Mean-field avalanche size exponent for sandpiles on Galton-Watson trees - Archive ouverte HAL
Article Dans Une Revue Probability Theory and Related Fields Année : 2019

Mean-field avalanche size exponent for sandpiles on Galton-Watson trees

Résumé

We show that in abelian sandpiles on infinite Galton-Watson trees, the probability that the total avalanche has more than $t$ topplings decays as $t^{-1/2}$. We prove both quenched and annealed bounds, under suitable moment conditions. Our proofs are based on an analysis of the conductance martingale of Morris (2003), that was previously used by Lyons, Morris and Schramm (2008) to study uniform spanning forests on $\mathbb{Z}^d$, $d\geq 3$, and other transient graphs.

Dates et versions

hal-01902681 , version 1 (23-10-2018)

Identifiants

Citer

Antal Jarai, Wioletta M. Ruszel, Ellen Saada. Mean-field avalanche size exponent for sandpiles on Galton-Watson trees. Probability Theory and Related Fields, 2019, 177 (1-2), pp.369-396. ⟨10.1007/s00440-019-00951-z⟩. ⟨hal-01902681⟩
27 Consultations
0 Téléchargements

Altmetric

Partager

More