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Abstract

The aim of this paper is to study the global existence of solutions to a coupled wave-Klein-
Gordon system in space dimension two when initial data are small, smooth and mildly decaying
at infinity. Some physical models strictly related to general relativity have shown the importance
of studying such systems, but very few results are know at present in low space dimension. We
study here a model two-dimensional system, in which the non-linearity writes in terms of “null
forms”, and show the global existence of small solutions. Our goal is to prove some energy
estimates on the solution when a certain number of Klainerman vector fields is acting on it, and
some optimal uniform estimates. The former ones are obtained using systematically quasi-linear
normal forms, in their para-differential version; the latter ones are recovered by deducing a new
coupled system of a transport equation and an ordinary differential equation from the starting
PDE system, by means of a semi-classical micro-local analysis of the problem. We expect the
strategy developed here to be robust enough to enable us, in the future, to treat the case of the
most general non-linearities.
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by For Women in Science fellowship funded by Fondation L’Oréal-UNESCO.
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Introduction

The result we present in this paper concerns the global existence of solutions to a quadratic
quasi-linear coupled system of a wave equation and a Klein-Gordon equation in space dimension
two, when initial data are small smooth and mildly decaying at infinity. We prove this result for
a model non-linearity with the aim of extend it, in the future, to the most general case. Keeping
this long term objective in mind, we shall try to develop a fairly general approach in spite of the
fact that we are treating here a simple model. The Cauchy problem we consider is the following
{ (97 = As)ult, z) = Qo(v, drv),

(1) (t,x) €]1, 400 xR?

(87 — Ap + L)o(t, ) = Qo(v, O1u)

with initial conditions

(2) { (uw,v)(1,2) = e(uo(z),vo(x)),

(Opu, Op) (1, z) = e(ui (), v1(x)),
where € > 0 is a small parameter, and Qg is the null form:
Qo(v,w) = (O)(Oyw) — (Vzv) - (Vaw) .

We also suppose that, for some n € N sufficiently large, (V ug,u1) is in the unit ball of
H™"(R%,R) x H*(R% R), (vo,v1) in the unit ball of H"*1(R? R) x H"(R? R), and that

(3) Z ([l2*V ol 1ol + 20| graie1 + l%ut || giar + |01 || g1t ) < 1.
1<[a|<3

Some physical models, especially related to general relativity, have shown the importance of
studying such systems to which several recent works have been dedicated. Most of the results
known at present concern wave-Klein-Gordon systems in space dimension 3. One of the first ones
goes back to Georgiev |9]. He observed that the vector fields’ method developed by Klainerman
was not well adapted to handle at the same time massless and massive wave equations because
of the fact that the scaling vector field S = t9; + = - V. is not a Killing vector field for the Klein-
Gordon equation. To overcome this difficulty he adapted Klainerman’s techniques, introducing a
strong null condition to be satisfied by semi-linear nonlinearities that ensures global existence. In
2012 Katayama [18] showed the global existence of small amplitude solutions to coupled systems
of wave and Klein-Gordon equations under certain suitable conditions on the non-linearity that
include the null condition of Klainerman ([19]) on self-interactions between wave components,
and are weaker than the strong null condition of Georgiev. Consequently, the result he obtains
applies also to certain other physical systems such as Dirac-Klein-Gordon equations, Dirac-
Proca equations and Klein-Gordon-Zakharov equations. Later, this problem was also studied by
LeFloch, Ma [22| and Wang [31] as a model for the full Einstein-Klein-Gordon system (E-KG)

Ricaﬁ = Da¢DB¢ + %¢29a6
Ugo =9



The authors prove global existence of solutions to wave-Klein-Gordon systems with quasi-linear
quadratic non-linearities satisfying suitable conditions, when initial data are small, smooth and
compactly supported, using the so-called hyperboloidal foliation method introduced by Le Foch,
Ma in [22]. Global stability for the full (E-KG) has been then proved by LeFloch-Ma |21, [20] in
the case of small smooth perturbations that agree with a Scharzschild solution outside a compact
set (see also Wang [30]). In a recent paper [17] Ionescu and Pausader prove global regularity
and modified scattering in the case of small smooth initial data that decay at suitable rates at
infinity, but not necessarily compactly supported. The quadratic quasi-linear problem they deal
with is the following

—Ou = Aaﬁ(?avﬁgv + Dv?

—(O+ 1)v = uB*?0,0v

where A%, B D are real constants. The system keeps the same linear structure as (E-KG)
in harmonic gauge, but only keeps quadratic non-linearities that involve the massive scalar field
v (semilinear in the wave equation, quasi-linear in the Klein-Gordon equation). Moreover, the
non-linearity they consider does not present a null structure but shows a particular resonant
pattern. Their result relies, on the one hand, on a combination of energy estimates to control
high Sobolev norms and weighted norms involving the admissible vector fields; on the other hand,
on a Fourier analysis, in connection with normal forms and analysis of resonant sets, to prove
dispersive estimates and decay in suitable lower regularity norms. The only results we know
about global existence of small amplitude solutions in lower space dimension are due to Ma. In
space dimension 2 he considers the case of compactly supported Cauchy data and adapts the
hyperboloidal foliation method mentioned above to 2 4+ 1 spacetime wave-Klein-Gordon systems
(see [26]). In particular, in [25] he combines this method with a normal form argument to treat
some quasi-linear quadratic non-linearities, while in |24] he studies the case of some semi-linear
quadratic interactions. In a very recent paper [23| he also tackles the one-dimensional problem,
studying a model semi-linear cubic wave-Klein-Gordon system. In this work he finally overcomes
the restriction on the support of initial data and generalizes the hyperboloidal foliation method,
combining the hyperboloidal foliation of the translated light cone with the standard time-constant
foliation outside of it. The analysis of the problem and the deduction of the estimates of interest
is then made separately inside and outside the mentioned light cone.

The result we prove in this paper is the following:

Theorem 1. There exists €9 > 0 such that for any e €]0,g¢[, system with initial data satisfy-
ing , admits a unique global solution defined on [1,+oc[, with O; zu € CO([1, +-00[; H"(R?))
and (v,0) € CO([1, +o0[; H"H(R?) x H™(R?)).

We describe below the strategy of the theorem’s proof. First of all, we rewrite system in
terms of unkowns

(4) ur = (Dy £|Dy|)u, vy = (Dy+(Dy))v,
where Dy , = —i0; 4, and introduce the admissible Klainerman vector fields for this problem, i.e.
Q =x10y — 1901, Zj :xj8t+t6j, 73 =1,2.

We also denote by Z = {T'y,...,'5} the family made by above vector fields together with the

two spatial derivatives, and if I = (iy,...,%,) is an element of {1,...,5}?, I'Mw is the function
obtained letting I';;,...,I';, act successively on w. We then set
(5) ul = (Dy £ |Dy[) T u, vl = (D +(D,)) TV,



and introduce the following energies:
2 2 2 2
Eo(t;ui,vi)—/z(lw(tvw)l +u(t, 2)|" + o (8, 2)[° + - (¢, 2)[7) da,
R

then for n > 3,
E,(t;us,vy) = Z Eo(t; DSuy, DSvy),

|a|<n
which controls the H" regularity of u4, v+, and finally, for any integer k between 0 and 2,
Ej(tyug,ve) = ) Eo(t; Dgul, DYvl)

lal+[7]<3
|1]<3—k

that takes into account the decay in space of ui, vy and of at most three of their spatial deriva-
tives. By a local existence argument, an a-priori estimate on F, on a certain time interval will
be enough to ensure the extension of the solution to that interval. For this reason, we are led to
prove a result as the following one, in which R = (Rj, R2) denotes the Riesz transform:

Theorem 2. Let K1, Ko two constants strictly bigger than 1. There exist two integers n > p >
1, e €]0, 1] small enough, some small real 0 < 6 K 02 K §1 K 09 < 1 and two constants A, B
sufficiently large such that, if functions ut, v+, defined by from a solution to , satisfy

1(De)? s (£, ) | oo + (D) R (t, )| oo < Aet™2
(D) v oo < Act™!

En(t;us, vi) < Bt

E§(tuy,vy) < B2, 0< k<2,

(6)

for every t € [1,T], then on the same interval [1,T] we have

A 1
(D) s (¢, oo + (D) Rug (¢, )| oo < o 5

A -
[{De)?vs e < et

B2 2420
En(tug,ve) < ﬁéf 13
2

32
E¥(t;ug,ve) < ﬁs%%k, 0<k<2.
2

The proof of the theorem consists, on the one hand, to prove that @ implies the latter two
estimates in (|7) by means of an energy inequality. On the other hand, by reduction of the starting
problem to a coupled system of an ordinary differential equation and a transport equation, we
prove that @ implies the first two estimates in .

In order to recover the mentioned energy inequality that allows us to propagate the a-priori
energy estimates, we let family T'! of vector fields act on and then pass to unknowns . We
obtain a new system of the form

(Dt F |De|Ju
(Dt F | De|)v

= NLW(’U:II:’U:IN:)

= NLkg(vi, ui)

Ho~ H~

where the non-linearities (whose explicit expression may be found in the right hand side of
(2.1.2)) are bilinear quantities of their arguments. Because of the quasi-linear nature of our



problem, the first step towards the derivation of the mentioned inequality is to highlight the very
quasi-linear contribution to above non-linearities and make sure that it does not lead to a loss
of derivatives. For this reason, we write the above system in a vectorial fashion by introducing
vectors

ui 0
I 0 I vl I I I
U:uI,VIO,W:U—i—V,
0 vl

and successively para-linearize the vectorial equation satisfied by W/ (using the tools introduced
in subsection to stress out the quasi-linear contribution to the non-linearity. Finally, we
symmetrize it (in the sense of Subsection by introducing some new unknown W/ comparable
to W!. What we would need to show in order to prove the last two inequalities in is that,
using the estimates in @, the derivative in time of the L? norm to the square of W/ is bounded
by % |W1||.2. By analysing the semi-linear contributions in the symmetrized equation satisfied
by W/!, we find out that the L? norm of some of those ones can only be estimated making
appear the L norm on the wave factor and the L? norm on the Klein-Gordon one. Because
of the very slow decay in time of the wave solution (the decay rate being t~1/2 as assumed in
the first inequality of @), we are hence very far away from the wished estimate. Consequently,
the second step for the derivation of the right energy inequality consists in performing a normal
form argument to get rid of those quadratic terms and replace them with cubic ones. For that,
we first use a Shatah’ normal form adapted to quasi-linear equations (see subsection as
already used by several authors (we cite |28, |5, 4, 6] for quasi-linear Klein-Gordon equations,
and [13, 12, |16, |1, [15] for quasi-linear equations arising in fluids mechanics), but also a semi-
linear normal form argument to treat some other terms on which we are allowed to lose some
derivatives (see subsection . These two normal forms’ steps lead us to define some new
energies En(t; Ut, V), E’g,f(t; u4,v4), equivalent to the starting ones E,, (t; ut, v4), Eé“ (t;us,ve),
that we are able to propagate. That concludes the first part of the proof.

The last thing that remains to prove is that @ implies the first two estimates in (7). The
strategy we employ is very similar to the one developed in [29]: we deduce from the starting
system a new coupled one of an ordinary differential equation, coming from the Klein-Gordon
equation, and of a transport equation, derived from the wave one. The study of this system will
provide us with the wished L estimates. We start our analysis by another normal form in
order to replace almost all quadratic non-linear terms in the equations satisfied by u., v+ with
cubic ones. The only contributions that cannot be eliminated are those depending on (vy,v_)
which are resonant and should be suitably treated. We do not use directly the normal forms
obtained in the previous step. In fact, our aim is basically to obtain an L°° estimate for at most
p derivatives of the solution, having a control on their H® norm for s > p. This permits us to
lose some derivatives in the normal form reduction, so the fact that the system is quasi-linear is
no longer important.

We define two new unknowns vV¥", vV by adding some quadratic perturbations to u_,v_, in
such a way that they are solution to

(8) (Dt + [Da|)u™ = qu + o + 15", (D + Do )0 = ril,

where rNF ¢, r,i\;F are cubic terms, whereas ¢, is the mentioned bilinear expression in vy, v_
that cannot be eliminated by normal forms but whose structure will successively provide us with

remainder terms. Then, if we define

(9) u(t,z) = tu™F (t, tx), O(t,x) = to™VF (¢, tx),



and introduce h := t~! the semi-classical parameter, we obtain that @, v verify

(D¢ — Opy(z - € — €)= h™" [qu(t, ta) + cu(t, ta) + riF (¢, ta)]

(10) ~ _
(D¢ = Opj (- € = (€))7 = h™ i (¢, t)

where Op}’ is the Weyl quantization introduced, along with the semi-classical pseudo-differential
calculus, in subsection We also consider the following operators

M, = %(aﬁj\il —€j>= L= ii(xj_(%)

whose symbols are given respectively (up to the multiplication by || for the former case) by the
derivative with respect to & of symbols z - £ — [£] and z - € — (£) in (10). Using the equation
satisfied by u™!" (resp. v™VI'), we can express M;u (resp. £;0) in terms of Z;ul*" (resp. Z;uNT)

and of gy, cw, NE (resp. r,i\;F ). As done in [29], we first introduce the lagrangian

S
Agg {(J;, )i x © O}
which is the graph of £ = —d¢(z), with ¢(x) = /1 — |z|?, and decompose ¥ into the sum of
a contribution micro-localised on a neighbourhood of size v/h of Ajg, and another one micro-
localised out of that neighbourhood (in the spirit of [14]). The second contribution can be
basically estimated in L™ by h3~0 times the L2 norm of some iterates of operator £ acting on
¥ (which are controlled by the L? hypothesis in theorem . The main contribution to v is then
represented by vy, , which appears to be solution to

[Dt — Opy(z - € — (€))]va,, = controlled terms.

Developing the symbol in the above left hand side on A, we finally obtain the wished ODE,
which combined with the a-priori estimate of the “controlled terms” allows us to deduce from @
the second estimate in (with p = 0, the general case being treated in the same way up to few
more technicalities).

The same strategy is employed to obtain some uniform estimates on u. We introduce the la-
grangian

Aw:{(x,ﬁ)::n—é‘zo}

which, differently from Ag, is not a graph but projects on the basis as an hypersurface. For
this reason, the classical problem associated to the first equation in is rather a transport
equation than an ordinary differential equation. It is obtained in a similar way by decomposing
u into two contributions: one denoted by ua, and micro-localised in a neighbourhood of size
h3=o (for some small o > 0) of A,,; another one micro-localised away from this neighbourhood.
As for the Klein-Gordon component, this latter contribution can be easily controlled thanks to
the L? estimates that the last two inequalities in @ infer on the iterates of M; acting on u. By
micro-localisation we derive that uy,, satisfies

[D¢ — Opy)(z - € — |€])]up,, = controlled terms,

and by developing symbol z - & — |£| on A,, we obtain the wished transport equation. Integrating
this equation by the method of characteristics, we finally recover the first estimate in @ and
conclude the proof of theorem [2]
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Chapter 1

Main Theorem and Preliminary Results

1.1 Statement of the main theorem

NoOTATIONS: We warn the reader that, throughout the paper, we will often denote 9; (resp. 0,
j =1,2) by 0y (resp. 0;, j = 1,2), while symbol 0 without any subscript will stand for one of
the three derivatives 0,, a = 0,1,2. V,f is the classical spatial gradient of f, D := —i0 and R;
denotes the Riesz operator D;|D,|7!, for j = 1,2. We will also employ notation [ ,w| with
the meaning |[Oyw|| + [|0;w]| and [[Rw| = >_; [|R;jw]|.

We consider the following quadratic, quasi-linear, coupled wave-Klein-Gordon system

(1.1.1) (t,z) €]1, +00[xR?

{ (02 — Ag)u(t,z) = Qo(v,010),
(0} — Ay + Dv(t,z) = Qo(v, du),

with initial conditions

(1.1.2)

{ (u,v)(L,2) = e(ug(), vo(x)),
(Opu, Opv) (1, z) = e(ui(x),v1(x)),

where € > 0 is a small parameter, and Qg is the null form:

(1.1.3) Qo(v,w) = (Ow)(Ow) — (Vv) - (Vyw) .

Our aim is to prove that there is a unique solution to Cauchy problem (1.1.1))-(1.1.2)) provided
that e is sufficiently small and ug, vg, u1, v; decay rapidly enough at infinity. The theorem we are
going to demonstrate is the following:

Theorem 1.1.1 (Main Theorem). There exist an integer n sufficiently large and g9 €0, 1]
sufficiently small such that, for any € €]0,ep[, any real valued ug, vy, uy, v satisfying:

IVauoll e + l[voll s + [lual[ e + il e <1,
2
Y U2 Vauoll ol + 120l grarer + 2%l giar + 1201l g1ar) < 1,

lal=1

system (LLI)-(L.L2) admits a unique global solution (u,v) with Oy ,u € C° ([1,00[; H"(RQ)),
veC? ([1,00[; H”+1(R2)) NnCt ([1,00[; H"(RQ)).

(1.1.4)

11



The proof of the main theorem is based on the introduction of four new functions w4, u_, vy, v_,
defined in terms of u, v as follows:

{ up = (Dy+ [Dy)u, { vy = (D¢ + (Di))v,

(1.1.5) u_ := (Dy — |Dy|)u,

and on the propagation of some a-priori estimates made on them in some interval [1,7T], for a
fixed T' > 1. In order to state this result we consider the admissible Klainerman vector fields for
the wave-Klein-Gordon system:

(1.1.6) Q= x100 — x201 , Zj = l‘j@t + tﬁj , =12
and denote by I' a generic vector field in Z = {Q, Z;,0;,7 = 1,2}. If Z is assumed ordered, i.e.

2 =1{Iy,...,T5}

(1.1.7) _ , ,
with I''=Q, I['j=2;_1forj=23, I;=20_3forj=4,5,

then for a multi-index I = (i1,...,4,), i; € {1,...,5} for j =1,...,n, we define the length of I
as |I| :=n, and I'! :=T;, ---T;, the product of vector fields L, ez, j=1,...,n

Vector fields I' have two relevant properties: they act like derivations on non-linear terms; they
exactly commute with the linear part of both wave and Klein-Gordon equation. This is the
reason why we exclude of our consideration the scaling vector field S = t0; + > i xj0;, which is
always considered in the so-called Klainerman vector fields’ method for the wave equation, as it
does not commute with the Klein-Gordon operator.

We also introduce the energy of (uy,u_,v4,v_) at time ¢t > 1 as

(1.1.8) Eo(t;ug,vy) := / (Jus (&, 2)? + Ju—(t, 2)|* + |os (8, 2) | + Ju(t, z)|?) dz,

together with the generalized energies

(1.1.9a) E,(t;us,vy) i= Z Eo(t; DSuy, D3vy), VneN,n >3,
la|<n
and
(1.1.9b) Bj(tus,ve) = Eo(t;Dgul;Dgvl), 0<k<2,
laf+[1]<3
7]<3—k

where, for any multi-index I,
(1.1.10) ul = (Dy £ |Do|)Tu, ol := (Dy+ (D)) 0.

Energy E,(t;ug,vy), for n > 3, is introduced with the aim of controlling the Sobolev norm
H™ of uy,vs for large values of n. The reason of dealing with E§(t; u4,v4) is, instead, to
control the L? norm of IMuy,IMvy, for any general I' € Z and |I| < 3. In particular, su-
perscript k indicates that we are considering only products I'! containing at most 3 — k vec-
tor fields in {Q, Z,,,m = 1,2}. For instance, the L? norms of Q?’ui,QZlei are bounded by
ES(t;us,v1) but not by Fi(t;uy,vy), while the L? norms of ZZu., 92QZ9v are controlled by
both Fi(t;us,vs), BS(t;us,vy), ete. The interest of distinguishing between k = 0, 1,2, is to
take into account the different growth in time of the L? norm of such terms depending on the
number of vector fields €2, Z,,, acting on uy, vy, as emerges from a-priori estimate ((1.1.11dj).

12



Theorem 1.1.2 (Bootstrap Argument). Let K1, Ko > 1 and HP"> be the space defined in
(#i1). There exist two integers n > p sufficiently large, some 0 < § K 09 K §1 K g < 1 small,
two constants A, B > 1 sufficiently large and o €]0, (2A+ B) ™[ such that, for any 0 < € < &g, if
(u,v) is solution to (1.1.1)-(1.1.2) on some interval [1,T), for a fivzed T > 1, and us, vy defined

in (L.1.5)) satisfy:

l.l.lla) Hui( )HHp+1 0 + ”Ruj:( HHp+1 o < Aet™ 2
1.1.11b) v (, )| rovee < Ast™!,

(
(
(1.1.11c) En(t;ui,vi)ﬁ < Bsti,

S
(1.1.11d) E¥(tiuy,ve)? < Bet?, Y0<k<2,

for every t € [1,T], then in the same interval they verify also

A 1

(1.1.12a) ot o + IR 1) o < et

A -1
(1.1.12b) o (t, )| oo < —ct

K,

B
(1.1.12¢) Ep(tius,vi)? < —ct?,

Ko

k 1 B s
(1.1.12d) Es(t;uy,vy)2 < fet 2, VO<k<2
2

The a-priori estimates on the uniform norm of u+, Ru4, v+ made in the above theorem translate
in terms of u4, v+ the sharp decay in time we expect for the solution (u,v) to starting problem

- Indeed, from definitions it appears that

DtUZL;U‘, Dxu:R<u+;u_>,

so (|1.1.11a)), (1.1.11b)) imply

10 wtalt, ) srooe < Act™2, |00 (t, )| oo + [0t )| rosrce < Ast™,
Furthermore, the following quantity
10cu(t, ) mn + [IVault, Y am + 0wt )l + Voot )l + o, )l an

is equivalent to the square root of E,(¢;us,vy), which implies that the propagation of a-priori
energy estimate is equivalent to the propagation of a certain estimate on the above
Sobolev norms. For this reason, the propagation of the a-priori estimate on E,(¢;u+,v+) and a
local existence argument will imply theorem |1.1.1

Before ending this section and going into the core of the subject, we briefly remind the general
definition of null condition for a multilinear form on R'*™ and a result by Hérmander (see |11]).

Definition 1.1.3. A k-linear form G on R'*™ is said to satisfy the null condition if and only if,
for all £ € R™, & = (&, ..., &) such that &% — Z?Zl {? =0,

(1.1.13) G(E,...,6)=0.
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ExAMPLE: The trilinear form &3¢, — Z §J2-§a associated to Qo (v, d,w) satisfies the null condition
j=1,2
(1.1.13)), for any a = 0,1,2. This is the most common example of null form.

Lemma 1.1.4 (Hérmander 10|, Lemma 6.6.5.). Let G be a k-linear form on R™*™ k = ki +
-+ +ky, with k; positive integers, and T’ € Z. For all uj € CFTL(R™) all aj € N |a;| = Ky,
and u'™) .= 9%y,

g =y

G((Tuy)®) )y

T

+ G(ugkl)7 ttt (Fur)(kT)) + Gl (u:(lkl)v A 7u(kT)) bl

T

TG, ... ulk)
(1.1.14) (w1 )

where G1 satisfies the null condition.

Remark 1.1.5. Previous lemma simplifies when the multi-linear form G satisfying the null
condition is Qo (v, d,w), for any a = 0, 1,2. Indeed, the structure of the null form is not modified
by the action of vector field I' in the sense that

(1.1.15) I'Qo(v, dgw) = Qo(I'v, dgw) + Qo (v, 0 T'w) + G1 (v, dw) ,

where G1(v,0w) =0 if I' = 9,,, m = 1,2, and

—Qo (v, Opw), ifa=0,T=2,,me{l1,2},
0, ifa=0,T"=QQ,
(1.1.16) G1(v,0w) = < —Qo(v, dyw), ifa#0,I' =27,
0, ifa#0,T = Znme{1,2)\ {al},
(=1)?Qo(v, Opw), with m € {1,2}\ {a}, if a #0,T = Q.

If '/ contains at least k& < |I| space derivatives then

(1.117)  T'Qo(wv,0w)= > QuT"w,aT”w)+ Y e QoMM a7 w),
|11 |+ 12|=]1] k<|Iy |+|I2|<|I]

with ¢r, 7, € {—1,0,1}. In the above equality we should think of multi-index I; (resp. I3) as
obtained by extraction of a |I;|-tuple (resp. |I2|-tuple) from I = (i1,...i,), in such a way that
each i; appearing in I and corresponding to a spatial derivative (e.g. [';; = Dy, form € {1,2}),
appears either in I or in Is, but not in both. For further references, we define

(1.1.18) I(I) := {(I1, I2)|I1, I> multi-indices obtained as described above} .

1.2 Preliminary Results

The aim of this section is to introduce most of the technical tools that will be used throughout
the paper. In particular, subsections and are devoted to recall some definitions and
results about paradifferential and pseudo-differential calculus respectively; subsection and
[I.2.4) are dedicated to the introduction of some special operators that we will frequently use when
dealing with the wave and the Klein-Gordon component. Subsections barely contain
proofs (we refer for that to [3], [27], [8], [32]), whereas subsections are much longer
and richer in proofs and technicalities.
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1.2.1 Paradifferential calculus

In the current subsection we recall some definitions and properties that will be useful in chapter
We first recall the definition of some spaces (Sobolev, Lipschitz and Holder spaces) in dimension
d > 1 and afterwards some results concerning symbolic calculus and the action of paradifferential
operators on Sobolev spaces (see for instance [27]). We warn the reader that we will use both
notations w(§) and F¢w for the Fourier transform of a function w = w(x).

Definition 1.2.1 (Spaces). (i) Let s € R. H*(R?) denotes the space of tempered distribu-

tions w € 8'(R?) such that @ € L? (R%) and

loc

1
ol = Tz [ 1+ EPY IR RAE <+

(ii) For p € N, WP>°(R?) denotes the space of distributions w € D’'(RY) such that dfw €

L>®(RY), for any o € N with |a| < p, endowed with the norm

lwllwees = > 0wl Los;

le|<p

(iii) For p € N, we also introduce H”*°(R?) as the space of tempered distributions w € 8'(R?)

such that
|wl| oo := [|[(Dg)Pw]|pee < +o00.

Definition 1.2.2. An operator T is said of order < m € R if it is a bounded operator from
H*T(R?) to H*(RY) for all s € R.

Definition 1.2.3 (Smooth symbols). Let m € R.

(i) SF(R?) denotes the space of functions a(z,n) on R? x R? which are C> with respect to 7

and such that, for all @ € N9, there exists a constant C, > 0 and

05 a(-, )z < Ca(l+ )™, vneR?
Y7 (R?) denotes the subclass of symbols a € SF*(RY) satisfying
(1.2.1) Je <1 :Fpea(§,n) =0 for [§] > e(1+ |n|).
Sy" is equipped with seminorm M{*(a;n) given by

(1.2.2) Mg (a;n) = sup sup ||(1+ )70 a (-, n)|| w-
|B|<n neR?

For r € N, S™(R?) denotes more generally the space of symbols a € SF*(R?) such that, for
all « € N and all € RY, function = — Opa(x,m) belongs to W (R%) and there exists a
constant C,, > 0 such that

105a mliwre < Ca(L+[nl)™ 1, vy e RY.

Y™(RY) denotes the subclass of symbols a € S™(RY) satisfying the spectral condition
(1.2.1). ST is equipped with seminorm M,™(a;n), given by

(1.2.3) M™a;n) = sup sup ||(1+ [n))/?="08a(-, )| ;oo
|B|<n neR?
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These definitions extend to matrix valued symbols a € S7* (a € "), m € R, r e N. If a € S]"
(resp. a € 37), it is said of order m.

Definition 1.2.4. An admissible cut-off function (&, n) is a C* function on R? x R? such that

(i) there are 0 < &1 < ey <1 and

(1.2.4) { Y(E,n) =1, for |€] <ei(1+]n|)
"/}(‘577’/) = Oa for ‘§| > 52(1 + |77|)7

(ii) for all (o, ) € N x N there is a constant C, 5 > 0 such that
(125) 198 0(&m] < Cap(L+ ) 7717, w(g, ).

EXAMPLE: If x is a smooth cut-off function such that x(z) =1 for |z| < &1 and is supported in
the open ball B.,(0), with 0 < g1 < g2 < 1, function ¥ (&,n) = X((fT)) is an admissible cut-off
function in the sense of definition We will only consider this type of admissible cut-off
functions for the rest of the paper and refer (abusively) to x itself as an admissible cut-off.

Definition 1.2.5. Let x be an admissible cut-off function and a(x,n) € S, m € R,r € N. The
Bony quantization (or paradifferential quantization) Op®(a(z,n)) associated to symbol a and
acting on a test function w is defined as

Op" (awm)ula) = g [ o (wnpia)an,
with oX(x,n) := (271r)d /Rd ei@=v)Cy ((77%) a(y,n)dydc .

The operator defined above depends on the choice of the admissible cut-off function x. However,
if a € S™ for some m € R,r € N, a change of y modifies Op”(a) only by the addition of a
r-smoothing operator (i.e. an operator which is bounded from H*® to H5*" see |3]), so the choice
of x will be substantially irrelevant as long as we can neglect r-smoothing operators. For this
reason, we will not indicate explicitly the dependence of Op®? (resp. of o) on Y to keep notations
as light as possible. Let us also observe that, with such a definition, the Fourier transform of
Op®(a)w has the following simple expression

(126)  Fue (09 (ale )@)€ = s [ (S ) aule - mmatman,

(2m) (n)
where a,(§, 1) = Fy_e (a(y, 77)), and the product of two functions u,v can be developed as
(1.2.7) wv = Op® (u)v + Op® (v)u + R(u,v),

where remainder R(u,v) writes on the Fourier side as

128 Fwo© = g [ (10 (55) 3 (g ) )t - i

We remark that frequencies n and & — 7 in the above integral are either bounded or equivalent,
and R(u,v) = R(v,u). With the aim of having uniform notations, we introduce the operator
Opg associated to a symbol a(x,n) and acting on a function w as

Of(alam))ulz) == g [ 83wy,

with 8X(z, ) = (er)d / gila—y)- < <<> ( >>>a(yﬂ7)dydc.
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For future references, we recall the definition of the Littlewood-Paley decomposition of a function
w.

Definition 1.2.6 (Littlewood-Paley decomposition). Let y : R? — [0,1] be a smooth decaying
radial function, supported for |z| < 2 — % and identically equal to 1 for |z| < 1+ %. Let also

P(&) = x(€) — x(2¢) € C°(R?\ {0}), supported for § < [¢] < 2, and (&) = ©(275¢) for all
k € N*, with the convention that oo := x. Then Y, .y »(27%¢) = 1, and for any w € 8'(R?)

(1.2.10) w="> or(Dx)w
keN
is the Littlewood-Paley decomposition of w.
The following proposition is a classical result about the action of para-differential operators on
Sobolev spaces (see |3] for further details). Proposition shows, instead, that some results

of continuity over L? hold also for operators whose symbol a(x,7) is not a smooth function of 7,
and that map (u,v) — R(u,v) is continuous from H** x L? to L.

Proposition 1.2.7 (Action). Let m € R. For all s € R and a € SJ*, OpP(a) is a bounded
operator from H*+t™(RY) to H*(R?). In particular,

(1.2.11) [0p% @l < Mg (a: [ 5] + 1) e

Proposition 1.2.8. (i) Let a(x,n) = ai(x)b(n), with a; € L>®(R?) and b(n) bounded, sup-
ported in some ball centred in the origin and such that |0°b(n)| <4 |n|~1** for any o € N?
with |a| > 1. Then Op®(a(z,n)) : L?> — L? is bounded and for any w € L?(R?)

10p" (a(z, m)wl| 2 < llar] po w]] 2
The same result is true for OpB(a(z,n));

(ii) Map (u,v) € H%*® x L? = R(u,v) € L* is well defined and continuous.
Proof. As concerns (i) we have that

O0p® (ali, m))wlz) = / K(z - 2,7 — y)ar (y)w(z)dydz

with

K(e.w) = gr [ €7 Ybladndd

and y is an admissible cut-off function. After the hypothesis on b we have that for every o, f € N2,

‘a? [X<<n€>>b(’7)ﬂ S Lig13lgs(O)l;
%0, [X(Q)WH S Lggen gl ol 21,

for some bounded and compactly supported functions gz. Lemma (7) and corollary (1)
of appendix |A| imply that |K(x,y)| < ||~ z)~2(y)~3 for any (z,y), and statement (i) follows
by an inequality such as (A.§) with L = L.

In order to prove assertion (ii) we consider a cut-off function ¢ € C§°(R?) equal to 1 in some

closed ball B¢ (0), for a C' > 1, and decompose R(u,v) as follows, using ((1.2.8]):

R(u,v) = / Koz — 9,y — 2)u(y)o(z)dydz + / Ky (z — g,y — 2)[(Da) ) (y)0(2)dydz,
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with

Kao) = gz [ @00 (1o (S27) < x (e ) ) (= s = )~ e,

Since frequencies &, are both bounded on the support of (1 - X (fn) ( = 77))) ¥(n), one

can show through some integration by parts that |Ko(x,y)| < (2)3(y) =3 for any (z,y), to then
deduce that

S llullzeellvll 2-
L2(dz)

H/ Ko(z —y,y — 2)u(y)v(z)dyd=

Kernel Kj(x,y) can be split using a Littlewood-Paley decomposition as follows

Kato) =3 g [ (1o (S5) - x () ) (- oot tate - taan,

E>1

K1,k (z,y)

for a suitable ¢ € C5°(R?\{0}). On the support of (1 - X (%) - X (ﬁ)) (1—1)(n)p(27Fn),
frequencies 7, £ — 1 are either bounded or equivalent and of size 2F (which implies in particular

that (¢ —n)~* < (€)73(n)~1). After a change of coordinates and some integration by parts one
can show that |K; x(z,y)| < 2F(x)=3(2ky) =3, for any k > 1, and therefore that

H/ eI (5 — gy — 2) (D) ul(y)u(z)dydz

L2(dx)
S| [t =) P2 - ) IO ) )y
k>1 L?(dx)
S2 [0 S0 I =t~y = Dy < Jullgoe ol
k>1
which concludes the proof of statement (ii). O

The last results of this subsection are stated without proofs. All the details can be found in
chapter 6 of |27] (see theorems 6.1.1, 6.1.4, 6.2.1, 6.2.4).

Proposition 1.2.9 (Composition). Consider a € S™, be S, r € N*, m,m’ € R.

i) Symbol afb := iao‘ x,&)Dob(x, &) is well defined in gt =i,
al%e?

J<r r 7 ’
la|<r

(i1) Op®(a)Op®(b) — Op®B(ab) is an operator of order < m +m' —r, and for all s € R, there
exists a constant C' > 0 such that, for all a € S™(RY), b € S™ (RY), and w € H™+m™'—7(RY),

0P (a)Op? (b)w — Op® (atb)w|| grs
< C(M asm) MG (b mo) + M (s )M (5120)) 0] g
where ng = [%] +1, n =ng +r. Moreover, Op®(a)Op®(b) — Op®(afd) = 7,(x, D,) with

2(2,€) = (07ato) (2, €) — oap(2,€)
£ Y g [ ([ o 101 - 07 dt) (6. €) Do, )
o e o ¢ v
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with @ = 1 in a neighbourhood of the support of Fynop(n,§).

These results extend to matriz valued symbols and operators.

Remark 1.2.10. If symbol a(z,£) only depends on ¢ then o,foy, — 04 = 0 and o, reduces to
the only integral term. Moreover,

(1.2.12) Forsnor(n,§) = </ Oga(E +tn)(1 — )~ 1dt> <<Z>)na5y(n,£),

|Oé\ T
where X(%) is the admissible cut-off function defining oy,.
Corollary 1.2.11. For d = 2 and all s € R, there exists a constant C' > 0 such that, for
aeS™beS™, reN*, and we Hstmtm' =1

105" (@)0p” (b — Oplabyur

< (M} (@53) M5 (52) + M3 (@ M 552) 0] s
Proposition 1.2.12 (Adjoint). Consider a € S™(R?), denote by Op®(a)* the adjoint operator
of OpB(a) and by a*(x,&) = a(x, &) the complex conjugate of a(x,§).

1
(i) Symbol b(x, &) = Z aDg@?a (z,€) is well defined in > ,_ S™ 7

J<r r i
la|<r

(ii) Operator Op®(a)* — OpB(b) is of order < m —r. Precisely, for all s € R there is a constant
C > 0 such that, for all a € Sm(Rd) and w € HsT™~ 7 (RY),

|0p” (@)*w — OpP By, < COL (@) o] .

with ng = [%] +1, n=mng+r.

These results extend to matriz valued symbols a, with a*(x,&) denoting the adjoint of matriz
a(z, §).

Corollary 1.2.13. Ford =2 and all s € R, there exists a constant C' > 0 such that, for a € S,
reN* and w € H¥t™ 1,

|0p® (a)*w — Op(a*)w| s < CMJ(a;3)|w]] grotm—1.

1.2.2 Semi-classical pseudodifferential calculus

In this subsection we recall some definitions and results about semi-classical symbolic calculus
in general space dimension d > 1 which will be used in section We refer the reader to 8]
and [32| for more details.

Definition 1.2.14. An order function on R? x R¢ is a smooth map from R? x R? to Ry :
(x,&) — M(x,€) such that there exist Ng € N, C' > 0 and for any (z,&), (y,n) € R? x R?

(1.2.13) M(y,n) < Oz — )& =)™ M(z,€),

where (z) = /1 + |z|2.

Definition 1.2.15. Let M be an order function on R? x R, 6,0 > 0. One denotes by S5, (M)
the space of smooth functions

(& h) = a(z, & h)
RY x R%x]0,1] — C
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satisfying for any oy, as € N4k, N € N

(1.2.14) 091022 (hon)*ala, &, h)| S M(w, &) h=0UerltlezD (1 4 gh7|g)) =N

A key role in this paper will be played by symbols a verifying (|1.2.14) with M (z,§) = (Lfﬁ@>_N,
for N € N and a certain smooth function f(£). This function M is no longer an order function
because of the term h_%, but nevertheless we keep writing a € S@A(Ljﬁ(é))_N ).

Definition 1.2.16. In the semi-classical setting we say that a(z,&, h) is a symbol of order r if
a € S5,((§)"), for some 6,0 > 0.

Let us observe that when o > 0 the symbol decays rapidly in h?|¢|, which implies the following
inclusion for » > 0:

S5.0((6)") C h™7"S55(1).

This means that, up to a small loss in h, this type of symbols can be always considered as symbols
of order zero. In the rest of the paper we will not indicate explicitly the dependence of symbols
on h, referring to a(x,&, h) simply as a(z,§).

Definition 1.2.17. Let a € S5,(M) for some order function M, some §,0 > 0.

(i) We can define the Weyl quantization of a to be the operator Op}(a) = a"(z, hD) acting
on u € §(R?) by the following formula:

O (al O)ule) = s [ [ eHea(T12 ) uly) duae:

(ii) We define also the standard quantization of a:

Onn(a(r @) = s [ [ eHo atayuty) due.

It is clear from the definition that the two quantizations coincide when the symbol does not
depend on x. We also introduce a semi-classical version of Sobolev spaces on which the above
operators act naturally.

Definition 1.2.18. (i) Let p € N. We define the semi-classical Sobolev space H*(R?) as
the space of tempered distributions w such that (hD)Pw := Opp(({)P)w € L, endowed
with norm

[wl[lrpe = [[{RD) w]| poo;

(ii) Let s € R. We define the semi-classical Sobolev space Hf(RY) as the space of tempered
distributions w such that (hD)*w := Opy,({¢)*)w € L?, endowed with norm

[wl[ms = [(hD) w] 2.

For future references, we write down the semi-classical Sobolev injection in space dimension 2:
-1

(1.2.15) ||UhHHﬁ’°°(R2) <sh thHHﬁ“'*"’(]R?) , Vo > 0.

The following two propositions are stated without proof. They concern the adjoint and the

composition of pseudo-differential operators. All related details are provided in chapter 7 of [8]
or in chapter 4 of [32].
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Proposition 1.2.19 (Self-Adjointness). If a(x,§) is a real symbol its Weyl quantization is self-
adjoint, i.e.
(Opj; (a))” = Opj/(a).

Proposition 1.2.20 (Composition for Weyl quantization). Let a,b € 8(R?). Then
Opj, (a) © Opy (b) = Opy, (ath) ,

where
1 2 (2
(1216) asb (r.6) 1= o /R d /R d /R d /R RO a4 2,64 b+, € + ) dydndzdC,

and
o(y,m z,()=n-z2—y-(.

It is often useful to derive an asymptotic expansion for afib, as it allows easier computations than
integral formula . This expansion is usually obtained by applying the stationary phase
argument when a,b € S5, (M), § € [0, 3] (as shown in [32]). Here we provide an expansion at
any order even when one of two symbols belongs to S 1o, (M) (still having the other in Sj o, (M)

for § < %, and o1, o9 either equal or, if not, one of them equal to zero), whose proof is based on
the Taylor development of symbols a, b, and can be found in the appendix of |29 (for d = 1).

Proposition 1.2.21. Let My, My be two order functions and a € S5, o, (M1), b € S5, 0,(Ma),
91,02 € [0, %], 01+ <1, 01,09 > 0 such that

(1.2.17) 01 =09>0 or [al#ogand Ui:(),aj>0,i7$j€{1,2}].

Then afb € S5 (M1 My), where § = max{d1,d2}, 0 = max{o1,02}. Moreover,

— (_1)|a1| hyled a1 92 a2 01
(1.2.18) ab = (Z T (2—2) 07102 a(w,§) 03720 b(w,§) + i,
a0, - N1

where vy € hN(l_(51+52))Sg7g(M1M2) and

N —1)leal 2i

a=(a1,a2)
la|=N

1
X ( / 02108 ale + tz,€ +1C)(1 - t)N’ldt) 022021b(x + y, € + 1) dydndzdC,
0
or

R\Y N —1)leal 2i
(1.2.20) ry(x,&) = () (i) Z (1)/R4 67(”'2_”082‘18?%(53—|—z,§+§)

24 ol
a=(a1,a2)
lal=N

1
X ( /0 9208 b(x + ty, & + tn) (1 — t)N—ldt) dydndzdC .

More generally, if hWN010% € S0 (M), hNo29op ¢ Ssy.00 (M), for |a| = N and some order
functions MY, MY, then vy € BNO=01402) G5 (VN M),
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Remark 1.2.22. From the previous proposition it follows that, if symbols a € Ss, o, (M1),
b € S5,,6,(Ms) are such that suppa N suppb = ), then atb = O(h*), meaning that, for every
N €N, aflb = ry with ry € ANO=(1+02) G (M Msy).

Remark 1.2.23. We draw the reader’s attention to the fact that symbol { is used simultaneously
in Bony calculus (see proposition and in Weyl semi-classical calculus (as in ((1.2.18))) with
two different meaning. However, we avoid to introduce different notations as it will be clear by
the context if we are dealing with the former or the latter one.

The result of proposition and remark [1.2.22] are still true even when one of the two order
functions, or both, has the form <Ljﬁ(£)>*1, for a smooth function f(£), Vf(¢) bounded, as

stated below (see the appendix of [29]).

Lemma 1.2.24. Let f(£) : RY — R be a smooth function, with |V f(£)| bounded. Consider a €

5(51701(<Lj7§§)>_m), m €N, and b € Ss, o, (M), for M order function or M(x,§) = (Ljﬁ(g)>_”,

n € N, some 01 € [0, %], 09 € [O,%[, o1,09 > 0 as in (1.2.17). Then afb € S@A(Ljﬁ(g))*mM),
where 6 = max{d1,d2}, 0 = max{oy,02}, and the asymptotic expansion (1.2.18|) holds, with
ry € hN<1—<51+52>>55,0(<L¢f5(9>—mM) given by (T.2.19) (or equivalently (T.2.20) ).

More generally, if hWN910% € 561,01(<Lj7§£)>_m,) and hN°29% € S5, 5, (M), |a| = N, MN

order function or MN(z,£) = <Ljﬁ(§)>_"/, for some m/,n’ € N, then remainder rn belongs to

hN(17(51+52))SM(<w%5) >fm’MN)'

1.2.3 Semi-classical Operators for the Wave Solution: Some Estimates

From now on we place ourselves in space dimension d = 2. This technical subsection focuses on
the introduction and the analysis of some particular operators that we will use when dealing with
the wave component in the semi-classical framework (subsection . More precisely, lemma
will be often recalled to prove that some operator belongs to £(L?; L) and compute its
norm; propositions concern the continuity of some important operators like T+
defined in (3.2.44)), while propositions are devoted to prove the continuity of some
other operators often arising when considering the quantization of symbolic integral remainders.
Finally, lemmas [1.2.33] and [1.2.35] deal with the development of some special symbolic products.
While [T.2:33] will be used several times throughout the paper, lemma [1.2.35] is stated explicitly
on purpose to prove lemma [3.2.13

Lemma 1.2.25. There exists a constant C > 0 such that, for any function A(z, &) with 8;“8?14 €
L?*(R? x R?) for |al,|B| <3, and any function w € L*(R?),

50 [A(5 0] |

dy.
L2(d§) Y

(1.2.21) |Opy (A(z,€))w(x)| < Cllwl| 2 /R2<w -y ) ‘

laf,|8]<3

Moreover, if A(x,§) is compactly supported in x there exists a smooth function, supported in a

neighbourhood of suppA, such that
al4(* 1Y
o5 [A(5"ne) |

Proof. Let us prove the statement for A € §(R? x R?) and w € 8(R?). The density of §(R? x R?)
into {A € L?(R? x R2)|8ga§A € L%(R? x R?), |al,|B] < 3} and of §(R?) into L?(R?) will then

dy.
12(ae)"”

¢(5) 2|

la|<3

(1222) |09} (AGw. &) ()| < Clulzs |
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justify the definition of Op}’ (A(z, £))w for A and w as in the statement, together with inequalities
(T221), (T.2.22).

Using integration by parts, Cauchy-Schwarz inequality, and Young’s inequality for convolutions,
we can write the following:

OB} (A )u(a)] = g | [ A2 he)uly) dydf'

1 - . - x+y
i(x—y)-§+iyn
(W Loao [ [ e A(2FY 1) dydﬁdn‘

- L—i(z —y)- 3g>3<1+i(€—77)-3y>3 i(o—y)Etiyn
(om ‘/ /Rz/Rz< 1+ |z —yf? Lrle—q2 ) °

xA(”;y,hg) dydé dn‘
s [l [ [ e=n e 2

lol,|B]<3

ozl :A<x ;L Y. hg)} ’dydf dn

S Nl zzan 0l [ o= 3 oged[a(*52ne)]]
® ol 81<3 ‘
Sholes [ @0 3 [ogo[a(T52 k)] 20

laf,1B]<3

If symbol A(x,&) is compactly supported in = we can consider a smooth function 8’ € C§°(R),
identically equal to 1 on the support of A(z, ), and write

/ n)d / / <1+Z6 n) - Oy )3 i(w—y)-€+iyn
77 D) €
R2 R2 JR?2 L+ €=

(2m)?
xA(x;y,M) dyd§’
< [ vaelan [ [ 0’(:"7“’)]@—@—3 S (g [a(E1Y. he)] e
lal<3
e P30 T a0

O (A(z, €))w(x)| =

L2(de) dy

O

A very important role in this subsection and in subsection [3:2.2| will be played by functions of the
form 7(;5'2 $)(27k¢), where v € C®(R?) is such that [0%y(2)| < (2)711, ¢ € C°(R2 — {0}),
o > 0 is a small fixed constant and k is an integer belonging to set K, with

(1.2.23) K:={keZ : h<2¥<h™7}.

In various results, such as proposition [1.2.30] we will need a more decaying smooth function ~;
verifying that [0%y(2)| < (2) =), We introduce here some notations we will keep throughout
the whole paper:

Notation 1. For any n € N, =, denotes a smooth function in R? such that [0%y,(z)| <
(z)=(vHlal) for any o € N2, We use the simplest notation ~ for o;

Notation 2. For any integer m € Z, by, (€) will denote any function satisfying [0°b,(€)| <p
\§|m_|5|, for any € in its domain, any 3 € N2.
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The following lemma is a useful reference when we need to deal with some derivatives of ’y( ﬂfl;g ) .

Lemma 1.2.26. Let 0 € R and n € N. For any multi-indices o, 3 € N? we have that

ansl. (TlEl—¢ u ~(lal+k) (2 —0) z[§| — ¢
(1.2.24) 050 [%( T )} =>"h : ’7n+|a|+k(W)b|a|+kf|ﬁ|(£)‘
k=0

Furthermore, if = 0(z) € CG°(R?), there exists a set {Ok(x)}1<p<ip) of smooth compactly
supported functions such that

J— | J—
(1.2.25) 9(””)8;‘9?[%@'15/’2_5)} Z (l+k) (o +|a|+k<wh‘§/|2_f)9k($)b|a|+k—,B|(§).

Proof. Let 6;; be the Kronecker delta and Y ' be a concise notation to indicate a linear combi-
nation. For i =1, 2,

(1.2.26)
2
8&' [’Yn(ﬂf)gif)} =n G Z (JZ‘SQ pn )(%fszl _5z‘j)
7j=1
: zlé| = & (sl — oy (Tl
21 (h1/2 o )( hi/2—o )&\5! +Z1h 277(9j¥n) <h1/2 - )[fzﬁﬂf’ 8],
j= j=

which can be summarized saying that

e [ (2S5 = 32 (B2 o a0) b (S o),

for some new functions 7y, ¥ny1, b0, b_1. Iterating this argument one finds that, for all 5 € N2,
o1 (alel - Go (el =€
O [ ( B1/2—o )] Z h Mt (W)bkflﬁl(f)a

and obtains (1.2.24) using that, for any m € N, o € N?,

fe% JJ’§| —la|(—o) rga 1"’5| —¢ ||
(1.2.27) % [ <h1/2 o ﬂ i %)( hi/2—o )‘ﬂ '
Equality (|1.2.25)) is obtained replacing (|1.2.26)) with

(@) [ (S5ls )| = G- ij(%) (225 0wyaelel " — oo

_ Z R (3-9) Yn+1 (f';f/’;f)gl(x)bo({),

where 6 () is a new compactly supported function. By iteration one finds that, for any 8 € N2,
there is a set of || compactly supported functions 6y(z), 1 < k < |j|, such that

00992 P (26)] = 3= h 40 (L= g 0
hl/2-c pt ntk\ 12— )UR\EIPR=IBINS )

which combined with (|1.2.27)) gives (1.2.25)). [
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In some of the following results we denote by ©y, the operator of change of coordinates
Onw(z) = w(Vhz),

for any h €]0, 1], and use that for any symbol a(z,§),

(1.2.28) Op}, (a(x,€)) = ©,0p}, (a(x,€)) 05,

with a(z, &) = a(%, \/Ef)

Proposition 1.2.27 (Continuity on L?). Let o > 0 be sufficiently small, K be the set defined in
(1.2:23), k € K and p € Z. Let also ¢ € C°(R? \ {0}) and a(x) be a smooth function, bounded

together with all its derivatives. Then Opj’ (fy(ﬁ%ﬁi)qp@*kf)a(x)bp(f)) : L? — L? is bounded

and

(1.2.20) [ovk (+ (2= Yueraemy @), <2

(2~

Proof. Let A(x,§) = ’y(}fl‘§|2:§)w(2*k§)a(x)bp(f). For indices k € K such that hY/2=7 < 2F <
h~? the statement follows from the fact that A(x,§) € 2kp5'%’0(1) and by theorem 7.11 of [8].
For k € K such that h < 28 < hY/2-7 A(z,¢) := A(%, Vhé) € 2’“7’5%70(1) and the result follows

by theorem 7.11 of [§] and equality (1.2.28)). O

Proposition 1.2.28. Let 0, k,p be as in the previous proposition. Let also q € 7, {/; € CSO(R2 \
{0}), d/(x) be a smooth function, bounded together with all its derivatives, and f € C(R). Define

(1.2.30)
g Kl N €T =y MES TN

X2 +m)a (@ + y)by(€ +n)| dydzdnd

and

1

2i L
(1231) sy = s [ 00O [Tk )+ (e + )10t

l‘|§’ — 5 —k
x (fy( hl/2—c )¢(2 f)a($)bp(f)>|(x+y,g+n) dydzdnd(.
Then Opj (IE (2,€)) and Op} (JF (,€)) are bounded operators on L? and

ovk a0, + [OPE U €0, < 2079

The same results holds also if ¢ =0 and J(Q_kf)bq(f) =1.

Proof. We show the result for Op},’ (Iﬁ 4)» leaving the reader to check that a similar argument can
be used for Op‘ﬁ’(JZ’f’q).
We distinguish between two ranges of frequencies. For indices k € K such that h'/2-7 < 2k <

h™° we observe that I¥ (z,£) € 2k(e+a) S, ((1). Indeed, ( zlel—¢ Y277 a(z)by(€) € 2’“”5%70(1)

1
7 hl/2—0c
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by lemmal|l.2.26| while J(Q_kf)a’(x)bq(f) € 2’“‘75%7070(1). Hence performing a change of variables

y — Vhy, z— Vhz, n— Vhn, ¢ — Vh(, writing
(1.2.32)

. 3 . 3 . 3 . 3
2i(n2—y-C) _ <1 + 21y - 34) (1 — 2iz - 3n) (1 —2in - az) (1 + 20 - 8@/) e2i(n2=y-()
1+ 4y|? 1+ 422 1+ 4n)? 1+4[¢]? ’

and integrating by parts in all variables, we get that

15,20 S 200 [1)75(2) 30 340) " dydadd £ 24079,

without any loss in 2~° due to the fact that we are considering symbols A(z,&) € S5, (1) with
§ €{0,1/2—0,1/2}, and the derivatives of A(z+v/hy, &+vhn) (resp. of A(x+tvhz, E+tvVhC))
with respect to y and n (resp. with respect to z and ¢). In a similar way one can also prove that

\Bg‘aglefq(x &) Saph” 31l +18D2k(P+9) | for any «, 8 € N2. Theorem 7.11 of [8] implies then the

statement in thls case.

For indices k € K such that h < 2F < h'/277 we observe that

A (o5 ey wia vaga(
S Ve

5 ) Io(VRE) € 2751, (1),

by(Vhe) € 2851 (1)

ok

Then Ifﬁq(a:@) =1, ( ff) € 2klrra) g, 0(1) and theorem 7.11 of [8] along with equality
(1.2.28) imply that Oph( p}q) (L2 — L2 s bounded, uniformly in h.

The last part of the statement can be proved following an analogous scheme, after having previ-
ously made an integration in dzdn (or in dyd( if dealing with J]’io). O

Proposition 1.2.29 (Continuity on LP). Let 1 < p < +o0, v € C§°(R?) be radial, ¢ € C§°(R?\
{0}), a(z) be a smooth function, bounded together with all its derivatives. Let also o > 0 be small,

k € K with K given by (1.2.23) and ¢ € Z. Then Op}’ (7(265'2:5)@D(Q_kﬁ)a(:n)bq(f)) P — LP
18 a bounded operator with

< oka,
L£(LP)

HOpw( (g};’f/‘a o )W"“i)a(w)bq(&))

Proof. In order to prove the result of the statement we need to show that kernel K*(x,v) asso-

ciated to Op}’ (’y(lfll%ii J1(27FE)a(z)by(€)), ie.

, T4y 1ef .
(1.2.33) K*(z,y) = (%Tlll)Q/e;(x—wffy((?}ﬂ)/ﬂf)w( “*¢)a ( ;y>bq(€)d§7

is such that
sup / K (e )|dy < 2%, sup / K* (2, y)lde < 249,
x Yy

From the symmetry between variables x, y, it will be enough to show that one of the two above
inequalities is satisfied. To do that we study K* separately in different spatial regions, distin-
guishing also between indices k € K such that 28 < h/2-7 and 2% > h'/2-7. We hence introduce
three smooth cut-off functions s, 8y, 6, supported respectively for x| < m < 1, |z] > M > 1,
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0 <m < |z|] < M < 400, for some constants m, m’, M, M’ and such that 65+ 0, + 6 = 1.
Denoting concisely by A¥(z,¢) the multiplier in (1.2.33)), we split it as follows

AF(2,8) = A(2,€) + Af(2,€) + Af(2,€),

with A¥(z, &) := Ak (x,€)04(x), A'g(x,f) = AF(z,£)0,(2) and A’f(m,f) = AF(z,6)0(x).

Case I: Let us consider k € K such that h < 2F < h/2=7  According to the above decomposition
we have that

Kk(x7y) = Kf(:c,y) + Kl?(xay) + Kf(l‘, y):

with clear meaning of kernels K f , K f, K f Let us first prove that

(1.2:34) o [ 1KE Gy + s [ 1KE Gy S 2.
For [z < 1 (vesp. [z] > 1), |£5E5] 2 h1/219g| (resp. | 25| 2 hmV/2Hog]|a] 2 hY/2Ho)g))
so by lemma [T.2:20]
o[, (28 B T A < 1Al
(1.2.35) o (5 )} <> on o) b (O S I
7=0
Therefore
(1.2.36) ’&BAI“ (z,2%¢) ’ Z k1Bl gk ¢| 181l 9=k (151— |51|)+kq]1|§‘ L <2k UL e
|B11<18]

so making a change of coordinates & — 2F¢ and some integration by parts we derive that
-3
K (,y)| S 222 (2 @ —y))

for every (z,y) € R? x R%. The same argument applies to K(x,y), hence taking the L' norm

we obtain ((1.2.34)).

As concerns kernel KF(z,y), we deduce from lemma [1.2.26, the fact that 6;(z) is supported for
|z| ~ 1, and that 2F < h1/279 the following inequality:

41
“95 1572 ‘ < 2HPl oI ; BTG b 1g44(256) ] S 2.

Performing a change of coordinates ¢ — 2%¢ and making some integration by parts one finds
that

Feb )] £ 29202 (20 @) Ve,
and consequently that
sup [ |4,y < 2.
Summing up with , this gives us that
Opjy (A" (z,€)) = Opjy (A5 (2, €)) + Op}; (A (2, €)) + Op} (Af (2, €))

is a bounded operator on LP, for every 1 < p < 400, with norm O(2%9).
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Case II: Let us now suppose that £ € K is such that h/2=7 < 9k < B9 From (1.2.35)) we
have that A¥(xz, &) = A’;(ﬁ, \/E&’) satisfies

181
‘@ﬁAk x g‘ S h7 [WVhePilg kBB Rag
|811<]B]
for every (r,€¢) € R? x R?, and hence
‘8§A’;($’2k‘h—1/2£)‘ DA PR R R C LA P L T
1811<18]

By making a change of coordinates £ — 2fh*1/ 2¢, some integrations by parts and using the
above inequality, one can show that kernel K¥(x,y) associated to Op(A¥(z,£)), i.e

I?f(flf,y):% 6%(1 y)EAk x+y7§ d£7
(27h) 2

is such that L

K@ y) 29920732 (b —y) V@),
which implies that sup, [ |KE (2, y)|dy < 2%, The same argument and result hold for K. Kz, y)
so Opy’(A¥) and OpY'(AF) verify the statement.

The last thing to prove is that Op¥'(A;(x,&)) € L(LP) for every 1 < p < +oo. Let K¥(z,y) be
its associated kernel, i.e.

=

(o= y>é7(%)w( (T )b (6)ae,

and assume, without loss of generality, that vy(x) = vy(|z|?). Set

(1.2.37) KF(z,y) = (27r1h)2 /e

x—i—y
2

with m’ <r < M’ on the support of 0; (%ﬂ’), and for fixed r, 0 let

r[cos 6, sin 0],

(1.2.38) ¢ = plcos 8, sin 0] + rQ[—sin b, cos b].
We immediately notice that [ (f; 52))] =r ~ 1 and that |£> = p? + r2Q2. Moreover,

‘(ery)yg\ 5( [r\/m— pr 4202,

If the support of 7 is of size 0 < a < 1 sufficiently small, from the above equality and the fact
that |¢] ~ 2% on the support of (27%¢), with h'/?277 < 28 < b= we deduce that

Q
rQ < ah'27 and |p| ~ [¢| ~ 2" and ﬁ < Va.
p

Consequently
2
ahl™? > [r\/pz +7r2Q2 — p} > p?r — 112

The above left inequality implies that p > 0, inferring so the right one. Moreover
2

292
].+T72—]. +'I"2Q2
P

2
ahl=27 > [r\/m_p] 17202 = p? [(T_ 1) +r

=p°|r = 12+ r*Q*[1 + a(r, 2, p)]
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with a(r, §2, p) bounded such that, for any {,m,n € N,
|0Log Dya(r, 2, p)] = O(p~ ™),
It 2 2 2002
r—1 740 _
Dy o= 7(/) h12a| + hi—20 [1+a(r,Q,p)] >¢(2 "V P2+ 1r2Q2)a(r, 0)by(p),

from all the observations made above along with the fact that h=1/2t7 < p=1 we deduce that,
for any m,n € N,

(1.2.39) |0 T,| = O(2"p™™) and  |9BTH| = O(2%p™").

With the change of coordinates considered in (1.2.38)), and setting w := z —y, eg := [cos 0, sin 0],
kernel K¥(z,y) transforms into

(2 1h)2 /e}ipw-eg—l—irﬂw-eé‘Fh ’I”dde
7T

and is restricted to |p| ~ 2%, |Q < h'/?277, so by making some integrations by parts, using
(1.2.39), and reminding that |r — 1| < 27kpl/2=9 « 1 on the support of ', we find that, for
any N € N,

k < p—3-09k 2 2k 1 -
K7 (2, y)| S h 2772 B e T Woce Loy«

Now, as w = (z — y), eg = é—iz', and |z + y| = 2r ~ 1 on the support of I'y, we have that
w-eq| ~ ||z[* = [y, [w-ez| ~ [(z +y)(z +y)*| ~ 2z y*| = 2[z1y2 — 22y1], and consequently
k

_3_4 ok N /9 -
bl S a0 (TP - ) (o)) e

Successively, taking the L'(dy) norm of Kf(z,y) and using the above estimate we find that:
o if |z]| < |y| or |z| > ||,

25 o o\ N(i+0)
<h“x‘ — |yl }> 1\|%|71|<<1 < pY et

as follows from the fact that h2=% < h1/2+9  We obtain that
sup [ |G, )ldy € 1320 E) <1

by taking N € N sufficiently large (e.g. N > 3) and o > 0 small.

o if |z| ~ |y|, we deduce that |z| > ¢ > 0 from the fact that H%ﬂ" —-1] < Vah'/?=727k on
the support of I'y,. Without loss of generality we can assume that x = Ae; (this always being
possible by making a rotation) and |A\| > ¢ > 0. If w:=x 4y,

|$|2—|y|2:w-(:v—y):w-(2x—w):w'(2)\61—w):2)\w1—w%—w§,

and then

|[2]? — |y[?| o (wp = A2 = N2 wa \ 2
N h * (ﬁ)
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while
T1Yo — T2Y1 = Aws.

This implies that

k —-N k —-N
b ] 100 (-2 =) (G}

Since [ |K¥(z,y)|dy = [ |K¥(z,y)|dw, from the above estimate (with a fixed N € N sufficiently
large) this integral is bounded by 2*¢ when restricted to |x| ~ |y|. Indeed, when the integral
is taken in a neighbourhood of wy = 0 or wy = 2\, (w; — )\2) — A2 can be considered as the
variable of integration, and by a change of coordinates along with the fact that 27% < p=1/2+¢
one deduces that

|KF (2, y)|dw < b2~ o2k(+0 292k < oka
UopUUs

where Uy (resp. Usy) is a neighbourhood of w; = 0 (resp. of w; = 2X). Outside of Uy U Usy,

2k - 1
(5 (=02 =2y 24y ) ) ),

/ \KF (2, y)|dw < hm2-o2k(+a) po—kpN(z+eo) < oka,
(UpUUs)C

This finally proves that also Opy’ (A% (x,&)) is a bounded operator on LP with norm O(2%9). [

Let us introduce the Euclidean rotation in the semi-classical setting
(1.2.40) Qh = xlhDQ — JZQth = Opﬁ(wlfg — ngl).

Proposition 1.2.30. Under the same assumptions as in proposition with ~ replaced by
Y1, we have that for any w € L*(R?) such that Quuw € L} (R?)

(1.2.41) HOp}f (71 (”“"5‘ - 5)¢(2*k5)a(x)bp(g))wH < 2R 27 ([|wl| 22 + (| 6w r2)

h1/2 o Loo

where Oy is a smooth function supported in some annulus centred in the origin.

Proof. We prove the statement distinguishing between three spatial regions. For that, we
introduce three cut-off functions: 6s(z) supported for || < m < 1; () supported for
|z] > M' > 1; 6(x) supported for m’ < |z| < M’, for some 0 < m' < 1,M > 1, such

that 05 + 0, + 6 = 1. We define respectively A¥(z &) = Wl(;ﬂ%ii>¢(2_k§)a($)bp(§)05(x),

Ab(,€) = (252 ) 0 (24 €)a(@)by(€)00(x), and A¥(w, €) i= 1 (HES )b(2E)a(@)by ()0 ),
so that

7 (ﬂf/‘;f)wz%)a(x)bp(@ =A@, &) + Ap(x,€) + AN, 9).

The fact that Op’(A¥), Op¥(AF) € L(L? L>®) and their norm is a O(2*h~1/279) follows from
lemmas [1.2.25 and [1.2.26] Indeed, when |z| < 1 (resp. |z > 1) we have that | zlé] - 5‘

hl/2—c
hil/ua’f‘ (resp. ‘;fli;i ‘ 2 h” 1/2+U]£Hx\ > p=1/2+9(€]), so from lemma |1.2.26| we derive that
—1—|a|—j
aaf $‘§| _§ +j a:].f\ e 1—
awaf [/71< hl/2—c )} Zh (lal+ hl/2—0 |b\o¢|+J |ﬁ|(£)| €1~ A1,
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Consequently, as 27%h < 1, we deduce that |8§8§ [A';(z—;”’,hf)ﬂ < 2kPp=1/2=9|¢|71 for any

a, B € N2, Therefore
soonbe ([ jgrag) smnie
L2(de) |§|~2kh—1

The same holds for A’lf (x,€) so, injecting these estimates in inequality (1.2.21), we derive that
1,

10D}, (A% (2, €))wl| L + [Op} (Af (z, €))wl| Lo < C2PRT277 [Jw]| 2.

A different analysis is needed for Op¥(A¥(z,€&))w, since it is no longer true that there exists

a positive constant C' such that |z[¢] — & > C|¢] on the support of A*(z,£). In this case we

exploit the fact that A¥(z, &) is supported in an annulus to perform a change of variables. If
0o € C§°(R?\ {0}) is a cut-off function equal to 1 on the support of 6 we have that, for any

N €N, A¥(z,€) = p(2)4A* (z,€) + r% (z, €) by means of proposition where

Dlel [ !
rk (z,6) = (;) o Z /ehm-zy-o/o 0200(x + t2)(1 — t)NLat

|la|=N

N

e 6(75 .0

x (08 A¥)(x, & + ) dydzdnd.

If we take N sufficiently large it turns out that the quantization of rﬁ“\, satisfies a better estimate
than (|1.2.41]). Indeed, using lemma [1.2.26| and integrating in dyd(, it can be rewritten as

hN j ——cr) ; 1
(1.2.42) % (2,6) = /eh”"z/ Bo(z + t2)(1 — )N—1dt
0

S («’U\f +nl—(§+n)

e S 2§+ m)0s (x)ale)bys s (€ + ) ded,

for some new functions 6o, v14;,%,0;,a,bp4j—n. As it is compactly supported in z, by lemma
1.2.25| there is a new cut-off function (that we still call §) such that

O (i (@, )| S Jlwllz2 / (51 X |
o] <

2™

o (2509
<3

One can check that the action of 85‘, on 7K (£4¥, h¢) makes appear factors (h~1/2F7h|¢ +1))?, for

i < |o/|, without changing the underlining structure of r%;, and these are bounded by (h~1/2+72k)?
on the support of (2 Fh(€ +n)). After a change of variables  + hn in (1.2.42), we use that

} . 3 /1 oo N3 o . '
ez = (Tfi&%) (11 JZ'ZZ%’) e?MZ integrate by parts, apply Young’s inequality for convolu-

tions, and fix N > 7, in order to deduce the following chain of inequalities:
, T +y
k(250
L2(d§)

' ‘ 2
< Z p2N-2j(4-0) (h—%+a2k)2122k(p+3 df‘/ m) 327 h(E + n))|dzdn

i<lo/],j<N
S D WNTHGT(pmtegh) Mo / (27 he) P
i<|]o/[,j<N
< Z th—zj(g—a)(h—§+02k)2i22k(p+j—zv)(h—12k)25221@7
i<|]a/|,j<N

2
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and that |]Op}’j(r5"v)||L(Lz;Loo) < 2. We can then focus on the analysis of the L> norm of
00(z)Op¥ (A¥(x,€))w. In polar coordinates z = pe® operator €2, reads as D,, so using the
classical one-dimensional Sobolev injection with respect to variable «, the one-dimensional semi-
classical Sobolev injection with respect to variable p, and successively returning back to coordi-
nates x, we deduce that

7l w w w
180(2)Opy (A% (z, €))w| < 0% [ OpR (A)wl 2 + OPE (€)ODK (A" 2y
+ 194000p5 (A" w|l £2(42) + ||Op1}f(g)QhQOOp%)(Ak)wHLQ(dz)}
< 2R3 |w| g2 + 90wl 2]

The latter of above inequalities is derived observing that the commutator between €2, and
Op}) (A*) is a semi-classical pseudo-differential operator whose symbol is linear combination of
terms of the form

(2L E w2 ealrn@ny @)

for some new 1,1, a, 0, b,, and from the fact that operators Opy’(A*(z, €)), OpY¥ (EA¥(x,&)) are
bounded on L? (see proposition [1.2.27), with norm O(2*?), O(2k(p+1)) respectively, and that
2k < p=o. O

Proposition 1.2.31. Under the same hypothesis as proposition Opq,“l”(lg,q(:c,f)) and
Op}L”(Jﬁq(x,f)) are bounded operators from L>® to L?, with
(1.2.43)
wrk w7k k(p+q) (1, — 2 +ook\i(1,—1ok
Jopk a0, .y, + OPEG @ O o S D2 ()
The same result holds if g =0 and J(z—k‘g)bq(g) =1.

Proof. As in proposition [1.2.28| we prove the statement only for Op},’ (Iﬁq), leaving to the reader
to check that the result is true also for Op}l“(J;f’q).

Let w € L?. After lemma [1.2.25( we should prove that ‘

85‘8? {Iﬁq(%, h{)} ‘ Lo is estimated
by the right hand side of (1.2.43), for any |«/|,|3] < 3. A change of variables n — hn, ¢ — h(

Tk (T
allows us to write I;; (%5, h¢) as

1
4

1 1
[ =i [ /0 (313 (el — )@ hE)a(@)by(hE)) | 251 11s ey F (1)

it ) (S5 o ol + )| ' dend,

We observe that, while on the one hand the action of J on the above integral makes appear a
factor (h_%+a\h(§ +t¢)])?, with i < |a|, on the other hand that of 8? has basically no effect on

the L? norm that we want to estimate as one can check using lemma [1.2.26{ and the fact that
27kh < 1. With this in mind, we can reduce to the study of the L?(d¢) norm of an integral
function as

S (hHHogby / ¥ +=y'0) [ / 1 (v(n3* (1l = €)@ hE)a(@)by (A | b 4 1m0y F (BN

i<3

x (2 (e + )’ (T2 44 )by (b€ + )|y dzdnd.

2
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for some new functions v, v, a, by, 1’/;, a’, by, with the same properties as their previous homonyms.
We use that

gm%woz<1+%y¢¥f<1—%naj3<L—%n&03cwdmw%)3gm%ﬁo
1+ 4]y'|? 1+ 4{n|? 1+ 4|z|? 1+ 4|¢|?

and make some mtegratlon by parts to obtain the integrability in dy’dzdnd(, up to new factors
(h_5+‘7]h(§ +t¢)])?, with j < 3, coming out from the derivation of the integrand with respect to
z. Then, using that functions h/b,_;(h(€ + t¢)) (resp. hiby,—;(h(£ +1))), 7 < 3, appearing from
the derivation of by,(h(§+t()) with respect to ¢ (resp. the derivation of by (h(§ +n)) with respect
to 1), are such that [h7b,_;(h(¢ + t¢))| < hI2FP=1) < 2kP on the support of (2 %A (€ + t())
(resp. |hiby_j(h(€ +n))| < 2¥ on the support of ¥(2*h(¢ +1))), and the fact that

| [m-eioe e+ m)

we obtain the result of the statement.

) l(27*he) |2 S B2,

The last part of the statement can be proved following an analogous scheme, after having previ-
ously made an integration in dzdn (or in dyd( if dealing with J§,0>- O

Lemma 1.2.32. Let o > 0 be sufficiently small, k € K with K given by (1.2.23) and p,q € N.

Let also 1/),1; € C°(R2\ {0}), a(x) be either a smooth compactly supported function or a = 1,
and f € C(R). For a fized integer N > 2(p + q) + 9 we define

(1.2.44) 1y, (2,8) = 7rh —7 Z /eh °2=y:0) {/ 30‘( (52|1§/|2 - )¢(2_k§)a($)bp(f)>|(m+tz,§+tg)

lee|=N

X ()] 08 (b ()P )) [ y.4n) dydzdnd,

and
(1.2.45) N 1
hol@.8) = - HZMI ) [ v [ [ o (1 (282010 ) sem a0
X (0] 02202 (b ()2 7€) ety 64y dydzdndC
Then
(1.2.46)

HOPh( ey + 10py (TN,p)HL r2) + [|Op} (TN,p)HL 2000y + [|Op} (TNp)HL 12,0y S hPta.

Proof. We remind definition (1.2.30)) of integral I;; (x €) for general k € K,p,q € Z. After
an explicit development of the derivatives appearlng in ([1.2.44]) we find that er(:L“,f) may be

written as
N—
Z h P+] ¢ (@,€)
J<N

where v is replaced with v; and @’ = 1 in I¥ pijq—N- Propositions |1 2. 28| and |1 2. 31|7 combined
with the fact that h < 2F < h=7, imply respectwely that

10D (ke ) le(z2) S ZhN i(3-0)9k(p+j+q—N)

j<N
N—j(i—o)+pt+jt+q—N N—j(i—o)—o(ptitq—N p+q
< E: pN=i(53—0)+p+j + E: pN—i(5—0)—a(p+j ) <h
j<N J<N
p+j+q<N p+ji+q>N
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and

HOPE (rh lerzmey S Y. AN TIGTOQMwHira=N) (=5 Foghyi(p =19k

i<6,j<N
< Z pN-1=(i+)(3=0)+ptitite—N+1 | Z RN —1=(i+5)(3=0)—o(p+i+j+q—N+1)
i<6,j<N i<6,j<N
ptit+j+q<N-1 ptitj+g>N-1

5 hp+q’

as N >2(p+q)+9.

As regards (|1.2.45]), we first observe that index «s is such that |az| < 1 since xan(f){/; 2 k¢
is linear in x,,. An explicit development of derivatives in (|1.2.45)), combined with lemma |1.2.26

shows that ?ﬂ“\, (z,€) splits into two contributions:

Jow.€) = ooy Z o) [0 [ (o (B E) a0t a(©) [asescsv/ O

X (5 + Yn)bg—n (€ + )27 (€ + 1)) dydzdndl,

for some new functions a,, 1 and clear meaning for v;, byi, by—n, coming out when |as| = 0;

hN - 1 2i
_ B (i) ~0) / 2 (- 2—y-)
Ji(z, ) (rh)? i<N§1:j<1 2 en

1 J—
X /0 ('71+i+j (32@25) Y27 ) a(z)by it (5)) |(att2400) f (E)dt

X bg-n41(€ + ) (275 (€ + 1)) dydzdnd,

for some new other a, 1, {/;, corresponding instead to |az| = 1. One has that

T, &)= Y NGOk (@),
i<N-1,j<1

with 7 replaced with v; and @’ = 1, so propositions [1.2.28| and [1.2.31] along with the fact that
N >2(p+q)+9, imply

10Dy (Ji(z, )l ez S Z RN (i+5)(5-0) gk (p+itj+q—N) < Rt
i<N-1,j<1

10D} (S (@, Dl e(rzirey S D PN (D) G0 gkptitita=N) (=5 +okyl (= 19k) < prta,

iISN—1,5<1
1<6

In order to derive the same estimates for Jy(z, &) we split the sum x,, 4+ y,, and analyse separately
the two out-coming integrals, that we denote Jy ;(x,&), Joy(x,€). In the latter one, we use that

yne_%y'C = —%8<ne_%y'c and successively integrate by parts in d(, obtaining, with the help of

lemma [1.2:26] that

(1.247) Joy(z,6) = Y RNH-EDG0) / 2 (nz—y-C)

i<N,j<1
1 —
<[ (s (o 92 el bii151()eringrao O

X bgn (€ — (27" (& + 1)) dydzdndC
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for some new functions a,, v, f. Again by propositions [1.2.28 m m 1.2.31] and the fact that h <
2k <h77 N >2(p+q) +9, we deduce that:

(1.2.482) 10D} (Joy (2, ey S Y, WNVFIEHNGmghpritita-N=1) < ppta,
i<N,j<1
(1.2.48b)
10DY (Jo, (z, )|l £ (22:0) S Z hN+1*(i+j)(%*U)Qk(PJriJerrQ*N*l)(h*%702k)l(h712k) < ppta,
igg\;ég

In Joz(x,&) we first integrate in dyd¢ and then we split the occurring integral into two other
contributions, called Jy m+tz(ac §) Jotz(z,€), by writing z,, = (xp +tzn) — tz,. Similarly to what
done above, we use that zpe E = h =Op, € R0 in Jo,t=, and succesmvely integrate by parts in
dnpn: as 27%h < 1, we obtain that Jo,tz has the same form as (|1.2.47) for some new b, n, w, and
verifies (1.2.48)). Finally, using that z, + tz, = héf"(%)m_l + &al€17Y, we derive
that

JO x+tz(x 5)
= Yoot [ [ (5 (28 2y gty (©) loan 0
i<N

X bg—n (€ + (275 (& +n))dzdn,
+ Z hN—i(%—U) /62};77% (’ypﬂ( }Jf/lz = )w(2_k£)a(x)bp+l(£>> |(1’+tz,§)f(t)dt

X ba—n (€ +n)0(27F(€ +n))dzdn,

so by propositions [1.2.28| and [1.2.31]

—_i(t—o ig—
HOP;LU(JO,I-&-tZ(x’g))HL(Lz) 5 Z hN (2 )Qk(p+ +a=N) 5 hp+q7
i<N

10D (Josex (@, ))leqraey S > RN THG—OIghrita=N)(p=gtookyl(p-1gk) < prta,
i<N,I<3

That concludes the proof as ?J’i,p = Jogttz + Joiz + Joy + J1. O

We introduce the following operator:

1 .
(1.2.49) M; = 5Oy (251 = &), j=1,2
and use the notation | M w|| = |M]*MJ*w]|| for any v = (y1,72) € N?. We have now all the

ingredients to state and prove the following two results.

Lemma 1.2.33. Let 0,k,p,1,a be as in lemma and a(x) such that
(a=1)=(a=1),
1

(a compactly supported ) = [(a = 1) or (a compactly supported and aa = a)).

We have that

(1250) Opf (1 (25T E ) w2 He)atay @) el - &)

= 0nf (10 (D5 )2 )ala)by (€) et + Opf (1 (r. ),
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where

(1.2.51a) |OpY (r (2, ))w]| 1o S 2P w2,

1_
(1.2.51b) |Op} (ry (2, ))w|| o S PP ([l L2 + 1002nw]l 2),
for some 0 € C°(R?\ {0}) and a small >0, B — 0 as ¢ — 0. Moreover

(1:2.520) [|op (0 (25L=2 (2 e)a(e)ty () (anle] ~ &)

L S ((wll 2 + 1M g2),

(1.2.52b) | oy (fyl<a2f/|;f)w(2"“§)a(x)b (&) @alél = &) )| _

1
Rz =P Z (H OoSp) w2 + ”(eoﬂh)#M”wHLQ)

Proof. The proof of the statement is basically made of tedious calculations and the application

of propositions 1.2.30| along with lemma [1.2.32

Let ¢ € C5°(R? \ {0}) such that ¥ = 1 on the support of 1. From formulas (T.2.18), (L.2.19)
and the hypothesis of the statement we derive that for a fixed N € N, and up to negligible
multiplicative constants,

(1.2.53)
(e o alalty(© | ¢ [(anlel - €Tt
= 1 (B SV 2 yataby €) anle] — &)
o () o2 alalby (€)ool - 6}

boY o (TS e atalby (©)] 9208 [(rale] — )] + (o),
2<|a|<N
la1[+|az|=|al

with

(1.2.54)
hN 1 x|&| —
e = 3[R | [amap [ (S5 0 9@y ©) lusee

(mh)
lai[+]az|=N

X (1 - t)N_ldt} 89?28?1 [(xn‘ﬂ - fn)a(x)J(Q_kf)] I(z+y,£+n) ddedndC .

If a = 1 above rﬁ“\ﬂp can be decomposed into the sum of integrals of the form (|1.2.44)) and (1.2.45])
with ¢ = 1, so

(1.2.55) |omi (7,

+ |[opi k)| < hi

L(L2) L(L2;L>)

if NV is taken sufficiently large (e.g. N > 2p+11). The same is true if functions a, a are compactly
supported as follows by propositions [1.2.28] and [1.2.31], since from lemma [1.2.26| and definition

(11.2.30) of I]’;q for general k € K,p,q € Z

k _ N—(i+5)(5—0) Tk
rNp(2,€) = >, h 277 i j—laal,1-laa | (5 €)-
|t |+|az|=N
i<|an],1<5<]az|
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An explicit computation of the Poisson bracket in (|1.2.53|) shows that it is equal to

(1.2.56) h(d1) (5‘215/’2;5) (:c1€2 - x2€1)¢(2—k£)a(x)bp(£)

hl/2—0o
+ 3 (LS wateyaany o)

where )" is a concise notation to indicate a linear combination, and ,a,b, are some new
functions with the same features of their homonyms. After writing

(1.2.57) (z1&2 — 22&1) = (@1¢] — E)&IE| ™ — (w2l¢] — E)&1E17,

we recognize that the quantization of (|1.2.56|) verifies estimates ((1.2.51) thanks to propositions
1.2.27] [1.2.30| and the fact that 2P < h=9P,

Let us denote concisely by ¥ the |a|-order contributions in (1.2.53)), for 2 < |a| < N. As factor
xn €| — &y, is affine in x,,, the length of multi-index «y is less or equal than 1 and, using lemma
1.2.26), t’; appears to be the sum of two terms. The first one corresponds to |az| = 0 and has the
form

> plel=iG =)y, (g;’f/';f > V(27 €)a(@)byit1-1a(€) 2,
i<|al
n=0,1

&l=¢
]::1|/|270_)

|ovp |-times with respect to z makes appear, inter alia, a factor |¢|l*1| that allows us to rewrite
¢ (znl€] — &) from (2,]€] —&n) +bo(§), for some new by, and 9511 (2)zy is of the form 74, (2)).
The second term, corresponding instead to |ag| = 1, is given by

for some new functions ¢, a. Observe that p = 0 if a = 1 because the derivation of ’yl(

> /h‘al_(”j)(%_g)’rlﬂﬂ (%) V(277 a(@)bp it 111l (€):

i<|a|-1,j<1

for some new other functions 1, a. From propositions 1.2.30] we then deduce that

(1.2.58) 0P (w2 S (h'3 2 + BAP) ]| 2,
la|—
(1.2.58b) 1OPE () wl e S (W57 + B3P ([lw]| 2 + [|0Qw]] 1),

which concludes that

(S o alaty (@) ¢ [(anle] - €T )]

=1 (2 Yo alaby € ale] — &) (),

with 7“2’; satisfying (|1.2.51]).

Finally, by symbolic calculus we have that, up to some multiplicative constants,

Opp ((xnl¢] — €a)a(x)p(277€)) = a(x)OpY ((zal] — £)(275€)) + Op (rF (=, €))
— OpY (4 (27%€))a(x)h M, + hia(z)Op (99) (2~ %) (2% [¢))
+ Op (7 (2, €)) hM, + Op (1 (x, £)),
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where

h 20 ~ ~
Tk(mag) = W /6 nl /axa(x + tz)dt 86 [($n|§’ - 5n)¢(2 kﬁ)] |(z,£+n)d2dna
h2~k
(2m)?

are such that [|Opy (1)l ¢(r2) = O(h), [|Opy (7))l g(r2) = O(1). An explicit computation shows
also that H[Qh,Op}‘L’(rk)]HL(Lz) = O(h) and |[[Q, Op}! (7%)]|| g(z2) = O(1). Therefore, since v=1
on the support of ¥, @ = 1 on the support of a, one can use remark together with
propositions [1.2.28] and also propositions to show that

7”:k@?:f) -

/ oz / Dt + t2)dt (BeB)(2 (€ + m))dzdn,

Opy, (’Yl (a;f);f)w(2—k§)a(x)bp(§)> Opy ((xn\gy — fn)a(i'){/;@_k{))

= Ovf (1 (252 ) w2 €)aa)by (€) )ale)hM, + OB (ke €).

for a new Opﬁ(rﬁ(x,g)) satisfying ((1.2.51al). This concludes the proof of ([1.2.50) and of the
entire statement by applying propositions 1.2.30] to the first operator in the above right
hand side. O

Lemma 1.2.34. Let 0 > 0 be small, kK € K with K given by (1.2.23) and p € N. Let also
v € C§°(R?) be equal to 1 in a neighbourhood of the origin, 1 € C§°(R?\{0}), and a € C§°(R?).
For any function w € L*(R?) such that Mw € L*(R?), any m,n = 1,2, we have that

Opt (4( 2512 Y w2 €)ala)by (€) enle] — &) anlé] — &) )

= Opf (1 (Bl 2 €)ala)by(€) ] — &) DVGute] + O (W (w2 + D] 1)),

with 8 >0 small, B — 0 as o — 0.

Proof. Let 3(z) := v(2)zm and 1 € C5°(R?\ {0}) be identically equal to 1 on the support of .
We saw in the proof of the previous lemma that the symbolic product

h(:Cfllg/’;f)w@_kf)a(x)bp(f)} 1zl — &)(27"€)]

develops as in ((1.2.53)), (1.2.54)), with +7 replaced with ¥ and @ = 1. From (|1.2.56)), the fact that

0 if m=n,

{xm|£| - £m7$n|£| - gn} = {(—1)m+1($152 _ 521_1) if m +#n,

and that (x1& — &ox1) = (21]€] — €1)&E]7 — (22]€] — &2)&1|€]7Y, we derive that the first order
term of the mentioned symbolic development is a linear combination of products of the form

ni (2w awty €)olel - &),

for some new functions v, 1, a, and its quantization acting on w is a remainder as in the statement

after estimate ([1.2.52al).
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The second order term is given, up to some negligible multiplicative constants, by

w2 37 0 (2 S o e () a ()] — )

|a|=2

+h2tT S (97) (:Ufjf/lz_f)¢2(2_'€£)a2(9«“)bp+1(5)

|af=1

1Y (G a2 et

for some new smooth compactly supported 2,3, a1, az, a3, and as the derivatives of v vanish in
a neighbourhood of the origin we can replace (0%y)(2) with 3,71 (2)2;, fyjl» (2) := (0%9)(2)zj]2| 72,
when |a| = 1. The third order one is given by

W7 3 0 (2 S Y2 s @by (€) (el — )

|a|=3

123 () (2 (o) (),

for some other 11, a1, az and a new v, € C5°(R?). Using estimate for the summations
in « and proposition for the remaining terms in the above expressions we obtain that the
quantizations of the second and third order term are also a Op2 (h® A (||lw||z2 + | Mw]|12)) when
acting on w, for a small 6 >0, 83— 0aso — 0.

In all the other |a|-order terms, with 4 < |a| < N — 1, and in integral remainder T?V,p’ we look
at ’y(ﬂ%:f,)Q,Z)(Q_kf)a(x)bp(f) (xm|&] — &m) as a symbol of the form

7(Q;L‘f/’zif)¢(2_k€)a(x)bp+1(§)

for a new a; € C§°(R?). From (1.2.58a) and (1.2.55) when N > 11, we derive that the quanti-
zations of these terms are also a Oz (h®~#(||w|| 12 + [ Mw]|2)) when acting on w.

We finally obtain that

Opt (1 (2EL = )2 €)a(w )by €) rmle] — &) el — &) o

= vt (7255 Y€1)y ) el — ) ) OE (wale] — £0)52746))
+ Op (WA (w2 + M 12)).

and the conclusion of the proof comes then from the fact that, by symbolic calculus,
w T (9— w( T (g— h w o - -
Op} ((@nlé] = €a)1(27)) = hOp} (11(27"€)Mn — o Op} ((991)(277¢) - (27%¢)),
and by remark |1.2.22| as all derivatives of {5 vanish on the support of . O

The following lemma is introduced especially for the proof of lemma[3.2.13] Even if quite similar
to lemma we are going to see that the particular structure of symbolic product in the
left hand side of (|1.2.59)) allows for a remainder 'r’; satisfying enhanced estimate (|1.2.60b|) rather

than (T251H).
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Lemma 1.2.35. Let us take o > 0 sufficiently small, k € K and p,q € N. Let also v € C§°(R?)
such that v = 1 in a neighbourhood of the origin, ¥, € C°(R?\ {0}) such that ) = 1 on the
support of ¥, a(x) be a smooth compactly supported function. Then

(1259) [(aale] — )T aleby ()] [ (22 o)
=3BV yatarby @) ale] — &) + k(e
where
(1.2.60a) |opk b enw|| , S B3P (Uwllee + [Mw]l2) + B ol
1
(1.2.60b) Joptrbte )|, <117 (1600wl + 16020 N2,
©n=0

for some 6 € C5°(R?\ {0}), and a small >0, B — 0 as o — 0.

Proof. Using proposition|1.2.21] for a fixed N € N and up to multiplicative constants independent
of h, k, we have the following symbolic development:

(1.2.61)

[(anlél — &)@ et @)]t [ (DS )ua-*e)]

=12 )T ata)by @) walel ~ &)

+h {(msr — &) E)a(@)by(8). ’Y(if/';f) }

bON R (ealel ~ €00 Oty (@) 080 [y (eS| k),

a=(a1,a2)
2<|a|<N

with

hN
(wh)*

r]k\f,p(xag) =

) 1 .
3 / H a0 [ / 0102 [(walé] — £0)a(@)bp (B lres.c420

la1[+]az|=N

(1 — t)Nfldt} 2o {y(fl'f/';f)qp(rkg)] (o) dydzdndC.

For sake of simplicity, we denote by ¥ (resp. ¥, |a| = 2,..., N — 1) the Poisson brackets (resp.
the |a|-th contribution) in (T:2.61). An explicit computation of ¢, combined with the fact that
T1€o — &y = (w1|€] — €1)& €| — (w2|€] — €2)€1]€| 7Y, shows that it is linear combination of terms
of the form

zl€] = &\ (zilEl =&\ 70k
h(aﬁy)( h1/2_a )( h1/2_a >¢(2 g)a(x)bp(g)v
for j € {1,2} and some new functions 1;, a, by, so by inequalities ((1.2.52) we derive that

w 3_
(1.2:620) |opi )|, £ 277 (e + M)l 12)
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1
(1.2.62b) ok (Ehyw]| S B0 S (B0 wllzz + 1(862) Mo 2).
pn=0

The improvement of these estimates with respect to (1.2.51) is attributable to the choice of
¢ identically equal to 1 on the support of ¢. All derivatives of ¢ vanish against 1, so in the
development of t} we avoid terms like ’y(z‘f/';_i' Y277 a()by(£)(09)(277¢) (27%|€]), coming out

from {z,|¢| — &n, 1/1(2_]“5)}7(?15/';%,'){/;(Z_kﬁ)a(x)bp(ﬁ), that do not enjoy estimates like (1.2.62)).

Using formula (1.2.25)) and looking at (z,|{| — fn)J(Z_kﬁ)a(x)bp(f) as a linear combination of
terms ¥(27%¢)a(z)by41(€), for some new v, a, b1, we realize that, for any 2 < |a| < N,

al—Citlao (i —o zlf] =&\ 7/
th = E plel=(+laz)(z )’Yj+\a2|(W>¢(2 kf)aj(ﬁ)bp+j+l—la1l(€)’
a1 |+|az|=|al
1<) < on]

for some new other @Z, aj, with a; compactly supported, and then that

lOpy th)wle S Y. Bl OHRDGE kD

|t |+ |=|al
1<j<]au |

10D}, (te)wl| e
1
< Z h‘a|*(]’+‘02|)(%70)2k(l’+j+1*|a1|)h*%*0Z(H(Qogh)ﬂwHL2 + 11(0Q)*Mw|| 12),

o1 [+] a2 | =l =0
1<j< o]

after propositions|1.2.27L 1.2.30, For |a| > 3, the above estimates imply ||Op1,f(t§)\|L(Lz) S h3 B
and [|Opy, (ta)w]| Lo < B =732, o (1(Bom) wl| 2 + [|(BoS2n)*Mwl|z2). For |a| = 2, we exploit
the fact that functions 7;4|q,| vanish in a neighbourhood of the origin, as they come from 7’s
derivatives, and define y;+|a2|(z) 1= Yjtlas|(2)zil2| 72, i = 1,2, so that

t’; — Z h‘al_(j—i_‘(m‘)(%_U)V;Jrlaz\ (‘Q;Jf/tif) (Z‘;Llf/gifi)J(Q_kg)aj(x)bp+j+lf|a1\(5)7

lo [ +|ea|=|al
1<j<as],i=1,2

to which we can then apply lemma [1.2.33] After inequalities (T.2.52), Op¥ (%) with |a| = 2 also
satisfies (|1.2.62)).

Finally, reminding definition (|1.2.31)) of J;f’q(a;,f) for general k € K,p,q € Z, and developing
derivatives in T?V,p using lemma |1.2.26) we observe that

ko _ N—(|az|+5) (% —0) 7K
TNy = Z BN —(laz2l+5) (5 )‘]p+1—|0¢2|,\0¢2|+j—|a1|(x’5)’

loa [+|az|=N
0<j<]en |

hence propositions [1.2.28] and [T.2.31] give that

10p (i plleqry S DS AV leeIGmegtotiia g e,

lat|+|az|=N
0<j< o |

Hopg(n’fvp)uﬁ(p,m) < Z hN*(|042|+J’)(%*U)2k(p+l+j*|a1|)(h*%+02k>i(h712k) < plp,

lovt|+|e2|=N
0<j<]a],i<6

41



if N is chosen sufficiently large (e.g. N > 10 + 2p). We should also highlight the fact that, at
the difference of ((1.2.60b)), (1.2.60al) does not improve (1.2.51a)): if we get a h3? factor in front
of the first term in the right hand side, the second term h'*P||w|| 2 is just a O(h'~#) in the case
p =0, coming from |a;| = N, j = |ag| =0, p = 0 above. O

1.2.4 Operators for the Klein-Gordon solution: some estimates

This subsection is mostly devoted to the introduction of some symbols and operators, along
with their properties, that we will often use in the paper when dealing with the Klein-Gordon
component of the solution to starting system ([I.1.1)). From now on we will use the notation

p(&) := /1 +|£|? (thus, p/(§) denotes the gradient of p(&), p”(§) = (8z2jp(§))ij the 2 x 2 Hessian
matrix of p(&)).

Proposition is a general result about continuity on spaces H fL(RQ) of operators with symbols
of order r € R and generalises theorem 7.11 in [§]. Proposition is a result of continuity
from L? to H }pL’OO of a particular class of operators that will act on the Klein-Gordon component.
In the spirit of |14] for the Schrodinger equation, it allows to pass from uniform norms to the

L? norm losing only a power h=27" for a small B > 0 instead of a h~! as for the semi-classical
Sobolev injection. Proposition [1.2.39)] is, instead, a result of uniform LP — LP continuity of such
operators, for every 1 < p < +o0.

Proposition 1.2.36 (Continuity on H}). Let s € R. Leta € S5,((£)"), 7 € R, 6 € [0,1], o > 0.

Then Opy(a) is uniformly bounded : Hj(R?) — H; "(R?) and there exists a positive constant
C independent of h such that

HOp}f(a)”L(H;;Hf;T) <C, Vh 6]0, 1] .

Proposition 1.2.37 (Continuity from L? to H{™). Let p € N. Let a € S@A(i\/%@)fl),

§ €[0,4], 0 > 0. Then Opy'(a) is bounded : L*(R?) — H*™(R?) and there exists a positive
constant C' independent of h such that

1
||Opﬁ(a)||L(L2;H;:’°°) < Ch™2~ ) Vh 6]07 1] )

where B > 0 depends linearly on o.

Proof. We first remark that, after definition [1.2.18 (¢) of the H"* norm,

10py, (@)w|| g = [[(hD)*Op}, (a)w]| Lo,

and that, by symbolic calculus of lemma [1.2.24) (£)Pfa(x, &) belongs to Sg7g(<§>p<i\/%(£)>_l) C

h_p05570(<l\/%(£)>_1). This means that estimating the H}f’oo norm of an operator whose symbol

is rapidly decaying in |h?&| corresponds actually to estimate the L® norm of an operator asso-
ciated to another symbol (namely, a(z, &) = (§)”ta(x,£)) which is still in the same class as a, up
to a small loss h™9.

From definition [1.2.17 (i) of Op}(a)w, and using a change of coordinates y — Vhy, & — VhE,
integration by part, Cauchy-Schwarz inequality, and Young’s inequality for convolutions, we
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derive what follows:

(1.2.63)
Opy (a)w| =

ez‘(\}”ﬁ—y)'fa(az—i_z\fhy7 ﬂf)w(\/ﬁy) dyd§
A

_ 1 —y) % 1+i(§—n)- 9y ’ (g —y)-Etiny
|@m)th //< 1+| —yl? ) < L+ [§—nf? )6

a (”““2‘/@ \/Eg) dydedn
(N[ [ (-9 "= = ;gl(ﬁ@}_ldydsdn

_ z+vVhy B
w(ﬁ) L T (5 —w) e s \/g(ﬁ@) Ly

i dtwlie [ (2 0) i = LY

X

A

N

L2(d¢)

dy
2"

where N > 0 will be properly chosen later. We draw attention to two facts: in the third equality
in (|1.2.63]) we use that

1= (\xf v): 85 (1 +i(6—n) '6y>3 [ei(%—y)f-ﬁ-my — JMEmy)Etiny
1+ (7 —v)? L+ (& —n)?

so, integrating by part, derivatives dy,0¢ fall on <% — )7 (€ —n)~! (giving rise to more
decreasing factors) and/or on a (L\Q/ﬁy, \/715); symbol a belongs to Ss,(1) with § < 1, but the

loss of A9 is offset by the factor v/h coming from the derivation of G(L;/Ey, Vhé) with respect
to y and £.

z+vhy o o
%th” ! H 12 We first introduce a smooth cut-off func-
3

), with x supported in some ball B¢(0), to distinguish between the case when LF;/E?/
HT\/%\ > 2, we

In order to estimate ||(h?v/h&)~N(
x—&-\fy

tion x(

is bounded from the one where \%\/ﬁyl — +o00. In the latter situation, say for |

have <w>_l h and
z+Vh / _
[ e [ TN e N

On the other hand, when HT‘/@ is bounded we consider a Littlewood-Paley decomposition and
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write

(1.2.64)
a:—l—\f I+\/> /
o —-N by (\/>§) 1 o 2N by p(f) -2
(h7V/RE) < - > N —h I;O/hg — > or(€)dé
=h'> L
k>0
where N
z+vhy v _
-/ <h”£>_2N<2\/Ep(§)> “po(6)de
and
z+vhy o/ _
= [y (O ke
a+vVhy _
(1.2.65) _ 22k/<h02k£>—2]v< +2h \/Ep (Qkf)> 2(,0(5)(15 kE>1
z+vh 1 (ok
- o = pl(28) \ 2
< 22Nk 2 N/< s ) &)t

For a fixed kg and any k < ko, |det(p”(28€))| > C > 0 on the support of ¢. For k > ko, function

€ = gul6) = 2% (2EYP) — 93k (25¢) is such that det(g}(€)) = e and [det(gh(©))] ~ 1

on the support of ¢. We may thus split the d¢ integral in a finite number (independent of
k) of integrals, computed on compact domains, on which & — gi(§) is a change of variables
with Jacobian of size 1. We are then reduced to estimate 2(=2N+2)kp=20N f \<C Z+gk(§0)> 2dz,

23k\f
HT” is bounded,

where C' is a positive constant and &y is in suppy. Since we assumed that
lgx(€0)| = O(2%%) and we get

-2
I <2(—2N+2)kh—20N/ < z > A
o 2|52 23RV

5 2(—2N+8)kh—20'Nh/ <Z>_2dz

l2l<h=1/2
< 2(—2N+8)kh—2aN+1 log(h—l) )

Taking the sum of all I for £ > 0 we then deduce that

etV (V) >—1
Vh

for 6 > 0 as small as we want, if we choose N > 0 such that —2N +8 < 0 (e.g. N =5). Finally
10p} (@)l (2 g0y = O(R™
where B(0) = (N + p)o + 0. O

(heVhE) N ( S NI (Y paN )5 ShoNTS

L2(¢) k>0

,/3)

N

)

The following lemma is as simple as useful and will be largely recalled from subsection [3.2.1] on.
It is also useful to introduce now the following manifold

(1.2.66) Apg = {(2,£) e R*x R? : 2 — p/(€) = 0}

which appears to be the graph of function £ = —d¢(z), with ¢(x) = /1 — |z|? (see picture .
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Lemma 1.2.38. Let v, x € C’SO(R2) be equal to 1 in a neighbourhood of the origin and with
sufficiently small support, and o > 0 be small. There exists a family of smooth functions 0p,(x),
real valued, equal to 1 for |x| < 1— ch®® and supported for |x| <1 —c1h?®, for some 0 < c1 < c,
with |0%0p| L = O(h=2%7) and (hoy)*0), bounded for every k € N, such that

(1.2.67) v <””_\};f§)> X(h7€) = B4 (x)y (x_}h@) X(h7€).

Proof. Straightforward after observing that function ’y(m_\%@)x(h"{) is localized around man-

ifold Agy, meaning that its support is included in {(z,&)[|¢] < h77, |z| < 1 — ch?’}, for a small
c>0. O

Proposition 1.2.39 (Continuity from LP to LP). Let y,x € C§°(R?) be equal to 1 in a neigh-
bourhood of the origin and with sufficiently small support, (&) = ()P with p € N, and o > 0.

Then Opy (7(%;55)))((#75)2(5)) o LP — LP is bounded and its L(LP) norm is estimated by

h=P=P for a small 8 >0, f — 0 as o — 0, for every 1 < p < +o0.

z—p'

Proof. From lemma|1.2.38 and the fact that (%) X (h7§) is supported in a neighbourhood

of Ajg introduced above, we can find a new smooth cut-off function 7, suitably supported, so

that
ot (+ (2 ) xrersie) ) = ont (+ (“RE ) weosom (St o))

where 8 > 0 is a small constant, 5 — 0 as ¢ — 0, that takes into account the degeneracy of
the equivalence between the two equations of Ay, when approaching the boundary of suppfy,.

Denoting (l\/’ﬁ(f)) X(h7E)X(&) concisely by A(x, ) and looking at the kernel associated to the

above operator

=g |44 (1) T )

(27.Th)2 2’ i
B e;b(xy)d(b(w?’)eh(x—i-y) /e}i(x—y)fA <x+y - d¢($42-y>> Y (hl/i_ﬂ)dfy

(21h)? 2 2

we observe that, since
() et () gt

and hlol/ 28?A(m2ﬂ, €) is bounded by A" for any a € N2, by making some integration by parts

‘(\jﬁ>QK($7 y)‘ she /|§|<h1/2—ﬁ ST (ay) € REXRE

This means in particular that

-3

—1—op— “1—ap—28/ Y \7?
K ()| S R (S0 K (@)l SR Way)

T
70! -
implying that

Sup/ K (,y)ldy < =P, Sup/ K (z,y)|dz < B2
v Y

The operator associated to K(x,%) is hence bounded on LP with norm O(h~?7~28), for every
1 <p< +oo. O

45



The following lemma shows that we have nice upper bounds for operators whose symbol is
supported for large frequencies [£| > h™7, o > 0, when acting on functions w that belong to H},
for some large s. We state it in space dimension 2 but it is clear that it holds true in general
space dimension d > 1. This result is useful when we want to reduce to symbols rapidly decaying
in |h?¢|, for example in the intention of using proposition or when we want to pass from a
symbol of a certain positive order to another one of order zero, up to small losses of order O(h™?),
B > 0 depending linearly on 0. We can always split a symbol using that 1 = x(h7&)+(1—x)(h7E),
for a smooth y equal to 1 close to the origin, and consider as remainders all contributions coming
from the latter.

Lemma 1.2.40. Let s’ > 0 and x € C°(R?), x = 1 in a neighbourhood of zero. Then

10py (1 =) (W E)wll g < Ch=|w]| . Vs> s

Proof. The result is a simple consequence of the fact that (1—y)(h?¢) is supported for |{] = h™7,
because

10 (1 = ) (ROl = /(1 + [REP)YI(1 = x) (h7hE) P | (€)|*de
= /(1 + [RER)* (1 + RE[P) 2| (1 = x) (h7h&) P|(€)[Pdé

< CRp2o(—) HUJH%{; ,

where the last inequality follows from an integration on |h&| 2 h™7 and from the fact that
s’ —s <0, (L+|hE?)¥—* < Ch20("=), O

We introduce the following operator:

(1269) £; = Ok —p(E), j=1.2

and use the notation ||£Yw|| = ||£]*£32w]| for any v = (71,72) € N2.

Lemma 1.2.41. Let v € C§°(R?) be equal to 1 in a neighbourhood of the origin, c(z,£) € Ss5.,(1)
with § € [0, %] and o > 0. Then y(* \f(g )e(x, &) belongs to S1 o1 )(<i\/’ﬁ(g)>,]\;)’ for all N > 0.
Proof. Straightforward. O

< {2yl for

Lemma 1.2.42. Let n € N and v,(2) be a smooth function such that |0%y,(z)]
[l S h™. Up to

all o € N2, Let also c(z,€) € S5(1), with § € [0,3[, ¢ > 0, be supported for
some multiplicative constants independent of h, we have the following equality:

1269) et (“) 200 - 5(6) = el 0 (FE ) 05 - 1y(6)

o —p(©) 7 .
i () [(9g,0) + (000) (03] +h 30 W () el @) )+, ©)

with r € h3/2*‘SS%70((x7%5)>*”), and if x € C°(R?) is such that x(h°E) =1 on the support of
c(z,§),

Z WP Opy (x (h? ) L7 1z,
/=0

(1.2.70a) HOp};’(c(x,é)fyn(x_M)(xj—p] )
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(1.2.70b) Hopg(c@,gm(“\}j;@)(xj—p;-<f>>)~ <th ~B0pp (x(h7€) L7712,
|v|=0

where 6, = 1 if n > 0, 0 otherwise, and > 0 is small, B — 0 as §,0 — 0.

(o]

Moreover, if n € N* and 0%y, vanishes in a neighbourhood of the origin whenever |a| > 1, we
also have that

(2:1) | 0n (et (“) (s = €, ~ (€7 <
S B OpY (X(h7€)) LT 1,
0<|y[<2
Wlelx Lp/(f) T — 17 2 — o <
2.11b) - on (te ("I s - st e - 1i(6)) s
ST 03 POpy ((h7€) LT 2.

0<|yl<2

Proof. As c(z, §)7n(x \pf( )) € 5’ ((ﬁ\/%(ﬁ)f”) and 0 ¢(z; — p}(£)) € So,0(1) for any |af > 1,

equality (1.2.69) m ) follows from the last part of lemma |1.2.24] and symbolic development (|1.2.18))
until order 2, after having observed that

(1.2.72) {c(m,f)’yn(m_\/p%l(g)),xj —P;(f)} = 7n<£8_\f}7};(€)) [(85]-6) + (Oxc) - (GEP;')]’

and that, up to some multiplicative negligible,

w3 0 et () | @ennyie = 3o ;%“))c@,f)(a?p;)(f)

|a]=2
3 T — /(f) )
+hE Y (0 ) () (022 ¢) (2, €)(02D)) (6) + h2 S (02¢) (2, €)DD) (€)
la]=2 ( vh ) ‘ la]=2 ( f ) ‘

lar],|az|=1

et sy ((=59) )

If x is a cut-off function as in the statement, its derivatives vanish on the support of ¢(z, £), and

from remark [[.2.27]

(1273) et () = et 0 (TR ) xr76) +
with 7o € hNS%’U(<I_§%(€)>_"), N € N as large as we want. Estimates follow then as a

straight consequence of j1.2.69), definition ((1.2.68]) of £, proposition [1.2.36| and semi-classical
Sobolev’s injection ((1.2.15)) (resp. proposition [1.2.37) when n = 0 (resp. n > 0).

In order to prove the last part of the statement (estimates (1.2.71])) we use equality (1.2.69) with
)

vn replaced by F,,_1(2) = n(2) 2, where |0°7,_1(2)| < (2)~1*=(»=1) which gives that
l’—p/(g) / / x—p’(ﬁ) / /
e, (1) s = (€D s = 156 = [eto 1 (TR ) 1 = D) e~ i)
S ) [CR O LA CR N
1S @) (S el @8 ) ) ~ V(e ).
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with r € h%—és’%ﬂ«i\/%f)f("—l)). As 0%7%,,_1 vanishes in a neighbourhood of the origin for

la| = 2 by the hypothesis made on v,, we can rewrite it as 7, At o(2)z1, where 7L, o(2) =
(0°Fn—1)(2)z1|2| 72 is such that [0°F]_,(z)| < (2)~1B1=("+2) " Then, using again equality (T.2.69)
for all products different from r(x, £) in the above right hand side (with ¢ replaced with h5[(8§j c)—
(9x¢) - (9¢p})] in the second addend, and 7, and c replaced with Al and c(@?p;-) respectively
in the third one, [ = 1,2) we find that

el 1 (2D (@ - g @y — () =

Vh
ol € () oo = O = 5506 + b, 080y — 15(6) — Vr(a ).
for a new r; € h_‘SS;’J((JC_\I/’Iﬁ(@)_”). Estimates are then obtained using and
propositions [1.2.36} {1.2.37)). O

We will also need the following result, which is detailed in lemma 1.2.6 in |7| for the one-
dimensional case.

Lemma 1.2.43. Let v € C°(R?), and ¢(z) = /1 — |z|2. If the support of v is sufficiently

small,

2
Ze 2,6)(& + dig(€)),

=

(1.2.74b) (& + dro(2)7((€)*(z = & (@, &) — pi(&)),

=1

(1.2.74a) (k= PO (&) (x

for any k = 1,2, where functions ef(x,{),'élk(x,f) are such that, for any o, f € N2,

(1.2.75a) 10907 ef (2,€)] Sag (€)FH2I-101
(1.2.75b) 10902 (2, )| Sag (€)*F271A1,

forany k1 =1,2.
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Chapter 2

Energy Estimates

The aim of this chapter is to write an energy inequality for E,(t;us,vs) and E¥(t;ut,vy)
respectively, which allows us to propagate the a-priori energy estimates made in theorem [I.1.2]
ie. to pass from (1.1.11]) to (1.1.12¢), (1.1.12d]). Such an inequality is in general derived by
computing and estimating the derivative in time of the energy, i.e. of the L? norm to the square
of ul,vl. As this computation makes use of the system of equations satisfied by (ul,vl) (see
(2.1.2))), two main difficulties arise due to the quasi-linear nature of the starting problem and the

very slow decay in time (|1.1.11a}) of the wave solution.
On the one hand, among all quadratic terms appearing in the right hand side of (2.1.2)) we

find the quasi-linear ones QY (v+, Divkl) and Qgg(vi,Dlui), whose L? norm is bounded by
o<, )|l gree (Jul (8, )N e + 0L (¢, )|l 1), as usual for this kind of terms. This means that they
are at the wrong energy level, in the sense that they cannot be controlled in L? by E,, (t; u+, v+) or
E§(t; u4,v4). This causes a "loss of derivatives" in the energy inequality if we roughly estimate

50 (It VB + Ik, )1132) = ~S (@Y (v, i), ) + (QEF (v, Dy, ey + .

using the Cauchy-Schwarz inequality. This issue is however only technical. In fact, by writing
system in a vectorial fashion and para-linearising it in order to stress out the very trou-
blesome terms (see subsection we are able to symmetrize it, i.e. to derive an equivalent
system in which the quasi-linear contribution is represented by a self-adjoint operator of order 1
(see subsection m, proposition . As this operator is self-adjoint it essentially disappears
in the energy inequality, replaced with an operator of order 0 whose action on ul_, v1 is bounded
in L2 by E,(t;us,v+) or E¥(t;us,vy), depending on the multi-index I we are dealing with.

On the other hand, the L? norm of some semi-linear contributions to the right hand side of
- 2.1.2)) decays very slowly in time. It is the case, for instance, of ng (vi,Dlui) whose L?
norm is bounded by |[ux (¢, -)|| 2.0 [|vL (¢, )|/ 12 and only has the slow decay (T.1.11a)) of the wave
component u. Since we want to prove that

5
OB (t;us,vi) = O(et W3 By (tus,v4)2),  OES(bus, ve) = O(et % BE(tug, v4)?)

we need to get rid of such terms by means of normal forms (see section . Because of the
quasi-linear nature of our problem, some of them will be eliminated by an adapted quasi-linear
normal form argument (see subsection , while the remaining ones can be treated with an
usual semi-linear one (see subsection . At that point we will be able to prove proposition

2.2.13| and to derive estimates (1.1.12¢|), (1.1.12d)).
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2.1 Paralinearization and Symmetrization

As anticipated above, the first step towards the derivation of the right energy inequality is to
handle the quasi-linear terms appearing in the right hand side of in order to avoid any
loss of derivatives. We realize that the very quasi-linear contribution to our system appears
in equation through a para-differential operator whose symbol is a real non symmetric
matrix. As we need this operator to be self-adjoint (up to an operator of order 0), we symmetrize
equation by defining a new function W/ in terms of W/, that will be solution to a new
equation in which the symbol of the quasi-linear contribution is a real symmetric matrix (see
subsection . Also, we set aside subsection m to the estimate of the L? norms of the
non-linear terms in the right hand side of .

2.1.1 Paralinearization

Let us remind definitions (1.1.10) and (1.1.18). Since admissible vector ﬁelds considered in
Z=1{N,7;,0;,j = 1,2} exactly commute with the linear part of system (|1 , we deduce from
remark [1.1.5|and (T.1.17) that, for any multi-index I, (I''u, I'v) is solutlon to

(0} — Ay) TTu = Z Qo(I'w, 0,120 + Z cr,.1,Qo(T1v, 0T 2v),

(I1,12)€3(1) (I1,12)€I(1)
1]+ 12 |=|1| 1|+ 12 |<| 1|
(8,52 — A+ 1) iy = Z Qo(I"Mw, 01T120) + Z cIIJQQo(FIlv, ork2y),
(I1,I2)€I(I) (I1,I2)€(I)
1]+ 12|=|1| 1]+ 12 |<|1|

with coefficients ¢, ;, € {—1,0,1} such that cr, ;, = 1 for [I1| + |I2| = |I|, in which case the
derivative 0 acting on I'™2v (resp. on I''2u) is equal to 01, and O representing one of the partial
derivatives d,, a € {0,1,2}. Let us remind that, if I'/ contains at least k (< |I|) space derivatives,
above summations are taken over indices I, I such that k < |I1|+|I2| < |I|. Hence, introducing

from (L13). (L13).

@ (0x. Dave) = § (0 40 )Dulis +00) = 25 (o = 0)- D000 =)
(2.1.1) ) Dx P %
QU0 Dats) = § |04 + 0Dl +0) = D55y =) 5w = )]

for any a =0, 1,2, we deduce that (ufr, vfr, u! ,vl) is solution to

(D — |DCL‘|)U{|—(t7x) = Z Qo (U:I:’Dlv ?) + Z ¢, Qo (U:I:va ?)
(I,I2)€I(I) (I1,12)€I(1)
[T1|+|I2]=|1] 1|+ 12| <] 1] .

(Dt - <D$>)v£r(t7x) = Z 0 (U:I:7D1u °) + Z Ch,IQQOg(U:II:lvDuﬁ:Q)
(I1,I2)€I(I) (I1,I2)€3(1)

(2.1.2) 1|+ I2|=|1] |T1|+|I2|<|1]

(De+ | DoPul(t,e) = > QU@ D)+ > ennQ (v, DuP)
(I1,12)€3(I) (I1,12)€I(T)
1|+ 12| =|1] [Tu |+ T2|<|1]

(Di+ (D)l(tr) = Y QL D)+ > ennQfl, Dul)
(I,I5)€I(I) (I,I2)€9(I)
1] +12|=|1] 1|+ 2| < 1]

The quasi-linear structure of the above system can be emphasized by using (1.2.7) and decom-
posing QY (vx, D1vl), Qgg(vi, Dyul) as follows:

(2.1.3) QY (ve, Dyol) = (QL)1 + (SL)1,  Q¢¥(vse, Diul) = (QL)2 + (SL)a,
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with

QL)1 = § |09 (o + 0 ym)(eh 4 01) = 0P (D55 vy = 00) T )0l = o8]
(SL), = i [OpB (Dy (0] +00))(0s +v_) OpB<?gf>l (Wl — ol %) (vy — )
+OR((os + v m)(oh +01)) - Opf (s o = 00) - Tl = o1
@y =" {OpB«u o) +ul) = OpP (5o = o) Tl - £>} |
(SL)s i= i [OpB (D (uh, +ul)) (vg + ) opB(lf;il (uh — L) %) (v — )
+Of (o + v m)(u + ) = O (55 0s =) - T - w] ,

where the Bony quantization Op® (resp. OpB) has been defined in (resp. in (1.2.9)). We

do a similar decomposition also for the semi-linear contribution Qog(vi, Dyuy), for this term
will thereafter be the object of the two normal forms mentioned at the beginning of this section:

(2.1.4)

QiE(vL, Dyuy) =

B~ .

[OpB«vi +ol)m) (s + u-) = OpP( <§z> (vl —ol)- %) (s — u_>]
+ [opB (D1(us +u)) (vl +0l) - OpB(lf;;fl (1w — ) ) (@ - v£>]

.

i Dy nn
+ 1 [Opg((vi + vi)m)(mr +u_)— Opg<<Dx> (vl —ol). \Ti)(mr - u_)] .

In order to handle system ([2.1.2]) in the most efficient way we proceed to write it in a vectorial
fashion. To this purpose, we introduce the following matrices:

ml 0 0 0 0 agm 0 bpm
0 (n 0 0 apm 0 by O

215 A(n) = , AVin) =
( ) (77) 0 0 _|77| ( 77) 0 arm 0 bknl
0 0 0 —(n am 0 bom O
0O 0 0 O
I I
mey I, U 0 b0771 0
(2.1.6) AVEm =70 0 0 ol
alm 0 blm 0
0 ¢ 0 db 00 00
— ‘_0660 ({ wiry.— |0 e 0 fo
(2.1.7) COWEn=1g o o qt| CUMN=19 9 o
0 e o st 0 e 0 fo
where
ar = ag(vy;n) ':ﬂ(vJﬂLUf) (D>(U+ v-) %]
(2.1.8) b = bi(vesn) = g [(vs +0-) + 7oty (vs = 0-) - ]
ap = ag(vy;n) = %[(1@ +ov_) <DI>(U+ v_) - %]
bo = bo(vs;n) = 3[(v4 +v-) + (pry(vs —v-) - 4]
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(2.1.9) do = do(v+;n) f .7 ’
eo = eo(us;n) == 2[Dy(uq +u_) — 2281 (. —u_)-<:’]—>]
fo = folus;n) == L[Dy(us +u_) + ]|)f)f|1 (s —u_) - 5]
(2 1 10) aé = ao(vi;n), bé = bo(”i;ﬂ)acé = Co(“i;ﬂ% dé = do(vi;n),

e = eo(uk;n),  fi(ul;n),

vectors W, U, V:

U+ 0 ’LL+
(2.1.11) we= | v ™ ve=]Y],

U_ 0 U_

v_ v_ 0

along with W/ (resp. v U! ) defined from W (resp. V,U) by replacing uy, v+ with ui, vi; and
finally

w (] Io
2o (IL)ex(n) ¢n, QY (v, D)
|T2|<|1) 1 .
> (I B)el(T) cn, @yt (v, Du?)
(2.1.12) Qlv,w) = | Jhhizl<I] F
’ > (1. 1)enn) ¢n, L QY (i, Duy?)
[I2]<|I] . , ;
Z(11712)63(1) Ch,IQQ()g(Uil ) Du:@)
L Inj <] ]

The quantization Op? (resp. Opg) of a matrix A = (a;j)1<i,j<n is meant as a matrix of ope-
rators OpB(A) = (Op®(aij))1<ij<n (vesp. OpB(A) = (OpZ(aij))i<ij<n), and for a vector
Y = [yla"‘7yn]7

> 0pP(ar;)y;
j=1

OpP(A)YT = : ;

n

> 0" (any)y;

Li=1

YT being the transpose of Y. We also remind that
1
2
lAllz = (3 lagl?) s 1Al = sup fag|.
irj "

With notations introduced above, system ([2.1.2]) writes in the following compact fashion which
has the merit to well highlight, among all non-linear terms, the very quasi-linear contributions
(QL)1, (QL)2, represented below by OpB(A’'(V;n))W:

DW= A(DYW! + OpB(A'(Vin))W! + OpP(C"(Win)V + OpB (A (Vi) W!

(2.1.13) +OpP(A"(VIn))U + OpP (C"(U; ) )V + OpR (A" (VI m)U + Q4(V, W).
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The energies defined in ((1.1.9) take the form

(2.1.14a) En(tiug,vs) = Y [IDSW(t, )2, YneNn>3,
la|<n

(2.1.14D) Bi(tus,ve) = > [[DIWI(t,)|7., VO<k<2,
la+1]<3
[1]<3—k

and we can refer to them, respectively, as E,(t; W), E5(t;W). We also notice that, since

0 if 0 e {0,0;,j=1,2},

2.1.15 T, D; + |D,|] =

if T e {0,0;,7=1,2},

0
(2.1.15b) [I', Dy &+ (Dy)] = {]HDm)(Dt (D.))  fl=Z,m=1,2,

and operators Dy,|D,|™!, D, (D,)~! are continuous on L? for m = 1,2, there exists a constant
C > 0 such that

(21.16) O S ITW ) 2 < B W) < 0 X [TW )2,
Ied Iedgk
where, for any integer 0 < k < 2,
(2.1.17) 35 .= {|I| <3:T1 = DT/ with |a| + |J| = |I|,|J] <3 —k}.
For convenience, we also introduce the following set:
(2.1.18) I, = {|I| <n:T' =D with |a| = |I|}, neNn>3.
Matrices A(n), A'(V;n), A”(VI:n) are of order 1 and A'(V;n), A”(VI;n) are singular at n = 0
(i.e. some of their elements are singular at n = 0), while C'(W?;n),C”(U;n) are of order 0.

Since we will need to do some symbolic calculus on A’(V';n), we need to isolate the mentioned
singularity. We hence define

(2.1.19)
0 am 0 bom 0 (ar—ao)m 0 (bx—bo)m
roveoy . |aom 0 bom 0 N L 0 0 0
AVin) = 0 am 0 bom|’ A (Vim) = 0 0 0 0 ’
aom 0 bom 0 0 (ax—ao)m 0 (b —bo)m

Al (V;n) being a matrix of order 1, A" ;(V;n) of order —1, both singular at n = 0, and write
AL (Vin) = AL(Vin)(1—x)(n) + AL(V;m)x(n), where x € C§°(IR?) is equal to 1 in the unit ball.
Equation (2.1.13)) can be the rewritten as follows

(2.1.20)
DW= ADYW' + OpP (AL (Vin) (1 = x) ()W + OpP (AL (Vim)x(n) W'
+ OpP (A (Vi)W + OpP(C'(W!im))V + OpR(A' (Vi)W + OpP (A" (VEin)U
+ OpP(C"(Usm))V! + OpR (A" (V) U + Q4(V, W),

and the symbol A} (V;7n)(1—x)(n) associated to the quasi-linear contribution is no longer singular
at n = 0. We observe that this matrix is real since i(v4 + v_) = 20w, z< >(v+ v_) = 20,V
and v is a real solution, but it is not symmetric and such a lack of symmetry could lead to a loss
of derivatives when writing an energy inequality for W!. The issue is however only technical, in
the sense that A;(V;7)(1 — x)(n) can be replaced with a real, symmetric matrix, as explained
in subsection m (see proposition . Before proving such result, we need to derive some
L? estimates for the semi-linear terms in the right hand side of .

53



2.1.2 Estimates of quadratic terms

In this subsection we recover some estimates for the L? norm of the non-linear terms in the right
hand side of equation (2.1.20]).

Lemma 2.1.1. Let I be a fivzed multi-index and x € C§°(R?) equal to 1 in a neighbourhood of
the origin. The following estimates hold:

(2:1.218) || (097 (A4(Vim)x(m) + Op” (AL, (Vim) W (2. )|

Lo SV oW ()| 2

(2.1.21b) [Op" (' (Whm)V(t S IV o W (2, ) 2

v')HLQ
(2.1.21c) 1OPE(A' (V)W ()22 S IV () amee W (E, ) 225
(2.1.21d) [OpP(A"(VEn)U (¢, )l g2 + OpE (A" (V) U, )l 2

S (IRLU (s prs.ce + 1T o )V (E )| 2;
(2.1.21e) 10p" (" (Us)VI(#, )12 S (IRLU ()l m2ee + (U ) rzee )W (2] 25
Proof. e Inequality follows applying propositionto OpB (A, (Vin)(1 = x)(n)) W!

whose symbol A’ ;(V;n)(1 — x)(n) is of order —1 and has M, ' seminorm bounded from above
by [|[V (¢, )| g1.00, after definitions (1.2.2)), (2.1.8) and (2.1.19).

e Since from definition (2.1.7)) of matrix C'(W?Z;n)

[op" (@' W)V ]| > S 0P (D1 (0] + 0L ))ue | o + HOPB<Z<);331 (vi —0) >)
D, D

+ HOpB(Dl(ufL +uI_))UiHL2 + HOpB( ’;)m| (ui B uI_) %)

we reduce to prove inequality m 2.1.21D)) for Op®? (? ID>1 (vfr vl). <’7> )v+, the same argument being

applicable to all other L? norms appearing in the above right hand side. Using equality (1.2.6]),
and considering a new admissible cut-off function y; identically equal to 1 on the support of x,
we first derive that

00 (853 01010 85 ) o€ = g xS B o o0 E - - Byt

= o | 5) <M— ) - Do ()
N (271r)2 /X1(§<;>n> (B5) Bt By od 4 01| (€ = m) - Do (m)ely
= Op” (X<%§> % (1D)§> (v} + U£)>DIU+(§)‘

Successively, by decomposition ([1.2.7) and the fact that R(u,v) is symmetric in (u,v), we have
that

Op® (x(&> Di Ds (o1, vi))Dgchr - X<57§) % <gz> (Wl +v!) . Dyoy

— [0pB(Davy) + OpB(Davy)] [X(

Doy D1 De (o1 1)

(m)/ (n) (Dx)

o4



so propositions|1.2.7}[1.2.8(i7), and the fact that x (%‘) % <gz ) is an operator uniformly bounded

on L?, imply that

B( DDy, g I n I
O (Thy vk +o) - o S IV o VI
e By definition of A'(V;n),
OpB(A' (V) )WL, )., < |lOpB ol opB (22 (v, — vy LYol
H PR( ( ,77)) (a)HLQNH pR(vy + v )UiHLwL PR <D>(U+ v_) m vy L
D,
+1|OpB (s + v yul 2 + ' O (pty e =) )it

Let us only show that inequality (2.1.21c]) holds for OpB(@i) (vy —v_)- m)ufr For a smooth
cut-off function ¢ equal to 1 in the unit ball we write

D, nm D, m
Opg <<>(’U+ — U_) . ‘77‘1) U{;'_ = Opg (ﬁ(’lM- — 'U—) ’ 71¢(77)>U{i-

Da D, )
Dy yus I
+OpB vy —v ) —(1—¢ ul
R(py (e =) (= o)) )y
where by proposition m ()
Dy o s H D, ,
OpB v —UV_) s — u S —(v — v t’. U t,‘ 9
|orh gy —e- o)t 5| pos —vwo] e

SV s IW(E, )] e
On the other hand

Onf (1 o = v-) - T 1 = @) = [ i) (D)7 (0 = 0-)(¢ )] - ()
(e = gz (1

(D.) B
g (- () (e p)) - oo i

where

and frequencies £ —n and 7 are either bounded or equivalent on the support of m(&, n). Therefore
m(&,n) satisfies the hypothesis of lemma (1) |8§“85m(§, n)| < A{€)73(n)~3 for any a, B € N2,
and by inequality (A.4al)

o (ps (o = o) 1= gy

e From definition (2.1.6) of A”(V;n),

" Dz
00 (4" m)U(E )2 5 1007 (0 o ym el + 00 (55 o = o) - o Y

(the same inequality holds evidently when Op?® is replaced by Opg). As done for previous cases,
we reduce to show ([2.1.21d)) for OpB(uD)z> (vl —ol)- %)1@ (resp. for OpP replaced with OpB).
Using decomposition ([1.2.7) and the fact that R(u,v) is symmetric in (u,v) we find that

S va, Mmoo W (E, )l 2
L

)
L2

D:B nm Dw Da:Dl
Op? ol o)y = ol —ol). U
P (o 0 =) Qo e = (g v =)
D, D 1 I I B(DsD1 n I I
—OpP (=2 uy ) (0l — ol — OpB (= - ) (vl —ol),
(Toug e ) e =0 = OnR (e 7 ) (0 =o8)
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and

Ok (pts (ot = 1) T Y Opg(?;;ﬂl - ) o = ol),

so a direct application of propositions|1.2.7]and[1.2.8|(ii) gives that the L? norm of the above right
hand sides is bounded by H ?Bﬁl U+HH4@° IVt, -)||L2, and hence by |R1U(t, )| gre.0 [[VE(E, )|l 12,
which gives inequality .

e From definition of matrix C"(U;n),

10p"(C"(U:n))V! |12 <

~

0P (D1 (uy +us)) (vl + vi)HL2 + HOpB <D;)f|l (uy —u_)- 77) (vl —ol)

so estimate ([2.1.21€]) follows immediately from proposition m O

Lemmas [2.1.2] and [2.1.3| below are introduced with the aim of deriving an estimate of the L?
norm of vector Qf(V, W) defined in (see Corollary. We remind that the summations
defining Q4 (V, W) come from the action of family T'/ of admissible vector fields on the quadratic
non-linearities Qo (v, 01v) and Qo(v, d1u) in (1.1.1) (or, in terms of w4, v+, on Qf (v+, Div4) and
ngg (vg, Diuy)). According to remark if I €7, and I'! is a product of spatial derivatives
only the action of T on QY (v, Divs) (resp. on Qgg(vi, Dyuy)) "distributes" entirely on its
factors, meaning that

QY (v+, Dyvs) = > Qp(vit, Dyvl?),
(Il,IQ)GJ(I)
[11]+|12]=|1]|

(the same for Fngg(vi, Djuy)), and all coefficients ¢y, 1, in the right hand side of are
equal to 0. On the contrary, if I € J§ for 0 < k < 2 and T/ contains some Klainerman vector fields
Q, Zy,,m = 1,2, the commutation between I'! and the null structure gives rise to new quadratic
contributions in which the derivative D; is eventually replaced with Do, D;. As already seen in
(1.1.17)), in this case we have

(21.22)  TIQ¥(vs,Divs)= Y. QU@E,Dw2)+ Y e nQY(i, Du?),
(11,12)€3(I) (I1,12)€I(1)
|1+ T |=]1] N[+ T2 |<[1]

with some of the coefficients ¢y, 1, being equal to 1 or —1, and D € {D;, Do, D;} depending on
the addend we are considering (similarly for I'/ Qgg(vi, Dyuy)). For our scopes, there will be no
difference between the case D = Dy and D = D, the two associated quadratic contributions
enjoying the same L? and L™ estimates. When D = D;, we should make use of the equation
satisfied by v (resp. by u’?) in system to replace QY (v, D;v2) (resp. Qg (vlt, Dyul?))
with

Qb (ol (D)) + @ (V2. T2 Q¥ (vs, Dis) )
(vesp. with QE*(vl2, 1Duful2) + QFF (v}, T2Q5 (v, Divs) ) ).

where the left hand side quadratic terms are given by
(2.1.24)

(2.1.23)

QY (02 (Da)el) = (o +01)(Do) = ') = 5 (o =l - Dol 408
<resp- QeE(vl, Do ful?) = (v + vh>|Dz\<uf—ub>—<gi><vil o) Dy(ulf +u >>
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while the right hand side ones in (2.1.23) are cubic. On the Fourier side, these new quadratic
contributions write as

> /]2( 31]2 Sk <Z>>< YOIL(E =)o, (n)dEdn,

]l7j2€{+7 77>

resp. Y / jz( ]1]2

Jr,gee{+,—}

AIl ]2
2 |n,)u (& — a2 (n)dedn |

and have basically the same nature of the starting ones, as

QD)= 3 / ( ~ hia g - -") 1011 (€ — m)ol2 (n)dgdn,

ji,ge€{+,—} —n) )
resp. Qo Dral)(€) = 3 / ( ~ i ”> ,",)nfﬁ(f n)il2 (n)dgd
Ji,j2€{+,—} N "

For this reason, as long as we can neglect the cubic terms in (2.1.23]), we will not pay attention
to the value of D € {D;, D9, D;} in the second sum in the right hand side of (2.1.22]). Lemma

2.1.3]is meant to show that the mentioned cubic terms are, indeed, remainders.

Before proving lemmas we need to introduce a new set of indices. According to the
order established in Z at the beginning of section (see (1.1.7)), we define

(2.1.25) K :={I = (i1,dg) : i1,i9 = 1,2,3}

as the set of indices I such that I'! is the product of two Klainerman vector fields only, together
with

(2.1.26) V.= {I edt:3(I,, L) € I(I) with I, € K},

which is evidently empty when £ = 2. We also warn the reader that, in inequality (2.1.30) with
k=2, E3(t; W) stands for E3(t; W), this double notation allowing us to combine in one line all
cases k =0,1, 2.

Lemma 2.1.2. (i) Letn € Nyn >3 and I € J,,. Then

(2127)
1
lavel k)| 4 S @l )|, S IVE e Balt W),
(th)GJ( ) (I1,12)€3(1)
If<n L |<[2],|T2]<n
(2.1.28)
1
|@teh, Da)|| | (100 gigrezce + IRUE ) egieone ) Ealts )3,
(I1,12)€3(1)
1]>[5]

(i3) Let 0 < k <2 and I € J5. There exists a constant C > 0 such that, if we assume a-priori
estimates (.1.11a]), (T.1.11b) satisfied and 0 < ey < (2A + B)™! small, for any x € C§°(R?)
equal to 1 in a neighbourhood of the origin and o > 0 small we have

(2.1.29a) > QU(vi, Do) = RE(t,x),
(I1,12)€3(1)
‘12|<3
(2.1.29b) S QWD D) =sp Y QL (vil,x(fgp )Dyu )—l—i)‘ik(t 2),
(I1,I2)€I(I) (I1,I2)€3(1)
[11],112]<3 LeX,|I2|<1
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where dyr. = 1 if I € VF, 0 otherwise, and
(2.1.30) IRE (L, )| 2 < C(A+ B)et \EE(t, W)2 + CBet™ 1,

with 8> 0 small, B — 0 as 0 — 0, for all t € [1,T]. The same result holds with vaf_f (resp.
D,u®?) replaced with (D)v%? (resp. |Dy|u’?

Proof. (i) The proof of follows straightly from ([2.1.1)) with a = 1,2, by bounding the L? norm
of each product with the L> norm of the factor indexed in J € {I, Io} such that |J| < [%],
times the L? norm of the remaining one.

(43) Let I € J5. One immediately sees that:

@13) Y 1L D+ Y (105w Davdlls + Qs Deud)12)
(1,0)€3(1) (1,0)€I(T)
|J]<3
1
SVt ) 2o BY (W) 25
if (11, I2) € J(I) is such that |I3| < 3 and either I'/* or I'’2 is a product of spatial derivatives only

1
(2.1.32) 1Q8 (vl Dav) 12 S V()| gae EE (6 W) 3

if (I, 1) € I(I) is such that |I5| < 3 and T'* is a product of spatial derivatives only

(2.1.33) |QEE (v, Do)l 12 < IV (£ ) oo EE (W)

Hence, the remaining quadratic contributions to be estimated are those corresponding to indices
(I, I) € I(I), with |I5| < 3, such that: both T'/t and T'/2 contain at least one Klainerman vector
field, in the left hand side of (2.1.29a)); '/t contains one or two Klainerman vector fields, in the

left hand side of ([2.1.29b)).

The idea to estimate the L? norm of the Qw(vi ,Dv 2), for indices Iy, I3 just mentioned above,
is to decompose the Klein-Gordon component carrying exactly one Klainerman vector field in
frequencies, by means of a truncation x(¢t~7D,) for some smooth cut-off function x and o > 0
small. Basically, the L> norm of the contribution truncated for large frequencies || 2 7 can
be bounded by making appear a power of ¢ as negative as we want, while that of the remaining
one, localized for |¢| < 7, enjoys the sharp Klein-Gordon decay ¢~ as proved in lemma
in appendix The same argument can be applied to QIS (vi ,D u ?) with I; such that T'lt
contains exactly one Klainerman vector field. Then, by lemma in appendix with L = L?
we find that, for some y € CSO(RQ), the following: if I'/* contains exactly one Klainerman vector
field,

|l Dy, S| Dol k)
V) (Jos (8 )l + 1Dt ) e) (an“v M + o2 (¢ )l )
N lu|=0
|@beh, Do), ) )LQSHx(t“’Dx)vﬁé(tw)HHlooHuﬁf(tw)Hm

I
+ O (o (t, ) ms + | Devs(t, ) ms) (E l2# Dyu2 (¢ ')HL2+tHuj:2<t7'>HH1);
|u|=0

58



if T'%2 contains exactly one Klainerman vector field,

|Qv el Dty s oD || L okl
65 (ot iz + 1D e) (3 o e e+t ),
[]=0

where, in all above inequalities, N(s) > 3 if s > 0 is large enough. From inequalities (B.1.5a)),
(B.1.64)), estimates (B.1.17)), lemma|B.4.14) and the boostrap assumptions (|1.1.11)), together with

the fact 6,0; < 1 are small, for j = 0,1,2, we derive that there is a positive constant C' such
that, for multi-indices I, I> considered in above inequalities,

HQO v, Du2)(t, - ‘

-+ @bl Dby, < oBe LB @ W) + Bt R,

The remaining quadratic terms are Qla (v, Dyu’?) with I € K (and hence |I| < 1) if V¥ is
non empty. Applying lemma with L = L?, w = u and the same s as before, and making
use of estimates (1.1.11)), (B.1.17)), together with inequality (B.1.5a), we see that

@bl Dol e, )|

S @k (v D) Da ) 1)

L2

(Zuxﬂv g + o2 ()22 ) (e (&) lazs + D (1))

|n|=0

s [@F (o2 oD Dul2) 8| |+ CBet S,

which hence concludes the proof of (ii). We should highlight the fact that the quadratic con-
tribution in the above left hand side is treated differently from the previous ones, because we
do not have a sharp decay O(t~') for vi when I; € X (neither when truncated for moderate
frequencies), but only a control in O(¢~ 1+B ), for some small §’ > 0 (see lemma|B.4.2)). Moreover,
the decay enjoyed by the uniform norm of X(t*”Dz)Dxuf, appearing in the quadratic term in
the above right hand side, is very weak (only t=1/2+5" see lemma . Such terms, that
contribute to the energy and decay slowly in time, will be successively eliminated by a normal

form argument (see subsection [2.2.2)). O

Lemma 2.1.3. Let 0 < k<2 and I € J’:.f. For any x € C°(R?) equal to 1 in a neighbourhood
of the origin and o > 0 small

(2.1.34a) > QUL D) = RE(t, ),
(In,12)€3(I)
|I1 |+ |12|<2
(2.1.34b) Z 0 (vi,Dtui = Oy Z Q (v, x(t77D,)|Dylus) + RE(t, ),
(I1,I2)€3(I) (J,0)€3(1)
I |+ T2|<2 Jex

with Sye = 1 if I € VX, 0 otherwise, and R (t, x) satisfying ([2.1.30).

Proof. Using the equation satisfied by vf_@ and uiz respectively in system (2.1.2)) with I = Iy we
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see that

(21.352) Y QEI,DwE)= > QY (D))
(I1,12)€I(I) (I1,12)€3(I)
|T1 |+ 12| <2 [11]+|12]<2

+ Z Z 1,02 Q0 <1):]|:1, 16 (U:I: 7DuJ2)>

(I1,12)€3(1) (J1,J2)€I(12)
[T1|+[12]<2

(21.35b) Y Qi D)= > Qf(vi,|Dalul?)
(I1,12)€3(I) (I1,12)€3(1)
[I1 ]+ 12| <2 [I1[+]12] <2

+ Z Z e Q0 (UiaQo (vi*, D ))7

(I1,12)€I(I) (J1,J2)€I(12)
|I1|+]12|<2

with coefficients ¢y, s, € {—1,0,—1} such that CJl J, = 1 whenever |Ji| + |J2| = |[2|, and

QY (v, (Dy)v2) (in which case D = Dy), Q (vi y | Dy \ui) given explicitly by (2.1.24). After
lemma [2.1.2] (i7) we know that

> (@l Do) + QR D) = YD QL IDafus) + R (k).
(I1,I2)€3(I) (J,0)€3(1)
[11]+|12]<2 Jex

with i)‘i’?f verifying (2.1.30). The only thing to prove is that the cubic terms in the right hand
side of (2.1.35)) are remainders %Ig We focus on those in the right hand side of (2.1.35a]) as the

same argument applies to the ones in (2.1.35b]).

First, let us consider cubic terms corresponding to indices Iy, I such that |I1] = 2 and |I3] = 0.
In this case we evidently have that |J;| = |J2| = 0, and by (B.1.4e) with s =1 and 6 < 1 small,
together with a-priori estimate (|1.1.11)),

_34p4
@b (vk Qv D)) |, S M2 (6 a2 1QE (0 Drws)pne < OBt 347,

for some 3’ > 0 small as long as o, §y are small.

Let us now consider indices I1, I such that Tt € {Q, Z,,,,m = 1,2}. As we also require that
(I1,Iy) € I(I) with |Io| < 2, we have in this case that |I2] < 1 and consequently, for each
(J1,J2) € I(I5), either |J;| = 0 or |.Jz] = 0. Using lemma in appendix [B| with L = L? and
w = v, we derive that for any y € C§°(R?) as in the statement and o > 0 small

S |lew (vh @bl Dt >)< )|

(Jl,JQ)Ej(IQ)

L2

s Y ek | [ebed pue |

(J1,J2)€j([2)

+ > O (lost, ms + Dot ) ms)
(J1,J2)€j(12)

x(ilin“Q‘a%iaDuf)( b, +t @bl Duye |

|n|=0

L2

L2>’
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with N(s) > 3 is s > 0 is sufficiently large. Here

> |eoted pue. |

L2
(J1,J2)€3(12)
D, \#m
< 5 |eipy) ]| (ol + D i2)
> I\ -
||=0,1
171<1

[
Hlzvd (¢ )llze (R st )l mace + | DR ws(t, )| )] < C(A+ B)Bta+%

and

(136) S [kl pude ]

(Jl,JQ)Ej(Iz)

< > el Hm(ZIIR’Wi Wrzo + | DR uc ()] prncs )

|J]<1 ||=0

+ ot e (lud (8 ) g + (| Deus (2, )HL?)} < C(A+ B)Be3*

L2

52

by (B.1.5a), (B.1.5b), (B.1.5c)), (B.1.7) and estimates (1.1.11)), (B.1.10), (B.1.17), so together
with lemma [B.4.14 and (B.1.6a)), these inequalities give

k _3 ’
Z HQO ( I Og(vilvDui2)> (t’ ‘)Hm < C'Bet 2+B’

(J1,J2)€3(I2)

for some new ' > 0 small, 5 — 0 as ,d9 — 0.
Finally, for indices I1, I, such that I''' € {D2,|a| < 1}

(2.1.37)
> ey (el ou)| L5 X et e QB0 Du)| -
(J1,J2)€3(12) (J1,J2)€3(12)

For (Ji, J2) € I(I2) such that |J;|+ |J2| = |I2| we have by lemma (#4) and a-priori estimates

(T.T.11) that

kg k —c
1Q0* (v, Dru?) 2 S IME(E, gz + D Q6" (v, Dix(t™7 Dy)us)ll 2
JeX

1
S I3, )HszLtBZ IREus (¢, -) | poe B3 (W)
||=0

< CBet_%H”%l,
with 8 > 0 small, 5 — 0 as ¢ — 0, while for (J1,J2) € IJ(I2) such that |J1| + |J2| < |I2| (hence

< 2) an estimate such as (2.1.36) holds. These estimates, together with (1.1.11b)), imply that

the right hand side of (2.1.37)) is bounded by CABS%F%JFE, for a new small 8/ > 0, 8/ — 0 as
0,00 — 0, and that concludes the proof of the statement. O

Corollary 2.1.4. Let Q}(V, W) be the vector defined in (2.1.12). There exists a constant C > 0
such that, if we assume that a-priori estimates (1.1.11)) are satisfied in interval [1,T], for some
fized T > 1, with eg < (2A+ B)™! small:

(2) if I € J,, with n > 3:

[
2

(2.1.38) IQE(V. W)l 2 < CAet™ 375,
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(ii) if I € I%, with 0 < k < 2,

-

(2.1.39) IQL(V, W)l 2 < C(A+ B)et~2+%

Proof. (i) Inequality (2.1.38) is straightforward after definition (2.1.12) (all coefficients ¢y, 1, are
equal to 0 when I € J,,), lemma (1), and a-priori estimates (1.1.11a}), (1.1.11b)).

(id) If I € J% for a fixed 0 < k < 2 we have by definition (2.1.12) and lemmas that

(2.1.40) Z QY (v, Dvl?) + Z QY (v, Dl?) = Ri(t, x),
(I1,12)€I(I) (I1,12)€I(T)
[12]<|1] [+ |12]<2, | 12| <]

with RE(t,2) satisfying ([2.1.30). Moreover, for some smooth x € C§°(R?), equal to 1 in a
neighbourhood of the origin and o > 0 small,

Z S (olt) Dyul?) = o Z QLe <vi, X(t77Dy) Dyul )—Hﬁg(t ),

5 o
2|< 1€ 2|<1
(2140 ) ksl p S Y QL t=7D,)|D, 9k (¢
o (v, Dyul?) = Sy of (v, x( o) Delus) + R (¢, ),
(I,I2)€3(I) (J,0)e3(I)
[T1 |4 12] <2, I2| < |1 Jex

with sets K, V¥ given, respectively, by ([2.1.25)), [2.1.26)), dyr = 1 if I € V¥, 0 otherwise (remind
that V2 is empty). Observe that, if & = 0,1, I € J%5 and (I3, I2) € I(I) with I; € K, two
situations may occur: if I''2 € {D2, |a| < 1} then product I''* contains exactly the same number
of Klainerman vector fields as in I'/ and V' would be at the same energy level as V! (i.e. its

L2 norm being controlled by E%(t; W)/2). In this case, from a-priori estimates (T.1.11a)

(2.1.42)
o (&, e (I D) (1 lmee + (7 Da)RUZ (L)l inee ) < Aet™5 (6 W)3.

If instead I is such that 'z € {Q, Z,,,m = 1,2} is a Klainerman vector field, we automatically
have that I'! is a product of three Klainerman vector fields and that V! is at an energy level
strictly lower than V7 (i.e. its L? norm is controlled by Fi(t;W)'/? whereas that of V! is
bounded by EJ(t; W)¥/?). From lemma we deduce that

(2.1.43) (o2 (8, )1z (It Da)ul2 () anos + (7 D) R (1, ) 110

< C(A+ B)et— 3+ BN (1 W)3,

for asmall 5 >0, 5 — 0as o — 0. Summing up (2.1.40)) to (2.1.43]) and using (2.1.30) we obtain
that there is a positive constant C' such that

(2.1.44)  |QL(V, W)z < 6,C(A + B)et™3 [Eé“(t; W3 4 6ot5+ 3 EL(t; W)%] + OBet1,

with 0 = 1 for £ = 0,1, equal to 0 when & = 2, and dg = 1 only when & = 0, 0 otherwise.
Finally, taking o > 0 small so that 8 + 01/2 < dp/2 and using a-priori estimates (1.1.11d)) we

deduce estimate (2.1.39) from (|2.1.44]). [
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2.1.3 Symmetrization

Proposition 2.1.5. As long as H">® norm of V(t,-) is sufficiently small, there evists a real
matriz P(V;n) of order 0 and a real symmetric matriz A1(V';n) of order 1, vanishing at order 1
at V=0, such that

(2.1.45) W= 0p® (P(Vin) W'
s solution to

DW! = ADYW! + 0pP (A1 (V) )W+ 0pP (A" (VIin)U

(2'1'46) Bi(rr. 1 Bty I. I
+ Op”(CT(U;n)V" + Opr(A"(V'im)U + Qo(V, W) + R(U, V),
where R(U, V) satisfies, for any 6 €]0,1],

(2.1.47)
IR, V)(E )z S [HV(t, Waree + 1V IV @ s U E )z + IRIU(E ) 200)

Ve (10 + IR b ) 10| IV 2, )2
V(oo (IW (e + IRU(E oo IV (2,2
IV () o< lQo(V W) 2.

Moreover, for any n,r € N,

(2.1.48) MY (P(Vin) = Tn) S V() [ aerce,
(2.1.49) MY A(Vin)in) SV )| giree,

and as long as the H>* norm of V(t,-) is small there is a constant C > 0 such that

(2.1.50) CHW(E, )2 < WLz < CIUW(E )l e

In order to prove proposition we first need to introduce the following lemma.

Lemma 2.1.6. Let o, € R, L € M3(R) and My, N(«, 5) € My(R) given by

01 IL 0 oL BL
L:[l 0}’ Moz[oz —12]’ N(O"B):[QL BL]:

Q oL o

«a
0
«a
0

o™ o
oo™

There exist a small § > 0 and a smooth function defined on open ball Bs(0) of radius 0,
(e, B) € Bs(0) = P(av, B) € Symy(R),

with values in the space of real, symmetric, 4 x 4 matrices Sym4(R), such that P(0,0) = Iy,
P(a,p) =14+ O(Ja| +|5]) and P(a,ﬁ)*l(Mo + N(a,ﬁ))P(a, B) is symmetric for any (a, B) €
Bs(0). Furthermore P~Y(a, ) = Iy + O(|a| + |B]).

Proof. Let € be the vector space of 2 x 2 matrices B(a, 8) = aly + SL and F be the set of 4 x 4
matrices of the form
[F n 12]

Io1 Fa
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with Fj; € €. We look for a matrix P of the form

o . 2y — L1 IQ —-B
(2.1.51) P(B) = (I — B2 [_B IJ
with B € & close to zero (so that in particular (Iy — B%)Y/? is well defined). We remark that

matrix P(B)~! has the form

P(B)™ = (I~ Bz [12 B}

B I

and that P(0) = P~1(0) = I;. We consider ® : R? x & — F defined by ®(a, 3, B) =
P(B)™'[My + N(a,8)|P(B) = (@ij(a,ﬂ,B))1<ij<2, where ®;; € € as € is a commutative

sub-algebra of M>(R). We also define ¥(«, 8, B) := ®12(a, 5, B) — @;1(04, B, B) with @;1 denot-
ing the transpose of ®9;. We have that ¥(0,0,0) = 0 and

0 B 0 B 0 —-B
put00)- 5= [ D s[5 5] 2] 2

from which follows that DpW¥(0,0,0)- B = —4B, i.e. DpW¥(0,0,0) = —41. Therefore, there exist
a small § > 0 and a smooth function («, 8) € Bs(0) — B(a, 5) € € such that B(0,0) = 0 (which
implies P(B(0,0)) = I4), and ¥(«, 3, B(a, B)) = 0 ¥(v, B) € Bs(0). This is equivalent to say
that ®(«, 8, B(a, B)) is symmetric and moreover P(B(a, 3)), P(B(a, 8))™' = I4 + O(|a| + |8)).
Defining P(«, 8) := P(B(«, 3)) concludes the proof of the statement. O

Proof of proposition[2.1.5. With notations introduced in lemma and in (2.1.5), (2.1.19),
A(n) = (n)Mo + S(n) and A3 (Vin)(1 = x)(n) = (mN(a, 8), with

In| —(m) 0 0 0
0 0 0 0
S(n) = whose elements are O(|n|™1), |n| — +oo,
(n) 0 0 —(jn|— () 0 (In177),
0 0 0 0

and o = ao(vi;n)%(l -x)(n), B = bo(vi;n)%(l — X)(n), ap,by defined in (2.1.8)). Since
sup, (lo| + 18]) < IV ()|l gree, by lemma we have that, as long as ||V (¢, )| g1, is suf-
ficiently small, there exists a real symmetric matrix P = P(V;n) of the form such
that P(V;n)~*[Mo 4+ N(c, 8)] P(V;n) is real and symmetric. Moreover P = Iy + Q(V;7) and
Pt =1,+Q'(V;n), where Q(V;n), Q' (V;n) are matrices depending smoothly on «, 8 (which
are symbols of order 0), null at order 1 at V' = 0, verifying for any n,r € N

MY (Q(Vim)in) + MY (Q'(Vin)in) SV ()| reroe.
We define the following matrix of order 1
A (Vin) = P(Vin) ™ [(n) (Mo + N(a, 8))] P(Vin) — (n) Mo
and W! := OpB(P~1(V;n))W!. From the fact that A;(V;n) also writes as
(n) [Q'(Vim)Mo + P~ (V;n)MoQ(V;m) + P~ (V)N (v, B)P(V; )]

we see that it vanishes at order 1 at V = 0 and is such that MTl(gl(V; n);n) S|V ()| gisre-
Moreover, from proposition [1.2.9] (4) with » = 1 it follows that

(2.1.52) I =0p®(P(V;m)Op®(P~H(Vin)) + T-1(V),
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where operator T_1 (V) is of order less or equal than —1 whose £(L?) norm is a O(||V (¢, )| g2, )-
Therefore W1 = OpB(P(V;n))W! + T_1(V)W! and from proposition the L? norms of
wi, WSI are equivalent as long as the H* norm of V is small. Using equation (2.1.20) we find
that:

(2.1.53)
D! = 0pP (P~} (V53))OpP (A(n) + AL (V) (1 = x) () W!

+OpP (P(V;0)) [OpP (AL(V5m)x(n)) + Op (AL, (V) | W
+ O (P~ (Vi) [ 007 (C' (W5 )V + Op (A (Vi m)) W]
+0p" (P (V;m)) | Op® (A" (VI m)U + Op® (C"(Us )V + OpR (A" (VI m))U
+OpP(PH(V;m)QE(V. W) + OpP (D P (Vi) )W

where

(2.1.54)

Op” (P~ (V;1))Op® (A(n) + AL (Vi) (1 — x) () W'
= 0p"(PH(V; )W+ 0pP(S(n)W' + 0p®(Q' (V1)) Op® (S(n)) W'
= Op”(P~H(V; ) Op” (P(V; )W/
+0p® (P71 (Vi) ) T (V)W + OpP (S(m)W/
+ Op (S(n))OpB(Q(W n))WI +Op” (5(77 YT (VYW + 0p”(Q' (Vs m))Op® (S(n))W!
( )W

with To(V), T"o(V') operators of order 0 and £(L2?) norm O(||V (¢, -)|| 2. ). Last equality follows
indeed from the fact that, by proposition m (#4) with » = 1 and proposition ,

Op®(P~H(V;m)Op® [(n) (Mo + N(a, B))|Op® (P(V; 1))
= OpP (P(V;n) ™ [(n) (Mo + N(a, B)) | P(V;n)) + To(V)

and Op®(S(n))OpP(Q(V;n)), OpB(Q'(V;1))OpB(S(n)) are operator of order 0, too (the former
of the form Ty(V), the latter of the form Tp(V)), while OpB(S(n))T_1(V) is of order —1 (and
can be included in Ty(V)). The equivalence between the L? norms of W! and W implies that
ToVWI +To(V)W! in is a remainder R(U, V).
All operators appearing in the second and third line of are also remainders R(U, V)
because, from proposmon 7, the fact that MY (P~Y(V;n);2) = O( ) and lemma 1} their L2
norm is bounded by ||V (t, )HH7,oo WL, )| 2. Last term in also Contrlbutes to RU,V)
for matrix D;P~1(V;n) is of order 0, its MJ(-,2) seminorm is bounded by ||D:V (¢, )| g1, and
for any 6 € [0, 1]

1DV (8, e SNV (E M rzee + IV E ) e IV E s NUE ) 2 + IR ) 2ee)
FIV e (06 + RO ) 106 G
as follows from ([B.1.6b)) with s = 1. Finally, in remaining contributions in (2.1.53) we replace
OpB(P~1(V;n)) with I+O0p®(Q'(V;n)) and observe that the terms on which Op?(Q'(V';n)) acts
are remainders R(U, V') after proposmon the fact that M (Q’(V n);2) = O(||[V (¢, )|l g1.e0)

and lemma, [2.1.1] “ Interchanging the notatlon of P(V;n) and P~1(V;n), we obtain the result of
the statement. O
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2.2 Normal forms and energy estimates

Before going further in writing an energy inequality for W/ we should make few remarks. As
we previously anticipated, the L? norm of some of the semi-linear terms appearing in equation
have a very slow decay in time. On the one hand, it is the case of Op®(A”(VI;n))U,
OpP (C"(U;n))V! and OpB(A”(V;n))U, whose L? norms are estimated in (2.1.21d), (2.1.21¢)
in terms of the uniform norms of U, R1U. On the other hand, also some of the contributions to
QL(V,W) are only a Op» (=Y 2*’B/), for some small 5’ > 0, after corollary Nevertheless,
we are going to see that OpB(A”(VI;n))U, OpB(A”(V;7))U and the mentioned contributions
to Qi(V,W) can be easily eliminated by performing a semi-linear normal form argument in
the energy inequality (see subsection . Such an argument is however not well adapted to
handle Op®(C"(U; 7))V, for it leads to a loss of derivatives linked to the quasi-linear nature of
the problem, i.e. to the fact that matrix Zl(V; 7n) in the right hand side of is of order
1. This latter contribution should instead be eliminated through a suitable normal form applied
directly on equation , which is the object of the subsection m

2.2.1 A first normal forms transformation and the energy inequality

First of all, we replace Op®(C"(U;7))V! in equation (2.1.46) with Op®(C"(U;n))VY, having

defined VI := OpP(P~Y(V;7))V!, and remind that from (2.1.48) with » = 0 and (2.1.52) the
L? norm of VI and V! are equivalent as long as the H?* norm of V (¢, ) is small (assumption

compatible with (1.1.11b)) if p > 2). We will rather deal with

(D — A(D))W! = OpP(Ay(Vin)W! + OpP (A" (V1)U + OpP(C" (U m)) V!

(2.2.1) —|—Op§(AH(VI;n))U+Q6(V’ W)+ R(U,V),

for a new R(U, V) satisfying (2.1.47)) and show how to get rid of Op”(C"(U; 7))V in the above
right hand side. More precisely, we are going to prove the following result:

Proposition 2.2.1. Let N € N*. There exist three matrices ES(U;n), E; (U;n), Ena(U;n)
linear in (uy,u_), with EQ(U;n) real diagonal of order 0 and Ed_l(U;n), E.q(U;n) of order -1,
and, as long as |R1U(t,")|| gz, is small, a real diagonal matriz F(U;n) of order 0 such that, if

W! = 0pP (I, + E(U; n))W!,

(2.2.2)
with E(U;n) = Eg(U; n) + Ed_l(U; n) + Enq(Usn),
then
oy (D1 ADIIL =09 (s BQUm) A (Vi) T+ FU ) W

+OpP (A" (VI m)U + OpR (A" (VEm))U + Q(V, W) + T_n(U)W] + R (U, V).

In the above right hand side T_n(U) = (04;(U, D3))ij is a pseudo-differential operator of order
less or equal than —N , with

(2.2.4) IT-N (U cms—n:msy S NRAUE ) paraoe + U (E ) || ves.oe s

for any s € R and such that

o5&+ () + o5 (& ma—(§), i,j € {2,4},
0, otherwise,
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with o; (5 n) supported for |€| < e(n) for a small e > 0, and for any a, B € N?
(2.2.5b) 108070756, m)| Sap €1V TNTIL G e (2,4},
Also, R'(U, V) is a remainder satisfying, for any 0 €]0,1]
IO, V(& )pe S L+ MU o) IR, V) 12
+ (IRUE, ) prree + (UL ) 5.00) [HQé(W W)l 12
+ (IRUt, Moo + U)o ) [WH(E, ')HLQ}
NV W e IV (G W () 2,

with R(U, V') verifying (2.1.47)).
For any n,7 € N, any x € CSO(RQ) equal to 1 close to the origin and supported in open ball
B.(0), with € > 0 sufficiently small, we have that

(2.2.6)

(22.72) v (88 ( (B2) vin) ) £ IR0 e
(2.2.1h) vt (57 (x (22) vin) 50) £ 106 o
(22,70 V7 (B (x (22) U3n) i) £ W00 oo
ZZ@ e (£ (x (B2) vim) i) £ IR0 e

Finally, as long as [|[R1U(t, )| gz.ec + |U(t, )| 5,00 is small, there is a constant C > 0 such that

(2.2.9) WLt e < W (2,2 < CIWY(E, )] o

Remark 2.2.2. From propositions [2.1.5] and [2.2.1] it follows that, as long as |R1U(t, )| 2.0,
WU (t, )| 5.0 and ||V (t,-)||g2. are small, there is a constant C' > 0 such that

(2.2.10) CHW ()2 < (IWS (8,2 < CIUW(E, )| 2
This implies that, if

(22.11a) E,(5W) = Y |0p®(Is+ E(U;n)0p® (P(Vin)) DSW (t,)|| 2, YneNn >3,

laj<n

(2211b) ESGEW) = Y [|0pP (I + E(U;n)Op” (P(Vin) DeW! (t,)| 12 VO < k < 2,

oo +[1]1<3
[7|<3—k

there exists a constant C7 > 0 such that
CTIE. (W) < En(t; W) < CLE, (W), Vn > 3,

(2.2.12) . ~ .
Ci E5(t; W) <E;(t;W) <CiE5(t; W), VO0<k<2

Thanks to the above equivalence, the propagation of some suitable estimates on En (t; W) and
E¥(t; W) will provide us with (T.1.12d) and (T.1.12d)) respectively, so we can rather focus on the

derivation of an energy inequality for E,(t; W), E’§ (t; W).
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In order to get rid of Op®(CY(U;n))V! in (2:2.1)we introduce matrices

0 0 0 O 0O 0 0 O
"rTooN 0 eo O O 1" LN 0 0 0 fo
0 0 0 fo 0 egc 0 O
so that

C"(Usn) = C4(Usn) + Crg(Usn),
and proceed to eliminate Op®(C(U; 7))V and OpB(C",(U;n))V/! separately.
Lemma 2.2.3. Let N € N*. There exists a diagonal matrizx E4(U;n) of order 0, linear in
(u4,u_), such that
(22.14)  Op”(CHU; Vi + Op® (DLE4(Usn))WJ — [A(D), Op” (Ea(Us )W
= T_N(U)W] + R (V, V),

where R (V, V') satisfies, for any 6 €]0,1],

(2.2.15) I8/ (V, V) (2, )22 S IV M aiee IV (8 Gy 1V ) 22,

and T_n(U) is a pseudo-differential operator of order less or equal than —N such that, for any
s €R,
(2.2.16) IT-N(O)lg(rs=v a5y S NIRUE M veace + NUE ) vonce,

whose symbol o(U,n) = (0i;(U,n)),<; j<4 15 such that

035 (& M)ty (€) + o7 (€, M)t (), i=je€ {24},
0, otherwise,

(2.2.17a) Fose(0i3(U,m))(€) = {

with sz(f, n) supported for |£| < e(n) for a small e > 0, and verifying, for any o, 8 € N2,

(2.2.17b) 0200 (€ )] S 161Ny NI for i — 2,4,

Moreover, if x € C§°(R?) is equal to 1 close to the origin and has a sufficiently small support,

o o (35)o) -0 (o) o () )

the former matriz in the above right hand side being real of order 0 and satisfying (2.2.7a)), the
latter being of order —1 and verifying (2.2.7b|).

Proof. Because of the diagonal structure of A(n) and C/(U;n) we look for a matrix E; =
(€ij)1<i,j<4 satisfying such that e;; = 0 for all ¢, j but i = j € {2,4}, and we also require
symbols eg2, e44 to be of order 0 and linear in (u4,u_). If we remind that matrix A(n) in
is of order 1 and make the ansatz that E; is of order 0, then by symbolic calculus of proposition
[.2.9 we have that

N
(2.2.19) — [A(D),0p"(Eq(Uim))l = = > iOpB (05 A(n) DS Eq(Usn)) + T-n(U)

laf=1

68



with T 5 (U) pseudo-differential operator of order less or equal than —N such that, for any
s € R,
(2.2.20)

TN ()| e ars-:me) S My (A(0); N+ 3)Mg (Ea(U31); 2) + Mg (A(n); N + 3)M 1 (Ea(Us 1); 2)

and whose symbol o(U,n) = (04;(U,1)),; is such that o;(U,n) = 0 for all i, j but i = j € {2,4}.
Therefore, for any fixed y € C§°(R?) equal to 1 in B, (0) and supported in B, (0), for some
0 <e1 <eg <1, we look for E4(U;n) such that

N
D, 1 X 1
x<<n>> Cg(U%U)-FDtEd(U;n)_'Zl;l Oy A DS Eq(Usn) | = 0.

Since E4(U;n) is required to be linear in (uy,u—_), we should write it rather as Eg(u4,u—_;n) to
then realize that, as u4 (resp. u_) is solution to the first (resp. to the third) equation in (2.1.2)
with |I| =0,
DyEg(us,u_;n) = Eq(|Dg|ug, —|Delu—;n) + Eq(QY (v+, Divt), QY (v+, Divs);n),
D%Ey(uy,u_;n) = Eg(D%uy,D%u_;n), VYa e N2

If we temporarily neglecting contribution Ey (Qg(vi, Divy), QF (v, Dlvi);n), we are lead to
solve the following equation

N

D, L ) )
laj=1

which is equivalent to system

Dy Y 1 « « a D
e (X (85) (121 = X montmos)us— (%) (1021 + S oo )u—;n)

lal=1 " la|=1
“x ()
N

eas | x (85) (D4 + Z 2@ D2 Y = (5») (12a = 3= ;6$<<n>>D$)u_;n)

la|=1 ol la|=1

=-X (%) Jos

with eg, fo defined in (2.1.9)). Then, if we look for e;; of the form

(2.2.21) €ii (U, u—; 1) =/6ix’faii(§,n)ﬁ+(§)d€+/eix'gﬂzz(ﬁ,n)ﬁ—(f)dé‘,
this system implies, inter alia, that

N

/eixfx <<§77>) <‘§| - Igzl 1'8,7(( >)f°‘)a22(§ )i (€)dE =
— i/eix-fx <<7§7>> (1 - % ;)&M({)dg

1
(€ Vo) ()

a

1*2 al?n !6\

TTMz
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and

k 2
(O + Op)* () = <n'f,‘€ (1 - <<;’> - é) ) b(em), 2< k<N,

with by (€,n) polynomial of degree k — 2 in % . %, we derive that

(2.2.22) (1 ¥ Z —o( i) (1 ¥ % : é) (1 Fb+(&m))

laf=1

with

N
N L ey (k1)
- b(€m) - kZ_Qk!ra (1 |5,) K(En),

0L Db ()| S 1€y~ v € N2,

and we can then choose a2(&,n) in (2.2.21) such that, when |£| < e2(n),

(22.22) €)= = (1 =bi(Em) 7 1
Similarly, we choose multipliers S22, a4, 844 such that, as long as [£] < e2(n),
i 1 &
522(§a77) Z(1+b (6777)) m)
o€ =~ Q€)™ L Bualem) = L — b L
’ 4 ’ €] 4 ’ iy

These multipliers are all well defined for |£| < e2(n) as by (£,1) = O(|€|(n)~1). Moreover, using
that (14 b+(6,1))7t =1 F bx(€,n) + O(J€]*(n)~2) as long as [£] < ea(n), we have that

o€ =~y R (). BnlEn) = [+ B (€
oaa(en) = —g i+ ot (€n). Buten) = 11+ B (€,

with |8“8” =1 |8“8”B 1| Suw €1t |“|< ) =vl for any p, v € N2, Injecting the above ay;, Bii,

n u
i€ {2, 4} in (2.2.21)) we find that

(5o (B2 () (2)o)
D, D, 7 _ D, D,
(o5 (B)o) =t (o (5o ().

where, for i € {2,4},

(1 (Beer(B) o)

/ ey <<§>> o (€, m)its (€)dE + / ey <<f/>> B (&, m)i (€)de.
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After lemma (i) and above estimates for a;;!, 8- kernels

Ki o) = [ e <<f7>> Qe e K ()= [ ey <<f7>> B (€, m)(€) e

are such that, for any 8 € N2, |9f K (z,n)| < |z|~(z)~2(n)"1~18! for every (x,7). This implies
that

s (5o ()00

[ o~ D2 ] + | [ 0 o = (D2 N )| S 100 )

and e;il is a symbol of order —1, for i = 2,4. Moreover, using definition (1.2.3]) and the fact that
space W™ injects in H"1>° one can check that for any r,n € N,

a (et (s (2 ) wsox (05 ) i) i) S 10G s

and therefore that

D D
M,?(eii(x<x>u ,X<$>u_;n>;n>§ R1U(t, )| gitree + [[U(E, )| gro+roo-
Defining

0 0 0 0 0 0 0 0
0 —iRj(uy—u_) 0 0 _ 0 ey 0 0
0(77. 1) — AU Lr7.00) — 22
Ed(U?T,) - O 0 0 . 0 ) Ed (U’ 77) - 0 0 0 0 )
0 0 0 —iRy(uy—u-) 0 0 0 ey

decomposition ([2.2.18]) and estimate (2.2.7a)), (2.2.7b]) hold. Consequently, as

Eq(QY (v, D1ve), QY (va, Dyvs);in) = E; M (QF (v+, D1v+), QY (v, Divt);m)

for any n € N and 6 €]0, 1[, we derive from (B.1.3d) with s = 4 that

Mg (Eq4(QY (va, Divt), QY (v, D1vs);n)sn) S QY (va, Diva) || grace
SV E )5 IV (E Y7,

and hence that the quantization of Ej (QBV(vi,Dlvi),Q‘g(vi,Dlvi);n) acting on V! verifies

(2.2.15)) after proposition Also, ([2.2.16|) is deduced from (2.2.20)) while properties (2.2.17)
are obtained using essentially ((1.2.12]). O

Lemma 2.2.4. Let N € N*. There exists a purely imaginary matriz E,q(U;n), linear in (uy,u_)
and of order —1, satisfying estimate (2.2.7¢)), such that

(2.2.25) Op®(C" (U; )WV + OpP (D Epg(U; ) )WL — [A(D), Op® (Epg(U; n))|W!
=T N(U)W] +R(V, V),

where R (V, V) is a remainder satisfying (2.2.15) and T_n(U) is a pseudo-differential operator
of order less or equal than —N such that, for any s € R,

(2.2.26) TN errs—n;me) S NUE )l raveee
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Moreover, its symbol o(U,n) = (0i;(U,n)),<; j<4 15 such that
o€ (€) + o5 (& m)i (&), (i,7) € {(2,4), (4,2)},

0, otherwise,

(2.2.27a) Forse(oi; (U,))(€) = {

with Uij; supported for || < e(n) for a small € > 0, and verifying, for any a, B € N2,
(2227h) 0RO5TE (€, )] Sau €17 +2710 )=V 151,
for (i, 7) € {(2,4), (4,2)}.

Proof. Because of the structure of C”,(U;n), we seck for a matrix E,q(U;n) satisfying ,
of the form E,4(U;n) = (eij)i<ij<a with e;; = 0 for all 4, j, except (4,7) € {(2,4),(4,2)}. If
we make the ansatz that E,4(U;n) is linear in (u4,u_), of order —1, and remind that A(n) in
is of order 1, from symbolic calculus of proposition we have that

~[A(D), Op® (E,a(U;n))] = — Op® (A() Ena(Usn) — Epna(Usn)A(n))

N
1
-y JOPB@?A(U)‘D?EM(U; n) +T-n(U),

laj=1
where T_n(U) is a pseudo-differential operator of order less or equal than —N, such that, for
any s € R,
(2.2.28)
TN (U) || e o=y S Mp 1 (A(0); N + 3)My H (Ena(Usn); 2) + Mg (A(n); N + 3)My 4, (Ena(Usn); 2),
and whose symbol o (U, n) = (0:;(U,n));; is such that o;; = 0 for all 4, j but (4, j) € {(2,4), (4,2)}.
Hence, for any fixed y € R? equal to 1 in B, (0) and supported in B, (0), for some 0 < e; <
g9 < 1, we look for E,4q(U;n) such that

(2.2.29) x (5;) [ 1 (Usn) + DiBna(Usn) — A Ena(Us ) + Ena(Us ) A(n)
N
-2 iagA(U)'DﬁEnd(U;n)} =0.
laj=1

Furthermore, as Eq(U;n) = Epg(us,u_;n) is linear in (u4,u_) and uy (resp. u_) is solution
to the first (resp. the third) equation in (2.1.2)) with |I| = 0, we have that

DtEnd(u%*vuf;n) = End(|DfE|u+7 _|D:L"|u*;"7) + End(QBV(U:I:aDlvi)’QBV(UiaDlvi);n)a
D;éEnd(lLHuf;n):End(DgUJerguf;n)a VOZEN2

while
o 0 0 0
0 0 0 —2ne
~AMEwaUsn) + Eaa(UsmAm = |0 o <g> 24

0 2<T]>€42 0 0

Then we rather search for symbols eo4 and e4o such that

¥ (B5) eaa ((|Dm| -y (D = 200) )y, — (12l + 5 ;aa<<n>>D;+2<n>)u_;n)
v (25) exs ((|Dz| +3 0 (D + 200y, — (D2 - > 0 (D~ 2n) s
jal= ol ()
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with eg, fo given by (2.1.9)), neglecting contribution E,4 (Q‘(’)V(vi, Dyvy), QF (v+, D1v4); 77) whose
quantization acting on WSI gives rise to a remainder R'(V, V), as we will see at the end of the
proof. We look for e;; of the form

eij(Up, u_;n) = / e (€,m)ty (€)dE + / e B;;(€,m)a—(€)d,

for (i,7) € {(2,4), (4,2)}, and reminding (2.2.22)), (2.2.23) we choose the above multipliers such
that, as long as |¢] < e2(n),

0424(5777)2—% <1+<Z>é|> ((1 % é,)( — by (&) — <‘§’>> "551‘
624(5,77):—2 <1—<Z>é’) ((1 <i> é) (1+b(§,n))+2<|£‘>) ‘fg'
(

asg(&,n) = Poa,  Pa2(&,n) = aa(&,m).

One can check that, on the support of X(W) and for any p,v € N2, ‘8“8”0@\ + ‘auaz/ﬁ” NSV
|€) = 1#l () =1=I¥1 and then that, if

K@) = [ (Fs)agen(@ e K = [ () sy n (o,

for (i,7) € {(2,4),(4,2)}, |07 K (w,n)| < [« 2)"2() 177, for any B € N? and (2,7) €
R? x R?, as a consequence of lemma Therefore

e (x (22 e (£ ) uin)| <

\ [onxi- y,n>[<Dm>4u+}<y>dy] n \ [opr- y,n>[<Dm>4u1<y>dy’ <O g ()18,

which implies that esq, e42 are symbols of order —1. Also, for (i,7) € {(2,4),(4,2)} and any
n,7 € N, one can prove that

M (61'3' <x <57"§> Uy, X <€7§) U;n) ;n> SNUE, ) rs+re

using definition (1.2.3) and the fact that space W™ injects in H"+! for any » € N. Estimate

(12.2.26) follows from :'2.2.28) and symbol o(U;n) associated to T— (U) satisfies (2.2.27)), as one
can check using ((1.2.12)) and the estimates derived above for «;;, 8;;. Finally, from (B.1.3d)) with

s = 4 we deduce that, for any 6 €]0, 1],

My ' (Bna(QF (v, D1vs), QF (v, Drvs)in)in) S IV (E, )3t IV (£ ) 1%,

and the quantization of E, 4 (Q‘(’)V (v4, D1v4), QY (v+, D1v4) acting on W/ is a remainder verifying

(2.2.15)) by proposition m ]

Proof of Proposition[2.2.1 Lemmas and show that there exist two matrices E4(U;n)
and E,q(U;n), linear in (uq,u_), satisfying equations (2.2.14) and (2.2.25) respectively. After
definition (2.2.2) of W/ and equalities ([2.2.1)), (2.2.14) and (2.2.25) we deduce that

(Dy = A(D)W. = OpP(Au(Vim) W + Op" (A" (V1)U + OpR(A"(V!sm))U
+ QB(V, W) + R(U, V) + Op” (B(U; m)) | Op” (A (Vim) W + OpP (A" (VEim)U
+ OpP(C(Um)V + OpR(A" (VI )U + QF(V.W) + R(U, V)| + T (U)W + (V. V)
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where R(U, V) satisfies (2.1.47), R'(V, V) satisfies (2.2.15)), and T_(U) is a pseudo-differential
operator of order less or equal than —N verifying (2.2.5), (2.2.4). Contribution
Op"(E(U;n)) [OPB(A”(V]; MU + Op® (C"(Usm)Vy + Opg(A"(V!in))U
+ NV, W) +R(U,V)

is a remainder of the form (U, V) satisfying estimate (2.2.6]) as a consequence of proposition

, estimates (2.2.7) with » = 0, lemma and the fact that the L2 norms of V! and V/

are equivalent as long as |V (¢, -)|| g2, is small.
According to the definition of F(U;n) and decomposition ([2.2.18)
Op®(E(U;n)Op® (A1(V;m)) = Op® (EJ(Us0))Op® (A1(Vin))
+Op® (Eg (Usn) + Ena(Usn)) Op® (A1(Vin)).

Proposition and estimates (2.1.49), (2.2.7b)), (2.2.7¢) with r = 0, imply that the latter
addend in the above right hand side is a bounded operator on L? whose £(L?) norm is esti-
mated by |U(t, )| 5. |V (£, -)|| zr1.00. The former one writes instead as Op” (E9(U; A (Vin))+
To(U, V), for an operator Ty(U, V') of order less or equal than 0 and £(L?) norm controlled by
IR1U(t, )| 2.0 ||V (E, <) || r2.0, as follows from corollary and estimates (2.1.49)), (2.2.7a))

with » = 1. Hence,

Op"(E(U:m))Op” (A(Vin)W, = OpP (EQ(Usm) Ay (Vi)W + R (U, V),
for a new R/ (U, V) satisfying (2.2.6)).

After (2.2.74) matrix Iy + EY (X(%”)U; n) is invertible as long as |R1U(t, )| g1 is small and

F9(U;n) == [14 + Eg(x(%)U; 77)] - 1 is such that, for any n,r € N,

(B (x(22)Usn)in) S IRV o

Moreover, FO(U;n) is a real diagonal matrix of order 0, and by corollary [1.2.11] with r = 1
Op® (L + FJ(Us0)Op® (L + EQ(Us)) = Id + T-1(U),

with T_1(U) of order less or equal than 0 and £(H*~!; H*) norm bounded by ||[R1U (%, )| z2.c,
for any s € R. This implies that

Op (L + FQU:m)W = Wi + Ty (U)W, T (U) = Toa (U) + OpP (B (Us) + Ena(Us )
with 7_1(U) of order less or equal than —1 and
(2.2.30) T @) eqaerim) S IRU (2o + (U () rsee

for any s € R. Hence, as long as this quantity is small, there exists a positive constant C' such

that (2.2.9)) holds. Also,
Op® (14 + EY(U;0)OpP (A1 (Vi)W
= OpB(I4 + EY(U; n))Op® (A1 (V;0)OpP (I + F)(U; )W}
— Op®(1y + EY(U;1)Op® (A1 (Vi) T-1 (U)W,
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where from proposition [1.2.7, ([2.1.49), (2.2.7a), (2.2.30) and (2.1.50) the L? norm of the latter
term in the above right hand side is estimated by

(2.2.31) IV (t, M zree (IR1UE )| gzee + U )] msee) [W(E )| z2-
On the other hand, by corollary [I.2.11 with » = 1 we get that
Op® (Is + EY(U;1))Op® (A1(V; 1)) Op® (I + FY(U; )W
= Op® ((Is + EQU; ) Ar (V) (Is + FY(U;m))) W1
+ 0pP (I + EY(U; ) To(U, VIW! + To(U, V)W,

with Ty (U, V),TO(U, V) operators of order less or equal than 0 and £(L?) norm controlled,
respectively, by |[RiU(t, )| g2 |V (£, -)|| 2. and (2.2.31), so the last two terms in above right
hand side are also remainders R/ (U, V') by propositionand estimate . That concludes
the proof of the statement. O

2.2.2 A second normal forms transformation.

In proposition [2.2.1]in previous subsection we showed that one can get rid of the slow-decaying-
in-time semi-linear contribution Op? (C”(U; 7))V in by introducing a new function W/,
defined in in terms of~WsI and solution to equation . That naturally led us to the
introduction of new energies E,(t; W), for n € N,n > 3, and E§(t; W), for k € N,0 < k < 2, (see
(2:211a))) which are respectively equivalent to starting F,(t; W) and E%(¢; W) whenever some
uniform norms of U,V are sufficiently small. However, these new energies do not allow us yet to

recover enhanced estimates (|1.1.12¢|) and (1.1.12dJ) as it is not true that
(2.2.32) ’@En(t; W)‘ - ( IS B, (4 W) ) ’atE3 (t:; W) ‘ - ( 1+ B (1, W)%).

This is do to the fact that we still have to deal with semi-linear slow-decaying contributions
OpB(A"(VEn)U, OpB(A"(VIin))U, QE(V,W) to the right hand side of (2.2.3 - together with
the new T_ (U)W whose L? norm is also a O(f% |[W(t, )| 12) after (2.2.4) and (T.1.11a)). The
aim of the current subsection is hence to perform a new normal form argument to replace the
mentioned terms with more decaying ones. This is actually done at the energy level, meaning
that we are going to add some suitable cubic perturbations to E‘n(t; W) and E’§(t; W) so that
the new energies so defined satisfy estimates as in .

Let us first focus on the slow decaying terms that appear when computing

8tEn(t; W) = Z <3thI7WsI>

Iedy,

for any integer n > 3. Using equation (2.2.3]) and rewriting WSI in terms of W/ we find, on the
one hand, the contribution

(2233) = > SUOPHAWVEU + OpR(A"(VIim)U W) + (T n (@)W, W),
17,

which is a O(et~/2E,,(t;W)) after Cauchy-Schwarz inequality, lemma and a-priori esti-
mates (1.1.11)). But we also have

(2.2.34) =Y > s [( g(vit, Dyuf), vl —f—vi)} :
1€dy, (Il,]Q)Ej(I)
[Uh<)n<1|
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which enjoys the same decay as the previous one, as can be immediately seen using again Cauchy-
Schwarz inequality along With (2.1.28) and (|1.1. 11aD From definition (2.1.6) of matrix A”(VZ, ),

Plancherel’s formula, and the fact that vl L= = —ol

(OpB(A"(VEm)U, Wy = (0pP (ag(vl; n)m s + Op® (bo(vh; n)m)u—, vl +vl)

! EZ MY ol 4ol )€ — n) (i T i) () — ==L Lol — ol ) (e —

1o [ (5 [ e - - =L e
x (g —u")(n)] m (vl +ol)(=€)dgdn,

with x denoting a smooth function equal to 1 in B, (0) and supported in Be,(0), for some
0 <e1 <eg k1. Hence

(2.2.35) — SO A" VEMUWH] = > Cliy i
Jre{+—}
with
(2.2.36)
I 1 £—n .. &=n
C(jl7j2,j3) - 4(277')2 X( <T]> > 1 J1J2 <£_77> ’77‘ m ]1(5 77)“]2(77) ( g)dgdnv
for any j1, jo, js € {4+, —}. Analogously, from equality
(2.2.37) —S[opRA"VEmUuWh] = Y Ccll
ir€{+,—}
with

) (= )

5 n>
05, (€ — m) iy ()0, (—&)dEdn.

After proposition 2.2.1) T_n(U) = (04;(U, Dy))ij with symbols oy;(U, 1) satisfying (2.2.5). In-
troducing p : {+,—} — {2,4} such that p(+) = 2,p(—) = 4 and using the convention that
—jr € {+, =} \ {Jr}, we have that

(22.38) il = 4(2;)2/[1_%5(;;7)

(2.2.39)

(T N@WI W) = " (op0),0)(U, Da)v], v])
',je{+, }

Z / ]2]3 p(51) 77 £~ 77) ]1(5_77)’&]'2(77)1}—]3( E)dﬁdm

JkE{—h
where multipliers Jﬁ 2, (jl)(7775 — 1) are supported for |n| < €|¢ — n| and such that, for any
o, € N2,
0200 i (1€ = )| S InV 1Pl — =Nl

for any (&,7) € R? x R?, any j1, j2, j3 € {+, —}. Moreover, by (2.1.1)) we have that

11,1
(2.2.40) -9 [( of (v, Diu), vi“}ﬁ)] = X Culna
jke{“h*}
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with

1,42 . 1 § Y n il
24 oyt = o [ (1= e Y il — ol (~€dsan

The above equalities lead us to introduce the following multipliers

1 . &—n 77)
2.2.42 BE. . (&,n) = - : : (1 . k=1,2
(2242) Bl &) = e et ey ) ™
and
o2 (6 —n)
p(j3),p(G1)\'D
(2'2'43) 31,J2,J3 (f, )'_ :

Jil€& —n) + galnl — 43(&)’

together with the following integrals

(22.44a)  Df = 4(22%)2 /x <§<n>?7> B, o) (& m0j, (€ = )ity (n) 0], (=€) dédn,

24 Dl = g | 1 -x (55 -x (& n))] Pliasn (&)
07, (€ = n)itgy (n)oj, (—€)dédn,

1T 1
(2.2.44c) DN = Re [(%)2 / Chagonga) (6 MO, (€ = )ity (0L, (—€)dédn
and
I, I ! 1 T A AT
(2.2.45) D(]l'h;mg) = m /B(jl,jz,jg,)(ﬁﬂ])vjll (S 77)%5("7)7)]'3(_5) d&dn

for any triplet (j1,jo,j3) € {+,—}3. We warn the reader that definitions (2.2.44) and (2.2.45)

are given here for any general multi-indices I, I, I>.

Definition 2.2.5. For every integer n > 3 we define the second modified energy Eji(t; W) as
ot (¢ — B (4 I IR IT N
(2.2.46)  Ep(t; W) := En(t; W) + Z (D(jhjz,j?,) + D(jlujQ?j?)) + D(j1,j2,j3)>
I€d,
ji€{+7_}
I, Iz
+ Z Z D(j17j2,j3)'
) 1edy, (Il,lg)EJ(I)
Ji€{+,—} [%]<ul|<|]|

Let us now analyse the time derivative of £~'73 (t; W) for integers 0 < k: < 2 As in the previous
case, from equation (|2 we see appear the same contribution as in , but with the sum
over J,, replaced with that on Jk We also find

(2.2.47) — > SUQV, W), W]
Iedk

which is a O(st*(lwk)/?Eéf(t; W)/2) from Cauchy-Schwarz inequality and estimate (2.1.39). To
be more precise, the slow decay in time of the above scalar product is due to some particular
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quadratic term appearing in Qé(V, W). In fact, according to definition (2.1.12]) and to (2.1.29al),
(2.1.30), (2-1.344), (L.I.11d)), for any I € J%

(2.2.48) Z ‘(QO (vit, Dyv’?),ul + u£>‘ + Z ’(QO (vit, D), ul + u£>’
(I1,12)€I(I) (I1,12)€3(I)
H2|<|1] 1 |+[12]<2, |12 |<|1]

5
S NREE, 2 ULt )2 < C(A + Blet 5 EE(t;W)3.

Also, after (2.1.29b) and (2.1.34B)) we have that for all I ¢ V¥ with V¥ defined in ([2.1.26)),

(2.2. 49)
’<Q vi, f),vi+v£>‘+ Z ’< 0 (vi,Dtu ), vi+v£>’
(]1,12)63( ) (Il,Ig)GJ(I)
[I1],| 12| < |1] [T |4 12| <2, |11 |, I2|< | 1]

)
SIREE 2|Vt )2 < C(A+ B)et "% B (t; W)z,

Observe that the decay rate O(t~'+%/2) in the right hand side of the two above inequalities
is the slowest one that allows us to propagate a-priori estimate (1.1.11d)) and it gives us back
exactly the slow growth in time #%%/2 enjoyed by E%(t; W)Y/2, for 0 < k < 2. On the other hand,
for I € V* with k = 0, 1, we have that, for some smooth cut-off function x and some ¢ > 0 small,

> ennQEel D)= Y e n@F (vF x0T D) Daul) + R ),

(I1,12)€3(1) (I1,12)€1(I)
[11],[I2|< 1] LEKX,|2]<1
kg, I I k —
> cn QW D) = > es0Qet (vl x(t77Dy)|Dalus) + RE(t, 2).
(I1,12)€3(I) (J,0)€3(1)
[I1[+|12]| <2,| 11 |, 2] <] ] Jex

The L? norms of the summations in the above right hand sides are bounded by

S (I Da)ud (t ) przee + It Do) RuL (£, ) | e ) B (8, W) 2
JI<1

and hence by et~/ 2EN(t; W)Y2 as follovvs by sharp estimate (B.2.57) derived in appendix
Therefore, the very contribution to ) that has to be eliminated from E)tE3 (t; W) appears
only for £k = 0,1 and is

(2250) =3 3 S [(QF (vf (D)D) 0l 4oL )]

IeVk (I1,12)€I(I)
IlefK,lIQ‘Sl

=3 > S [(QF (LxtT DI Deus) of 0L )]

IeVk (J,0)€I(1)

JeX
As
k _ Ih,I2,0
S (@ Xt D)D) o +ol) | = 3T R 1=
(2.2.51) . o ;’EH’_} s
3 (@R XD IDalu), v + )| = 3 RS
ji€{+77}
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with

1,020 1 .. E—=n N o
@25@1%$$Q—4Qﬂ2/<1—ﬁh@_n>wm>m92@—m (t7 D yug2 (n) o5, (—€)déeln,

for any j; € {+,—}, 1 =1,2,3, and 73 := j2|n|, we introduce a new multiplier

J2 .. &—n
2.2.53 B3 . . (&n) = - : . (1—J1J2 > Ui
(2:2.53) Gz (&) = T (@) €= o)
together with integrals
Ly ! o
250 G = gas [ Blial€m 0 € X DI )0, (<€)
for any I = 1,2,3, (j1,j2,73) € {+, —}3, with multipliers ngl injs) Biven by ([2.2.42) when ! = 1,2,

and by (2.2.53 m when [ = 3. We warn the reader that in what follows we will sometimes refer to

l izl Iy,I2,1 I, Iz
an it resp. F 72
(41,42,43) (41,42:33) (J1,42.33) P- £ (51 jajs)

and ijll s ) forgetting about superscript [. This choice reveals to be convenient when we do
not need to (ilstinguish between [ =1, 2, 3.

multipliers B (resp. integrals ) simply as B(

J1,J2,J3) (

Definition 2.2.6. For every integer 0 < k < 2 we define the second modified energy E?T(t; W)

as
Nk:vT . —— 7k . 1 I»TfN
(2.2.55) By (W)= B5(HW) + Z (D(jl,szs) +D (Jl,]27]3) + D(jl,jzjs))
Iegk
Ji€{+,—}

11,12
+ Op<2 Z Z i, GGy by sy

Ievk  (I1,I2)€I(I)
Jie{+,—} [1eX,|I2]<1

with 6x<o = 1if £ = 0,1, 0 otherwise, and coefficients ¢y, 1, € {—1,0,1}.
In view of the lemmas to follow it is useful to remind that, after system (2.1.2)), for any multi-

index I vector (ﬁfr, f;i, @l ,91) is solution to
(2.2.56)

S
|
I~
=
>
+~
—
~
oy
N—
Il

Sinstial=in Q8 W2 Do) + < 06, Q8 (Vi Dvg)
) = X tai=ir QoS D12 ) + 3011, 4 1y g €1,1Q0° (04, Du2)
) = i iralein @ (V2 D1v) + X1 4y <jry €1, Q8 (02, D)
(D¢ + ()L (t,2) = X1y i Q0 W D) + 32 1 41y <y €1 Q6F (02, Du?)

with coefficients ¢, 7, € {—1,0,1} and indices I7, I3 in above right hand side such that (I, I3) €
J(I). Inlemmas|2.2.9/and [2.2. 10| we Wlll check that, with deﬁmtlonsF - 6} the slow decaying
contributions highlighted in are replaced in 8tET t; W), 0 Ey W) by some new quartic
terms. These latter ones are obtalned from integrals m by replacmg each factor 17]1-1 , ﬂjQ,f}JI-S
at a time with the non—linearity appearing in the equation that factor satisfies in @ . Lemma
2.2.11| (resp. lemma shows that the same is for troublesome contributions (2.2.34) in
OB (t: W) (resp. for in O F ’J[(t W)). We are also going to see that, if N € N* is
chosen sufficiently large (e g. N = 18), all these quartic terms suitably decay in time, and that
modified energies ) (t; W), E. kT(t W) are equivalent, respectively, to E,,(t; W), E5(t,W). We
point out the fact that the normal form’s step performed in previous section was necessary to
avoid here some problematic quartic contributions coming from quasi-linear terms in
and that could lead to some loss of derivatives. Before proving the mentioned lemmas, we need
to introduce two preliminary results, that will be useful in the proof of lemmas [2:2.9]
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Lemma 2.2.7. For any j; € {+,—}, i = 1,2,3, let B";1 i 33)(5 1) be the multiplier defined

mn when k = 1,2 and in when k = 3, and 1,192,935 be three smooth cut-off
functions such that 11 (x) is supported for |x| < ¢, ¥a(x) is supported for ¢ < |z| < C', s(x) is
supported for |x| > C, for some 0 < ¢,d < 1, C,C" > 1, and 1 + 12 + 13 = 1. Let also i be
equal to 1 for k=1,2, 0 for k = 3.

(i) For any j1,...,js € {+,—}, i = 1,2, and any uy,us,us,us such that uy € H»®(R?),
U2, Uq € L2(R2), us € HH’OO(R2) and dpRrugz € H7’OO(R2),

(2.2.57

)
‘ [ () Bt (hméz_é |§|)<1u1<§ = C)ita (€ (1) s (—E)décdC

S lua |l gacee luzll 2 (JJuslgivee + 0k ||Rius | e ) luall £2;

(i) For any ji,...,j5 € {+,—}, and any u1,uz,us,us such that uy € H">®°(R?), ug € H'(R?),
uy € L?(R?), u3 € H4°°(R2) and dpRyus € L>®(R?),

(2.2.58

)
‘ / %(W)B@mg)@,n) <1j4j5é_z_g> él)gul(g 0 — C)ita(€)its () (—€) dnd

S llwallmmoe llugl e (lusllzace + 0xl[Ryusllpoo) ual|z2-

Proof. Let k = 1,2. We are going to refer to B(j1 Jans) ( J3)
(resp. 1 and R) and rather use a superscript to define a decomposition of this multiplier (see

[2-2.60))

Let us observe that, as

resp. 1 and Ry) simply as Byj, ;,

J1l§ —n) + galn| — j3()
2j152(§ — ) [n|

Bj1 g (§:1) =

we can write
(2.2.59) By o) (61) = BY iy (€)1 + B o (6.m) ()
L (71.52:33)\S> 11 (G1.d2,33) \ S 1 | (G1.52,33) \S> TN

where for any smooth cut-off function ¢, equal to 1 in a neighbourhood of the origin,

0 _ 1€ =m) +jalnl — j3(6)
B(j1,j2,j3)(€’ n) = 2j1j2(€ — 1) o(n),

(2.2.60)

1 R
B(j17j2,j3)(£a 77) =

According to decomposition (2.2.59) we have that, for any i = 1,2, 3,

(2.2.61)
A e S .
/1/11 77) Bji,ja,js) (€ n)( L o m)clul(& N — Qa2 (Q)is(n)da(—¢)dEdndC
5 o E-n—¢C (¢ —~
/7/1z T’ (Jl 2J2 Js)(f 7]) <1j4]5<§_2_g>' |C|>Clu1(§ n—- C)U2(C)RUS(U)M(*S)ddedC
fi L Emn=C S
# 05 Bl (1= e 1) il = 1= el D))
dédndc¢
=10 +1}.
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(i) The first thing we observe concerning integral I¥ for k = 0,1, i = 1,2, is that [£ — 7], |¢] < (1)
on the support of %(5(_7;]) and that |¢| < (¢ — n — {)(n). Therefore, introducing the following
multipliers

i £—n L E=n—=C ¢ - -
B(J]; 35) (f 17,¢) = @D( ) )B(Jl ]2]3)(5 n) <1J4]5<§77_<> |C|> Ci(n) 7(5*77*0 47

for any ji,...75 € {+,—}, k = 0,1, i = 1,2, a straight computation shows that, for any
a? 5?’7 G N27

" Blir.. j5)(5’7770’ SAO19as(E M),

(2.2.62) .
0?05823231,...,]-5) £1,0)| S (O™ RO P gasleml, 1 = 1,
with
|ga,0(£a77) Sa <77>_3<§>_37
2.2.63
(2269) 90,8 M| Says (Inlim) ™) 1Pl =3(€) 3, |8] > 1.
If

Ke]f’m’%)(x,y, 2) = / ix-E+iyntiz CBE & js)(é. 0, O)dédnd,

by lemma |A.1| (i) we first find that, for any «, 3 € N2,

g0y [ =Bt (em 0| S 170 Pgas(en)

and successively that

g [ 6 Odndc| S bl 2l e
for every ¢ € R?, (y, z) € R? x R2. Corollary (7) hence implies that

KG @) S @) Pyl ) P2 () R V(s y, 2) € (R,

Asfori=1,2
1= [ B (€n OB (e — 1= Qaa(Q) D2 Rua(r)ia(—€) dedc

= /K@?,-..,ﬁ)(t —z,x — 2,2 — y) (D) ur](2)uz(y) [(De) "Rus) (2)uq (t)dzdydzdt,

i = / B i (&0 O (Dayua(§ =0 — Qita(Q) (D) s () s (—€) déclnd

— / K(’ﬁmm(t —z, @ — z,x — y)[(De) ur](2)ug (y) [(De) M us) (2)ug (t) dudydzdt,

inequality (2.2.57)) follows by the fact that, for any @, ... 44 € L2NL>®, any f, g, h € L', integrals
such as

(2.2.64) / F(t = 2)g(a — ) — )i (@) [a(y)| s (=) ()| dedyd=dt

can be bounded from above by the product of the L? norm of any two functions u; times the
L norm of the remaining ones.
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(ii) For a cut-off function ¢ as the one introduced at the beginning of the proof we decompose
integral I¥ k = 0,1, distinguishing between |¢| < 1 and |¢| = 1. On the one hand, for any
J1,---,75,k = 0,1, we consider

: £—n . &-n—C ¢
Béf,_,,dk,))(é,n,C) ¢3( ) )GZ)(C)B(]IM,]?, (3 77)( ]4]5m |<|>C1<f n- <>

and observe that, since |{| < (£ —n — () on the support of wg(%)qﬁ((), the above multiplier
satisfies estimates (2.2.62)), (2.2.63)). From the same argument as before this implies that

(2.2.65)

5 = [ BE 5 €n D Tur(€ — 1 — C)ia(O Ry ()i~ e

S || grs.oe [Jua || 2 [|[Rus|| oo [|ual| 2

together with

(2.2.66)

Bhim [ BEL (€ DT un(e — 0 = C)in(O) (Do) aa(ris(~dcana
< ozl 2l o

On the other hand, we make a further decomposition on the integral restricted to || 2 1 by
means of functions ;,i = 1,2, 3, distinguishing between three regions: for |(| < ¢(¢ — n), for
d{€—n) <|¢| <O —mn) and (| > C(§ —n). For any j1,...,J5 € {+,—}, k = 0,1, we hence
introduce the following multipliers

B* e =) - 0O (7o)

(m) (€=
x Bécjl,j27j3)(§’n) (1 _j4j5<§_z_g> |g|> G —n-— C)
for ¢ = 1m, 3, and
(2.2.67) B3A2’“ S(En, Q) = ¢3<5<;>’7>( ¢)(Q¢2(<£ < n>>
X koo — u £ -1
B(Jl,]?a]?,)(é-’n) <1 Jajs E—n—0) |C|> ¢y

Since |¢] ~ ¢ = nl ~ |¢ —n — ¢| on the support of s ($:7)(1 — 6)(O) (1gsy) (resp. |¢] ~

1€ —n| < [C| ~ |€ —n— (| on the support of ¢3(%)(1 — (Z))(C)wg(ﬁ)), a straight computation
shows that above multipliers verify (2.2.62)), (2.2.63)), from which follows that

2268 |70 [ B | (€n ODTnle — 1 - Oa R (n)ia(~€)dednq

S e [z | 2| Rus | oo ual] 2
along with
(2.2.69) @3:/ B (€m0 Da)Tua (€ — 11 - om«x57%m>(fdwm4

S llwall oo l[ugl 2llus]| 4 0o [eal 22,
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for ¢ =1, 3. Finally, on the support of ¢3(<—”)(1—¢)(C)w2(ﬁ) we have that [£] ~ |£—n| ~ []

and | —n — (] < |¢|. Replacing ¢ with & — ¢ by a change of coordinates we find that, for any
a, B,y € N?,

LB (6, € = O)| San () 7HET,
B € €= QS Unltny ™) P my )71l 18 = 1.

If we introduce a Littlewood-Paley decomposition such that

BIE (66— Q) =Y B (6. €~ Op276),

>1

(2.2.70)

one can check, using lemma (i) to obtain the decay in y, making a change of coordinates
¢ — 2l¢, some integration by parts, and using inequalities (2.2.70)), that

Kﬁ,m@yv%=/’““”““3”k J(Em.€ = (2 1E)dednd

(J15e-535)

is such that

(2.2.71) KE @2 S 2 ) Ve, 2) € (R,

Moreover, since || ~ [§ — (| on the support of B?’Z’k )(f,n,C) there are two other suitably

supported cut-off functions ¢1, 2 such that ¢(27'¢) = @(2*l§)g01(2*l§)902(2*l(f —()), for any
[>1.1If Ag-w := j(27'D,)w, we finally obtain that

B0 = [ B0 €. 06 ~ = ) DalC)Rua(n)ia (~)dedndc
= [ B2 5 €n€ = Oin(¢ — mD2Yus(é ~ ORua(mia(~€)decdnd

= Z/ i Js) — Y, — 2,y — x)ul(x)[All<Dx>u2](y)[Ru3](z)[A12u4] (t)dxdydzdt,

>1

and by (2.2.71)) together with Cauchy-Schwarz inequality we derive that
(2.2.72)

72,0
1571 S lluallzoe [ Ruus | poe Y IIAT(Da)us| g2 Abuall g2 S llunll o sl o | Ruus | pec lluall 2
>1

In a similar way we obtain that
= [ B 6m€ ~ Qin(¢ — ) (D¢ - (DT uy(n)ia(~€)ddndC

satisfies

2,1
(2.2.73) |57 | S Mlual[ oo [[wol| g llus | g lual| L2

The result of statement (i7) follows then from inequalities (2.2.65)), (2.2.66]), (2.2.68), (2.2.69),
(2.2.72)), (2.2.73), after having recognized that

/w3 Bmphﬂﬁm(l—ﬂ%é:Z:;~é0€md£—n—0%@WAWMPfMMmK
1 1
SRS oL
k=0 k=0 1i=1
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In conclusion, the same proof of above applies to multiplier B(j1 Jais) introduced in (2.2.53)),
which can be decomposed as

528, gy i) (&) + Blj, , 5 (Em ()
with the same BY

U o) 35 in (2.2.60]) and

E(ljl,jg,j3)(€7 n) = i€ = g;l—zgjz_@l; 3si6) <77>74(1 —9)(n).

The lack of factor 7, |n|~! against B? i1daia)? in comparison to decomposition ([2.2.59)), is the reason
why inequality (2.2.57) (resp. (2.2.58)) holds with [lug||gi1.cc + ||Rus||gr. (vesp. |lus| gas +
||IRusl|| L) replaced with [|usl|| 11,00 (resp. with ||ug|ga,ec)- O

Lemma 2.2.8. Under the same assumptions as in lemma we have that:

(zg for any ji,... ,35 € {+,—},i=1,2, and any uy,uz, u3, uy such that u; € HH*(R?), uz,uy €
L*(R?), uz € H'V>°(R?) and SkRyus € H™>(R?),

(2.2.74) ’ / wi(W>ijm2,j3)(£m)< + ks K)cl (- 5—C)az(é)as(n)m(ﬁ—n)dﬁdndﬁ‘

Sl raee Juzll 2z (lusll givee + Oxl|Reus | g7 ) [|uallp2;

(ii) for any ji,...,J5 € {+,—}, and any u1,us,u3, uq such that uy € H">®(R?), uy € L?(R?),
ug € HY(R?), ug € H¥*(R?) and §pRyuz € L=(R?),

E+¢ ¢ -

S lluallares luallz (Tusll .o + Oxl[Rius|| o) [[wall -

(2.2.75) ’/ws('f<;>77)3@1,j2,j3)(§,n) (1 + Jajs

Proof. The proof of the statement is analogous to that of lemma after a change of coordi-
nates —& + £ — 7. In (2.2.75) we take the H' norm on uy instead of us, as done in ([2.2.58), by
replacing multiplier Bé’l’ﬁ s) in (2.2.67) with

¢3<£<;>77>(1 = 9)(C)2 (@)B&szs)@’n) <1 B j4j5<§:2:§> ' |§|> G

]
Lemma 2.2.9 (Analysis of quartic terms. I). For any general multi-index I, any ji € {+,—},
k=1,2,3, leItRC(Imes)’ C(ijjm?)) be the integrals defined in (2.2.36)), (2.2.38) respectively, and
I .
Dy aiis) Piiyjasgs) ntroduced in (2.2.44a)), (2.2.44b). Then

I,R
(2.2.76) O [ (1.d2.3) T D(J1,J2,J3) C(Jl,Jz,js) B C(jl7j2,j3) :unam

I .
where D4y satisfies

‘Qquart )|
2277 ~ [HV( s 0.0 IV & e + IV & e (UG e + RLUE ) amee) | IW(E,)NIF
+ > Qe Dul)(t, e (U e + [RaUE N mree) [VE(E )]l 2
(I1,I2)€3(I)
| I2])< ||
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Proof. Using definitions (2.2.36)), (2.2.44a), (2.2.42) with & = 1, and system ({2.2.56)), we find
that

(2.2.78)
1
— 4(27'(') |:8t (J1,72,33) + C(jl’j27j3)i|

-/ x(’fw”) BLoven | S enn@Eeh, Dul)| (€ - nyig, ()], (~€)dgdn

(I1,12)€I(I)

+f x<5<n>’7) Bl o (&) 05 (6 = )@ (v, Drow) () (—€)dédn

+ X<§<n>n>3<hvﬂw>(f Wk e man) | Y ennQb(ol, Dul)| (~€)dedn

(I1,I2)€3(1)
=: 51+ Sy + 53,

where coefficients ¢y, 1, € {—1,0,1} are such that ¢y, 1, = 1 when |I1| 4 |I3] = |I| (in which case
D = D;) and x € C§°(R?) is equal to 1 close to the origin and has a sufficiently small support.
All integrals in the above right hand side are quartic terms for they involve the quadratic non-

linearities of (2.2.56)).

The fact that S5 is a remainder Déuart satisfying ([2.2.77)) follows by inequalities (A.17]), (B.1.3d))
with s = 7, and the fact that

W 2—60)6
(2.2.79) IR QY (v, Dyvs)llgree < IV (RS IV (G,

for any 6 €]0,1[. The above inequality is justified by the fact that, for any function w €
Wwheen H! p e N and any 6 €]0, 1], setting p = % €]2, 00|,

(22.80) [[(Do) Rawlz S I{Da)’Rawllwrs S (Do) wllwrs S I{Da)w]ljyte [{Da) el

0
< (D) wll iz [ {Da) w3,

as a consequence of Morrey’s inequality, continuity of Ry : LP — LP for p < 400, interpolation
inequality, and the injection of W into H*°. This implies that

(2.2.81) IR1QF (v, D1vs) [ oce S QY (v, D1vs) 372,00 | QY (v, Drvs) 301,

for any p € N, and gives (2.2.79)) when p = 7 after inequalities (B.1.3c) with s = 8, (B.1.3d)) with
s = 9. Therefore, for any 6 €]0, 1],

1921 S (IV (& VeIV Mo + IV A IGRE IV IGE) IV e

so choosing # < 1 small (e.g. 6 < 1/8) and keeping in mind estimates ((1.1.11b}), (1.1.11c]) we
deduce that S5 is controlled by the first term in the right hand side of (2.2.77]).

Inequality allows also to estimate all integrals in summations Sy, S3 corresponding to
indices (I1,I2) € I(I) with |I2| < |I|, and to bound them with the latter term in the right
hand side of . This is not the case for integrals with Is = I involving quasi-linear term
Qlag(vi, Dluli), because a straight application of that inequality would give a bound at the wrong

energy level n + 1, as ||Q18g(vi,D1uIi)HL2 SNV ) g1 [|D1UL(E, )| 2. Instead, since

. O £—¢ )
(2.2.82) Qgg(vi,plu;)(g):%%%;’ / L= s e = K,)Cl 94(§ = Qs (O)dg,
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we can rather write those integrals as the sum over ji € {+,—},k = 1,...4, of the following:
(2.2.83a)

§ ¢ ¢ ¢ o
/ X< <n>n>B<wa3>(f ’7)<1 3495@”*) |¢|)<wj4<£ n— )ik, (C)itj, ()i, (—€) dédndg,

(2.2.83b)

Sl e+ ¢ ¢
/ (o w ) Bl sor (€ >(1+J4J5<§ iy m)cl (& — )iy, ()0, (—€ — Q)al, (¢) dednd,

and estimate them by using inequalities (2.2.57)) and (2.2.74]) respectively. We hence obtain that
151+ 1S5 S NV (& ) e (NU (R, ‘)HHH#’O HRLU ) ) W2 )17

+ Y QW DuR) (e (1UE e + RU ) grroe) V() e,
(I1,12)€3(1)
[12|< 1]
and, since the same argument applies to 0;D (]i s this also concludes the proof of the state-
ment. [

Lemma 2.2.10 (Analysis of quartic terms. II). For any general multi-index I, any ji, € {+, -},
IT n

k=1,2,3, let D(sz ) be defined as in (2.2.44c)). Then

IT_ I il
(2.2.84) 0D o =S (TN ()W, W] +o0t,
and if N > 18 @Quartsatisﬁes

7 1
(D] SV a1V (s IV (2 )11
(2.2.85) + > etk pel| L 10 e IV e
(11,12)€1(I)
L2 <|1|

Proof. For any triplet (ji,j2,j3), we compute the time derivative of D/"7-N by making use of
system ([2.2.56). Recalling (2.2.39)) and (2.2.43), we find that

(2.2.86)

1,7
O | D D] —SUT-NOW! W] =
Jre{+,—}

~ Re (271)2 / V@ | S enn@F@h, Dul) (e — ) | a, (ol (—€)dedn

(I1,12)€1(I)

+(2717)2/ gl:]Z]S)(f n)o j1(§ n)m( ) ( &)dédn

+(271_‘_)2/58‘[1,]‘2,3'3)(5777)}1'1(5_ﬁ)ﬂjg(n) Z cthm(_é) d&dn

(11,12)€3(I)
= SN 4 SN LGN
with coefficients ¢y, 1, € {—1,0,1} such that ¢, ;, = 1 whenever |I1]| + |[I2| = |I] (in which case

D = Dy). After lemma and inequality (B.1.3d|) with s = N + 3 we deduce that, if N > 15,
for any 6 €]0, 1]

T_
12 | SV (5o 1V (s IV (2, )| 2
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Choosing 6 < 1 small (e.g. 8 < 1/8) we then obtain that 52T ~N is a remainder ’unart satisfying

(2.2.85)). Also, the same lemma implies that each contribution in SlT - 53T ~N corresponding to
(I1, 1) € I(I) with |I2| < || is bounded by

U s [V (E, ) 22

I
HQ Ui? ) 12

Reminding instead ([2.2.82)), we find that the remaining contribution to S’f*N , corresponding to
I, = 1, is equal to the sum over ji,...,j5 € {+,—} of the (imaginary part) of the following
integrals:

~N . E=n—( N 1
(2.2.87) /U(jl,jQ,j3)(§,77) (1 —]4]5m (] )Cl“ﬂ (€—n— C) 5 (Q)tgy ()0, (=€) d&dndc.
Analogously, the contribution corresponding to I = I in SgT ~N is the sum over jj € {+,—},k =
., 5 of

~ §+¢ ¢
(2.2.88) /Ughjz,]é)(g»n)( ok |C|>C1 (€ =), (n)o5, (=€ = €)aj, (C) dédnd.

Since 08[1 nja) ({, n) satisfies ((A.23]) and is supported for |n| < g — 7|, for a small 0 < ¢ < 1,

we rewrite above integrals, respectively, as

(2.2.89) /E]}fl e &MY (1 Jads H é‘)CME—W—O_“

x (Do) 0,,(6 =0 — O (Do) ouy, (n)ol, (—€) ddndc,

and

. _N- o E+C ¢
(2.2.90) /aé?l,p,h)(s,nxm N1+ g 10 ’C‘)Q(&Jré)

x 0 (€ = ) (Do) N Tuy, (0) (Do) 0, (—€ — )itk (¢) dédndC.

With such a choice, the new multipliers, that we denote concisely by 58[1]“ j5)(§ ,n,¢), k=0,1,
verify, for any «, 3,y € N2,

oaRE0 L Em O] S O e,

R 60| S (OO P21

with gévﬁ(f, n) supported for |n| < el — n| and such that

|95 (€,m)| S (€ — )~ NHAFRP | N8y =N8 v e ) € R? x R,

If N € N* is sufficiently large (e.g. N > 18), the above estimate implies that, for any «, 3 € N?
of length less or equal than 3,

g2 (& mI S ()62,
so by lemma () together with corollary (i) we obtain that, for any k = 0,1,

K" o (@y.2) = / etttz RE L (€on, Q)dédndC
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is such that
(2:2.01) EVE (@2 S @ ) N Wy 2) € (R,

By (2.2.89), (2.2.90)), integrals (2.2.87)), (2.2.88]) are respectively equal to

/Kgl, oyt = za =z = ) [(Da) o] (@)uj, (9) (D) VP ] (2)0], () dedydzdt
and
/K(];[Ll ,J¢)(Z LT —=Y, 2 t)vgl‘l (5’3)[<Dx>N+7Uj2](y)[<Dx>4vj4](z)ujl-5(t)dxdydzdt.

Using (2.2.91)) and the fact that integrals such as (2.2.64) can be bounded from above by the
product of the L? norm of any two functions u; times the L> norm of the remaining ones, they
are estimated by

IVt o U () s W (E ) 172

which concludes the proof of the statement. O

Lemma 2.2.11 (Analysis of quartic terms. III). Letn € Nyn >3, I € J,, and (I1,12) € I(I) be

I In,I> I, Iz . , ,
such that [5] < [I1| < |I|. Let also Clilings) Pliriaja) be the integrals defined, respectively, in

(2.2.41), (2.2.45), for any jr € {+,—},k=1,2,3. Then

I, Iz _ 2 I, Iz
(2.2.92) 8tD(j17j2,j3) o C(j1,j2,j3) T Qqu“’"t’

where DL

quart Satisfies

11,12 < 2
(2.2.93) ‘Qqum(t)lw (||W( Mgz + IRLU(, )HH[%H&oo)

7 1
IV 500 IV 0 g 00| Bt 0

11,12 . .
Proof. We compute the time derivative of D(szus) by making use of system ([2.2.56)). We remind

that, after remark |1 and definition , if I' is a product of spatial derivatives then all
couples of indices (11,12) belonging to J(I) are such that |I1| + |I2| = |I| and T'/*,T'"2 are also
products of spatial derivatives. Therefore, all coefficients cr, 7, appearing in the right hand side
of are equal to 0. By definitions with k£ =1, (2.2.41)), (2.2.45)), we find that

—a@r2|aD" ol ] =

(41,92,73) (41,72,33)

/B(ljhjz,]é)(g’n) Z Q (Uileu )(5 77) uﬁ(n) ( f)dffd??

(Jl,JQ)EJ(Il)

(2.2.94) +/B(1j1,j2,j3)(§,77) aie-m | X Qe D) | ok (—€)dedy

(J1,J2)€j(12)
- / Bl o EmelE—nalm)y | Y @ Q% (vl Dyul?) | (—€)dedy

(J1,J2)€3(I)
=SV 4 gprf2 4 gt
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Since |Ji| + |Jo| = |[1] < [I| < nin S [l e can estimate all its contributions using inequality
(A.17). Using lemma( /), the fact that |I2| < [5] by the hypothesis and, hence, that

I I
[u () 7o + [Rawd (& ) aree SNUE )| 51480000
we deduce that

11,12
s

< (I gigies + IRSU ) gigrene ) 10 ) igrvsoe Balts W),

and above estimate holds also for all integrals in S5 correspondlng to |J2| < |I]. The same

inequality (A.17]), combined with (2.2.81]) applied to Qw(vi ,Dlvi ) and with corollary |A.4fin
appendix [Al gives that, for any 6 €]0, 1],

sy
S Z [HQO (Ui aDlvﬂ: ‘ 7,00 + HQO Ui 7D11):|: 9,00 HQO Ui ,Dlvi) ‘HJ E,(t; W)
|J1|+\J2|*|12\
(2— 9

Finally, the last remaining integral in Sél’h

written using (2.2.82)) as

, corresponding to indices J; = 0,Js = I, can be

)y / bysnan (€ (1 i &) o€ — mala ()i (€ - O, (O)dgandc
Jajac{+,—}

and is estimated, after lemma and the fact that |I;| < |I|, by
IVt irmee (1) grosme + IRV grone ) Bt W),
This gives that

2
1,1
55 S (IW () grosnm + IRIUE ] igrese ) Balti W)

and concludes the proof of the statement. O

Lemma 2.2.12 (Analysis of quartic terms. I1V). Let k = 0,1, K,V be the sets introduced
in (2.1.25)), (2.1.26) respectively, I € V¥ and (I1,Iy) € I(I) be such that I, € X, |Io| < 1.

Let also F(Ijl’ffz”lh) Ggl’{;’d ) be the integrals defined in (2.2.52), (2.2.54), for any | = 1,2,3,

Ji €{+,-},i=1,2,3. For anyl=1,2,3, any triplet (ji1, j2,73), we have that

Il plIal 1,13
(2.2.95) Oy G(sz,]s) - F(jhjz,]'s) - 6‘1““”’

and there is a constant C' > 0 such that, if a-priori estimates (1.1.11)) are satisfied in interval
[1,T] for a fived T > 1, with g9 < (2A + B)™! small,

8
(22.96) |6 (1) < C(A+ B2 [BE (4 W) + 0yotPT 3 EY 6 W) 4171 F]

quart

for every t € [1,T), with dyo = 1 if I € VO, 0 otherwise, and 3 > 0 as small as we want.
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Proof. First of all, it is useful to remind that from (2.1.42), (2.1.43) and a-priori estimate
(L.1.11d), for any k£ = 0,1, I € g5 (I,I3) € I(I) such that I; € X, |[Io] < 1, and o > 0
sufficiently small

(2.2.97)

VIt ) 2 (et D) U (L) 1o + X (ETDe)RUT (¢, )| o) < C(A+ B) B2+
for every t € [1,T].
For any ﬁx?d (J1,72,73), any | = 1,2,3, we compute 81;G81”I]2.2’l’j3) recurring to system ([2.2.56))
along with its compact form
(Dt F (Dy))vh = T1QY (v, Divy),
(D | Dol )ulk = T'Q (v, Dyus),
and using that [Dy, x(t 79 D,)] =t 1x1(t77D,) with x1(§) :=io(0x) (&) - & We find that

5k

11 Il I,,15,1
) [ (J1,72,33) + F(Jl \J2 ]3)]

- 4(2
= [ Bl €0 [T @ (s Drus) (€ = ] (" Do )i, (~dea

[ Bl € mii (€ ) [\ DT QY (o, Drex) ) + ¢ e Dol ()| o, (~)ded
[ Bl @il =@ D0 Y enn@ el D)) dsan

(J1,J2)€I(T)
I1,12,1 I1,12,1 Iy,12,1
—- 811 2 +521 2 +531 2 ,

with Béh i2.js) given by (2.2.42)) when [ = 1,2 or ([2.2.53|) when [ = 3.

Applying (A.17) to 5211’12’1, using (2.2.80) with w = I'2QY (vy, Div1) and p = 7, together with
the fact that operators x(t7?D,), x1(t~?D,) are bounded from L* to H”* for any p > 0 with
norm O(t°?), and from L? to H® for any s > 0 with norm O(t°®), we deduce that, for any
6 €]0,1],
I, Izl
(2:2.98) [Sy" | SV, )2 IV (2, )l
< (D3 (s Drvs)llo~ + BIT2QY (v, Dyvs) |52 IT Q3 (vs Dyvs) 4
7 (Iha (7 Da)ul2 (8, )Lz + I (7 D) RuZ (8, ) o0 )|

for some 8 > 0 small, 8 — 0 as 0 — 0, and with §; = 1if [ = 1,2, 0 otherwise. When |I3| = 0 the
above right hand side can be estimated using (B.1.3a), (B.1.3b)) and a-priori estimates (1.1.11)).
When |I2| = 1 we derive from ((1.1.15)) that

P2QY (vi, Dyve) = QY (02, Dyvy) + QY (v+, D1v2) + G¥ (v, Duy)

with GY(v+, Dvy) = Gy (v, 0v) given by (1.1.16). Using lemma|B.2.4]in appendix[BJwith L = L>®
to estimate the L norm of the first two quadratic terms in the above right hand side, we find
that, for some new x € C§°(R?) and o > 0 small, there is a constant C' > 0 such that

IP2 QY (v Drvs)llz S X D ()| ostllses

7N (o () s + 1Dy 8, 122) (Zuxﬂvi Wi + ot )l )
|u]=0

+ [ (&, e (o8 ) 2o + |1 Deve(E, ) | r100)
< CABe*t72,
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where last inequality is obtained by picking s > 0 sufficiently large so that N(s) > 4 and using
(B.1.6a), (B.1.6b)), (B.1.10a)), lemma |B.4.14] together with a-priori estimates. Also, by (B.1.6al)
with s = 0 and a-priori estimates

é
IT2QY (v, Drvs) 2 S IV (& Mz (V2 (t ) + 1DV (E, ) 2) < CABETHE

Therefore, using lemma [B.2.10| and taking 6,0 > 0 sufficiently small we deduce from ([2.2.98|)
and the above estimates that, for any [ = 1,2,3 and a new C > 0,

(2.2.99) |SII2) < CAB2 T EE (4, W)z,

We make use of inequality (A.17] - to estimate SII’IQ’ too. From (|1.1.17) we have that

T QR (va, Dyuy) = QR (vl Dius) + > e, 1@ (v, Duf?)

(J1,J2)€3(11)
| J1]<| 1]

with ¢y, 7, € {—1,0,1}, and then from (2.1.29b)), (2.1.34b)) and the fact that I; € K,

T Qp¥ (vx, Dyus) = Q¥(v, X(t™7 Da) Dyus) + Rt 2),
with % satisfying (2.1.30) and
K _
Qe (2, x(t D) Dyus) |2 < (1U( Ml rzoe + IRU(E, )l grzee) [V ()| 2.
So from (2.1.30)), (2.2.97)), lemma |B.2.10] and priori estimates ((1.1.11])

11,12,
157 S [(HU( Wiz + RU () r200) [V (2 - HL2+H%’§(t,~)HL2]
(2:2.100) (X7 DU (t, )| roe + (X7 D)RU (8, ) || roe ) [V (8, ) 2
< CABe%—H%’“Eg(t; We.

Let us now consider all the addends in S§1’12’l with |J3| < |I|, which by inequality (A.17)) are
bounded by

1
VAl (D I DR U ) D | Qb0 Du?)

u|=0 (J1,J2)€I(I)
| 2] <|1]

2’

As the latter above factor is bounded by the L? norm of Q4(V,W) (see definition (2.1.12)),
inequalities ) and (2.2.97) imply that those integrals are remainders quuift satisfying
(12.2.96)). Fmally, the last contrlbutlon to 531’ I , corresponding to |Ji| = 0, Jy = I, for which
D = D1, can be rewritten using as the sum over jg, j5 € {4+, —} of

. E+C . s I
[ Bl samien) (1+J4J5<§+ - |<|>C1 84(—€ — Q)L (X[ Do yal2 ()l (€ — m)dedy,

By means of lemma [2.2.8] it is bounded by

1
IV moe (D 1K D) DIRFO (8, ) e ) IV (8 )t [0 (1)
|u|=0

for every t € [1,7T], and hence by CA(A + B)th_%+5/E§(t; W), with 8/ > 0 small as long as
0,0y are small, as follows by a-priori estimate ((1.1.11b]) and lemma [B.2.10 [
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2.2.3 Propagation of the energy estimate

Proposition 2.2.13 (Propagation of the energy estimate). Let us fiz Ko > 0. There exist
two integers n > p > 1 sufficiently large, two constants A, B > 1 sufficiently large, ¢ €
10, (24 + B)~Y[ sufficiently small, and some 0 < § < &2 < 01 < 0g < 1 small such that, for any

0 < e < e, if (u,v) is solution to (1.1.1)-(1.1.2) in some interval [1,T] for a fired T > 1, and

ug, vy defined in (L.1.5) satisfy a-priori estimates (1.1.11) for every t € [1,T], then they also
verify (1.1.12d)), (1.1.12d) on the same interval [1,T].

Proof. For any integer k,n € N, with n > 3 and 0 < k < 2, let En(t; W), Eéf(t; W) be the
first modified energies introduced in (2.2.11]) and E};(t; W), E;f’T(t; W) be the second modified
. : : I,R 1T
energies, introduced in (2.2.46)) and 2}2.[55 respectively. Let alsIo ?§j17j27j3)’ D(}17j2,j3)7 D(j1,j21\:j3)
be the integrals defined in ([2.2.44)), D(;l’jms) in (2.2.45)), and G(jl'i,;;,h) in (2.2.54). Fix N = 18.
The first thing we observe is that, as long as estimates (1.1.11a)), (1.1.11b) are satisfied and p € N

is sufficiently large (e.g. p > max{[5] + 8,21}), there is a constant C' > 0 such that for every
te[l,T)

(2.2.101a) C'E,(t; W) < El(t; W) < CE,(t:; W),
(2.2.101b) CUEE(t; W) < EXN(t; W) < CES(t; W),

Above equivalences follow from (2.2.12)), a-priori estimates (1.1.11a)), (1.1.11b)), the fact that for
a general multi-index I (I € J,, or I € I for 0 < k < 2)

I,R
Z ‘D(Ij1,j2,j3) + ‘D(jmé,js) S (U@ aree + 1RUE )| 7o) HVI(t’ )H%Q
Ji€{+—}
by inequality (A.17)),

1T
> PGl S UM W ()1

jk€{+77}

by inequality (A.24), and:

e as concerns especially (2.2.101al), from the fact that for any I € J,,, any (I, I3) € I(I) with
I

(5] <ILl < |11, by (EI7)

I, I3
Z ‘D(jhjz,j:s)

Jic{+,—}

S (U= ) aree + RU2(E ) roe) VI 22V (2, ) 22

< (10 grse + IRIU ) pigrance ) Balts W)

e as concerns especially (2.2.1010)), the fact that for any I € V¥ (see definition (2.1.26)), any
(I1,1I5) € I(I) with I € K (see (2.1.25)) and |I2| < 1, and any | = 1,2,3, by (A.17)) and (2.2.97)

1
1,1zl e
S lem [ £ ST I DR b [V IV )2
1

< C(A+ B)Be2— 3+ ¥ EE (1, )3,
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Let us now consider a general multi-index I. From equation ([2.2.3)) we deduce the following
equality:
1~ .
SONWE ()3 = = (D!, W]
oy~ S (AW + (00" (T EYU ) A Vi) T+ FYU:0) )WL W)
HOp™ (A" (VI m)U + OpR(A" (V13 m)U, W) + @4V, W), W)
HTas (UYWL W) + V(0 V), W)
and immediately notice that %[(A(D)WSI, Wg}] = 0 because of the fact that A(n), introduced in
(2.1.5)), is real diagonal matrix and its quantization is a self-adjoint operator.
Matrix (Iy + EQ(U; m)AL(Vin)(Iy + F9(U;n)) is real, symmetric, of order 1, with semi-norm

M} (1 + BYUm) AL(Vin) (s + FJ(Uim)),3) S (1+ [RaU(E o)V ()l przoe

as follows by estimate (2.2.7a]) on Eg, [2.2.8) of FY, and (2.1.49) on ﬁl(V;n). Corollary |1.2.13
and a-priori estimates (1.1.11a}), (1.1.11b)) imply then that the second term in the right hand side

of ([2.2.103) reduces to (To(U, V)WL, W), with Ty(U, V) operator of order less or equal than 0
such that

ITo (@ V)lleqay S ME (I + BSW ) As (Vin) (I + F§(U3n)), 3) < CAet™,

so after Cauchy-Schwarz inequality and equivalence (2.2.10)) it is a remainder R(t) satisfying, for
every t € [1,T]
(2.2.104) IR(t)] < CAet™H|W(t,)||2,.
Observe that, by the definition of ’WVSI in (2.2.2) and of W/ in (2.1.45), we have that
(2.2.105)
17721 1 B . 1 B . 1
| =whie)| , < 10pP(P(Vin) = L)W |12 + 09" (B m) W] 12
S (Ve + U s0e + IRUE ) W2 )] 22,

the latter inequality following from proposition m estimate (2.1.48)), the fact that E(U;n)
verifies, after (2.2.7) and for any admissible cut-off function Yy,

Mg (B (25 )vim)sn) SN0 oo + IR e

and equivalence (2.1.50). Therefore, third and fifth brackets in the right hand side of (2.2.103))
can be replaced with

(OpP(A"(VIim)U + OpR (A" (VEim)U, W) + (T_is(U)W!, W)

up to some new remainders R(t), satisfying (2.2.104)) after Cauchy-Schwarz inequality, estimates
(2.1.21d)), (2.2.4)), (2.2.105)) and (1.1.11a]), (1.1.11Db]).

Summing up, equality (2.2.103) reduces to:
(2.2.106)
1 —~
SOUWL ()22 = =S [(OpP (A" (VEim)U + Opf(A" (Vs ) U, W)

QY. W), W)+ (TLis (U)W W) + (9 (U, V), W) | + R(t).
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In order to analyse the behaviour of the second and fourth brakets in above right hand side we
need, at this point, to distinguishing between indices I € J,, and I € Jlg.

Propagation of a-priori estimate (|1.1.11¢|): Let us suppose that I € J,,. Using (2.2.105) and
estimate (2.1.38)) we find that

(2.2.107) (QLV, W), Wy = (Q5 (v, W), W) + R (1)

where, for a new constant C' > 0 and every t € [1,T],

M\H

(2.2.108) IR, (t)| < CAct ™\ T5 B, (t; W)2.

Reminding definition (2.1.12)) of Q4(V, W) and the fact that coefficients cy, s, are all equal to 0
when I € J,,, we notice that some of the contributions to the scalar product in the right hand
side of (2.2.107)) are also remainders R, (t). These are precisely the following ones:

Z QY (v, Dyo),ul +ul) + Z (QF (v, Dyul?), ol 4-ol)
(I1,I2)€I(1) (I1,I2)€3(1)
1<)

in consequence of Cauchy-Schwarz inequality and estimates (2.1.27)), (1.1.11b}), (1.1.11c). More-
over, (R'(U,V),W!) in the right hand side of (2.2.106) is also a remainder R,(t) because of
Cauchy-Schwarz, (2.2.105)), a-priori estimates (|1.1.11a}), (1.1.11b]), and the fact that

IR (U, V)|l 2 < CAct™'+3,

which follows choosing 6 < 1 in (2.2.6), using (2.1.38) and (L.1.11a)-(1.1.11d).

Since remainder R(t) in ([2.2.106)) (verlfylng (2.2.104)) can be enclosed in R, (t) after (1.1.11¢),
we obtain that equality (2.2.106)) can be further reduced to

1 —~
SO ()] = —%[<opB<A"<vf; MU + Op (A" (V)0 W)

+ Y (L, Dk )ui+u£>+<T_18(U)WI,WI>}+Rn(t).
(11,12)63(1)
(< |n|<|1|

From definition ([2.2.46)), equalities (2.2.35)), (2.2.37)), (2.2.39) with N = 18, ([2.2.40)), together
with (2.2.76)), (2.2.84) with N = 18, (2.2.92), we deduce that

S|oEiEm| < 1Rl + Y (P +RLS W) + XS ok,
= e

where quartic terms Déuart,Déulfrt,Qét’ift satisfy, respectively, (2.2.77)), (2.2.85) with N = 18,
(2.2.93). These latter ones can also be considered as remainders Ry, (¢) thanks to lemma [2.1.2] (¢
and a-priori estimates ([1.1.11]), which implies that, for some new C' > 0 and every ¢ € [1,7],

]atE;(t; W)‘ < CAet™ 3B, (1, W)3.

Then
El(t; W)% < El(1;w)2 —I—/ CAet™ 1+2d7',
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so after equivalence ([2.2.101a)) and a-priori estimate ((1.1.11c])

En(t;W)2 < CE,(1;W)2 /C’AeT 5 dr

2CAe s
)

N

< CE,(1; W)z +

tz,

again for a new C' > 0. Taking B > 1 sufficiently large so that E,,(1; W) 2 < B2 and %

2C K2
we finally obtain (|1.1.12c)).

Propagation of a-priori estimate (|1.1.11d}): Let us now suppose that I € J§ for 0 < k < 2.
After (2.1.39) and (2.2.105) we have that

< 3K,

(Qo(V, W), W) = (Q4(V, W), W) + R5(¢)
with
(2.2.109) IRE(H)] < CA(A + B2t~ 5 BE (1, W)3,

and moreover

(2.2.110)
S (@AWW ==bp Y ennS [(QFF (vE (D)D) ol + ol

(I1,12)€I(1)
LEeX,|I2|<1

—dn Y enoS [(@FF (oL xX(7 D) Dafu) o] + 0T )] + RE(),
(GOSN
S

with dye = 1if I € V¥, 0 otherwise, as already seen in (2.2.50). Also, (R'(U, V), WI) in the
right hand side of and R(t) are remainders R (t) in consequence of the same argument
used in the previous case, but with estimate replaced with . Therefore, we can
further reduce to the following equality:

ST,V = = S [(OpP (A" (Vsm)U + OpR(A" (V1)U W) 4+ (T a0, )]

— Ok Z NS K lgg <vi, (t7°D, )Duﬁf) ,vi + v£>]

(11,12)€3(I)
L eX,|I2]<1

- 6Vk § CJ,OS |:<Q18g (vi7 X(t_ng)’DI|ui) ’U—]i- + 'U£>} + ng(t)v
(J,O)Gjﬂc(f)
Je

and deduce from definition ([2.2.55)), equalities (2.2.35)), (2.2.37)), (2.2.39) with N = 18, (2.2.51)),
together with (2.2.76)), (2.2.84) with N = 18, and (2.2.95)), that

‘at ER (1 W)‘ SRS+ (lﬁqm )| + ‘géulagrt D + o< Y > ‘958'{?2,13)

Iedk Ievk  (I1,I2)€)(I)
Jie{+,—} L eX,|I2|<1

with dp<co = 1 for k£ < 2, O otherW1se On the one hand, quartic terms ’unart,@é;ll:rt satisty,

respectively, (2.2.77)) and ( with V = 18, and are remainders R3( ) after (2.1.39) and
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a-priori estimates. On the other hand, &2 verifies estimate (2.2.96)). Consequently, there
) (41,92,33)
is a constant C' > 0 such that

~ ~ t 5

EST(t; W) < EXT (1, W) + C(A + 3)252/ TS B (b W 2dr
1

2 2 ! 1% 4540 1 to5
+5k<20(A+B) €% | Op=0 T 2 2E3(T;W)2d7'—i— T adT
1 1
with dp—g = 1 if £k = 0, 0 otherwise, 8 > 0 as small as we want, and after equivalence (2.2.101Db))

t 8

EE (W) < CEN(L:W) + C(A + 3)252/ U B (W) s dr
1

2.2 T SR 1 b s
+ 0k<c2 C(A+ B)%e” [0p=0 | T 2 3 Bs(m; W)2dr + Toadr|,
1 1

for a new C > 0. Injecting ((1.1.11d)) in the above inequality and integrating in dr, we obtain
that

itak

EX¥#t; W) < CE¥(1;W) + C(A+ B)?Be3? + Op—g =
5( ) < CE3( ) ( ) 5r k0%+6+51

9

t620+6+51]

and taking 3 sufficiently small so that 8+ 61 < &y/2, B > 1 sufficiently large so that F5(1; W) <

2%27;(22 and B > A, and g¢ > 0 sufficiently small so that
2

1 [ 1 1 -1
8 — JE—
= 8BCK?2

9

I F S S—
(5k ko%)"‘ﬁ-i‘(sl

we finally derive enhanced estimate ((1.1.12d)) and the conclusion of the proof. O
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Chapter 3

Uniform Estimates

3.1 Semilinear normal forms

In proposition [2.2.13] of the previous chapter we proved the propagation of the a-priori the energy
estimates, i.e. that there exist some constants A, B > 1 large and £y > 0 small, such that
implies (1.1.12¢|), (1.1.12d)). To conclude the proof of theorem it only remains to show that
also implies (1.1.12a}), (1.1.12b)). In particular, as uy = —u— and vy = —u_, it will be
enough to prove this result for (u_,v_), which is solution to

(3.1.1) { (De + 1Dal) us = QY (vs, Divs),

(Dy + (Dy)) v- = Q¥ (v, Dius),

with QY (vs, Dyvy), Qgg(vi, Dyuy) given by .

As for the simpler case of the one-dimensional Klein-Gordon equation (see [29]), the main idea is
to reformulate system (3.1.1)) in terms of two new functions u, v, defined from u_,v_ and living
in a new framework (the semi-classical framework), and to deduce a new simpler system, made
of a transport equation and an ODE. Through this new system we will be able to recover the
required enhanced estimates (|1.1.12af), (1.1.12b)).

Before introducing the semi-classical framework in which we will work for the rest of the paper,
we need to replace almost all quadratic non-linearities in with cubic ones by a normal
forms. This is the object of the following two subsections. We highlight the fact that we do not
make use directly of the normal forms obtained in the proof of the energy inequality, because
our goals and constraints are henceforth different. In fact, we want to obtain a L estimate for
essentially p derivatives of our solution, having a control on its H® norm for s > p. Therefore,
we are allowed to lose some derivatives in the normal form reduction, which means that we do
not care any more about the quasi-linear nature of our problem.

We warn the reader that, for seek of compactness, we will often use the notation NL, (resp.
NLy,) when referring to Qf (v+, D1v+) (resp. to Qgg(vi, Diuy)).

3.1.1 Normal forms for the Klein-Gordon equation

The aim of this subsection is to introduce a new unknown vV¥' defined in terms of v_, in such
a way it is solution to a cubic half Klein-Gordon equation instead of the quadratic one satisfied
by v_ in (3.1.1). This normal form is motivated by the fact that the L? norm of ngg (v, Dyuy)
decays too slowly in time (only t~1+%/2)  as follows from (B.1.4a)) and a-priori estimates (L.1.11D),
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(1.1.11c)), and this decay is not enough in view of proposition (the required one being strictly
faster than ¢t—3/2).

It is fundamental to observe that, after (1.1.11) and inequality (3.1.7b|) below with # < 1 small
enough (e.g. 0 < (24 9)71), v and v_ are comparable, in the sense that there is a positive
constant C' such that

(3.1.2) [llo— (8, Y mose — [0V (2, ) [ oe| < CE7H

Then bootstrap assumption (T.1.11b)) implies that the new unknown v™¥¥ disperses in time at
the same rate t~! as v_, and the propagation of a suitable estimate of the H”* norm of vN¥'
will provide us with enhanced (|1.1.12b]).

Proposition 3.1.1. Assume that (u,v) is solution to (L.1.1) in [1,T] for a fired T > 1, consider
(ug,v4,u_,v_) defined in (1.1.5) and solution to (2.1.2) with |I| = 0, and remind definition
(2.1.11) of vectors U,V . Let

/l: -
aLy) e oo Y / B, ooy (€05 (€ — )it (),
jl?]2€{+1
with B(j1 o) (§,77) given by [2.2.42) with k = 1 and j3 = 4. Then for every t € [1,T] vNF is
solution to
(3.1.4) (D¢ + (D)) N (t, x) = r,]f\;F(t,x),
where

(3.1.5) rkg Ft,z) =

Z / - £B(Jl J2,+ 5 n)

4(27T )2
J1.92€{+,—}
x| MLy (€ = m)itzy () + 95, (€ = m) VL (n) | dédn
satisfies
(3.1.6a) [lrig" (t,)llz2 < Z IV (e IRTU 2o U e+ 1V (&) 2o [V E )2,

(31.6b)  Ix(t7 Do)y (&)= S IV HHm(ZHR“U Werze) 1Vt oo

for any x € C§°(R?), o > 0. Moreover, for every s,p >0, any 6 €]0,1],

(38.1.72) (™" Mg S Z IV (s s IREU ()l oo + IV (E ) Loe 10 (E )l s,

1
@™ =0 ) )| o S Z IV (s M st [V (85 |2 IREU (2, ) oo
(3.1.7b) -

+ZIIV Mo IREU ) I e 1O () G
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(3.1.7¢)
1

[N =)t 2 S D NV IRTU e + V() e [Q4U(E )]
p,v=0

NV E )2 lUE [ + 11V 2l QUE ) 2,

and

(3.1.80) X D) N~ 0) () o S IV e U 2

7')HL2 ~

(3.1.8b) Hx(t—“Dx)Q(vNF—v, t.)|

ZHQV M2 IRYU (L )llzoe + 1V (& oo [T (E, )| 2

Proof. From definition (3.1.3)) of v, system (2.1.2)) with |I| = 0, and the fact that

> /M (1- thg LY i3, (6 = )i, () d,

(3.1.9) QF8(vs, Dyuy) =

4(27r )2

it immediately follows that vV is solution to (3.1.4) with r,]g\;F given by (3.1.5). We observe
that, after formula (A.15]), we have the following explicit expressions:

(3.1.10) '
oV = —% {(v+ + v )Ri(ug —u_) — <gi>(v+ —v_)(ug +u—)
+ D1 [[(Da) ™M vy — v ) (uy +us)] = (Do) [(De) vy — v)|Ra(uy — u_)ﬂ
and
(3.1.11) r,i\gF = i {NLkg Ri(ug —u_) — <gi> (v4 —v_) NLy + D1 [(Dy) " vy —v2) NLW]} .

Inequalities (3.1.7al), (3.1.7h)) are straightforward from (3.1.10)) and corollaryin appendix
Inequality (3.1.7¢) is also obtained from corollary , after having applied Q to (3.1.10) and

used the Leibniz rule, and from bounding the L norm of Qu+,Qus with their H? norm by
means of the classical Sobolev injection. Inequalities (3.1.8a)), (3.1.8b)) are also straightforward if
one observes that operator x(¢t~°D,), with x € C§°(R?) and o > 0, is L2 — H! continuous with
norm O(t%).

As concerns ri g » from (3.1.11)) and corollary H we find that

kg ()22 < Z INLg (8, ) L2 IRYU (¢, )l oo + [V (E )l 2l VL (¢, )| oo

+ IIV( s M zoe [N L (¢, ) ||

and

IX(E7Da)rig” (8 )l S Z INLieg (£, )| oo IREU (£, )l oo + 7V (E, ) [ rn.oe | N (£, )| oo -

Inequalities (3.1.6a) and (3.1.6b) follow then by (B.1.3c) with s = 1, (B.1.3bf), (B.1.4a) and
(B1.4D). 0
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3.1.2 Normal forms for the wave equation

We now focus on the wave equation satisfied by u_:

(Dt + [Dz|)u-(t,2) = Qy (v, D1vs),

and perform a normal form argument in order to replace (a part of) the quadratic non-linearity
in the above right hand side with a cubic non-local one. The fundamental reason for that is to be
found in lemma where we have to prove that the L? norm of some operator, acting on the
non-linearity of the equation satisfied by u_, decays like t=1/278 for a small 8 > 0. That decay
is obtained if the L? norm of the mentioned non-linearity is a O(t~3/2*%"), for some new small
B’ > 0, which is not the case for Q (v, D1vy), as follows from (B.1.3a), (1.1.11b), (1.1.11d).
This normal form can be actually performed only on contributions depending on (v4,vy) and
(v—,v_) but not on (vy,v_), which are resonant. Nevertheless, the structure of these latter
contributions allows us to recover the right mentioned time decay for their L2 norm (see lemmas
[3.2.15] and [3.2.16).

Thanks to inequalities (3.1.20b]), (3.1.20c]) and a-priori estimates (T.1.11)), the new unknown u™*'
we define in ((3.1.15)) below is equivalent to the former u_, meaning that there exists a positive
constant C' such that

)
(3.1.12) Z IRGu—(t, | zorroo — [RFUNT(E, ) || oo | < Ce271H3,

After (T.1.11a)) this means that v and Riu’V¥" decay in the HPT1> norm at the same rate
t~Y2 as u_,Rju_, and the propagation of a suitable estimate of this norm will provide us with

enhanced (|1.1.12a)).

Let us rewrite Q) (v+, D1v+) as follows

1 D D,D
Qg(viaDlvi) = _5% |:U+ DlU_ + i R 1U_:|

(D) " (D)

DY /“( _Z>-%)mﬁj(é—n)@j(n)dédm

J€{+ -}

(3.1.13)

and introduce, for any j € {+, —},

(- d)m
(3.1.14) D;(&,n) =
’ i€ - 77) (n €]
Proposition 3.1.2. Assume that (u,v) is solution t - [1,T] for a fired T > 1, consider

(s, vp,u_,v_) defined in (1.1.5) and solution to (| - ith |I| = 0, remind definition (2.1.11)
of vectors U,V and (3.1.3) of vV, Let

(3.1.15) W - LY / €D (€, m)iy (€ — n)o; (m)dedn,

( ye{+,
with multiplier D; defined in (3.1.14)). For every t € [1,T] uT' is solution to
(3.1.16) (D¢ + | D )uNE (t, ) = qu(t, ) + colt,z) + N (¢, ),
where quadratic term q,, is given by

_— Dy wn DiDi np
(3117) qw(t7$) = % fUNFD rUNF_ivNF. v ,
(Dz) (Dz)

N =
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NF

while cubic terms cy, 7., are equal, respectively, to

1 N
cw(t,z) = =3 |(v- — vNF) Dyv_ + oNF Dy(v_ — o™F)

2
(3.1.18) _De(vry. DaDs _ D yp. DaDs (o — NF)]
(D) RN R |
and
(3.1.19)
) =g Y /”’fD (€m) [Ty (€ = n)o;(n) + 56 — ) Ny ()] dn.
Jje{+,—-}

For any s,p >0, any t € [1,T],

(3.1.20a) [Nt ) = e (&) s SNV oo [V (E )| gress,
(3'1'20b> HUNF(t? ) - U— (ta ')HH”JFLO<> 5 HV(t, ‘)HLOO HV(tv ‘)HHP+187
(3.1.20¢) IRu™NT (8, -) = Rju—(t, )| oree S NV (E ) ooV (E ) pors, 5 =1,2.

Moreover, for any cut-off function x € C§°(R?) and o > 0 there exists some x1 € C§°(R?) and
s > 0 such that

(3.1.21a)

X(t7 Da)ew(t, )| » S 1 HXl (7 D) (N = 02)(t, )] 12 (V2w + [0V () e
+ NN — o)) || IV s + 0N ) )

(3.1.21b)

It Da)ew(t, )| o S 11 D0) (0NF = 0) (1) o (V2o + [0VF () o0
N @M =0 ) (1) | (Ve + 07 )lrs)

(3.1.21c¢)

X (™7 Da)Qew(t, )| 2 S 7 HX1 (D) QN = v )t )| o (IV ) arzee + 10N ) 1)

+ VOO =0 ) (¢, )] 2 (HV( s + [N (8, )| are)

17 [ = v ) ()| e Z 124V (2, )l + 192407 (2, )] 2)
n=0

with N(s) > 0 as large as we want as long as s > 0 is large, and

(3.1.22a) (7 De)ry (¢, )z S IV () s 1T ) L,
(31220) (DN Ve S IV ) s (UG g + IRV )2
and for any 0 €]0, 1],

(3.1.22¢)
X (77 D)2y () |2 S tﬁ[IIV( Moo IV & e (WU e + [IRAUE ) aroe)

V(e (10 e + IRIUCE e ) 10 s | 12V ()l
+ IV e (UG + 12U )

+ (U ) 2o + [RUE )l g2ee) (V(E )l L2 + 12V, ')Ilm)] IV (s )l e
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Proof. By definition (3.1.15) of u™¥', system (2.1.2) with |I| = 0, (3.1.13) and (3.1.14)), it follows
that «V¥ is solution to
D, D,D;

(DI)UJF D, v | + Nt x),

1
(D + | D )uNE (t,2) = —53 vy Div_ +

with V" given by (3.1.19). Reminding that vy = —o_ and replacing each occurrence of v_ in
the quadratic contribution to the above right hand side, we find that ¥ is solution to ([3.1.16]).

The first part of lemmaand the fact that any HPT1> injects into H?3 by Sobolev inequality
immediately imply estimates (3.1.20f) and

X (= D)y ™t )z S INLig (8, ) 22 [V (& ) | ar1s.oe,

X (=7 Da)r ™ ( poe S IINLig (8 )| oo [V (s )| 5o
for any s, p > 0. Moreover, from (A.37a)) we derive that

Ix(t77 Do) T (8, )l 22 S t7 (I NLig (8, )l 2 + 12N Ligg (8, ) 22) |V (2, ) 11700
+ 17| NLg (£, )| ris.ce | QV (2, )] 2,

so estimates (3.1.22)) are obtained using (B.1.4al), (B.1.4¢|) with s = 15, and (B.1.4f).

Finally, inequality (resp. (3.1.21b))) is obtained using lemma in appendix |B| with
L =L (resp. L =L>®), w=v_— vV and the fact that x;(t~?D,) is continuous from L? to
H! (resp. from L*® to H%*®) with norm O(t7). Inequality is deduced applying 2 to
(3.1.18) and using the Leibniz rule. The L? norm of products in which Q is acting on v_ — v™¥
is estimated by means of lemma with L = L?, w = v_ — vNF'| whereas the L? norm of the
remaining products is simply estimated by taking the L> norm on v_ — v’V times the L? norm
of the remaining factor. O

3.2 From PDEs to ODEs

In the previous section we showed that, if (u_,v_) is solution to system ({3.1.1)) in some interval
[1,T], for a fixed T > 1, one can define two new functions, vV as in (3.1.3) and »™¥*" as in
(3.1.15)), respectively comparable to v— and u_ in the sense of (3.1.2)) and (3.1.12)), such that

(uNF vNF) is solution to a new wave-Klein-Gordon system:

(3.2.1) {(Dt 1D w (1 7) = qu () + cult 2) + 1" (1 2),

(Dt + (Dg)) oNE (8, 2) = riF (8, @),
for every (t,z) € [1,T] x R?, where quadratic inhomogeneous term gq,, is given by (3.1.17) and
cubic ones ¢, TNt and r,i\;F respectively by (3.1.18]), (3.1.19) and (3.1.5).

As anticipated before, our aim is to deduce from a system made of a transport equation
and an ODE, from which it will be possible to deduce suitable estimates on (u™*", vNF) (and
consequently on (u_,v_)). Thanks to and these estimates will allow us to close
the bootstrap argument and prove theorem [1.1.2]

In subsection we focus on the deduction of the mentioned ODE starting from the Klein-
Gordon equation satisfied by vV, while in subsection we show how to derive a transport
equation from the wave equation satisfied by wN*". The framework in which this plan takes place
is the semi-classical framework, introduced below.
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Let us introduce the semi-classical parameter h := t~! together with the following two new
functions:

(3.2.2) u(t,z) =t (t,tx), Ot x) =tV (¢, tx),

and observe that, from definition (3.2.2) and inequalities (3.1.12]), (3.1.2), a-priori estimates

(1.1.11a)), (1.1.11b)) are equivalent respectively to

~ w L1~ _1
(3.2.30) [t Y gpin0e + | OB (€I, ) gore < Ceb™2,
(3.2.3b) [5(t, e < Ce,

for some positive constant C. A suitable propagation of the above estimates will therefore provide
us with (1.1.12a]) and (1.1.12b)).

A straight computation shows that (u,v) satisfies the following coupled system of semi-classical
pseudo-differential equations:

(3.2.4) { [De = Opf(x - & = [ED]aalt, 2) = " [qu(t, tx) + cu(t, tx) + 7 (1, t2)]
[ = Opfi(a - € = (ED]a(t 2) = b=y (8, ),

where Op}’ denotes the semi-classical Weyl quantization introduced in [1.2.17| (¢). Moreover, if

M; (resp. £;), j = 1,2, is the operator introduced in ((1.2.49)) (resp. (1.2.68)), M;u (resp. £;v)
can be expressed in term of ZjuN F (vesp. Zij Fy. We have the following general result:

Lemma 3.2.1. (i) Let w(t,z) be a solution to the inhomogeneous half wave equation
(3.2.5) (Dt + |Delw(t, ) = f(t ),

and w(t,x) = tw(t, tx). For any j = 1,2,

320)  Zulty) =i |32 + 500 () @00 0)] Ly +ini )

(i7) If w(t,z) is solution to the inhomogeneous half Klein-Gordon equation

(3.2.7) [Dt + (D) w(t, x) = f(t, ),

then

(328)  Zuwlty) =ih [—Opm»w(t,x) + 10pz”(fg'>)w<t,x>} oz + iy F(1,9)-

Proof. (i) If w is solution to half wave equation ({3.2.5)) then w(¢, x) satisfies
(D1 = Opj; (x - € = [¢D](t x) = b= f (¢, 1),

so, for any i =1, 2,

Zjw(t,y) =

ih ™! [mth +Opy (& — 2jz - §) + ?;;mﬂ} <1w(t’x)>

—y
T=%

: w h -
=1 [a:th + Opy (& —xzjz - &) + 22'%] w(t,x)

h
=1 [«Tjop"h”(w &= [§))w(t, x) + Opy (§5 — wjz - Hw(t,z) + o Lault, @) + o ft )| | _y

&

1
|: J ( ) 2 P ‘§|

> w(t, x)] o=y + iy f(t,1).
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We should specify that last equality is obtained by a trivial version of symbolic calculus (|1.2.18]),
that applies also to symbols b(£) singular at £ = 0. Indeed, if symbol a = a(x,§) is linear in z,
and b(&) is lipschitz, the development afb is actually finite:

atb(z,€) = alr, OH(E) — 5-rale, ) - Fb(E).

(7i) The result is analogous to the previous one, after observing that w satisfies

[D: — Op (- € — (&)t x) = AL f(t, t).

As a straight consequence of lemma and system (3.2.4)) we have that
(3.2.9a)
&

. - 1w - :
ZuNE (t,y) = ih [—Mju(t,x) + ZOph (|§|) u(t,x)] o= +1y; (G + cw + 78] (£, y),

<€£>) (t’x)] L:g + iyt (49).

In view of lemma|3.2.14] it is also useful to write down the analogous relation between (Z,, Z,u)_
and M[t(Zy,u)—(t,tz)]. As (Z,u)— is solution to
(Dt + |Dy|)(Znu)— = ZnNLy(t, ),

from equality (3.2.6) with w = (Z,u)_ and the commutation between Z,, and D; — |D| (see
(2.1.15a))) we find that

(3.29b)  Z;vNF(t,y) =ih [—Opg’((@)z O(t, ) + Oph(

Em

(3.2.10)  (ZmZnu)_(t,y) = ih[ — M, 07 (¢, ) + %Oph ( €]

)@ (2] |,y + 9mZnNLu(t,y)

D,,
- w(Znu)f(t,y),

where J is the index such that ' = Z,, and u’(t,z) := t(Z,u)_(t,tz). Also, observe that from
(L.1.15), (1.1.16), (1.1.5) and (L.1.10)

ZyNLy = QY (Zov)x, Dive) + QY (va, D1(Znv) 1) — 6,Q (v+, Dyvy)
with 81 =1 for n = 1, and that from inequality (B.1.6a) with s = 0,

(3:2.11) || ZaNLuw(t, Mz S NZaV (&N IV E )l arzee + [V e
H IV E )z (U e + IRLUE ) nee) + IV e 1O ]IV E oo

Moreover, from the definition of M; and £; we see that

1 Dj
AV w(t, x) = [y|D | —tDj + — }
’ ’ 20| Dy|

_ . D;
HODE()£5(0,2) = 13Dy} = tD; = 17D | it )l o
y
so lemma implies that, if w is solution to half wave equation (3.2.5)) (resp. to half Klein-
Gordon (3.2.7)),

(t’ y)|y=t9€’

(3.2.12a) [yju) |~ tD; +21 ‘g J w(t,y) = iZw(t,y) + ;‘g‘w(t y) +yif(t,y),
res i —tD;|w =1Z;w — i&w - .
@22)  (resp (D) — D wltos) = iZyu(t) = i pllt) + 155.))
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3.2.1 Derivation of the ODE and propagation of the uniform estimate on the
Klein-Gordon component

Let us firstly deal with the semi-classical Klein-Gordon equation satisfied by v:
(3.2.13) [Dy — Opy(z - € — p(€))]o(t,z) = h_lr,i\gF(t, tx),

where p(€) = (£) and r,]c\;F is given by (3.1.5)) and satisfies (3.1.6). We remind that p’(¢) denotes
the gradient of p(§) while p”(§) is its 2 x 2 Hessian matrix, and that £; is the operator introduced

in (1.2.68) for j = 1,2. We also remind definition (|1.2.66)) of manifold Aj,, represented in
dimension 1 by picture below, and decompose v into the sum of two contributions: one

localized in a neighbourhood of Ay, of size v/h (in the spirit of [14]), the other localized out of
this neighbourhood. The contribution localized away from Ay, appears to be a O(h'/279) if we

£

_13 31 x

Agg

Figure 3.1: Lagrangian for the Klein-Gordon equation

assume a moderate growth for the L? norm of £#7, with 0 < |u| < 2, and has hence a better
decay in time than the one expected for ¥ (remind h = ¢~!). Thus the main contribution to ¥ is
the one localized around Ay,. We are going to show that this latter one is solution to an ODE
(see proposition and that its H}"> norm is uniformly bounded in time, which will finally

enable us to propagate ([3.2.3b)) and obtain ([1.1.11b)) (see proposition [3.2.7)).

For any fixed p € Z let X(£) := (€)P, and for some 7, x € C§°(R?) equal to 1 close to the origin,
o > 0 small (e.g. o < 1) let

(3.2.14) 9 .= Op? <’y <:”_f};;(§)> X(h”g)) .

We also introduce the following notations:

(3.2.15) 7> = OpY(2(€))T,
together with
(3.2.16a) vy, = Mo~
/

~n w _ r—p (5) o ~%
(3.2.16b) Ry, = Opy}, (1 ~y <\/E x(h7E) | v7,
so that v~ = 6/2\;99 —i—ﬁ}fi , and remind that ||[£L7w]|| = [|£] £L32w]], for any v = (y1,72) € N2

g
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Lemma 3.2.2. Let 7 € C*®(R?) vanish in a neighbourhood of the origin and be such that
1097(2)| < (2)71el. Let c(x,€) € S5.,(1) with § € |0, 3], o >0, be supported for |¢| < h=°. For
any x € C§°(R?) such that x(h°€) =1 on the support of c(z,§),

i) opr (F( et o)) llzom O (A7) e w2
o) o (a("“}j’b@)cm,s))w s g:jo ™ 10D (A ) w2
ond

i onp (G(*ED et ;ohl 10} (x(h7)) 4] 2.
(3.2.15b) Hoﬁ(ﬁ(x‘fp};@)dw, el Mzoh%—ﬂ||Opz”<x<hffs>>ww||p,

for a small 3 >0, 5 —0as o —0.

Proof. The proof of (3.2.17) (resp. of (3.2.18)) follows straightly by inequalities (1.2.70]) (resp.
(1.2.71))), after observing that, as 7 vanishes in a neighbourhood of the origin,

_(x—p 2~j z—p zj — p;(§)
v(\}%@)cu,a:;m( S (w0,

where 5{(2) :=5(2)z;]2| 72 is such that |6§‘§{(z)| < (z)~ 1ol (resp.

o -y x—p
(et = (SO () e

where 3o(2) := 7(2)|2| 72 is such that [097(z2)| < (z)~27le). O

Corollary 3.2.3. There exists s > 0 sufficiently large such that

(3.2.19a) va (t, ‘)‘

Shi” 5(@( e + > IOpK (x(h7€)) L3 (¢, ‘)LQ)v

2~
1<|p|<2

(3.2.19b)

o, ()] s nE (( Mg+ > 0Py (x(h7€) L4, m).

LOO
1<|p|<L2

for a small >0, 6—0 as o — 0.

Proof. Since symbol 1 — (=552 \I/)E( )) (ho§) is supported for |Z=L252 \pf@\ >dy; > 0or |h7¢| > do > 0,
for some small dy,ds > 0, we may consider a smooth cut-off function X equal to 1 close to the

origin and such that Xx = X, so that 1 — ’y(m_\%@))x(h”{) writes as

[1 —y (”7_\};(5))} 7€) + [1 —y (“j‘ff’h@) x(h"ﬁ)] (1= (7€),
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the first symbol being supported in {(z,¢) : |x_\%(§)| > dy, €| < h™7}, the second one for large

frequencies [£| 2 h™7.

Using lemma |1.2.24] and the fact that fy(xi%(é))x(h"g) € S%’U(<x*\1/ﬂ;€(€)>—M)’ for any M € N,
we have that, for a fixed N € N*,

[1 - 7(””_\}2(5)%(11“5)} (1= X(h€)) = (1 — X(h7E))4 [1 _ V(W)x(h%)]
+ Y %@, €) + ra(w,€),

1<j<N

where function x;(h?§) is still supported for large frequencies |£| 2 h™7, for every 1 < j < N,
up to negligible multiplicative constants,

_ j% o 1o IIJ—p/<f) o j% o .’Iﬁ—p/(f) -M
os(a:6) =W 510 (T e € wEs, ()T,

and ry € AN G +")52’U(<i\/lﬁ(£)>_M). Lemma |1.2.40| proposition |1.2.36, and the semi-classical
Sobolev injection imply that

S WVl ) ag,

HOp};" ([r- 7<$_\f};;(£))x(h"§)} (- D))ot )

HOp}i’([l — 7<x_\Fp}/L(€)>X(hU§)} (1— %)(haf))'ﬁz(t7 )

where N(s),N'(s) > 1if s > 2 is sufficiently large.

L2

S, hNI(S)Hﬁ(tv )HH;SL7
LOO

On the other hand, as function (1 — 7) (i\/lﬁ(é)) vanishes in a neighbourhood of the origin and

is such that [02(1 — ~)(2)| < (2)71%, by inequalities (3.2.18) and the fact that, using symbolic
calculus to commute £ with X(§),

(3.2.20) 10P} (X (W7 ) LHT> (8, )2 Sh™ Y 0pK (x(h7€)LHMT(t, )] 2
1| <|pl

with v = po if p > 0, 0 otherwise, we have that

HOp}f((l—v)(x_m) (h7) )™ (¢

SO R ODE (x(h7E)) LHB(E, ) 1

Vh 12
<2
Hop;f(u—v)(x‘;%@)mme))az(t,o S 32 W IOn )2
|ul<2
forasmall >0, 3 —0as o — 0. O

In the following lemma we show how to develop the symbol a(z, ) associated to an operator
acting on I'*9w, for some suitable function w, at &€ = —d¢(x), where ¢(z) = /1 — |z|2.

Lemma 3.2.4. Let a(x,§) be a real symbol in S50((£)9), ¢ € R, for some § > 0 small, £(§) =
(&) for some fized p € Z, T*9 the operator introduced in 1} and w = w(t,z) such that
Lhw(t, ) € L*(R?) for any |u| < 2. Let us also introduce w% = Tk90pY (X)w. There ezists a

family (0r(z))n of C§° functions real valued, equal to 1 on the closed ball By_ ;25 (0) and supported
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in By_c p20(0), for some small 0 < ¢y < ¢,0 > 0, with ||0504| L~ = O(h=27) and (hoy)%6y,
bounded for every k, such that

(3.2.21) Op}f(a)w%kg = 0p(z)a(x, —dgb(m))w%kg + Ri(w),

where Ry (w) satisfies

(3.2.22a) 1By (w)(t, g2 S B | Hlw(t, ez + > 10pE (x(h7E)L7w(t, )| |
lv[=1

(3.2.22b) 1Ry (w) (¢, )z S h2 8 [ [(t, Wz + Y 1I0pK (x(h7 )L w(t, )|z |
[v|=1

with = (0,0) >0, B — 0 as 0,8 — 0. Moreover, if Oca(x,&) vanishes at § = —d¢(x), the
above estimates can be improved and Ri(w) is rather a remainder Ra(w) such that

(32.23a)  [Rao(w)(t, )2 SB*P | fw(t, ey + Y 0K (x(hE)L w(t, )l |
1<v[<2

(3.223b) [ Ra(w)(t. = S h277 [t )m: + Y 10DF ((h7E) L w(t, ) 12
1<|y|<2

Proof. After lemma |1.2.38 we know that there exists a family of functions 0 (x) as in the state-
ment such that equality (1.2.67) holds. We highlight the fact that any derivative of 6} vanishes

on the support of y(i\//ﬁ(g))x(haﬁ ) and its derivatives. After remark|1.2.22| this implies that

w¥,, = On(@)wk,, + rec, e hVS; ,((z) ™)

and hence that
Opy (a)wy, = Opy ()0 (@)ws, + Opy (1w, .

with 7% = afiree € RV 7751 _((x)7°°) and v = go if ¢ > 0, 0 otherwise. From proposition [1.2.36
27

and the semi-classical Sobolev injection it follows at once that Op}’ (rgo)wl%kg satisfies enhanced

estimates (3.2.23)) if IV is taken sufficiently large. Up to negligible multiplicative constants, a
further application of symbolic calculus gives also that

N-1
Opj (a(z,))0n(z)wy,, = Op} (a(z, )0n(2))wy,, + > h*Op} (9 al, £)d30h(x))wy,,

|a|=1

+ Op}f(?"N(J?, &))w/z\:kg>

where 7y € hV"PSs o((€)4=N (x)~>°) for a new small 8 = 3(5,0) and & = max{s,o}. From
the same argument as above OP},U(TN)U)/%M verifies enhanced estimates (3.2.23)) if IV is suit-
ably chosen. Also, since the support of aga(;r, €) - 090y () has empty intersection with that of

y(%ﬁ@)x(h%) for any |a| > 1, all the |a]-order terms in the above equality are remainders

Ry (w).
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Now, as symbol a(z,£)8,(x) is supported for |z| < 1 — ¢1h?? < 1, we are allowed to develop it

at £ = —do(x):

1
a(x,€)0n(z) = az, —dd(x))0n(z) + ) /O (0¢a)(z,t§ + (1 — t)de(x))dt Op(z)(§ + do(x))

la|=1

2
(3.2.24) = a(w, —d(x))0n(z) + Y bj(x, &) (z; — Pj()),

j=1
with
(3.2.25)

1 do(z))*(z; — p »
o= 3 [ (a) (e 16+ (1 — 1) ()t () ST (’Ti i)p,((mz BN

|a|=1

If x1 € C°(R?) is a new cut-off function equal to 1 close to the origin, we can reduce our-
selves to the analysis of symbol b;(z,§)(z; — pi(§))x1(h7€). In fact, as bj(z,&)(z; — pj(€))(1 —
x1)(h7&) is supported for large frequencies, one can prove that its operator acting on w%kg is a
Op2np00 (WY |Jw(t, ;) with N > 0 large as long as s > 0 is large, by using the semi-classical
Sobolev injection, symbolic calculus of proposition [I.2.21] lemma [I.2.40] and proposition
Furthermore, if we consider a smooth cut-off function 5 € C§°(R?), equal to 1 close to the origin

and such that 5((§)*(z — p'(£))) = 1 on the support of 7(%\/%(5))“}105) (which is possible if
o < 1/4), we have that

bj(@, &) (x; — Pi(€)x1(h7€) = bj(x. ) (x5 — Pi())x1(h7€)F ((€)*(x — p(€)))
+bj(2,€)(z; — Pi(E)xa(h7E) (1 = 7)((€)*(x — P'(€)))-

Since bj(w, &) (z;—p;(€))x1(A7€) (1-7) ((€)*(z—p'(€))) € h™PS5,(1), for some new small 5,6 > 0,
and its support has empty intersection with that of y(i\/ﬁ(g)) (which instead belongs to class

S1 0(<i\/%(f)>_M), for M € N as large as we want), its quantization acting on w%kg is also an
27

enhanced remainder Ry(w).
The very contribution that only enjoys estimates (3.2.22)) is Op}/ (c(x, &)(x; — p&({)))w%kg, with

c(x,§) = bj(x,f)xl(hagﬁ((f)Q(x — p’(f))) € h_BSQO-p-(].) and 8 depending linearly on o. In
fact, if we assume that the support of 1 is sufficiently small so that x1x = x1 and all derivatives
of x vanish on that support, by using symbolic development until a sufficiently large
order N and observing that

{et0. 90 - ) (“ED) } = {et0.90(“ED) f @ - 060

Vh Vh
= [0 (0 (“= 2+ ) o (“ D)) (29
does not lose any power h~Y2, we derive that, up to negligible constants,
(&) = ]2 [1 (F ) xw)] =2 (T (et o - 15(6)

+ Z/lﬁ(ix _\%’(5) )5@, &) +rn(x, §).
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In the above equality Z’ is a concise notation to indicate a linear combination, ¥ 6 C’O (RQ\{O}),
c e h*BS&U( ) for some new small 5,8 > 0, and ry € BN+1)/2— ﬁg (<fv p'( > (M- 1)) as

c(z,&)(z; — pj(&)) € hl/2=Pg 070—((%\/5(5)}). From inequalities (|1.2.70) and m we deduce

that Op;j/ ('y(x_\’/)/ﬁ(g) Yx(h7€)c(z, &) (x; — D} (£)))Op}! (X)w is a remainder Ry (w) satisfying (3.2.22).
The quantization of all the addends in Y. acting on Op¥'(X)w is estimated by using that 7(z)
vanishes in a neighbourhood of the origin and can be rewritten as »_,_; 5 72(2 ) , with 4o(2) :=

3(2)|z|72 such that [0272(2)| < (2)~2712l. Inequalities (T and the successive commutation
of £7 with ¥, for |y| = 1,2, give then that hOp}’ (¥(* \p[(g)) &(z,€))Op} (L)w is a remainder
Ry(w). Finally, as

ry(z, E)S(E) € h2 —P1g, U(<Lp'(f)>_m_1))

with = opif p > 0, 0 otherwise, Op}’ (rn)Opy (X)w is also a remainder Ry(w) just from |1.2.36
1.2.37, fixing N € N sufficiently large (e.g. N = 3).
If symbol a(x, §) is such that Ocale——_g4p = 0, instead of equality ([3.2.24)) with b; given by m,

we have

a(x, §)0n(x) = a(z, —de(x + > b, &) (w; - pi(€))?,

7j=1,2

with
(€ + do(z))*

b )= Y = /a5 (1€ = (1= )do(a)) (1~ )t 0y (@) L=

laf= 2@

The same argument as before can be applied to Op}’ (b(z, &) (z)(z; —p;(f))2)w§kg to show that
it reduces to

Opj, (b(x, €)6n(x) (x5 — p(€)xa (AT ((€) (& — p’(&))))wig + Ry(w),
with Ry(w) satisfying (3.2.23). If
B(z,€) := bz, &)0n(x)x1(A7E)F ((6)*(z — p'(€)))
then B(z,&)(x; —pj(€))? € h™PSy 4(1) by lemma r some new small 3,8 > 0 depending

on o,9. Using lemma [1.2.24] symbolic development ([{1.2.18)) until order 4, and assuming that the
support of x1 is sufficiently small so that yx1 = x, we derive that

(B9 - (2t (FE )ane)] - B(a:,m(‘””‘\}j;@) (2~ (6

2 / T — .
O e ] RS »ORET [

=1
S plgi-a-s z—p'(§)
+2s|a|g3h 2 %‘< Vh )Ba(m’me(:ﬁ’g)’

where v, € CP(R? \ {0}), Ba(z,€) € Sy (1), and r4(z,€) € h2*45/*55%7g(<&\/},@>71\4)- As

ra(@, OFN(E) € W08y ((FLE) M), for B/ = 2 - 45’ — B —poif p > 0, B = 2 — 45’ —

Nea
B otherwise, it immediately follows from propositions |1.2.36 and [1.2.37] that Op}(r4)o* is a

remainder Ra(w). After inequalities (1.2.71) with v, = v and ¢ = B (resp. inequalities (1.2.70)
with v, (2) = 8;y(2)2; and ¢ = h® [(9¢, B) + (9. B) - (9¢py + 9eph)] € Ssr.»(1), for i,5 = 1,2), and
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(3.2.20), we deduce that the quantization of the first (resp. the second) contribution in above
symbolic development is a remainder Ra(w), when acting on Opy’ (X)w. Finally, as 7, vanishes
in a neighbourhood of the origin, we write

w(x—\/z%’(f)> N ki:lh_l %(x _p/(f))‘w S ’_2 x(zk =1 ()% ol =2,

vh vh
o (£2502)
e I U vl B
k=1
(=5)

and obtain that the quantization of a-th order term with |o| = 2 (resp. |a| = 3) is a remainder

Ry(w) when acting on Op}(X)w, after inequalities (L.2.71)) (resp. (1.2.70])) with 7, = 74 (resp.
Yo =7E, k=1,2) and ¢ = By, O

The following two results allow us to finally derive the ODE satisfied by ﬁ%kg.

Lemma 3.2.5. We have that

(3.2.26) [D: = Opj (- € = p(€)), T™] = Opj (b).
where
(3.2.27)
b.§) = 5 0m) () - (S i) - T (S @) - (e
13 o xr — p/(é) a, ! o
+ 5h? Mzgw () @ €M) + ()

and r € h/2S, U((%YN) for any N > 0. Therefore, function 5/E\kg is solution to
55

(3.2.28) [Di — Opj(z - £ — p(€))] U5, = T*Op} (3(6)) [~ ri)" (¢, t2)] + Ra(v)

with Ra(V) satisfying estimates (3.2.23)).

Proof. Recalling the definition ([3.2.14]) of I'*9, one can prove by a straight computation that

(D 11) = o ((00) (1) - L8 o))

N ;Op}f((&y)(x_\}%/(f)) . (l’ —\/pﬁ'(f))x(h%)) B (1—'—ia)hOp}f(fy(x_ff»;(g))(aX)(haf) . (hgg)).

Since the development of a commutator’s symbol only contains odd-order terms, lemma
gives that the symbol associated to [I'*9, Opy(z - € — p(€))] writes as

?{w(x_\fp];@)x(h"ﬁ), v - p©)) + bt al{jg(a%) (””‘}Z(g))x<h%><agp<s>> +75(2,)
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with r5 € h%/28, 0((96_\%(&))_1\[) for any N > 0. Developing the above Poisson bracket one finds
2 k)
that

h z— 7
T4, 0pi € — p(€))] = ~ 0w (109) (“— 1) - - B

- o (0 (S - (S22 ) + Fow (o (SR )0 - 06)
+ a3 opi (o) (“EE) g @) e)) + Opi s, ),

|o|=3

which summed to the previous commutator gives (3.2.27)).

The last part of the statement follows applying to equation ([3.2.13)) operators Opy’ (X(§)) (which
commutes exactly with the linear part of the equation, evident in non semi-classical coordinates)
and T'*9. Since

hOp}f((@’y) <w —\;1%(5)) . (x —;%’(é))x(ha@)az

nhopi (0 (“ ) @ew'€)) = nowi (5 (S22 ) @ (€ o - i)

with v%(2) := (0%y)(2)2x|2| 72, we obtain from inequalities (T.2.71]) (resp. ) and (3.2.20)
that hOp} ((97) (Z5) - (£ pf )x(h7€))7= (resp. h¥/20py ((9%) (“ L >)<aa < ) la] =3)
is a remainder Ry(v). The same holds true for Opj’ (v (==~ \pf@))(ﬁx)(h"ﬁ) (h9€))v*, as follows

combining symbolic calculus and lemma [T.2.40] because its symbol is supported for large fre-

quencies |¢| > h~9. From propositions |1.2.36/ and |1.2.37] it immediately follows that Op}’(r5)v>

satisfies ([3.2.23a)) and (|3.2.23b)). O

Proposition 3.2.6 (Deduction of the ODE). There exists a family (0(x))n of C§° functions,
real valued, equal to 1 on the closed ball By_2-(0) and supported in By_. 20 (0), for some small
0<ci<ec >0, with |00, L = O(h=27) and (hdy)*6), bounded for every k, such that

(3.2.29) Opy (x - & — p(&))Tx,, = —(x)0n ()T, + Ra(D),

where ¢(x) = /1 — |x|? and Ra(V) satisfies estimates (3.2.23)). Therefore, T)/%kg is solution of the
following non-homogeneous ODE:

(3.2.30) Dy, = —¢(x)0n(x)05,  +TH0py (2(6) [ iy (¢, tw)] + Ra(0),
with ’I“]]C\QF given by (3.1.5)).
Proof. The proof of the statement follows directly from lemma if we observe that O¢(x-§ —

p(§)) =0 at £ = —do(z) and z - (—dp(x)) — p(—dp(x)) = —¢(x). Therefore, (3.2.29) holds and,
injecting it in (3.2.28), we obtain (3.2.30). 0
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Proposition 3.2.7 (Propagation of the uniform estimate on V). Let us fix K1 > 0. There
exist two integers n > p > 1 sufficiently large, two constants A, B > 1 sufficiently large,
g0 €]0,(2A + B)~![ sufficiently small, and 0 < § < 63 < 81 < §o < 1 small, such that, for
any 0 < € < g, if (u,v) is solution to (L.1.1)-(L.1.2) in some interval [1,T| for a fized T > 1,
and u+,v+ defined in satisfy a-priori estimates for every t € [1,T], then it also
verify in the same interval [1,T].

Proof. We warn the reader that, throughout the proof, we will denote by C, 8 (resp. 8') two
positive constants such that 8 — 0 as o0 — 0 (resp. 8/ — 0 as dp, 0 — 0). These constants may
change line after line. We also remind that h = 1/¢.

In proposition we introduced function v, defined from v_ through (3.1.3)), and proved
that its H”°° norm differs from that of v_ by a quantity satisfying (3.1.7b)). Hence, from a-priori
estimates (1.1.11a}), (1.1.11b)), (1.1.11c) and for # €]0, 1 sufficiently small (e.g. 6 < 1/4)

(3.2.31) o (t, ) oee < JONF ()| moee + CAZ OB 1,

We successively introduced v in (3.2.2) and decomposed it into the sum of functions 17%@ and
5/%2 (see (3.2.16))). We will show in lemma |B.2.14] of appendix [B| that, for any s < n,
g

2
(3.2.32) 5t s + > 0P (x (7€) L7t )|l 2 < CBeh™
Iv[=1

for all t € [1,T], so inequality (3.2.19Db)) gives that
(3.2.33) 5% (t, )|z < CBehz ™7
g

As concerns E/E\kq, we proved in proposition |3.2.6| that it is solution to ODE ([3.2.30)), with r,]g\;F
given by (B.1.5)) and satisfying (3.1.6), and Ry(0) verifying (3.2.23). From (3.2.32)), we then have

that

| Ra()(t, ) ||z < CBet— 247",

We also have that

< C(A+ B)AB3t 217,

(3.2.3) [Py e,

In fact, by symbolic calculus of lemma [1.2.24] we derive that, for a fixed N € N (e.g. N > p) and
up to negligible multiplicative constants,

k w — lo] w « .f—p/(f)
r90py(2() = Y- 05 Opy (0 7)(7

|a|=0

)X(ATEO7D)(E)) + Opk (v (@, ),

where ry € h2 S 1 p((xfp /(§)>_1). Choosing N sufficiently large, we deduce from proposition

1.2.37, the fact that |[tw(t,t)|| 2 = ||w(t, )| z2, inequality (3.1.6a) and a-priori estimates, that
for every t € [1,T]

S

|Owk (v (€)Y (8, ) HLw(dz) < CA2BH2,
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Using, instead, proposition [1.2.39| with p = +o00, inequality (B.3.25)) in appendix and that
h =t"!, we deduce that

Z‘g

0n (10 (2 ) (1761 (0°2)(6)) Opit s (1€ oy 1,1

LOO

")HLOO < C(A+B)ABg3t—%+B’_

tHﬂ HX (t7°D )rkg
Summing up, FkQOp}f(Z(g))[tflré\;F(t,tx)] + Ry(0) = Fjy(t, ) with
| Fig(t, )|z < [C(A+ B)ABE® + CBelt™2
Using equation ([3.2.30) we deduce that
1 ~ ~ N~y ~
(3.2.35) SOUTE,, (b)) =S <vjz\ngtv/%kg) < |5, (t,2)|| Fiy (1, 2)]
and hence that
t
5 8 M < 155, (0l + [ 1Bl
< |[ox,, (1, )|z + C(A + B)ABe® + CBe.

As HH/E\M(L Mo < |0(1, )] 2 < CBe by proposition [1.2.37|and a-priori estimate (|1.1.11d)), the
above inequality together with(3.2.33)) and definition (3.2-2)) of ¥, gives that
|0NE(t, )| < (C(A+ B)ABe® + CBe)t ™,

which injected in (3.2.31)) leads finally to (1.1.12b)) if we take A > 1 sufficiently large such that
CB < %, and gg > 0 sufficiently small to verify C(A + B)Be3 + CA=9B% < ﬁ O

3.2.2 The derivation of the transport equation

We now focus on the semi-classical wave equation satisfied by u:
(3.2.36) [D — Opy(z- & — |¢])]ult,z) = h1 [qu(t, tx) + cu(t, tz) + rNE(, tz)],

with g, cw, 7" given by (3.1.17), (3.1.18)), (3.1.19) respectively, and on the derivation of the
mentioned transport equation. As we will make use several times of proposition [1.2.30] and

inequalities (|1.2.52f), we remind the reader about definition ([1.2.40) of 2, and (|1.2.49)) of M;.

Also, 0p(x) denotes a smooth radial cut-off function (often coming with operator ;) while
x € C§°(R?) is equal to 1 in a neighbourhood of the origin and suitably supported.

In order to recover a sharp estimate for u such as (3.2.3a)), we study the behaviour of this function
separately in different regions of the phase space (z,¢) € R? x R?. We start by fixing p € Z, and
by introducing

<£>p, for j — 0,
3.2.37 3 =
(3:2.87) &) {<€>”€j\§|‘1, for j = 1,2,

Taking a smooth cut-off function xg equal to 1 in a neighbourhood of the origin, a Littlewood-
Paley decomposition, and a small o > 0, we write the following for any j € {0, 1,2}:

(3.2.38)
Opjy (35(€))u = Opj (35(&)xo(h™'€))u + Z Opy! (5(6)(1 = x0) (W ') p(27*¢)x0(h7€))u

+ Opy (55(§) (1 = x0) (h7E))u,
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observing that the sum over k is actually finite and restricted to set of indices K :={k € Z : h <
2k < h~?}. From the classical Sobolev injection and the continuity on L? of the Riesz operator

(3.2.39) 10D} (25 (€)xo(h™E))au(t, )|z = |25 (RD)xo(D)a(t, ) ree S l[a(t, )|l 2
while from the semi-classical Sobolev injection along with lemma
(3.2.40) 10D} (25()(1 = x0) (W7o < BN[a(t, )|z,

where N = N(s) > 0if s > 0 is sufficiently large. The remaining terms in the right hand side of
(3-2:38)), localised for frequencies |¢| ~ 2¥  need a sharper analysis because a direct application
of semi-classical Sobolev injection only gives that

0wk (25 (1 = xo) (1 w2 no (e | < 2 h e,

with = op if p > 0, 0 otherwise, and factor 2°A~17# may grow too much when h — 0.
For any fixed k € K, p € Z and j € {0, 1,2}, let us introduce

(3.2.41) @k (t,x) = Opj (Z5(6) (1 = x0) (B €)p(27%¢)xo (h7€) )u(t, z)
and observe that, from the commutation of the above operator with the linear part of equation
, we get that u>9°* is solution to
(3.2.42)
[Dy — Op}; (- € — [¢)Ja™ (¢, z)
= h~'0p} (2 (5)(1 = x0) (W) ) x0(h7€)) [au(t, tx) + cu(t, t) + 1y " (1, t2)]
— ih Op}y (5(€)(Ox0) (h™1€) - (h1€)p(27€))u — ioh Opy (T;(€) p(27"€) (9x0) (h7€)) - (R7€)) .
We introduce the following manifold (see picture
(3.2.43) A {(x ) é‘ o} ,

together with operator
w,k . __ w x‘ﬂ _f —k
(3.2.44) k= opp (v(5 5 ) v,

for some v € C§°(R?) equal to 1 close to the origin and ¢ € C§°(R?\ {0}) equal to 1 on suppy,
whose symbol is localized in a neighbourhood of Ay, N {|€] ~ 2F} of size h'/277. We also define

(3245&) aigk = Fw,kaxjwk 7
ik z[§] — € R
(3'2~45b) AC = Op;f((l — fy)( TP )¢(2 kg))uilj,k’
so that u*i* = ﬂii’k + aiik We are going to prove that, if we suitably control the L? norm of

(0o MY U™k for any p, |v| < 1, then Hii’f is a O (h™°) (see proposition|3.2.8). Ash =t"1,

this means that flii’k grows in time at a rate slower than the one expected for > (that is

t1/2 after (3.2.3a)). Analogously to the Klein-Gordon case discussed in the previous subsection,
the main contribution to %>3"* is hence the one localized around A, and represented by uE k.
We will show that this functlon is solution to a transport equation (see proposition |3.2.17] m from

which we will be able to derive a suitable estimate of its uniform norm and to finally propagate

(3.1.12) (see proposition (3.3.7)).
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Figure 3.2: Lagrangian for the wave equation

Proposition 3.2.8. There exists a constant C' > 0 such that, for any h €]0,1], k € K,

~3; k(

(3.2.46a) @ (&) e < Ch2 P (@5 k(1) | 2 + M@ R (2, ) 12)

(3.2.46b) [y (¢, ) < Ch™ BZ (I1(BoSm) @™ (L, )| 2 + [[(BoS2n ) M@= % (2, )| 2) |
pn=0

for a small 3 >0, 8 —0 as o — 0.

Proof. The proof is straightforward if one writes
~z k zl§] — &\ (7;l€l = & —keV\ 250k
ZO H (G ) (e v )

where v/ (z) := (1_&# is such that |02+ (2)] < (z)~ (21 and uses inequalities (1.2.52) with
a(z) =b,(&) = 1. O

Lemma 3.2.9. Let § € C§°(R?\ {0}) be such that $ =1 on suppyp and have a sufficiently small
support so that 1o =1p. Then for any k € K

(3247 [, Dy = Opj (2 € — gD F(2 7)) | Op ((27) = Op (b(a. )

where, for any w € L? such that OoQpw, (oQ)*Muw € L?(R?), for p = 0,1,

(3.2.48a) 10p (b(x, ))wll 2 S A7 (Jwllz2 + [|Muw] ) ,
1
(3.2.48b) 10Dy (b(x, ) wllzee < B2~ (160 ) wl L2 + ([ (602 )*Muw]| 2),
pn=0

with 8> 0 small, 8 — 0 as 0 — 0.
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Proof. We warn the reader that most of the terms arising from the development of the commu-
tator in the left hand side of (3.2.47) satisfy a better L? estimate than (3.2.48a)), namely

3_
(3.2.49) I lze S h27 0 (Jlwll 2 + [ Muw]lz2).

The only contribution whose L? norm is only a O(h|lw||j2) is the integral remainder called 7%;,
appearing in symbolic development (3.2.51)).

Since 0; = —h?0), an easy computation shows that

k.0 =(5 + ) sovk (@) (s ) - (s 02 6)
+2opp (1 (U5 w2 ke - (249)).

The first term in the above right hand side satisfies and after inequalities
(T:2.52). The same estimates hold also for the latter one when it acts on Op}’(¢(27%¢))w, for the
derivatives of ¢ vanish on the support of ¢ (and then of ¢) as a consequence of our assumptions.
In fact, if we introduce a smooth function v € C§°(R?\ {0}), equal to 1 on the support of v
and such that supp@Z N suppy = B, and use symbolic calculus we find that, for any fixed N € N,

(3.2.50)

o (1S5 )@+ (2746) ) Opi (2 +9)

—0n (1) @029 - (274) ) OB (2 e)e(2746) ~ O ),

where the first term in the above right hand side is 0, and integral remainder ré“v is given by

&= (%)N ENW / etz /0 o [v(ﬂf)if ) 00)276) - (27012 a0yt

x 02 (P(27%)) | (1) dydzdndC.

Developing explicitly the above derivatives and reminding definition (1.2.30]) of integrals I;iq, for
general k € K, p,q € Z, one recognizes that, up to some multiplicative constants, rfv has the

form )
RN =Nl AN TR (2, €),

with a,a’,b; = 1, p= N and 1(27%¢) replaced with (9¢)(27%¢) - (27%¢). Propositions [1.2.28/ and
imply then that

10D} (&) 222y + 10D ()l e (r2:2) S B

if N € N is chosen sufficiently large (e.g. N > 9), which implies that the £(L?) and £(L?; L™)
norms of the latter operator in the right hand side of ([3.2.50]) is bounded by h?.

As regards [TF, Op¥((z - € — |£])@(27%¢))], we first remind that the symbolic development of
a commutator’s symbol only contains odd order terms. Consequently, for a new fixed N € N
and up to multiplicative constants independent of h, k, the symbol of the considered commutator
writes as

3251 h{r(ZSt) 6~ DBt )

bY e [ (5 oo e e - otz ) + )
|a|3=g\ljll|frj\\;2|
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with

Awo=(3) ¥ ]\;('(;l)zl)m/ " yo/ 095 [ (G 2 e g

|t [+]az|=N

x 03208 [(x - € = €D P27 )] |ty em dydzdnd( .

Since {’y(ﬂ%ﬁi),x — |§]} = 0 the Poisson braket in the above sum reduces to

R T
7,0

and its quantization acting on Op¥(p(27%¢))w satisfies (3.2.49), (3.2.48b) because 9% vanishes
on the support of ¢.

An explicit calculation of terms of order 3 < |a| < N, with the help of lemma [1.2.26| and the
observation that |as| < 1 because (- & — [£])@(277¢) is affine in z, shows that they are linear
combination of products

plal-lol3 =0y (%)g(z—kg)mybl ©)

and

h|a| (Jao]— 1) ,y<$h|1£/|2 0) (szg)bo(g)

for two new cut-off functions 7, @, |3%bo(¢)| Sp [€]718], and v € N? of length at most 1. Further-
more, for j = 1,2,

plltolth =) (=€) Gty 1y () = o=t -o15 (K] Z€) k)

+ plel=lelG=o)y (%)@(2’“5)@60(6),

with ﬁfa‘(z) := Y|a|(2)z;. From propositions [1.2.27} |1.2.30} the fact that || > 3 and 2k < h=7 we

deduce that the quantization of these |a|-order terms acting on Op¥ (p(27%¢))w satisfies (3.2.49)),
(3.2.48b)).

Finally, we notice that integral remainder ?’f\, can be actually seen as the sum of two contributions,

one of the form (|1.2.44)), the other like (|1.2.45]), with ¢ = 1 and p = 1. Lemma [1.2.32| implies
then that the £(L?) and £(L?; L>) norms of Opy(7%;) are bounded by h as foretold, which

concludes the proof of the statement. O
Lemma 3.2.10. Function ﬂify’k 1s solution to the following equation:

(3.2.52)
[Dy — Op ((x - € — [EN@(275)) |ay " (t,2) = £2(t,x)
+h7' TR0 (55(6) (1 — x0) (W80 (27%)x0(h7€)) [qu(t, tz) + cu(t, tx) + 1y ¥ (¢, )]
— ihT*Opy (5()(Ox0)(h™'€) - (W' &) p(277¢))u
— ighT"FOp (2;(£)p(277€) (Ox0) (7€) - (h7€)) 7,

where g € C(R2\ {0}) is equal to 1 on suppyp, and there exist two constants C,C" > 0 such
that, for any h €]0,1],k € K,

(3.2.53a) L (8, )2 < CREF([@= (8, ) g2 + IM@ 5 (2, )] 2)
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1
(32.33b) IS (t, )z < C'RITEY (1(B0m) @R (|2 + [[(BoSn) M@ - (2, )| 2)
pn=0
with B >0 small, B — 0 as o — 0.

Proof. 1f we consider a cut-off function ¢ € C§°(R? \ {0}) such that = 1 on the support of ¢
(¢ being the truncation on %>*’s frequencies), we have the exact equality

Op} (z - € — |€)a™ " = Opy((z - € — [€)p(2"€))a™ .

Moreover, if we assume that its support is sufficiently small so that ¥ = @, and apply operator
I'F to equation (3.2.42)), lemma gives us the result of the statement. O

The transport equation we talked about at the beginning of this section will be deduced from
equation by suitably developing symbol (z - € — |£])3(27%¢). To do that, we first need
to restrict the support of that symbol to bounded Values of z through the introduction of a new
cut-off function #(z). We remind that ¥’ is a concise notation that we use to indicate a linear
combination of a finite number of terms of the same form.

Lemma 3.2.11. Let 0 < Dy < D3 and 6 = 6(x) be a smooth function equal to 1 for |x| < D
and supported for |x| < Da. Then,

(3.2.54)
Opy (£ —1€NP(277¢)) = Opy (0(z) (- £ = [€)P(277€)) + (1 —0) () Opy (= £ — € 2(27*¢))
+3 7 0(x)0pp (71 (277¢) + Oph< (2,€)),
where 0 is a smooth function supported for Dy < |z| < Dy, &1 € C3°(R2\ {0}) and
10Dy (M)l ez2y + 10Dy ()|l g (L2;200y S D

Sk .
Therefore, uA; verifies
g

(3.2.55)
| D1 = Opj (B(x) (@ - € - \51)@(2—’“@)}&%"“@ 7) = fi'(t,2)
+ (1= O)(@)Opk((x - € — [EDE IR + D 6l Opp (71 (274"

+ R T *Opy (E(f)ﬂ*Xo)(h_lf)Sﬁ( k5>XO<hf’5>) [qu(t,tx) + co(t, ta) + g ¥ (¢, b))
= ihT"*Op}; (2(€) (Ox0) (h™1€) - (M )p(277¢))u
— iohT"*Opy (S(€)p(27€)(Ox0) (h7€)) - (h7€) )@,

where f;” satisfies estimates (3.2.53)).

Proof. Let 6(x) be the cut-off function of the statement. By proposition [1.2.21| we have that

(3.2.56)
(1—0)(@)(x ¢ —|€|)~(2"“£)—( —0) (@)t [(x- € — Ehp(277¢)]

—k
- 5 00) - (= )32 = T - € — €DO8) - (07)(26) + 1E(.6)

:(1_e><x>ﬁ[<x-s—|5|>¢<2—’“f>]—%{89(> eftphe) + Za”g [igeeo]

flz_[ o)t [(08)2 O] + 5 Zé‘z [ HEN@PE )] + (. + (. ©)
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where 96 is supported for Dy < |z| < Dz, and 75(¢,z) (resp. 75 (t,)) is a linear combination of
integrals of the form

20—k
}(Lﬂi)z/eh“/ (z + t2)(1 — t)%dt 2 3(27%(€ + 1)) dzdn,

with |v| = 0,1 (resp. |v| = O) for some new 0, 3 € C§°(R?\ {0}). By writing z as (z + tz) — tz,
using that zei T = ( )856 1% and making an integration by parts, one can expressr(t, x) as
the sum over |v| = 0,1 of 1ntegrals such as

1
/ i [ o+ )0yt 2 € e,
for some new smooth 6, f, %, and show that for any a, f € N?
0207 (5 +75) (@, hO)]| Sap W*27" Says b

Thus (5 +7%)(x, h¢) € hSp(1), which means, by classical results on pseudo-differential operators
(see for instance [11]), that

Opjy (15 +75) (x,€)) = Op® ((r +75)(x, h€)) € L(L?)

with norm O(h). Furthermore, one can also show that [|Op}! (r5 +7%5)|| g(2,1.0) < b using lemma
1.2.25 and the fact that, by making some integrations by parts, for any multi-indices a, 8 € N2
and a new p € C§°(R?\ {0})

\ 0y0¢ [(r’s + ) (L hg)]

These considerations, along with the continuity of T*** on L?, uniformly in h and k (see propo-

< p2ok
L2(d€)

()32 h(& +m))|dn < h

L2(d§)

.7k

sition [1.2.27)), imply that Op¥(rk + ?S)ﬂify

is a remainder f;’. O

Lemma 3.2.12. We have that

El—z-&=3 (1—|x\) & +e(x,)

with

(3.2.57) e(z,€) = %\g;]:p - é’f + %((w - é') -g) (x - é') : (x—i— é’)

Proof.

1 P 1
61— a6 = 6l o= 7| + 51— JaP)
2
=kl fo = [+ 50— 0 —laP) + 50~ af)a ¢
e ) ) (5
=2l i) e g =) ¢ g =) g o) 750 e

e(z,€)
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Lemma 3.2.13. Let v,0 € C°(R?) and ¢ € C5°(R?\ {0}) be such that @ =1 on the support of
@ and have a sufficiently small support so that 1o = @. Let also

3258 B8 = (G ) 0@ (on - ), me {12,

For any function w € L*(R?) such that Mw € L*(R?), any m,n € {1,2},

(3.2.592)  ||Op (0()3(27€) (v — fg) (anlel =)t *w| S (e + Mwl]z).
3:2500) | O ()72 (30— 32 ) (]~ )T s

RP(lwll 2 + [ Mwl|2) + R~ 7(|Opf (B(, £)&) Muw|| 2,

with 8 >0 small, B — 0 as o — 0.

Proof. After lemma [1.2.35 with p = 0 we have that

Opy (e<x>¢<2-’“g> (2 = 52 ) el - 5,,)) DU kw = Opy (B(w, ) (@nl€] — €1)) w + Op} (rh (. €)w,

and the L? (resp. L) norm of the latter term in the above right hand side is bounded by

the right hand side of (3.2.59a)) (resp. of (3.2.59b)) after inequality ([1.2.60a)) (resp. (1.2.60Db])).
Moreover, the L? norm of Op¥ (B(a:, &) (xn|| — §n))w is also bounded by the right hand side of

(13.2.59al) as straightly follows from emma [1.2.33] It only remains to prove that the L* norm of
this term is bounded by the right hand side of ([3.2.59b|).

We first consider a new cut-off function @; € C§°(R? \ {0}), equal to 1 on supp@ so that its
derivatives vanish against ¢, and use symbolic calculus to write

Op}y (B(, ) (xalé] — £a)) = Op} (£1(275€))Opy (B(z, &) (wnl€] — &) + Opjy (k1 (2, €)),
where 7’?\7,1 (z, &) is obtained using (1.2.20). Up to interchange the role of variables y and z (resp. 7

and () and to consider e (1¢=1C) ingtead of e =) (which does not affect estimate ((1.2.46])),
7“5“\, 1 is analogous to integral ([1.2.45) with p = 1. Therefore, if N € N is chosen sufficiently large

(e.g. N > 11), lemma [1.2.32| implies that HOp}‘L’(TfV’l)HL(Lz;Lm) = O(h).
Since @1 localises frequencies £ in an annulus, the classical Sobolev injection gives that
|Opi (@127 OpR (B2, ) @alé] - &), _
Slogh HOPZJ (B(337£)($n|£| - fn))wHLQ + HDmOP}f (B(:c,{)(:cn|£| - gn))wHLz .

As previously said, the former norm in the above right hand side satisfies inequality (|3.2.59al).
As concerns the latter one, we remark that thanks to the specific structure of symbol B(z, ) its

first derivative with respect to x does not lose any factor hY2to a9
(3.2.60)
zl€] = &N ~/o—k ~&m _ €] =&\ <ok Tm|€| — &m
o, [7( e )} P0G (am — 8 = 00 (G5 ) B0 ().

Consequently, by using symbolic calculus we derive that
D, Opjy (B(, &) (xnl¢] — &) w = h™'Op}y (B(, &) (xnl¢] — &1)&)w
! w l‘|€| - f ~ro—k . -
+ Y- ovp (v( S ) A2 a@)bo (@) aslé] - &) ) w.
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where Y is a concise notation to indicate linear combinations, j € {m,n} and ~, 3, a are some
new smooth functions with a(z) compactly supported. Again by lemma [1.2.33| the L? norms of
latter contributions in the above right hand side are bounded by h'#(||w/|| ;2 + || Mw||2).

Finally, we observe that symbol B(z,&)¢ can be seen as

(3.2.61) 3 (ZELE) (el — &) E@ 0 0 ),

which implies, after lemma [1.2.34] that

h™Opy (B(w, &) (wnl¢] — €)€)w = Opfy (B(x, €)6) Mpw + Opa (B (wl| 2 + |Muw] £2)).-
]
Lemma 3.2.14. Let e(x,£) be the symbol defined in (3.2.57), 6 € C5°(R?), and € C5°(R*\{0})
h

with sufficiently small support so that Vv = @. If a-priori estimates (1.1.11)) are satisfied for
every t € [1,T], for some fizred T > 1, there exists a constant C' > 0 such that
(3.2.62)

|opi (0@1z@ e, &) )i )|, + [0k (P@)B@ e, &) i 1. 0)]| < CBeR'

for every t € [1,T], with B > 0 small, 5 — 0 as o — 0.

Proof. We warn the reader that, throughout this proof, C, 3 and ' will denote three positive
constants that may change line after line, with 5 — 0 as ¢ — 0 (resp. 5/ — 0 as 0,61 — 0).

Since symbol e(x, &) writes as
RS 1 Em bmbn | Em
2;( —m)xma fm>+2m;:1(xm w61 ) alel = &) (Ve + ey )

it follows that the L? norm of Opy’ (6(z)@(27%¢)e (x,f))ﬂ%wk satisfies inequality (3.2.62)) after
lemmas [3:2.13] and [B:2.1] in appendix [B] Moreover, from lemma [3.2.13

0wk (0B e, ©) )i s B (1T )z + NGt ) 2
+ 177 Op} (B, €)M (t, )| 2,

with B(z,¢) defined in (3.2.58). The aim of the proof is then to show that the L? norm of
Opy (B(z, §)€)Mu>i* is estimated by the right hand side of (3.2.62).

First of all, we remind that B(z,£){ can be seen as a symbol of the form (3.2.61). From
proposition we hence have that

1_
(3.2.63a) 10p;; (B(w, €)¢) lle(z2) = O(h2 "),
while from inequality (1.2.52al)
(3.2.63b) 10p} (B(z, &) wl 2 < B P (w2 + [Muw]l 2).

We also recall definition ([3.2.41]) of u~7"¥, use the concise notation ¢i(5) for its symbol 3;(£)(1 —
x0) (K1) (27%€)x0(h7€), and observe that

[, 00 (64(6))] = -0k (161904(€)).

(3.2.64) .
M, OpE(4(D)] | ) = O,
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after propositions [1.2.21] and [T.2.27]
Using ((3.2.64)) and recalling relation ([3.2.9a)), we find that for any n = 1,2,

|0pK (B, ) M@ (¢, |2 < 0P (B, €)€) OpE (6 H(Znt™ ) (1, )] 2ar)
+ |0k (B, €)6) bk (alél st )|, + |[Opk (Bl )¢) O (I¢lonst (€)ute, )|

+ |[Opk (B2, €)€) O} (B4(€)) [t(twn) [aw (b, t2) + cult,t) + T (¢, )]

L2

L2(dzx)’

with «V*" defined in ( 1 15) qw, cw and Y given by ([B.1.17), (3.1.18) and (3.1.19) respec-
tively. Evidently, after ) and a further commutation of M with Op}’ (&,[¢] 71 ¢7.(€)) and

Opﬁ(|£ |8n¢>?€(§)) respectlvely, the second and third L? norm in the above right hand side are
estimated by

PP ([[at, )2 + |0y (x (7€) Mt )| 2),
for some x € C3°(R?). They are hence bounded by CBeh!'~# by lemma

¢ Estimate of ||Op}y’ (B(a:,f)f)Op}‘L’(qﬁi(f))[t(ZnuNF)(t,ta;)]||L2: This L? norm is basically esti-
mated in terms of the L? norm of (Z*u)_, for |u| < 2. In fact, after definition (3.1.15) and

equality (2.1.15a))

D,
(3.2.65) (ZnuNF)(t,tx):(Znu),(t,m) (’D| )(t tz)

;> / VD (€ )€ — )ni(mdgdn] |, _,,.

le{+ -}

4(2

with D given by (3.1.14])). On the one hand, taking a new smooth cut-off function #; equal to 1
on the support of 8, using (|1.2.50) with @ = 61, together with (|1.2.51al), proposition [1.2.27] and
(13.2.64)), we deduce that

10Dy (B(x, €)§)Op} (64 () [H(Znu)— (£, t2)][| L2(ar)
2
S D bl61(@) Oy (64 () Mon[t(Znw) - (1, t2)] | L2 (da) + B P I(Znw) ~ (1, )| 2
m=1
After relation ,

162 (@)OPE (NN lt(Zu) -t )] 12 S N(ZunZut)— (1, Y12 + 1 Zo) - (8, )
+ |61 () 402 nZaNLL) )]

L
Moreover,

01(5) 9 (Do) = 101 (T ) 9 (D) + 61 (T ) [B(D2), 2,
where 01 ,,(2) = 01(2) 2, and [qﬁi(Dm), 7] is a bounded operator on L? with norm O(t), as one

can check computing its associated symbol and using that 2% < h=1 = ¢. Therefore, using also
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inequality (3.2.11)) together with a-priori estimates (1.1.11)) we deduce that

(3.2.66)
HOp%’(B(x,s)@ 1 (G4()) [ H(Zu) (1, m’)”

L2(dz)
S Z A(Z )~ (t, )| gz 4+ 1 ZaV (& ) [V () e + [V (E )]
|ul=1
+ V(& )2 (U ) gree + 1IRLUE )| rrse) + 1V (& ) o NUE | ]IV (E )] v
< CBeh'™ %,

On the other hand, it is a straight consequence of (3.2.63b)), (3.2.64) and lemma that

(3:2.67) |0} (B(x, ))0PY (¢ (€)H(Dal Dl ™) (¢, 1)
< WAt )2 + 110pE ((A7€)Mi(t, )| 2) < CBeh!~F

L2

Finally, by symbolic calculus and ([3.2.60) we have that

(3.2.65) Op} (B(x, €)€) = Opf (B(, ©))(hDa) + 5. OB} (0. B(r.)),

where 0, B is of the form

(3.2.69) 3 (ZEL=E) e enamie)

for some new v, 6 € C§°(R?). Consequently, by proposition [1.2.27

3:270) |0k (Be,O)0pE (@) [t2, [ <Diemine ~ minta)dedn]l, .,

L2(dx)

< w0,z [ é<Ditgmine - minta)deds]

L2(dx)

|\t D.) 2, / €Dy (€ )€ — m)in(n)

and the above right hand side is bounded by

UV NV @A 2T E e + IRUE o) + 1V E 2o 1UE ) )
< (IV (&, )i + RNV ms) + BN ZV () g2V () imee

after inequalities (A.37b), (A.37d) and (B.1.6a)) with s = 0. From a-priori estimates (L.1.11)
we then deduce that the left hand side of (3.2.70) is bounded by CBeh!~#", which implies,
together with equality and estimates(3.2.66)), (3.2.67), that the L? norm of contribution
Opy (B(z,£)&)Opy (¢1.(E)[t(Znu™NF) (¢, tx)] is estimated with the right hand side of ([3.2.62).

e Estimate of ||Opy(B(z,8)S) [t(tzn)qu(t, tx)] || 12(4r): After definition (3.1.17)) of g, (¢, x) and
(3.2.2) of v, we first notice that

(3.2.71) tqw(t,tx) = g% D ODpY (1) — Opy (é>>v Op}, (fg) ] (t,z) =: qu(t,x),
where
(3.2.72) 1Guw (¢, )z S IO, )| g1 [0, )| -
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Then
|0} (B(x, £)€)Opy (¢4(€)) [t(twn)qu (£, 12)] | L2 (azy = k™ |0} (B(x, €)€)Opy (87,(€)) [Tndu (t, )] | 12 (d) -

Since B(x,&) is compactly supported in z and

H bpﬁ(B(x’5)5)01’}1”(%(5)),%] = O(h2™P),

‘L(LQ)

as follows from symbolic calculus, (3.2.63al), equality (|1.2.25)) and proposition [1.2.27, we can

morally reduce ourselves to the study of the L? norm of

h=LOpy (B(x, €)€)Opy (67,(£))dw(t, o)

up to a Op2(h™?7P||Gy|12). Using (3.2.68), (3.2.69), together with proposition [1.2.27, we
deduce that

! ||opi (B, 99 Ovi (@Dt )|, < 5

0P (64 () (AD2)dw (s 2 + [dw(t, )l 2

so from lemma [3.2.15| below, estimates (3.2.72)), (3.2.3b)), and lemmas [B.2.14 in appendix
B} we conclude that

(3.2.73) 1| OpY (#1(6)) (hDa)qu(t, ->HL2

< (150 e + 3 OB AENEHTE Yy 500, g < OB
lul=1

¢ Estimate of ||Op}(B(«, §)§)Op}f(¢i(§))(t(t:vn)cw(t, tx)||12(4z): As for the previous estimate,

we can reduce to the study of the L? norm of
Op}y (B(x, §)€) O}, (#1,(6) [t*euw (t, 1)),
up to a Opz (b2 2Opyy (x(h7€))[tew (t, t2)] || 12 (ax)) for some x € C5°(R?). So using (3.2.63a),
l-

the fact that |[tw(t,t-)| 2 = ||w(t,)|z2, and (3.1.21a) with s > 0 sufficiently large so that
N(s) > 2, we obtain that for a new x; € C§°(R?)

10D (B(, €)€) Oy ($h())[Pew(t, t)ll 2 S 28 ||x(t 7 Dy)ew(t, )| 12
)N =) ()| IV ez + [0V (8 ) grr.oe)
+ 0 [N = o) () (Vs + [0V @) ae) -

Then inequalities (3.1.7al) with s = 1 and (3.1.8al), together with a-priori estimates, give that

|OpY (B(z, £)€)Opp (¢7.(€)) [t cw(t,t-)]|| 12 < CBeh* .

(3.2.74)

« Estimate of [|Op}(B(x, €))Opy (¢](€) (t(tw, ) (¢, t0)]| 12 az): Analogously, from (3-1:22a)
and ((1.1.11)) we obtain that

(3.2.75)  |OpY (B(, €)€)OpE (@ (ENE2rN T (¢, )2 S ™3 P Ix(t = Da)r (8, )| 2
SE TPV (2o U (8, ) < CBehz 7.

O
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Lemma 3.2.15. Let ¢ € CP(R?\ {0}), k € K and a;(§) be two smooth real symbols of order
j=0,1. Then

(3:2.76) || Opk(p(274€)) (hDs) [a‘omD?)aal(th)a} (t.)|

L2

< pl- ’B(H Mg + Z 0Py (x(h7€))LH(t, ')||L2)||5(t’ Mo

|u|=1
Proof. Let us split both v in the left hand side of (3.2.76]) into the sum '17Akg +5A;, with '17Akg , 5/\29
introduced in (3.2.16) with ¥; = 1. Remind that '17/\29 satisfies inequality (3.2.19a)) and that
lao(h D)t + llao(ADs)ing, (b Ve S hPEE | g1

for a small 5 > 0, 8 — 0 as ¢ — 0, as follows from lemma [1.2.39 with p = 400 and the

uniform continuity of ag(hD;) from H'“> to L. Therefore, using the continuity on L? of
OpY ((27%€))(hD,,) with norm O(2¥) and the fact that 2¥ < h™° we deduce that, for any
w, wy € {0, 'ﬁAkg,'ﬁAzq} with at least one w; equal to 6/\297

|Opi (027" )(hD%) [ao(h D2 wras (D) H

<11 |t HH5+Zuoph (B )L T(t, ) 2 ) 13t ) g1

|ul=1

We are thus reduced to proving inequality (3.2.76) for

|ovi e e)(hD2) [a0(hDLon,, a1(hD)T, ] (1)

2’

Furthermore, by means of lemma we can replace the action of a;(hD;) in the above L2
norm, for j = 0,1, with the multiplication operator by a real function, up to new remainders
bounded in L? by the right hand side of (3.2.76). In fact,

aj(hDz)va,, = Op(z)a;(—de(x))va,, + R1(v), j=0,1,

where 6 is a smooth cut-off function as in the statement of lemma and R;(v) satisfies

(B2224). Now
AD,[in,, > = [OD} (€ + dd(w)0())in,, ] Tar, — By, [ODR (€ + dd(@)0n(2))in,, | -

and from lemma [3.2.16] below

1
10D} (€ + d(@)0 ())Tny, (¢, Iz S BP0 (X (h7E))LHT(E, )l 2-

|u]=0

This implies, after having applied the Leibniz rule and proposition [1.2.39] that
|hDy [ao(—d(x))ar (~dg(x))0 () O, [* (¢, - ]HLz
S WP (e, ey + S [OpE (A7) £ g ) (e, ) o

lul=1

and the conclusion of the statement. O
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Lemma 3.2.16. Let v, x € C'{)X’(]RQ) be equal to 1 in a neighbourhood of the origin, o > 0 small,

(On(z))n be a family of C3°(B1(0)) functions, equal to 1 on the support ofv(x \pf(f )x(h9E), with

1020 || e = O(h=21217) and (hdy)*6), bounded for every k. Let also ¢(x) = \/1 — |x|2. Then for
every j = 1,2

o6 + aenanont (+(“= 2 )xre) Yot

L2

<A BZ 10Dy (X (h7 €))L (¢, ) 12,
|u|=0

with 8 >0 small, B — 0 as o — 0.

Proof. By symbolic calculus of lemma [1.2.24] and the fact that 6, = 1 on the support of

7(%\/%(5))X(h”§), we have that, for any j = 1,2,
(3.2.77)
Op} (€00 () O}y (y(n_\};@)x(h”g))ﬁ — Opy (7(9672(@)"(’105)(& + ()
+ \fopﬂ(@ 2E ;@) (6))o
\/E 2 1/ g O
-5 Z Opy < )pk,z(f)ak(dj¢(x>0h(x))X(h §))v

h1+0
+

> ovir(@
¢

2o (0 (- P )00 ()00 ) 1) (7€) )T + O r2(a, )7,

with ro € h1_4"5%70(<w_p (€)>_1). On the one hand, as

ont (+(“ = Jarer e~ )v—Zoph( (e i)

with é% satisfying (|1.2.75b|) on the support of 7(&\/%(5)))((%’5), the L? norm of the first term in
the right hand side of (3.2.77) can be estimated using (|1.2.71a)).

On the other hand, as 9 vanishes in a neighbourhood of the origin, the L? norm of the second
and third term in the right hand side of (3.2.77)) can be estimated using (3.2.17al).

The two remaining contributions to the right hand side of (3.2.77)), that already carry the right
power of h, can be estimated with h'=?||v(t, -)|| ;2 simply by proposition |1.2.36 O

We can finally state the following result:

Proposition 3.2.17 (Deduction of the transport equation). For any fixed T > 1, D > 0, let
L = {(t,z) : 1 <t <T,|z| < D} be the truncated cylinder, and assume that estimates (1.1.11)
are satisfied in time interval [1,T). Then function

(3.2.78) Uy (ta) =y (ta
k
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1s solution to the following transport equation:

M0 o) | @ (L) = Fultia), V(ta) e €D,

(32.79)  |Dj+ = (1 ~laP)z- (hDa) + o

and there exists some constant C > 0 such that
(3.2.80) | Fo(t, )| < CBeh'™"

for some B’ >0 small, B’ — 0 as 0,01 — 0.

Proof. By the assumption in the statement, all that we are going to say is to be meant in time
interval [1,T]. We remind the reader that, by the definition of ﬂf; *in (3-2.454) and of @>iF in

(3.2.41)), the sum defining ﬂjz\fu is finite and restricted to indices k € K := {k € Z: h < 2F < h ™7}
Also, we warn the reader that, throughout the proof, C' and g will denote two positive constants
that may change line after line, with 8 — 0 as ¢ — 0.

In lemma [3.2.11| we proved that function @,”" is solution to (3:2.55) with f* verifying (8:2.53).
Hence, by lemma [B.2.1| we derive that f is a remainder of the form F,, satisfying (3.2.80)).

For seek of compactness, we denote symbol 3;(€)(1—x0)(h71€)(27%¢)x0(h7€) in the right hand
side of (3.2.55)) by ¢7.(£). On the one hand, reminding ([3.2.71]) and using the L>° — L continuity
of operator '’ (see proposition [1.2.29), together with the classical Sobolev injection, the fact
that

(3.2.81) ot @i@))], ., =00,

with p = op if p > 0, 0 otherwise, estimates (3.2.72)),(3.2.73)) and (3.2.3b)), we find that

[Tt 0pi (25 ()1 = x0) ()20 (7€) ltau(t )]

(3.2.82) /
S PNt )2 + B2 Op) (0(277)) (hDy)Gu (t, )l 2 < CBeh! ™.

On the other hand, using proposition [1.2.30, estimate m, the fact that the commutator

between Op}/ (qﬁj (€)) and €y, is also continuous on L? with norm O(h™H), equality |[tw(t,t-)| 2 =

|lw(t, )|z, and (3.1.21a]), (3.1.21c|) (in which we choose s > 0 large enough to have, say, N(s) >

2), we deduce that there is a x € C§°(IR?) such that

T Op (67,(€)) (™ <t m»umdz
St ||x (¢ D, >< I, HLQ IVt 2o + [[0NF (£, ) | r1oe )
+ 75 || (0N - Hﬂl(u W + [0V (&) | o)

(3.2.83) + 138 ||y (t7 D,)Q < vo)(t,- HLQ IV (& 2 + [0V ()| 1)
+72 77 QN - ||L2(||v Mazs + [0 (¢, )| 122
+ 2| N o) (1) e xZ 1928V (1, )+ Q40N (8 )] 2)
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Also, from (3.1.22a), (3.1.22c) we get that for every 6 €]0,1]
[T Opg (61(6)) (Y (1, b))l oe S 521Vt ) B psowe [U(E )l g
+t%+ﬁ[\|V( Mo IV (e (WU () e + IRLU () ree)
G2s) A IVENe (IR + BN ) [V ] 12V )12
+t2+7 [HV(t, W (UG + QU E ) m0)
+ IUE 2o + [R2U )| 200) [[QV (R, ')Hp} IV (& )l 7o

Therefore, using with s =1, (3.1.8a)), (1.1.11f), and choosing § < 1 sufficiently small, we
derive that h=1T%: kOp (qﬁ] (f))(cw(t, tz)+rNF(t,tz)) is a remainder F,(t, z) satisfying (3.2.80).
Since function (dxg)(h~1€) is localized for frequencies of size h, its product with 1 (27%¢) is
non-zero only for values of k € Z such that 2 ~ h. In that case, by commutating T'** with
Opy ((8)(0)(11_15) . (h_1£)¢(2_k§)) and using the classical Sobolev injection, together with propo-
sition [[.2:27] we find that

(3.2.:85) |in TR opi ((0x0)(h7€) - (@Rt )| S bllce, )=

L

Since (Oxo)(h7§) is, instead, localized for frequencies larger than h~7, by applying the semi-
classical Sobolev injection and lemma [I.2.40] we find that

(3:2.86) |ioh T 0py (w2 ) (Ox0)(h7€)) - (WE)ii(t, )|, S WVt )y
with N = N(s) > 1 as long as s > 0 is sufficiently large. By lemma we obtain that also

the fifth and sixth addend in the right hand side of (3.2.55|) are remainders Fy,(t, ).
Finally, after lemma [3.2.12

sk 1

— Op} (0(a) (- € ~ )2 79)ay7" = S0Py (0(2) (1 — [a*)a - £5(274€)) "
+ Opf (B(@)e(w, )P(27F&))u "

with e(z,§) given by (3.2.57), and latter term in the above right hand side satisfies ([3.2.62]).
Using symbolic calculus of proposition [1.2.21] until order N € N we find that

1 . s 1 h .
5O ((2) (1 —|a]) - £5(2 k&))uzf’k=9(1‘)[5(1—\xlz)x-(th)+Z(1—2lw|2)}Op (e
h - i~ e 15>y .

2 (@0) (@) - w(1 ~ 2)Opy (BT " + D b0 (@)0py (B (274)y:* + Oy (r(wa, )iy ‘“,
with 3~ being a concise notation to indicate a linear combination, 96(z) supported for |z| > Dy,
01 € CP(R?), p1 € C(R?\ {0}) coming out from the derivatives of @, and 7y(x,&) integral
remainder of the form

1
9N(90 +t2)(1— )N tdt Gn (275 (€ + n))dzdn,

hnz

for some other Oy € CSO(RZ), on € CS°(R2\ {0}), verifying that

(3.2.87) 10D} (v (,€) e 250 = O(h)
if N is taken sufficiently large. Therefore, from proposition [1.2.27, (3.2.81) and (B.2.1al)

w 3k By~ _p
|opir(a, i (1|, S O )l g < CBeR'
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Moreover, since ¢ = 1 on the support of ¢ (which defines #>3°F), by commutating Op¥ ($(27%¢))
with ' K and using remark m we find that, for any N € N as large as we want,

Opjy (2(27¢))ay

Also, since (1 is obtained from the derivatives of ¢ and vanishes on the support of ¢,
SO A 5 Jy _
01()Op}y (71 (277€))iy"" = Opee (WY1 2).
Therefore, again from (B.2.1a)) we deduce that

SSik _ =% ,k -
= Uy + Opee (WY || 2).

— Opf (0(@)a - € ~ NP2 )" = 0(a) [ (1~ aP)a - (hD2) + (1 — 232

2 (00)(@) - 21~ )i + Opf (0(a)F(2 el )T + O (09,

which implies, summed up with estimates from (3.2.82)) to (3.2.86), that ﬂjz\fu * is solution to

D) 1 = [P (hD2) + 0051 20| () = Fi,2)
+[(1=0)(@)Opf (€~ €)B(276)) +Ta)Opf (B1(274€)) — 1 (00) &) 21— )] 52" 1, 2),

where F{Z(t, x) satisfies (3.2.80)). Choosing D1 = D, we obtain that ﬂiij is solution to ([3.2.79)) in
cylinder €L, with F,,(t, ) := >, FE(t,x) (this sum being finite and restricted to indices k € K)
satisfying the same L™ estimate as F*, up to an additional factor h=°. O

3.3 Analysis of the transport equation and end of the proof

In previous section (see proposition |3.2.7)) we firstly showed how to propagate a-priori uniform
estimate 11.1.11b: on the Klein-Gordon component v_, in the sense of deducing ((1.1.12b)) from

estimates (1.1.11)). We then passed to the study of the Wave equation and proved that, if

(u—,v_) is solution to in some interval [1,T], function u A” defined in is solution
to transport equation (3 in truncated cylinder €5 = {(t,2) : 1 <t < T, |3:| § D}, for any
D > 0. The aim of this section is to study such a transport equation in order to deduce some
information on the uniform norm of its solutions. This will allow us to finally propagate a-priori
estimate ((1.1.11a)) on the wave component u_ and to close the bootstrap argument. A short
proof of main theorem [1.1.1]is given at the end of this section.

3.3.1 The inhomogeneous transport equation

The aim of this subsection is to study the behaviour of a solution w to the following transport
equation

(33.1) [Dt ey (hD,) — (1~ 2|x|2>} w=71,
in a cylinder € = {(¢,z) : t > 1, |x| < D} for a large constant D > 1, where the inhomogeneous

term f is a Op(ct~!7#), for some € > 0 small and 0 < 8 < 1/2. We distinguish in € two
subregions:

ne={ta) s el < (A=) el <0} B {a) > 1 () <lal < D),
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I

Figure 3.3: Regions I7 and I» in space dimension 1

and denote by Iy, I>; their sections at a fixed time ¢t > 1,

t 1 t 1
nyi={o: ol < (m){m <D}, Dy={a: (t—1>2 <|e| < D}.

The result we prove is the following.
Proposition 3.3.1. Let € > 0 be small and w be the solution to the following Cauchy problem

{ [Du+ 31— 2P)a - (hD2) = (1= 2a)] w= 1

(3:3.2) w(l,z) = ewy(z),

with f = Ope (5t_1+ﬁ); for some fized 0 < 8 < 1/2. Let us suppose that |wo(z)| < <x>_2 and
that |w(t,z)| < et? for some B’ > 0 whenever || > D > 1. Therefore,
(3.3.3) w(t, )] S ellwollpoot® (14 |2) "2 (87 + |1 — |2f]) 28"
for every (t,x) € Cp = {(t,z)|t > 1, |z| < D}, with " = max{3, 5'}.
We observe that, if W (t,z) = ¢t lw(t,t"'z), the above inequality implies that
W (t,2)| S ellwoll o (¢ + [a]) 72 (1 + [t — [a]|) 2+,

showing that the uniform norm of W (t,-) decays in time at a rate t~'/2, enhanced to t 1" out
of the light cone t = |z|.

In order to prove the result of proposition we fix T > 1, z € Bp(0), and look for the
characteristic curve of (3.3.2)) with initial point (7', ), i.e. map t — X (¢; 7T, x) solution of

(3.3.4)

d . _ 1 . 2 .
{th(t,T,:v)_Qt(1|X(t,T,:L")| )X (4T, ) P> T,

X(TT,z)==x
Lemma 3.3.2. Solution X (t;T,x) to (3.3.4)) writes explicitly as

Vix

3.3.5 X(&T,x) = 1
. S )

and it is well defined for all t > T(1 — |x|=2). Moreover, for any fized t > T, map x € R? s

1
XT, G{x < (== 5} s a diffeomorphism of inverse Y (t, - VTy
(1x) € {Jal < () feomorphism of (t) = —
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Proof. Multiplying equation (3.3.4)) by 2X (¢; T, ) we deduce that | X (¢; T, z)|? satisfies the equa-
tion

d 1
from which follows that 1 — | X (t;T,z)|? = % Injecting this result in (3.3.4) and
integrating in time, we obtain expression (3.3.5) and observe that the obtained map is well
defined for all t > T'(1 — |z|~2).

1
In order to prove the second part of the statement, we fix t > T, y € {]m\ < (ﬁ) 5} and look
for Y(t,y) such that X (¢;T,Y (t,y)) = y. In other words,

y— VY (t,y)
- 19
(T — (T =)y (t,y))?
1
which implies that Y (¢,y) = — VTv __ This map is well defined as long as |y| < (5)%. O

(t+(T—1)ly[2) 2

Along the characteristic curve X (¢; T, z) function w satisfies

%w(t,X(t;T,x)) = —2%(1 —2|X(t; T, ;];)’2) w(t, X(t;T,x)) +if (t, X (4T, z))
1T —Tz|* - t|z|? _ 4 .
T2 T— (T —t))z? w(t, X(t;T,x)) +if (t, X (T, x))
and hence

d Y1 T —T|z]? - 7|z|?
3.6) = - dr ) w(t, Xt T
@20 g |(o [ 5 7= tr e or) o X6 T0)
_ife tiT—T|m]2—7]az|2
I\ T (T =)

d7'> f(t, X(tT, x)) :

Lemma 3.3.3.

b1 T—T\x\2—7|x]2d (t)é(T—T!m\Q—l—tx\Q)l
— == .

(33.7) P T (T — 1)[a]? T T

Proof. The result follows writing

AT TP —rlz? 1 |z
2r T— (T —7)|z]2 21 T —Tz2+ 7|z’

taking the integral over 7 € [T, t] and then passing to its exponential. O

Let us first study the behaviour of w, solution to (3.3.2), in region I;. We fix T" = 1 and,
integrating equality (3.3.6) over [1,¢], we find that

t11-— |x\2 — 7'|93|2
211 — (1 —7)|z|?

t S 11— |z? - s|z|?
=w(l ; ———d X(s;1 ds.
w( ,x)—i—z/l <exp B g s> f(s,X(s;1,2))ds

(3.3.8) <exp 1 dT> w(t, X(t;1,2))
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Using (3.3.7) and the fact that f = Ope(ct71*7), we then obtain that

(3.3.9) ‘w(t,X(t; 1,90))‘ < t_%(l — ]x\z + t]a:\z)\w(l,xﬂ
ds

1— |2 + s|af2)sz 8

t
+Cet™2(1 — :c|2+t\x|2)/ (
1

for some positive constant C'.

Lemma 3.3.4. For any fired 0 < 3 < 1/2

(3.3.10) /t ds < t%+6 (1+ | |)—1+2B+5'
0. ~ iy y
1 (1—|z]2+ s\xP)s%_B (14 Vit|z])1+28

forallt > 1 and ' > 0 as small as we want.

Proof. For \/t|z| < 1, we have that

t 3+8
/ T ot
1 (1— |z + s|z[2)s2 = (14 Vt|a|)1+28

for any 3’ > 0. Suppose then that v/£|z| > 1. For t < 2

¢ ds
/ < (1) P log(1 + [2f?)
1 (L [2f2 + slaf?)st P

(1+ Vt|z)'**
t3th

and  |z[~*log(1 + |z/*) S (L4 Ja)) ™+ log (1 + |z?),

which immediately implies inequality (3.3.10f). For ¢ > 2

/t ds /2 ds +/t ds
U= fal 4 sle)sr?Jr (U= e sla)s S (1 [l 4 sfef?)sa

where the first integral is bounded from the right hand side of (3.3.10)). The second one is less

or equal than flt_l m’ so for |z| > 1 it follows that

t—1 t—1
ds ds
/ — < Iw\_Q/ 7 S (L+]z) 72
1 (1+s|z[2)s27F 1 52 f

Since % < (14 |2)'*28, from the above inequality we deduce the right bound of the
t2

statement. For |z| < 1, a change of variables gives that
— —1)|z|? 1 1
[ w“”/(t QL P L ol
1 (14 slzf?)sz P |2 (14s)s2= 8"~ (1+tx]2)2tF = (14 t|z|?)2 P
O

If initial condition wq(x) is sufficiently decaying in space, e.g. |wo(x)| < (z)72, we deduce
from inequalities (3.3.9) and (3.3.10) the following bound for w along the characteristic curve
X(t;1,2):

(3-3.11) w(t, X (;1,2))] S ellwolloet” (1 + Vel 72 (14 |2]) 720

for any 8 > 0 as small as we want.
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Figure 3.4: Characteristic curves of initial point (7;,z;) € I1, i = 1,2, in space dimension 1

Proposition 3.3.5. Let w be the solution to transport equation (3.3.2), with ||f(t,-)||re S
et=18 for some fived 0 < B < 1/2, and initial condition |wo(x)| < (x)72, Vo € RZ. Then

(3.3.12) w(t, )] S et? [t + |1 — |2f]] 27
1
for every (t,z) € Iy = {(t,z) : t > 1, |z < (5) 2, |z| < D}.

Proof In lemma we proved that, for any fixed ¢t > T = 1, map x € R? — X (¢;1,2) {a;
lz] < ( } is a dlffeomorphlsm with inverse Y (¢,) = y(t + (1 — t)|y|?)~"/2. From inequality

1
1} we hence deduce that, for any y such that |y| < (t_—l) 2,

w(t,y)] S et (1 + VY () 2P (4 (v, y))

N

t

In particular, as t(1 — [y|?) + |y|?) ~ |1 — |y[*| + |y|* when |y| < (45)2 and t >t > 1, and

t1 — |y|?| + Jy|* ~ t|1 — |y|| + |y| when |y| < D, we find for those values of (¢,y) that

Vily|
1 — [yl + [yl

1-28
w(t,y)| < et” (1 + ( )1> Set? [t (1 -yl 2
2

simply using that (1+ |V (¢,y)])~"t28+#" < 1. Moreover, for t — 1 and |y| < D,

_1
lw(t,y)| SeSet’ [t 41— |y 2.

O]

Proposition 3.3.6. Let € > 0 be small and w be the solution to transport equation (3.3.2)), with
1t )z S et™ 8 for some fived 0 < B < 1/2, and suppose that |w(t,z)| < et for some
B’ > 0 whenever |x| > D. Then

w(t,z)| S et (|22 = 1)7" =

N|=

for every (t,x) € I = {(t,x) : t > 1, () < |#| < D}, where 8" = max{8, 8'}.
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Figure 3.5: Characteristic curve of initial point (7, z) € I

Proof. For a fixed (T, x) € Iz we look at X (¢; T, z), solution to and given by the explicit
expression . We observe that there exists a time 7%, 1 < T* < T, such that X (¢; T, z)
hits the boundary |y| = D at ¢ = T™*. In other words, t = T* is the first time when X (¢; 7, x)
enters in the region {(¢,x) : t > 1, |z| < D}, to never leave it again for function ¢ — |X (¢; T, )|
is strictly decreasing. A simple computation shows that

D2

* o —2
(3.3.13) T = (1= 2| )T <T.

Integrating expression (3.3.6) over [T, T and using (3.3.7), we find that

T*)é(T T(1 — |z|72)

(3.3.14) w(T,x) = ( T T — T [z]2)

)w(T*, X(T* T, z))

T 1 _9
. t\z (T —T(1—|z|9)
T t,X(t;T,x))dt.
e T* <T> <t_T(1—’[L“_2))f(’ (7 7'%.))
From ({3.3.13))
1 T* D2
T —T(—|z[7*) = (1—|z| )T and — = ———(1—|z|7?)

D2 -1 T D?2-1

so since |w(t,z)| < et? whenever |z| > D, for some § > 0 by the hypothesis, we find that the
first term in right hand side of (3.3.14)) is bounded by Ce(|x|* — 1)7%(T*)5/, for some constant

C > 0. Setting ¢ = ﬁ, by the hypothesis on f we derive that
T T(1 — |z~ 2)> 1/T Lo 1,1
t, X(t:T, dt‘< T t—T(1— t—2 84t
[ ) R st xwranal sert [ -7 - 1a2) e

*

/T—T* dt
0o (t+e(l—|z[-2)T)tzF

1
<eT3((1 - [2[2)T)" 72 = eTP(1 — |2| 7272

T
:eT%/ (t=T* +c(1—|a|72)T) "t 2 d

NI

IA
)

T
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3.3.2 Propagation of the uniform estimate on the wave component

Proposition 3.3.7 (Propagation of the a-priori estimate on U, RU). Let us fix K1 > 0. There
exist two integers n > p > 1 sufficiently large, two constants A, B > 1 sufficiently large, some
small 0 < § K 02 K 01 K dp, and go €]0, 1] sufficiently small, such that, for any 0 < € < eq, if
(u,v) is solution to — in some interval [1,T)], for a fited T > 1, and uy, vy defined
in satisfy a-priori estimates , for every t € [1,T], then it also verify m

the same interval [1,T)].

Proof. We warn the reader that, throughout the proof, C, 3,3’ will denote some positive con-
stants that may change line after line, such that 8 — 0 as 0 — 0 (resp. ' — 0 as 41,0 — 0).
We also remind that h = 1/¢.

In proposition we introduced function v’V defined from u_ through (3.1.15)), and showed
that its H”*t1>° norm (resp. the HP*1:>° norm of Ru™t") differs from that of u_ (resp. of Ru_)

by a quantity satisfying (3.1.20b]) (resp. (3.1.20c)). If n is sufficiently large with respect to p (at
least n > p + 18), a-priori estimates ((1.1.11b)), (1.1.11c) give that, for every ¢t € [1,T],

(33.15) [u_(t,- ||Hp+m+ZHRu Mrosre
7j=1

2

)

< ™t pnoe + D IRGuNT (0 ) o + 24B17F5,
j=1

We successively considered u(t, ) := tuN F(t, tx) and decomposed it as in (3.2.38), with ¥; given
by , showing that it satisfies (resp. (3.2.40))) when restrlcted to small frequen01es
|€] <t~ (resp. large frequencies [€| Z t”). We then focused on 2*7** defined in (3.2.41)), which is
localized for frequencies supported in an annulus of size 2P withk € K ={k € Z : h <2F < h™ 7},
and further spht 1t into the sum of functions ™ ik ﬁic 4 (see (3.2.45)). On the one hand, from
inequality (3.2.46b|) and lemma we have that there is a positive constant C' such that, for
every t € [1,T],

~3.k /
[T (8, )|z < Cet?

On the other hand, we proved in proposition|3.2.17|that, for any D > 0 and any (¢, ) in truncated
cylinder Cf, = {(t,2) : 1 <t < T,|z| < D}, @y’ (t,z) defined in (3.2.78) is solution to inho-

mogeneous transport equation (3.2.79), with inhomogeneous term F, (¢, x) satisfying (3.2.80)).
Observe that, by definition ((1.2.49) of M, symbolic calculus, and proposition |1.2.36] we have
that

% 5, ~ w - -
) (L2 + lwuy? (1)l 2 S l[a(l )l 2 + [Opy (x(A7€))Mu(l, )| 2 < Ce,

which means that 5_1<x>ﬂ§i(1, x) € L?. That hence implies that |ﬂ§i(1, z)| < e(z)2 for every
x € R? (if not, we would have ||(-) 71| 72 < E_IH(‘)ﬂii(l, I z2). Moreover, if D > 1 is sufficiently
large, from lemma below and in appendix [B] we deduce that

1 - -
(3:316) [1sply, (t.0)| < C2E ’f‘h B (10pE Cu(hoE)ii(t, 1= + 0pE (R )M, )] 12)
< Ce log ]m\ na
]
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Therefore, from proposition [3.3.1] we obtain that
. / _ L1y
iy’ (t,2)] S Cet? (1+ [2) 72 (71 + |1 = |al)) "2, ¥(t,2) € €],

Summing up, denoting by ]leg the characteristic function of cylinder GF‘B,

/ _ 1. /
@t 2)] < Cellert” (1 +Jal) 3 (¢ + L= fal) 2 4 Ct?, W(t,a) € [LT] x B,
Returning back to function uN¥' via (3.2.2), this means that, for every (t,z) € [1,7] x R?

2
(3.3.17)  [(Da)?u™F(t, )|+ [(Da) RN (8, )]
7=1

< Cellpepn(t + |e)) 72 (1 + |t — |2||) "3+ + Cet 1+
Finally, reminding definition [[.2.1] (iif) of space H**, injecting the above inequality in (3.3.15),

and choosing A > 1 sufficiently large such that C' < 3‘%, gp > 0 sufficiently small so that
CBeg < (3K1)~!, we deduce enhanced estimate (1.1.12a). O]

Remark 3.3.8. Beside the propagation of estimate (|1.1.11al), by combining inequalities ([3.3.15|),
(3-3.17), and (1.1.5)), we also deduce the following inequality

Opu(t,@)| + |Voult, )| < Celyuepy (t+ |2))72(1+ [t — |2|) "2 4 Cet™1+7,

with 4’ > 0 small as long as o, d; are small, which almost corresponds to the optimal decay in
time and space enjoyed by the linear wave in space dimension two.

Lemma 3.3.9. Let x € CSO(RQ) be equal to 1 in a neighbourhood of the origin and o > 0 be small.
Let also ¢ € Cg°(R%\ {0}). There exists a constant C > 0 such that for every h €]0,1[, R > 1,
and any function w(t,x) with w(t,-), Opy (x(h7€))Muw(t, ) € L?(R?),

(3.3.18)

(%) ok (et |

1
< CR '(log R+ |logh|) Y [|Op} (x(h")M w(t,-)|| 2 -
[v|=0

LOO

Proof. Let us fix R > 1 and, for seek of compactness, denote Opy’ (x(h?¢))w by wX. For a new
smooth cut-off function y1 equal to 1 on the support of x, we have that

xT

o (%) Opr (x(h7€))w = Opk (1 (h7€)) [io( 75 )] + [0 ) - OB G (7€) w,

where the symbol associated to above commutator is given by

rati, ) = = [ | [0 (SHE it @€+ mpyazan,

as follows from ([1.2.19)) and integration in dy, d¢. Since (9x1)(h?&) is supported for frequencies

|¢] < h=7, and R~ h'T? < 1, by making a change of coordinates n/h + n and using that
egin.z _ (1—2in-8z)(1721;2-617
1+4[n|? 1+4]z|2

)ezi”‘z, together with some integration by parts, one can check that

SR

a +
050f [rr(—5. h)]
L2(d¢)
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for any a, 8 € N2, and hence obtain from lemma [1.2.25| that
1Opy, (ri(x, €)wX(t, )| oo S R™HwX(E, )] L2

Successively, taking a Littlewood-Paley decomposition such that

x1(h7€) =
hR-1<2i<h—o

o(Fe)+ X <1¢>(]§5)w<2f5>] (7€),

with ¢ € C§°(R?), equal to 1 close to the origin and 1 € C§°(R? \ {0}), we derive that

@319) [onktaeen[e(5)w) e, < osi (a(Fe) o) [o(F)w) ]|
+ 2 forr(a-a(Geueoame)e(F)we)|

hR-1<2i<h—°

and immediately notice that

LOO

(3.3.20) HOp}i’ (o(3e)a79) [o (%) ]t

= |[¢(RD)OPE (7€) [ (5 )] 8| BT w (e )lges

just by the classical Sobolev injection and the uniform continuity of Opﬁ(xﬁh”f))gp(%) on

L2. Introducing operators O, ©5', where Opu(z) = u(Rz), Op'u(z) = u(%), we have the
following equality

(3321) 0pf((1-9) (7€) w2 Im(0) [ (5 )ur]
¢

= [0 0pt, (1= ) (5, )@ (729 o) w*
with hgj := % < 1, and by hgj-symbolic calculus (that is proposition with h replaced
by hp;),

e, (11 - 6) (75 )o@ (h72/6) ) ola) =

hr;
¢

hrj

Ot (1= 0) (52 ) (O (W72 () ) + Opt, (7(2,))

with

(o) = g [ [ o[-0 (55 vlena o) | ] 00 v

J
Similarly as before, one can prove that

r+y
2

(2 he)]| 51

L2(d€)

for any «, 3 € N2, observing that no negative power of hrj appears in the right hand side

of this inequality for the product of ¥ (&) with any derivative of (1 — ¢)(%) is supported for
J
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hrj ~ || ~ 1. Hence lemma [1.2.25 gives that operator OPiy, (r(x,€)) is uniformly bounded
from L? to L> and

|Oply,, (2, €)ORWX(t,) || foo S N1ORWY(E, )12 S BRHwX(E, )| 2 -
Since symbol (1 — d))(hi)¢(§)xl(h"2]§) (x) is supported for |z| ~ |&] ~ 1,

(1= 0) (G ) eet)

22: (1 - 0) (55 ¥(E)x1 (727 p(w) (Rar]27€]| — 27&) (Ree] - )
= Xy - l)s
paart !Rﬁflz’ﬁl— ¢

al(xvé)
with a;(z,€) € R7127980(1) as long as R > 1, and by hg;-symbolic calculus

2
(1-¢) (}%)w<§>xl<h02fs>w(x> = > e, 2| (Ruu|27€] = 26)0(E) | + iy (@, €),

=1
with 1 € C5°(R?\ {0}) such that Y = 9, and rrRj € hrjSoo(1). From semi-classical Sobolev
injection
10D}y, (rRj (2, €)ORwX (L, )L S ORWN(E )|z < R™HwX(t, )] 2
while

(3.3.22) B
Opi, (ai(x, €)Opj, ((Rxi|27€] = 27€)1(€)) © pwX

= Oplty, (@r(w,€))O k| ODE ((wil¢] — P(277€))w]
= Ol (n(x,€))Or [ OB ($(277€) O (le] — Epu — Oy ((276) - (9)(277€) ],

The last thing to do to conclude the proof of the statement is to study continuity of operator

Opjy, (@2, €)).
Lemma 3.3.10. We have that Opy, (al(x €)): L2 — L™ is bounded with norm

HOp;ij(al(w’5))HL(L2;L°°) <h L

Proof. The result comes straightly from lemma[1.2.25/ Indeed, since symbol q;(x, &) is compactly
supported in x there is a smooth cut-off function 1 € C§°(R? \ {0}), with ¢1¢ = ¢, such that

ot (et 0] < ol [ for (50| S og (5L mee) ]|
lal<3 L2(de)
and for |a| <3
P Y g ]
y{al( B Rﬁ) L
R0 [ (1= @) (©v(hri&)xa(hrih?2€) o1 (B5Y) 1 v+ ]
<o R
% [ e - (R(F57) e ~e) s
\@Ty ( [ (hrs€) 2 ) _leEm)
BE S h
where ¢ € C§°(R?\ {0}). O
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Finally, summing up all formulas from (3.3.21)) to (3.3.22) and using lemma [3.3.10] we obtain
that

ot (- 6) (5€) 2 0mat) [ (5 )ux(e. )] | . < B k(e Yz + DXt )12,

for any index j € Z such that hR™' < 2/ < h=9. Injecting (3.3.20)) and the above inequality in

(3-3:19), and using that [M, Op}’(x(h7€))] = iOpy’ ((Ox)(h7E)(R7[€|)) is uniformly continuous on
L?, we deduce (3.3.18) (the loss in log R + |log h| arising from the fact that we are considering
a sum over indices j, with logh —log R < j <log(h™1)). O

3.3.3 Proof of the main theorems

Proof of theorem[I.1.7 Straightforward after propositions [2.2.13] [3.2.7] 3:3.7] O

Proof of theorem [I.1.1. Let us prove that, for small enough data satisfying , Cauchy prob-
lem — has a unique global solution. This result follows by a local existence argument,
after having proved that there exist two integers n > p > 1, two constants A’, B’ > 1 sufficiently
large, g9 > 0 sufficiently small, and 0 < § < 3 < §1 < §g small, such that, for any 0 < € < &g, if
(u,v) is solution to (L.II)-(L.1.2) in [1,7] x R?, for some T' > 1, with 8, ;u € C°([1,T]; H"(R?)),
v e CO[1,T); HMH(R?)) N C([1,T]); H*(R?)), and satisfies

(3.3.23a)
2
1
18t Y o100 + Vot W oo + [ Dalult, Moo + D IROsult, )| oo < Alet™2,
j=1
(3.3.23b) 1000 (t, Y mroe + [0t )| gosroo < Alet™L

)
(3.3.23¢) [[Qpult, )l + [Vault, Man + 100w (t, ) lan + IVav(t, lan + vt ) lan < Bletz,

(3.3.23d) > [0 ult, gz + Vel ult, )2 + 10T o(t, )l g2 + VeI ot )| 12
\I|=k

I / 63;’“
+[Do(t, )l2] < Bet 2z, 1<k<3,

for every t € [1,T], then in the same interval it satisfies

(3.3.24a)
2 A
10ty M osroe + [IVarlts )| gorroe + [ Dalult, )l gorroe + Y ROt )| oo < 5t
j=1
Al
(3.3.24b) 0w (t, Y meoe + o, )| gotroe < ?d_l,

!/

B s
(3.3.24¢) [|0pu(t, )|l gn + [[Vault, )| man + |0 (t, )l gn + |Veo(t, )lgn + ot ) |ae < ?5152,
(3.3.244)

(3:324e) Y [l0T ult, )llz2 + IVaT ult, )2 + 10T v(t, ) 2 + VT o(t, )| 2
\1|=k

93—k
2

Bl
+IT o, )| 22] < Settr, 1<k<s.
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We remind that, if I = (i1,...,4,) is a multi-index of length |I| = n, with i; € {1,...,5},
' =Ty, Ty, is a product of vector fields in family Z = {2, Z;,9;|7 = 1, 2}.

i1 in
We can immediately observe that the above bounds are verified at time ¢ = 1 after (1.1.4)) and
Sobolev injection. By definition (1.1.5)) we also notice that

2
(33.25a) [us(t, ) gorroe + D IRjus(t, )l gorroe < 2010ut, ) morioe + 2/ Dalult, )| gosroo
j=1
2
Z [05u(t, ) gor.0e + [[RjOru(t, )| pro+rco)
(3.3.25b) o (t, ) meee < 2(00(E, )l mooe + 2[0(E, )| Hro+r.oo0,

and, conversely,
(3.3.26a)

[0cu(t, )| ro+1.00 + ([ Dalult, )l o1 + Z 10ju(t, M mo+roe + [[RiOu(t, ) || mro+rco)
7j=1

< w8 ) aorree + -t )| gorree + Z (IRt (&, M merroe + [IRju—(t ) orre) 5
J=1
(3.3.26Db) 10w, ) zeee + ([0, M morroe < o (E ) Leee + [[o-(E, )| oo

Moreover, reminding definition ([.1.9) of generalized energies E,(t;ut,vs), E¥(t;us,vs), for
n>3and 0 < k < 2, and of set .'J’§ in (2.1.17)), there is a constant C' > 0 such that

(3.3.27a) C'Ep(tyus,vs) < [|0u(t, )3 + (| Vault, ) ||3m
0w (t, M [Fm + [Vav(t, )| + [0, )[Fn] < CEn(t;us,vs),

and for any 0 < k < 2,

(3.3.270) OB (tux,vx) < Y (10 u(t, I[F: + VT ult, )72
Iedk

T (2, )2 + VT o(t, ) B + [T 0(t, )]3] < CEE(fus,vs).

Therefore, after (3.3.25)), (3.3.27)), and (3.3.23)), we deduce that estimates (1.1.11)) are satisfied
with A = 24’, B = OB/, for some new C; > 0, so choosing for instance K; = 4 and K
sufficiently large, theorem and inequalities (3.3.26)), (3.3.27) imply (3.3.24]). O
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Appendix A

The aim of this appendix is to prove the continuity of some trilinear integral operators (see
lemmas and that arise in subsection when performing a normal form argument at
the energy level, and of some bilinear integral operators (see lemma that instead appear in
subsection when we perform a normal form the wave equation (see proposition . All
the other results of this chapter are stated and proved in view of the above mentioned lemmas.

Lemma A.1. Let a(x) denote the inverse transform of a function a(§).

(i) If a : R? — C is such that, for any a € N> with 1 < |a| < 4,

a(©)] S €7 and [0%a(&)] Sa (€[N VEeR?

then
la(z)| S || M (z) %, Vo eR%

(ii) If a is such that, for any o € N? with |a| < 3,

0%a(€)] < (1)) T1€) ™3, Ve e R?

then
la(z)] S (x)7%, Vo e R%

(iii) Let N € N. If for any o € N? with |a| < N there exists f, € L*(R?) such that |[0%a(¢)| Za
|fa(&)] then

la(z)] < (x)7N, Vi e R2

Proof. (i) We consider a cut-off function ¢ € C§°(R?) equal to 1 in the unit ball and write

d(x) = Kg(.’L‘) + K1 (a?)

(A1) 1

with  Ky(z) := W/eim'ga(ﬁ)qb(f)df, Ki(z):= 12/6”5'5&(5)(1 — ¢)(§)d¢.

(2m)

On the one hand, since [0%a(¢)| <o (€)73 on the support of (1 — ¢)(¢) for any |a| < 4, we

~Q

immediately deduce by integration by parts that |K;(x)| < (z)~* for any € R2. On the other
hand, again an integration by parts gives that

2Ko(x) = / e ay (&)dg

with a1 (&) supported for [¢] < 1 and such that [0%ay ()] <o €71 for any € € R2, any |a| < 3.
This implies that |2 Ko(x)| < 1 for any # € R2. Moreover, |29 Ko(x)| Sq 1 for any |a| < 3. This
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is obvious in the unit ball. Out of the unit ball we consider a Littlewood-Paley decomposition
in frequencies so that

0
$(&) = (&) |27+ Y p@2F|,

k=L0+1

with supppo C B1(0), ¢ € C§°(R?\ {0}) and Lo < 0 such that 20 ~ |z|~1, and write

0
eKo(w) = K§(2) + > Kb(x)
k=Lo+1

with  K{(2) = / e tay (€)po(20€)dE,  K() = / e"a1 (€)pr(2"€)de.
Performing a change of coordinates and making some integrations by parts we deduce that
|KQ(z)| <220 and  |KE(z)] S 2%%(2%2) 73, Lo+1<k<0

for any = € R?, which finally implies |z Kq(x)| < 2200 ~ |z|72.

(#i) The result follows splitting @ as in (A.1]) and applying to Ko(x) the same argument previously
used for xKo(x).

(ii7) The result follows straightly from integration by parts and the fact that f, € L!(R?) for
any |a| < N. O

Corollary A.2. Letd € N*, N € N and gg € LY (R?) for every |B] < N.
(i) If a(€,m) : R%2 x RY — C is such that, for any B € N® with |5| < N,
B a(&,m)| Ss (€) " lgsn)l,
0805 a(é,m| Sas (K1) HHOPlgs(m)], 1< ol <4

for any (€,m) € R? x R?, then

(A.2)

(A.3) ' / e”'f“y'"a(&,n)dfdn' Sl ™) 2y, V(z,y) € R? x RY

Moreover, if d =2 and N = 3, for any u,v € L*(R?) N L>(R?)

(4.42) H/ o Sae mya(e — mo(n)dedn| < Jullzeollz= (or < fullz=lvllze)
L2(dx)
and
(A.45) H/ ewSa(e, (e —mp(mydedn|| S llullo= o]~
L (dx)

(i1) If a(&,n) is such that, for any o € N? with |a| < 3, B € N® with |5] < N,
(A.5) 0805 alé,m)| Sas (1) 71E) g,

for any (&,m) € R? x RY, then

(A.6) ’/6”'§+iy'”a(§,n)d€dn S@) 7y, V(z,y) e R? x RY
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Moreover, if d =2, N = 3, for any u,v € L*(R?)

(A.7a) H [ e Sate mite ~ nyotmdedy

S llullz2flvllze
L2(dx)

while if u € L*(R?),v € L®(R?),

S Ml z2llvll zoe-
L (dx)

(A.7h) H [ e <ate mite ~ mystadedn

Proof. Let
K(z,n) ::/e“'ga(ﬁ,n)dﬁ and  K(z,y) ::/em'éK(az,n)dn.

By the hypothesis on a(£,n) and lemma (i) (resp. (ii)) we derive that, for any § € N¢ with
|B]< N,

07K (z,m)| S Ja| ™ (2) " |gs(n) (resp- 07K (x,m)] < <~’r>_2lgﬁ(n)\) V(z,n) € R? x R%.

Hence (A.3) (resp. (A.6])) follows applying lemma (iii) to K (z,v).
(1) If d = 2, N = 3, inequality (A.4a)) from the fact that

/emga(f, MUE —n)d(n)dn = /f((% — 4,y — 2)uly)v(z)dyde,

and by (A.3), for L = L? or L = L™,

(A%)
H [ B vy - 21y

< H 1= e = 72— =) i)y
L(dz) L(dz)

< / ™M) 2() "B — ) — ¥ — )y dyd

S lallzee[[ollz (or < l[all Lol ze)-
(7i) By inequality (A.6))

H/ K(x —y,y = 2)u(y)v(z)dyd:

L2 (dr) : H/@: —y) "y = 2 lu)llv(2)|dyd>

L2(dx)

< [l < [l ( fu-75m)" (- upa) o

1
2
< Jlollzs ( - z>—3\u<y>\2dydz) < g2 o]l 2

and
H/ K(z —y.y — 2)uly)o(z)dydz

L2 (dx) : H/<m —9) "y — 2) u)l|v(2)|dydz

L (dx)

S llvllze S llullzallvll e

/ (@ — )2 Ju(y)|dy

L (dx)

O
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Lemma A.3 (Sobolev norm of a product). Let s € N*. For any u,v € H*(R?) N L (R?),
(A.9) lwvllzs S Nullmsllvllzee + lfull oo [0l 25

for any u,v € H>*(R?) N H*2(R?), any 0 €]0,1],

(A.10) Juwlzoce S Nl llalpesalloll oo + lull e 050 0] %esa

Proof. Inequality (A.9) is a classical result (see, for instance, [2]).

In order to deduce (A.10) we decompose product uv as follows:

(A.11) wv =Ty + Tyu + R(u,v),

where T,v is the para-product of u times v defined by

Tyv := S_suSov + Z Sk_sulApv,
k>1

with S, = x(27%D,), x € C5°(R?) such that x(&) = 1 for |£] < 1/2, x(£) = 0for [¢] > 1, Ag = So
and Ap = S — Sip_1 for k > 1, and R(u,v) = Zk ApulApv, with Ap = Ap_q +Ak+Ak+1. Since

Too=Y Aj(Tw)= Y Aj[Sk_suly]
320 Jk
l7—kI<No

for a certain Ny € N, by definition [1.2.1] (éii) of the H*° norm and the fact that [[Agv| e <
2F|| Agv|| 2 we deduce that, for any fixed 6 €]0, 1],

(A.12)
Tl oo = (D) Tuvllime < S 2% Ay [Shogudgo] | 1
7.k
|7—k|<No
< Y S sulzllAwle < D 2 Jullpe (27 Ap(Da) vl o) 0 (28] Ao 12)°
Jik gk
|7—F|<No |7—k|<No
0
3 Z 20700 ul| oo | A (D) 127 (271 AR(D2) 2012
l7— k\<N0

< Nullzoe [0l e 10 Gpocea-

Similarly,
Tl rece + Ry 0)|[ree S Muall et 1l Fposa 0] e

O

Corollary A.4. Let s € N*, a1(€) € Si" (R?), a(€) € S§*2(R?), for some my, mg > 0. For any
u € Hs+m (R2) M H™®(R2), v € H™2(R?) 0 H™%(R?),

(A.13) lla1 (Dz)u] laa (D)ol s S N[l gssma ([0l gmace + [l gmaco [l gratms

for any v € HST™1°(R2) N HsTM1+2(R2) v € H5T™M2:°0(R?) N H5T™2T2(R2), any 6 €]0,1],

(A-14)  |[ar(Dq)u] [a(Dz) ]|l grs.00

0
S Ml ey o 1l G sz [0l mace + [l zmae [0l 725 g e [0l s sa.
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Proof. The result of the statement follows writing [a1(Dy)u| [a2(Dy)v] in terms of para-products
as in (A.11]), and using that T,,, (py,(a2(D)v), Ty, (pyy(a1(D)u) and remainder R(a;(D)u, az(D)v)
can be written from u = (D)™ u, v = (D,)™2?v, as done below for the former of these terms:

Ty (pyu(a2(D)v) = [S_3a1(D)(D) "™ ][Soas(D)(Dy) 7]
+ 3 [Stsa1(D)(Da) "™ il][Aaz(D)(Dy) 7).
k

Since a;j(€)(€)™™i € SY(R?), j = 1,2, operators Sga;(D)(Dz)™™, Aga;(D)(D;)~™ have the
same spectrum (i.e. the support of the Fourier transform) up to a negligible constant of Sj and
Aj respectively. O

In the following lemma we prove a result of continuity for a trilinear integral operator defined

from multiplier B@l7j2’j3)(§,77) given by (12.2.42)) (resp. by (2.2.53)) for k = 1,2 (resp. k = 3),
any ji,jo, j3 € {4, —}. It is useful to observe that, since

J1(€ —n) + j2lnl — j3(&)
25152(§ — ) [

k = J—
B(j17j27j3)(£’ 77) - e, k=1,2

from (|2.2.42)), while
3 _ &= m) + jalnl — js(€)
Bij1 s (&1) = 1 206 — 1)

(2.2.53)), we have that

(A.15)

oz [ B (€€~ o)y = 2 uRyo)e) — 2 [ (25 u)o] @
) !
)

J
T ) (Re))(2)

+ %Dl [((Dx>_1u)v] (z) — (D2)[((D

for k = 1,2, while for £k =3

_— ) _—
(A1) 7 [ B € Wil ~ ms(adgdn = 5 (wo)(a) + 22D I Dalol (o)

— Z2(Da) [((D2) )] (a).
Lemma A.5. Let Bkj1 Jas) (5 n) be given by ( when k = 1,2, and by (2.2.53) when

k = 3, for any ji,j2,j3 € {+,—}. Let also (5k =1 sz € {1,2}, 0y =0 if k = 3. For any
u,w € L?(R?),v € H>*(R?) such that §yRiv € H>>*(R?),

(A.17) )/Bﬁl,jm)(fm)ﬁ(i - n)@(n)w(—f)dédn’ S ullzz (vl 7o + Ok [[Revl groe) [w]l 22

Proof. First of all we observe that for k € {1,2}

(A.18a)
/ B, 5o o) (& m)(E = mom)ib(—€)dédn = 2 / u(Riv) (€)id(—€)de — 2 / (& u)o] (i (~€)de
+351 <§£_1n>ﬁ(£n)ﬁ() w(=E)dgdn = 52 ]2/<§<f>n> (€ — m)Ryv(n)d(—€)dEdn,
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while for k = 3,

(A180) [ B, (€ mile — myo(i(-€dedy = 5 [ @(©i(-€)de

JU2 [ A L T e ey e JLJ3 € e Vol —
<22 [ [ T DR €0 - 152 [ (e~ mitmyi(—€)ae.

Hoélder’s inequality shows immediately that the first two addends in both above right hand sides are
bounded by the right hand side of (A.17). Then the result of the statement follows by proving that
inequality (A.17)) is satisfied by integrals such as

/ A€, )iy (€ — )i (n)its (—€)dedn

with a(&,n) = &€ —n)~1 or a(&,n) = (€)(€ —n)~!, and some general functions uy,u3 € L2(R?),uy €
L*(R?). By taking a Littlewood-Paley decomposition we can split the above integral as

(A.19) 3 / a€,m)on (E)or()ita (€ — m)ita(n)ais (—€)dedn,

k,1>0

with g € C°(R?), ¢ € C$(R2\ {0}) and ¢x(¢) = ¢(27%¢) for any k € N*. Since frequencies £, 7 are
bounded on the support of ¢o(£)¢o(n), kernel

Ko(z,y) ::/6”'&@'"@(5,n)wo(f)wo(n)dfdn
is such that |Ko(z,y)| < (2)~3(y) =3 for any (z,y), after the first part of corollary (7). Therefore
[ atemateentnise — mis(aia(-e)icir

= ‘/ Ko(z — z,x — y)uy (@) usz(y)uz(2)daxdydz

S /<Z — @)z — ) " ua (@) Jua(y)[us (2)|dedydz
S lluzllze /<x>*3|m(z = o)[|ug(2)|dedz < w2 [Juzl Lo [|us| L2,

where last inequality obtained by Holder inequality.

For positive indices [,k such that [ > k+ Ny > 0 (resp. |l — k| < Ny), for a suitably large integer
Ny > 1, we have that || < |n| ~ | —n| (vesp. [£| ~ |n|) on the support of ¢i(£)pi(n). If we define
sk (6,m) = a(§&,n)(n) ™" and aj_gj<n, (&, 7) = a(§,n)(n)~7, it is a computation to check that, for

any «, 8 € N with |af,|8] < 3,
\3?35[al>k+No(2k§, 2177)“ + |6?65a|17k|§N0(§777)| S 274,

Hence, their associated kernels K>y, (7,y) and Kj;_g<n,(z,y) are such that
| Kis k8o (2, )] + [ Kigj<no (2,9)] S 22721(282) 72 (2y) %, V(2,y) € R? x R?

as follows after a change of coordinates and some integrations by parts, and for any [ > k + Ny
[ atemen@atnin e~ niatuia-€)deas

_ \ [ Koz = . = g @(Dual s () oy

(A.20)

<27 5275 fuy | 22 [Juz | oo lusl| 2,
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while for |l — k| < Ny
\ [atena@amin - n>a2<n>a3<—5>d§dn]

- ‘ [ i sizn(c = o = ) @D ) s )y

(A.21)

,523[

/ (2= — 2)) 732 (& — )~ ()] | (D) T (y) s (2) | dedydz

S22 lua | e sl 2.

Finally, when positive indices [, k are such that & > [ — Ny we observe that frequencies £ and £ — 7 are
equivalent and of size 2% on the support of . (&)¢i(n). If we take ar~;—n,(£,7) equal to a;=ktn,(&,7),
denote by Ky~i—n, (2, y) its associated kernel (which is hence equal to Kj> 4w, (z,v)), and introduce two
new smooth cut-off function ¢!, p? € C§°(R?) equal to 1 on the support of ¢, together with operators
Al =l (27FD,), A2 := ©*(27%D,), we deduce that

\ [atema©amin - n)ﬂz(n)ﬁg(—f)dﬁdn‘

| [ Koo = 0 = A @ D) el A el

<% ' / (2(z — 2)) (2 (¢ — ) *|[Abw) (@) D2 yuz ()| A us] (=) | dadyd=

27| Akual| 2 luz| o< | AR us | 2.

Combining decomposition (A.19)) together with (A.20), (A.21)) and Cauchy-Schwarz inequality we finally
obtain that

‘/a(ﬁvﬁ)ﬂl(f —n)tz(n)tsz(=8)dédn| < |luilpe[Juall g [Jusl| Lz,
O

Lemma A.6. Let ¢ > 0 be small, N € N*, and o™ (&,n) : R?2 x R2 — C be supported for
|€| < e(n) and such that, for any o, f € N?,

0202 (€,m)| S 1Nl TN (g ) € R? x R
For any (j1, j2,73) € {+, —}3 let also

N(n,&—n)
J1(E— ) + Jaln| — j3(€)”

(A.22) (3171203 (5’ n) =
Then for any o, 3 € N?
(A.23) 02 O0FY, sy (6| Sas (€ = )2 NHAFA NI (e ) € R?  R2

and if N > 15, for any u,w € L?*(R?), v € HNT3%(R?),
(A.24) ‘ T o) (&M UE = ()b (=€) dédn| S [l 2|0l raa.co ]| 2.

Proof. From definition (A.22)) function o.¥ ) can be written as follows

(91,3233

& —m + el +53) N
2j172(E — || — 2(€ —n) - G1:72:73)

gl J27J3)(E n) = (n,&—n).
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We observe that
[ija€ = mnl = € —=n) -]t SE =)™, V(& n) € R? x R?
and that for any multi-indices a, 5 € N? of positive length

|08 [(172(& = m)nl = (€ —n)-m)™']|
S Y ligel€—m)nl = (€ =) -l el — gy ~Ueltlead,

1<|ar[<]a]

07 (G120 = mlnl = (€ = m) - )]
D R F A () TR () R [ e D SRR (S K 8
0<|B1]<|B i+j=|B|—2|51|
1,5<|B|—61]

From above inequalities we hence deduce that on the support of U& i jg)(n,ﬁ —n) (ie. for
In| < elé = nl), for any o, 8 € N2,

1+\a|+2|/3|w 1- IBI

7 (G (€ =l - )| Sas €=

and therefore that

ang | Ju€—n) + ja|n| + js(€) ” < _ \2Hal+218] |, —1-|8] _ I+l 42181~ 18]
i Tt st | R ) 1= 4+ () — ) |14,

The above estimates, summed up with the fact

1020710}, 1) (1€ = M| S (€ = m) =1l VH1A,

gives the first part of the statement.

Let us now suppose that N > 15 and take x € CSO(RQ) equal to 1 in a neighbourhood of the
origin. We have that

[ 58 s &t = mii(-edein = [ K3 2,2~ yutw)ol)u()dodydz
+ [ KV G = 20 - @)D (g dodyd
with
K} (z,y) 12/ g (& m)dédn,

~]§fjg,)3 (&m) =G0}, o (Emx(n) and 0]1 ) (&) = Tl o) (& ) N (L= x) ().

Then inequality (A.23) is obtained using the fact that, for any u,w € L?,7 € L™,

/<Z —2)"Hz —y) 7 a(@)|[o(y)||@(2)|dzdydz < [v] pe /<Z>_3|ﬂ(x)||@(z — x)|dzdz

S llullz2fvllzeeflwll 2
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In the following lemma we derive some results on the Sobolev continuity of the bilinear integral
operator

(1, 0) / TED Gy (€ MVAE — ) (n)dEdn,

with D(;, j,) defined in . We warn the reader that we are not going to take advantage

of factor (1 — % . %) in Dyj, j,y(§,m) when deriving the estimates mentioned below, since
the Sobolev continuity of the above integral operator does not depend on the null structure
Qo(v, 01v) we chose for the Klein-Gordon self-interaction in the wave equation in system (1.1.1)).

Lemma A.7. Let p € N and D(£,7) a function satisfying, for any multi-indices o, B € N2, the
following:

(1) if [€] S 1,
0 D(E,m)| S (m)? 17,
080, D(&m)| Sap (P14 N~ jgptlealetleal Bl a) > 1
s Hlavzl =l
(i) for [£] 2 1, n] S (€ —m),
10805 D(€,m)| Saup (€ — m)rTlertlAl
(i12) for [€| 2 1, |n| Z (€ —n):
0807 D&, )| Sap (m)? 1AL

Then for any s >0, any u,v € H*TPTB3(R?) N L2(R?) (resp. u,v € HTPT13:0(R2) N L2(R?))

H [ e=spiemate - n)@(n)dﬁdnu < Yullprossas ol + lullzoe ol gososas

(A.25a) H (da)

(or S Nullstorisoe [0l L2 + [lull 2|0l otosis.o0),

and for any u,v € HSTPT13:50(R2)
(A.25b)

H/ e7E D€, m)ale — )o( )dfdn'

S llullgstorizec [0l o + [l oo [[0] atpris.ee.
Hs:%°(dx)

Furthermore, if ¢ € CP(R?), t > 1, o > 0 small, there exists § > 0 depending linearly on o,
such that

HW”DQ;) JE n)@(n)dﬁdnu < ¥ Jull gros1a ol o
H* (dz)
(A.268) (o < 8]l gossace o]l 2)
(or < ]l o] o),
(o < 8]l 2 llo] grs10.0),
oy A [ DE it it S sl

(or < tJullzoe 0]l pro+13.00)-

Finally, if for any o, B € N? D(&,n) satisfies (ii), (ii3) when |£] > 1, together with:
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(1) if €] 1

0208D(E. )] Sayp ()M 4 N jeplealt yotleal AL

lat|+|az|=|a|
then, for any u,v € HSTPH13(R2) N L>2°(R?),

(A.27a)

| [ e=<temte - mitmasan]| < fulmeolollzs + lullaossss ol + Bl ollosrs
Hs#(dx)

(or S lulle2lloll govro + lull otvesrs e l[vll L2 + lull L2 |l gesorse ),
and for any u,v € H¥TPH3°0(R2) with u € HPHO(R?) (or u € L?(R?)),

S
Hs>°(dz)

(A.271) H [ e <niemite - n)ﬁ(n)dfdn‘

[ull gesrol[ollLoe + [lullmrstotis.ee [0l oo + [|ull oo [0l mrotpotis.oe

(or S llull2lloll gosr0.00 + lull presosis,ce ([0l oo + lull oo |0l presosrs.ce )

Proof. Let L(R?) denote either the L?(IR?) space or the L>°(R?) one. After definition m (7)
of space H® (resp. (iii) of H**), we should prove that the L? norm (resp. the L>) norm of

(A.28) / e E DR (€, i€ — n)o(n)dedn,

with D%(&,n) := D(&,n)(£)%, is bounded by the right hand side of (A.25a)) and (A.26a]) (resp.
(A25b) and (A.261H)). Let us first take x € C§°(R?) equal to 1 in a neighbourhood of the origin
and split the above integral, distinguishing between bounded and unbounded frequencies &, as

(A.29) /em'gDs(&n)x(ﬁ)ﬁ(é — )0 (n)dédn + /em{Ds(é,n)(l = X)(€)a(& — )b (n)dédn.
On the support of x(§) frequencies £ — 1,7 are either bounded or equivalent, thus if

D*(&,m)x(E)(€ =m0
ay(&,m) == or
D3 (&, m)x (&) {n)—r~10

ai(&,n) satisfies (A.2) with gg(n) = (n)~3 for any |B] < 3, after hypothesis (i) on D(&, 7). Then
by (A.4) and depending on the choice of a§(&,n), we have that

(A.30a)
H/ €D (€, )X (€)al€ — m)o()dedn

H/ €43 (€,m) (D) P 0u(E — ) (n)dedn
L(dx) L(dz)

S D) ull[[v] o (or [(Da) " Oull < [[v]]),

~

or
(A.30D)
H/ €D (&, m)X(€)al§ — n)d(n)dédn

H [ e=aite.mace Dy utapacan
dm’ L(dm)

< llull e [{D2) "l L (or [ull (D) 0| o).
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Successively, we consider a Littlewood-Paley decomposition in order to write

(A31) / = ED* (&, ) (1 — X)(E)a(€ — m)o()dedy
= Y [t n - 0©eEatie - memacar

k>1,1>0

where ¢g € C°(R?), pr(¢) = ¢(27%¢) with ¢ € C°(R?\ {0}) for any k& € N*. When positive
indices [, k are such that k > [ + Ny for a certain large Ny € N*, we have that |n| < | — n| and
|€ — | ~ [¢] ~ 2* on the support of ¢k (&)@i(n). If

@hsi Ny (6:1) = DP(Em)er(©)eu(n) (€ —n) 77712,

by hypothesis (ii) we deduce that, for any «, 8 € N? of length less or equal than 3,
10807 lagsriny (256, 2] S 27F, V(M) € R? x R?

and its associated kernel

Kisiiny (@,y) == /e”‘“"y‘"az>z+No(€,n)dsdn

verifies that
\Kisen, (z,y)] S 2F2%(2%2)73(20y) ™3, V(z,y) € R? x R?

as one can check doing some integration by parts. Therefore

H/eix’gDs(é, n)er(€)ei(n)a(€ — n)d(n)dédn

L(dz)

- H [ Kistan = oy = DDl o)y

L(dz)

N

/(2'“(93 =) 22y = 2)) D) TP Puly) | |v(2)|dyd=

L(dx)
< 2k9? / (2") 722 (D)l (- = y)o(- — y = 2)|Lanydydz

& . . k 1
< 273273 |[(D, ) P3| L||v e (or 27227 % (D)5 3| oo ||0]|1).

For indices [, k such that 1 < k <[+ Ny we have that | —n| < |n| on the support of pr(§)¢i(n).
If

ahery o (€:1) = D*(Em)en(€)pr(n) () 777"
by hypothesis (ii) for any multi-indices a, 5 of length less or equal than 3,

lagaﬁ[aigzmo(?’“& 2')]| Sas 27,
and its associated kernel K, n (z,y) is such that
Kiciin, (@, y)] S 2%°2(2%) 72(2') %, Y(z,y) € R® x R%.

Consequently

H/engs(é,n)wk(f)soz(n)ﬂ(ﬁ — n)d(n)dédn

(A.33) L(dz)

_k 1 _k L
< 272272 fufl oo [{Da) TP 0|, (or 272272 [lul| [ (Da) TP 0| ),

~
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and inequality (A.25al) (resp. (A.25b)) is hence obtained by combining inequalities (A.30)),
(A-32), (A.33) with L = L? (resp. L = L*), and taking the sum over k > 1,1 > 0.

In order to derive inequalities , we first observe that we can reduce to study the L? and
L norm of with s = 0 and D(§,n) multiplied by ¢(¢~7¢), up to a factor t*. Here we use
again decompositions , , and only need to modify some of the multipliers defined
above, depending on if we want derivatives falling entirely on u or rather on v. In fact, in order

to prove the first two inequalities in (A.26a}) and the first one in (A.26b)) we introduce
Afeperng (€)= DEMX(ETE)Pr(€)e(n)

A g (651) = D(EMXE " ) k(&) pr(n) (€ — )~

and deduce from hypothesis (i) — (ii3) on D(&,n) and the fact that |£| < ¢7 on the support of
#(t=9¢) that, for any a, 8 € N? of length less or equal than 3,

08O afcp (216 2 S 727 and |00y, (2", 2 S 27

with § > 0, § = 0 as ¢ — 0. On the one hand, kernel Kl(b<k+No (z,y) associated to a;b<k+N0 &m)

verifies
KD gn (@, y)| S 17222 (2k2) 732l =5 (2, y) € R? x R?

and then for any [, k such that [ < k+ Ny

H [ e=<niemota©atmit - mitndsin

L(dz)

_k__ 1
S 1°272272 |lul|]|o]|
L(dz)

_k 1
(or S %27 2272 Jul o< |v]| ).

A2 N H/ Kl¢§k+N0 (z —y,y — 2)uly)v(z)dydz

On the other hand, kernel Kl¢>k+No (z,y) associated to af’>k+NO (&,m) satisfies
K o ()] S 2%24282) 2(2y) 7%, V(a,y) € R? x R?
so for indices I, k such that [ > k + Ny

/ei’”fD(g,n)qb(tc’f)«pz(f)soz(n)ﬂ(& —n)0(n)d&dn

L(dx)

_k__ 1
:H/ KL oo (@ =5,y — D) Bul(go(z)dydz| < 275275 (DL)P Bul o]

L(dz)

_k__ L
(or £ 275275 (D) Bull o] ).

Combining these two inequalities with (A.30a)) and taking the sum over k£ > 1,1 > 0 we obtain
the wished estimates.

Last two inequalities in (A.26al) and last one in (A.26b)) are instead obtained combining (|A.30b))
with (A.33) (that evidently holds for D*(&,n) replaced with D(&,n)¢(t7¢)) and (A.34)).

Finally, last part of the statement follows from the same argument of above, with the only
difference that, after hypothesis (i), multiplier a$(¢,n) := D(£,1)x(&)(n) P19 satisfies (A.5)
with |gg(n)| < (n)~3 for any |3| < 3, then by (A.7) we have that

H/eixff)s(&, m)x(&)a(§ — n)o(n)dédn

L(dz)

S D2 0ull g2 |l z,

~

- H [ e <asten D ute — ity
L(dx)
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| [ =B €@t - wotndean

L(dx)
= | [ e aaiemate - DI dedn| 5 D2l
L(dz)
O
Lemma A.8. Let j € {+,-}, ¢ € C§° (RQ) Z ,o >0, cmd D;(&,m) be the multiplier
introduced in (3.1.14). For any s > 0, i , D (§,n) and & |£| D;(&,n) satisfy inequalities
(A-25), (A.26) with p=2, and
(A.35a)
| [ e=onstemats — mitaacan| % ubslolle + ol ol + = ol

Hs(dx)

(resp. S llullmsllvllLz + llullgesiovllze + lJullL2 vl oo,

(A.35Db) H / e 9Dy (&, m)alé — n)ﬁ(n)dfdnH

Hs >0 (dx)

S lullgsl[vllzee + lull gerioce vl e + [JullLes 0] gesre.o,
together with

< Pllullms (Jvllgz + [[vllz=)
Hs(dz)

(or S ullz2 ([[v]l o + Joll s ),

(A-362) H¢(t“’Dm) [ e=<aenste.mate - n)ﬁ(n)dﬁdn'

(A.36b)

H¢<t“0x> [ e=<ocntemit - n)@(n)didnH <19 (Jlullins + ull giooe) ol e
Hs>°(dz)

é
(or St ([[ullze + l[ullze) [0l ro.00)-

Moreover, if Q = x10o — 201 and Zp, = ,0; + 0y, n =1,2,

(A.37a) H(;S(t_”Dz)Q / e ED; (&, )A€ — n)d(n)dEdn

L2(dz)
S [(llullze + 192ullz2) o]l v + [lull 5. | Q] 2],

(A.37b) H(b(t”Dz)Zn / e D;(&, )€ — n)d(n)dédn

L2(dz)

<t l0eullzz[[v]l mree + e |10evll 2 + | Znull p2 [[v]l mrs.ce + [lull mrs.ce | Znol| 2]

(A.37¢) Hw 7DD, 7 [ €7D, €. myile ~ myi(aded

L2(dx)

£ [0l 2 [[vll mrace + lull e l|Opv] p2 + 1 Znwl 2ol rr.ce + llull rar.ce | Zav]| 2]

with 6 >0, =0 as o0 — 0.
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Proof. The statement follows essentially from the observation that, for j € {+,—}, functions
D;(&,m) and [(&agj)kl (1i0n;)*2D;](&,m) satisfy hypothesis (i) — (iii) of lemma with p = 2
and p = 2 + 2(ky + ko) respectively, while 0¢D; (&, n) satisfies (1), (i1), (#5) with p = 3. In fact,
we first remark that, for every £, 7, denominator 1+ (¢ — n)(n) — (£ —n) - n is bounded from
below by a positive constant; secondly, the derivation of that denominator gives rise to losses in

(€—=mn),(n), as
&k — Mk

g, (L& =m)(m) —(E=n)-n) = €~ (n) + 1k,
Oy (L€ =mn) = (€ =m)-n) = Z:Z';W +<£—77><%+77k— (& = 7k)-

For [£] < 1 we have that (¢ —n) < (n), so for any «, 3 € N

0 28 J€—m +3m) 2+|al+8]
00 [1+<€n><n>(§n)-nm} Sas 1) ’
while
&) [3 1+8]
O [1+<£—n><n>—(£—n)-nm] <
a9 <l Lfon| gy I+l +HB] |y,
%0 ey | S XL

la1|+|az|=|a|

For €] Z 1 and |n] S (€ —n) (vesp. [n] 2 (£ = n)) we have that [£] S [€ — 7| (vesp.[¢] S |n]), so
each time a derivative hits the denominator of D;(§,n) we lose a factor (€ —n) (resp. (n)). Hence

lemma immediately implies inequalities (A.25), (A.26)) with D = D; and p = 2, together
with (A.35]), (A.36), while inequalities (A.37) follow from (A.26]) and the fact that, after some

integration by parts,
o [ D€, mal — nyindean

= > / e [(&10g, — £20¢,)F (MO, — 120y, )*2 D;] (€, m) Wk u(€ — 1) Qr4v(n)dédn,
k1+ka+ks+ks=1

Zn/BMDj(E,n)ﬂ(ﬁ —n)d(n)dédn
= [ e=<l0c, D)€ mDi[a(€ ~ myin)]dgdn + [ ¢4(0,, D,)(€ n)a(€ — n)Divl)dea
+ [ 5Dy(em Zuute ~ mitndedn + [ €7<D,(€.mi(e ~ ) Zav ()i,
and, if 6;, denotes the Kronecker delta,
D;Zy / 4D (&, m)a(§ — n)d(n)dédn
=30 [ €=<D;(6m) D2 ale — myo(o) dedy
+ / ¢4 0, 1€;D;)(€,m) De[a(€ — n)o(n)] dédn + / ¢80y, 1€ D;)(€, m)(€ — ) Dyv(n)dédn

+ /e”'%jpj(g, 1) Znu(€ —n)d(n)dedn + /e”féij(fm)ﬂ(é — ) Zyv(n)dédn.
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Appendix B

The aim of this chapter is to show how, from the bootstrap assumptions , it is possible to
derive a moderate growth in time for the L? norm of £+, with 0 < |u| < 2, and of QZM”&E”“,
with u,|v| = 0,1. These estimates are fundamentally used in propositions [3.2.7| and [3.3.7]
Moreover, we also prove in lemma a sharp decay estimate for the uniform norm of the
Klein-Gordon solution when one Klainerman vector field is acting on it (and when considered for
frequencies less or equal than ¢, with o > 0 small). We are hence going to assume for the rest of
this chapter that a-priori estimates are satisfied in interval [1, T, for some fixed T' > 1,
and that ¢g < (2A+ B)~!. We remind that I" generally denotes one of the admissible vector fields
belonging to Z (see (L.1.7)) and that, for a multi-index I = (iy,...,i,) with i; € {1,...,5} for
j=1,...,n, T =Ty ---T;, . Also, we warn the reader that any norm X (X = L>* H* Hj...)
of w = w(t, x) is here considered with respect to spatial variable z. We will often write || - || x in
place of || - [ x(az)-

B.1 Some preliminary lemmas

In the current section we list, on the one hand, some inequalities concerning the H® and H**°

norm of the quadratic non-linearities Q) (v+, D1v+), Qgg(vi, Dyuy) (see lemmas ,
as they are very frequently recalled in the second part of the paper. On the other hand, we

introduce some preliminary small results that will be useful in sections [B.2] and [B-3]

For seek of compactness, we denote Qp (v+, D1v+) and Qgg(vi, Diuy) by NL,, and NLyg respec-
tively, i.e.

1 D, D.D
(B.1.1a) NL,, = 1 [(v+ +v_)Dy(vy +v-) — D) (vy —v_)- <D$>1 (vy — U):| ,
(B.1.1b) NLyg := % [(v+ +v_)Di(uy +u_) — (l;;(mr —v_)- ly);)il(mr - u_)]

We recall the result of lemma [1.2.40] that can be also stated in the classical setting and says
that, for any real positive s > s’ and w € H*(R?),

(B.1.2) 11 = )t Dy)wl| o < Ct7E ||| gs, Vs > 5.

It is also useful to remind, in view of upcoming lemmas, that the L? norm of (I''u)+ and (I'v)+
is estimated with:

, whenever |I| < n and I' is a product of spatial derivatives;

N

En(t; W)
E¥(t; W)z, whenever |I| < 3 and at most 3 — k vector fields in T, with 0 < k < 2

belong to {Q, Z,,,,m = 1,2}.

[NIES
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As assumed in ((1.1.11c]), (1.1.11d)), such energies have a moderate growth in time and a hierarchy
is established among them in the sense that

0<iKhKh KiK.
We warn the reader that this hierarchy is often implicitly used throughout this chapter.
Lemma B.1.1. For any s > 0, any 0 €]0, 1], NL,, satisfies the following inequalities:

(B.1.3a) INLat e S 1V anee [V E L,
(B.1.3b) INLu(t Nz S IV

(B.1.3¢) INLu(t, e S IV e IV (e,
(B.1.3d) INLu(t,Marmee S VR IV (s,
(B.1.3¢) JONLw (Y2 S IV oo (V2 + 1V ).

while for NLpg we have that:

(B.1.4a) [INLig (8, )2 S IV () e 1UE ) s
(B.1.4b) INLg (8, e S IV e UG + IRIUE 2o
(B.1.4¢)

INLg(t, s S NV E ) ms (IUE ) N mre + [1RUE )| ree) + [V )2 [U(E ) s+,
(B.1.4d)

INLig (£ Yoo S IV 1V (E M gere (1T M aroe + [RIU () 1)
IV e (10 e + IRIUE b ) 10 s,

IQNLg (¢, )2 S (V)2 + 192V E )llz2) (WU E 2o + [RIU(E )| 172.00)
H IV D)oo [QUE ) |-

(B.1.4e)

(B.1.4f)

Proof. Inequalities (B.1.3a)), (B.1.3b]), (B.1.4a), and (B.1.4b) are straightforward. The same is

for (B.1.3¢) and (B.1.4f) after commutation of € with the operators appearing in (2.1.1). All
other inequalities in the statement are rather derived using corollary [A74] O

Lemma B.1.2. For any s > 0, any 6 €]0, 1],

(B.1.5a) IDU e S U Ms + 1V e |V E e,

(B.1.5b) IDU () lsoe S WU rssz.00 + 1V (3G, [V (E ) 1o,

(B.1.5¢) IDRAU(E Moo S IRIU(E Nggsroo + 1V s [V E llprnces

(B.1.5d) DU, )z < NQUE ) g + 1V E )z (VE Lz + 192V E ) )

while

(B.1.6a) IDeV (&, s SNV E s + 1V ) s ([UE ) oo + [RaUE )l prree)
TV E Lo |UE ) g,

(B.1.6b)

1DV (t e SNV grssroe + IV Nl IV E D e U@ e + IRLUE ) arnee)
V(e (Ul + IRUE 25 ) 1T s,
(B.1.6¢)
1DVt )2 < [1QV(E )l g + (V2 + 1QVE I e2) (U E )2 + [IRUE )l 20e)
IV E e QU E ) o
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Proof. Straight consequence of the prev1ous lemma and the fact that (u4, vy, u_,v_) is solution
to system - Observe that inequality (B.1.5d)) is derived using that

IRINLw (t, )| zrsoe S [ NLaw(t, ) [ prs+2
after classical Sobolev injection and continuity of R; : H®* — H?, for any s > 0. O

Lemma B.1.3. Let |I| =1 be such that T'' € {Q, Z,,,m = 1,2}. Then

(B.L7) DU (8, )2 S WU + 1V (E ) 2o [”Vl(t")”Hl

1
FIV e (14 SIRETCE Dllsee ) + 1V (o 10 ]
n=0

(B.1.8) |IDVI(t, )2 S IV, ||H1+Z||R“U M iarzoe IV (2, )| 2
pn=0

H IV (07 s+ NU ) s+ IV L ree [V E ) ) -

Proof. The result of the statement follows using the equation satisfied, respectively, by u} and
vL, together with (B.1.54), (B.1.6a) with s = 0. In fact, by (I.1.15) with |I| = 1,

Dyl = £|DyJuly + QY (vi, Diva) + QY (vs, Divh) + GY (vy, Dvy),
Dok = +(D )k + QEE(vL, Dius) + QEE(vs, Diul) + G¥8 (v, Dus),

with GY (vg, vy ) = G1(v,0v), Gll(g(vi, Duy) = G1(v,0u) and Gy given by (L.1.16). Hence one
can estimate the L? norm of the first two quadratic terms in above equalities with the L? norm
of factors indexed in I times the L> norm of the remaining one, while the L? norm of the latter
quadratic terms can be instead bounded by taking the L? norm of one of the two factors times
the L™ norm of the remaining one, indifferently. We choose here to consider the L? norm of
factors Duy, Dvy, and use (B.1.5a), (B.1.6a]) if the derivative D is a time derivative. O

It is useful to remind that, if w(t,z) is solution to inhomogeneous half wave equation ({3.2.5)

from (3.2.12a)) we have that for any j, ke{1,2} and || <1
D, \# 1 D, D;Dy, { Dy \#
Dy (55 ) w = D,|—tD, ot ()
w50 (i) =1 ) |20 =121 ] 5 ()

_;%i§<\gi|> w+i0p(0; (|£;|<§|) )ict)w

:Z"gz' (ul;;)“zjw + ’gg (,gﬂ) [z f(t,2)]

”%fyk (giy)yw +i0p(0y (\Egky (yg\) )il)w

Analogously, if w(t, z) is solution to inhomogeneous half Klein-Gordon (3.2.7)), from (3.2.12b))
we have that

(B.1.9b)

(B.1.9a)

2 (157) = o (7o) Ples = em s 7 () e s0mi (0 (g5) o
. z \ M . Dj  \ M = \ M
_Z<§x>(<§x>) ij_Z<Dx>2<<gx ) W <;x>(<gx)) [ f (2, 2)]
j x o~ w 1
+ 5y (1) i (af<<§>) Juw
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We also remind the reader about equivalence (2.1.16f), so we won’t particularly care if we are
dealing with Tuy, Mo instead of (I'w)<, (I'v)4, when we bound the L? norm of those terms

with the energy defined in (|1.1.9).
Lemma B.1.4. There exists a positive constant C' > 0 such that, for every j =1,2,t € [1,T],

1
Dy \# 1+5
1. (= W <

(B.1.10a) 3 xj(<Dx>) va(t, )‘ s OBt

|u|=0

! D, \n~ 5y
(B.1.10b) 3 xj(m) vslt)| <O+ Bt

Iul=0 ‘ e

and
(B.1.11) 21: ;D (&)uui(t I < oBe+E

|u/=0 jx |Dz‘ ’ 2

Proof. We warn the reader that, throughout the proof, C' will denote a positive constant that
may change line after line. As vy = —v_ (resp. uy = —u_), it is enough to prove the statement
for v_ (resp. for u_).

Since v_ is solution to equation (3.2.7) with f = NLjg4, from (B.1.9b) it immediately follows
that, for any |u| <1,

D, \»
(B1120) oy (155) v_<t,->H S 1Z5v- (b Mgz + o (b, Yl + 1 Vg (8 2
T H
along with
D, \n
(B.1.120) |l (75) v ()| < NZ (1) - (e + s N0,y
T H1l,0

derived by using the classical Sobolev injection. Observe that

D,

@U— (t,-)

(B.1.13a) H(L‘jNLkg(t, ')HLOO g (ijv_(t, ')HLOO + Zj

1
) S IRAT (L ) e
©n=0

oo

but also

1
Dy \#
(B113b) e NEky (6 )12 S D7 |fes(577) el
|u|=0 ‘
Thus, if g > 0 is assumed sufficiently small to verify 9 < (24)7!, by injecting (B.1.13B) (resp.
(B.1.13a))) into (B.1.12a]) (resp. in (B.1.12b))), and using a-priori estimates (1.1.11]), we obtain
that

1

>

|u|=0

U2 + [RaUCE ) 2ee)
L

2 < C B3 W)E + 4Byt W) | + IR\ U (L) o Bo (8 W)

&)Mvi(ta )H

Hl

< C’Bet1+g

< CER(EW)? + V() o < C(A+ B)et? ),

H1l,00
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and the conclusion of the proof of (B.1.10)).
Analogously, from (B.1.9a)) with w = u_ and f = NL,,

>

|u|=0

D,
| D]

o
2D (55) u-, >H S 1Zgus (6l + s ()22 + g N, ) 2
L

< CBgtH%,

as follows (|1.1.11c)), (1.1.11d}), (B.1.10b)) and the fact that

()

1
(B.1.14) |25 NLu (8, )12 S
||=0

[o(t; ) -

L

Corollary B.1.5. There exists a constant C' > 0 such that, for every j = 1,2, t € [1,T],

5+6
(B.1.15a) 2 NLig(t, ) 12 < C(A + B)Be2t 22,
S
(B.1.15b) |2 NLig (t, )| oo < C(A+ B)Be2t™ 2+ %
and
5+6
(B.1.16a) 2 NLu(t, )12 < C(A+ B)Be*t 5+,
5
(B.1.16b) |2 NLy (t, ) ||z < C(A+ B)B*t 47,
Proof. From
i NLig 8,22 S Z 25 (D (D)™ vse ()| o s (8 )

and , together with and
2 NLu(t, )| S Z 25 (Da (D) ™) 0 (8 )| o 0 (8 L pr2e

we immediately derive the estimates of the statement using (B.1.10bf) and a-priori estimates. [

Lemma B.1.6. There exists a positive constant C > 0 such that, for any multi-index I of length
k, with1 <k<2 anyj=1,2,te[1,T],

o) s

1

(B.L17) >

|u|=0

D,

W 93—
%‘Dw(m) (Mu)s(t, )| < CBet™ 5

_|_
H1

L2

Proof. We warn the reader that, throughout the proof, C will denote a positive constant that
may change line after line. As I'w, = —T'!w_, for any I and w € {v,u}, it is enough to prove
the statement for T v_, T u_.

From equalities (B.1.9) together with the fact that, for any multi-index I, (I''v)_, (I'u)_ are
solution to

(B.1.18a) [D; + (D)(Tw)_(t,2) = TT NI,
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and

(B.1.18b) [Di 4 (D) (T w)_(t,2) =TT NL,
respectively, we derive that, for any j,k € {1,2},
(B.1.19a)
: Dy Nt 1 I I I
S (s (55) Cro)ate, )| < 125 0) -6z + Al 0)- 0, zo + T N8, )
(De) H

l|=0

together with

(B.1.19b)

1

S |lesDe(755) (t)| < 12500+ ) 0oy N,
Il=0 v L2

The first two quantities in above right hand sides are bounded by CBet!t9-+/2 after (I.1.11d)),
so the quantities that need to be estimated in order to prove the statement are the L? norms of
2;T NLyg, ;T NL,, for 1 < |I| < 2.

We first prove (B.1.17) for |I| = 1 and I'/ = T', reminding that from (T.1.15)),

(B.1.20a) T'NLg = Q2 ((T0)x, Dius ) + Qg (ve, D1(Tu)s ) + G (v, Duy)
and
(B.1.20b) I'NL, = Q‘S’((Fv)i, Dlvi) +Qy (Ui,Dl(F’U)i) +GY (Ui,Dvi),

with Glfg(vi,Dui) = G1(v,0u), GY (vi,Dvi) = G1(v,0v), and G; given by (|1.1.16]).
By multiplying x; against the Klein-Gordon component in each product of I'NLg, we find that

(B.1.21)

;T NLyg(t, )l 12 S Z
|u|=0

xj(f;;)“vﬂt;)“w(H(ru)< s + st s + | Dews (8,152

x]( ) @) U + IR ne)

L2
1

which injected into (B.1.19a) with 'Y = T, together with (B.1.5a) with s = 0, (B.1.10b]), and

a-priori estimates ([1.1.11]), gives that

>

| u]=0

Dy \#, 1482
. . <
xj((Dz)) (T )4 (¢, )H 1 CBet "%

Similarly, using the above estimate together with (B.1.6a) with s = 0, (B.1.10b)) and a-priori
estimates, we derive that

oy Nt e S 3 :c]( ) o)) el e
/=0 L
B.1.22 !
B +|§0 i) vl )+ ol + 1Dt )

< C(A + B)Be%t*.
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Plugging the above inequality in (B.1.19b) for I'Y = T' and using again a-priori estimates we
deduce that
1

|ul=0
and conclude the proof of (B.1.17) when |I| = 1.
When |I| = 2 we observe that, from ((1.1.17]),

D, L)
xJDk(w |) (Tu)_(t,-)| < CBet'*7,

L2

(B.1.23) T'NLy, = Qe¥(v}, Dius) + Q¥ (ve, Diuh) + D QP(vl}, Dyul?)

(I1,12)€9(1)
[11]=|12|=1

+ Z CIlJQQlS (U:tﬂDu )

(I1,I2)€3(1)
|T1|+]12]<1

with ¢y, 1, € {—1,0,1}. Since the L? norm of terms indexed in Iy, Iy with |I;| = |Io| = 1 can be
estimated using the Sobolev injection as follows:

B <3 Il ) e

ln|=0

(B.1.24) ijngg(vﬁg,Dlu

x]Dl(‘g ‘) ul2(t, )

from (B.1.23) we derive that

1

D, \»
et NEagllze § 37 i (555 ) (706 (IRE st )lleoe + DR s () 1 )
|7]<2 e L
|l ,v=0

o3 [

o) st Bkl + X (e + 1000

|p|=0 [J]<1
Dy \» g
S DR (I (O /72 2 sy IR0
D, Lz
[11]=[I2|=1
|14[=0,1

As before, injecting the above inequality into (B.1.19a]), using a-priori estimates ((1.1.11]) and the
fact that eg < (24)7!, together with (B.1.5a) with s = 0, (B.1.5b), (B.1.5d) with s = 1, (B.1.7),

(B.1.10b}), and (B.1.17) with £ = 1, we obtain that

1

(B.1.25) >

| 4|=0

Dy \#, 148
. . < 2
xj(<Dg;>) (T ) (¢, )H = CBet

Analogously, since

I'NLy, = Q (vh, D1vs) + Q¥ (v, Divd) + > QF(vi, DivP)

(11712)63(1)
[11]=|12]=1

I I
+ Z 611712Q‘(’)V(U:|:17DU:N:2)7

(I1,I2)€3(1)
|1 |+|12|<2
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we have that

D, \~
e NLule § Y Nlai(55) @ et || (It Yl + 1 Dews(t, ) )
|J|<2 (Dr) L?
ul=0.1

>

Z I(T70)+ (8, ) | + Z 1D (8, )| 2

o) st

|ul=0 AL\ |71<2 lJ|<1
I ‘Dx K Is
Y )t e o (55 ) (TR0 )|
o (Da) 1
[11]=|12]=1
|11=0,1

so from (B.1.6a) with s = 0, (B.1.6b) with s = 1, (B.1.8), (B.1.10b), (B.1.17) with |I| = 1,
(IB.1.25) and a-priori estimates (1.1.11)), we deduce

1

D, \# s
> l‘jDk:(|Dz\) (D'u)_(t,)|| < CBet'tz,
Il=0 ¢ L2
and hence conclude the proof of inequality (B.1.17)) also for the case |I| = 2. O

Corollary B.1.7. There exists a positive constant C > 0 such that, for any I’ € Z, j = 1,2,
and every t € [1,T],

&
(B.1.26a) |2, T NLig(t, )|l 12 < C(A + B)Be*tat 7
(B.1.26b) |2, T NLy(t, ) || 2 < C(A + B)Be?t*.

Proof. Estimate (B.1.26a)) follows straightly from (B.1.21)), (B.1.5a)) with s = 0, and estimates

(1.1.11)), (B.1.10b)), and (B.1.17) with £ = 1, while (B.1.26b|) has already been proved in (B.1.22]).
O

Lemma B.1.8. There exists a constant C > 0 such that, for every i,j = 1,2, every t € [1,T],

1

Dy \# 2+
(B.1.27a) 3 xjxk(@) valt,) . < CBet>t %,
|4|=0
- Dy \# 1+22
(B.1.27b) 3 mjxk(m) vi(t, )| < C(A+ B)etits
x Loo

|u[=0
Moreover, for any I' € Z,

1

(B.1.28) >

|u|=0

5.
< CBet?*t7 .

:Eiﬂjj<

55) (e

L2

Proof. The proof of the statement follows from the fact that, by multiplying (B.1.9b)) by z; and
using that

[ i NLrg(t, )l 2 S Z
|1|=0

(Jut (8 ) 2o + [Raus(t; )| r2.00)

mm&( >>#v (t,-)
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together with

D, \»
JesziNEkg (6 )l $ 3 |legw(555) 0 (60)]| (st )l + [Raua o, )
|12|=0 ’ L=
we derive that
1 1
D, \#
> | () vt Z (I (Z70)~(t, Y22 + tlak v (8, )] 22)

|u|=0

1
2
©n=0

xixj(jg;)%_u,»HL (s e + R (1) ).

and using that operator (D,)~! is bounded from H'! to L*®

1

1
5 |l (75) o= 53 (lebZpo)- el + o 6. )
|ul=0 ! L= k=0
: D,
3 ke (p5) o= )| Ot + [Raes (e ).

As g9 > 0 verifies that g9 < (24)7!, inequality (B.1.10a), (B.1.17) with k¥ = 1, and a-priori
estimates (1.1.11]) imply that

1

>

|n|=0

Sg
LT < OBet?t3,

while from (B.1.10b)), (B.1.17) with £ = 1 and a-priori estimates,

1

>

ln|=0

D, \» 1492
L . <
mm]( ) v_(t,") C(A+ B)et' "%,

As vy = —v_, that implies the first part of the statement.
Analogously, using (B.1.9b)) with w = (I'v)_ and multiplying that relation by z; we find that

1

(B.129) >

|u|=0

55) ot

l‘iCCj(
12

1
Z 24 Zj (Tv)~ (£, )2 + tll2f (T0) - (¢, )| 2 + |2} 2T NLig (2, )|l 2),

and after (B.1.17), (B.1.26a)) and a-priori estimates,

1
[
(B.1.30) D (e} Z;(To) (¢, )2 + tlaf (To)~(t, )| 2) + ;T NLig (8, )| 2 < CBet* 2.
pn=0
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By multiplying both z;,z; against each Klein-Gordon factor in I'NLy, (see equality (B.1.20al))
we derive that

1

225, T NLg (t, M2 S
|ulv=0

TiT (UZ;Z))uvi(t, )

<ll;z>>u(Fv)—(t,-)HL2 IRYur(t, )| gr2.co

(L‘i(L'j<

1

>

|u|=0

chJ(Il(l“u)( W + lluse (@ )l + [ DeusE, )l 2)

so by (B.1.5a) with s = 0, (B.1.27h)), a-priori estimates and the fact that e < (24)~!

i PN (1, Yz < 3llrses (o) (1, Vo2 + C(A + BYBE2+,

which injected in (B.1.29)), together with (B.1.30), implies (B.1.28]). ]
Corollary B.1.9. There ezists a constant C > 0 such that, for everyi,j = 1,2, everyt € [1,T],
B.1.4

5+6
(B.1.31) 22 NLig (t, Y p2 + @i NLu(t, |2 < C(A + B)Be' 75+

Proof. Straightforward after (1.1.12¢), (B.1.27b)) and the following inequality

[€ij NLg (¢, )| L2 + Nl NLw (¢, )| L2

sMZZO xiwj(é;;)“vi(t,-) (&, Yl + o8, )

LOO

O]

Lemma B.1.10. There exists a constant C > 0 such that, for any i,j, k = 1,2, every t € [1,T],
1B.1.4

1

(B.1.32) >

||=0

5.
< CBet3t7 .

D, \~
:L‘ijxk(@> ve(t, ) .

Proof. Using equality (B.1.9b)) we derive that

1
leiagere () S 30 (It e (Zeo) ()l ge + e abo (5, )12

H1,p2=0

B2 Dy

T Ty xk(<DI>)Mv_(t’.)

Lz(l!%i( Wrzee + [IR1ux(t, )| 2ee)

-y

B2, | =0

so the result of the statement is a straight consequence of ([B.1.10a)), (B.1.17)), (B.1.27a)), (B.1.28]),
a-priori estimates, and the fact that ¢ is smaller than (24)~!. O
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B.2 First range of estimates

The aim of this section is to show that, if a-priori estimates are satisfied for every
t € [1,T], for some fixed T' > 1, then in the same interval the semi-classical Sobolev norms of
the semi-classical functions @, v introduced in (3.2.2) grow in time at a moderate rate t%, for
some small 8 > 0. More precisely, in lemma [B.2.1| we prove that this is the case for the H ﬁ(Rz)
norm of u, u"* (see definition (3.2.41))) for any s < n — 15, and for the L?(R?) norm of those
functions when operators €2, and M, introduced in ((1.2.40)) and ([1.2.49)) respectively, are acting
on them and frequencies are less or equal than A~7, for some small o > 0. Lemma shows
that this moderate growth is also enjoyed by the Hﬁ(]RQ) norm of v, again for s < n = 15, and
by the L?(R?) norm of £v (see (1.2.68))) when restricted to frequencies |¢| < h™7. The proof of
this latter lemma will require some intermediate results, among which lemma [B:2.8| that provides
us with a first non-sharp estimate of the L>°(R?) norm of Klein-Gordon functions v+ when one
Klainerman vector field is acting on them (and again frequencies are localized for || < t7). This

estimate will successively improved to the sharpest one (B.4.50)) in lemma (B.4.14] of section

As said at the beginning of this chapter, we prove the below results under the hypothesis that
a-priori estimates are satisfied in some fixed [1,7T], with g9 < (24 + B)~!. We remind
here that, if x € C§°(R?) and o > 0, x(¢t~°D,) is a bounded operator from H* to L? with norm
O(t?®), and on L uniformly in time.

Lemma B.2.1. Let u,u>* be defined, respectively, in ([3.2.2) and (3.2.41), and s < n — 15.
There exists a constant C > 0 such that, for any 0y, x € C3°(R?) and every t € [1,T],

(B.2.1a) [t g + [T () |y < CBeta*™,
(B.2.1b) 1075 (¢, )| 2 < CBet 347,
S
(B.2.1c) > (HOPZ’(X(h"é))M“ﬁ(t, Wiz + [MAGZF (¢, -)Hm) < C(A+ B)et3+n,
|ul=1
(B.2.1d) S 180 (@) T (1, ) 2 < CBet 31,
lul=1

with k = op if p > 0, 0 otherwise.

Proof. We warn the reader that, throughout the proof, C' and § will denote positive constants
that may change line after line, with 8 — 0 as ¢ — 0. We will also use the following concise
notation

$1(€) = B(E) (1 — x0) (h )@ (277 x0(h7€),

reminding that

(B:22) lopei©n)|,,,, =om™.

L(L2)
with k = gp if p > 0, 0 otherwise.
Inequality (B.2.1a) is straightforward after (B.2.2]), definitions (3.2.2) and (3.1.15)), inequality

(3.1.204)), and a-priori estimate (1.1.11D)). By commutating Op}’(¢7,(£)) with M (the commutator
with €, being zero if ¢, x¢ are supposed to be radial) and using (B.2.2)) we observe that there is

some y € C§°(R?) such that

12T (2, )l 2 S B OPE (xo (h7€)Qma(t, )| 2,

1
V=R (8, )| 2 S BT Y OP (X (h7€)MVa(t, )l 2.
|v|=0
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160 (2) M@ * (8, )| 2 S 1180(2)Op (61,.()) Mt )| 2 +h ™ D 0Py (x(h7€))Qpat, )|l 1.

p=0

Therefore, as h = t~!, in order to prove (B.2.1b)-(B.2.1d) it is enough to show that, for any
X € C5°(R?),

(B.2.3a) 10Dy (x (7€) Qpu(t, )| 2 < C’Bet 5 ,
(B.2.3b) |OpY (X (R €)M(t, )| 2 < C(A + B)et 7,
(B.2.3¢) 160(2) Py (&4(€) QM(t, ) 12 < CBet 7.

Estimate (B.2.3a) follows from definitions (3.2.2)) and (3.1.15)), inequality (A.37a) with u =v =
v4, and a-priori estimates ((1.1.11)), as

10D} (x (7€)t ) 2 S 11(Qu)— (¢, )22 + x (7 D)™ —u)(t, )| 2
SNIQUE )z + 7 (V2 + 1QV(E ) 2) V(- e
< C(1+ Aet ") E2(t; W)z < CBet’?.

From equality and definition of uM¥ we deduce that
(B.2.4)
10y (X (A7 €))Mnt(t, ) 2 S NZaU (¢, ) g2 + X (£ D) Zn (u™F = us) (2, )] 2
+[[at, ) 2 + 0Py (e (W€ [t(t;) [gw + cwl (8, t2)]| 2 (az) + IX(ET D) (zrgy Tt ) 2

with gy, cw and Y given by (3.1.17), (3.1.18)) and (3.1.19)) respectively. We first notice that,
after inequality (A.37b)) with u = v = vy, (B.1.6a)) with s = 0, a-priori estimates, and the fact
that Aegg <1,

(B-2.5)  [[x(t™7 D) Zn(u™" —u_)(t, )| 2
SEUDV A2V s + IV [ ZaV (5 ) 2) < CBet™°.
Let us also observe that from (3.1.17)), (3.1.18)) we have that

oy S o
- hj &1 §&1 x
2J[voph(gl)v Oph(<€>>V Op <<£>)V] <t,t),

where V (¢, z) := tv_(t, tz) is such that, for every s,p > 0,

IV ey = o lmss [1VE ) oo = to-(E )| e
Moreover, by (3.2.8) with w = v_ and f = NL,

15V )z S WZ50- (85 ) 2 + lv- ()l 2

(B.2.7) D,
(oot e + s igoste)]| )10
Using along with the definition of £; in we derive that
)l + et te) = 53 [VORE(E)(1,7) + TOu (577 + VLo, Opi 1)V
(B.2.8) — Op¥ ( ) ( ) hi;V) — Op (é))f/ : Op}f(iif;)‘?

~0pf ()7 2100 (%M (t.2).
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so after estimates (|1.1.11)) and (B.1.10Db))

oy Ml el )l 5 |

IVt iy + RISV (M iy | 17 e

< CA(A + B)ets.

Moreover, from (3.1.19)), the fact that a:jem'€
(A.26a) with p = 2 (after the first part of lem

(B.2.10)
HX(tiaDas)(xnrz]XF

)(ts )2

= ngem’E , integration by parts, and inequalities

ma[A.§), (A364), we get that

S 7 {llzno-(t, )l | NLig (8, ) | mas + 1V (t )| s || NLig (¢, )| 22
FINLrg (&, M 2 (V&) s + IV E [ rsee) + IV E ) sl [ NLrg (L, -) || 2oe]

Lp)
< CBetz,

where last estimate follows from (B.1.10b)),

B.1.15a)), inequalities (B.1.4a)), (B.1.4b

Y

with s = 15, and a-priori estimates (1.1.11)).

B.2.5),

)

Consequently, from (B.2.4))

(B.2.10)), (B.2.1a)) and a-priori estimate (T1.11d) with k = 2, we obtain (B.2.35).
Let us now apply 00(%)¢£(DI)Q to both sides of (3.2.9a)) to deduce that

(B.2.11)
ot 0pR (BN M )|, S 102,02,

1
ot
n=0

+ |[60(2)OpE (B(€)) bt (g + ) (1 )]

+ H90<%>¢i(D$)QZn(uNF —u_)(t,-)

.-

In order to estimate the second addend in the
reminding that
[Q7 Zl] - _Z2

and use that

(E)ektp2 = [ ()i

|2

10py (xo(h7€)) S, u(t, )| >

o |60 (@) 0p (L)Lt )Y P 1, )] 12 ()

(d

above right hand side we first commute Z,, to €2,

and [Q, ZQ] = Zl,

00 (5 16(D2), 251 00 + 100 (5 ) 61(D2)

with Qg(z) :=0p(z)z;. Observe that commutator [d)i(Dx), ;] is bounded on L? with norm O(t),
and that its symbol is still supported for moderate frequencies || < t77. Therefore, for some

new y € C§°(R?) we have that

|60(3) (D)2 (™ = u e, )|

so using (A.26a)) with p = 2 (because of first

with © = 0y zv+,v = v+, and v = v4,v = 0,

estimated by

2 St HX(t_aDa:)at,z(“NF —u-)(t, ')HL2
)(tv')HLm

part of lemma |A.8) and (A.37al), both considered

U+, we obtain that the above right hand side is

+1 Hx(t_UDm)at,mQ(uNF —u_

1002V (8 )2 + 192002V (8 ) |2) 1V (e + (VT )z + [1QV(E ) 22) 186V ()l mimee]

From (B.1.6a) and (B.1.6b)) with s =0, (B.1.6c|) and a-priori estimates, we hence deduce that

(B.2.12)

I ()0

), )H | < CBetPtE,

L
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As concerns, instead, the estimate of the fourth L? norm in the right hand side of (B.2.11]), we
observe that from equality (B.2.8), Leibniz rule and (B.2.2)

(B:2.13)  ||60(@)Opk (¢4(€))lt(t)law + cul b, )] <Zh”HV Mgz IV (2, ) ey
+Zh1 SNV (g NV (8 )+ BT oo 1657 (8 )

with k = op if p > 0, 0 otherwise. Using the semi-classical Sobolev injection, (B.2.7) and the
fact that [|QuV (¢, )|y = [[Qu_(t,-)||ms for any s > 0, together with (B.1.10b) and a-priori
estimates, we see that

~ ~ ~ ~ 35
(B.2.14) MRV (@, )z L5V @ ) S NQVE a2 ll£5V (E )l gy < CBet ™=

Also, from (3.2.8) with w = v_ and f = NLy,

~ 3
12085V (¢, )2 S 192250 (L, )l 22 + Z 1940 (£, )| 2 + 192 (2 NLgg) (¢, )] > < C(A + B) B2+,

where last inequality is obtained using (1.1.11c)), (1.1.11d)) and estimates (B.1.15a)), (B.1.26a)).
Therefore

BIV (&, )1 I8V (1, )2 < CAB(A + B)e 3+ 2,

which combined with (B.2.13)), (B.2.14]) and a-priori estimates gives that

(B.2.15) H‘go(f)opﬁ(éf)i(ﬁ))ﬂh[t(tmj)[qw + cw](t,tx)]HL2 < OBet'?,

We estimate the latter L2 norm in (B.2.11)) recalling definition (3.1.19) of ¥ commutating Q

and x,, and using that

00 (x)Opy ($7,(£))zn = 0 (z)OpY (#1.(€)) + 00 () [OPY (¢4(€)), n),
where ' ‘
[OpY (¢1(€)), 2] = —ihOPY (9,85 (€))

is uniformly bounded on L%. After (3.1.22a)), (3.1.22d) with # < 1 small, and a-priori estimates
(L.1.11)) we derive that, for some x € C§°(R?),

|0(@)OBR (&1 (€)) nlt(tra) Nt )|

o < ZtHX (t~7 D) rNE (¢, )| 2 < CBe.

Combining (B.2.11), (B.2.12), (B.2.15) and above estimate together with (1.1.11d)), (B.2.1a)),
(B.2.3al), and assuming 3d2 < 01, we finally obtain (B.2.3c¢) and the conclusion of the proof. [

In the following lemma we explain how we estimate the L? or the L> norm of products supported
for moderate frequencies |£| < t7, when we have a control on high Sobolev norms of, at least, all
factors but one. This type of estimate will be frequently used in most of the results that follow.
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Lemma B.2.2. Let n € N, n > 2, and wy,...,w, such that w; € L*(R?), wo,...,w, €
L>®(R?) N H%(R?), for some large positive s. Let also x € C§°(R?) and o > 0. There exists some
x1 € C°(R?), equal to 1 on the support of x, such that for L = L? or L = L™

HX(fJDx) [wy ... wn]HL < [Xl(t*”Dm)wl] H Xt 7 Dy)w;
j=2

L(dz)

+ N p2gany D [T el llwjll e as)-
=2 ki

with N(s) as large as we want as long as s > 0 is large.

Proof. The idea of the proof is to decompose each factor w;, for j = 2,...,n into
(B.2.16) (7D, )y + (1= X)(E7 D)y,

and to estimate the L? norm of product
(B.2.17) Xt D) |wi [] @k [(1 = Xx)(E " Da)wy] |,

where wy, is either wy, or x(t~7 D, )wy, with the L? norm of w; times the L> norm of all remaining
factors, reminding that x(t7?D;) is uniformly bounded on L*° and that by Sobolev injection

and (BL3).
(B.218) 1@ =20 Dy ey S € eyl ey

with N(s) as large as we want as long as s > 0 is large. The L® norm of (B.2.17) is estimated
in the same way, using firstly the L? — L°° continuity of operator x (¢~ D,) acting on the entire
product.

The end of the statement follows from the observation that, if suppx C B¢(0) for some C > 0,
then

(B.2.19) suppwy C {£: || > C1 >nC} = x(t77D;) [wl Hx(t_”Dx)wj] =0.
=2

O]

Remark B.2.3. Property (B.2.19) is more general, meaning that if y,x; € C§°(R?) with
suppx C Bc/(0), suppx; C Bc,(0) for some C,C; > 0, for every j = 2,...,n, then

suppw; C {f g >Cr>C+ ZC]} = x(t77Dy) {wl ij(t_”Dx)wj =0.
=2 j=2

We have seen at the beginning of section and already used in the previous lemma’s proof,
that, if w € H*(R?) for some large s > 0, the L? norm (resp. L° norm) of this function when
restricted to large frequencies |£| 2 t7 decays fast in time as t~7° (resp. t=o6=D=1 after the
semi-classical Sobolev injection). The aim of the following lemma is to show that, even if we
don’t have a control on the H*(R?) norm of (T'w)+, (T'w)x, for T' € {2, Z,,, m = 1,2} and s larger
than 2, the L? norm (resp. L> norm) of products as in still have a good decay in time.
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Lemma B.2.4. Let w € {u,v} and for any I' € {Q, Zp,,m = 1,2}

(Tw)s = {(thl:|Dx|)(Fu), Z:fw:u,
(Dy £(Dz))(Tv),  ifw=n0.

Let also n € N*, wi,...,w, be such that wy,zw; € L*(R%) N L®(R?), w; € L>®(R?) for
j=2,...,n, x € C(R?), 0 > 0, and a(D,) = DO‘(< T>)B(‘D |) for any o, B,y € N? with
||, 18], |7] < 1. Then for L =L? or L = L™ we have that

(B.2.20a)

[a(Dz)(Qw)rws ... wnll ey S [x(t77Dy)a(Dy)(Qw)+] H W
L(da)

O 0 (3 ol H 00t
|pu|=0

and, form=1,2,

(B.2.20b)  [[a(Dg)(Zmw)+wi ... wnll ey S [X(t™7Dy)a(Dz)(Zmw)+] H W
J= L(dm)

7N (s, llas + | Dews (t, ) e) (Z ooy + el lcam) T 13l
n=0 7=2
with N(s) as large as we want as long as s > 0 is large.
Proof. Let us remind definition ((1.1.6) of Klainerman vector fields 2, Z,,, for m = 1,2, and

decompose factor a(D,)(T'w)+ in frequencies by means of operator x(t77D,). When dealing
with product

(B.2.21) (1= X)(t""Dg)a(Dy)(Tw)+]wy - - - wy,

the idea is to discharge on w; factors x and/or ¢ defining I, after a previous commutation between
Dy +|D,| if w = u (resp. Dy + (D) if w =v) and T', and between (1 — x)(t~?D;)a(D,) and
the mentioned factors x,t. For instance, if w = w and I' = Z;

(B.2.22) [(1 = x)(t 7 Dg)a(Dy)(Z1u)+]wi = [(1 = x)(t"7Dz)a(Dy)(0pu) +] (z1w1)

+ [(1= 207 D)D) @ru)s] () + [(1 =) De)a(D)

+ [0 =) (77 D2)a(Dy). 1) Dy .

ui} w1

from which we deduce, using the Sobolev injection together with (B.1.2)), that
1[0 =) Da)a(De)(ZrwJun |, < 17 (fue (8, )l + |1 Den(t, )ar2) (Z ez + tlwilz )

with N (s) large as long as s is large. Analogous inequalities can be obtained for I' = Q, Z, and /or
w = v. This concludes the proof of the statement since the L norm of (B.2.21)) is bounded by
the L norm of [(1—x)(t77Dy)a(Dy)(Z1u)+ |w: times the L™ norm of the remaining factors. [
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Corollary B.2.5. If the hypothesis of lemma are satisfied and in addition wy, ..., w, €
H*(R?), we have that

[X(t™7Di)a(Da)(Qw) ] [T x(t™ Do),

|a(Dz)(Qw)zwy -+ - wnllf, S

Jj=1

L
(B.2.23a) + VO s (8, )| sy Z etz ) TT llwsllze
|12[=0 j=2
+ VO Q)£ (8, )l e Z LT wnllzoe flewgl s
=1 ks

and, form=1,2,

|a(Dg)(Zmw)+w: -+ wnlp < [X(t_UD:L‘)a(D:L‘)(me)i] H Xt Dg)w
J=1 L

(B2.23b) 4 4™NC) (Jus(t, ) s + | Dewa(t,)1ze) (an“wluwtnwnu)HHanLoo
n
+ N (Zmw) £ (e > T lwwllzoe llw; | s,
J=1 k#j

with N(s) as large as we want as long as s > 0 is large. Moreover, there exists x1 € C§°(R?)
such that, for any fized jo € {1,...,n},

[x(t77 Dy) [a(Dy) (Qw) £ws - - wi] |,

S| [x(t 7 Da)a(Da)(Qw)+] [x1 (" Da)wjo) [ x(t77Dx)

Jj=l...n
J#Jo L
(B.2.24a)
+ VO w2, HHs(ZHx“leL)HHwJHLoo
||=0
+ VO Qu)alt, e Y Huwknmuwjnm
J=1,...n k#j
J#do

and, form =1,2,

[x(t77Dy) [a(Da)(Zmw) £wr - - wy] ||

< [X(t_UDm)a(Dx)(me)ﬂ:} [Xl(t_UD:v)wjo] . H X(t_UDZ)wj
(B.2.24b) 7 L
FEO) (s (1) e + [ Dews () 2 (Z||x“w1||L+t||w1||L)Huwjnmo

+ VO (Zgw) e () e D Hllwk\lellelle-

j:17':'7n k#j
J#jo
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Proof. The inequalities of the statement mainly follows from @ . In fact, by decomposing
each factor w; appearing in the first norm in the right hand sides of (B.2.20)) as in , and
then using the following inequality, for T' € {Q, Z,,,,m = 1,2} and wy, either equal to wy or to
X(t_UDz)wk:,

[X(t77Da)a(Dy)(Tw)s] [T @ [(1 =)t Da)uwy]

o L
SENOICw)alt, Mz TT lwwllos g e,
k 11 N
k#j

with N(s) as large as we want as long as s > 0, which is obtained from 2|) together with
the L? — L® and L> — L* continuity of operator x(¢t~°D,), we obtain 1)

On the other hand, if the product in the left hand side of is localized in frequencies by
means of operator x(t~?D,), so it is for the product in the first norm of the same inequalities.
Inequalities are then derived by bounding these L norms by means lemma |B.2.2| where
the role of w; is here played by wj,, for some fixed jo € {1,...,n}. O

The following two lemmas are stated and proved in view of lemma in which we recover a
first non-sharp estimate on the L norm of the Klein-Gordon component when one Klainerman
vector field is acting on it and its frequencies are less or equal than ¢, for some small ¢ > 0.
This estimate will be successively refined in lemma

Lemma B.2.6. Let x € C°(R?), 0 > 0 small, and w = w(t,z) such that, if w(t, z) := tw(t, tx),
OpY (x(ho&))Lrw(t, ) € LA(R?) for any |u| < 1. Then

(B.2.25) IX(t7 Da)w(t, )| o S P Z 10D} (X (h?E)L @ (L, )| 2
|1|=0

with 8> 0 small, 3 — 0 as 0 — 0.

Proof. Since
X7 Dy)w(t,y) =t~ 0py (x(h7€))w(t, )| =,

the goal is to prove that

(B.2.26) 0Py (x(h7E))w(t, )| oo S h P Z 10Dy (X (h7&)) LHw(t, )| 2 ,
|u|=0

for a small 8> 0, 8 — 0 as 0 — 0. So let wX := Op¥(x(h?&))w and take x; € C§°(R?) equal to
1 on the support of ¥, so that

Opj, (x(h7€))w = Opy (x1(h7€))wX

For a v € C§° (R?), equal to 1 in a neighbourhood of the origin and with sufficiently small
support, we consider the following decomposition

o (+(“E L (g + on (11 - ) (“EE

v Jahe))ix
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and immediately observe that, from inequality (3.2.17h]),

o (0= (") g

After lemma [1.2.38| there exists a family of smooth cut-off functions 6, (x) such that equality
(1.2.67) holds. Then, if we also consider a new cut-off function y2 equal to 1 on the support of
x1 and a small o1 > o, by symbolic calculus and remark [1.2.22| we derive that for any N € N

o (+ (“ ) w09) = tutaOn a7 N0 (3 (“ 1 ) o))

+ Opj (roo (@, €)) 0 + O () Op}; (rag (x, €) )X

with 7o, 7L, € RV S1 U(<$_5,E(§)>_1). It is enough to take N = 1 to have, by proposition [1.2.37
27
that

1
SHP DT 0Py (x (h7€) LPaX (L, ) | 2.
Loo
|1u[=0

10D} (roa)@X (¢, )| oo + (108 () O} (rag )X (t, )| zoe < A7 TX(E, )l 2
As function ¢(x) := /1 — |z|? is well defined on the support of ), we are allowed to to write the
following:

on()0mi a7 )0 (3“2 ) ) ¥e )|
= [eteonmrontanm enoni (+ (L) o))
<ot oy [etenmont (+ (“EE ) wor)a ||+ 10wtz o

for a new ro € AV S1 A(i\/%@)fl). This latter 7o, comes out from the commutation between
3

e%‘i’ﬁh(:c) and Opj’ (x2(h?'€)), whose symbol is computed using (1.2.18) until a large enough
order M. We notice that we gain a factor hl®l(?1=9) at each order of the mentioned asymptotic
development as o1 > 0. Moreover, those terms write in terms of the derivatives of yo and hence

vanish on the support of yi. By proposition and remark [1.2.22] we then deduce that
the composition of the mentioned commutator with Op”,“l”( (m \pf( ))Xl(h%)) is an operator of

symbol ro, with IV as large as we want.

Using the classical Sobolev injection, symbolic calculus and lemma [3.2.16| we find that

Op} (x2(h™€) [e”eh(x)Op’: (+ (“’” - p'(’f)) m(h"f))@x}

_ i i
< Jlogh | (¢ j[eh% vt (+ (1 ) )| LZ]
< lloghl | l@(t. ||Lz+zh 1 (& + djola)0 <x>)0p;';(v(“fﬁ/(%xl(h“s))wx }
< loghl | [Tt s+ 5 3 ||0p;f<xl<h%>>m><<t,~>||L2] -

L |n]=0

Finally, commutating £ with Op}’(x(h°¢)) defining wX, and reminding that x; = 1 on the
support of x, we obtain

1
10D} (x (€)X (¢, )|z < B Y 10D} (x(h7€)) L (¢t ) | 2,

| 4|=0
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for every t € [1,T], and hence (B.2.26]). O

Lemma B.2.7. Let I be a multi-index of length j, with j = 1,2, and
(B.2.27)

V) = (M)~ Y / FEBL (L (€ )i, (n)dedn,

J17]26{+7

with B(ljl,j2,+) given by (2.2.42) with j3 =+ and k = 1. Then there exists a constant C > 0 such
that, for any x € C§°(R?), o > 0 small, and every t € [1,T],

1
(B.2.28)  |[x(t 7 Dg) (v = (T0)_) (¢, ) || oo < 3 [x(t7Dg)(Tv)—(t,-)|| oo + CBet™ .
Moreover, for every m = 1,2, t € [1,T],
(B.2.29) X(E0 D) Zn (0NF = (TT0) ) (1, )| . < C(A + B)B2>+ g

Proof. We first notice that, after definition (B.2.27) and inequalities (A.15)), (1.1.10)), we have

the following explicit expression:
(B.2.30)

ol N (ly) = _% [(DeT"0)(D1u) — (D1 v)(Dyw) + Dy[(D0) Dyu) — (Dy) [(T0) D]

From the above equality together with lemma with L = L and wy = (I'Mv)4, and (T.1.5)),
(1.1.10), we deduce that there exists some y; € C§°(R?), equal to 1 on the support of x, and
s > 0 sufficiently large such that

(B.2.31)

X (™7 D) ("M =) ()]

1
St7 Y a7 D) (T 0)e (8, NI D) R u] (8, ) || oo (T ) () 2l ue (8 ) L e
n=0

1
S | bt D) (M) (b, )]t Do) Rius] (¢, )| oo + B2,
©n=0

where the latter inequality follows from after a-priori energy estimates (1.1.11c]), (1.1.11d)). Our
aim is to truncate factor (I''v)s in the above right hand side rather with the same operator
x(t~?D,) appearing on the left hand side. We hence proceed by picking some x > 1 and
decomposing x(t77Dy)R{us as

(B.2.32) Xt Dg)RYur = x(#"Dy)Rius + (1 — x)(t"Dy)x(t77 Dy)RY u,

noticing that, as x(¢"¢) is supported for very small frequencies |£| < ¢~%, by Sobolev injection
we have that

X (" D) RY vt (£, )| oo S " [lus (¢, ) 2

Consequently, using the L2 — L® continuity of x1 (¢~ D) along with a-priori estimates (1.1.11d),
(1.1.11d)), we have that for any for p = 0,1

D2 (t77 D) (P0) (8, ) (t" D) R s (8 ) || oo S 177D 0) (8 ( Mz llus(t, )l 2

< CBet™ o2 JH
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Choosing k =140 + % we deduce from (B.2.32|) and the above inequality that

(B.2:33) || xa(t™7Da) (T o)« (t, )x(t™7 D) R s (¢, ) | o

S a7 D) (T )£ (8, )](1 = X) (#* Da)x(t77 Do) R us (¢, + CBet™,

M e
We then decompose (I'Yv)+ in frequencies using the wished operator x(¢t=°D,). In order to
estimate the L norm of

[(1 = )7 Da)xa (877 Dy ) (T 0)£] (1 = x) (8" D) x (¢~ Dy )R

we first commute I'/ to operator Dy + (D) (see (2.1.15b)) and successively look at it as a linear
combination of derivations of the form xataagaf, with 1 < |a|+a < 2,1 < |B]+b < 2.
By commutating % to (1 — x)(t77D,)x1(t~? D), multiplying it against the wave factor, and
successively combining the classical Sobolev injection with inequality , we find that

(B-2.34) (1 —x)(f"D )X1(f"D )(T0) (¢, )] (1 = ) (t"Da)x (¢ Do) R u(t,
SN (low(t,as + 1Dt )l + | Dfvs(t, ) )

<D0 [ (1 =) D)X (T D) R
1<al+a<2
|n|=0,1

Using system ([2.1.2) with |I| = 0, (B.1.4c) with s = 1, (B.1.6a]) and a-priori estimates, it is

straightforward to check that

M g

(B.2.35) lox(t, )l zs + 1D (¢, )| e + 1DFvs(t, )| e < CBets.
Also,
(B.2.36) || (1 = X) (" Do) x (t7 D) R ut] oo St us(t, )|z < CBetoto+s,

and for |a| € {1,2} we have that
(B.2.37) (1 = X) (" D)X (" Da)Rfus | o < B2,

In fact, when || = 1 this can be proved by commutating z® with (1 — x)(t*D,)x(t~?D,), using
that

@y (1= X)EDX(ETD,)] = —it"(0,0) (E*Dy) + it 7 (@)t Ds)s m=1,2,

is bounded from L? to L° uniformly in ¢, and together with estimates (1.1.11d)), (B.1.16a)), and
the following inequality

[[(1 =) Da)x(t77 D) [ Rius] (¢, )| oo

1 12 us(t e + tlus(t )l + e NDw(t )22 |
|n|=1

which is obtained by writing
(1- X)(tKDaz)X(t_aDm>$anf
= t"X1(t"Da)X(t™7 Dz )| De|RY + t"X1(t" Do )X(t™7 Do )[| Do, 2]R
1 D,
2i | Dy

=t"X1(t"Dy)x(t~7Dy)RY [a:n\D | —tD, + —

1 D,

t"x1(t" D) x(t " °D,)RY |tD,, —
R DE DR (1D, - 3"

]m Lt T (5 D) x (£ Dy )Opl[€]0n (€116 )

—it"X1(t"Dy)x (77 D) R, RY
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with (&) := (1 — x)(€)|¢]7! and using relation (3.2.12a) with w = u+. The proof for |a| = 2 is
analogous. It is based on the commutation of ® with (1 — x)(t"D,)x(t~? D) (the commutator
is here a L? — L bounded operator with norm O(#*)), on the fact that we can rewrite (1 —

X)(t* D)X (t77 Dy)z°R) making appear (z|Dy| — tDy + o gzl)a by considering X2(&) := (1 —

x)(€)]€]7? instead of previous Y1, and use relation (3.2.12a)). Doing so we derive the following
inequality

(1 = X)(#"Dy)x (77 D) [z R us | (£,)]|

2
< 2 Z |1 ZFus(t, )2 + Z 2~ W‘HZ“ui( Wer + Z [|a* NLy (t, )|z | < C'Bgth"'Q"“‘*‘g7
|pnl=2 |ul<1 |pnl=1

last estimate following from a-priori estimates, (B.1.16a)) and (B.1.31)). Summing up (B.2.35]),
(B.2.36)), (B.2.37)), together with the previous choice of k and the fact that in (B.2.34) N(s) > 6

if s > 0 is sufficiently large, we deduce that
(B.2.38)

111 =)t~ Da)xa (t™7 D) (D) £ (¢, )] (1 = x) (1" D)X (¢ Do )R u (1

HLOO < CBet 3.

Therefore, from (B.2.31)), (B.2.33)),(B.2.38)), and the uniform continuity on L* of x(¢t~7D,), we
find that

1
(D) (0" =0l (1) e S S8 D) (CT0) (8, )l oe | RE U (8, ) | o + CBet ™,
n=0
and as ¢ is small and g9 < (24)7!, from (1.1.11a)) we obtain (B.2.28).
In order to prove (B.2.29)) we apply Z,, to equality (B.2.30) and apply the Leibniz rule. As

(B239) [ZmaDt] - _Dm7 [ZmaDl] — _6m1Dt7 [Zma <Dm>] - _Dm<Dx>_1Dt7

with é,,1 the Kronecker delta, we find that

(B.2.40)
2ix(t™7 D) Zm (0" =0T

=x(t7°D,) [(thmrf v)(D1u) — (D1 Zp I 0)(Dyw) + D1[(Zn I 0) (Dyw)] — (D) [(Zm T v)(Dyu))]
+ (D T10) (D1 Zpu) — (DT 0)(Dy Zu) + D1 [(TT0) (D Zpu)] — (D) (T 0) (D1 Z,mu)]

— (D TT0) (D) + 81 (DT 0) (Dytt) — 8,1 Dy [(TH0) (Dy)] + %Dt[(FIU)(Dlu)]
b)

— 01 (D) (Dyu) + (DT 0) (D) — 811 D1 [(T0)(Dyr)] + 61 (D) (T 0) (Dyur)] |

The L? norm of all products in the above second, fourth and fifth line, i.e. those in which Z,, is
not acting on the wave component wu, is estimated by

(B.2.41) Zt” 1(ZnT ) (8 )| 2 + 1T 0) 2 (8, ) 22) (IRYus(t, )z + [ Deus(t, )| z)

8
< CABth_%+70+”,

after inequality (B.1.5b]) with s = 0 and a-priori estimates. The L? norm of products appearing in
the second line are, instead, estimated by using (1.1.10])) and (B.2.24b) with L = L?, Tw = Z,,u,
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s > 0 sufficiently large so that N(s) > 2. It is hence bounded by
t7 |x (D) (T 0) (b, ) || oo 1(Zmu) < (E, ) 2

1
72 (D I (02t e + ) () 2 ) (e ) + | Detie (8 ) )

|u]=0

03— j+02

)

where the latter estimate is obtained using the fact that y(¢=?D,) is a bounded operator from L?
to L> with norm O(t7), together with (B.1.5a)), (B.1.17)) and a-priori estimates. That concludes,

together with (B.2.41)), the proof of (B.2.29)) and of the statement. O

Lemma B.2.8. There exists a constant C > 0 such that, for any p € N, x € C5°(R?), equal to
1 in a neighbourhood of the origin, o > 0 small, and every t € [1,T],

4
(B.2.42) > X T D)Vt ) [ oee < CBet TS
|7|=1

with B > 0 small such that 8 — 0 as o — 0.

Proof. Since x(t7?D,) is a bounded operator from L* to H”* with norm O(t°?), for any
p € N, it is enough to prove that the L> norm of x(t=?D,)V!(t,-) is bounded by the right
hand side of . Moreover, as this latter inequality is automatically satisfied when I’
is a spatial derivative after a-priori estimate and the fact that operator x(t77D,) is
uniformly bounded on L, for the rest of the proof we will assume that I' € {Q, Z;,j = 1,2}
is a Klainerman vector field. We also warn the reader that, throughout the proof, C and § will
denote some positive constants that may change line after line, with 5 — 0 as ¢ — 0.

Instead of proving the result of the statement directly on x (¢t =7 D, )vi we do it for x (¢~ D, )v! N,
where v/"¥' has been introduced in (B.2.27) and is considered here for |[I| = 1 and I'¥ =T. In

fact, by
(B.2.43) X7 Da)o” (£, )| oo < 2]|X(E T D)o N ()| oo + CBet ™.

The advantage of dealing with this new function is related to the fact that it is solution to a
half Klein-Gordon equation with a more suitable non-linearity (see (B.2.44))) than the equation
satisfied by vL. In fact, it is a computation to show that from definition (B.2.27)

(B.2.44) (D + (D)o M (¢, ) = N,
where
(B.2.45) NL =PVt 2) + QB (v, Dyul) + GY¥(ve, Dus),

Glfg(vi,Dui) = G1(v,0u) with G; given by (1.1.16)), and

I NF B {
(B.2.46) ;. (t’x)__74(27r)2

<y / B, 1y (€m) [TTNLg (€ = n)igy (n) = vl (€ = m)NLu(n) | dean,
J1,J2€{+,—}
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with B(lj1 jart) given by (2.2.42) when j3 = + and k = 1. After (B.2.27) and (A.15|) it appears

that r,ﬁ’gNF has the following nice explicit expression
i
(B.2.47) ey = -3 (T NLyg) Diu — (D17 w)NLy, + D1 [(Tv) NL,]] .

Using lemma and relation (3.2.8) with w = v/'NF, and reminding that |tw(t,t-)||2 =
|lw(t, )| 12, we find the following

(B2.48)  [|x(t =" Do)o" M (¢, )]| o

L2’

1 2
SN (D) 2R N ()| + D>t HX(f”Dx)[%NLibNF] (t, ')‘
Iu=0 =1

From equality (B.2.30]), along with (1.1.5), (1.1.10]), and a-priori estimates ((1.1.11a}), (1.1.11d)),

we immediately see that

[x (=7 D) (0" = o) (8, ) || o S 7ML )2 (Jus(t ) | e + [Raus (¢, )| 2oo)
< CABe t_5+7+",

(B.2.49)

and as 0,0y < 1 are small

(B2.50) (7 D)o Mt )| o < (Xt D)ol (8] o + (7 Do) (@M = 0D ()] e

92
< CBetz.

Moreover, from (B.2.29) and a-priori estimate ((1.1.11d|) we have that, for every m = 1,2, t €
(1,77,

(B.2.51) X (=7 D2 Zot" N (2,2 < CBet?

v HL2

Finally, from (B.2.47)), (1.1.5), (1.1.10)), (B.1.10bf), (B.1.26a)) and a-priori estimates, we derive
that

X7 D) [ ()| S T NLgg (£ )2 (Juse(t, ) [z + [Rawe (8, )] poc)
L

T

<D:c>

(B.2.52) —|—Zt"(||x v (i + |t (t,)

) Iz o,
LOO
< C(A+ B)Bszt?,
while from (B.1.5a)) with s =0, (B.1.10b|) and a-priori estimates
|x(t77D2) [2,Q8 (v D) | (8)| , + |77 D2) [2,65% (v, Dus) | 2.1)
S (Moot oo+
< C(A + B)Bet®.

Therefore, from (B.2.45)) we deduce that
(B.2.53) I (t77 D) [ NI (2, ) | 2 < C(A + B) B,

L2

D
ivi(t, )

D,

) kel + 1D, 12)

so injecting (B.2.50), (B.2.51)), (B.2.53)) into (B.2.48), and summing it up with (B.2.43), we
obtain the result of the statement. O
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As done for the Klein-Gordon component in the above lemma, we also derive an estimate for
the uniform norm of the wave component when a Klainerman vector field acts on it and its

frequencies less or equal than t7 (see lemma [B.2.10). We first need the following result.

Lemma B.2.9. Let I € Z, index J be such that T =T, and u”(t,z) := t(Tu)_(t,tx). There
exists a constant C > 0 such that, for any 6y, x € C(R?), o > 0, and every t € [1,T],

(B.2.54a) @ (¢, )| 2 < CBet?,

(B.2.54b) 1037 (8, )| 2 < CBet

(B.2.54c) M@ (£, )|, < CBet?,

(B.2.54d) 80 (2)OpE (x (h7 €)M (1, )| ;2 < CBet 3

Proof. We warn the reader that, throughout the proof, C will denote a positive constant that
may change line after line. We also recall that

[Di + (Dg)](Tw)—(t,x) = T NLy(t, z).
Estimates (B.2.54a)) and (B.2.54b|) are straightforward after (1.1.11d|) and the fact that
[ (¢, )z = 1(Cu) (8 )z, (192087 (& )22 = [(QTw)- (¢, -] 2.

From (3.2.6)) with w = (I'u)_ and f = I'NL,,, estimates ({1.1.11d]), (B.1.26b|), along with the fact
that dy < 01 (e.g. 202 < d1), and (A + B)eg < 1, we obtain (B.2.54c). By (3.2.6) we also derive
that, for any n =1, 2,

1
160 (2)Op} (x(h7E)) MM (£, ) || 12 S 192 (Tw) (&, g2 + Y 19 (Tu) (¢, )| 2
(B.2.55) 1=0

+ |60 (3)xt™ Do)l L VL2, -

The first two norms in the above right hand side are controlled by E(t; W)/2 and are hence
[

bounded by CBet? . By commutating z, with x(t~7D,)f2, and using that 90(%)30” = tGS(%),

with 6f(z) := 00(2)zy, we deduce that

Jo0(2)x(eo D10 N0, S5 Il DTN
u=0

for some new y1 € C§°(R?). On the one hand, using (B.1.20b), (B.1.6a)) with s = 0 and a-priori
estimates we derive that

(B.2.56)
Sg
tITNLwllz2 S tlox @, )z ((T0) 2@ ) + o )llm + [Deve(t, )l p2) S CBetz.

On the other hand, when we compute QI'NL,, we find among the out-coming quadratic terms
the following ones

Qo (Q)x, D1(Tv)x) and Qg ((I'v)x, D1(v)1),

which we estimate in the L? norm (when truncated for frequencies less or equal than t7) by
means of (B.2.24a)) with L = L? Tw = Qu, and s > 0 large enough to have N(s) > 3. From
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(B.1.17), (B.2.42) and a-priori estimates, we obtain that

HX (t77Dz)Qy () +, D1(T'v)+ HL2 + HX (t7°D )QO ((Tv) 4, D1(Q) )HL2

S M7 D) (Qu) (8 )| oo [|(T0) £ (8, ) e + Z t2 o (¢, ) s ll2# (To) (2, ) |

|k|=0
§1+69
2

< CB% AT

with 8 > 0 small such that § — 0 as ¢ — 0. All remaining quadratic contributions to QI'NL,,
are estimated with

12T 0) (8, ) e lo (& )l 2o + 1(Q0)£(E5 )22 (o @ )l e + [ Do, )l Loe)
Flox(t ) [ zree (1Q0)£(E ) + [1De(Q0)£ ()l 22)

and are hence bounded by C’(A—i—B)Bs%FH%1 after (B.1.6b)), (B.1.6c|) and the a-priori estimates.
This finally implies that

61+69
2

t || x(t~7Dy) QT NLy( < C(A+ B)Be*t"*

R

which, together with (B.2.56) and the fact that 8+ @ < %0, as 0o K 01 < §p and B > 0 is as
small as we want provided that o is small, gives

Heo(f) Nt~ D) QLT NL] (¢, .)HL2 < CBet?.
O

Lemma B.2.10. There exists a constant C' > 0 such that, for any p € N, x € CSO(RQ) equal to
1 in a neighbourhood of the origin, o > 0 small, and every t € [1,T],

1
(B.2.57) ST ST INETD)RIU (4, ) e < C(A+ B)et—3+0+ 3
|J|=1 |p[=0

for a small 3 >0, 8—0 as o — 0.

Proof. We warn the reader that, throughout the proof, C' and g will denote two positive constants
that may change line after line, with 8 — 0 as 0 — 0. Moreover, since x(t77D,) is a bounded
operator from L™ to H”* with norm O(t°?), for any p € N, we can reduce to prove that the
L*> norm of x(t77D,)R*U’(t,-) is bounded by the right hand side of (B.2.57). We observe
that this estimate is automatically satisfied when J is such that T/ is a spatial derivative, as a
consequence of a-priori estimate (T.1.11a]). We therefore assume that I'/ is one of the Klainerman
vector fields 2, Z,,, for m € {1,2}.

z

7, and

Introducing u” (t, ) := tu’ (t, tx) passing to the semiclassical setting (t — t, x +—
h :=1/t), and reminding that u+ = —u’, inequality (B.2.57) becomes

(B.2.58) Z HOph< (h€)(elel ) ) (t,-)HLm < C(A+ B)eh™ 55 %,

|u|=0

We consider a Littlewood-Paley decomposition such that

(B.2.59) X(h7€) = xX(h™¢) +Z (1 - V)RV (27X (7€),
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for some suitably supported X € C§°(R?), ¢ € C§°(R?\ {0}), and immediately observe that the
above sum is restricted to indices k such that A < 2% < h=7. By the classical Sobolev injection,
the uniform continuity of Opj’(£[¢|™) on L?, and a-priori estimate (L.1.11d), we derive that for
any |u| <1, every t € [1,T],

|Op} (X(R 1) ELEl™))a” (8, )| oo = (D) OPR((ELEI) Y (2, )| e

(B.2.60) J -
Slul(t, )|l < CBets.

If we concisely denote by ¢ (§) the k-th addend in decomposition (B.2.59) and introduce two
smooth cut-off functions yg, v, with xo radial and equal to 1 on the support of ¢, v with
sufficiently small support, we can write

O (9x(€) €le 1) 7 = O (v (21512 ) u(€) elel ) ) Okt (xo (h€))i”
op (1= (2= S oetepieiel ) ov (o)

On the one hand, after proposition [1.2.30 the fact that 2 < h™7, a-priori estimate (I.1.11d)),
and the uniform L? continuity of Op}’(xo(h?€)), we have that for any |u| < 1

@201) [0 (+(555=5 Yo el ) 0w Cuathre .|

< b (O (xo (W €)T (8, )12 + 180() 20O (xo (7€) (¢, )12

S BB (lul (8, ) 2 + 1907 (¢, )| 12) < CBeh™27 P~

~

On the other hand, using that (1—7v)(z) = ’y{ (2)z;, where 'y{(z) := (1—7)(2)zj|2| 72 is such that
10291 (2)] < (2)7'71°1, we derive from (T.2.52B)), the commutation between M with Op¥ (xo(h?¢)),
and lemma that

Jov (1) (ﬁf/';f)@(«5)(515\—1)“)Opm(haf))w

LOO

)
Sh? Z 2)2) MY OpY (xo (h7€)i (¢, )| 12 < CBet? 3
v,lv|=0

Combining this estimate with (B.2.61]) we deduce that

91

10 (6x(©)(Elel™)") & (¢ )= < C(A+ B)eh™2 77,

for any |u| < 1, and hence (B.2.58) after (B.2.59), (B.2.60), up to a further loss |logh|, as a
consequence of the fact that the sum in (B.2.59) is finite and taken over indices k£ such that

logh <k <logh™!. O

Lemma B.2.11. There exists a positive constant C > 0 such that, for any x € CSO(RQ) equal
to 1 in a neighbourhood of the origin, o > 0, and every t € [1,T],

1
(B.2.62) >

||=0

)
< C’Bet5+71,
LOO

K7D, [y (55 ) (o))

with 8> 0 small, 8 — 0 as 0 — 0.
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Proof. We warn the reader that, throughout the proof, C' and 8 will denote two positive constants
that may change line after line, with § — 0 as ¢ — 0. As I'vy = —T'v_, it is enough to prove
the statement for I'v_.

If T is a spatial derivative, estimate (B.2.62|) is just consequence of the uniform continuity of
x(t77D,) on L*™ and of (B.1.10b). We then assume that I" € {Q, Z,,, m = 1,2} is a Klainerman
vector field. First of all, we observe that by (B.1.9b) with w = (I'v)— and f = I'NLg, along

with the classical Sobolev injection,

(B.2.63)
1
D,
uZo xj<<D“>

From equality
3, together wit

) o)t

1
S 125 (T0)= () |+ (Do) (¢, )2+ [T NLgg (8, ) .
n=0

oo

B.1.20al) and lemma [B.2.4| with L = L*° and s > 0 large enough so that N(s) >

| estimates (LL11), (B.L.5a), (B.L5b), (B.1.5d), (B.L6a), (B.1.10a), (B.1.11),

(B.2.42)), and (B.2.57)), we get that

(B.2.64)

ITNLyg (¢, )| L=

1

< (Ixtt

pn=0

D) (T0) £ (t, )l [REus (8, )|z ) + ot )z X7 Do) (Cu)£(E )] oo

+ [lox (@, )l e x Z (IR us (t, )20 + [[DeR¥us(t, )| rvoe)

+177 (Jox(t,

|u|=0
1

e + 1D (b)) (D0

lual,|v]=0

it )2

:wm(@:')”um, )

(S et s+ e 6, ) Qs s+ D, )

[1|=0

< CABe2t~3+6+%

Moreover, as

(B.2.65) ijQlo(g((FU)j:,Dlu:t)HLoos >

(B.2.66)

et )] 5 3
|14[=0

IRY v (2, )| 7200
Loo

) (o) ()

Lw(llﬂi( Wrzee + | Deus(t, ) 1o ) ,

(Yot

and by lemma with L = L*, w = u, and s > 0 large enough so that N(s) > 3,

1
i@ we, i) 5>

(B.2.67)
+¢73

we derive that
(B.2.68)

|2, NLg (8, )| o < CAet™2

DT

|12|=0 " (é;)ﬂvi(t, )

1
S (o (b0 o + el (8, )2 ) (e () e + 1D () 2)

|pl,v=0

1
§1+52

)“(ru),(t, I 4o+ BB it

Lj

(D)

|| ,v=0
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as follows using (B.1.5a)), (B.1.5b)) with s = 1, (B.1.10a)), (B.1.10b)),(B.1.27a}), (B.2.57) and a-
priori estimates. By injecting the above inequality into (B.2.63) and using the fact that ¢y <
(2CA)~t, we initially obtain that

<Dx> (Tw)_(t,") . < CBet'ts .

If we take any smooth cut-off function y and use equality (B.1.9b)), instead of (B.2.63)) we find
that

(B.2.69) e (Do) (8, 22w + ||

(B.2.70)
1
o Dm I v < (Tw . 1 —o V) ) .
MZ:O X D) (<Dx>) (To)-(t,)] SN2+ D)) ()]
1
+ 3| D [N 6]

pn=0

where now

[t D) [T Ny (8, )] [ e S DN Ly (8, e < C(A + B) B35,

as follows injecting (B.2.69) into (B.2.68]). Therefore, from (B.2.64]), lemma and a-priori
estimate (|1.1.11d)) with £ = 2, we find that
< C'Bet%Jr%Q.

(B2.71)  x(t77 D) [25(T0) - (1,)] | o + HWD“ [ <§i> (Fo)-{t ‘ﬂ e

Finally, by means of lemma [B.2.2] with L = L>, wy = z(I'v)+, and s > 0 such that N(s) > 2
we derive that for any x € C°(R?) there is some x; € C§°(IR?) such that

Hx(t“’Dx)ijlgg((Fv)i, Dyus) HLOO
1

S 2

|l ,v=0

X1(t=°Dy) [xj (é;)ﬂ(ﬂ))_(t, .)}

IX(t™7 Da)RYus (£, )| 200
LOO

[ (E, ) -

1
+Y e ng(rv)i(t )\
n=0
Then, combining such inequality with (B.2.66)), (B.2.67)), together with (B.1.17)), (B.2.71)), and
all the other inequalities to which we already referred before, from (B.1.20a}) we find that
X(t7 Dy) [2;T NLg (¢, )] || oo < C(A+ B)*t*,
which injected into (B.2.70) finally implies, together with (L.1.11d) with k£ = 2, lemma [B.2.8]
and (|B.2.64]), the wished estimate (B.2.62)). O

Making use of lemmas |B.2.8| and |B.2.11|, estimate (B.2.52)) can be improved of a factor t~3. This
improvement, that will be useful to derive ([B.4.30)), is showed in the following lemma.

Lemma B.2.12. Let I be a multi-index of length 1 and rkg T pe given by m There exists

a constant C' > 0 such that, for any p € N, x € C(R?), equal to 1 in a neighbourhood of the
origin, o > 0 small, j = 1,2, and every t € [1,T],

5+51

(B.2.72) Hx (t™7D,) [xjr,ﬁgNF} (t, -)HL < C(A+ B)AB3 2+ 72

with 8> 0 small, 8 — 0 as 0 — 0.
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Proof. Let us remind the explicit expression (B.2.47) of r,ﬁ’NF and consider the cubic term

2;TINLyy(Dyu). Reminding (I.1.5) and applying lemma [B.2.2{ with L = L? and s > 0 suf-
ficiently large so that N(s) > 2, together with (B.1.26a)) and a-priori estimates, we derive that
there is some y; € C§°(R?) such that

(B.2.73)
[X(t77Dy) [0 NLig (Dr)] (¢, )] 12
S it Dy) [T NLig] (¢,-) || 2 Raua (8, )| oo + 72|20 NLyg (1, )| 2l (2, ) | 120

< CAet™ |xa(t7Dy) [ NLL,] (8, )| 0 + C(A+ B)Be?t 1.

)" HL2

Then, recalling (B.1.20al) and using again lemma with L = L%, w; = (I'v)x, and s as

before, in order to estimate the contribution coming from the first quadratic term in the right
hand side of (B.1.20a]), we find that there is a new ya € C§°(R?) such that

e (#77Da) [ NLig ] (2,-)

)" HL2
1
S 2

(D)o (55) To] )
IuI—O ’

o3 [

p|=0

< C(A+ B)B2P+"5"

Lm”ui( W + 2|z (To)£(t, )l 2 lus ¢, ) e

J(55) (0| 0w+ s e+ 1Drase, 1)

where the latter estimate is obtained from (B.1.5a)) with s = 0, (B.1.10bf), (B.1.17) with & = 1,
(B.2.62) and a-priori estimates. This implies, combined with (B.2.73), that

5+51

X7 D2) [y NLy (Dra)] (8,92 < C(A+ BYABER 35+

and from (B.2.47)), (B.1.10b) and a-priori estimates,

Hx(t_"Dm) [:L‘jrégNF} (t, )’ L < HX(t_JDa:) [xjNLig(Dlu)] (t

+Zt” (lafs e o+

< C(A+ B)ABS3 2P+

7')HL2

iy

)va Ieellos (6, ) o
.

5+51

which concludes the proof of the statement. O

Lemma B.2.13. Let I be a multi-index of length 2. There exists a constant C > 0 such that,
for every j =1,2, t € [1,T],

§1+69
2

(B.2.74) |20 Ly (1, )| ;2 < C(A + B)Be2ta+0+

with 8 >0 small, B — 0 as o — 0.

Proof. We remind the reader about (B.1.23)). Instead of using (B.1.24]), which was obtained by

Sobolev injection, we apply lemma [B.2.4| with L = L?, Tw = I'2u, s > 0 sufficiently large so
that N(s) > 3, and exploit the fact that we have an estimate of the H”> norm of Dju!? when
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truncated for frequencies less or equal than ¢ (see lemma [B.2.10|). Therefore, for (11, I2) € I(1)
such |I;| = |I2] = 1 we obtain that

[l (v, ue) ],

$3 o]

(Do) (2, )|

H?2,00

+ 173 (us(t, )l ms + 1D (t, )| i) Z\Ix”v \|L2+Ztllw“v Mz
|u|=0 |ul=0
+d9

< C(A+ B)Bt3+H+7572,

last estimate following from lemma [B.2.10| together with (B.1.5a)), (B.1.17) with & = 1, (B.1.28)),
a-priori estimates, and the fact that d1,do < 1 are small. Consequently, from the following
inequality

l2j T Ny (2, ) |2 S Z||R1Ui Mz Y Nl (T70) (¢, )] 2
|71<2
©n=0,1
+ Z x]( ) va(t, )|kl + Y (k) + 1 Dsd (2, 2) |
lul=0 L= 12
I
DR S R IOl
[11|=|12|=1
together with (B.1.10b)), (B.1.5a)) with s =0, (B.1.7), and (B.1.17)) with £ = 1, we finally derive
(B.2.74). 0

Lemma B.2.14. Let us fir s € N. There exists a constant C' > 0 such that, if we assume that
a-priori estimates (1.1.11)) are satisfied in some interval [1,T], for a fized T > 1, with n > s+ 2,
then we have, for any x € C'SO(RQ) and o > 0 small,

(B.2.75a) 3¢, )|z < CBet3,
(B.2.75b) > 0Dy (x(h7 €))L (L, )| 2 < CBet'?,
=1
for every t € [1,T].
Proof. We warn the reader that, throughout the proof, C' and 8 will denote two positive constants
that may change line after line, with S > 0 is small as long as ¢ is small.

It is straightforward to check that the H} norm of v is bounded by energy E,(t; W)% whenever

n > s+ 2, after definitions (3.2.2)), (3.1.3)), inequality (3.1.7a)), and a-priori estimates ((1.1.11a]),
(T.1.110).

In order to prove ([B.2.75b]) we first use relation (3.2.9b)) and definition (3.1.3)) to derive that
10P} (X(B7E) Lm0 (¢, M2 S 1ZmV (£, ) Iz + [1X(E D) Zin (0N = v )(, )| 2
+ 1[0t Iz + X E Do) [wmriy 1t )l L2,

with rVF given by (3.1.5)). Using (1.1.5) we can rewrite (3.1.10) and (3.1.11)) similarly to (B.2.30)),
(B.2.47)), as:

(B.2.77) oNF gy = _% (Dy)(Dyu) — (D1v)(Dyu) + Di[vDgu] — (D) Dyal]

(B.2.76)
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and

i
(B.2.78) Thy = 5 [Ny Dy — (D1v) NLy, + D1 (vNLy)]

From (B.2.78) and (|1.1.5)), together with estimates (|1.1.11]) and (B.1.10bj),

(B.2.79)
I Do)yt i 51 (Jlwo 6l + 00| )
) -
o [ 2 + IR 120) 10 Yz + 1V oo V(2]
IV IV i < C(A + B)ABES - bro+ 52
Similarly to ,
(B.2.80)

2ix(t™7 D) Zm (v —v_)
= X(t"7Dx) [(Dthv)(Dlu) — (D1Zm0)(Dyw) + Di[(Zmv)(Diw)] = (Do) [(Zmv) (D1w)]
+ (Dw)(D1Zpu) — (D1v)(DyZmu) + Di[v(DiZpmu)] — (Dg)[v(D1Zpu)]

— (Dmv)(Dlu) + 5m1 (Dtv)(Dtu) — (5m1Dt [v(Dtu)] + g)th[U(Dlu)]
Om1

— 01 (D) (D) + (D1v) (D) — 61 D1[v(Dew)] + 61 (Dg) [v(Dyu)] |

We bound the L? norm of all products in the first line of the above equality by means of lemma
and all the others by the L> norm of the Klein-Gordon factor times the L? norm of the
wave one. In this way we get that, for some new x; € C°(R?) and s > 0 sufficiently large, we
derive that

HX(t_UDx)Zm(UNF —v_)(t,) ”L2
S X1t D) (Zin) (8 )| oo Nl (8 )|z + ¢ (Zi) (8 )| 2 (2, ) | s
+ 7ot ) e ([(Zmuw)£ ()l L2 + [Jus @, )|z + [[Deus(t, )l r2) -
Consequently, using estimates (L.1.11), (B.1.5a) with s =0, and (B.2.42), we obtain that

+51

(B.2.81) ||X(t_”Dx)Zm(vNF v_)(t, )2 < C(A+ B)Be*t™ 1P
which plugged into (B.2.76)), along with (B.2.79)), (B.2.75al) and (1.1.11dJ), gives (B.2.75b)). O

B.3 Last range of estimates

The aim of this section is to show that a-priori estimates also infer a moderate growth
in time of the L?(R?) norm of L%, for |u| = 2, when this function is restricted to frequencies
less or equal than h=7, for ¢ > 0 small. This is proved in lemma Lemmas from to
are intermediate technical results.

Lemma B.3.1. Let us consider vNT introduced in (3.1.3) and v''NF as in (B.2.27) with |I| =1
and T'1 = Z,,, for n € {1,2}. There exists a constant C > 0 such that, for any x € C§°(R?),

o >0 small, and every t € [1,T],

(B.3.1) Xt~ Do) [(Zyv)— — v" N (¢ < C(A+ B)Be

) ” HLQ—
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(B.3.2)  ||x(t7Dy) [2m Za(v™F —v_) (¢, )]|| 12 + X7 Da) [ ((Znv) = — v" M) ] ()| 2

61469

< C(A+ B)Be*Pt7

The same estimates hold true when Z, is replaced with €.

Proof. By comparing equality (B.2.30), with [I| = 1 and I'! = Z,, with (B.2.80) we see that
Xt~ D,) (v N — (Z,v)_) corresponds to the first line in the right hand side of (B.2.80). There-
fore, inequality is automatically satisfied after (B.2.81)), which was obtained by estimating
the right hand side of term by term. In order to prove , let us consider equality
but with x(¢=?D,) replaced with x(t~Dg)z,,. The L? norm of each product in the
second to fourth line is bounded by

1
t"z s

and then by the right hand side of (B.3.2) after (1.1.11)), (B.1.5a)) with s = 0, and (B.1.10b)).
Using lemma with L = L? and s > 0 large enough to have N(s) > 2, we obtain that the

L? norm of products in the first line of (the modified) (B.2.80) is bounded by

. (I(Zmu)x (L2 + [lux @t )l 2 + [1Drus(, )llz2) s

1

2.

H,v=0

xa(t77 D) |

[t (2, )l 2

1

+ > VOt (Zv) (& ) 2l (8, ) e
n=0

for some smooth cut-off x;, and hence by the right hand side of (B.3.2)) after (1.1.11)), (B.1.17)
and (B.2.62) with I' = Z,,,. This concludes the proof of (B.3.2).
When Z,, is replaced with €2, instead of referring to (B.2.80f) one uses that

2iQ (VN —v_) = (D w)(D1u) — (D1Qv)(Dyu) + Dy [(Qw)(Dyu)] — (Dy)[(Qv)(Dyu)]
+ (D) (D1Qu) — (D1v)(DiQu) + Di[v(DQu)] — (Dy)[v(D1u)]
— (Dw)(Dau) + (Dav)(Dyu) — Deo[v(Dyu)] + (Dy)[v(Dau)]

and applies the same argument as above to recover the wished estimates. O

Lemma B.3.2. Let vV be defined as in (3.1.3). There exists a constant C > 0 such that, for
any X € C§°(R?), o > 0 small, m = 1,2,

(B.3.3a) “Opﬁ(x(h"f))[thvNF(t,tw < CBat%Q,

)]HLQ(dz)

(B.3.3b) 1OPE (x(A7€) Lam[t Zno ™ ()]
for every t € [1,T].

Proof. Let us write Z,v™V as follows:

D D
(B34) Zn’UNF — Zn(UNF —U,) + [(va), _,UI,NF] +UI,NF+ n ’UNF + n

_ yNF
O Ty
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with vl"M" given by (B.2.27) with |[I| = 1 and T = Z,. From the fact that |[tw(t,t)||2 =
|lw(t,-)||r2 and estimates (1.1.11]), (3.1.8a]), (B.2.50)),(B.2.81)), (B.3.1]), along with the following
one

HX(t_UDx)Dn<Dx>_1UNF(t7 )2
5
< IX(t™7 Do) Dy (Dy) " o_ (£, )| g2 + [Ix(t 7 De) D (Dy) (v — oMF) (¢, )| 12 < CBet2,

we immediately obtain (B.3.3a)).
From we also derive that

(B.3.5)

10PK (A7) Lanlt Zao ™ (b 4] 2y S 10D (A7) Lo [ 20 (0™ = 02 ) (1 82)] | 2 g
+ (003 (x(h7) em [t((Znv)— — ") (t t2)] | 1240y + |OPK (X(RTE)) Lrm [t (£, £2)] [ 12,4
+ (10D (x(h7€)) Lo [tDn{ D)~ o™ (8, 82) ]| 1o 4

+ [ 0pR (X(h7€) L [tDn{Da) " (v— = 0™ ) ()] || 2 4 -

By relation (3.2.8) with w = v/"¥" and estimates (B.2.50)), (B.2.51)), (B.2.53), it follows that

1OPE (W) L [t VE (1)) || 2 < CBet 3,
while from (3.2.2]) and (B.2.75b|) we have that
0D (X (h7€)) L [t D (Dz) " 0N (t, t2)] || 2 < CBet?.

The remaining L? norms in the right hand side of (B.3.5) are estimated reminding definition
(1.2.68)) of £,, and using the fact that

(B.3.6) [Opy, (x(h7E)) Emltw(t, tx)]l| L2(azy S X7 D) [wmw(t; )2 + X7 Da)w(t, )| -
Therefore, by (B.2.81)) and lemma we derive that

|ODK (A7) L [0 20 (0™ — v ) (1 2] | 2
+[|OPE (X (h7€) L [t((Znv)— — ") (¢, 12)]]] 124y < C(A+ B)Be2P+ 5

while from (3.1.8a), a-priori estimates, together with the following inequality

< $>>y”—(t")

[ (2, )l 2
LOO

HX(t_UDm)[xm( ”L2 < Z t?

w,v=0

< C(A+ B)Be

which follows by (B.2.77)), (1.1.5), (B.1.10bf), (1.1.11b}), (1.1.11c]), we derive

10PE (X (A7E)) £ [tDn (D) " (v — vNF) (1, t2)] || 2 < C(A + B) BT+ 52
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In the following lemma we are going to prove that the product of the semiclassical wave function
@ with the Klein-Gordon one ¥ enjoys a better L? (resp. L) estimate than the one roughly
obtained by taking the L? (resp. L) norm of the former times the L norm of the latter.
Estimates

~~ ~ ~ _9
[t llg> < 110G, )< llatt, )2 < CABe*h™2,

. . . 18
0t )l oo < N0(E oo @t )| Lo < CA%2h7272,

which follows from (B.2.1a), (B.3.8), (B.3.9), can be in fact improved of a factor h'/? (sece
(B.3.7)). This comes from the fact that the main contribution to w is localized around manifold
A, introduced in , whereas v concentrates around Ay, defined in , and these two
manifolds are disjoint.

Agg

Figure B.1: Manifolds Ay, and A,,.

Lemma B.3.3. Let h = t~1, 1,0 be defined in (3.2.2), ao(€) € So,0(1), and by (§) = &; orby () =
&i&k|€| 7Y, with j,k € {1,2}. There exists a constant C > 0 such that, for any x,x1 € C§°(R?),
o >0, and every t € [1,T], we have that

_0ta

(B.3.7a) ||[Opy (x(h7€)ao(€))a(t, )][OpY (x1(h7€)br(€))u(t, )]|| 2 < C(A+ B)Be*hz#=3

544
g2

(B.3.7b)  ||[Op} (x(h7€)ao(£))u(t, )] [Opy (x1 (h7€)b1(€))a(t, )]|| o < C(A+ B)Be*h~
with 8 >0 small, B — 0 as o — 0.

Proof. Before entering in the details of the proof, we warn the reader that C' and 8 denote two
positive constants that may change line after line, with 5 — 0 as 0 — 0. Also, we will denote by
R(t,z) any contribution, in what follows, that satisfies inequalities (B.3.7)), and by x2 a smooth
cut-off function, identically equal to 1 on the support of x1, so that

Opy, (x1(h?§))u = Opy, (x1(h7§))Opy, (x2(h§))u,

assuming that at any time @ can be replaced with Op}’ (x2(h?€))u. Finally, it is useful to remind
that from (3.2.2)), (3.1.15)), (3.1.20b)), (3.1.20c]), and a-priori estimates,

- w )~ _1
(B.3.8) [t ) ggo+r.oe + > llopy (€] DUt gperoe < CAsh™2,
=1
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while by (3.1.3), (3.1.7b) (with 8 < 1 small enough) and a-priori estimates,
(B.3.9) 5t g < CAe,

for every t € [1,T].

First of all, we take v € C§°(R?) equal to 1 in a neighbourhood of the origin and with sufficiently
small support, and define

T (1:2) 1= 09 (3 (Z2E) W7 )an(e) )10 0),

g, (22 1= Opi (1= ) (F 2 a7 ©)) (. 0,

with p(§) := (&), so that

(B.3.10) Opj, (x(h7€)an(§))v = va,, + Vag,
The following estimates hold:

(B.3.11a) [agy (¢, )|z < CAeh™,

Sy

(B.3.11b) g, (£, )| L < CBeh2 ™93

The former one is a straight consequence of proposition [1.2.39| with p = +00 and (B.3.9). On
the other hand, if we write

x—p " 2 e i x—;(g)
(=) (S D)) = > (=20 eyt ()

with 7{(2) := (1 —v)(2)zj]2| 72 such that |8§‘7{(z)] < (2)71 1l and use (1.2.69) with c(z,¢) =
X(h7€)ap(§), we obtain that

(B.3.12)

[oag, (8. ) S Z Vi Joni (5 (") xe ) 2570,

Lo

+ZfHoph (;gf))aj(xw%)ao(@))'ﬁ(t,-)

oo

+ 3 5 viJowi (103 (L) s et o )it

j=1 |a|=2

+ 1Opy (r(x, €))u(t, )| L,

with r» € 1778, U(<%\/Iﬁ(£))_1). Since fy{ vanishes in a neighbourhood of the origin, we derive
27

from inequality (3.2.17h)), equation (3.1.4)) and relation (3.2.8) with w = vV¥, lemmas [B.2.14
B.3.2| and estimate (B.2.79)), that the first sum in the above right hand side is bounded by the

right hand side of (B.3.7b)). The same is true for the above second and third sums after (3.2.17b))
and lemma [B.2.14] and for the above latter L> norm because of proposition [I.2.37 and estimate

(B2.753).
After decomposition (B.3.10) and estimates (B.2.1a)), (B.3.8), and (B.3.11b)), we see that

Opp, (x(h?€)ao(€))0 Opy, (x(h7E)b1(8))u = va,, Opy, (X(h7E)b1(§))u + R(E, ).
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For some suitably supported xo € C§°(R?), ¢ € C§°(R?\ {0}), we also consider the following
decomposition

Opjy (x1(h7€)b1(€))a = Opjy (xo (R €)b1(€))T + Y Oy ((1 = x0) (W™ €)(27"E)x1 (A7€)b1 (€)),
k

and observe that, from proposition and the classical Sobolev injection,
|Op (xo(h™€)b1(€))u(t, ) || 12 + [|Opk (xo (A E)b1 (€))a(t, )| oo S It )]l 2

Combining the above decomposition and estimate with (B.3.11al) and (B.2.1a)) we derive that

(B.3.13) U, OPK (X(h7E)b1(€))T = Y Tn,, OPR (81(€)b1(6))a + R(t, ),
k

where ¢5.(&) := (1 — x0)(h2)(27%¢)x(h€). We can further decompose Op¥ (¢ (€)b1(€))u by
defining
z[¢]

i, (1,2) = Onf (3 (D55 ) anl©n (©) )it ),
i (1) == Opf (1) (D=5 o (e))itr, ),

and observe that

e 6.0, <0 [u Mot 3 I0e) N Op Caao it m]
Hslv]|=0
1_g %1
< CBsh2 "z,
and
ORI T [u Mot 3 1)) Op st >]
p,|v|=0

< CBeh %

as follows by using the following equality

2
rle] - € (2l = €y (2518 =
(1= (D= onteme) = 3 (HE=2) (2 25 ) autepmr o),
j=1
with 'y{(z) = (1 — 9)(2)zj|z] 2, together with (1.2.52) with a = 1, p = 1, and lemma
Then, as the sum over k in the right hand side of (B.3.13)) is actually restricted to indices k such
that h < 28 < b7, the above estimates and (B.3.11a]) imply that

> U, OPY ($(E)b1(€))u = Y Tn,, ik, + R(t, ).
k k

Moreover, using lemma |1.2.38, symbolic calculus and remark |1.2.22} each vy, ﬂf\w in the above
right hand side can be replaced with

9h(x) ~ ~
T2 = 1M (J=* = 1)ujf,
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up to a new remainder R(¢, ). Since |0 (z)(|z|?> — 1)~} < A2 on the support of 0),(x), from
proposition [1.2.36| and estimates (B.2.75a)), (B.3.11a)), we get that

~ —~ _d_
(B.3.14a) |on(@)in, (803K, &), < CB™ 5P 0n(@) (o — DK, (1) oo,
(B.3.14b) [on ey, ()T, 1| < CachPlona ~ 1T, ()l
Then the end of the proof relies on the fact that 0, (z)(|z|? — L)uf, can be expressed in terms

of hMu. In fact, for a fixed N € N and up to some negligible multiplicative constants, we have
from proposition [1.2.21] that

(B.3.15)
ol = )2 [+ (552 ) w6 =2 (e Jor O o) ol ~ 1)
o e? -0 (B=E oo
= |a| qo 2 te} w‘i’_g
+ >0 el (@) (2~ D] 3 |7(5 e ) SO ()| +ra (.9,
|a|=2
with

(B316) r(e.6) = s . [ et / O 00 (@) (12l — D]l o amy (1 — )Nl

la|=N

X (9? [ (wflf/’g p )¢k(§) 1(€ )] |(z+yvg+n)dydzd77dq.

2 Y pop S8 £
2" —1=z-2 ‘€|2 ([¢] — )lé\ (=[¢] — )\€I2’

the first term in the right hand side of (| appears to be linear combination of products
of the form 'y(;ﬁé‘;i )or(&)a(x)bo(§) (x; |£[ ) for some smooth compactly supported function

a(z), and by(€) such that [8%bg(€)] < |€|~12l. From (T.2.52b) and lemma , we hence deduce

that

< CBeh2 %
LOO

Baar)op (o (s O laf - 1)te.)

An explicit computation shows that

h {Hh(x)(\x|2 - 1),7(215)2_5)%(5)61(&)}

1, z|€] — &i
- zl:hﬁ O, 61 () (]2 — 1)]%:(3 N )(xjm ~ 813 ) n(E)b1 (€)

s hy(HEL=E)0, 01 @) 12 — 1)kl )]

with d;; = 1 being the Kronecker delta. One the one hand, since the first contribution to the above
right hand side is still supported for || < 1—ch??, we can multiply and divide it by |z|?>—1 so that

it writes as linear combination of terms of the form h%*"'yl(Zﬁ;g)¢k(§)a(x)b0(§)(xj\§| - &),

for a new ;1 € C§°(R?), and some new a(z),bo(€) with the same properties as the ones we
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considered before. On the other hand, as O¢[¢r(£)b1(€)] is uniformly bounded and supported for
frequencies of size 2, the second term in the above right hand side writes as linear combination
of products of the form hv(;ﬂ% E)gzﬁk(f) (2)bo(€), for some new ¢ € C§°(R? \ {0}). Therefore,

inequality m, proposition [1.2.30, and lemma 1} give that

Ba8)  [0p ({n)oP - 0 (S5 uom(© e

As concerns |af-order terms, for each fixed 2 < |a| < N — 1, we find using (1.2.25)) that they are
given by

< CBeh2 P~%
LOO

h“'v(ﬂf/'z a>8a[ n(@)(j2l* = 1)]0g (x(£)b1(£))
161] N
b e (U8 NG €08 Gk €)),

[B1|+|B2|=|al 5=1
|B11>1

for some ’yj,gj € C§°(R?). Since |a| > 2 and \8?(@({)1)1({))] < 27k(=1) | for any p € N2,
by proposition [1.2.30| and lemma we obtain that the action of their quantization on w is
estimated in the uniform norm by

(B.3.19) h‘o‘|’%*52*k(\a|*1)+ Z plal=i(3=a)gk(j+1-lal);,— -8
1<j<|al

x| N[t )l + Z 1(69)Opy (x1 (h7€)a(t, )| 12| < CBehs#~%
po|v|=0

Finally, by integrating in dyd¢ and using ([1.2.24]) in (B.3.16)) we find that ry(z, ) can be written
as

D G

J<N

21

GN z+t2)(1— )N lat

. w(ﬂ”'é*ZJ/Q_E,“"))wx&mwN<f+n>dzdnv

for some new smooth compactly supported 8y, v;, <Z>i.From the last part of proposition |1.2.31
then follows that the quantization of the above integral is a bounded operator from L? to L,
with norm controlled by

Z BN— j(ffa)zk(1+ij)(h7%+02k)i(h712k) 5 h
J<N
i<6

if N is sufficiently large (e.g. N > 10), and consequently that

(B.3.20) |ODf (i (a1, ©))ii(t, ) [ 100 S BT (E, )| 2 < CBeh' ™

Finally, summing up the above estimates with formulas from (B.3.15) to (B.3.19)) we obtain that

_%

168 (2) (|22 = 1)tin, (t, )|z S CBehz~?

which injected in (B.3.14)) gives that Gh(x)EAkgﬂﬁw is a remainder R(t,z). That concludes the
proof of the statement. ]
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A similar result to the one proved in lemma holds true when w in the left hand side of
(B.3.7) is replaced with

(B.3.21) u’l(t,z) == t(Tu)_(t,tx)

with T € {Q, Z,,,, m = 1,2} being a Klainerman vector field, as briefly shown in the following:

Lemma B.3.4. Let h = t=1, ¥ be defined in (3:2.2), u’ as in (B.3.21), ao(€) € Soo(1), and
bi(€) = & or bi(€) = &&lé|7L, with §, k € {1,2}. There exists a constant C > 0 such that, for
any X, x1 € C°(R?), o > 0, and every t € [1,T], we have that

(B.3.22a)  [|[Op} (x(h7€)an(€))a(t, ))[Op} (x1 (h7€)br(€))a (£, )]|| ;2 < C(A + B)Be*hz =",

(B.3.22b)  ||[Opy (x(h7€)ao(£))(t, ][Oy (x1(h7€)b1(€))a” (t,)]|| oo < C(A+ B)B*h™7,

with ' > 0 small, 3 — 0 as 0,5y — 0.

Proof. The proof of this result is analogous to that of lemma except that, instead of
referring to (B.3.8]), we should use that
(B.3.23)
~ w o _ ~ _1 5 %
100K (BT (2 | ggroe + Y 10DE (X (BT ELEI )T (2, )| poae < CAh™2777 2,
lul=1

which is the semiclassical translation of (B.2.57)), and to lemma instead of lemma O

Lemma B.3.5. Letag(§) € Soo(1), bi(€) € {&, &€kl [€], 4,k = 1,2}, bo(€) € {1,&1¢171, 5 =
1,2}. There exists a constant C > 0 such that, for any x € C§°(R?), o > 0 small, and every
tell,T],

5451

(B.3.24) || x(¢77Dy)[[ao(Da)o_][b1(Dx)u—_Jbo(Da)u_] (t,-)| oo < C(A+ B)AB 37475

with 8 > 0 small, B — 0 as 0 — 0. Consequently

546,
b

(B.3.25) (7 D)l (1) e < C(A+ BYABES 24T
where r,i\;F 1s given by (B.2.78]).

Proof. We warn the reader that we denote by C' and 8 two positive constants that may change
line after line during this proof, with 3 — 0 as ¢ — 0. Moreover, we are going to denote
generically by R(t,x) each term satisfying

5451

IR(t, )| < C(A+ B)AB3 58+ 5",

From lemmawith L = L* and s > 0 large enough to have N(s) > 3, and a-priori estimates
(1.1.11]), we can reduce ourselves to estimate the L> norm of the product in the left hand side
of when all its factors are supported for moderate frequencies less or equal than ¢, up
to remainders R(t,x). Moreover, since

(B.3.26a) X (t77 Da)ao(De) o™ = v ](t,-)|| o < C A2 2H0
and
(B.3.26b) X (7 D)1 (D) [ — u](t,-)|| oo < CA%?t2HP,
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as follows by (B.2.77) and (3.1.15), (A.26b) with p = 2 (as consequence of lemma [A.g]), together
with a-priori estimates, we can also suppose v_ (resp. u_) be replaced with vV (resp. uNF),
up to some new R(t,x). This reduces us to prove that

| X (&7 Dy)ao(Da) o™ ) [x (¢ D2 )br (Do )u ) [x (¢ Da)bo(Da)u-](t, )| ;oo
< C(A+ B)ABe

or rather, reminding (|1.1.11a), to show that

[Dx(t™7 Da)ao(Da )v™ ] [x (t77 D )by (Da)u™ (2, )

)|, < C(A+ B)Be?

But after writing the above product in the semi-classical setting and reminding definition (3.2.2)),
one can immediately check that this estimate is satisfied thanks to (B.3.7bf), which concludes the

proof of (B.3.24)).

The last part of the statement follows from (3.1.11)), the fact that

H x(t™°D,) {£§>“’+ —v_) NLy, + D1 [(Dy) vy —v_) NLw} (t,-) . < CA33t=3te

for every t € [1,T], which is consequence of (B.1.3b|) and a-priori estimate (1.1.11b)), and from

the observation that the remaining contributions to r]i\gF are products of the form

[ao(Dy)v-][b1(De)u-Ryu—,
with ag(€) equal to 1 or to &(€)™!, and b1(€) equal to & or to ;& |¢|72, for j = 1,2. O

Lemma B.3.6. Under the same assumptions as in lemma[B.3.5,
(B.3.27a)
Xt D) [alao (D)o b1 (Da)u—Joo(Da)u—] (1) 2 ey < C(A + B)? B9+,
(B.3.27b)
Ix(t° D) [zmzalao(De o) b (Deu_lbo(Dau_) (1. )| o gy < C(A + B)? B35+ 7

for every t € [1,T], m,n =1,2, with B > 0 small, 8 — 0 as 0 — 0. Moreover,

(B335 7D e 0 < O+ B B2,

(B.3.28b) |x(t=7Dy) [xm:cnr,]q\gF(t, 9] HLQ(dz) < C(A+ B)*Be

Proof. We warn the reader that we will denote by C' and 8 two positive constants that may
change line after line, with 3 — 0 as ¢ — 0. We also denote by R(t,z) any contribution
verifying

+51

(B.3.29a) 1x(t™7 Do) [0 R(#, )] || 20y < C(A+ B)?Be3t 1A+

(B.3.29b) [X(t™7 Do) [tman Rt )] || 124y < C(A+ B)?B3 A+,

Let us first notice that, after (B.1.3b)), (B.1.10a)), (B.1.27al) and a-priori estimates, we have that

Hx(t_"Dx) [—:rnul;;(v+ 0. NLu + 20 D1 [(Da) " (0s — ) NLw] (t,-)

L2

< ¢ x”vi o INLy (£, )| oo < CAZBe3t—140+5
L
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and

qu-ﬂpx) i D (0

1
St N fatiatzon(t, ) |2 | NLu(t, )| < C(A + B)ABEY 5.
p1,p2=0

Therefore, since from (3.1.11)) and (B.1.1b)) the remaining contributions to r,]g\gF are of the form

[ag(Dg)v_][b1(Dy)u—_]Riu—

with ag(€) equal to 1 or to &;(£)~L, and b1 (€) equal to & or to €& |€|71, for j = 1,2, estimates
(IB.3.28) will follow from (B.3.27). Our aim is hence to prove that the above product is a
remainder R(¢,x).

Applying lemma with L = L2, wy = wpa0(Dy)v_ (resp. w1 = Tpmznao(Dy)v_), s > 0
sufficiently large so that N(s) > 2, and using estimates (B.1.10a)) (resp. (B.1.27a)), (1.1.11a)),

(1.1.11c)), we can suppose all above factors truncated for moderate frequencies less or equal than
7, up to remainders R(t¢,x). Let us also observe that, from (B.1.10b)), (B.3.26b|) and (1.1.11d]),

) N + Dy (D2 0 = 0) N | (1)

L2

[x(t7D.) [m(t-gDm){xnao(Dnun[x(t-“Dnbl(Dz)(uNF — u ) Da)bo(Da)u] (1) (1)

~ Z ﬂfn( >> v(t, )

lu|=0

L2

. X (77 Da)br (D) (u™F = )| poe s (8, ) 2

+52

< C(A+ B)A?Be*t=28+
and that, using additionally estimate (B.1.27b)),

(77 D) [Daa (7 Da)lwmncao (Da)o-J(t™7 Da)b (D) (@™ = wo )t Db (D u-]| 8, ) 8, )|

X

L2

o IX (77 Da)br (D) (u™" = uo)| 2[R us (t, )| 2

"l xmx"< Dm> )M“i(t’ )

5+52

< C(A+ B)A?Be*t 18+

This means that we can actually replace u_ by uNF up to some new R(t, x). Furthermore, we can
also substitute x1(t~7 Dy)[zF zha0(Dy)v_] with x (77 Dy)[zk 2pa0(Dy)vN ], for any k € {0,1},
up to a new remainder R(t,z) in consequence of a-priori estimate ([1.1.11a)), the fact that

(B.3.30) [N (¢, )12 < CBet?,
(see (B.2.1a)) in semi-classical coordinates), and the following inequalities

(B.3.31a) ||x1(t77Dy) [znao(Dy) (0N —v_)] (¢

<Y e (7)ot

MoV k=0

7')HL<><>

RS (t, )|p < C(A+ B)As2 370+ %
Lo

and

(B.3.31b)  |[x1(t™7Dy) [2manao(Dg) (VN —v_)] (¢

S il (755) vt

p1,p2,v,k=0

7')”Loo

IR¥ux(t,)||L < C(A+ B)Aa%z+ 3,
L
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derived from (3.1.10), (B.1.10b), (B.1.27bf), (1.1.11a) and (1.1.11b]). This reduces us to prove
that, for £k =0,1,

H [x1(t7 D) [, a0 (D )v™ F]) [ (=7 D)oy (Do )u™F) [x (=7 D)o (D )u_] (¢, -)]

L2(dz)
< C(A+ B)?B3t1+h+6+F
or rather, after , that
| s (7 D) ek 20D ) 1] (4™ D)o (D )u™ N1, )| o gy < C(A + B)BE 3-8+
f’assin% to the semi-classical setting, this corresponds to prove that
B.3.32

1
> || [opk Ga (h€)) a2 Op (a0(€)7] O} (W71 @)1, )| | < C(A+ B)B2pd== 752
k=0

L2(dx)

First of all let us notice that, from the commutation of z,, with Op};(ao(§)) and definition (|1.2.68))
of L.,

(B:333) 2,00} (a€)7 = hOD (a0(€) £+ O (a0(€) T )7 = 50 (06, a0())7

while from the commutation of z,, with Op} (x(h7€)b1(€)), definition (1.2.49)) of M,,, and sym-
bolic calculus,

(B.3.34)
zmOpy, (X(h7€)b1(&))a = hOpj, (x(h7E)b1 (€)I€] ™) MinT — %Opﬁ (O, (X(R7E)b1 (&€ e])u

+ O (XD (el )i — 0D (9%, (X (17 €)1 (€))L

On the one hand, using equality (B.3.33)), lemma |B.2.14] and estimates (B.3.7a), (B.3.8]), we
deduce that

| 10} (1 (07 ) 2P (a0 (€))7 OB (x (A7Br ()l 2.)
&n

B335) < [opk (a7 9an(e) & )ote. | Ot (o (€t )

646
< C(A+ B)Be*hi—P="3".
On the other hand, when we deal with the L? norm in the left hand side of (B.3.32)) corresponding
to k = 1 we first commute z,, with Op}’(x1(h7€)) and see, using symbolic calculus, that

| (Opk (et (7€) frman Ot a0 (€0)0] (OpE (XA DB (€D,
< || 107 0pk ((9x1) (h7€)) 20 O (a0 (€))7 [OpF (x (7€) () (. |
+ | ©Opk aa (1) rn Op (a0 (€))7 e OB (A",

The first norm in the above right hand side satisfies an inequality analogous to (B.3.35)). In order
to derive an estimate for the latter one, we first use equality (B.3.33) and observe the following;:
from the semi-classical Sobolev injection and estimates (B.2.1c), (B.2.75b|), we have that

(B.3.36) [|1*[Op} (x1(h7§)ao(§))£n?] [Opy (x(h7€)b1(§)&m €I~ )Mma] (¢, )| 12
< hOp (x1(h€)ag(€)) £nT(t, )l 2 || OPY (x (W7 €)b1(E)&mEl™ ) Mmii(t, )| 2
< C(A+ B)Be?p!t=%275,

L2

+ CAB2h3 P %
L2

L2(dx)
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a similar chain of inequalities as in ([2.2.80)), together with (3.1.20a)), (3.1.20b|) and (1.1.11)), gives
that for any 6 €0, 1]

(B:3.37) |0y (b1 (§)€mlél ™ Vult, )| oo = |01 (Da) Dol D ™ (8]
S N () | [N (4 )2 < CATOB a2t

(1+9) 9

Therefore, from equality (B.3.34]) and estimates (B.2.75b)), (B.3.8), (B.3.37), (B.3.36)), we find
that

(B.3.38)
(| Op} (x1 (h7€)a0(€)) L0 [#mOp} (X (h7E)b1(€))a] (1, )]| 2 < C(A+ B)Be?ha™ 2~ =

Moreover, using again (B.3.34]) along with(B.2.1a]), (B.2.1c)), (B.3.7al) and (B.3.9),

H [Oni (0 (7€)a0l) (5 )+ hOE (a(1€) 0, 0(€)7] [0 (x(” (€)1

L2(dz)

4 C(A+ B)B2p1 5%

< [0nk (xarrpan(e) 55 )7] [ont (xrermn() 32 Y .

L2(dx)
< C(A+ B)Be2hs -3
Choosing # < 1 small enough, this concludes that
(B.3.39)
~ 6+§
| (00t (1 (07 €z Opf (a0(€))5] (OpE (W1, )|, < CLA+ BYBEREH- 75
and, together with (|B.3.35]), the proof of (B.3.32). O

We can finally prove the following:

Lemma B.3.7. There ezists a constant C' > 0 such that, for any x € C(R?), o > 0 small,
and every t € [1,T],

(B.3.40) > 0P (x(h7€))£*5(t, )| 12 < CBet
=2

with B> 0 small, B — 0 as o — 0.

Proof. From relation (3.2.9b) and the commutation between £,, and Op}’((§)) we deduce that
(B.3.41)

10D (W(h7E) Ean (1, )] <Z[HOph (W)L [¢20™ T (8, 80)] | 2

; Holam(h%))%opz” (fg’;)w, %)

+ [|Opg (x(h7€) Lt [tk )iy (1)) | 2y |
L2 (dx)

so the result of the statement follows from lemmas (B.2.14 and inequalities (B.3.6]),
(B.3.28). O
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B.4 The sharp decay estimate of the Klein-Gordon solution with
a Klainerman vector field

This last section is devoted to prove that, for any admissible vector field T', the L>°(R?) norm of
functions (I'v)4, when restricted to moderate frequencies less or equal than ¢, for some small
o > 0, decays in time at the same sharp rate ¢~ of the two-dimensional linear Klein-Gordon
solution. This result is proved in lemma under the hypothesis that a-priori estimates
are satisfied in some fixed interval [1,T], with g9 < (24+ B)™! and 0 < § < 62 < 61 <
8o < 1 sufficiently small, and is fundamental when proving lemmas[2.1.2)and [2.1.3] All the other
lemmas of this section are to be meant as preparatory intermediate results.

Lemma B.4.1. With the convention that D = Dy whenever |I1|+|I2| = 2, D € {Dj;, Dy, j = 1,2}
otherwise, there exists a positive constant C' > 0 such that, for any x € C(C)’O(]RQ), o > 0 small,
n=1,2, and every t € [1,T],

(B.4.1) 3 Hx(t_"Dx)[:an 8wl Du2)] (t,.)’ < C(A + B)B2°+"32

[T1|+|12]<2
[11|<2

L2(dx)

with B > 0 small such that 8 — 0 as 0 — 0.

Proof. We estimate the L? norms in the left hand side of (B.4.1]) separately.
e When |I;| =0, |I3| = 2, we derive from (B.1.10b)) and (1.1.11d)) that

1
_ Dy \#
(77 D) [ Q6E (0, DN )| 5 DT (wa () e )| )
L2(dx) =0 (Dg) oo
5146
< C(A+ B)Bet™5,
e When |[1| = || = 1 and T2 € {Q,Z,,,m = 1,2} is a Klainerman vector field we use

inequalities (B:2.24) with L = L?, wj, = xn(Dx (D)~ )" v} with |u| = 0,1, and s large enough
so that N(s) > 2, to derive that

|t D2) [2aQiF (02, Dy (1,-)

L2(dz)
! Dy \#
S 3 D e () k] @) Il
lul=0 ) b
+ >t (el e + ol (e ) (e (8l + | Dese (8 ) )
|u|=0,1,2
|v|=0,1
< OB%:%757,

where last estimate is deduced using (B.1.5a), (B.1.17)), (B.1.28)), (B.2.62) and (1.1.11dJ);

e When |[1| = || = 1 and T'"2 is a spatial derivative we use lemma with L = L%
wy = x,(Dy(Dy) ")l with |u| = 0,1, s large enough so that N(s) > 1, and again estimates
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(B.1.17), (B.2.62) and (1.1.11d]). We obtain that

|x(t77D2) [ @i, D1ul2)] 2, 1)

L2(dx)
1
S Do e (p5) ]| st
lul=0 ‘ b
1
+ )t ok (8 ) e lus (8, ) <
lu|=0

e When |[;| + |I2| < 1, by the assumption derivative D can be equal to D, or to D;. Then

- If [I1| = 0, after (B.1.54)), (B.1.7)), (B.1.10b) and

Hx(t-ffDa[wncz‘a%i,Duf)](t, )|
~> Z xn(

|ul=0
- If |I1] = 1, |I| = 0, using lemma as done above, together with (B.1.5a}), (B.1.10]),
(B.1.17)), (B.2.62) and a-priori estimates, we derive that

L2(dx)

o) e (el + 1Dk 6 )e) < CCA+ BYBE:

Lo

7D [ @0, Dus)] 1)

1

<2

L2(dx)

(D) o (55) "wk )]

(lux @, g + [[Deus(t, )l £2)

(B.4.2) '“"0 =
z \ M
#3782 0| st e+ 1D
Iul=0 o
< CB22PHTS

O]

Lemma B.4.2. There exists a positive constant C > 0 such that, for any x € C§°(R?), o > 0
small, p € N, and every t € [1,T],

(B.4.3) > IxE DVt oo < CBet~ 1A+ %,
|I|=2

with B > 0 small such that 5 — 0 as o — 0.

Proof. Estimate (B.4.3) is evidently satisfied when I'! contains at least one spatial derivative
thanks to lemma [B.2.8, We then focus on the case when I'! is the product of two Klainerman
vector fields. As v{r = —v!, we prove the statement for x(¢t=?D,)v’. Moreover, from the
L*° — HP>° continuity of x(t7?D,) with norm O(t°?), we can assume the H”* norm in (B.4.3)

replaced with the L one, up to a loss t7°.

As done in lemma , instead of proving the statement directly on x(t~7D,)vl we do it

for x(t=7 D, )v! "M with /M introduced in (B.2.27) and considered here with |I| = 2. This
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is justified by inequality (B.2.43). From definition (B.2.27) of v/, equation (B.1.18a) and
equality (B.1.23]) one can check that

Dy + (D)o N = NLpM

(B.4.4) where NLI NE _ r,ﬁgNF(t,m) + Z cIl,IQQIS (v, Du®?),

([1,]2)63(])
|I1]<2

with r,ﬁ’gNF given by the same integral expression as in but with |/| = 2 (and hence
having the explicit expression (B.2.47)), and ¢, 1, € {—1,0,1}, ¢1, .1, = 1 when || + [I3] = 2
(in which case derivative D corresponds to Di). It is straightforward to show that inequalities
(B.2.48), (B.2.49)), (B.2.50) hold even when |I| = 2, up to replacing d2 with d;. Therefore, using
those latter ones together with

2
1)
> It D) Zju N (¢, )| 2 < CBet?
j=1
which is consequence of (|1.1.11d|) with £k = 0 and of (B.2.29) with j = 2, we derive that

(=7 D)ol V(1 < CBet¥ +Z(Jt 1+8 HX £ D,) [e; N1 )]

QLS 12(da)

The only thing we need to show in order to prove the statement is hence that

. I,NF 81432
(B.4.5) Hx(t D) [xjNLkg }(t,.)‘LQ(dx)50(A+B)Bg2t5+ 32

But from (B.4.4) and (B.2.47)) with |I| = 2 we have that
[x(to D2 [V (2
D
t7 oo + ||t = vs(t, -
i Z (et e e+ e D5 vsten
Y D) [0k Dult)] )

(I1,I2)€3(1)
|11|<2

<H%NL (& 2 (lus (@, )l Lo + [[Ryus(t )] o)

L2(dz

)um Mot sraoe
LOO

L2

so (B.4.5) follows from a-priori estimates, (B.1.10b)), (B.2.74) and (B.4.1). As d2 < 61 < do,
that concludes that

(BA.7) [x(t= D)o N (1 < CBet~1++%,

) HLOO
O

Lemma B.4.3. There exists a positive constant C > 0 such that, for any multi-index I of length
2, any x € C§°(R?), o > 0 small, j = 1,2, and every t € [1,T]

(B.4.8) x(t=7Dy) [0 0)2] (¢, )], o0 < CBet?+ ¥,

) HLoo

with 8> 0 small, 8 — 0 as 0 — 0.
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Proof. 1f T contains at least one spatial derivative (B.4.8) is satisfied after (I.1.11b)), (B.1.10D))
and (B.2.62). Let us then assume that I'! is product of two Klainerman vector fields.

From equation (B.1.18al), equality (B.1.9b) with w = (I''v)_, the L? — L> continuity of operator
x(t77D;)(D,)~! with norm O(t?), and the L* continuity of x(¢t~?D,)D,(D,)~! with norm
O(t?), we derive that

(B.4.9)
[1X(t™7Da) [ (TT0) -] (8, ) ooy S T7N1Z5 (T 0) = (8, )22 + ¢ [[x (7 D) (TT0) - (E, )| o
7 (D) [o,T N (8)

Reminding (B.1.23)) and applying lemma with L = L and w; = (D,(D,)"Y*vi, for
|| = 0,1, to the contribution coming from the first quadratic term in the right hand side of

(B:1.23), we find that there is some x; € C§°(IR?) such that
(B.4.10)

1
(D) [T VL] (1) e S 37 a6 D) [0 ] ()| IRE st ) o
w,v=0

YOS (a0t s e
u=0
+ 2 [xeDn) [osQke (v uk)] 6,0

(I1,12)€3(1)
|I1]<2

Lo

Therefore, picking s > 0 large so that N(s) > 1 and using the L? — L> continuity of x1(t~ D)
with norm O(t7), together with the estimates (1.1.11]), (B.1.17)) with k£ = 2, along with (B.4.1)),
we find at first that

[x(t~7Dy) [0 NLgg] (t,)|| oo < CAB&2t3+o+%

Injecting the above estimate, together with (1.1.11d|) and (B.4.3)), into (B.4.9) we derive that

5
x(t7 D) [2;(TT0) -] (¢,)|| Lo < CBetz+o+7,
The above inequality holds for any x € C§°(R?), so injecting it into (B.4.10) and using again
a-priori estimates, (B.1.17), (B.4.1)), together with the fact that 5+ (6 + d2)/2 < §1/2 as [ is as
small as we want as long as ¢ is small and §, 2 < §1, we find the following enhanced estimate
§
X (77 D) [0 NLyg] (£, )| oo < C(A+ B)B*t7+72
Consequently, summing up this latter one with (1.1.11d)) and (B.4.3)), we end up with (B.4.8). [

Lemma B.4.4. Let ' € Z be an admissible vector field. There exists a positive constant C' such
that, for any x € C§°(R?), o > 0 small, i,j = 1,2, and every t € [1,T],

(B.4.11) Hx(t_UDx) [z (Tv)+(t, ')]HLoo(dx) < CBstHBJF%l,

with 8 > 0 such that 8 — 0 as 0 — 0.
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Proof. Since (I'v)y = —(I'v)4+ we reduce to prove that inequality (B.4.11]) holds true for (I'v)_.
Moreover, we only focus on the case where I' € {Q, Z,,,, m = 1,2} is a Klainerman vector field,

as (B.4.11)) with I' being a spatial derivative is simply a consequence of (B.1.27h]).

We remind that (T'w)_ is solution to non-linear Klein-Gordon equation (B.1.18a]) with I'/ =T,
and that the non-linearity ' VL, is given by (B.1.20aj). Hence, multiplying x; to relation (B.1.9b)
with w = (I'v)_ and making some commutations we find that

X (77 Dy) i (T0) (&, | oo gy

< Z [HX(fUDx) [} Z;(Tv) ] (t, ’)HLoo(dx) + ¢ ||x(t77Dy) [ (Tw) ] (¢, ’)HLOO(dx)}

B412) =

1
+ Z | X(t77Dy) [T NLyg) (t, -)HLoo(dx) .
pn=0

At first, we estimate the latter contribution in the above right hand side using that x(t77D;) is
a continuous L? — L operator with norm O(t%) together with estimates (T.1.11)), (B.1.5a) with
s =0, (B-1.100), (B-1.17), (B.1.270), (B.1.28):

(B.4.13)
1 1
Z HX(t_GDI) [xétijNLkg] (t, ')HLoo(dx) S Ztg HX(t_UDx) [xg%erLkg] (t, ‘)Hp(dm)
pn=0 pn=0
1
S Dl @ (To)w(t )|z ae) IR s (8, ) | 2o
p1,p2,v=0
¢y el oy (1555) o) (P + s ) + Dy (222
Lo°(dx)

p,|v|=0
< C(A+ B)B23+o+%,

Injecting this estimate, along with (B.2.42)), (B.2.62)), (B.4.3)) and (B.4.8)), into (B.4.12|) we deduce
that for any smooth cut-off function y

[
(B.4.14) X (t7D,) [y (To) (¢ < CBetatots

)] HL"O(d:r)
Now, if we change the approach of bounding the L*°(dz) norm of xfa:ngg((Fv)_, Diyuy), which
is one of the contributions to z!'z;T'NLy, after (B.1.20a), and make use of lemma with
L = L™ instead of (B.4.13]), we see that

1
DXt Dy) [} ;T NLig) (£, )| oo )
pn=0
1

< X |t [ mos] @ RGOl
u17M2,V*0

+ Z N a2 (Do) g (8, )| 2 gy 10 (8, ) 1o

H1,p2=0
D v
l’ i Lj ( ) V4 (tv )

+Zt" D]

t,|v|=0

(ITw)= () + lluse ()l g+ [ Deuse ()] 22) -
Leo(dx)
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Then, choosing s > 0 sufficiently large so that N(s) > 3 and using again (1.1.11]), (B.1.10b)),
(B.1.17) with £ =1, (B.1.27b)), (B.1.28)), (B.2.62)), together with (B.4.14]), we obtain that

1
S [t D2 [ PN L) (8] gy < C(A + B) B2+ %,

pn=0
which enhances (B.4.13) of a factor t'/2. Combining the above estimate with (B.2.42), (B.2.62),
(B.4.3) and (B.4.8)), we finally end up with the result of the statement. O

Lemma B.4.5. Let I' € {Q, Z,,,m = 1,2} be a Klainerman vector field, vI'"N¥' the function
defined in (B.2.27) with |[I| = 1 and T'' =T, and Bk (&,m) the multiplier introduced in

(J1,J2,J3)

(2.2.42) (resp. in (2.2.53))) for any k = 1,2 (resp. k =3), any j; € {+,—} fori=1,2,3. Let us
define

(B.4.15) |

Vi) = o M) - oy Y [ B € (€~ ) Ta) ey
Jr.je€{+,—}

+5Q (27T)2 Z /Zwthm, (& m)05, (€ — n)iy,(n)dEdn

.]17‘726{"’_7
i -
ot / B ey (€1)05 (€ — )it (),

Jj2€{+,—}
where dq (resp. 0z, ) is equal to 1 if T' = Q (resp. if I' = Z1), 0 otherwise. There exists a
constant C > 0 such that, for any x € C§°(R?), o > 0, and every t € [1,T],

(B.4.16) X7 D2) (V¥ = (T0) ) (¢, )| ;o0 < C(A+ B)A%t71.

i HL°°
Moreover, for every m = 1,2 and t € [1,T]

(B.4.17) [1x(t77 D) Zin (VY = (Tw) - ) (¢ < C(A+ B)B*t37+02,

) ) HL2
Proof. From definition (B.4.15) of V¥ and equalities (A.15), (A.16), we find that
VN (Tw)_ = oM — (Tw)_

- % [(Dyv)(D1T'w) — (D1v)(Del'w) 4+ D [v(Dil'w)] — (Dy)[v(D1I'u)]]
B.4.18 ;
( ) + 595 [(Dw)(Dau) — (D2v)(Dyu) + Da[vDyu) — (Dy)[vDaul]
+ 62,5 [(Dw0)(Dyu) + v(|1Dof*w) = (Do) [o(Dew)]]

where v/NF — (I'v)_— has the explicit expression . We use , and lemma
with L = L, w; = Rf'ug (resp. wy; = R} (Tw)y) for p = 0,1, and s > 0 large enough to
have N(s) > 2, in order to estimate the L norm of products appearing in (resp. in
the second line in the above right hand side). For some new y; € C$°(R?) we have that

X7 D) (VP = (To)-) (¢, Wy S XD 2) (08— (o)) (¢, M e

+ Z t7 ot (¢, )| .o || X1 (67 D) RY (T (¢, )| oo + 2 o (s ) |z | (Tw) (2, )| 2
Iul 0

+Zt(’\|vi M e [[REu(t, ) | .00,
|u|=0
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with

1
X (¢ D) (0" = (T0) =) (8, )| oo S D17 1 (¢ D) (T0) ()| oo IR (2, ) [ 20

+ 2 (Po) ()l 2l (2, ) e
Estimate (B.4.16) follows then from (1.1.11f), (B.2.42)) and (B.2.57).

In order to derive (B.4.17) we apply Z,, to (B.4.18]) and use the Leibniz rule, reminding formulas
(B.2.39). Among the quadratic terms coming out from the action of Z,, on the second line in

@ we see appear products where Z,, is acting on v and I' on u. We estimate the L? norm
of those ones, when truncated by operator x(t~?D;), using inequalities with L = L?,
w = u, wjy = (Dy(Dy) ) Zpv for |u| = 0,1, and s > 0 large enough to have N(s) > 1. We
bound instead the L? norm of all other remaining products with the L> norm of factor that
does not contain any vector field times the L? norm of the remaining one. Hence

(B.4.19)
X D) Z (V™ = (T0)-) (8, )| 12 S X7 D) Zin (017 = (Do) ) (8
+17 X1 (7 D) (Zinv) £ (8 ) || o 1)1t ) ] 2

")HLZ

+¢ N0 (Z [#(Zmv) £, )l L2 + [ (Zmv) + (tv')HLQ)(”ui( Mas + 1 Deus(t, )l a9)
|u|=0

+t"|!vi( Moo ((ZmFu)=(t; )2 + | (Tw)£ @, )l 2 + [ De(Tu)<(, )| 22)

+ Z t7|(To) £ (t, ) 2[R us(t, ) | 2.0
|u|=0

+ 7 o8 ) e ([(Zmw) = ()l + lus @, g + [[Deus(t, )] 22)

and estimate (B.4.17) is obtained from ((1.1.11)), (B.1.5a)), (B.1.7), (B.1.17), (B.2.29) with j = 1,

and (B.2.42)). O

Lemma B.4.6. Let T' € {Q, Z,,,m = 1,2} be a Klainerman vector field, VT the function
defined in (B.4.15) and

(B.4.20) VIt x) = tViN (¢, ta).

There exists a positive constant C' > 0 such that, for any x € CSO(RQ), o > 0 small, and every
€ [1,T],

~ §
(B.4.21a) HVF(t, -)HL2 < CBet'%,

(B.4.21b) 3 Hop;v(x(hag))wvf(t, -)HL2 < CBet?.
lul=1

Proof. Let us recall equalities (B.2.30) with I'Y = I' and (B.4.18). From a-priori estimates we
immediately derive that, for every ¢ € [1,T],

5
IV = (P0)-)(¢, )l g2 < CABet 2357,
and consequently that

(B.4.22) VIt |2 = [VYE(, )2 < CBet %
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Using definition (|B.4.15)) one can check that VFNF is solution to

(B.4.23) [Di + (DN (t, 2) = NLEP(t,2) — 82, Qg8 (v, QY (v, Dyvs))
with
(B.4.24)

NLE“(t,z) = r,ﬁ NE ¢ 2)
i —

T 1@y / B, Gy (€ m) | N (€ = m) (Tu)(n) = 85, (€ = )T NLu(n)| dgd

+ 5”4(2;)2 / B, 5,1 (&m) [1@(6 — )iy (n) — 05, (6 — n)ﬁL\w(n)} dedn

! 5214(2;)2/61566 oy (€M) | NLig (€ = m)iy (n) = 9 (€ = ) NEy (n)| dedn,
and 7" given by (or, explicitly, by (B-2:47)) with |I| = 1. Superscript ¢ in NLZ*

stands for cubic and wants to stress out the fact that, passing from function (I'v)_ to VFNF , we
have replaced all quadratic terms in the right hand side of (B.1.18a) (when |I| = 1 and T'Y =T)

with cubic ones. Hence, from relation with w = VFNF and equation (B.4.23)) we get that

(B.4.25)
O ()L V()| | S I D) Vi (1) 12 + | OPE (A7) 6m )V (1),
v Hx(t_"Dm) [meLIk;q’C] (t, -)‘ poiaw 021 |7 D2) [wmQISg(Ui,QBV(vi,DWi))} (tw)} L)

After (1.1.11d)) with & = 1,(B.4.17)), and the fact that o can be chosen sufficiently small so that
30 + d2 < 61/2, as Jp < Iy, it is straightforward to see that

5
(B.4.26) Ix(t~7 D) Z Vi (¢, )| 12 < CBet 2.

Moreover, from (B.1.3a)), (B.1.10b|) and a-priori estimates,

(B427)  [x(t77 D) [4mQfF (v, QF (s, Drvi) | (1)

< 21: f”n( = )MUi(tw)

lul=0 (Da)

L2(dx)

+52

|NLy(t, )2 < C(A+ B)ABe*t~ =~
L (dx)

Using instead equalities (A and (A.16|) we derive the following explicit expression for NLkg’

1
NLllig’c(t, ) — T]igNF(tv:C) - — [NLkg(Dlru) — (Dl’U)FNLw + Dy [’UFNLwH

(B.4.28) 4 59 [NLyy(Dou) — (Dav) NLy + Da[vNLy)]

+ 521 [NLyy(Dstt) + (Dyv) NLyy — (Dg)[vNLy]] -

Hence, reminding estimates (1.1.11)), (B.1.3a), (B.1.5a) with s = 0, (B.1.10b), (B.2.72), and
equality (B.1.20b)) from which follows that

(BA429)  [ITNLw(t, )2 S ot ) lmnee (i) + ot )l + 1Devs(t, ) r2)
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we find that
Hx(t_ng) [ijLllig’c} (t, )‘

< D) [y 0] (1)

L2(dz) L?(dz)

(Yt

D 7
P () val(t, )
k=0 J<<L%>> Lo (da)

IR us (&, ) gr2.ce (P2 ()l 22 + lus(, )] 22)

Loe(dx)

(I NLw (&t ) 12 + | NLw(E, )] 22)

5+51

< C(A+ B)ABext 28+ 2+

By injecting the above estimate, together with (B.4.21a)), (B.4.26]), (B.4.27), into (B.4.25)) we
finally deduce (B.4.21b)) and conclude the proof of the statement. O

Lemma B.4.7. Let I' € {Q, Z,,,,m = 1,2} be a Klainerman vector field and Iy, Is two multi-
indices such that TT" =T and T'2 = Z,,T', with m € {1,2}. Let also vI""' be the function defined
in (B.2.27) for a generic multi-index I of length equal to 1 or 2. There exists a constant C > 0
such that, for any x € C*(R?), o > 0 small, m,n = 1,2, every t € [1,T],
(B.4.31a)
D) 22 (65 = ©0) )] (6] + (7 D2) (027 — (ZT)-) (09
< C(A+ B)Be¥t1HA+==—

5+51+52

and

(B.4.31D)
X7 Da) [an Zm (v = (C0) )] (& )| 2 + (77 Da) [ (0> = (ZnT0) )] (&) e

< C(A + B)B2f+ 55

with 8 > 0 small such that f — 0 as 0 — 0. Moreover, if VFNF is the function defined in (B.4.15)),
then for every t € [1,T]

§+51+52

(B-4.322) (¢ D2) [Zon (VY = (Do) )] (1) 12 < C(A+ B)B2 M5
(B432b) (7 Da) [0 Zm (VY = (T0) )] (8,)] o < C(A+ B) B,

Proof. We warn the reader that throughout the proof we denote by C' and 8 two positive con-
stants that may change line after line, with § — 0 as ¢ — 0.

We refer to equality with I = I; and bound the L? norm of each product in the first,
third and fifth line of its right hand side by means of lemma with L = L?. The L? norm of
the remaining products in the second line of the mentioned equality is instead estimated using
inequalities with L = L? and wj, = (Dy(D,) 1)#(I'l'v);. In this way we obtain that
there is some y; € C§°(R?) such that

X7 D) [Zin (07N = (Do)2)] (8 )| 2 S 8711 (87 D) (Zin o) (8, ) || o< e (2 -) | 2

VO (Z Do) (6, s () lze + 27 3 (7 D) (T0) (8, e | (Zmt) (8 2
1
VO[S et (o)) e + 1 C0)a (e | (s (8l + 1D 8, ) o)

+ a7 D) (Co) £, )l zoo (lux(t, )l L2 + [[Deus(t; ) 22)
+ VO (o) (8 )2 (lus (b ) s + [ Dewse (8 ) e -
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Choosing s > 0 large so that N(s) > 1 and using estimates (1.1.11)), (B.1.5a), (B.1.17)), together
with lemmas [B:2.8 and [B:4.2] we hence find that

5+51+52

Xt~ Dy) [Zn (0™ NF — (Tw) )] (¢ < C(A+ B)Be* 115+

’.)HL2

Analogously,
IX(t77 Dy [0 Zm ("0 NF = (Do) )] ()| 12 S 7 1Ix1 (87 D) [ (ZnT0) ] (8, Y poe s (8, )| 2
VO |2 (Z Do) (4 ) e s (8 e + 17X (7 D) [ (Do) 2] (£, )| e [1(Zne) £ (2, ) 2
1
N (Zxmn<rv>i<t,->||p+txn<rv>i<t,->||m) (lus(t, )z + | Deus (¢, )| 1r+)

pn=0
+ 17X (677 Da) [2n (P0)£] (£, )| oo (lus (t, )l L2 + |1 Deus (2, )] 22)
+ 7N g (o) (8, ) 22 (Jus ()l + [1Dews (8, ) [ are)

so from (1.1.11)), (B.1.5a)), (B.1.17), (B.1.28), (B.2.62)) and (B.4.8), we derive that

64+01+6
IX(£77Dy) [0 Zim (07NF = (T0) )] (¢, -)]] ;2 < C(A+ B)BP+ 5
Inequalities (B.4.31)) follows then just by the observation that, after the hypothesis on multi-
indices I;,Is and the comparison between (B.2.30) with I = Iy and (B.2.40) with I = I,
2ix(t77Dy) (v — (Z,,T'v)_) corresponds to the first line in the right hand side of (B.2.40).

In order to derive estimate (B.4.32al) we apply Z,, to both sides of equality (B.4.18)), use (B.4.31)),
formulas (B.2.39)), and successively proceed as follows: products in which Z,, acts on v and I

on u, that arise from the action of Z,, on the second line of , are estimated using
inequalities with L = L? and w = u; products in which Z,, is acting on v and there are
no Klainerman vector fields acting on u are estimated applying lemma with L = L?; the
L? norm of the remaining ones are controlled by the L> norm of the Klein-Gordon factor times
the L? norm of the wave one. In this way we get that

(™7 De) [Zn (V™ = T0)-)] (¢ )| 2 S Xt Da) [Zn (0" = (T0)) ] (8 )] 2
+tff||xl<t-“Dz><zmv>i £ oo (I (822 + lue (8 )] 2)

+1 V) ZH%‘“ Zmv)£(t, )2 + t(Zmv)£ (@)l Lz | (lus )l as + [|Devs(t, )| m9)
|4|=0

+ o e ([(ZmTw)x(E ) lz2 + [1(Tw)< )l L2 + [ De(Tu) £, )| 2
Hllus @, )l L2 + ([ Deus(t, )] 12) -

Choosing s > 0 large so that N(s) > 2 and using (1.1.11)) (B.1.54), (B.1.7), (B.1.17) with k = 1,
(B.2.42), (B.4.31a)), we hence recover (B.4.32a). An analogous procedure leads us to the following

inequality
(™7 Da) [2n Zim (W = (C0) )] ()| 2 S X7 Do) [onZin (0™ = (T0)- )] (2, )] 2
+ 17| x1(t7 Do) [wn (Zmv) ] (t,')HLm (ITw)x(t, )l L2 + llux(t, )l L2)

1
+ NV ot wn(Zino) 2 (8 12 + tlen (Zno)<(t )2 | (lus(t)llas + || Deuse ()| as)
|11|=0

o () s

>

||=0

. N(ZmLu) ()l 2 + [[(Tw)x(E, )l 2 + [ De(Tu)= (¢, -) [l 2

Hllus (@, )2 + [[Deus(ts ) 2)
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and estimate ([B.4.32b)) is obtained by choosing s > 0 large so that N(s) > 1 and using (B.1.5a)),
(B.1.7), (B.1.10b), (B.1.17) with k = 1, (B.1.28)), (B.2.62), (B.4.31b)) and a-priori estimates. [J

Lemma B.4.8. LetT' € {Q, Z,,,,m = 1,2} be a Klainerman vector field and VFNF be the function
defined in (B.4.15)). There exists a constant C > 0 such that, for any x € C*(R?), o > 0 small,
m,n=1,2, and every t € [1,T],

(B.4.33) 0Py (x(h7€)) L, [tZ, VINE (2, t)] < CBet’%.

HL2 (dx)
Proof. We warn the reader that, throughout the proof, we denote by C and S two positive
constants that may change line after line, with 5 — 0 as ¢ — 0.

Let v"NF be the function defined in (B.2.27) for a generic multi-index I of length 1 or 2, and
I1, I two multi-indices such that 't = T, T2 = Z,T. Using ([2.1.15b) we rewrite Z,V;M" as
follows:

D, D,
Z, Vi = 7, (VFNF — (Tv)=)+[(ZpTv)- — UI2’NF] —I-UIQ’NF—FWUII’NF—F D) [(Tv)- — vll’NF]
so that
(B.4.34)

|00y (x(h7€)) L [tZa VT (t, )] || 2 )
S |00 (7€) L [tZn (VT — (Tw)-) (8, 12)]|] 1240
+ [ Op} (X(h7€) o [t [(ZaTw)— — "N (8, )] || 2 4

+ Hopzﬁ(x(haf))ﬁm [tvIQ,NF(t, tl’)] HLQ(dw) + HOp;f(x(hlaé‘»Lm [té;vh,NF(t’ t$):|

L2(dz)
Dy,
(D)

n HOpm(h%))ﬁm [t [(Tv) =] “’m]

L2(dx) .

Since v!2VF satisfies (B.4.4) with I = I, we derive from relation (3.2.8) with w = v’2VF that
|0}y (X (A7) Ly [t0™ N (8, )] HL?(da:)
+ HX t_UD ) [ Io,NF (FIQ,U)_] (t, ')HL2 + Hx(t—aDz)Ulz,NF(t
+ |02 [em NI (20)

S IX(E D) Zin (P20) - (8, )| 2

7')HL2

Lz’

A-priori estimate (1.1.11d)) with & = 0, (B.2.29) with I = Iy, (B.4.5), (B.4.7)), the fact that

0 K 0 K 01 < §p and that [ is small as long as ¢ is small, imply

0Py (X (h7€)) L [t (2, t)] < CBet®.

HLQ(dx)
Analogously, commutating £,, with Op}’(£,(€)71), using (3.2.8) with w = vV and the fact
that vV is solution to (B.2.44) with non-linear term given by (B.2.45)), together with inequa-
lities (B.2.50)), (B.2.51)), (B.2.53), we derive that

D 5
HOp}f(x(h”f))Lm tnvh’NF(t,tm)] < CBetz.
<D$> L2(dx)
Finally, the remaining norms in the right hand side of (B.4.34]) are estimated by the right hand
side of (| after ( and lemma O
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Lemmas [B.2.8] [B:4.6] and [B.4.§] allow us to prove an analogous result to that of lemma [B.3.3]
where v is replaced with VI introduced in (B.4.20)).

Lemma B.4.9. Leth =t @, VT be respectively defined in andm, ao(&) € Soo(1),
and b1 (&) =& or bi(§) = §]§k\§] Lo with j,k € {1,2}. There exzsts a constant C' > 0 such that,
for any x,x1 € C§°(R?), o >0, and every t € [1,T], we have that

(B.4.353)  [|[Opy (x(h7€)ao(€)VE (¢, )[OpY (x1 (h7E)b(€))ilt, )]||,» < C(A + B)Be*hz "

(B.4.35b)  [[[OpF (x(h7€)ao(€))V (£, )N[OpY (x1(h7E)by(€))u(t, )]|| ;oo < C(A+ B)Be2h™7,

with ' > 0 small, 8 — 0 as 0,5y — 0.

Proof. The proof of this result has the same structure as that of lemma [B.3:3] Ouly few dif-
ferences occur due to to the fact that we are replacing v with VT. We limit here to indicate
them.

Instead of referring to estimate (B.3.9) we use the fact that, after (B.2.42)) in classical coordinates,
there exists a constant C' > 0 such that for any p € N

< C’Bah*ﬁ*%

(B.4.36) HOpﬁi’(x(h"&))Vr(t, ')‘ Hovos

with 8 > 0 small such that § — 0 as ¢ — 0. We successively decompose VT into V/{kg + ‘7{2 ,
g
with

4, (t.0) = 00 (T2 ) €1an() 7 1.0,
VA (t.@) = Opy (1~ w)(‘”‘}j;@)x<h%>ao<s>)vr<t, ).

On the one hand, from the fact that above operators are supported for frequencies |£| < h?,
together with proposition [1.2.39| with p = 400 and (B.4.36)), we have that

Hf/{kg (t, ~)HLOO < CBeh 7%

On the other hand, combining the analogous of (B.3.12)) with lemma (instead of |B.2.14)),
estimates (B.4.26)), (B.4.33)) (instead of lemma [B.3.2) and (B.4.30)) (instead of (B.2.79)),

70, <ot

Lemma B.4.10. Let T' € {Q,Z,,,m = 1,2} be a Klainerman vector field and VFNF be the
function defined in (B.4.15)). There exists a constant C' > 0 such that, for any x € CSO(RQ),
o >0 small, m,n =1,2, and every t € [1,T],

51+52

Basm) D o (7 - 00 ) 0] < Ol B
(B.4.37b) Hx(t_gDz) [$n$m (VF _ (I‘v),)] t,-) HLOO < C«(AJr )2 2t2+5+61+62

with B > 0 small such that 8 — 0 as 0 — 0.
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Proof. We remind the reader about explicit expression (B.4.18|) of the difference VFNF — (Tw)_,
and (B.2.30)), here considered with |I| = 1 such that '/ =T.

We first use equalities @ , , and, after some commutations, multiply x,, (together
with z,, when proving @D) against each Klein-Gordon factor. Successively, we estimate
the contribution coming from v/*"¥ — (I'v)_ using lemma with L = L*°, and all products
coming from the second line of by means of inequalities with L =L, w=u
and wj, = (Dy(Dy)~1)*Zmv for |u| = 0,1. On the one hand, we obtain that

[X(t77Dg) [2m (VY = (T)=)] (£ )| oo

1
5Zta||X1(t_”Dm)[fvm(Fv) M| oo IBYws (&, |0 + N2 (Do) (8, )| 2 s (&, )| ars
,LL—O
Py r(7555) v a7 DT
w 0 L
+ZtN8>||x“vi< Mz (e 6 ae + [ Do (¢, )l are)
|14|=0
1
+ 3w xm(&)“vi R (£, )| e
|l |v|=0 * Le

and estimate (B.4.37a]) follows choosing s > 0 large enough to have N(s) > 2 and using (1.1.11)),
(B.1.54), (B.1.10), (B.1.17) with k£ = 1, (B.2.62), (B.2.57). On the other hand,

X7 Dy) [wnam (VT = (T0) )] (8, )]] e
1

St D) [enwm (Co)e (¢, )] oo IRYus () o
n=0

+t_N(S)Hwnwm(Tv)( I z2llus @, )l e

Py

||0

D))

D, \nm
TnTm 7> U4+
D,

3 N a0, (s 4l + Dot e
|u|=0

+Zt"

|pel,|v[=0

IR e (2, ) | 2,00
Lo

Tnm ( <g >)#”i

so picking the same s as before and using (B.1.5al), (B.1.10a), (B.1.27), (B.1.28]), (B.1.32),
(B.2.57) and (B.4.11)), together with a-priori estimates, we derive (B.4.37b)). O

Lemma B.4.11. LetT' € {Q, Z,,,m = 1,2} be a Klainerman vector field and NLllfg’C be given by
(B.4.28)). There exists a constant C > 0 such that for any x € C§°(R?), o > 0 small, m,n = 1,2,
and every t € [1,T],

(B.4.38a) HX(fUDa:) {anLI’igvc} (t, .)Hp <C(A+ B)QBESt—HB”
(B.4.38b) |7 D2) [rmanNLio<] (00|, < Ca+ BB,
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with B > 0 small such that 8" — 0 as 0,09 — 0. Moreover, in the same time interval

(B.4.39) Hx(t_"Dm)NLiﬁg’c(t, .)HLOO < O(A+ B)2Be3t3+5,

Proof. We warn the reader that we will denote by C, 3,3’ some positive constants that may
change line after line, with 8 — 0 (resp. 8° — 0) as ¢ — 0 (resp. as 0,59 — 0). For a seek of
compactness we also denote by R(¢,x) any contribution verifying

(B.4.40) IX(77 D) [ R(E, ]| o < C(A + B)2 B 17,
) (=7 De) [emanR(t, )] 2 < C(A+ B)? B,
together with

R X7 D) R(E, )| oo < C(A+ B)?Bedta+H,

Let us introduce NLE as follows

NLEw = — % [—(DiTv) NLy + D1 [(T0) NLuy]]

(B.4.42) - % [~ (D1v)T' NLy, + D1[vD'NLy]] + %59 [~ (D2v)NLy + D2[vNLy]]

+ 62, [(Dw)NLL — (D) [vNLy]]
so that from (B.4.24)

(B.4.43)
NLEe = % (D' NLgy)(D11t) + NLyy(D1Tw)] + 5Q%NLkg(D2u) + 67, NLig(Dyu) + NLE,

with dq (resp. dz,) equal to 1 when I' = Q (resp. I' = Z;), 0 otherwise. After (1.1.5)), (1.1.10),
and estimates (1.1.11)), (B.1.3al), (B.1.6a) with s = 0, (B.1.10b), (B.4.29), NL"*’ verifies the
following;:

(7 D) [enNLE] (8,0

LZ
.y

w( Lz \" .
K zn(<Dm>> vt (t,-)

< C(A+ B)ABe3t=o+%,

Lo [ITNLw (t, g2 + INLu(t, e + o)z | (C0) (2, ) 2]

From the mentioned inequalities and the additional (B.1.27b)), it also satisfies

Ix(t77 D2) [man NLE] (¢, )] 2

<y o

M17M27|V‘:0

TN (8, )2 + | NEw(t, )l
LOO

xhlph? <<gi>> Vvi(t, )

How(t, 2o [(TT0)£ () 2]
< C(A+ B)ABe*to+2,

Moreover, applying twice lemma with L = L and s > 0 large enough to have N(s) > 2,
the first time to estimate products involving I'v and NL,, in (B.4.42)), the second one to estimate
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the first two quadratic contributions to I'NL,, (see (B.1.20bf)), we derive that there are two
smooth cut-off functions x1, x2 such that

IX(E D) NLG (t, )| oo S 87 (X2 (877 D) (T0) (8, )| oo VLo (E, )l
+ 2 (Po) (8 )2 [ NLw (t, )z + 7 lIx1 (877 Do) DNLuw (8, )| e [lox (E, ) e

+ 62| NLL (8 ) g2 o+ (& s + 7 o (8 )| e | VLo (2, )| oo
and

X1 (877 D )T NLu (£, )| oo S [Ix2(877 D) (T0) () 2o [[o (8, ) 2,00
+ (T ()l ot )z + los(t lares (Jo£E ) mzee + 1 Dev(t,)lmee) -

From a-priori estimates, (B.1.3b)), (B.1.3d)), (B.1.5a)) with s =0, (B.1.6b) with s =1 and § < 1
small, (B.2.42), (B.4.29)), we then recover

[x(t7Da)NLE™ (¢, -)|| oo < CA2B3 34
Those inequalities make NLf)“b a contribution of the form R(t,x), so from (B.4.43) we are left to

prove that the same is true for I'NLyy(D1u), NLyg(D1I'u), NLyg(Dou) and NLyg(Dgu).

We immediately observe, from (B.1.1b]) and (1.1.5)), that the cubic contributions to NLy,(Dou)
and NLyg(Dyu) are of the form

(B.4.44) [ao(Da)v-][b1(Ds)u—bo(Da)u,
with ag(§) € {1,&(€)71 5 = 1,2}, b1(€) € {&,&61E7 5 = 1,2}, bo(€) € {1,&]¢]71}. There-

fore, lemmas [B.3.5] [B.3.6] imply that NLj,(Dou) and NLy,(Dyu) are remainders R(t,z). Fur-
thermore, from (B.1.20a), (1.1.16) and the equation satisfied by u4 in (2.1.2)) with |I| =0,

T NLig = Q¢2((T)x, Dius) + Q0¥ (ve, Di(Tu))
— 60Q¢%(vs, Douy) — 0z, {Qﬁg(vi, 1Dy |us) + Q8 (v, QY (v, Dlvi))},

with 6o (resp. dz,) equal to 1 if I' = Q (resp. I' = Z;), 0 otherwise. Estimates (1.1.11a) and
(IB.4.27) imply that

[ D2) [ QEF (0, @3 (v, Dyos)) (D1w)] (2, )| poany S CA+ BB s
while after (1.1.11af), (B.1.3a)), (B.1.27b]),
HX(t_JDa;) [wmangg(Uﬂ:vQBV(U:E7D1U:E))(DIU):| (ta )‘ L2(dz)

Tnn <<gi>>uvi(t, )

<y

lu|=0

INLu (8, )| 22 (day [R1u (2, -) [ os
Lo°(dx)

d+6g

<C(A+B)A’Bet 2" 2~

Also, for any 6 €]0, 1],

7702 [QFF (0, @5 (0, Dres)) (D1w)| (1)

S N0 (& Moo [N Las(t, Yoo [Ras (2, [ 1oe < CAYO BOet=350048),

Lo°(dx)
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as follows from (B.1.3d)) with s = 1 and a-priori estimates. Thus ngg (vi, QY (v, Dlvi))(Dlu)
is a remainder R(t,z). The same holds true for

[—%Qﬁg(vi, Dous) — 87, Qe (v, ’Dxfui)] (D1u)

thanks to lemmas [B.3.5 and [B.3.6] since the above term is linear combination of products of the
form

[ao(Dz)v—] [b1(Dg)u—] Ryu-,
with the same ag(€) as before and by(€) € {&,&¢&;|€)71, (€], = 1,2}, as one can check using

and (LT9)

Summing up, the very contributions for which we have to prove estimates (B.4.40)) and (B.4.41))
are the following:

(B.4.45a) [ap(Dy)(Tv)_] [b1(Dy)u—] Riu—
(B.4.45b) [ag(Dg)v_] [b1(Dy)(Tu) -] Riu_,

which are the remaining types of products in (I'NLjg)(Diu), and
(B.4.45¢) [ao(Dg)v_] [b1(Dz)u—]Ri(T'u)_,

which are the products appearing in NLy,(DiI'u), with ag being the same as above and by (§)
equal to & or to §j£1\§|_1, with 7 = 1,2. All the manipulations we are going to make in what
follows are aimed at showing that these estimates follow from lemmas [B.3.3] [B.3.4] and [B.4.9]

Firstly, we can assume that all factors in (B.4.45)) are truncated for moderate frequencies less
or equal than 7, up to R(t,z) contributions. As regards (B.4.45a)), this comes out from the
application of lemma In fact, taking L = L%, wy = z¥ z,a0(D,)(Tw)_for k € {0,1}, s >0
large enough to have N(s) > 2, and using a-priori estimates and (B.1.17)), (B.1.28]), we find that
there is some y1 € C§°(R?) such that, for k = 0,1,

[\ D) [ a0 (D2 (o)) (D) R ]|

L2(dx)
< || pat Do) b uao(Da) (00) -] [x(t=7Da)br (Deu-] [x(t™7 Do) Ry ]|

L2(dx)
1
TNl ()= () g IR u () e (8 ) e
B2, |v[=0
< || b D) ek nao(D) (o) ] (x4 Dby (D2)u-] [t~ D) B,

+ CAB330-R+552
where 01 is the Kronecker delta. Taking instead L = L®, from a-priori estimates we derive that

(¢ D) [lao(Da)(P0) -] (o1 (D)) Rete-] |
S ([Pt Da)lao(D2) (Tv)-1] [t Da)br(Da)u-] [t D) Rt [ e

1
1723 @)=t g2 IRPu— (8, )| grzoe [fu— (2, )| 120
|u|=0
S [[xa(t=7Dy)lao(Da) (L) -]] [x (¢~ Da)br(Da)u-] [x(t~ Da)Rot—] || oo )

54389

+ CAB%3 5727,
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As concerns instead products (B.4.45b)) and (B.4.45¢)), this follows applying inequalities (B.2.24)
with w = u, wj, = 2% z,a0(D;)v_ for k= 0,1, and s > 0 such that N(s) >. In fact, for L = L?
we use estimates (T.1.11]), (B.1.10)), (B.1.27), together with (B.1.32)), to derive that for k € {0,1}

(77 D2) [k znlao D2y (o1 (D) (D) Ry |

L2(dx)
< || Pt Do) hraan(D)o- ] [x(t7 De)bn(Da)(Du)] x(¢~7 D) Ry |

L2(dx)

1
w8 30 ([fomalatto 6], Al 6 e ) s e PR 1)
L2(dx)
|1 ,p2,p3=0
7 b wnaoDayo- )| W) (sl (8
L (dx)

< || Pt Do) b eaao(D)o-) ] [x(t7 De)bn(Da)(Cu)] x(#7 Do) R |

L2(dz)
L CAB2:2— (- k)+252

Using instead with L = L* along with (| and ,
X (t7 D) [[a0(Da)v—] [by (Da)(Tu) -] Ryu HLm
S| bt Da)ao(Da)v—] [x(t77 Da)bi(Dg)(Tu) -] x(t 7 Dg)Ryu_|| .. + CABe 24—+

Secondly, we can assume that in (resp. in (B.4.45c))) b1(Dy)u_ is replaced with
bl(Dx)uN F (With u™F introduced in (3.1.15)). This is justified up to some R(t,z) terms that
satisfy as consequence of (L.L.11a), (B.1.17), (B.1.28) (resp. (B.1.104), (B.1.27a)),

(B.3.261), and also ) because of (I.1.11a)), (B.2.42)) (resp. (T.1.11b)) and (B.3.26b).

Hence we are led to estlmate the L2 norm of

5+52

(B.4.46a) [Xl(t D)k b aO(DI)(Fv)_]} [xX (77 D)y (D)uNF] x(¢~° Do) Ryu
(B.4.46b) [Xl(t_"DI)[ k2l ao(Dy )v,]} [X(t7° D,)by (D2)(Pu) -] X(t77 Da)Ryu
(B.4.46¢) [Xl(t D)k 2L ao(Dy ) _} [X (£~ D)by (Do) uF] X(t77 Da) Ry (T) -

for k=0,1,1 =1, and the L* norm of above products when k =1 = 0.

Thirdly, we can think of ag(D;)(T'v)— in (B.4.46al) and of ag(D,)v— in (B.4.46b)), (B.4.46c)
as replaced with ag(D;)VEVY and ag(D,)vNE respectively, where V¥ has been introduced in

(B.4.15) and v™* in (3.1.3). For (B.4.46a)) (resp. (B.4.46d)) this substltutlon is justified up to
some R(t,z) terms that satisfy 1|B 4. 40|D and ( m the former because of a-priori estirnate

(1.1.11a)), (B.3.30) and (B.4.37) (resp. (B.2.57)), (B.3.30) and m the latter after ,

(B.4.16) (resp. (]_B.3.26a ; 1|B.2.57|)) and the classical translation of the semi-classical ({ -
[N E (¢, )| oo + |RUNE (¢, ) || o < CBet™ 2.

Therefore, in order to conclude the proof we must prove that, for some x,x1 € C§° (R?) and
ke {0,1},

| Dor =7 Do) o (Do) (00) ] [x(t™7D2)br (De)u"] 3t D) Ry

L2(dz)
+ || pa T Do)l aan(De)o-]| (7 D)br (D) (Pw)-] x(t™7 Do) R |

L2(dz)
+ || a7 D) ekt ao(D2)o- 1| [T Dby (D)uF] Xt Do) R ()|

L2(dz)
< C(A+ B)?Be3t 1k
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and

I[x1 (™" Da)ao(Da)(Tw)-] [x(t™7 Da)br (D )u™ ] X (877 Do) Ruu— || oo )
+ | [x1 (77 Da)ao(Da)v—] [x(t77 Dy )by (D) (Tu)] <—”D VR~ | e ()
+ | [ (t™7 Da)ao(Da)v-] [x (77 Da)br(Da)u™ | x (¢ D) R1(Tw) || o 4

< C(A+ B)*Be*t 3+

Actually, using (T.1.11a)), (B.2.57), and passing to the semi-classical framework and unknowns
with V1 introduced in (B.4.20)), @, in (3.2.2), and u!(t,z) = t~}(Tw)_(¢,t "), above inequa-

lities will follow respectively from

> || (0wt Ga 7€) O (ao(©) V1] [Op (x(h7)br (€] 1)

k=0

(B4 + | [0k G (h €y O (ao()71] [OpR (xR (€)' 1,
+ | [0t 0 (h€) w00 (a0 ())71] [OE (x(R €1 (€))7] (1)

<C(A+ B)B&3h 277

L2(dx)

L2(dx)

L2(dz) }

and

| [Pk (1 (n7€)a0() VT [OpR (x(n7)br (€)1 ¢.)
(B.4.48) 4+ ||[Opy (x1(h7€)an(€))] [Opy (X (h7E)bs
+ || [Opy (x1(h7€)ao(€))T] [Opy (x (h7€)by

HLOO(dx)
(€)7] [Ov D) (4| 1
( o )] (6 )y < C(A+ B) BT

(
(

We immediately obtain from inequalities (B.3.35) and (B.3.39)) that

S [10py (a (2 ©) [k, 2, Op (a0 (€))3]] [0} (x(A7€)b1 (€))7 (1. )| o ey < C(A + B)BSh3
k=0

Moreover, one can check that

| [0p G (h7€))lar Opit (ao () VT1] [OpK (x(A7)bn (€)1 8.-)

én
{€)

L2(dx)

+ CABe2h3 P
L2

< |[[ork (v 9ae) 5 ) 7 ovt (e (€ e

| [Op;f(xl<h”§>>[xmanpmao(g))Wﬂ [Op} (x(h7€)1(€))a] (1)

)7 [owt (xrem( 2 )a . )

L2(dx)

+C(A+ B)Be2h2F
L2(dx)

H ovt (xa(h7an(e)

and

1 [Op} (x1(h7€)) [2.0p} (a0(€))3] ][Oy (x(h7€)bL(€)E] (¢, )| 12 4

< | [ork (xae0ante) 5 7] l0nk (e m €.

: §>> 4 CABe2hs P

L2
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[1[0p} (x1.(h7€) [2maxOpj; (a0(€))7] ] [Op} (x (h7€)b1(€))a] (¢, )| .-

< H [opg (xa(h€)aote) 22 V3] [opg (x(r7 b (€S2 )il | 10|+ C(A+ ByBRIY.
(&) i L2(da)
This can be done using a similar argument to the one that led us to (B.3.35) and (B.3.39), up
to replacing ¥ with V' in , referring to lemma instead of B.2.14|, and to estimate
instead of , in order to derive the former two inequalities; up to replacing

with 2! in (B.3.34)), using lemma instead of (B.2.1a), (B.2.1¢c|), estimate (B.3.23|) instead
of (B.3.8), and the fact that for any 6 €]0, 1]

10Dk (X (h7€)b1(€)&mlE] ™" (¢, )| oo = t [[X(¢77 Di)b1(Dz) D | D ™ (D) (8, )| o

(30 + (1+61+62) 0

S HIXE T D2)(Tw) (&, )|l [(Tw)— (1) |2 < C(A+ B) =/ Bleta 743 )
which is the analogous of (B.3.37) (last estimate deduced using (B.2.57) and (L.1.11d) with
k = 1), to demonstrate the latter two ones. Therefore, above inequalities and lB.3.22§]), (B.4.35al)
imply (B.4.47). Finally, (B.4.48) is consequence of (B.3.7b), (B.3.22b) and (B.4.35b). That

concludes the proof of the statement. O

Lemma B.4.12. Let NLllig’C be given by (B.4.28|). There exists a constant C' > 0 such that, for
any x € C°(R?), o > 0 small, m,n = 1,2, and every t € [1,T],

| Ok (7€) £om [t(00) N 1, 1) Hmdz) < C(A+ BB,
|opi (x(h€) e [t(12) QK (04 @ (i Div)) 1 10)] | | < A+ BYABS?,

with ' > 0 such that ' — 0 as o,69 — 0.

Proof. Straightforward after (B.3.6)), lemma [B.4.11] estimate (B.4.27) and the following inequa-
lity

L2(dx

HX(f"Dx) {xmangg(UivQg(vﬁzaDl’Uﬁ:))} (t, ‘)‘

<2

D, \nm
xm$n<7> 'Uj:(t, )
D, oo
=0 \Da) L
deduced from (|1.1.11)), (B.1.3a) and (B.1.27b)). O]

Lemma B.4.13. Let V' be the function defined in (B.4.20). There exists some positive constant
C such that, for any x € C§°(R?), o > 0 small, and every t € [1,T],

L2

| NLu(t, |2 < C(A + B)ABE* 22,

(B.4.49) ZHOph (h7€)L VT (¢, H < CBet?
|p]=2

with B/ > 0 small, 3’ — 0 as 0,09 — 0.

Proof. First of all we remind that VM is solution to (B.4.23). From relation (3.2.9b) and the

commutation between £,, and Op}’ ((£ (( )) we deduce that, for any m,n = 1,2,

1

S 3 L 10PH ek €))Ll [t 2V (1 )] | o

pu=0
&n

<§>>VP( )
+ |0k ()24, [t(t)QfF (v, QF (v Drvs)) 1) |

|0 (e(h7€)) £ LV (2 \

+ Jortmeenenon

+ loprecneen et [ Vi1, 1)

L2(dx)

L2(dx) } ’
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The result of the statement follows then from (B.4.26)), (B.4.27)), (B.4.30), (B.4.33)), and lemmas

[B.4.6[B.4.12 O

Lemma B.4.14. There exists a constant C > 0 such that, for any x € C°(R?) equal to 1 in a
neighbourhood of the origin, o > 0 small, and every t € [1,T],

(B.4.50) > Ix(t D) V()| e < CBet™!.
[I]=1

Proof. As this estimate is evidently satisfied when I is such that I'! is a spatial derivative after
a-priori estimate (I.1.11b)), we focus on proving the statement for I'V € {Q, Z,,,,m = 1,2} being
a Klainerman vector field. For simplicity, we refer to I'! simply by T.

Instead of proving the result of the statement directly on (I'v)+ we show that

(B.4.51) Ve (8, )] oo < CBet™,

where VFNF has been introduced in (B.4.15). After (B.4.16), the above inequality evidently
implies the statement. The main idea to derive the sharp decay estimate in (B.4.51)) is to use the

same argument that, in subsection led us to the propagation of a-priori estimate ,
i.e. to move to the semi-classical setting and deduce an ODE from equation satisfied by
VFN F The most important feature that will provide us with is that the uniform norm of
all involved non-linear terms is integrable in time. Before going into the details, we also remind
the reader our choice to denote by C, 3 and ' some positive constants that may change line
after line, with 8 — 0 (resp. 8/ — 0) as o — 0 (resp. as 7,59 — 0).

Let us consider VI (¢, z) := tVVE (¢, tx), operator T as follows
/
Fkg =0 w< (l‘ - P (5)
ph v \/E
with 7, x1 € C§°(R?) such that v = 1 close to the origin, x1 = 1 on the support of x, p(§) := (£),
and

Ja9),

Vi, (t,2) = TOp (x(h7€))V (¢, 2),
VA (t.@) = Opy ((1 - v)(‘”‘}’h@)m(h”f))Opﬁ<x<h”5>>vf<t,x>,
so that B B B

Opy (X(h7E)IVE(t,+) = Vi, + Vg -

It immediately follows from inequality (3.2.18b]) and lemmas B.4.13] that
2
vt < LBH W (BTN AT (4 H < —1+p
(B.4.52) HVAkg(t, )HLW < |Z|:0h2 Pk ()L VI (1, )|, < OBet ™5+
/_L:

On the other hand, as VFN s solution to (B-4.23)) an explicit computation shows that VT satisfies
the following semi-classical pseudo-differential equation:

[Dt - Opl}f(qj ’ § - <§>)] ‘7F(t7 .CC) = h_lNLIIC‘g’C(tv t.%') - 5Z1h_1Qgg (’Ui, QBV(U:IU DIU:I:))(ta t.%'),
with NLllig’C given explicitly by (B.4.28). Applying successively operators Op¥ (y(h°¢)) and I'*

to the above equation we find, from symbolic calculus and the first part of lemma [3:2.5] that
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VAF satisfies
kg

(BA.53)  [Dy— Op}(w- € — (N]VA,, (1) = h™'THO0p} (x(h7€)) | NL{** (¢, 1a)]
— 67, b~ 0D (0 (7€) [QFF (v, QY (v, Dyvs)) (1 )] — Op} (b, €)Opi (x(h7€) VT (1, 2)
+ioh! 7T Op}y (9x) (h7€) - (h7E)) VT,

with symbol b given by ([3.2.27]). Since ~’s derivatives vanish in a neighbourhood of the origin
and dx1 = 0 on the support of y, from symbolic calculus of lemma and remark [1.2.22
1.2.42, together with inequalities (3.2.17bj), (3.2.18b]), that

Hopz%b(x,£>>Opw<x<h"é>>Vr<t’ M,

<11 S OB DT 1, i + V|, < opet i,
|pu|=0
where last estimate is obtained using lemmas Moreover, reminding lemma

and using symbolic calculus we see that, for any N € N as large as we want,

(B.4.54) Rt

rHOpY((Ox (1°€) - (VT (1, )|

< 147 D490, ) Op (@x(17€) - (h€NTT ()| + WV IV, e

where 0 () is a smooth cut-off function supported in closed ball By_2+(0), with ¢ > 0 small.
Denoting (9x)(§)-€ concisely by x(§), we observe from proposition |1.2.39 with p = +o0, together
with the uniform continuity on L* of operator X (t~?D,), the definition of VT in terms of VFNF )

and ([B.4.16]), that

pito 0 (2)Op (R(R7€))VT (¢ H

r490, () Opy (R VI (1, )|| S 0t

<tf Hc9h<¥)x(t_"Dx)(I‘v),( , ~)HLOO + C(A+ B)Be2~ 115,

Using the fact that, for Hi(z) = 0n(2)z,

() = o (3o (2o

9h<%)(va)_ - t{@,ﬁ”(%)@tv_ + 9h(§)amv_] + 9h(§) 533@_, m=1,2,

and making some commutations, we can express (I'v)_ in terms of v_ and its derivatives up to a
loss in ¢t. Thus, from the classical Sobolev injection combined inequality (B.1.2), we obtain that

and

D (e £ APt e et o)

< CBst_5,

last estimate following by taking s > 0 large enough to have N(s) > 3 and using a-priori estimates

along with (B.1.6a)) with s = 0. From (B.4.21a)) and (B.4.54)) we hence derive that

hl—l—o‘

TR Opy (OX(h7€) - (VI (t,-)||, < CBet 3,
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so the last two terms in the right hand side of equation (B.4.53) are remainders R(t, z) such that
(B.4.55) IR(t, )|~ < CBet™1,

for every t € [1,T].
After proposition [1.2.39| with p = 400, estimate (B.4.39)), and the fact that for any 0 €]0, 1],

S5
HQISg (01, QY (vs, D1vy)) (¢, ) HLm(dx) < CA30BO3—3+0(1+5)

as follows by (B.1.3c|) with s = 1 and a-priori estimates, we deduce (up to taking # < 1 small in
the above inequality) that also the first two non-linear terms in the right hand side of (B.4.53)
satisfy (B.4.55)) and can be included into R(t,x). Therefore, V[fkg satisfies

[Dy — Opy (a - € — () VA, (1, %) = R(t, ),
and using (i3.2.21)) along with inequality (3.2.23bj), together with lemmas B.4.13] we deduce
that, for the same family of cut-off functions 6}, introduced above, kag is solution to the following
ODE:
(B.4.56) DR, (t,2) = —O4(x)p(2) VA, (t,7) + R(t,x),

with ¢(z) = /1 — |z|?. Since the inhomogeneous term R(¢,z) decays, in the uniform norm, at
a rate which is integrable in time, we get that

IVE, (6= S IVE (1,1~ + CBe < CBe,

which summed up with (B.4.52)) implies (B.4.51f), and hence the conclusion of the proof. O

222



Bibliography

1]
2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

T. Alazard and J.-M. Delort. Sobolev estimates for two dimensional gravity water waves.
Astérisque, (374):viii+241, 2015. 1SsN: 0303-1179.

S. Alinhac and P. Gérard. Pseudo-differential operators and the Nash-Moser theorem, vol-
ume 82 of Graduate Studies in Mathematics. American Mathematical Society, Providence,
RI, 2007, pages viii+168. 1SBN: 978-0-8218-3454-1. DOI: [10.1090/gsm/082. URL: https:
//doi.org/10.1090/gsm/082. Translated from the 1991 French original by Stephen S.
Wilson.

J.-M. Bony. Calcul symbolique et propagation des singularités pour les équations aux
dérivées partielles non linéaires. Ann. Sci. Ecole Norm. Sup. (4), 14(2):209-246, 1981.
ISSN: 0012-9593. URL: http://www.numdam.org/item?id=ASENS_1981_4_14_2_209_0.

J.-M. Delort. A quasi-linear Birkhoff normal forms method. Application to the quasi-linear
Klein-Gordon equation on S'. Astérisque, (341):vi+113, 2012. 18SN: 0303-1179.

J.-M. Delort. Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon
equations on the circle. Trans. Amer. Math. Soc., 361(8):4299-4365, 2009. 1SSN: 0002-9947.
DOI: |10.1090/50002-9947 - 09-04747-3. URL: http://dx.doi.org/10.1090/S0002-
9947-09-04747-3|

J.-M. Delort. Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres.
Mem. Amer. Math. Soc., 234(1103):vi+80, 2015. 1sSN: 0065-9266. DOI: 10 . 1090/ memo /
1103. URL: http://dx.doi.org/10.1090/memo/1103.

J.-M. Delort. Semiclassical microlocal normal forms and global solutions of modified one-
dimensional KG equations. Annales de 'Institut Fourier, 2016.

M. Dimassi and J. Sjostrand. Spectral asymptotics in the semi-classical limit, volume 268 of
London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,
1999, pages xii+227. 1SBN: 0-521-66544-2. DOI: [10.1017/CB09780511662195. URL: http:
//dx.doi.org/10.1017/CB09780511662195.

V. Georgiev. Global solution of the system of wave and Klein-Gordon equations. Math. Z.,
203(4):683-698, 1990. 1SSN: 0025-5874. URL: https://doi.org/10.1007/BF02570764.

L. Hormander. Lectures on nonlinear hyperbolic differential equations, volume 26 of Math-
ématiques € Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin,
1997, pages viii+289. I1SBN: 3-540-62921-1.

L. Héormander. The analysis of linear partial differential operators. III. Classics in Mathe-
matics. Springer, Berlin, 2007, pages viii4+-525. 1SBN: 978-3-540-49937-4. DOI:/10.1007/978-
3-540-49938-1. URL: http://dx.doi.org/10.1007/978-3-540-49938- 1. Pseudo-
differential operators, Reprint of the 1994 edition.

J. K. Hunter, M. Ifrim, and D. Tataru. Two dimensional water waves in holomorphic
coordinates. Comm. Math. Phys., 346(2):483-552, 2016. 1ssN: 0010-3616. DOTI: |10.1007/
s00220-016-2708-6. URL: http://dx.doi.org/10.1007/s00220-016-2708-6.

223


https://doi.org/10.1090/gsm/082
https://doi.org/10.1090/gsm/082
https://doi.org/10.1090/gsm/082
http://www.numdam.org/item?id=ASENS_1981_4_14_2_209_0
https://doi.org/10.1090/S0002-9947-09-04747-3
http://dx.doi.org/10.1090/S0002-9947-09-04747-3
http://dx.doi.org/10.1090/S0002-9947-09-04747-3
https://doi.org/10.1090/memo/1103
https://doi.org/10.1090/memo/1103
http://dx.doi.org/10.1090/memo/1103
https://doi.org/10.1017/CBO9780511662195
http://dx.doi.org/10.1017/CBO9780511662195
http://dx.doi.org/10.1017/CBO9780511662195
https://doi.org/10.1007/BF02570764
https://doi.org/10.1007/978-3-540-49938-1
https://doi.org/10.1007/978-3-540-49938-1
http://dx.doi.org/10.1007/978-3-540-49938-1
https://doi.org/10.1007/s00220-016-2708-6
https://doi.org/10.1007/s00220-016-2708-6
http://dx.doi.org/10.1007/s00220-016-2708-6

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]
[24]

[25]

[26]

[27]

J. K. Hunter, M. Ifrim, D. Tataru, and T. K. Wong. Long time solutions for a Burgers-
Hilbert equation via a modified energy method. Proc. Amer. Math. Soc., 143(8):3407-3412,
2015. 18SN: 0002-9939. DOTI: [10.1090/proc/12215. URL: http://dx.doi.org/10.1090/
proc/12215.

M. Ifrim and D. Tataru. Global bounds for the cubic nonlinear Schrédinger equation (NLS)
in one space dimension. Nonlinearity, 28(8):2661-2675, 2015. 1SSN: 0951-7715. URL: https:
//doi.org/10.1088/0951-7715/28/8/2661.

M. Ifrim and D. Tataru. Two dimensional water waves in holomorphic coordinates II:
Global solutions. Bull. Soc. Math. France, 144(2):369-394, 2016. 1SSN: 0037-9484.

A. D. Tonescu and F. Pusateri. Global solutions for the gravity water waves system in 2d.
Invent. Math., 199(3):653-804, 2015. 1sSN: 0020-9910. DOI: 10.1007/s00222-014-0521-4.
URL: http://dx.doi.org/10.1007/s00222-014-0521-4.

A. Tonescu and B. Pausader. On the global regularity for a wave-Klein-Gordon coupled
system. Preprint, 2017, arXiv:1703.02846.

S. Katayama. Global existence for coupled systems of nonlinear wave and Klein-Gordon
equations in three space dimensions. Math. Z., 270(1-2):487-513, 2012. 18SN: 0025-5874.
URL: https://doi.org/10.1007/s00209-010-0808-0.

S. Klainerman. The null condition and global existence to nonlinear wave equations. In
Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa
Fe, N.M., 1984). Volume 23, Lectures in Appl. Math. Pages 293-326. Amer. Math. Soc.,
Providence, RI, 1986.

P. G. LeFloch and Y. Ma. The global nonlinear stability of Minkowski space for self-
gravitating massive fields, volume 3 of Series in Applied and Computational Mathemat-
ics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018, pages xi+174. ISBN:
978-981-3230-85-9.

P. G. LeFloch and Y. Ma. The global nonlinear stability of Minkowski space for self-
gravitating massive fields. The Wave-Klein-Gordon model. Comm. Math. Phys., 346(2):603—
665, 2016. 18SN: 0010-3616. URL: https://doi.org/10.1007/s00220-015-2549-8.

P. G. LeFloch and Y. Ma. The hyperboloidal foliation method, volume 2 of Series in Applied
and Computational Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack,
NJ, 2014, pages x+149. 1SBN: 978-981-4641-62-3.

Y. Ma. Global solutions of non-linear wave-Klein-Gordon system in one space dimension.
arXiv:1808.06850.

Y. Ma. Global solutions of non-linear wave-Klein-Gordon system in two space dimension:
semi-linear interactions. arXiv:1712.05315.

Y. Ma. Global solutions of quasilinear wave-Klein-Gordon system in two-space dimension:
completion of the proof. J. Hyperbolic Differ. Equ., 14(4):627-670, 2017. 1SSN: 0219-8916.
DOI:/10.1142/S0219891617500217. URL: https://doi.org/10.1142/50219891617500217.

Y. Ma. Global solutions of quasilinear wave-Klein-Gordon system in two-space dimension:
technical tools. J. Hyperbolic Differ. Equ., 14(4):591-625, 2017. 1ssN: 0219-8916. DOI: 10.
1142/S0219891617500205. URL: https://doi.org/10.1142/30219891617500205.

G. Métivier. Para-differential calculus and applications to the Cauchy problem for nonlin-
ear systems, volume 5 of Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series.
Edizioni della Normale, Pisa, 2008, pages xii+140. ISBN: 978-88-7642-329-1; 88-7642-329-1.

224


https://doi.org/10.1090/proc/12215
http://dx.doi.org/10.1090/proc/12215
http://dx.doi.org/10.1090/proc/12215
https://doi.org/10.1088/0951-7715/28/8/2661
https://doi.org/10.1088/0951-7715/28/8/2661
https://doi.org/10.1007/s00222-014-0521-4
http://dx.doi.org/10.1007/s00222-014-0521-4
https://doi.org/10.1007/s00209-010-0808-0
https://doi.org/10.1007/s00220-015-2549-8
https://doi.org/10.1142/S0219891617500217
https://doi.org/10.1142/S0219891617500217
https://doi.org/10.1142/S0219891617500205
https://doi.org/10.1142/S0219891617500205
https://doi.org/10.1142/S0219891617500205

28]

[29]

[30]
[31]

[32]

T. Ozawa, K. Tsutaya, and Y. Tsutsumi. Remarks on the Klein-Gordon equation with
quadratic nonlinearity in two space dimensions. GAKUTO Internat. Ser. Math. Sci. Appl.
10:383-392, 1997.

A. Stingo. Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon
equations with mildly decaying Cauchy data:46, 2015. To appear in Bulletin de la Société
Mathématique de France.

Q. Wang. An intrinsic hyperboloid approach for Einstein Klein-Gordon equations. Preprint,
2016, arXiv:1607.01466.

Q. Wang. Global existence for the Einstein equations with massive scalar fields. In 2015.
Lecture at the workshop Mathematical Problems in General Relativity.

M. Zworski. Semiclassical analysis, volume 138 of Graduate Studies in Mathematics. Amer-
ican Mathematical Society, Providence, RI, 2012, pages xii+431. 1ISBN: 978-0-8218-8320-4.

225



226



Index

Admissible cut-off function,

b (§), function,

Cyw, cubic term in the wave equation after a
normal form, [I0T

EO(t U+, U:I:)? energy,
E¥(t;uy,vy), generalized energy,
EX(t; W), generalized energy,

t; ui, vi), generalized energy,

/\A/\/\Af\

n

I, product of admissible vector fields,
"% operator, m
Yn, function,

h, semi-classical parameter, [102
Hp,oo(Rd)’ space,
HP™(RY), space,
H*(R%), space,
H; (R%), space,

I(I), set of multi-indices,
Jg, set of multi-indices,
Jn, set of multi-indices,

K, set of integers,
X, set of multi-indices,
Klainerman vector fields,

Ajg, manifold associated to the
Klein-Gordon equation, [44]

A, manifold associated to the wave
equation, [IT5]

Littlewood Paley decomposition, [I7]

L, operator, [46]

M, operator,
Mg*(a;n), seminorm, ﬂ
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NLyg, quadratic non-linearity in the
Klein-Gordon equation satisfied by
v, [157]

NL,,, quadratic non-linearity in the wave
equation satisfied by u,

), Euclidean rotation,

Qp,, semi-classical Euclidean rotation, [30]

Op®, para-differential operator,

Opg, remainder para-differential operator,
1§

Opp, standard semi-classical quantization,
120)

Opj}/, semi-classical Weyl quantization,

Order function, [I9

p(§), function,

Qo(v, w), null form, [11]
kg(vi,D u4 ), null form .
Qw, quadratic term in the wave equation
after a normal form, [100]

QY (v+, Dyv+), null form,

r,i\gp , cubic term in the Klein-Gordon

equation after a normal form,
, cubic term in the wave equation after
a normal form, [10T

NF
T’ll)

0 (]R ), class of symbols,
¥ (R%), class of symbols,
St (RY), class of symbols,

:

Sobolev injection, semi-classical,

U, wave vector, [52]
U, wave vector with admissible vector

fields, [57]

ui, wave components with admissible

vector fields, [T2]



uNF | wave component after a normal form,

LLOO
U+, wave components, [T2]
> wave component in semi-classical
setting, localised for frequencies
~2F 1115
u, wave component in semi-classical setting,
02
17/2\; ’k, wave component in semi-classical
setting, localised around A,
ﬂigk, wave component in semi-classical
setting, localised away from A,
16l

V, Klein-Gordon vector, [52]

VI Klein-Gordon vector with admissible
vector fields,

v}, Klein-Gordon components with
admissible vector fields,

VE  set of multi-indices,

vNF | Klein-Gordon component after a
normal form, 0]

VFN £ normal form function defined from

(Tw)_, 206
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LNF yormal form function defined from

(M),

v+ Klein-Gordon components,

v, Klein-Gordon component in
semi-classical setting, [102

VF, function VFN F in semi-classical setting,

5/%1@’ Klein-Gordon component in
semi-classical setting, localised

around Ayg, [103]
'17%2 , Klein-Gordon component in
g

(

semi-classical setting, localised
away from Agg, [103]

W, wave-Klein-Gordon vector,

W wave-Klein-Gordon vector with
admissible vector fields,

W wave-Klein-Gordon vector after
symmetrization, [63]

WP (R?), space,

Z., family of admissible vector fields,
Zj, Lorentzian boost, [12]
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