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Abstract

This paper considers the eigenvectors involved in rank one perturbations

of symmetric matrices. A doubly stochastic matrix based on the inner prod-

ucts between initial and perturbed eigenvectors is introduced to derive several

relations for the latter ones. A majorization theorem used together with this

doubly stochastic matrix provides the main results of the paper, which deal

with the eigenvectors associated to the largest and smallest non-zero eigenval-

ues. Further developments are also suggested for infinitesimal perturbations

using convergent power expansions of both eigenvalues and eigenvectors.
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1 Introduction

Rank one perturbations are of major interest from both applied and the-

oretical standpoints. When considering symmetric or hermitian matrices,

some central results for eigenvalues are provided by Golub [8], Thompson

[15], Bunch, Nielsen and Sorensen [4] or Arbenz and Golub [1]. More recent

works focusing on bounds for the perturbed eigenvalues include papers of

Ipsen and Nadler [10], Bénasséni [3], Cheng, Luo and Li [5], Cheng, Song,

Yang and Si [6] among others. It is also worth noting that Ding and Zhou

[7] consider rank-one perturbed matrices of special structure. Finally, Mehl,

Mehrmann, Ran and Rodman [12] develop a comprehensive study of the

perturbation theory for structured matrices under structured rank one per-

turbations while Ran and Wojtylak [14] consider curves associated to eigen-

values in the framework of rank one perturbations . However, despite this

amount of results for eigenvalues, less work has been devoted to the behavior

of eigenvectors under perturbations of restricted rank.

We consider the perturbation of a symmetric matrix A of order p to
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B = A+ τcct (1)

where τ is a real positive constant and c is a unit two norm column vector

in R
p with ct = (c1, . . . , cp). For i = 1, . . . , p, the eigenvectors ui of A

associated to the eigenvalues ranked in decreasing order: λ1(A) > λ2(A) >

. . . λp(A) > 0 are assumed to have a unit two norm. The same assumption

is made for the eigenvectors vi of B associated to the eigenvalues λ1(B) >

λ2(B) > . . . λp(B) > 0.

This paper considers the inner products ctui, ctvi and utvi for i =

1, . . . , p . Since the vectors c, ui and vi are assumed to have a unit norm,

these three inner products are involved in the fundamental cosine formula

of spherical geometry. However, the goal of this paper is to provide new

relations for these inners products and to derive properties specific to the

eigenvectors corresponding to the largest and smallest non-zero eigenvalues.

The paper is organized as follows. Section 2 is devoted to preliminary re-

sults and provides relations involving the inner products ctui, c
tvi and ut

ivi

for i = 1, . . . , p. In particular it is shown that the matrix of order p with

elements (vt
iuj)

2 is a doubly stochastic matrix. Focusing more specifically

on the eigenvectors corresponding to the largest and smallest non-zero eigen-

values, Section 3 provides inequalities for the inner products ctvi using a

majorization theorem of Hardy, Littelwood and Pólya. Finally, in Section 4,

additional inequalities are proposed and refined developments are suggested

for infinitesimal perturbations.
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2 Preliminary results

As first lemma we use a result due to Golub [9, Corollary 8.1-5 p.270].

Lemma 1 There exit p real numbers qi satisfying qi > 0 and
∑p

i=1 qi = 1

such that: λi(B) = λi(A) + τqi for i = 1, . . . , p.

It should be noted that qi = (λi(B)− λi(A))/τ is the percentage of increase

of the trace accounted for by the ith eigenvalue when A is modified to B.

The next proposition provides a new formulation of qi which will be useful

since q1 and qp play a central role in several results of the paper.

Proposition 2 For i = 1, . . . , p we have:

qi =
(ctui)(c

tvi)

ut
ivi

(2)

if ut
ivi 6= 0

Proof: The proof of the result is straightforward multiplying the left-hand

side of (1) by ut
i and its right-hand side by vi and using Aui = λi(A)ui and

Bvi = λi(B)vi.

Proposition 3 Let M = (mij) denote the p × p matrix whose entries are

defined by: mij = (vt
iuj)

2. Then M is a doubly stochastic matrix.

Proof: For i = 1, . . . , p we have:

p
∑

j=1

mij =

p
∑

j=1

(vt
iuj)

2 =

p
∑

j=1

(vt
iuj)(u

t
jvi) = vt

i(

p
∑

j=1

uju
t
j)vi = vt

ivi = 1

since
∑p

j=1 uju
t
j is the identity matrix and the eigenvectors vi are normalized

for the two norm. Therefore all the rows of M sum to one. Similarly we get
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∑p

i=1 mij = 1 for j = 1, . . . , p so that all the columns of M also sum to one.

Since all the entries of M are nonnegative, this matrix is doubly stochastic.

Theorem 4 Let lA and lB denote the two column vectors of Rp defined by

l
t
A = (λ1(A), λ2(A), . . . , λp(A)) and l

t
B = (λ1(B), λ2(B), . . . , λp(B). Denote

also by h the column vector defined by ht = ((ctv1)
2, . . . , (ctvp)

2). Then:

MlA = lB − τh (3)

Proof: Using the definition of M, the ith row of MlA may be written as:

[MlA]i =

p
∑

j=1

λj(A)mij =

p
∑

j=1

λj(A)(vt
iuj)

2 =

p
∑

j=1

λj(A)(vt
iuj)(u

t
jvi)

= vt
i

[

p
∑

j=1

λj(A)uju
t
j

]

vi

= vt
iAvi.

From (1) we then have:

[MlA]i = vt
i(B− τcct)vi = λi(B)− τ(ctvi)

2

since Bvi = λi(B)vi and vt
ivi = 1. This proves (3).

Corollary 5 For i = 1, . . . , p, we have λi(B)− τ(ctvi)
2 > 0.

Proof: The result is obvious from (3) since all the entries in M and lA are

non negative.

Finally in the next section we shall use a theorem of majorization due to

Hardy, Littelwood and Pólya which requires to introduce the following defi-

nition:
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Definition 6 Given a p-tuple x of nonnegative real numbers with xt =

(x1, x2, . . . , xp) we denote by x∗ the p-tuple with the same entries as x but

rearranged in non-increasing order. In other words, x∗ = (x∗
1, x

∗
2, . . . , x

∗
p)

t

with x∗
1 > x∗

2 > . . . > x∗
p. The p-tuple x is said to be majorized by the p-tuple

y with the notation x ≺ y if :

k
∑

j=1

x∗
j 6

k
∑

j=1

y∗j

for k = 1, . . . , p− 1 and
p

∑

j=1

x∗
j =

p
∑

j=1

y∗j .

As a simple consequence of the previous definition we have the following

corollary whose proof is obvious.

Corollary 7 Consider two p-tuples of nonnegative real numbers x and y

such that x ≺ y. For any p × p permutation matrix P , define z = Px .

Letting zt = (z1, z2, . . . , zp) and yt = (y1, y2, . . . , yp) we then have:

k
∑

j=1

zj 6

k
∑

j=1

y∗j

for k = 1, . . . , p− 1 and
p

∑

j=1

zj =

p
∑

j=1

y∗j .

Note that this corollary holds when considering in particular the identity

matrix for P.

Theorem 8 For two p-tuples of nonnegative real numbers x and y, we have

x ≺ y if an only if there exists a doubly stochastic matrix S such that x = Sy.
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This well known result due to Hardy, Littelwood and Pólya can be found in

Minc [13, Theorem 2.2 p.110] for example . A comprehensive reference on

inequalities in relation with the theory of majorization is also provided by

Marshall, Olkin and Arnold [11].

3 Main inequalities

Theorem 9 Let r denote the rank of A. Then we have the following in-

equality:

(ctv1)
2
>

λ1(B)− λ1(A)

τ
= q1 (4)

Furthermore, if c ∈ range(A), we have:

(ctvr)
2
6

λr(B)− λr(A)

τ
= qr (5)

and if c /∈ range(A), we have:

(ctvr+1)
2
6

λr+1(B)− λr+1(A)

τ
=

λr+1(B)

τ
(6)

Proof: From Proposition 3 we know that the matrix M involved in Equation

(3) is doubly stochastic. Therefore we can derive from this proposition that:

lB − τh ≺ lA (7)

by the Theorem 8 of Hardy, Littelwood and Pólya. Noting that lA = l
∗
A and

using Corollary 7 because the ranking order of the entries λi(B) − τ(ctvi)
2

is unknown , we then have:

λ1(B)− τ(ctv1)
2
6 λ1(A)
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which proves (4).

Now assume that c ∈ range(A) so that both A and B are of rank r. Then

for i > r + 1 we have λi(B) = λi(A) = 0 and from Corollary 5:

λi(B)− τ(ctvi)
2 = −τ(ctvi)

2
> 0

so that (ctvi) = 0. Then:

r
∑

i=1

(ctvi)
2 =

p
∑

i=1

(ctvi)
2 = ct(

p
∑

i=1

viv
t
i)c = ctc = 1

and

r
∑

i=1

(λi(B)− τ(ctvi)
2) = Tr(B)− τ = Tr(B− τcct) = Tr(A) =

r
∑

i=1

λi(A)

From (7) used together with Corollary 7, we have:

r−1
∑

i=1

(λi(B)− τ(ctvi)
2) 6

r−1
∑

i=1

λi(A)

and
r

∑

i=1

(λi(B)− τ(ctvi)
2) =

r
∑

i=1

λi(A)

so that:

λr(B)− τ(ctvr)
2
> λr(A)

which proves (5).

Finally if c /∈ range(A), the matrix B is of rank r + 1 so that λr+1(B) > 0

and λi(B) = 0 for i > r + 2 while we have always λi(A) = 0 for i > r + 1.

Therefore from Corollary 5 we have for i > r + 2:

λi(B)− τ(ctvi)
2 = −τ(ctvi)

2
> 0
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so that (ctvi) = 0 and

r+1
∑

i=1

(ctvi)
2 =

p
∑

i=1

(ctvi)
2 = ct(

p
∑

i=1

viv
t
i)c = ctc = 1.

Then

r+1
∑

i=1

(λi(B)− τ(ctvi)
2) = Tr(B)− τ = Tr(B− τcct) = Tr(A) =

r
∑

i=1

λi(A).

From (7) used again together with Corollary 7, we have:

r
∑

i=1

(λi(B)− τ(ctvi)
2) 6

r
∑

i=1

λi(A)

and
r+1
∑

i=1

(λi(B)− τ(ctvi)
2) =

r+1
∑

i=1

λi(A)

so that:

λr+1(B)− τ(ctvr+1)
2
> λr+1(A)

which proves (6) since λr+1(A) = 0.

The following corollary provides two additional inequalities.

Corollary 10 With the notation of the previous theorem we have:

|ctu1|

|ut
1v1|

6
∣

∣ctv1

∣

∣ (8)

and

(ctv1)
2
> (ctu1)

2 (9)

and
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(ut
1v1)

2
> (ctu1)

2 (10)

Proof: First, since

0 6 q1 =
(ctu1)(c

tv1)

ut
1v1

6 1,

we have

q1 =
|ctu1| |c

tv1|

|ut
1v1|

.

From (4) in Theorem 9 we then get

(ctv1)
2
>

|ctu1| |c
tv1|

|ut
1v1|

.

Thus,
|ctu1|

|ut
1v1|

6
∣

∣ctv1

∣

∣ .

or equivalently

(ctv1)
2
>

(ctu1)
2

(ut
1v1)2

(11)

Inequality (9) follows since (ut
1v1)

2 6 1.

Finally, noting that in (11) we have (ctv1)
2 6 1, we get (ut

1v1)
2 > (ctu1)

2.

4 Further inequalities

4.1 First inequalities

In practice, the eigenvalues of the perturbed matrix B are unknown in con-

trast to those of the initial one A. Therefore, it is interesting to obtain

inequalities similar to those of Theorem 9 in the previous section but involv-

ing only the eigenvalues of A. This can be achieved by using results of Ipsen
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and Nadler [10] or inequalities of Bénasséni [2]. A lower bound to (ctv1)
2

based only on the eigenvalues of the initial matrix A and the vector c can be

obtained by introducing the lower bound to λ1(B) given in the Theorem 2.4

of Ipsen and Nadler or the results in Section 3 of Bénasséni. In the same way,

other inequalities in these two papers can be used to obtain upper bounds

to ctvr depending only A and the vector c. For the sake of brevity, we only

illustrate this approach in the case r = p with the upper bound for ctvp.

First we use the upper bound λmin(U+) to λp(B) defined in Theorem 2.1

and Corollary 2.2 of Ipsen and Nadler [10]. Letting gapp = λp−1(A)− λp(A)

and norm2 = (ctup−1)
2 + (ctup)

2 we get:

λp(B) 6 λp(A)+
gapp + τnorm2 −

√

(gapp + τnorm2)2 − 4τgapp(cp)
2

2
(12)

Incorporating the right hand side of (12) in Inequality (5) of Theorem 9

yields:

(ctvp)
2
6

gapp + τnorm2 −
√

(gapp + τnorm2)2 − 4τgapp(cp)
2

2τ
(13)

Finally, inequalities in Sections 2 and 3 of Bénasséni [2] can also be used.

His Section 2 provides for example the following simple inequality:

λp(B) 6 λp(A) + τ
(ctup)

2 +
√

(ctup)4 + 4(ctup)2 {‖c‖2 − (ctup)2}

2
(14)

which is sharper than the usual inequality: λr(B) 6 λr(A) + τ‖c‖2. Incor-

porating the right hand side of this inequality in (5) of Theorem 9 we get:
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(ctvp)
2
6

(ctup)
2 +

√

(ctup)4 + 4(ctup)2 {1− (ctup)2}

2
(15)

since c is normalized.

4.2 Inequalities for infinitesimal perturbations

When considering infinitesimal perturbations, power expansions of the eigen-

values allow the derivation of refined bounds for ctv1 and ctvp as detailed

in the remaining of this section. It should be noted that these infinitesimal

perturbations corresponding to small values of τ are involved in many fields

of applications such as statistics for example where one is concerned by the

effects of small changes in data on some parameters to be evaluated.

More specifically, we focus on a specific eigenvalue λ(A) of the initial

matrix A assumed to be simple and on its corresponding normalized eigen-

vector u. We know from matrix perturbation analysis that, for sufficiently

small values of τ , there exist an eigenvalue λ(B) of B and a corresponding

non normalized eigenvector v which can be expressed under the following

convergent power expansions:

λ(B) = λ(A) + τµ1 + τ 2µ2 + . . . τnµn +O(τn+1) (16)

and

v = u+ τw1 + τ 2w2 + . . . τnwn +O(τn+1) (17)

Letting C = cct for notational convenience, a lemma of Wang and Liski [16]

provides some general relations for the real numbers µj and the vectors wj
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involved in Equations (16) and (17) when considering perturbation (1). This

lemma is given below.

Lemma 11 Using the notation M+ for the Moore-Penrose inverse of any

matrix M and considering the perturbation B = A+ τC , a solution for the

parameters µj and wj involved in Equations (16) and (17) is provided by the

following relations:

µ1 = utCu (18)

w1 = −[A− λ(A)Ip]
+Cu (19)

and for j = 2, . . . n:

µj = utCwj−1 (20)

wj = −[A− λ(A)Ip]
+[Cwj−1 −

j−1
∑

i=1

µiwj−i] (21)

where Ip denote the identity matrix of order p.

The proof of this lemma is provided by Wang and Liski [16] through a

usual approach detailed for example in Wilkinson [17, pp.66-70]. We follow

below their derivation while introducing some necessary complements for the

sake of generality.

Proof:

Equating the coefficients of τ j for j = 1, . . . n in the relation:

Bv = λ(B)v (22)
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provides the following set of equations:

Aw1 +Cu = λ(A)w1 + µ1u (23)

Aw2 +Cw1 = λ(A)w2 + µ1w1 + µ2u (24)

and more generally for j = 2, . . . , n

Awj +Cwj−1 = λ(A)wj +

j−1
∑

i=1

µiwj−i + µju (25)

First, multiplying the left-hand side of (23) by ut and using the relations

Au = λ(A)u and utu = 1, we get (18).

Now in order to get (19) , rewrite (23) as :

[A− λ(A)Ip]w1 = −(C− µ1Ip)u. (26)

The following two remarks are necessary for the derivation.

First, using (18) we get ut(C − µ1Ip)u = 0 so that (C − µ1Ip)u is in the

column space of [A − λ(A)Ip]. Thus Equation (26) is consistent and all its

solutions can be expressed as:

w1 = −[A− λ(A)Ip]
−(C− µ1Ip)u (27)

where [A− λ(A)Ip]
− denotes any generalized inverse of [A− λ(A)Ip].

Second, if we have two solutions w1 and w′
1 of (26), these solutions satisfy:

[A − λ(A)Ip](w1 − w′
1) = 0. Therefore w′

1 − w1 is in the null space of

[A− λ(A)Ip] and we have :

w′
1 = w1 + αu (28)
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for some coefficient α ∈ R since λ(A) is simple. Note that one particular

solution of (26) is given by:

w1 = −[A− λ(A)Ip]
+(C− µ1Ip)u (29)

using the Moore-Penrose inverse:

[A− λ(A)Ip]
+ =

p
∑

i=1

λi(A) 6=λ(A)

uiu
t
i

λi(A)− λ(A)
.

Then, all the solutions of (26) are of the form:

w1 = −[A− λ(A)Ip]
+(C− µ1Ip)u+ αu (30)

or equivalently

w1 = −[A− λ(A)Ip]
+Cu+ αu (31)

since [A−λ(A)Ip]
+u = 0. The choice of (19) as particular solution is justified

by attractive properties which are detailed at the end of the proof.

Note that utw1 = 0 since u is in the null space of [A− λ(A)Ip]
+ .

Now in order to derive (21) for j = 2, . . . n we have simply to rewrite (25) as:

[A− λ(A)Ip]wj = −Cwj−1 +

j−1
∑

i=1

µiwj−i + µju. (32)

Premultiplying this last equation by ut we get:

ut[−Cwj−1 +

j−1
∑

i=1

µiwj−i + µju] = 0 (33)

Therefore the right hand side of (32) is in the column space of [A− λ(A)Ip]

and Equation (32) is consistent. Similarly to w1 we can choose (21) as a
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particular solution.

Finally, in order to derive the parameters µj involved in the expansion of

λ(A) in (16), we have simply to note from (21) that:

utwj = 0 (34)

Then, developing (33) and using (34) we get (20).

Now, some justifications of the choice of the Moore-Penrose inverse for w1

in (19) are given below.

First, among all the solutions provided by (27), the use of the Moore-Penrose

inverse is the only one which preserves the orthogonality between w1 and u.

This is the same between wj and u for j = 1, . . . , n. This orthogonality is

crucial for the recurrence process and motivates the choice of (19) and (21)

as solutions.

Second, it should be noted from (28) that:

‖w′
1‖

2
= ‖w1‖

2 + α2

since utw1 = 0. Then, focusing on the first order approximation v(1) =

u+ τw′
1 of v we have:

‖u+ τw′
1‖

2
= ‖u‖2 + τ 2 ‖w1‖

2 + τ 2α2 + 2τα

= ‖u‖2 + 2τα + τ 2(‖w1‖
2 + α2)

= 1 + 2τα + τ 2 ‖w′
1‖

2
.

Hence, we see that the first order approximation of the norm of v(1) is given
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by: 1+2τα which is equal to one if and only if α = 0 or equivalentlyw′
1 = w1.

Having an approximation of v whose norm only differs from that of the initial

vector u by terms of degree 2 or greater allows a better estimation of the

direction of v by v(1).

It should be noted that the previous theorem holds for any symmetric

perturbation matrix C . However, in the framework of rank one perturba-

tion, the following proposition provides developed formulations involving the

perturbation vector c.

Proposition 12 Consider the perturbation B = A + τcct defined in Equa-

tion (1) . Then the parameters µj and wj involved in the power expansions

(16) and (17) can be expressed as follows for j = 1, 2:

µ1 = (ctu)2 (35)

w1 = −(ctu)

p
∑

i=1

λi(A) 6=λ(A)

(ctui)

λi(A)− λ(A)
ui (36)

µ2 = −(ctu)2
p

∑

i=1

λi(A) 6=λ(A)

(ctui)
2

λi(A)− λ(A)
(37)

w2 = (ctu)

p
∑

i=1

λi(A) 6=λ(A)

p
∑

k=1

λk(A) 6=λ(A)

(ctui)(c
tuk)

2

[λi(A)− λ(A)][λk(A)− λ(A)]
ui

− (ctu)3
p

∑

i=1

λi(A) 6=λ(A)

(ctui)

[λi(A)− λ(A)]2
ui (38)
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Finally, we have also:

µ3 = (ctu)2
p

∑

i=1

λi(A) 6=λ(A)

p
∑

k=1

λk(A) 6=λ(A)

(ctui)
2(ctuk)

2

[λi(A)− λ(A)][λk(A)− λ(A)]

− (ctu)4
p

∑

i=1

λi(A) 6=λ(A)

(ctui)
2

[λi(A)− λ(A)]2
(39)

Proof:

The derivation of the formula is straightforward by simply substituting cct

for C in Theorem 11 and using the formulation of

[A− λ(A)Ip]
+ =

p
∑

i=1

λi(A) 6=λ(A)

uiu
t
i

λi(A)− λ(A)

already given.

Now we use the previous expansions of the eigenvalues in power series to

provides refined bounds derived from Theorem 9.

Proposition 13 Assuming that λ1(A) is simple and that τ is sufficiently

small in order to express λ1(B) under the following convergent power series:

λ1(B) = λ1(A) + τµ1 + τ 2µ2 + . . . τnµn +O(τn+1)

we have he following inequality.
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(ctv1)
2
> (ctu1)

2 + τ(ctu1)
2

p
∑

i=2

(ctui)
2

λ1(A)− λi(A)

+ τ 2
{

(ctu1)
2

p
∑

i=2

p
∑

k=2

(ctui)
2(ctuk)

2

[λ1(A)− λi(A)][λ1(A)− λk(A)]

− (ctu1)
4

p
∑

i=2

(ctui)
2

[λ1(A)− λi(A)]2
}

+O(τ 3) (40)

Proof: This result simply follows from (4) used together with Proposition 12

taking u = u1.

As simple consequence of this proposition we have the following two corol-

laries.

Corollary 14 Under assumptions in the previous proposition we have also

the following inequality:

(ctv1)
2
> (ctu1)

2 + τ(ctu1)
2

p
∑

i=2

(ctui)
2

λ1(A)− λi(A)

− τ 2(ctu1)
4

p
∑

i=2

(ctui)
2

[λ1(A)− λi(A)]2
(41)

Proof: The result is obvious simply rewriting (40) as

(ctv1)
2
> (ctu1)

2 + τ(ctu1)
2

p
∑

i=2

(ctui)
2

λ1(A)− λi(A)

− τ 2(ctu1)
4

p
∑

i=2

(ctui)
2

[λ1(A)− λi(A)]2

+ τ 2(ctu1)
2

p
∑

i=2

p
∑

k=2

(ctui)
2(ctuk)

2

[λ1(A)− λi(A)][λ1(A)− λk(A)]
+O(τ 3) (42)
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and neglecting in the last line the second order term (which is non negative)

as well as higher order terms.

Corollary 15 Under assumptions of Proposition 13 we have the following

inequality:

(ctv1)
2
> (ctu1)

2 + τ(ctu1)
2

p
∑

i=2

(ctui)
2

λ1(A)− λi(A)

+ τ 2
{

(ctu1)
2

p
∑

i=2

p
∑

k=2

(ctui)
2(ctuk)

2

[λ1(A)− λi(A)][λ1(A)− λk(A)]
(43)

if (ctui)
2 > (ctu1)

2 for i = 2, . . . , p.

Proof: It should be noted that in Inequality (40) of Proposition 13 the first

order term in τ is nonnegative. However writing the second order term as

(ctu1)
2

p
∑

i=2

p
∑

k=2

k 6=i

(ctui)
2(ctuk)

2

[λ1(A)− λi(A)][λ1(A)− λk(A)]

+ (ctu1)
2

p
∑

i=2

(ctui)
2[(ctui)

2 − (ctu1)
2]

[λ1(A)− λi(A)]2
(44)

we see that this term is also non negative under the condition: (ctui)
2 >

(ctu1)
2 for i = 2, . . . , p so that it can be neglected as well as higher order

terms.

Finally, the last proposition is similar to Proposition 13 when considering

the smallest eigenvalue.

Proposition 16 Assuming that λp(A) > 0 is simple and that τ is suffi-

ciently small in order to express λp(B) under the following convergent power
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series:

λp(B) = λp(A) + τµ1 + τ 2µ2 + . . . τnµn +O(τn+1)

we have he following inequality.

(ctvp)
2
6 (ctup)

2 − τ(ctup)
2

p−1
∑

i=1

(ctui)
2

λi(A)− λp(A)

+ τ 2
{

(ctup)
2

p−1
∑

i=1

p−1
∑

k=1

(ctui)
2(ctuk)

2

[λi(A)− λp(A)][λk(A)− λp(A)]

− (ctup)
4

p−1
∑

i=1

(ctui)
2

[λi(A)− λp(A)]2
}

+O(τ 3) (45)

Proof: Since λp(A) > 0 we know that A is of rank r = p and we have c ∈

range(A). Therefore the inequality can be simply derived using Proposition

12 with u = up together with (5).

Corollaries similar to the two previous ones could be also derived for

(ctvp)
2 but are omitted for the sake of brevity.
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