
−β

‖ũ(t, ·)‖L2 +
1∑

µ,|ν|=0

‖(θ0(x)Ωh)µMνOpwh (χ2(hσξ))ũ(t, ·)‖L2


≤ CBεh

1
2
−β− δ1

2 ,

and

∥∥∥ũkΛcw(t, ·)
∥∥∥
L∞
. h−β

‖ũ(t, ·)‖L2 +
1∑

µ,|ν|=0

‖(θ0(x)Ωh)µMνOpwh (χ2(hσξ))ũ(t, ·)‖L2


≤ CBεh−β−

δ1
2 ,

as follows by using the following equality

(1− γ)
(x|ξ| − ξ
h1/2−σ

)
φk(ξ)b1(ξ) =

2∑
j=1

γj1

(x|ξ| − ξ
h1/2−σ

)(xj |ξ| − ξj
h1/2−σ

)
φk(ξ)b1(ξ),

with γj1(z) := (1 − γ)(z)zj |z|−2, together with (1.2.52) with a ≡ 1, p = 1, and lemma B.2.1.
Then, as the sum over k in the right hand side of (B.3.13) is actually restricted to indices k such
that h . 2k . h−σ, the above estimates and (B.3.11a) imply that∑

k

ṽΛkgOpwh (φk(ξ)b1(ξ))ũ =
∑
k

ṽΛkg ũ
k
Λw +R(t, x).

Moreover, using lemma 1.2.38, symbolic calculus and remark 1.2.22, each ṽΛkg ũ
k
Λw

in the above
right hand side can be replaced with

θh(x)

|x|2 − 1
ṽΛkg (|x|2 − 1)ũkΛw
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up to a new remainder R(t, x). Since |θh(x)(|x|2 − 1)−1| . h−2σ on the support of θh(x), from
proposition 1.2.36 and estimates (B.2.75a), (B.3.11a), we get that∥∥∥θh(x)ṽΛkg(t, ·)ũ

k
Λw(t, ·)

∥∥∥
L2
≤ CBεh−

δ
2
−β‖θh(x)(|x|2 − 1)ũkΛw(t, ·)‖L∞ ,(B.3.14a) ∥∥∥θh(x)ṽΛkg(t, ·)ũ

k
Λw(t, ·)

∥∥∥
L∞
≤ CAεh−β‖θh(x)(|x|2 − 1)ũkΛw(t, ·)‖L∞ .(B.3.14b)

Then the end of the proof relies on the fact that θh(x)(|x|2 − 1)ũkΛw can be expressed in terms
of hMũ. In fact, for a fixed N ∈ N and up to some negligible multiplicative constants, we have
from proposition 1.2.21 that

[
θh(x)(|x|2 − 1)

]
]

[
γ
(x|ξ| − ξ
h1/2−σ

)
φk(ξ)b1(ξ)

]
= γ

(x|ξ| − ξ
h1/2−σ

)
φk(ξ)b1(ξ)θh(x)(|x|2 − 1)

+ h

{
θh(x)(|x|2 − 1), γ

(x|ξ| − ξ
h1/2−σ

)
φk(ξ)b1(ξ)

}
+

N−1∑
|α|=2

h|α|∂αx
[
θh(x)(|x|2 − 1)

]
∂αξ

[
γ
(x|ξ| − ξ
h1/2−σ

)
φk(ξ)b1(ξ)

]
+ rN (x, ξ),

(B.3.15)

with

(B.3.16) rN (x, ξ) =
hN

(πh)4

∑
|α|=N

∫
e

2i
h

(η·z−y·ζ)
∫ 1

0
∂αx [θh(x)(|x|2 − 1)]|(x+tz)(1− t)N−1dt

× ∂αξ
[
γ
(x|ξ| − ξ
h1/2−σ

)
φk(ξ)b1(ξ)

]
|(x+y,ξ+η)dydzdηdζ.

As
|x|2 − 1 = x · x− ξ · ξ

|ξ|2
= (x|ξ| − ξ) · x

|ξ|
+ (x|ξ| − ξ) · ξ

|ξ|2
,

the first term in the right hand side of (B.3.15) appears to be linear combination of products
of the form γ

( x|ξ|−ξ
h1/2−σ

)
φk(ξ)a(x)b0(ξ)(xj |ξ| − ξj), for some smooth compactly supported function

a(x), and b0(ξ) such that |∂αb0(ξ)| . |ξ|−|α|. From (1.2.52b) and lemma B.2.1, we hence deduce
that ∥∥∥∥Opwh

(
γ
(x|ξ| − ξ
h1/2−σ

)
φk(ξ)b1(ξ)θh(x)(|x|2 − 1)

)
ũ(t, ·)

∥∥∥∥
L∞
≤ CBεh

1
2
−β− δ1

2 .(B.3.17a)

An explicit computation shows that

h

{
θh(x)(|x|2 − 1), γ

(x|ξ| − ξ
h1/2−σ

)
φk(ξ)b1(ξ)

}
=
∑
i

h
1
2

+σ∂xi [θh(x)(|x|2 − 1)]
∑
j

(∂jγ)
(x|ξ| − ξ
h1/2−σ

)(
xj
ξi
|ξ|
− δij

)
φk(ξ)b1(ξ)

+ hγ
(x|ξ| − ξ
h1/2−σ

)
∂x[θh(x)(|x|2 − 1)]∂ξ[φk(ξ)b1(ξ)],

with δij = 1 being the Kronecker delta. One the one hand, since the first contribution to the above
right hand side is still supported for |x| < 1−ch2σ, we can multiply and divide it by |x|2−1 so that
it writes as linear combination of terms of the form h

1
2
−σγ1

( x|ξ|−ξ
h1/2−σ

)
φk(ξ)a(x)b0(ξ)(xj |ξ| − ξj),

for a new γ1 ∈ C∞0 (R2), and some new a(x), b0(ξ) with the same properties as the ones we
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considered before. On the other hand, as ∂ξ[φk(ξ)b1(ξ)] is uniformly bounded and supported for
frequencies of size 2k, the second term in the above right hand side writes as linear combination
of products of the form hγ

( x|ξ|−ξ
h1/2−σ

)
φ1
k(ξ)a(x)b0(ξ), for some new φ1

k ∈ C∞0 (R2 \ {0}). Therefore,
inequality (1.2.52b), proposition 1.2.30, and lemma B.2.1, give that∥∥∥∥hOpwh

({
θh(x)(|x|2 − 1), γ

(x|ξ| − ξ
h1/2−σ

)
φk(ξ)b1(ξ)

})
ũ(t, ·)

∥∥∥∥
L∞
≤ CBεh

1
2
−β− δ1

2 .(B.3.18)

As concerns |α|-order terms, for each fixed 2 ≤ |α| ≤ N − 1, we find using (1.2.25) that they are
given by

h|α|γ
(x|ξ| − ξ
h1/2−σ

)
∂αx [θh(x)(|x|2 − 1)]∂αξ (φk(ξ)b1(ξ))

+
∑

|β1|+|β2|=|α|
|β1|≥1

|β1|∑
j=1

h|α|−j(
1
2
−σ)γj

(x|ξ| − ξ
h1/2−σ

)
θ̃j(x)bj−|β1|(ξ)∂

β2
ξ (φk(ξ)b1(ξ)),

for some γj , θ̃j ∈ C∞0 (R2). Since |α| ≥ 2 and |∂µξ (φk(ξ)b1(ξ))| . 2−k(|µ|−1), for any µ ∈ N2,
by proposition 1.2.30 and lemma B.2.1 we obtain that the action of their quantization on ũ is
estimated in the uniform norm by

(B.3.19)

h|α|− 1
2
−β2−k(|α|−1) +

∑
1≤j≤|α|

h|α|−j(
1
2
−σ)2k(j+1−|α|)h−

1
2
−β


×

‖ũ(t, ·)‖L2 +
1∑

µ,|ν|=0

‖(θΩh)µOpwh (χ1(hσξ)ũ(t, ·)‖L2

 ≤ CBεh 1
2
−β− δ1

2 .

Finally, by integrating in dydζ and using (1.2.24) in (B.3.16) we find that rN (x, ξ) can be written
as∑

j≤N
hN−j(

1
2
−σ) 1

(πh)2

∫
e

2i
h
η·z
∫ 1

0
θN (x+ tz)(1− t)N−1dt

× γj
(x|ξ + η| − (ξ + η)

h1/2−σ

)
φjk(ξ + η)bj+1−N (ξ + η)dzdη,

for some new smooth compactly supported θN , γj , φ
j
k.From the last part of proposition 1.2.31

then follows that the quantization of the above integral is a bounded operator from L2 to L∞,
with norm controlled by∑

j≤N
i≤6

hN−j(
1
2
−σ)2k(1+j−N)(h−

1
2

+σ2k)i(h−12k) . h

if N is sufficiently large (e.g. N ≥ 10), and consequently that

(B.3.20) ‖Opwh (rN (x, ξ))ũ(t, ·)‖L∞ . h‖ũk(t, ·)‖L2 ≤ CBεh1− δ
2 .

Finally, summing up the above estimates with formulas from (B.3.15) to (B.3.19) we obtain that

‖θh(x)(|x|2 − 1)ũΛw(t, ·)‖L∞ . CBεh
1
2
−β− δ1

2 ,

which injected in (B.3.14) gives that θh(x)ṽΛkg ũ
k
Λw

is a remainder R(t, x). That concludes the
proof of the statement.
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A similar result to the one proved in lemma B.3.3 holds true when ũ in the left hand side of
(B.3.7) is replaced with

(B.3.21) ũJ(t, x) := t(Γu)−(t, tx)

with Γ ∈ {Ω, Zm,m = 1, 2} being a Klainerman vector field, as briefly shown in the following:

Lemma B.3.4. Let h = t−1, ṽ be defined in (3.2.2), ũJ as in (B.3.21), a0(ξ) ∈ S0,0(1), and
b1(ξ) = ξj or b1(ξ) = ξjξk|ξ|−1, with j, k ∈ {1, 2}. There exists a constant C > 0 such that, for
any χ, χ1 ∈ C∞0 (R2), σ > 0, and every t ∈ [1, T ], we have that

(B.3.22a)
∥∥[Opwh (χ(hσξ)a0(ξ))ṽ(t, ·)][Opwh (χ1(hσξ)b1(ξ))ũJ(t, ·)]

∥∥
L2 ≤ C(A+B)Bε2h

1
2
−β′ ,

(B.3.22b)
∥∥[Opwh (χ(hσξ)a0(ξ))ṽ(t, ·)][Opwh (χ1(hσξ)b1(ξ))ũJ(t, ·)]

∥∥
L∞
≤ C(A+B)Bε2h−β

′
,

with β′ > 0 small, β → 0 as σ, δ0 → 0.

Proof. The proof of this result is analogous to that of lemma B.3.3 except that, instead of
referring to (B.3.8), we should use that
(B.3.23)
‖Opwh (χ(hσξ))ũJ(t, ·)‖

Hρ+1,∞
h

+
∑
|µ|=1

‖Opwh
(
χ(hσξ))(ξ|ξ|−1)µ

)
ũJ(t, ·)‖

Hρ+1,∞
j

≤ CAεh−
1
2
−β− δ1

2 ,

which is the semiclassical translation of (B.2.57), and to lemma B.2.9 instead of lemma B.2.1.

Lemma B.3.5. Let a0(ξ) ∈ S0,0(1), b1(ξ) ∈ {ξj , ξjξk|ξ|−1, |ξ|, j, k = 1, 2}, b0(ξ) ∈ {1, ξj |ξ|−1, j =
1, 2}. There exists a constant C > 0 such that, for any χ ∈ C∞0 (R2), σ > 0 small, and every
t ∈ [1, T ],

(B.3.24)
∥∥χ(t−σDx)

[
[a0(Dx)v−][b1(Dx)u−]b0(Dx)u−

]
(t, ·)

∥∥
L∞
≤ C(A+B)ABε3t−

5
2

+β+
δ+δ1

2 ,

with β > 0 small, β → 0 as σ → 0. Consequently

(B.3.25)
∥∥χ(t−σDx)rNFkg (t, ·)

∥∥
L∞
≤ C(A+B)ABε3t−

5
2

+β+
δ+δ1

2 ,

where rNFkg is given by (B.2.78).

Proof. We warn the reader that we denote by C and β two positive constants that may change
line after line during this proof, with β → 0 as σ → 0. Moreover, we are going to denote
generically by R(t, x) each term satisfying

‖R(t, ·)‖L∞ ≤ C(A+B)ABε3t−
5
2

+β+
δ+δ1

2 .

From lemma B.2.2 with L = L∞ and s > 0 large enough to have N(s) ≥ 3, and a-priori estimates
(1.1.11), we can reduce ourselves to estimate the L∞ norm of the product in the left hand side
of (B.3.24) when all its factors are supported for moderate frequencies less or equal than tσ, up
to remainders R(t, x). Moreover, since

(B.3.26a)
∥∥χ(t−σDx)a0(Dx)[vNF − v−](t, ·)

∥∥
L∞
≤ CA2ε2t−

3
2

+σ

and

(B.3.26b)
∥∥χ(t−σDx)b1(Dx)[uNF − u−](t, ·)

∥∥
L∞
≤ CA2ε2t−2+β,
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as follows by (B.2.77) and (3.1.15), (A.26b) with ρ = 2 (as consequence of lemma A.8), together
with a-priori estimates, we can also suppose v− (resp. u−) be replaced with vNF (resp. uNF ),
up to some new R(t, x). This reduces us to prove that∥∥[χ(t−σDx)a0(Dx)vNF ][χ(t−σDx)b1(Dx)uNF ][χ(t−σDx)b0(Dx)u−](t, ·)

∥∥
L∞

≤ C(A+B)ABε3t−
5
2

+β+
δ+δ1

2 ,

or rather, reminding (1.1.11a), to show that∥∥[χ(t−σDx)a0(Dx)vNF ][χ(t−σDx)b1(Dx)uNF ](t, ·)
∥∥
L∞
≤ C(A+B)Bε2t−2+β+

δ+δ1
2 .

But after writing the above product in the semi-classical setting and reminding definition (3.2.2),
one can immediately check that this estimate is satisfied thanks to (B.3.7b), which concludes the
proof of (B.3.24).

The last part of the statement follows from (3.1.11), the fact that∥∥∥∥χ(t−σDx)

[
− Dx

〈Dx〉
(v+ − v−)NLw +D1

[
〈Dx〉−1(v+ − v−)NLw

]
(t, ·)

∥∥∥∥
L∞
≤ CA3ε3t−3+σ

for every t ∈ [1, T ], which is consequence of (B.1.3b) and a-priori estimate (1.1.11b), and from
the observation that the remaining contributions to rNFkg are products of the form

[a0(Dx)v−][b1(Dx)u−]R1u−,

with a0(ξ) equal to 1 or to ξj〈ξ〉−1, and b1(ξ) equal to ξ1 or to ξjξ1|ξ|−1, for j = 1, 2.

Lemma B.3.6. Under the same assumptions as in lemma B.3.5,

∥∥χ(t−σDx)
[
xn[a0(Dx)v−][b1(Dx)u−]b0(Dx)u−

]
(t, ·)

∥∥
L2(dx)

≤ C(A+B)2Bε3t−1+β+
δ1
2 ,

(B.3.27a)

∥∥χ(t−σDx)
[
xmxn[a0(Dx)v−][b1(Dx)u−]b0(Dx)u−

]
(t, ·)

∥∥
L2(dx)

≤ C(A+B)2Bε3tβ+
δ1
2 ,

(B.3.27b)

for every t ∈ [1, T ], m,n = 1, 2, with β > 0 small, β → 0 as σ → 0. Moreover,∥∥χ(t−σDx)
[
xnr

NF
kg (t, ·)

]∥∥
L2(dx)

≤ C(A+B)2Bε3t−1+β+
δ+δ1

2 ,(B.3.28a) ∥∥χ(t−σDx)
[
xmxnr

NF
kg (t, ·)

]∥∥
L2(dx)

≤ C(A+B)2Bε3tβ+
δ+δ1

2 .(B.3.28b)

Proof. We warn the reader that we will denote by C and β two positive constants that may
change line after line, with β → 0 as σ → 0. We also denote by R(t, x) any contribution
verifying ∥∥χ(t−σDx)

[
xnR(t, ·)

]∥∥
L2(dx)

≤ C(A+B)2Bε3t−1+β+
δ+δ1

2 ,(B.3.29a) ∥∥χ(t−σDx)
[
xmxnR(t, ·)

]∥∥
L2(dx)

≤ C(A+B)2Bε3tβ+
δ+δ1

2 .(B.3.29b)

Let us first notice that, after (B.1.3b), (B.1.10a), (B.1.27a) and a-priori estimates, we have that∥∥∥∥χ(t−σDx)

[
−xn

Dx

〈Dx〉
(v+ − v−)NLw + xnD1

[
〈Dx〉−1(v+ − v−)NLw

]
(t, ·)

∥∥∥∥
L2

. tσ
1∑

µ=0

‖xµnv±(t, ·)‖L2 ‖NLw(t, ·)‖L∞ ≤ CA2Bε3t−1+σ+ δ
2
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and∥∥∥∥χ(t−σDx)

[
−xmxn

Dx

〈Dx〉
(v+ − v−)NLw + xmxnD1

[
〈Dx〉−1(v+ − v−)NLw

]
(t, ·)

∥∥∥∥
L2

. tσ
1∑

µ1,µ2=0

‖xµ1m xµ2n v±(t, ·)‖L2 ‖NLw(t, ·)‖L∞ ≤ C(A+B)ABε3tσ+ δ
2 .

Therefore, since from (3.1.11) and (B.1.1b) the remaining contributions to rNFkg are of the form

[a0(Dx)v−][b1(Dx)u−]R1u−

with a0(ξ) equal to 1 or to ξj〈ξ〉−1, and b1(ξ) equal to ξ1 or to ξjξ1|ξ|−1, for j = 1, 2, estimates
(B.3.28) will follow from (B.3.27). Our aim is hence to prove that the above product is a
remainder R(t, x).
Applying lemma B.2.2 with L = L2, w1 = xna0(Dx)v− (resp. w1 = xmxna0(Dx)v−), s > 0
sufficiently large so that N(s) > 2, and using estimates (B.1.10a) (resp. (B.1.27a)), (1.1.11a),
(1.1.11c), we can suppose all above factors truncated for moderate frequencies less or equal than
tσ, up to remainders R(t, x). Let us also observe that, from (B.1.10b), (B.3.26b) and (1.1.11c),∥∥∥χ(t−σDx)

[
[χ1(t−σDx)[xna0(Dx)v−]][χ(t−σDx)b1(Dx)(uNF − u−)][χ(t−σDx)b0(Dx)u−]

]
(t, ·)(t, ·)

∥∥∥
L2

.
1∑
|µ|=0

∥∥∥∥xn( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞
‖χ(t−σDx)b1(Dx)(uNF − u−)‖L∞‖u±(t, ·)‖L2

≤ C(A+B)A2Bε4t−2+β+
δ+δ2

2 ,

and that, using additionally estimate (B.1.27b),∥∥∥χ(t−σDx)
[
[χ1(t−σDx)[xmxna0(Dx)v−][χ(t−σDx)b1(Dx)(uNF − u−)][χ(t−σDx)b0(Dx)u−]

]
(t, ·)(t, ·)

∥∥∥
L2

.
1∑

|µ|,|ν|=0

∥∥∥∥xmxn( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞
‖χ(t−σDx)b1(Dx)(uNF − u−)‖L2‖Rνu±(t, ·)‖L∞

≤ C(A+B)A2Bε4t−1+β+
δ+δ2

2 .

This means that we can actually replace u− by uNF up to some new R(t, x). Furthermore, we can
also substitute χ1(t−σDx)[xkmxna0(Dx)v−] with χ(t−σDx)[xkmxna0(Dx)vNF− ], for any k ∈ {0, 1},
up to a new remainder R(t, x) in consequence of a-priori estimate (1.1.11a), the fact that

(B.3.30) ‖uNF (t, ·)‖L2 ≤ CBεt
δ
2 ,

(see (B.2.1a) in semi-classical coordinates), and the following inequalities

(B.3.31a)
∥∥χ1(t−σDx)

[
xna0(Dx)(vNF − v−)

]
(t, ·)

∥∥
L∞

.
1∑

µ,ν,κ=0

tσ
∥∥∥∥xµn( Dx

〈Dx〉

)ν
v±(t, ·)

∥∥∥∥
L∞
‖Rκ

1u±(t, ·)‖L∞ ≤ C(A+B)Aε2t−
1
2

+σ+
δ2
2

and

(B.3.31b)
∥∥χ1(t−σDx)

[
xmxna0(Dx)(vNF − v−)

]
(t, ·)

∥∥
L∞

.
1∑

µ1,µ2,ν,κ=0

∥∥∥∥xµ1m xµ2n ( Dx

〈Dx〉

)ν
v±(t, ·)

∥∥∥∥
L∞
‖Rκ

1u±(t, ·)‖L∞ ≤ C(A+B)Aε2t
1
2

+
δ2
2 ,
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derived from (3.1.10), (B.1.10b), (B.1.27b), (1.1.11a) and (1.1.11b). This reduces us to prove
that, for k = 0, 1,∥∥∥[χ1(t−σDx)[xkmxna0(Dx)vNF− ]

][
χ(t−σDx)b1(Dx)uNF

][
χ(t−σDx)b0(Dx)u−

]
(t, ·)

∥∥∥
L2(dx)

≤ C(A+B)2Bε3t−1+k+β+
δ1
2 ,

or rather, after (1.1.11a), that∥∥[χ1(t−σDx)[xkmxna0(Dx)vNF− ]
]

[χ(t−σDx)b1(Dx)uNF ](t, ·)
∥∥
L2(dx)

≤ C(A+B)Bε2t−
1
2 +k+β+

δ+δ1
2 .

Passing to the semi-classical setting, this corresponds to prove that
(B.3.32)

1∑
k=0

∥∥∥ [Opwh (χ1(hσξ))[xkmxnOpwh (a0(ξ))ṽ
]

[Opwh (χ(hσξ)b1(ξ))ũ](t, ·)
∥∥∥
L2(dx)

≤ C(A+B)Bε2h
1
2−β−

δ+δ1
2 .

First of all let us notice that, from the commutation of xn with Opwh (a0(ξ)) and definition (1.2.68)
of Ln,

xnOpwh (a0(ξ))ṽ = hOpwh (a0(ξ))Lnṽ + Opwh

(
a0(ξ)

ξn
〈ξ〉

)
ṽ − h

2i
Opwh

(
∂ξna0(ξ)

)
ṽ,(B.3.33)

while from the commutation of xm with Opwh (χ(hσξ)b1(ξ)), definition (1.2.49) of Mm, and sym-
bolic calculus,

xmOpwh (χ(hσξ)b1(ξ))ũ = hOpwh (χ(hσξ)b1(ξ)|ξ|−1)Mmũ−
h

2i
Opwh

(
∂ξm(χ(hσξ)b1(ξ)|ξ|−1)|ξ|

)
ũ

+ Opwh (χ(hσξ)b1(ξ)ξm|ξ|−1)ũ− h

2i
Opwh

(
∂ξm(χ(hσξ)b1(ξ))

)
ũ.

(B.3.34)

On the one hand, using equality (B.3.33), lemma B.2.14, and estimates (B.3.7a), (B.3.8), we
deduce that∥∥∥ [Opwh (χ1(hσξ)[xnOpwh (a0(ξ))ṽ]] [Opwh (χ(hσξ)b1(ξ))ũ](t, ·)

∥∥∥
L2

≤
∥∥∥∥[Opwh

(
χ1(hσξ)a0(ξ)

ξn
〈ξ〉

)
ṽ(t, ·)

]
[Opwh (χ(hσξ)b1(ξ))ũ(t, ·)]

∥∥∥∥
L2

+ CABε2h
1
2
−β− δ2

2

≤ C(A+B)Bε2h
1
2
−β− δ+δ1

2 .

(B.3.35)

On the other hand, when we deal with the L2 norm in the left hand side of (B.3.32) corresponding
to k = 1 we first commute xm with Opwh (χ1(hσξ)) and see, using symbolic calculus, that∥∥∥ [Opwh (χ1(hσξ))[xmxnOpwh (a0(ξ))ṽ] [Opwh (χ(hσξ)b1(ξ))ũ](t, ·)

∥∥∥
L2(dx)

≤
∥∥∥ [hσOpwh ((∂χ1)(hσξ))[xnOpwh (a0(ξ))ṽ] [Opwh (χ(hσξ)b1(ξ))ũ](t, ·)

∥∥∥
L2(dx)

+
∥∥∥ [Opwh (χ1(hσξ))[xnOpwh (a0(ξ))ṽ] [xmOpwh (χ(hσξ)b1(ξ))ũ](t, ·)

∥∥∥
L2(dx)

.

The first norm in the above right hand side satisfies an inequality analogous to (B.3.35). In order
to derive an estimate for the latter one, we first use equality (B.3.33) and observe the following:
from the semi-classical Sobolev injection and estimates (B.2.1c), (B.2.75b), we have that

(B.3.36)
∥∥h2
[
Opwh (χ1(hσξ)a0(ξ))Lnṽ

][
Opwh (χ(hσξ)b1(ξ)ξm|ξ|−1)Mmũ

]
(t, ·)

∥∥
L2

. h ‖Opwh (χ1(hσξ)a0(ξ))Lnṽ(t, ·)‖L2

∥∥Opwh (χ(hσξ)b1(ξ)ξm|ξ|−1)Mmũ(t, ·)
∥∥
L2

≤ C(A+B)Bε2h1−δ2−β;
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a similar chain of inequalities as in (2.2.80), together with (3.1.20a), (3.1.20b) and (1.1.11), gives
that for any θ ∈]0, 1[

(B.3.37)
∥∥Opwh (b1(ξ)ξm|ξ|−1)ũ(t, ·)

∥∥
L∞

= t
∥∥b1(Dx)Dm|Dx|−1uNF (t, ·)

∥∥
L∞

. t‖uNF (t, ·)‖1−θ
H3,∞‖uNF (t, ·)‖H2 ≤ CA1−θBθεt

1
2

+
(1+δ)

2
θ.

Therefore, from equality (B.3.34) and estimates (B.2.75b), (B.3.8), (B.3.37), (B.3.36), we find
that
(B.3.38)

h
∥∥Opwh (χ1(hσξ)a0(ξ))Lnṽ

[
xmOpwh (χ(hσξ)b1(ξ))ũ

]
(t, ·)

∥∥
L2 ≤ C(A+B)Bε2h

1
2
− δ2

2
− (1+δ)θ

2 .

Moreover, using again (B.3.34) along with(B.2.1a), (B.2.1c), (B.3.7a) and (B.3.9),∥∥∥∥[Opwh

(
χ1(hσξ)a0(ξ)

ξn
〈ξ〉

)
ṽ + hOpwh

(
χ1(hσξ)∂ξna0(ξ)

)
ṽ
] [
xmOpwh (χ(hσξ)b1(ξ))ũ

]
(t, ·)

∥∥∥∥
L2(dx)

≤
∥∥∥∥[Opwh

(
χ1(hσξ)a0(ξ)

ξn
〈ξ〉

)
ṽ
][

Opwh

(
χ(hσξ)b1(ξ)

ξm
|ξ|

)
ũ
]
(t, ·)

∥∥∥∥
L2(dx)

+ C(A+B)Bε2h1−β− δ2
2

≤ C(A+B)Bε2h
1
2
−β− δ+δ1

2 .

Choosing θ � 1 small enough, this concludes that
(B.3.39)∥∥∥ [Opwh (χ1(hσξ))[xmxnOpwh (a0(ξ))ṽ] [Opwh (χ(hσξ)b1(ξ))ũ](t, ·)

∥∥∥
L2(dx)

≤ C(A+B)Bε2h
1
2
−β− δ+δ1

2

and, together with (B.3.35), the proof of (B.3.32).

We can finally prove the following:

Lemma B.3.7. There exists a constant C > 0 such that, for any χ ∈ C∞0 (R2), σ > 0 small,
and every t ∈ [1, T ],

(B.3.40)
∑
|µ|=2

‖Opwh (χ(hσξ))Lµṽ(t, ·)‖L2 ≤ CBεtβ+
δ+δ1

2 ,

with β > 0 small, β → 0 as σ → 0.

Proof. From relation (3.2.9b) and the commutation between Lm and Opwh (〈ξ〉) we deduce that

‖Opwh (χ(hσξ))LmLnṽ(t, ·)‖H1
h
.

1∑
µ=0

[ ∥∥Opwh (χ(hσξ))Lµm
[
tZnv

NF (t, tx)
]∥∥
L2(dx)

+

∥∥∥∥Opwh (χ(hσξ))LµmOpwh

( ξn
〈ξ〉

)
ṽ(t, ·)

]∥∥∥∥
L2(dx)

+
∥∥Opwh (χ(hσξ))Lµm

[
t(txn)rNFkg (t, tx)

]∥∥
L2(dx)

]
,

(B.3.41)

so the result of the statement follows from lemmas B.2.14, B.3.2, and inequalities (B.3.6),
(B.3.28).
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B.4 The sharp decay estimate of the Klein-Gordon solution with
a Klainerman vector field

This last section is devoted to prove that, for any admissible vector field Γ, the L∞(R2) norm of
functions (Γv)±, when restricted to moderate frequencies less or equal than tσ, for some small
σ > 0, decays in time at the same sharp rate t−1 of the two-dimensional linear Klein-Gordon
solution. This result is proved in lemma B.4.14 under the hypothesis that a-priori estimates
(1.1.11) are satisfied in some fixed interval [1, T ], with ε0 < (2A+B)−1 and 0 < δ � δ2 � δ1 �
δ0 � 1 sufficiently small, and is fundamental when proving lemmas 2.1.2 and 2.1.3. All the other
lemmas of this section are to be meant as preparatory intermediate results.

Lemma B.4.1. With the convention that D = D1 whenever |I1|+|I2| = 2, D ∈ {Dj , Dt, j = 1, 2}
otherwise, there exists a positive constant C > 0 such that, for any χ ∈ C∞0 (R2), σ > 0 small,
n = 1, 2, and every t ∈ [1, T ],

(B.4.1)
∑

|I1|+|I2|≤2
|I1|<2

∥∥∥χ(t−σDx)
[
xnQ

kg
0 (vI1± , Du

I2
± )
]
(t, ·)

∥∥∥
L2(dx)

≤ C(A+B)Bε2tβ+
δ+δ2

2 ,

with β > 0 small such that β → 0 as σ → 0.

Proof. We estimate the L2 norms in the left hand side of (B.4.1) separately.

• When |I1| = 0, |I2| = 2, we derive from (B.1.10b) and (1.1.11d) that

∥∥∥χ(t−σDx)
[
xnQ

kg
0 (v±, D1u

I2
± )
]
(t, ·)

∥∥∥
L2(dx)

.
1∑
|µ|=0

∥∥∥∥xn( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞
‖uI2± (t, ·)‖H1

≤ C(A+B)Bεt
δ1+δ2

2 ;

• When |I1| = |I2| = 1 and ΓI2 ∈ {Ω, Zm,m = 1, 2} is a Klainerman vector field we use
inequalities (B.2.24) with L = L2, wj0 = xn(Dx〈Dx〉−1)µvI1± with |µ| = 0, 1, and s large enough
so that N(s) ≥ 2, to derive that∥∥∥χ(t−σDx)

[
xnQ

kg
0 (vI1± , D1u

I2
± )
]

(t, ·)
∥∥∥
L2(dx)

.
1∑
|µ|=0

∥∥∥∥χ1(t−σDx)
[
xn

( Dx

〈Dx〉

)µ
vI1±

]
(t, ·)

∥∥∥∥
L∞
‖uI2± (t, ·)‖H1

+
∑

|µ|=0,1,2
|ν|=0,1

t−2
(
‖xµvI1± (t, ·)‖L2 + t‖xνvI1± (t, ·)‖L2

)
(‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

≤ CB2ε2t
δ1+δ2

2 ,

where last estimate is deduced using (B.1.5a), (B.1.17), (B.1.28), (B.2.62) and (1.1.11d);

• When |I1| = |I2| = 1 and ΓI2 is a spatial derivative we use lemma B.2.2 with L = L2,
w1 = xn(Dx〈Dx〉−1)µvI1± with |µ| = 0, 1, s large enough so that N(s) ≥ 1, and again estimates
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(B.1.17), (B.2.62) and (1.1.11d). We obtain that∥∥∥χ(t−σDx)
[
xnQ

kg
0 (vI1± , D1u

I2
± )
]

(t, ·)
∥∥∥
L2(dx)

.
1∑
|µ|=0

∥∥∥∥χ1(t−σDx)
[
xn

( Dx

〈Dx〉

)µ
vI1±

]
(t, ·)

∥∥∥∥
L∞
‖u±(t, ·)‖H2

+
1∑
|µ|=0

t−1‖xµvI1± (t, ·)‖L2‖u±(t, ·)‖Hs ≤ CB2ε2t
δ+δ1

2 ;

• When |I1|+ |I2| ≤ 1, by the assumption derivative D can be equal to Dx or to Dt. Then

- If |I1| = 0, after (B.1.5a), (B.1.7), (B.1.10b) and (1.1.11)∥∥∥χ(t−σDx)
[
xnQ

kg
0 (v±, Du

I2
± )
]
(t, ·)

∥∥∥
L2(dx)

.
1∑
|µ|=0

∥∥∥∥xn( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞

(
‖uI2± (t, ·)‖H1 + ‖Dtu

I2
± (t, ·)‖L2

)
≤ C(A+B)Bε2tδ2 ;

- If |I1| = 1, |I2| = 0, using lemma B.2.2 as done above, together with (B.1.5a), (B.1.10),
(B.1.17), (B.2.62) and a-priori estimates, we derive that∥∥∥χ(t−σDx)

[
xnQ

kg
0 (vI1± , Du±)

]
(t, ·)

∥∥∥
L2(dx)

.
1∑
|µ|=0

∥∥∥∥χ1(t−σDx)
[
xn

( Dx

〈Dx〉

)µ
vI1± (t, ·)

]∥∥∥∥
L∞

(‖u±(t, ·)‖H1 + ‖Dtu±(t, ·)‖L2)

+
1∑
|µ|=0

t−1

∥∥∥∥xn( Dx

〈Dx〉

)µ
vI1± (t, ·)

∥∥∥∥
L2

(‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

≤ CB2ε2tβ+
δ+δ1

2 .

(B.4.2)

Lemma B.4.2. There exists a positive constant C > 0 such that, for any χ ∈ C∞0 (R2), σ > 0
small, ρ ∈ N, and every t ∈ [1, T ],

(B.4.3)
∑
|I|=2

∥∥χ(t−σDx)V I(t, ·)
∥∥
Hρ,∞ ≤ CBεt−1+β+

δ0
2 ,

with β > 0 small such that β → 0 as σ → 0.

Proof. Estimate (B.4.3) is evidently satisfied when ΓI contains at least one spatial derivative
thanks to lemma B.2.8. We then focus on the case when ΓI is the product of two Klainerman
vector fields. As vI+ = −vI−, we prove the statement for χ(t−σDx)vI−. Moreover, from the
L∞−Hρ,∞ continuity of χ(t−σDx) with norm O(tσρ), we can assume the Hρ,∞ norm in (B.4.3)
replaced with the L∞ one, up to a loss tσρ.

As done in lemma B.2.8, instead of proving the statement directly on χ(t−σDx)vI− we do it
for χ(t−σDx)vI,NF, with vI,NF introduced in (B.2.27) and considered here with |I| = 2. This
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is justified by inequality (B.2.43). From definition (B.2.27) of vI,NF, equation (B.1.18a) and
equality (B.1.23) one can check that

(B.4.4)

[Dt + 〈Dx〉]vI,NF = NLI,NF
kg

where NLI,NF
kg = rI,NF

kg (t, x) +
∑

(I1,I2)∈I(I)
|I1|<2

cI1,I2Q
kg
0 (vI1± , Du

I2
± ),

with rI,NF
kg given by the same integral expression as in (B.2.46) but with |I| = 2 (and hence

having the explicit expression (B.2.47)), and cI1,I2 ∈ {−1, 0, 1}, cI1,I2 = 1 when |I1| + |I2| = 2
(in which case derivative D corresponds to D1). It is straightforward to show that inequalities
(B.2.48), (B.2.49), (B.2.50) hold even when |I| = 2, up to replacing δ2 with δ1. Therefore, using
those latter ones together with

2∑
j=1

∥∥χ(t−σDx)Zjv
I,NF(t, ·)

∥∥
L2 ≤ CBεt

δ0
2 ,

which is consequence of (1.1.11d) with k = 0 and of (B.2.29) with j = 2, we derive that

∥∥χ(t−σDx)vI,NF(t, ·)
∥∥
L∞
≤ CBεt

δ0
2 +

2∑
j=1

Ct−1+β
∥∥∥χ(t−σDx)

[
xjNL

I,NF
kg

]
(t, ·)

∥∥∥
L2(dx)

.

The only thing we need to show in order to prove the statement is hence that

(B.4.5)
∥∥∥χ(t−σDx)

[
xjNL

I,NF
kg

]
(t, ·)

∥∥∥
L2(dx)

≤ C(A+B)Bε2tβ+
δ1+δ2

2 .

But from (B.4.4) and (B.2.47) with |I| = 2 we have that∥∥∥χ(t−σDx)
[
xjNL

I,NF
kg

]
(t, ·)

∥∥∥
L2(dx)

. ‖xjNLIkg(t, ·)‖L2 (‖u±(t, ·)‖L∞ + ‖R1u±(t, ·)‖L∞)

+
1∑

µ=0

tσ
(
‖xµj v±(t, ·)‖L∞ +

∥∥∥∥xµj Dx

〈Dx〉
v±(t, ·)

∥∥∥∥
L∞

)
‖vI±(t, ·)‖L2‖v±(t, ·)‖H2,∞

+
∑

(I1,I2)∈I(I)
|I1|<2

∥∥∥χ(t−σDx)
[
xjQ

kg
0 (vI1± , Du

I2
± )
]

(t, ·)
∥∥∥
L2

(B.4.6)

so (B.4.5) follows from a-priori estimates, (B.1.10b), (B.2.74) and (B.4.1). As δ2 � δ1 � δ0,
that concludes that

(B.4.7)
∥∥χ(t−σDx)vI,NF(t, ·)

∥∥
L∞
≤ CBεt−1+β+

δ0
2 .

Lemma B.4.3. There exists a positive constant C > 0 such that, for any multi-index I of length
2, any χ ∈ C∞0 (R2), σ > 0 small, j = 1, 2, and every t ∈ [1, T ]

(B.4.8)
∥∥χ(t−σDx)

[
xj(Γ

Iv)±
]

(t, ·)
∥∥
L∞
≤ CBεtβ+

δ0
2 ,

with β > 0 small, β → 0 as σ → 0.

203



Proof. If ΓI contains at least one spatial derivative (B.4.8) is satisfied after (1.1.11b), (B.1.10b)
and (B.2.62). Let us then assume that ΓI is product of two Klainerman vector fields.

From equation (B.1.18a), equality (B.1.9b) with w = (ΓIv)−, the L2−L∞ continuity of operator
χ(t−σDx)〈Dx〉−1 with norm O(tσ), and the L∞ continuity of χ(t−σDx)Dx〈Dx〉−1 with norm
O(tσ), we derive that

(B.4.9)∥∥χ(t−σDx)
[
xj(Γ

Iv)−
]

(t, ·)
∥∥
L∞(dx)

. tσ‖Zj(ΓIv)−(t, ·)‖L2 + t
∥∥χ(t−σDx)(ΓIv)−(t, ·)

∥∥
L∞

+ tσ
∥∥χ(t−σDx)

[
xjΓ

INLkg
]

(t, ·)
∥∥
L∞

.

Reminding (B.1.23) and applying lemma B.2.2 with L = L∞ and w1 = (Dx〈Dx〉−1)µvI±, for
|µ| = 0, 1, to the contribution coming from the first quadratic term in the right hand side of
(B.1.23), we find that there is some χ1 ∈ C∞0 (R2) such that

∥∥χ(t−σDx)
[
xjΓ

INLkg
]

(t, ·)
∥∥
L∞
.

1∑
µ,ν=0

∥∥∥χ1(t−σDx)
[
xµj (ΓIv)±

]
(t, ·)

∥∥∥
L∞
‖Rν

1u±(t, ·)‖H2,∞

+ t−N(s)
1∑

µ=0

∥∥∥xµj (ΓIv)±(t, ·)
∥∥∥
L2
‖u±(t, ·)‖Hs

+
∑

(I1,I2)∈I(I)
|I1|<2

∥∥∥χ(t−σDx)
[
xjQ

kg
0

(
vI1± , Du

I2
±

)]
(t, ·)

∥∥∥
L∞

.

(B.4.10)

Therefore, picking s > 0 large so that N(s) > 1 and using the L2 −L∞ continuity of χ1(t−σDx)
with norm O(tσ), together with the estimates (1.1.11), (B.1.17) with k = 2, along with (B.4.1),
we find at first that ∥∥χ(t−σDx)

[
xjΓ

INLkg
]

(t, ·)
∥∥
L∞
≤ CABε2t

1
2

+σ+
δ1
2 .

Injecting the above estimate, together with (1.1.11d) and (B.4.3), into (B.4.9) we derive that

∥∥χ(t−σDx)
[
xj(Γ

Iv)−
]

(t, ·)
∥∥
L∞
≤ CBεt

1
2

+σ+
δ1
2 .

The above inequality holds for any χ ∈ C∞0 (R2), so injecting it into (B.4.10) and using again
a-priori estimates, (B.1.17), (B.4.1), together with the fact that β + (δ + δ2)/2 ≤ δ1/2 as β is as
small as we want as long as σ is small and δ, δ2 � δ1, we find the following enhanced estimate∥∥χ(t−σDx)

[
xjΓ

INLkg
]

(t, ·)
∥∥
L∞
≤ C(A+B)Bε2tσ+

δ1
2 .

Consequently, summing up this latter one with (1.1.11d) and (B.4.3), we end up with (B.4.8).

Lemma B.4.4. Let Γ ∈ Z be an admissible vector field. There exists a positive constant C such
that, for any χ ∈ C∞0 (R2), σ > 0 small, i, j = 1, 2, and every t ∈ [1, T ],

(B.4.11)
∥∥χ(t−σDx) [xixj(Γv)±(t, ·)]

∥∥
L∞(dx)

≤ CBεt1+β+
δ1
2 ,

with β > 0 such that β → 0 as σ → 0.
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Proof. Since (Γv)+ = −(Γv)+ we reduce to prove that inequality (B.4.11) holds true for (Γv)−.
Moreover, we only focus on the case where Γ ∈ {Ω, Zm,m = 1, 2} is a Klainerman vector field,
as (B.4.11) with Γ being a spatial derivative is simply a consequence of (B.1.27b).

We remind that (Γv)− is solution to non-linear Klein-Gordon equation (B.1.18a) with ΓI = Γ,
and that the non-linearity ΓNLkg is given by (B.1.20a). Hence, multiplying xi to relation (B.1.9b)
with w = (Γv)− and making some commutations we find that∥∥χ(t−σDx) [xixj(Γv)±(t, ·)]

∥∥
L∞(dx)

.
1∑

µ=0

[∥∥χ(t−σDx) [xµi Zj(Γv)−] (t, ·)
∥∥
L∞(dx)

+ t
∥∥χ(t−σDx) [xµi (Γv)−] (t, ·)

∥∥
L∞(dx)

]

+
1∑

µ=0

∥∥χ(t−σDx) [xµi xjΓNLkg] (t, ·)
∥∥
L∞(dx)

.

(B.4.12)

At first, we estimate the latter contribution in the above right hand side using that χ(t−σDx) is
a continuous L2−L∞ operator with norm O(tσ) together with estimates (1.1.11), (B.1.5a) with
s = 0, (B.1.10b), (B.1.17), (B.1.27b), (B.1.28):

1∑
µ=0

∥∥χ(t−σDx) [xµi xjΓNLkg] (t, ·)
∥∥
L∞(dx)

.
1∑

µ=0

tσ
∥∥χ(t−σDx) [xµi xjΓNLkg] (t, ·)

∥∥
L2(dx)

.
1∑

µ1,µ2,ν=0

tσ‖xµ1i x
µ2
j (Γv)±(t, ·)‖L2(dx)‖Rν

1u±(t, ·)‖H2,∞

+

1∑
µ,|ν|=0

tσ
∥∥∥∥xµi xj( Dx

〈Dx〉

)ν
v±(t, ·)

∥∥∥∥
L∞(dx)

(‖(Γu)±(t, ·)‖H1 + ‖u±(t, ·)‖H1 + ‖Dtu±(t, ·)‖L2)

≤ C(A+B)Bε2t
3
2

+σ+
δ2
2 .

(B.4.13)

Injecting this estimate, along with (B.2.42), (B.2.62), (B.4.3) and (B.4.8), into (B.4.12) we deduce
that for any smooth cut-off function χ

(B.4.14)
∥∥χ(t−σDx) [xixj(Γv)±(t, ·)]

∥∥
L∞(dx)

≤ CBεt
3
2

+σ+
δ2
2 .

Now, if we change the approach of bounding the L∞(dx) norm of xµi xjQ
kg
0 ((Γv)−, D1u±), which

is one of the contributions to xµi xjΓNLkg after (B.1.20a), and make use of lemma B.2.2 with
L = L∞ instead of (B.4.13), we see that

1∑
µ=0

∥∥χ(t−σDx) [xµi xjΓNLkg] (t, ·)
∥∥
L∞(dx)

.
1∑

µ1,µ2,ν=0

∥∥∥χ1(t−σDx)
[
xµ1i x

µ2
j (Γv)±

]
(t, ·)

∥∥∥
L∞(dx)

‖Rν
1u±(t, ·)‖H2,∞

+
1∑

µ1,µ2=0

t−N(s)‖xµ1i x
µ2
j (Γv)±(t, ·)‖L2(dx)‖u±(t, ·)‖Hs

+
1∑

µ,|ν|=0

tσ
∥∥∥∥xµi xj( Dx

〈Dx〉

)ν
v±(t, ·)

∥∥∥∥
L∞(dx)

(‖(Γu)±(t, ·)‖H1 + ‖u±(t, ·)‖H1 + ‖Dtu±(t, ·)‖L2) .
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Then, choosing s > 0 sufficiently large so that N(s) ≥ 3 and using again (1.1.11), (B.1.10b),
(B.1.17) with k = 1, (B.1.27b), (B.1.28), (B.2.62), together with (B.4.14), we obtain that

1∑
µ=0

∥∥χ(t−σDx) [xµi xjΓNLkg] (t, ·)
∥∥
L∞(dx)

≤ C(A+B)Bε2t1+σ+
δ2
2 ,

which enhances (B.4.13) of a factor t1/2. Combining the above estimate with (B.2.42), (B.2.62),
(B.4.3) and (B.4.8), we finally end up with the result of the statement.

Lemma B.4.5. Let Γ ∈ {Ω, Zm,m = 1, 2} be a Klainerman vector field, vI,NF the function
defined in (B.2.27) with |I| = 1 and ΓI = Γ, and Bk

(j1,j2,j3)(ξ, η) the multiplier introduced in
(2.2.42) (resp. in (2.2.53)) for any k = 1, 2 (resp. k = 3), any ji ∈ {+,−} for i = 1, 2, 3. Let us
define

V NF
Γ (t, x) := vI,NF(t, x)− i

4(2π)2

∑
j1,j2∈{+,−}

∫
eix·ξB1

(j1,j2,+)(ξ, η)v̂j1(ξ − η)(̂Γu)j2(η)dξdη

+ δΩ
i

4(2π)2

∑
j1,j2∈{+,−}

∫
eix·ξB2

(j1,j2,+)(ξ, η)v̂j1(ξ − η)ûj2(η)dξdη

+ δZ1

i

4(2π)2

∑
j1,j2∈{+,−}

∫
eix·ξB3

(j1,j2,+)(ξ, η)v̂j1(ξ − η)ûj2(η)dξdη,

(B.4.15)

where δΩ (resp. δZ1) is equal to 1 if Γ = Ω (resp. if Γ = Z1), 0 otherwise. There exists a
constant C > 0 such that, for any χ ∈ C∞0 (R2), σ > 0, and every t ∈ [1, T ],

(B.4.16)
∥∥χ(t−σDx)

(
V NF

Γ − (Γv)−
)
(t, ·)

∥∥
L∞
≤ C(A+B)Aε2t−

5
4 .

Moreover, for every m = 1, 2 and t ∈ [1, T ]

(B.4.17)
∥∥|χ(t−σDx)Zm

(
V NF

Γ − (Γv)−
)
(t, ·)

∥∥
L2 ≤ C(A+B)Bε2t3σ+δ2 .

Proof. From definition (B.4.15) of V NF
Γ and equalities (A.15), (A.16), we find that

V NF
Γ − (Γv)− = vI,NF − (Γv)−

− i

2
[(Dtv)(D1Γu)− (D1v)(DtΓu) +D1[v(DtΓu)]− 〈Dx〉[v(D1Γu)]]

+ δΩ
i

2
[(Dtv)(D2u)− (D2v)(Dtu) +D2[vDtu]− 〈Dx〉[vD2u]]

+ δZ1

i

2

[
(Dtv)(Dtu) + v(|Dx|2u)− 〈Dx〉[v(Dtu)]

]
,

(B.4.18)

where vI,NF − (Γv)− has the explicit expression (B.2.30). We use (1.1.5), (1.1.10) and lemma
B.2.2 with L = L∞, w1 = Rµ

1u± (resp. w1 = Rµ
1 (Γu)±) for µ = 0, 1, and s > 0 large enough to

have N(s) ≥ 2, in order to estimate the L∞ norm of products appearing in (B.2.30) (resp. in
the second line in the above right hand side). For some new χ1 ∈ C∞0 (R2) we have that∥∥χ(t−σDx)

(
V NF

Γ − (Γv)−
)
(t, ·)

∥∥
L∞
.
∥∥χ(t−σDx)

(
vI,NF − (Γv)−

)
(t, ·)

∥∥
L∞

+
1∑
|µ|=0

tσ‖v±(t, ·)‖H1,∞
∥∥χ1(t−σDx)Rµ

1 (Γu)±(t, ·)
∥∥
L∞

+ t−2‖v±(t, ·)‖Hs‖(Γu)±(t, ·)‖L2

+
1∑
|µ|=0

tσ‖v±(t, ·)‖H1,∞‖Rµ
1u±(t, ·)‖H2,∞ ,
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with

∥∥χ(t−σDx)
(
vI,NF − (Γv)−

)
(t, ·)

∥∥
L∞
.

1∑
µ=0

tσ
∥∥χ1(t−σDx)(Γv)±(t, ·)

∥∥
L∞
‖Rµ

1u±(t, ·)‖L∞

+ t−2‖(Γv)±(t, ·)‖L2‖u±(t, ·)‖Hs .

Estimate (B.4.16) follows then from (1.1.11), (B.2.42) and (B.2.57).

In order to derive (B.4.17) we apply Zm to (B.4.18) and use the Leibniz rule, reminding formulas
(B.2.39). Among the quadratic terms coming out from the action of Zm on the second line in
(B.4.18) we see appear products where Zm is acting on v and Γ on u. We estimate the L2 norm
of those ones, when truncated by operator χ(t−σDx), using inequalities (B.2.24) with L = L2,
w = u, wj0 = (Dx〈Dx〉−1)µZmv for |µ| = 0, 1, and s > 0 large enough to have N(s) > 1. We
bound instead the L2 norm of all other remaining products with the L∞ norm of factor that
does not contain any vector field times the L2 norm of the remaining one. Hence

∥∥χ(t−σDx)Zm
(
V NF

Γ − (Γv)−
)
(t, ·)

∥∥
L2 .

∥∥χ(t−σDx)Zm
(
vI,NF − (Γv)−

)
(t, ·)

∥∥
L2

+ tσ
∥∥χ1(t−σDx)(Zmv)±(t, ·)

∥∥
L∞
‖(Γu)±(t, ·)‖L2

+ t−N(s)
( 1∑
|µ|=0

‖xµ(Zmv)±(t, ·)‖L2 + t‖(Zmv)±(t, ·)‖L2

)
(‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

+ tσ‖v±(t, ·)‖H1,∞ (‖(ZmΓu)±(t, ·)‖L2 + ‖(Γu)±(t, ·)‖L2 + ‖Dt(Γu)±(t, ·)‖L2)

+
1∑
|µ|=0

tσ‖(Γv)±(t, ·)‖L2‖Rµu±(t, ·)‖H2,∞

+ tσ‖v±(t, ·)‖H1,∞ (‖(Zmu)±(t, ·)‖H1 + ‖u±(t, ·)‖H1 + ‖Dtu±(t, ·)‖L2) ,

(B.4.19)

and estimate (B.4.17) is obtained from (1.1.11), (B.1.5a), (B.1.7), (B.1.17), (B.2.29) with j = 1,
and (B.2.42).

Lemma B.4.6. Let Γ ∈ {Ω, Zm,m = 1, 2} be a Klainerman vector field, V NF
Γ the function

defined in (B.4.15) and

(B.4.20) Ṽ Γ(t, x) := tV NF
Γ (t, tx).

There exists a positive constant C > 0 such that, for any χ ∈ C∞0 (R2), σ > 0 small, and every
t ∈ [1, T ], ∥∥∥Ṽ Γ(t, ·)

∥∥∥
L2
≤ CBεt

δ2
2 ,(B.4.21a) ∑

|µ|=1

∥∥∥Opwh (χ(hσξ))LµṼ Γ(t, ·)
∥∥∥
L2
≤ CBεt

δ1
2 .(B.4.21b)

Proof. Let us recall equalities (B.2.30) with ΓI = Γ and (B.4.18). From a-priori estimates we
immediately derive that, for every t ∈ [1, T ],

‖[V NF
Γ − (Γv)−](t, ·)‖L2 ≤ CABεt−

1
2

+
δ2
2

+σ,

and consequently that

(B.4.22) ‖Ṽ Γ(t, ·)‖L2 = ‖V NF
Γ (t, ·)‖L2 ≤ CBεt

δ2
2 .
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Using definition (B.4.15) one can check that V NF
Γ is solution to

(B.4.23) [Dt + 〈Dx〉]V NF
Γ (t, x) = NLkg,c

Γ (t, x)− δZ1Q
kg
0

(
v±, Q

w
0 (v±, D1v±)

)
with

NLkg,c
Γ (t, x) = rI,NF

kg (t, x)

− i

4(2π)2

∫
eix·ξB1

(j1,j2,+)(ξ, η)
[
N̂Lkg(ξ − η)(̂Γu)j2(η)− v̂j1(ξ − η)ΓNLw

∧
(η)
]
dξdη

+ δΩ
i

4(2π)2

∫
eix·ξB2

(j1,j2,+)(ξ, η)
[
N̂Lkg(ξ − η)ûj2(η)− v̂j1(ξ − η)NLw

∧
(η)
]
dξdη

+ δZ1

i

4(2π)2

∫
eix·ξB3

(j1,j2,+)(ξ, η)
[
N̂Lkg(ξ − η)ûj2(η)− v̂j1(ξ − η)NLw

∧
(η)
]
dξdη,

(B.4.24)

and rI,NF
kg given by (B.2.46) (or, explicitly, by (B.2.47)) with |I| = 1. Superscript c in NLkg,c

Γ

stands for cubic and wants to stress out the fact that, passing from function (Γv)− to V NF
Γ , we

have replaced all quadratic terms in the right hand side of (B.1.18a) (when |I| = 1 and ΓI = Γ)
with cubic ones. Hence, from relation (3.2.8) with w = V NF

Γ and equation (B.4.23) we get that

∥∥∥Opwh (χ(hσξ))LmṼ
Γ(t, ·)

∥∥∥
H1
. ‖χ(t−σDx)ZmV

NF
Γ (t, ·)‖L2 +

∥∥∥Opwh (χ(hσξ)ξm〈ξ〉−1)Ṽ Γ(t, ·)
∥∥∥
L2

+
∥∥∥χ(t−σDx)

[
xmNL

kg,c
Γ

]
(t, ·)

∥∥∥
L2(dx)

+ δZ1

∥∥∥χ(t−σDx)
[
xmQ

kg
0

(
v±, Q

w
0 (v±, D1v±)

)]
(t, ·)

∥∥∥
L2(dx)

(B.4.25)

After (1.1.11d) with k = 1,(B.4.17), and the fact that σ can be chosen sufficiently small so that
3σ + δ2 ≤ δ1/2, as δ2 � δ1, it is straightforward to see that

(B.4.26) ‖χ(t−σDx)ZmV
NF

Γ (t, ·)‖L2 ≤ CBεt
δ1
2 .

Moreover, from (B.1.3a), (B.1.10b) and a-priori estimates,

(B.4.27)
∥∥∥χ(t−σDx)

[
xmQ

kg
0

(
v±, Q

w
0 (v±, D1v±)

)]
(t, ·)

∥∥∥
L2(dx)

.
1∑
|µ|=0

∥∥∥∥xn( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞(dx)

‖NLw(t, ·)‖L2 ≤ C(A+B)ABε3t−1+
δ+δ2

2 .

Using instead equalities (A.15) and (A.16) we derive the following explicit expression for NLkg,c
Γ :

NLkg,c
Γ (t, x) = rI,NF

kg (t, x)− i

2
[NLkg(D1Γu)− (D1v)ΓNLw +D1[vΓNLw]]

+ δΩ
i

2
[NLkg(D2u)− (D2v)NLw +D2[vNLw]]

+ δZ1 [NLkg(Dtu) + (Dtv)NLw − 〈Dx〉[vNLw]] .

(B.4.28)

Hence, reminding estimates (1.1.11), (B.1.3a), (B.1.5a) with s = 0, (B.1.10b), (B.2.72), and
equality (B.1.20b) from which follows that

(B.4.29) ‖ΓNLw(t, ·)‖L2 . ‖v±(t, ·)‖H1,∞
(
‖vI±(t, ·)‖H1 + ‖v±(t, ·)‖H1 + ‖Dtv±(t, ·)‖L2

)
,
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we find that∥∥∥χ(t−σDx)
[
xjNL

kg,c
Γ

]
(t, ·)

∥∥∥
L2(dx)

.
∥∥∥χ(t−σDx)

[
xjr

I,NF
kg (t, ·)

]
(t, ·)

∥∥∥
L2(dx)

+
1∑

|µ|,ν=0

∥∥∥∥xj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞(dx)

‖Rνu±(t, ·)‖H2,∞ (‖(Γu)±(t, ·)‖L2 + ‖u±(t, ·)‖L2)

+
1∑

k,|µ|=0

∥∥∥∥xkj( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞(dx)

(‖ΓNLw(t, ·)‖L2 + ‖NLw(t, ·)‖L2)

≤ C(A+B)ABε2t−
1
2

+β+
δ+δ1

2 .

(B.4.30)

By injecting the above estimate, together with (B.4.21a), (B.4.26), (B.4.27), into (B.4.25) we
finally deduce (B.4.21b) and conclude the proof of the statement.

Lemma B.4.7. Let Γ ∈ {Ω, Zm,m = 1, 2} be a Klainerman vector field and I1, I2 two multi-
indices such that ΓI1 = Γ and ΓI2 = ZmΓ, with m ∈ {1, 2}. Let also vI,NF be the function defined
in (B.2.27) for a generic multi-index I of length equal to 1 or 2. There exists a constant C > 0
such that, for any χ ∈ C∞0 (R2), σ > 0 small, m,n = 1, 2, every t ∈ [1, T ],

(B.4.31a)∥∥χ(t−σDx)
[
Zm
(
vI1,NF − (Γv)−

)]
(t, ·)

∥∥
L2 +

∥∥χ(t−σDx)
(
vI2,NF − (ZmΓv)−

)
(t, ·)

∥∥
L2

≤ C(A+B)Bε2t−1+β+
δ+δ1+δ2

2

and

(B.4.31b)∥∥χ(t−σDx)
[
xnZm

(
vI1,NF − (Γv)−

)]
(t, ·)

∥∥
L2 +

∥∥χ(t−σDx)
[
xn
(
vI2,NF − (ZmΓv)−

)]
(t, ·)

∥∥
L2

≤ C(A+B)Bε2tβ+
δ+δ1+δ2

2 ,

with β > 0 small such that β → 0 as σ → 0. Moreover, if V NF
Γ is the function defined in (B.4.15),

then for every t ∈ [1, T ]∥∥χ(t−σDx)
[
Zm
(
V NF

Γ − (Γv)−
)]

(t, ·)
∥∥
L2 ≤ C(A+B)Bε2t−1+β+

δ+δ1+δ2
2 ,(B.4.32a) ∥∥χ(t−σDx)

[
xnZm

(
V NF

Γ − (Γv)−
)]

(t, ·)
∥∥
L2 ≤ C(A+B)Bε2tβ+

δ+δ1+δ2
2 .(B.4.32b)

Proof. We warn the reader that throughout the proof we denote by C and β two positive con-
stants that may change line after line, with β → 0 as σ → 0.

We refer to equality (B.2.40) with I = I1 and bound the L2 norm of each product in the first,
third and fifth line of its right hand side by means of lemma B.2.2 with L = L2. The L2 norm of
the remaining products in the second line of the mentioned equality is instead estimated using
inequalities (B.2.24) with L = L2 and wj0 = (Dx〈Dx〉−1)µ(ΓI1v)±. In this way we obtain that
there is some χ1 ∈ C∞0 (R2) such that∥∥χ(t−σDx)

[
Zm
(
vI1,NF − (Γv)−

)]
(t, ·)

∥∥
L2 . t

σ‖χ1(t−σDx)(ZmΓv)±(t, ·)‖L∞‖u±(t, ·)‖L2

+ t−N(s)‖(ZmΓv)±(t, ·)‖L2‖u±(t, ·)‖Hs + tσ‖χ1(t−σDx)(Γv)±(t, ·)‖L∞‖(Zmu)±(t, ·)‖L2

+ t−N(s)

 1∑
µ=0

‖xµm(Γv)±(t, ·)‖L2 + t‖(Γv)±(t, ·)‖L2

 (‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

+ tσ‖χ1(t−σDx)(Γv)±(t, ·)‖L∞ (‖u±(t, ·)‖L2 + ‖Dtu±(t, ·)‖L2)

+ t−N(s)‖(Γv)±(t, ·)‖L2 (‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs) .
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Choosing s > 0 large so that N(s) > 1 and using estimates (1.1.11), (B.1.5a), (B.1.17), together
with lemmas B.2.8 and B.4.2, we hence find that∥∥χ(t−σDx)

[
Zm
(
vI1,NF − (Γv)−

)]
(t, ·)

∥∥
L2 ≤ C(A+B)Bε2t−1+β+

δ+δ1+δ2
2 .

Analogously,∥∥χ(t−σDx)
[
xnZm

(
vI1,NF − (Γv)−

)]
(t, ·)

∥∥
L2 . t

σ‖χ1(t−σDx) [xn(ZmΓv)±] (t, ·)‖L∞‖u±(t, ·)‖L2

+ t−N(s)‖xn(ZmΓv)±(t, ·)‖L2‖u±(t, ·)‖Hs + tσ‖χ1(t−σDx) [xn(Γv)±] (t, ·)‖L∞‖(Zmu)±(t, ·)‖L2

+ t−N(s)

(
1∑

µ=0

‖xµmxn(Γv)±(t, ·)‖L2 + t‖xn(Γv)±(t, ·)‖L2

)
(‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

+ tσ‖χ1(t−σDx) [xn(Γv)±] (t, ·)‖L∞ (‖u±(t, ·)‖L2 + ‖Dtu±(t, ·)‖L2)

+ t−N(s)‖xn(Γv)±(t, ·)‖L2 (‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs) ,

so from (1.1.11), (B.1.5a), (B.1.17), (B.1.28), (B.2.62) and (B.4.8), we derive that∥∥χ(t−σDx)
[
xnZm

(
vI1,NF − (Γv)−

)]
(t, ·)

∥∥
L2 ≤ C(A+B)Bε2tβ+

δ+δ1+δ2
2 .

Inequalities (B.4.31) follows then just by the observation that, after the hypothesis on multi-
indices I1, I2 and the comparison between (B.2.30) with I = I2 and (B.2.40) with I = I1,
2iχ(t−σDx)

(
vI2,NF − (ZmΓv)−

)
corresponds to the first line in the right hand side of (B.2.40).

In order to derive estimate (B.4.32a) we apply Zm to both sides of equality (B.4.18), use (B.4.31),
formulas (B.2.39), and successively proceed as follows: products in which Zm acts on v and Γ
on u, that arise from the action of Zm on the second line of (B.4.18), are estimated using
inequalities (B.2.24) with L = L2 and w = u; products in which Zm is acting on v and there are
no Klainerman vector fields acting on u are estimated applying lemma B.2.2 with L = L2; the
L2 norm of the remaining ones are controlled by the L∞ norm of the Klein-Gordon factor times
the L2 norm of the wave one. In this way we get that∥∥χ(t−σDx)

[
Zm
(
V NF

Γ − (Γv)−
)]

(t, ·)
∥∥
L2 .

∥∥χ(t−σDx)
[
Zm
(
vI1,NF − (Γv)−

)]
(t, ·)

∥∥
L2

+ tσ
∥∥χ1(t−σDx)(Zmv)±(t, ·)

∥∥
L∞

(‖(Γu)±(t, ·)‖L2 + ‖u±(t, ·)‖L2)

+ t−N(s)

 1∑
|µ|=0

‖xµ(Zmv)±(t, ·)‖L2 + t‖(Zmv)±(t, ·)‖L2

 (‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

+ ‖v±(t, ·)‖H1,∞ (‖(ZmΓu)±(t, ·)‖L2 + ‖(Γu)±(t, ·)‖L2 + ‖Dt(Γu)±(t, ·)‖L2

+‖u±(t, ·)‖L2 + ‖Dtu±(t, ·)‖L2) .

Choosing s > 0 large so that N(s) > 2 and using (1.1.11) (B.1.5a), (B.1.7), (B.1.17) with k = 1,
(B.2.42), (B.4.31a), we hence recover (B.4.32a). An analogous procedure leads us to the following
inequality∥∥χ(t−σDx)

[
xnZm

(
V NF

Γ − (Γv)−
)]

(t, ·)
∥∥
L2 .

∥∥χ(t−σDx)
[
xnZm

(
vI1,NF − (Γv)−

)]
(t, ·)

∥∥
L2

+ tσ
∥∥χ1(t−σDx) [xn(Zmv)±] (t, ·)

∥∥
L∞

(‖(Γu)±(t, ·)‖L2 + ‖u±(t, ·)‖L2)

+ t−N(s)

 1∑
|µ|=0

‖xµxn(Zmv)±(t, ·)‖L2 + t‖xn(Zmv)±(t, ·)‖L2

 (‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

+
1∑
|µ|=0

∥∥∥∥xn( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞

(‖(ZmΓu)±(t, ·)‖L2 + ‖(Γu)±(t, ·)‖L2 + ‖Dt(Γu)±(t, ·)‖L2

+‖u±(t, ·)‖L2 + ‖Dtu±(t, ·)‖L2) ,
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and estimate (B.4.32b) is obtained by choosing s > 0 large so that N(s) > 1 and using (B.1.5a),
(B.1.7), (B.1.10b), (B.1.17) with k = 1, (B.1.28), (B.2.62), (B.4.31b) and a-priori estimates.

Lemma B.4.8. Let Γ ∈ {Ω, Zm,m = 1, 2} be a Klainerman vector field and V NF
Γ be the function

defined in (B.4.15). There exists a constant C > 0 such that, for any χ ∈ C∞0 (R2), σ > 0 small,
m,n = 1, 2, and every t ∈ [1, T ],

(B.4.33)
∥∥Opwh (χ(hσξ))Lm

[
tZnV

NF
Γ (t, tx)

]∥∥
L2(dx)

≤ CBεt
δ0
2 .

Proof. We warn the reader that, throughout the proof, we denote by C and β two positive
constants that may change line after line, with β → 0 as σ → 0.

Let vI,NF be the function defined in (B.2.27) for a generic multi-index I of length 1 or 2, and
I1, I2 two multi-indices such that ΓI1 = Γ, ΓI2 = ZnΓ. Using (2.1.15b) we rewrite ZnV NF

Γ as
follows:

ZnV
NF

Γ = Zn
(
V NF

Γ − (Γv)−
)
+
[
(ZnΓv)− − vI2,NF]+vI2,NF+

Dn

〈Dx〉
vI1,NF+

Dn

〈Dx〉
[
(Γv)− − vI1,NF]

so that

∥∥Opwh (χ(hσξ))Lm
[
tZnV

NF
Γ (t, tx)

]∥∥
L2(dx)

.
∥∥Opwh (χ(hσξ))Lm

[
tZn

(
V NF

Γ − (Γv)−
)

(t, tx)
]∥∥
L2(dx)

+
∥∥Opwh (χ(hσξ))Lm

[
t
[
(ZnΓv)− − vI2,NF] (t, tx)

]∥∥
L2(dx)

+
∥∥Opwh (χ(hσξ))Lm

[
tvI2,NF(t, tx)

]∥∥
L2(dx)

+

∥∥∥∥Opwh (χ(hσξ))Lm

[
t
Dn

〈Dx〉
vI1,NF(t, tx)

]∥∥∥∥
L2(dx)

+

∥∥∥∥Opwh (χ(hσξ))Lm

[
t
Dn

〈Dx〉
[
(Γv)− − vI1,NF] (t, tx)

]∥∥∥∥
L2(dx)

.

(B.4.34)

Since vI2,NF satisfies (B.4.4) with I = I2, we derive from relation (3.2.8) with w = vI2,NF that∥∥Opwh (χ(hσξ))Lm
[
tvI2,NF(t, tx)

]∥∥
L2(dx)

.
∥∥χ(t−σDx)Zm(ΓI2v)−(t, ·)

∥∥
L2

+
∥∥χ(t−σDx)Zm

[
vI2,NF − (ΓI2v)−

]
(t, ·)

∥∥
L2 +

∥∥χ(t−σDx)vI2,NF(t, ·)
∥∥
L2

+
∥∥∥χ(t−σDx)

[
xmNL

I2,NF
kg

]
(t, ·)

∥∥∥
L2
.

A-priori estimate (1.1.11d) with k = 0, (B.2.29) with I = I2, (B.4.5), (B.4.7), the fact that
δ � δ2 � δ1 � δ0 and that β is small as long as σ is small, imply∥∥Opwh (χ(hσξ))Lm

[
tvI2,NF(t, tx)

]∥∥
L2(dx)

≤ CBεt
δ0
2 .

Analogously, commutating Lm with Opwh (ξn〈ξ〉−1), using (3.2.8) with w = vI1,NF and the fact
that vI1,NF is solution to (B.2.44) with non-linear term given by (B.2.45), together with inequa-
lities (B.2.50), (B.2.51), (B.2.53), we derive that∥∥∥∥Opwh (χ(hσξ))Lm

[
t
Dn

〈Dx〉
vI1,NF(t, tx)

]∥∥∥∥
L2(dx)

≤ CBεt
δ1
2 .

Finally, the remaining norms in the right hand side of (B.4.34) are estimated by the right hand
side of (B.4.33) after (B.3.6) and lemma B.4.7.

211



Lemmas B.2.8, B.4.6 and B.4.8 allow us to prove an analogous result to that of lemma B.3.3,
where ṽ is replaced with Ṽ Γ introduced in (B.4.20).

Lemma B.4.9. Let h = t−1, ũ, Ṽ Γ be respectively defined in (3.2.2) and(B.4.20), a0(ξ) ∈ S0,0(1),
and b1(ξ) = ξj or b1(ξ) = ξjξk|ξ|−1, with j, k ∈ {1, 2}. There exists a constant C > 0 such that,
for any χ, χ1 ∈ C∞0 (R2), σ > 0, and every t ∈ [1, T ], we have that

(B.4.35a)
∥∥[Opwh (χ(hσξ)a0(ξ))Ṽ Γ(t, ·)][Opwh (χ1(hσξ)b1(ξ))ũ(t, ·)]

∥∥
L2 ≤ C(A+B)Bε2h

1
2
−β′ ,

(B.4.35b)
∥∥[Opwh (χ(hσξ)a0(ξ))Ṽ Γ(t, ·)][Opwh (χ1(hσξ)b1(ξ))ũ(t, ·)]

∥∥
L∞
≤ C(A+B)Bε2h−β

′
,

with β′ > 0 small, β → 0 as σ, δ0 → 0.

Proof. The proof of this result has the same structure as that of lemma B.3.3. Only few dif-
ferences occur due to to the fact that we are replacing ṽ with Ṽ Γ. We limit here to indicate
them.

Instead of referring to estimate (B.3.9) we use the fact that, after (B.2.42) in classical coordinates,
there exists a constant C > 0 such that for any ρ ∈ N

(B.4.36)
∥∥∥Opwh (χ(hσξ))Ṽ Γ(t, ·)

∥∥∥
Hρ,∞

≤ CBεh−β−
δ1
2 ,

with β > 0 small such that β → 0 as σ → 0. We successively decompose Ṽ Γ into Ṽ Γ
Λkg

+ Ṽ Γ
Λckg

,
with

Ṽ Γ
Λkg

(t, x) := Opwh

(
γ
(x− p′(ξ)√

h

)
χ(hσξ)a0(ξ)

)
Ṽ Γ(t, x),

Ṽ Γ
Λckg

(t, x) := Opwh

(
(1− γ)

(x− p′(ξ)√
h

)
χ(hσξ)a0(ξ)

)
Ṽ Γ(t, x).

On the one hand, from the fact that above operators are supported for frequencies |ξ| . hσ,
together with proposition 1.2.39 with p = +∞ and (B.4.36), we have that∥∥∥Ṽ Γ

Λkg
(t, ·)

∥∥∥
L∞
≤ CBεh−β−

δ1
2 .

On the other hand, combining the analogous of (B.3.12) with lemma B.4.6 (instead of B.2.14),
estimates (B.4.26), (B.4.33) (instead of lemma B.3.2) and (B.4.30) (instead of (B.2.79)),∥∥∥Ṽ Γ

Λckg
(t, ·)

∥∥∥
L∞
≤ CBεh

1
2
−β− δ1

2 .

Lemma B.4.10. Let Γ ∈ {Ω, Zm,m = 1, 2} be a Klainerman vector field and V NF
Γ be the

function defined in (B.4.15). There exists a constant C > 0 such that, for any χ ∈ C∞0 (R2),
σ > 0 small, m,n = 1, 2, and every t ∈ [1, T ],∥∥χ(t−σDx)

[
xm
(
V NF

Γ − (Γv)−
)]

(t, ·)
∥∥
L∞
≤ C(A+B)2ε2t−

1
2

+β+
δ1+δ2

2 ,(B.4.37a) ∥∥χ(t−σDx)
[
xnxm

(
V NF

Γ − (Γv)−
)]

(t, ·)
∥∥
L∞
≤ C(A+B)2ε2t

1
2

+β+
δ1+δ2

2 ,(B.4.37b)

with β > 0 small such that β → 0 as σ → 0.
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Proof. We remind the reader about explicit expression (B.4.18) of the difference V NF
Γ − (Γv)−,

and (B.2.30), here considered with |I| = 1 such that ΓI = Γ.

We first use equalities (1.1.5), (1.1.10), and, after some commutations, multiply xm (together
with xn when proving (B.4.37b)) against each Klein-Gordon factor. Successively, we estimate
the contribution coming from vI,NF − (Γv)− using lemma B.2.2 with L = L∞, and all products
coming from the second line of (B.4.18) by means of inequalities (B.2.24) with L = L∞, w = u
and wj0 = (Dx〈Dx〉−1)µZmv for |µ| = 0, 1. On the one hand, we obtain that∥∥χ(t−σDx)

[
xm
(
V NF

Γ − (Γv)−
)]

(t, ·)
∥∥
L∞

.
1∑

µ=0

tσ
∥∥χ1(t−σDx) [xm(Γv)±(t, ·)]

∥∥
L∞
‖Rµ

1u±(t, ·)‖L∞ + t−N(s)‖xm(Γv)±(t, ·)‖L2‖u±(t, ·)‖Hs

+
1∑
|µ|=0

tσ
∥∥∥∥xm( Dx

〈Dx〉

)µ
v±

∥∥∥∥
L∞
‖χ1(t−σDx)(Γu)−(t, ·)‖L∞

+

2∑
|µ|=0

t−N(s)‖xµv±(t, ·)‖L2 (‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

+

1∑
|µ|,|ν|=0

tσ
∥∥∥∥xm( Dx

〈Dx〉

)µ
v±

∥∥∥∥
L∞
‖Rµu±(t, ·)‖H2,∞

and estimate (B.4.37a) follows choosing s > 0 large enough to have N(s) ≥ 2 and using (1.1.11),
(B.1.5a), (B.1.10), (B.1.17) with k = 1, (B.2.62), (B.2.57). On the other hand,∥∥χ(t−σDx)

[
xnxm

(
V NF

Γ − (Γv)−
)]

(t, ·)
∥∥
L∞

.
1∑

µ=0

tσ
∥∥χ1(t−σDx) [xnxm(Γv)±(t, ·)]

∥∥
L∞
‖Rµ

1u±(t, ·)‖L∞

+ t−N(s)‖xnxm(Γv)±(t, ·)‖L2‖u±(t, ·)‖Hs

+
1∑
|µ|=0

tσ
∥∥∥∥xnxm( Dx

〈Dx〉

)µ
v±

∥∥∥∥
L∞
‖χ1(t−σDx)(Γu)−(t, ·)‖L∞

+
3∑
|µ|=0

t−N(s)‖xµv±(t, ·)‖L2 (‖u±(t, ·)‖Hs + ‖Dtu±(t, ·)‖Hs)

+
1∑

|µ|,|ν|=0

tσ
∥∥∥∥xnxm( Dx

〈Dx〉

)µ
v±

∥∥∥∥
L∞
‖Rµu±(t, ·)‖H2,∞

so picking the same s as before and using (B.1.5a), (B.1.10a), (B.1.27), (B.1.28), (B.1.32),
(B.2.57) and (B.4.11), together with a-priori estimates, we derive (B.4.37b).

Lemma B.4.11. Let Γ ∈ {Ω, Zm,m = 1, 2} be a Klainerman vector field and NLkg,c
Γ be given by

(B.4.28). There exists a constant C > 0 such that for any χ ∈ C∞0 (R2), σ > 0 small, m,n = 1, 2,
and every t ∈ [1, T ], ∥∥∥χ(t−σDx)

[
xnNL

kg,c
Γ

]
(t, ·)

∥∥∥
L2
≤ C(A+B)2Bε3t−1+β′ ,(B.4.38a) ∥∥∥χ(t−σDx)

[
xmxnNL

kg,c
Γ

]
(t, ·)

∥∥∥
L2
≤ C(A+B)2Bε3tβ

′
,(B.4.38b)
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with β′ > 0 small such that β′ → 0 as σ, δ0 → 0. Moreover, in the same time interval

(B.4.39)
∥∥∥χ(t−σDx)NLkg,c

Γ (t, ·)
∥∥∥
L∞
≤ C(A+B)2Bε3t−

5
2

+β′ .

Proof. We warn the reader that we will denote by C, β, β′ some positive constants that may
change line after line, with β → 0 (resp. β′ → 0) as σ → 0 (resp. as σ, δ0 → 0). For a seek of
compactness we also denote by R(t, x) any contribution verifying∥∥χ(t−σDx) [xnR(t, ·)]

∥∥
L2 ≤ C(A+B)2Bε3t−1+β′ ,∥∥χ(t−σDx) [xmxnR(t, ·)]
∥∥
L2 ≤ C(A+B)2Bε3tβ

′
,

(B.4.40)

together with

(B.4.41)
∥∥χ(t−σDx)R(t, ·)

∥∥
L∞
≤ C(A+B)2Bε3t−

5
2

+β′ .

Let us introduce NLcub
v as follows

NLcub
v :=− i

2
[−(D1Γv)NLw +D1 [(Γv)NLw]]

− i

2
[−(D1v)ΓNLw +D1[vΓNLw]] +

i

2
δΩ [−(D2v)NLw +D2[vNLw]]

+ δZ1

[
(Dtv)NLIw − 〈Dx〉[vNLw]

]
,

(B.4.42)

so that from (B.4.24)

NLkg,c
Γ =

i

2
[(ΓNLkg)(D1u) + NLkg(D1Γu)] + δΩ

i

2
NLkg(D2u) + δZ1NLkg(Dtu) + NLcub

v ,

(B.4.43)

with δΩ (resp. δZ1) equal to 1 when Γ = Ω (resp. Γ = Z1), 0 otherwise. After (1.1.5), (1.1.10),
and estimates (1.1.11), (B.1.3a), (B.1.6a) with s = 0, (B.1.10b), (B.4.29), NLcub

v verifies the
following:∥∥∥χ(t−σDx)

[
xnNLcub

v

]
(t, ·)

∥∥∥
L2

.
1∑

µ,|ν|=0

tσ
∥∥∥∥xµn( Dx

〈Dx〉

)ν
v±(t, ·)

∥∥∥∥
L∞

[
‖ΓNLw(t, ·)‖L2 + ‖NLw(t, ·)‖L2 + ‖v±(t, ·)‖H2,∞‖(ΓIv)±(t, ·)‖L2

]
≤ C(A+B)ABε3t−1+σ+δ2 .

From the mentioned inequalities and the additional (B.1.27b), it also satisfies∥∥χ(t−σDx)
[
xmxnNLcub

v

]
(t, ·)

∥∥
L2

.
1∑

µ1,µ2,|ν|=0

tσ
∥∥∥∥xµ1m xµ2n ( Dx

〈Dx〉

)ν
v±(t, ·)

∥∥∥∥
L∞

[‖ΓNLw(t, ·)‖L2 + ‖NLw(t, ·)‖L2

+‖v±(t, ·)‖H2,∞‖(ΓIv)±(t, ·)‖L2

]
≤ C(A+B)ABε3tσ+δ2 .

Moreover, applying twice lemma B.2.2 with L = L∞ and s > 0 large enough to have N(s) ≥ 2,
the first time to estimate products involving Γv and NLw in (B.4.42), the second one to estimate
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the first two quadratic contributions to ΓNLw (see (B.1.20b)), we derive that there are two
smooth cut-off functions χ1, χ2 such that∥∥χ(t−σDx)NLcub

v (t, ·)
∥∥
L∞
. tσ

∥∥χ1(t−σDx)(Γv)±(t, ·)
∥∥
L∞
‖NLw(t, ·)‖L∞

+ t−2‖(Γv)±(t, ·)‖L2‖NLw(t, ·)‖Hs + tσ‖χ1(t−σDx)ΓNLw(t, ·)‖L∞‖v±(t, ·)‖H1,∞

+ t−2‖NLIw(t, ·)‖L2‖v±(t, ·)‖Hs + tσ‖v±(t, ·)‖H1,∞‖NLw(t, ·)‖L∞

and

‖χ1(t−σDx)ΓNLw(t, ·)‖L∞ . ‖χ2(t−σDx)(Γv)±(t, ·)‖H2,∞‖v±(t, ·)‖H2,∞

+ t−2‖(Γv)±(t, ·)‖H1‖v±(t, ·)‖Hs + ‖v±(t, ·)‖H1,∞ (‖v±(t, ·)‖H2,∞ + ‖Dtv±(t, ·)‖H1,∞) .

From a-priori estimates, (B.1.3b), (B.1.3c), (B.1.5a) with s = 0, (B.1.6b) with s = 1 and θ � 1
small, (B.2.42), (B.4.29), we then recover∥∥χ(t−σDx)NLcub

v (t, ·)
∥∥
L∞
≤ CA2Bε3t−3+β′ .

Those inequalities make NLcub
v a contribution of the form R(t, x), so from (B.4.43) we are left to

prove that the same is true for ΓNLkg(D1u), NLkg(D1Γu), NLkg(D2u) and NLkg(Dtu).

We immediately observe, from (B.1.1b) and (1.1.5), that the cubic contributions to NLkg(D2u)
and NLkg(Dtu) are of the form

(B.4.44) [a0(Dx)v−][b1(Dx)u−]b0(Dx)u−,

with a0(ξ) ∈ {1, ξj〈ξ〉−1, j = 1, 2}, b1(ξ) ∈ {ξ1, ξjξ1|ξ|−1, j = 1, 2}, b0(ξ) ∈ {1, ξ2|ξ|−1}. There-
fore, lemmas B.3.5, B.3.6 imply that NLkg(D2u) and NLkg(Dtu) are remainders R(t, x). Fur-
thermore, from (B.1.20a), (1.1.16) and the equation satisfied by u± in (2.1.2) with |I| = 0,

ΓNLkg = Qkg
0 ((Γv)±, D1u±) +Qkg

0 (v±, D1(Γu)±)

− δΩQ
kg
0 (v±, D2u±)− δZ1

[
Qkg

0 (v±, |Dx|u±) +Qkg
0

(
v±, Q

w
0 (v±, D1v±)

)]
,

with δΩ (resp. δZ1) equal to 1 if Γ = Ω (resp. Γ = Z1), 0 otherwise. Estimates (1.1.11a) and
(B.4.27) imply that∥∥∥χ(t−σDx)

[
xnQ

kg
0

(
v±, Q

w
0 (v±, D1v±)

)
(D1u)

]
(t, ·)

∥∥∥
L2(dx)

≤ C(A+B)A2Bε4t−
3
2

+
δ+δ2

2 ,

while after (1.1.11a), (B.1.3a), (B.1.27b),∥∥∥χ(t−σDx)
[
xmxnQ

kg
0

(
v±, Q

w
0 (v±, D1v±)

)
(D1u)

]
(t, ·)

∥∥∥
L2(dx)

.
1∑
|µ|=0

∥∥∥∥xmxn( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞(dx)

‖NLw(t, ·)‖L2(dx)‖R1u±(t, ·)‖L∞

≤ C(A+B)A2Bεt−
1
2

+
δ+δ2

2

Also, for any θ ∈]0, 1[,∥∥∥χ(t−σDx)
[
Qkg

0

(
v±, Q

w
0 (v±, D1v±)

)
(D1u)

]
(t, ·)

∥∥∥
L∞(dx)

. ‖v±(t, ·)‖H1,∞‖NLw(t, ·)‖H1,∞‖R1u±(t, ·)‖L∞ ≤ CA4−θBθε4t−
7
2

+θ(1+ δ
2

),
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as follows from (B.1.3d) with s = 1 and a-priori estimates. Thus Qkg
0

(
v±, Q

w
0 (v±, D1v±)

)
(D1u)

is a remainder R(t, x). The same holds true for[
−δΩQ

kg
0 (v±, D2u±)− δZ1Q

kg
0 (v±, |Dx|u±)

]
(D1u)

thanks to lemmas B.3.5 and B.3.6, since the above term is linear combination of products of the
form

[a0(Dx)v−] [b1(Dx)u−] R1u−,

with the same a0(ξ) as before and b1(ξ) ∈ {ξ2, ξ2ξj |ξ|−1, |ξ|, j = 1, 2}, as one can check using
(2.1.1) and (1.1.5).

Summing up, the very contributions for which we have to prove estimates (B.4.40) and (B.4.41)
are the following:

[a0(Dx)(Γv)−] [b1(Dx)u−] R1u−(B.4.45a)
[a0(Dx)v−] [b1(Dx)(Γu)−] R1u−,(B.4.45b)

which are the remaining types of products in (ΓNLkg)(D1u), and

(B.4.45c) [a0(Dx)v−] [b1(Dx)u−] R1(Γu)−,

which are the products appearing in NLkg(D1Γu), with a0 being the same as above and b1(ξ)
equal to ξ1 or to ξjξ1|ξ|−1, with j = 1, 2. All the manipulations we are going to make in what
follows are aimed at showing that these estimates follow from lemmas B.3.3, B.3.4 and B.4.9.

Firstly, we can assume that all factors in (B.4.45) are truncated for moderate frequencies less
or equal than tσ, up to R(t, x) contributions. As regards (B.4.45a), this comes out from the
application of lemma B.2.2. In fact, taking L = L2, w1 = xkmxna0(Dx)(Γv)−for k ∈ {0, 1}, s > 0
large enough to have N(s) > 2, and using a-priori estimates and (B.1.17), (B.1.28), we find that
there is some χ1 ∈ C∞0 (R2) such that, for k = 0, 1,∥∥∥χ(t−σDx)

[
xkmxn[a0(Dx)(Γv)−] [b1(Dx)u−] R1u−

]∥∥∥
L2(dx)

.
∥∥∥[χ1(t−σDx)[xkmxna0(Dx)(Γv)−]

] [
χ(t−σDx)b1(Dx)u−

] [
χ(t−σDx)R1u−

]∥∥∥
L2(dx)

+ t−2
1∑

µ1,µ2,|ν|=0

‖xδk1µ1m xµ2n (Γv)−(t, ·)‖L2(dx)‖Rνu−(t, ·)‖H2,∞‖u−(t, ·)‖Hs

.
∥∥∥[χ1(t−σDx)[xkmxna0(Dx)(Γv)−]

] [
χ(t−σDx)b1(Dx)u−

] [
χ(t−σDx)R1u−

]∥∥∥
L2(dx)

+ CAB2ε3t−
3
2

(1−k)+
δ+δ2

2 ,

where δk1 is the Kronecker delta. Taking instead L = L∞, from a-priori estimates we derive that∥∥χ(t−σDx)
[
[a0(Dx)(Γv)−] [b1(Dx)u−] R1u−

]∥∥
L∞(dx)

.
∥∥[χ1(t−σDx)[a0(Dx)(Γv)−]

] [
χ(t−σDx)b1(Dx)u−

] [
χ(t−σDx)R1u−

]∥∥
L∞(dx)

+ t−2
1∑
|µ|=0

‖(Γv)−(t, ·)‖L2‖Rµu−(t, ·)‖H2,∞‖u−(t, ·)‖Hs

.
∥∥[χ1(t−σDx)[a0(Dx)(Γv)−]

] [
χ(t−σDx)b1(Dx)u−

] [
χ(t−σDx)R1u−

]∥∥
L∞(dx)

+ CAB2ε3t−
5
2

+
δ+δ2

2 .
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As concerns instead products (B.4.45b) and (B.4.45c), this follows applying inequalities (B.2.24)
with w = u, wj0 = xkmxna0(Dx)v− for k = 0, 1, and s > 0 such that N(s) ≥. In fact, for L = L2

we use estimates (1.1.11), (B.1.10), (B.1.27), together with (B.1.32), to derive that for k ∈ {0, 1}∥∥∥χ(t−σDx)
[
xkmxn[a0(Dx)v−] [b1(Dx)(Γu)−] R1u−

]∥∥∥
L2(dx)

.
∥∥∥[χ1(t−σDx)[xkmxna0(Dx)v−]

] [
χ(t−σDx)b1(Dx)(Γu)−

]
χ(t−σDx)R1u−

∥∥∥
L2(dx)

+ t−3
1∑

|µ1|,µ2,µ3=0

(∥∥∥xµ1xδk1µ2m xµ3n v−(t, ·)
∥∥∥
L2(dx)

+ t‖xµ2n v−(t, ·)‖L2

)
‖u±(t, ·)‖Hs‖R1u−(t, ·)‖L∞

+ t−3
∥∥∥xkmxna0(Dx)v−(t, ·)

∥∥∥
L∞(dx)

‖(Γu)−(t, ·)‖L2‖u−(t, ·)‖Hs

.
∥∥∥[χ1(t−σDx)[xkmxna0(Dx)v−]

] [
χ(t−σDx)b1(Dx)(Γu)−

]
χ(t−σDx)R1u−

∥∥∥
L2(dx)

+ CAB2ε2t−(1−k)+
δ+δ2

2 .

Using instead (B.2.24) with L = L∞ along with (1.1.11) and (B.1.10b),∥∥χ(t−σDx) [[a0(Dx)v−] [b1(Dx)(Γu)−] R1u−]
∥∥
L∞

.
∥∥[χ1(t−σDx)a0(Dx)v−

] [
χ(t−σDx)b1(Dx)(Γu)−

]
χ(t−σDx)R1u−

∥∥
L∞

+ CAB2ε2t−
5
2

+
δ+δ2

2 .

Secondly, we can assume that in (B.4.45a) (resp. in (B.4.45c)) b1(Dx)u− is replaced with
b1(Dx)uNF (with uNF introduced in (3.1.15)). This is justified up to some R(t, x) terms that
satisfy (B.4.40) as consequence of (1.1.11a), (B.1.17), (B.1.28) (resp. (B.1.10a), (B.1.27a)),
(B.3.26b), and also (B.4.41) because of (1.1.11a), (B.2.42) (resp. (1.1.11b)) and (B.3.26b).
Hence we are led to estimate the L2 norm of[

χ1(t−σDx)[xkmx
l
na0(Dx)(Γv)−]

] [
χ(t−σDx)b1(Dx)uNF

]
χ(t−σDx)R1u−(B.4.46a) [

χ1(t−σDx)[xkmx
l
na0(Dx)v−]

] [
χ(t−σDx)b1(Dx)(Γu)−

]
χ(t−σDx)R1u−(B.4.46b) [

χ1(t−σDx)[xkmx
l
na0(Dx)v−

] [
χ(t−σDx)b1(Dx)uNF

]
χ(t−σDx)R1(Γu)−(B.4.46c)

for k = 0, 1, l = 1, and the L∞ norm of above products when k = l = 0.

Thirdly, we can think of a0(Dx)(Γv)− in (B.4.46a) and of a0(Dx)v− in (B.4.46b), (B.4.46c)
as replaced with a0(Dx)V NF

Γ and a0(Dx)vNF respectively, where V NF
Γ has been introduced in

(B.4.15) and vNF in (3.1.3). For (B.4.46a) (resp. (B.4.46c)) this substitution is justified up to
some R(t, x) terms that satisfy (B.4.40) and (B.4.41), the former because of a-priori estimate
(1.1.11a), (B.3.30) and (B.4.37) (resp. (B.2.57), (B.3.30) and (B.3.31)), the latter after (1.1.11a),
(B.4.16) (resp. (B.3.26a), (B.2.57)) and the classical translation of the semi-classical (B.3.8)

‖uNF (t, ·)‖Hρ,∞ + ‖RuNF (t, ·)‖Hρ,∞ ≤ CBεt−
1
2 .

Therefore, in order to conclude the proof we must prove that, for some χ, χ1 ∈ C∞0 (R2) and
k ∈ {0, 1},∥∥∥[χ1(t−σDx)[xkmxna0(Dx)(Γv)−]

] [
χ(t−σDx)b1(Dx)uNF

]
χ(t−σDx)R1u−

∥∥∥
L2(dx)

+
∥∥∥[χ1(t−σDx)[xkmxna0(Dx)v−]

] [
χ(t−σDx)b1(Dx)(Γu)−

]
χ(t−σDx)R1u−

∥∥∥
L2(dx)

+
∥∥∥[χ1(t−σDx)[xkmx

l
na0(Dx)v−]

] [
χ(t−σDx)b1(Dx)uNF

]
χ(t−σDx)R1(Γu)−

∥∥∥
L2(dx)

≤ C(A+B)2Bε3t−1+k+β′
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and ∥∥[χ1(t−σDx)a0(Dx)(Γv)−
] [
χ(t−σDx)b1(Dx)uNF

]
χ(t−σDx)R1u−

∥∥
L∞(dx)

+
∥∥[χ1(t−σDx)a0(Dx)v−

] [
χ(t−σDx)b1(Dx)(Γu)−

]
χ(t−σDx)R1u−

∥∥
L∞(dx)

+
∥∥[χ1(t−σDx)a0(Dx)v−

] [
χ(t−σDx)b1(Dx)uNF

]
χ(t−σDx)R1(Γu)−

∥∥
L∞(dx)

≤ C(A+B)2Bε3t−
5
2

+β′ .

Actually, using (1.1.11a), (B.2.57), and passing to the semi-classical framework and unknowns
with Ṽ Γ introduced in (B.4.20), ũ, ṽ in (3.2.2), and ũI(t, x) = t−1(Γu)−(t, t−1x), above inequa-
lities will follow respectively from

1∑
k=0

[ ∥∥∥[Opwh (χ1(hσξ))[xkmxnOpwh (a0(ξ))Ṽ Γ]
] [

Opwh (χ(hσξ)b1(ξ))ũ
]
(t, ·)

∥∥∥
L2(dx)

+
∥∥∥[Opwh (χ1(hσξ))[xkmxnOpwh (a0(ξ))ṽ]

] [
Opwh (χ(hσξ)b1(ξ))ũI

]
(t, ·)

∥∥∥
L2(dx)

+
∥∥∥[Opwh (χ1(hσξ))[xkmxnOpwh (a0(ξ))ṽ]

] [
Opwh (χ(hσξ)b1(ξ))ũ

]
(t, ·)

∥∥∥
L2(dx)

]
≤ C(A+B)Bε3h−

1
2
−β′

(B.4.47)

and ∥∥∥[Opwh (χ1(hσξ)a0(ξ))Ṽ Γ
][

Opwh (χ(hσξ)b1(ξ))ũ
]
(t, ·)

∥∥∥
L∞(dx)

+
∥∥[Opwh (χ1(hσξ)a0(ξ))ṽ

][
Opwh (χ(hσξ)b1(ξ))ũI

]
(t, ·)

∥∥
L∞(dx)

+
∥∥[Opwh (χ1(hσξ)a0(ξ))ṽ

][
Opwh (χ(hσξ)b1(ξ))ũ

]
(t, ·)

∥∥
L∞(dx)

≤ C(A+B)Bε3h−β
′
.

(B.4.48)

We immediately obtain from inequalities (B.3.35) and (B.3.39) that

1∑
k=0

∥∥[Opwh (χ1(hσξ))[xkmxnOpwh (a0(ξ))ṽ]
] [

Opwh (χ(hσξ)b1(ξ))ũ
]
(t, ·)

∥∥
L2(dx)

≤ C(A+B)Bε3h−
1
2−β

′
.

Moreover, one can check that∥∥∥[Opwh (χ1(hσξ))[xnOpwh (a0(ξ))Ṽ Γ]
] [

Opwh (χ(hσξ)b1(ξ))ũ
]
(t, ·)

∥∥∥
L2(dx)

≤
∥∥∥∥[Opwh

(
χ1(hσξ)a0(ξ)

ξn
〈ξ〉

)
Ṽ Γ
]
[Opwh (χ(hσξ)b1(ξ))ũ](t, ·)

∥∥∥∥
L2

+ CABε2h
1
2
−β′ ,

∥∥∥[Opwh (χ1(hσξ))[xmxnOpwh (a0(ξ))Ṽ Γ]
] [

Opwh (χ(hσξ)b1(ξ))ũ
]
(t, ·)

∥∥∥
L2(dx)

.

∥∥∥∥[Opwh

(
χ1(hσξ)a0(ξ)

ξn
〈ξ〉

)
Ṽ Γ
][

Opwh

(
χ(hσξ)b1(ξ)

ξm
|ξ|

)
ũ
]
(t, ·)

∥∥∥∥
L2(dx)

+ C(A+B)Bε2h
1
2
−β′ ,

and∥∥[Opwh (χ1(hσξ))
[
xnOpwh (a0(ξ))ṽ

]] [
Opwh (χ(hσξ)b1(ξ))ũI

]
(t, ·)

∥∥
L2(dx

≤
∥∥∥∥[Opwh

(
χ1(hσξ)a0(ξ)

ξn
〈ξ〉

)
ṽ
]
[Opwh (χ(hσξ)b1(ξ))ũI ](t, ·)

∥∥∥∥
L2

+ CABε2h
1
2
−β′ ,
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∥∥[Opwh (χ1(hσξ))
[
xmxnOpwh (a0(ξ))ṽ

]] [
Opwh (χ(hσξ)b1(ξ))ũJ

]
(t, ·)

∥∥
L2

.

∥∥∥∥[Opwh

(
χ1(hσξ)a0(ξ)

ξn
〈ξ〉

)
ṽ
][

Opwh

(
χ(hσξ)b1(ξ)

ξm
|ξ|

)
ũI
]
(t, ·)

∥∥∥∥
L2(dx)

+ C(A+B)Bε2h
1
2
−β′ .

This can be done using a similar argument to the one that led us to (B.3.35) and (B.3.39), up
to replacing ṽ with Ṽ Γ in (B.3.33), referring to lemma B.4.6 instead of B.2.14, and to estimate
(B.4.36) instead of (B.3.9), in order to derive the former two inequalities; up to replacing ũ
with ũI in (B.3.34), using lemma B.2.9 instead of (B.2.1a), (B.2.1c), estimate (B.3.23) instead
of (B.3.8), and the fact that for any θ ∈]0, 1[∥∥Opwh (χ(hσξ)b1(ξ)ξm|ξ|−1)ũI(t, ·)

∥∥
L∞

= t
∥∥χ(t−σDx)b1(Dx)Dm|Dx|−1(Γu)−(t, ·)

∥∥
L∞

. t‖χ(t−σDx)(Γu)−(t, ·)‖1−θ
H3,∞‖(Γu)−(t, ·)‖θH2 ≤ C(A+B)1−θBθεt

1
2

+β+
δ1
2

+
(1+δ1+δ2)

2
θ,

which is the analogous of (B.3.37) (last estimate deduced using (B.2.57) and (1.1.11d) with
k = 1), to demonstrate the latter two ones. Therefore, above inequalities and (B.3.22a), (B.4.35a)
imply (B.4.47). Finally, (B.4.48) is consequence of (B.3.7b), (B.3.22b) and (B.4.35b). That
concludes the proof of the statement.

Lemma B.4.12. Let NLkg,c
Γ be given by (B.4.28). There exists a constant C > 0 such that, for

any χ ∈ C∞0 (R2), σ > 0 small, m,n = 1, 2, and every t ∈ [1, T ],∥∥∥Opwh (χ(hσξ))Lm

[
t(txn)NLkg,c

Γ (t, tx)
]∥∥∥

L2(dx)
≤ C(A+B)2Bε3tβ

′
,∥∥∥Opwh (χ(hσξ))Lm

[
t(txn)Qkg

0

(
v±, Q

w
0 (v±, D1v±)

)
(t, tx)

]∥∥∥
L2(dx)

≤ C(A+B)ABε3t
δ+δ2

2 ,

with β′ > 0 such that β′ → 0 as σ, δ0 → 0.

Proof. Straightforward after (B.3.6), lemma B.4.11, estimate (B.4.27) and the following inequa-
lity∥∥∥χ(t−σDx)

[
xmxnQ

kg
0

(
v±, Q

w
0 (v±, D1v±)

)]
(t, ·)

∥∥∥
L2

.
1∑
|µ|=0

∥∥∥∥xmxn( Dx

〈Dx〉

)µ
v±(t, ·)

∥∥∥∥
L∞
‖NLw(t, ·)‖L2 ≤ C(A+B)ABε3t

δ+δ2
2 ,

deduced from (1.1.11), (B.1.3a) and (B.1.27b).

Lemma B.4.13. Let Ṽ Γ be the function defined in (B.4.20). There exists some positive constant
C such that, for any χ ∈ C∞0 (R2), σ > 0 small, and every t ∈ [1, T ],

(B.4.49)
∑
|µ|=2

∥∥∥Opwh (χ(hσξ)LµṼ Γ(t, ·)
∥∥∥
L2
≤ CBεtβ′ ,

with β′ > 0 small, β′ → 0 as σ, δ0 → 0.

Proof. First of all we remind that V NF
Γ is solution to (B.4.23). From relation (3.2.9b) and the

commutation between Lm and Opwh (〈ξ〉) we deduce that, for any m,n = 1, 2,∥∥∥Opwh (χ(hσξ))LmLnṼ
Γ(t, ·)

∥∥∥
H1
h

.
1∑

µ=0

[ ∥∥Opwh (χ(hσξ))Lµm
[
tZnV

NF
Γ (t, tx)

]∥∥
L2(dx)

+

∥∥∥∥Opwh (χ(hσξ))LµmOpwh

( ξn
〈ξ〉

)
Ṽ Γ(t, ·)

]∥∥∥∥
L2

+
∥∥∥Opwh (χ(hσξ))Lµm

[
t(txn)NLkg,c

Γ (t, tx)
]∥∥∥
L2(dx)

+
∥∥∥Opwh (χ(hσξ))Lµm

[
t(txn)Qkg

0

(
v±, Q

w
0 (v±, D1v±)

)
(t, tx)

]∥∥∥
L2(dx)

]
.
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The result of the statement follows then from (B.4.26), (B.4.27), (B.4.30), (B.4.33), and lemmas
B.4.6, B.4.12.

Lemma B.4.14. There exists a constant C > 0 such that, for any χ ∈ C∞0 (R2) equal to 1 in a
neighbourhood of the origin, σ > 0 small, and every t ∈ [1, T ],

(B.4.50)
∑
|I|=1

‖χ(t−σDx)V I(t, ·)‖L∞ ≤ CBεt−1.

Proof. As this estimate is evidently satisfied when I is such that ΓI is a spatial derivative after
a-priori estimate (1.1.11b), we focus on proving the statement for ΓI ∈ {Ω, Zm,m = 1, 2} being
a Klainerman vector field. For simplicity, we refer to ΓI simply by Γ.

Instead of proving the result of the statement directly on (Γv)± we show that

(B.4.51)
∥∥V NF

Γ (t, ·)
∥∥
L∞
≤ CBεt−1,

where V NF
Γ has been introduced in (B.4.15). After (B.4.16), the above inequality evidently

implies the statement. The main idea to derive the sharp decay estimate in (B.4.51) is to use the
same argument that, in subsection 3.2.1, led us to the propagation of a-priori estimate (1.1.11b),
i.e. to move to the semi-classical setting and deduce an ODE from equation (B.4.23) satisfied by
V NF

Γ . The most important feature that will provide us with (B.4.51) is that the uniform norm of
all involved non-linear terms is integrable in time. Before going into the details, we also remind
the reader our choice to denote by C, β and β′ some positive constants that may change line
after line, with β → 0 (resp. β′ → 0) as σ → 0 (resp. as σ, δ0 → 0).

Let us consider Ṽ Γ(t, x) := tV NF
Γ (t, tx), operator Γkg as follows

Γkg := Opwh

(
γ
(x− p′(ξ)√

h

)
χ1(hσξ)

)
,

with γ, χ1 ∈ C∞0 (R2) such that γ ≡ 1 close to the origin, χ1 ≡ 1 on the support of χ, p(ξ) := 〈ξ〉,
and

Ṽ Γ
Λkg

(t, x) := ΓkgOpwh (χ(hσξ))Ṽ Γ(t, x),

Ṽ Γ
Λckg

(t, x) := Opwh

(
(1− γ)

(x− p′(ξ)√
h

)
χ1(hσξ)

)
Opwh (χ(hσξ))Ṽ Γ(t, x),

so that
Opwh (χ(hσξ))Ṽ Γ(t, ·) = Ṽ Γ

Λkg
+ Ṽ Γ

Λckg
.

It immediately follows from inequality (3.2.18b) and lemmas B.4.6, B.4.13, that

(B.4.52)
∥∥∥Ṽ Γ

Λckg
(t, ·)

∥∥∥
L∞
.

2∑
|µ|=0

h
1
2
−β
∥∥∥Opwh (χ(hσξ))LµṼ Γ(t, ·)

∥∥∥
L2
≤ CBεt−

1
2

+β′ .

On the other hand, as V NF
Γ is solution to (B.4.23) an explicit computation shows that Ṽ Γ satisfies

the following semi-classical pseudo-differential equation:

[Dt −Opwh (x · ξ − 〈ξ〉)] Ṽ Γ(t, x) = h−1NLkg,c
Γ (t, tx)− δZ1h

−1Qkg
0

(
v±, Q

w
0 (v±, D1v±)

)
(t, tx),

with NLkg,c
Γ given explicitly by (B.4.28). Applying successively operators Opwh (χ(hσξ)) and Γkg

to the above equation we find, from symbolic calculus and the first part of lemma 3.2.5, that
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Ṽ Γ
Λkg

satisfies

(B.4.53) [Dt −Opwh (x · ξ − 〈ξ〉)] Ṽ Γ
Λkg

(t, x) = h−1ΓkgOpwh (χ(hσξ))
[
NLkg,c

Γ (t, tx)
]

− δZ1h
−1ΓkgOpwh (χ(hσξ))

[
Qkg

0

(
v±, Q

w
0 (v±, D1v±)

)
(t, tx)

]
−Opwh (b(x, ξ))Opwh (χ(hσξ))Ṽ Γ(t, x)

+ iσh1+σΓkgOpwh
(
(∂χ)(hσξ) · (hσξ)

)
Ṽ Γ,

with symbol b given by (3.2.27). Since γ’s derivatives vanish in a neighbourhood of the origin
and ∂χ1 ≡ 0 on the support of χ, from symbolic calculus of lemma 1.2.24 and remark 1.2.22,
1.2.42, together with inequalities (3.2.17b), (3.2.18b), that∥∥∥Opwh (b(x, ξ))Opwh (χ(hσξ))Ṽ Γ(t, ·)

∥∥∥
L∞

. h
3
2
−β

2∑
|µ|=0

‖Opwh (χ(hσξ))LµṼ Γ(t, ·)‖L2 + h2
∥∥∥Ṽ Γ(t, ·)

∥∥∥
L2
≤ CBεt−

3
2

+β′ ,

where last estimate is obtained using lemmas B.4.6, B.4.13. Moreover, reminding lemma 1.2.38
and using symbolic calculus we see that, for any N ∈ N as large as we want,

(B.4.54) h1+σ
∥∥∥ΓkgOpwh ((∂χ(hσξ) · (hσξ))Ṽ Γ(t, ·)

∥∥∥
L∞

≤ h1+σ
∥∥∥Γkgθh(x)Opwh ((∂χ(hσξ) · (hσξ))Ṽ Γ(t, ·)

∥∥∥
L∞

+ hN‖Ṽ Γ(t, ·)‖L2 ,

where θh(x) is a smooth cut-off function supported in closed ball B1−ch2σ(0), with c > 0 small.
Denoting (∂χ)(ξ)·ξ concisely by χ̃(ξ), we observe from proposition 1.2.39 with p = +∞, together
with the uniform continuity on L∞ of operator χ̃(t−σDx), the definition of Ṽ Γ in terms of V NF

Γ ,
and (B.4.16), that

h1+σ
∥∥∥Γkgθh(x)Opwh (χ̃(hσξ))Ṽ Γ(t, ·)

∥∥∥
L∞
. h1−β

∥∥∥θh(x)Opwh (χ̃(hσξ))Ṽ Γ(t, ·)
∥∥∥
L∞

≤ tβ
∥∥∥θh( ·

t

)
χ̃(t−σDx)(Γv)−(t, ·)

∥∥∥
L∞

+ C(A+B)Bε2t−
5
4

+β.

Using the fact that, for θjh(z) := θh(z)zj ,

θh

(x
t

)
(Ωv)− = t

[
θ1
h

(x
t

)
∂2v− − θ2

h

(x
t

)
∂1v−

]
and

θh

(x
t

)
(Zmv)− = t

[
θmh

(x
t

)
∂tv− + θh

(x
t

)
∂mv−

]
+ θh

(x
t

) Dm

〈Dx〉
v−, m = 1, 2,

and making some commutations, we can express (Γv)− in terms of v− and its derivatives up to a
loss in t. Thus, from the classical Sobolev injection combined inequality (B.1.2), we obtain that

t−β
∥∥∥χ̃(t−σDx)θh

( ·
t

)
(Γv)−(t, ·)

∥∥∥
L∞
. t−N(s)+1+β (‖Dtv±(t, ·)‖Hs + ‖v±(t, ·)‖Hs)

≤ CBεt−
3
2 ,

last estimate following by taking s > 0 large enough to haveN(s) ≥ 3 and using a-priori estimates
along with (B.1.6a) with s = 0. From (B.4.21a) and (B.4.54) we hence derive that

h1+σ
∥∥∥ΓkgOpwh ((∂χ(hσξ) · (hσξ))Ṽ Γ(t, ·)

∥∥∥
L∞
≤ CBεt−

3
2 ,
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so the last two terms in the right hand side of equation (B.4.53) are remainders R(t, x) such that

(B.4.55) ‖R(t, ·)‖L∞ ≤ CBεt−
5
4 ,

for every t ∈ [1, T ].

After proposition 1.2.39 with p = +∞, estimate (B.4.39), and the fact that for any θ ∈]0, 1[,∥∥∥Qkg
0 (v±, Q

w
0 (v±, D1v±)) (t, ·)

∥∥∥
L∞(dx)

≤ CA3−θBθε3t−3+θ(1+ δ
2

),

as follows by (B.1.3c) with s = 1 and a-priori estimates, we deduce (up to taking θ � 1 small in
the above inequality) that also the first two non-linear terms in the right hand side of (B.4.53)
satisfy (B.4.55) and can be included into R(t, x). Therefore, Ṽ Γ

Λkg
satisfies

[Dt −Opwh (x · ξ − 〈ξ〉)] Ṽ Γ
Λkg

(t, x) = R(t, x),

and using (3.2.21) along with inequality (3.2.23b), together with lemmas B.4.6, B.4.13, we deduce
that, for the same family of cut-off functions θh introduced above, Ṽ Γ

Λkg
is solution to the following

ODE:

(B.4.56) DtṼ
Γ

Λkg
(t, x) = −θh(x)φ(x)Ṽ Γ

Λkg
(t, x) +R(t, x),

with φ(x) =
√

1− |x|2. Since the inhomogeneous term R(t, x) decays, in the uniform norm, at
a rate which is integrable in time, we get that

‖Ṽ Γ
Λkg

(t, ·)‖L∞ . ‖Ṽ Γ
Λkg

(1, ·)‖L∞ + CBε ≤ CBε,

which summed up with (B.4.52) implies (B.4.51), and hence the conclusion of the proof.
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Index

Admissible cut-off function, 16

bm(ξ), function, 23

cw, cubic term in the wave equation after a
normal form, 101

E0(t;u±, v±), energy, 12
Ek3 (t;u±, v±), generalized energy, 12
Ek3 (t;W ), generalized energy, 53
En(t;u±, v±), generalized energy, 12
En(t;W ), generalized energy, 53
Ẽk3 (t;W ), first modified energy, 67
Ẽn(t;W ), first modified energy, 67

ΓI , product of admissible vector fields, 12
Γkg, operator, 105
γn, function, 23

h, semi-classical parameter, 102
Hρ,∞(Rd), space, 15
Hρ,∞
h (Rd), space, 20

Hs(Rd), space, 15
Hs
h(Rd), space, 20

I(I), set of multi-indices, 14
Ik3, set of multi-indices, 53
In, set of multi-indices, 53

K, set of integers, 23
K, set of multi-indices, 57
Klainerman vector fields, 12

Λkg, manifold associated to the
Klein-Gordon equation, 44

Λw, manifold associated to the wave
equation, 115

Littlewood Paley decomposition, 17
Lj , operator, 46

Mj , operator, 35
Mm

0 (a;n), seminorm, 15

NLkg, quadratic non-linearity in the
Klein-Gordon equation satisfied by
v±, 157

NLw, quadratic non-linearity in the wave
equation satisfied by u±, 157

Ω, Euclidean rotation, 12
Ωh, semi-classical Euclidean rotation, 30
OpB, para-differential operator, 16
OpBR, remainder para-differential operator,

16
Oph, standard semi-classical quantization,

20
Opwh , semi-classical Weyl quantization, 20
Order function, 19

p(ξ), function, 42

Q0(v, w), null form, 11
Qkg

0 (v±, Dau±), null form, 50
qw, quadratic term in the wave equation

after a normal form, 100
Qw

0 (v±, Dav±), null form, 50

rNFkg , cubic term in the Klein-Gordon
equation after a normal form, 98

rNFw , cubic term in the wave equation after
a normal form, 101

Sδ,σ(M), class of symbols, 19
Σm

0 (Rd), class of symbols, 15
Σm
r (Rd), class of symbols, 15

Sm0 (Rd), class of symbols, 15
Smr (Rd), class of symbols, 15
Sobolev injection, semi-classical, 20

U , wave vector, 52
U I , wave vector with admissible vector

fields, 52
uI±, wave components with admissible

vector fields, 12
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uNF , wave component after a normal form,
100

u±, wave components, 12
ũΣ,k, wave component in semi-classical

setting, localised for frequencies
∼ 2k, 115

ũ, wave component in semi-classical setting,
102

ũ
Σj ,k
Λw

, wave component in semi-classical
setting, localised around Λw, 116

ũ
Σj ,k
Λcw

, wave component in semi-classical
setting, localised away from Λw,
116

V , Klein-Gordon vector, 52
V I , Klein-Gordon vector with admissible

vector fields, 52
vI±, Klein-Gordon components with

admissible vector fields, 12
Vk, set of multi-indices, 57
vNF , Klein-Gordon component after a

normal form, 98
V NF

Γ , normal form function defined from
(Γv)−, 206

vI,NF, normal form function defined from
(ΓIv)−, 176

v± Klein-Gordon components, 12
ṽ, Klein-Gordon component in

semi-classical setting, 102
Ṽ Γ, function V NF

Γ in semi-classical setting,
207

ṽΣ
Λkg

, Klein-Gordon component in
semi-classical setting, localised
around Λkg, 105

ṽΣ
Λckg

, Klein-Gordon component in
semi-classical setting, localised
away from Λkg, 105

W , wave-Klein-Gordon vector, 52
W I , wave-Klein-Gordon vector with

admissible vector fields, 52
W I
s , wave-Klein-Gordon vector after

symmetrization, 63
W ρ,∞(Rd), space, 15

Z, family of admissible vector fields, 12
Zj , Lorentzian boost, 12
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