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Abstract 
Morphometric studies of medical images often include a nonrigid registration step from a subject to 
a common reference. The presence of white matter multiple sclerosis lesions will distort and bias 
the output of the registration. In this paper, we present a method to remove this bias by filling such 
lesions to make the brain look like a healthy brain before the registration. We finally propose a 
dedicated method to fill the lesions and present numerical results showing that our method 
outperforms current state of the art method. 
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Introduction 
Nonrigid registration is an essential tool to analyze medical images. For example, it can be used to 
segment images using a prelabeled atlas (Warfield, Robatino et al. 1999), to follow the evolution of 
brain structures in longitudinal studies (Rey, Subsol et al. 2002) or for morphometry (Ashburner, 
Hutton et al. 1998). 
 
In this paper, we will focus on the problem caused by white matter lesions in the context of 
multiple sclerosis (MS). MS is an immune-mediated demyelinating disease affecting both white 
and grey matter. White matter plaques are easily detected on current conventional images whereas 
grey matter lesions are still not well appreciated. When one tries to nonlinearly register a brain with 
MS to a brain without MS, white matter lesions will cause a strong distortion in the output 
transformation. Indeed, intensity driven nonrigid registration algorithms assume that the two 
images being registered have the same structures but these lesions are present in the patient and not 
in the reference image (Brett, Leff et al. 2001). This distortion of the transformation will be an 
important problem when nonrigid registration is used for morphometry. 
 
Deformation based morphometry and tensor based morphometry allow us to analyze statistical 
differences in the size or shape of brain structures between two groups of subject. For these 
techniques, the first step is to find the (non-linear) mapping between each subject and the reference 
image and then to do some statistical analysis on the estimated transformations or their derivatives 
(Davatzikos, Vaillant et al. 1996; Ashburner, Hutton et al. 1998; Chung, Worsley et al. 2003; 
Studholme, Cardenas et al. 2004; Lepore, Brun et al. 2006). It is therefore important for the 
statistical analysis that the transformation is not distorted by the presence of lesions. 
 
Lesions location can help in the understanding of brain disease and functions.  To perform the 
statistical analysis of the lesions location, the lesions of each subject have to be described using a 
common coordinate system. Different methods have been used to do so. A manual method has been 
proposed in (Damasio and Frank 1992) and in (Frank, Damasio et al. 1997). An operator has to 
draw the lesions of each subject in the reference template using anatomical landmarks. The 
operator has to be an experienced neuro-anatomist, the process is time consuming, and as pointed 
out in (Fiez, Damasio et al. 2000), this method is subject to a quite important inter and intra 
observer variability. Image registration provides an automated method to perform this task. As 
nonrigid registration is biased by the presence of lesions, most authors prefer to use affine 
registration (Narayanan, Fu et al. 1997; Charil, Zijdenbos et al. 2003) or (Enzinger, Smith et al. 
2006). Indeed, affine registration is robust to the presence of lesions in the brain but only the global 
shape of the brain will fit the reference. 
 
In this paper, we propose a solution for these two problems and have a nonrigid registration that is 
not distorted by lesions and an automated method to map MS lesions in a reference brain taking 
inter subject variability into account. 

1.1 State of the art of pathological brain images registration 
Given two images, the aim of registration is to find the transformation that maps the voxels from 
one image (the reference) to the voxels of the other (the floating image). To restrict the search 
space and find a realistic transformation, one usually requests that the transformation be smooth 
and/or invertible (Christensen, Rabbitt et al. 1993; Rueckert, Aljabar et al. 2006; Sdika 2007). 
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For the registration of normal brains, this requirement makes sense when both the reference image 
and the floating image have the same structures. An invertible transformation guarantees the 
preservation of the topology of the floating image before and after the transformation. 
 
For the registration of non-healthy brains, the invertibility of the transformation is no longer a 
reasonable assumption as abnormal structures such as tumors or lesions can be present. 
Nevertheless, apart from the regions where the new structures appear, the topology should be 
preserved. 
 
For the problem of tumors, a biomechanical model of the growth of the lesions can be used prior 
and after the registration as in (Kyriacou, Davatzikos et al. 1999) or a  "tumor seed" can be added to 
the atlas before the registration as in (Dawant, Hartmann et al. 2002). These methods cannot be 
used here. Indeed, a tumor will grow and push the surrounding tissues of the brain, whereas 
multiple sclerosis will create lesions that "replace" healthy tissues without moving surrounding 
tissues. 
 
Another approach consists of removing the influence of the pathological voxels during the 
registration process. The voxels in the lesions are removed from the similarity metric driving the 
registration: the cost function is masked so that only the voxels from normal structures are used. It 
has been applied to focal lesions in (Brett, Leff et al. 2001) or to tumors in (Radu, Olivier et al. 
2004). 
 
In (Meier and Fisher 2005), the registration is not based on voxel intensity but works by first 
segmenting and parameterizing different brain structures and then finding a transformation that 
makes these binary structures match. In their work, they used the brain surface, the midsagittal 
plane and the ventricles surface. As MS lesions do not appear in these structures, they do not affect 
the registration, but the registration will not make the grey matter structures match either. 
 
In general, three approaches can be distinguished: removing the lesions from the patient image and 
aligning, adding the lesions to the atlas and aligning, or removing the influence of the lesions 
during the registration. 
 
Our method consists of inpainting white matter lesions before performing the registration: the 
intensity in the lesions is replaced to remove them from the original image. Usually, image 
inpainting is done by smoothly interpolating the image in the inpainting area while continuing the 
level sets as in (Bertalmio, Sapiro et al. 2000; Oliveira, Bowen et al. 2001). One can also try to 
reproduce the surrounding texture as in (Bertalmio, Vese et al. 2003; Drori, Cohen-Or et al. 2003). 
We propose in this paper an inpainting algorithm dedicated to the problem of filling white matter 
lesions in brain images. 
 
Our inpainting based method is adapted to the physiological process of MS, computationally 
efficient and fully automated once the lesions have been segmented. It allows the registration of an 
MS patient and the mapping of MS lesions to an atlas or a single case reference template. 
 
In this paper, there are three contributions: the introduction of inpainting in biomedical image 
processing as an effective tool to remove the influence of lesion during nonrigid registration of 
patients, the proposition of an inpainting algorithm dedicated to this problem and the comparison 
between different inpainting methods and with the state of the arts method showing that our method 
improves the registration of MS patients 
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2 Method 

2.1 Overall Approach 
The method we propose in this paper applies to the nonrigid registration of multiple sclerosis 
brains. This disease causes the formation of lesions mostly visible in the white matter. Some lesions 
can also be located in the cortical or deep grey matter but are more difficult to appreciate with 
current images. 
 
White matter lesions must have already been segmented either manually or with a semi-automated 
software as binary regions in the patient image. Then, they are removed from the image and the 
space left is reconstructed to make the image look like a normal brain. We can subsequently use a 
standard nonrigid registration algorithm that can preserve the topology of the floating image. 
 

2.2 An Inpainting Algorithm using anatomical prior 
The objective of image inpainting is to fill missing parts in a given image. Most image inpainting 
techniques found in the literature are applied to 2-dimensional images for scratch removal from 
paintings, photo restoration, object or text removal. 
 
In general, the problem of image inpainting is ill-posed. As the intensity of the voxels in the 
missing regions is not known, the objective is to fill the regions in a coherent and visually 
acceptable way by continuing the grey level or texture of surrounding voxels. 
 
In our case, the objective of the inpainting step was to fill the lesions to make the brain look like a 
healthy brain. As image inpainting will be used for a specific range of images (images of brains 
with a given modality) and a specific type of inpainting mask (MS lesions), a priori knowledge on 
the problem can be used to design dedicated inpainting algorithms. We have evaluated three 
inpainting methods to fill white matter lesions. 

2.2.1 Basic Inpainting (BI) 
As the inpainting areas are not textured, we have used a simple algorithm inspired from (Telea 
2004). It consists of filling the inpainting region from its border to its center with an average of 
know neighbors voxels. So, the following iterations are applied while the inpainting region is non 
empty: 
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where I is the image to inpaint,Ω  is the inpainting region (initialised with the original lesion 
mask), , Ω  its complement (the voxels outside Ω ), Ω∂  its border (voxels of Ω  having on of its 6 
neighbors in Ω ),  a neighborhood neighbourhood of )x(V x  (a 3x3x3 neighborhood 
neighbourhood in our implementation) and  a Gaussian kernel. w
This algorithm will be denoted as BI (basic inpainting) in the rest of this paper. 
Note that, as some voxels are removed every iteration, this algorithm is guaranteed to terminate. 
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2.2.2 Local White Matter Inpainting (LWMI) 
The restricted range of images allows us to add more a priori knowledge in the inpainting step. The 
lesions we want to remove from the MS patient images are located in the white matter but often 
have the same intensity as other tissues (grey matter or the cerebrospinal fluid). The voxel of the 
inpainting area should be filled only with the intensity of the normal appearing white matter. To do 
so, we segmented the input image into normal appearing white matter (NAWM), grey matter (GM) 
and cerebrospinal fluid (CSF) and inpainted the MS lesions by using only the value of the 
surrounding NAWM. In our implementation, the output of the FAST software (Zhang, Brady et al. 
2001) was used for the segmentation. The algorithm, denoted as LWMI (Local White Matter 
Inpainting), consists of iteratively filling the border of the unknown region using the formula: 
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where the symbols of the BI algorithm were used. At the end of  the iteration, the inpainted voxels 
of the border are added to the NAWM mask and removed from the inpainting maskΩ . Note that 
with this formula, the denominator for a given voxel x  can be null. In this case, x  is not inpainted 
and remains in Ω . So, when the lesion touches the GM or the CSF, it will automatically be filled 
starting from the border with the NAWM and ending with non WM structures.  
If the segmentation is inexact or inaccurate, the algorithm might not start for some lesions (for 
example if lesion surrounded by GM). In this case, the neighbourhood V  and the Gaussian kernel 

 can be dynamically enlarged to make neighbourhoods of the border intersect the NAWM mask. w
 
Note that, as only the NAWM is used to inpaint the lesion, enlarging V  and  is not problematic 
with LWMI and can be beneficial for the robustness of the method. Indeed, voxels not directly in 
contact with the lesions (and not affected with partial volume effect, fuzzy boundary or other 
influence of the lesion) can be used to fill the lesion area. This is another clear advantage other BI 
for which enlarging V  means increasing the chances to use non WM structures to fill the lesions. 

w

 
In our implementation, a 5x5x5 neighbourhood of x  is used for . )x(V

2.2.3 Global White Matter Inpainting (GWMI) 
A third possibility to inpaint the white matter lesion was to fill the MS lesions with the mean 
intensity of the NAWM over the whole brain. This constant is automatically found by computing 
the average intensity over the NAWM mask provided by FAST. 

2.3 The Nonrigid Registration 
Following the inpainting step, we perform a nonlinear registration using the inpainted image. As 
the topological changes due to lesions have been removed before the registration, constraints to 
preserve topology or penalization of non-smooth transformation can be used during the registration 
process everywhere in the image. 
 
The algorithm used, as described in (Sdika 2007), models the registration by a nonlinear 
optimization problem with nonlinear constraints to prevent the Jacobian to be negative. The 
constrained optimization problem is solved by using a combination of the multipliers method and 
the L-BFGS algorithm with a non-monotone line search. The transformation is modeled using 
cubic splines, making it intrinsically smooth, local, compact, and fast to compute.  The cost 
function is the squared difference between the reference and the deformed version of the floating 
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image, which is adapted to monomodality registration. A multiresolution approach is used to speed-
up the registration and to avoid local minima. 
 
Formally, the registration problem with constraints, can be written as 

( )2
0 2

1
min ∑

≤∀ x
rf

x,g(c,x)
 (x) - I (T(c, x))I

N
 , 

where  is the floating image,  is the reference image,  is the number of voxels in the 
reference image, T is the transformation parameterized by the spline coefficients c  to be estimated. 

is the constraint on the transformation given by: 
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where  is the Jacobian of the transformation and J φ  is a function, negative for negative or small 
value of its argument. By correctly choosing φ  and the stopping criterion, the Jacobian is ensured 
to be positive on all the voxels. Negative Jacobians are penalized between voxels by making the 
Jacobian derivatives small on the voxels where the Jacobian is small. The local support property of 
B-spline is particularly important as it ensures that a deformation in a given region of the brain 
have only a local effect on the transformation. More details on this registration algorithm can be 
found in (Sdika 2007). 
 
Before the nonrigid registration, a slight Gaussian smoothing ( 70. σ = ) is applied to both the 
reference and the floating image to reduce the intensity quantization effect and improve the signal 
to noise ratio (SNR).   

3 Evaluation 

3.1 Material 
The images we used were T1 weighted 3-dimensional gradient echo images with a resolution of 
1mmx1mmx1mm acquired on a 3 Tesla MR scanner. The lesion masks of the MS patients have 
been manually segmented by an experienced MS neurologist. 

3.2 Lesion Mapping Example 
To map lesions from a patient brain to a reference healthy brain using inpainting one needs to: 
inpaint the patient white matter lesions, perform the nonrigid registration using the inpainted image 
as the floating image and the healthy brain as reference and then, map the patient lesion mask using 
the transformation found by the registration. 
An example of such a mapping is shown in Figure 1. Note that on this figure, some lesions seem to 
be created, some others seem to disappear but if you consider them as 3D object and look at few 
neighbouring slices in the patient and the control, no lesions are added or lost. 

3.3 Protocol for Numerical Simulation 
In this section, we will evaluate quantitatively different ways to register a patient image with white 
matter MS lesions to a reference template.  To compare the different methods, we propose an 
evaluation procedure similar to the one used in (Brett, Leff et al. 2001). Simulated datasets are 
created and the output transformations of the different methods are compared to a ground truth. 
The simulations are generated as follows. Using a healthy brain c  and a patient brain p  with its 
lesion mask , an artificial image  and its lesion mask  are created by mapping the lesions of 
the patient to the control. 

pl pc cpl
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Fig. 1. Example of lesion mapping by inpainting white matter lesions before the registration. On the 
patient image (a), the lesions are segmented out (b) and inpainted using the LWMI method (c). The 
registration is performed between the inpainted patient (c) and the reference image (g). The output 
transformation can finally be applied on the inpainted patient (d), the original patient image (e) and 
on the lesion mask of the patient (f ). Note that some lesions appeared and disappeared on this slice 
but in 3D, no lesion is added or lost. 
 
 
 
For another control  and a given registration method with lesions, a transformation T can be 
estimated between  with its lesion mask  and 

c′
pc cpl c′ . 

The transformation T  is then compared to the ground truth  computed as the output of a standard 
nonlinear registration (control to control) between c  and 

0T
c′ . To measure the distance to the ground 

truth, we used the mean value of the transformation error on voxels: 

∑
ℵ∈ℵ

=
x

(x)T(x)-T
N

E (T ) 0
1 , 
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where  is a given mask and  the number of voxels in the mask. The brain mask given by the 
BET software (Smith 2002) or the lesion mask are used for 

ℵ ℵN
ℵ , giving us a global error measure in 

the whole brain and a local measure in the lesion area. To be sure that the method used to create  
does not favour one of the registration methods we want to compare, three simulation datasets were 
created using three different lesion mapping methods. Dataset Affine was created using affine 
registration to transfer the lesions, Dataset Mask was created using CFM (Cost Function Masking) 
for the registration and Dataset Inpaint was created using LWMI before the registration. We used 
two sets of three control scans (one for  and one for c

pc

c ′ ) and a set of three MS patient images. 
Consequently, each of the three datasets was made of 27 simulations. 

3.4 Results 
The results of the evaluation are shown on Figure 2 for the error in the whole brain and on Figure 3 
for the error in the lesions. Regardless of the lesion mapping method used to create the simulation 
set, one can see that the LWMI method gives the best results followed by BI, GWMI and CFM, the 
Naive method comes last. 
As already reported in (Brett, Leff et al. 2001) for focal lesions or in (Radu, Olivier et al. 2004) for 
tumors, the cost function masking approach improves the registration compared to the Naive 
method. Indeed the lesions are outliers that are removed before the fit of one image to another. 
The experiments in this paper also show that inpainting the lesions with LWMI before the 
registration improves the registration over the CFM. The rationale behind the inpainting approach 
is to try to correct the outliers instead of removing them during the fit. A good outlier correction 
method provides, in this case, a better fit. 
 
As expected, the difference between the methods is more visible in lesion area and the superiority 
of LWMI is clearer. Indeed, LWMI is the only method with subvoxel accuracy in the lesion area. 
Note also that the interval of one standard deviation around the mean do not overlap between 
LWMI and the second best method (CFM) for the datasets Affine and Inpaint. This emphasizes the 
need to pay a special attention to the registration method if the object of the study is the spatial 
distribution of lesions. 
 
Results from statistical analysis show that the superiority of LWMI is highly significant. Table I 
and Table II present the p-values of right tail T-tests between the output of LWMI and the other 
methods for the three datasets. With a significance threshold of 0.05 all the tests show the 
significance of the superiority of LWMI over the other methods presented. 

4 Discussion 
In this work, an original approach was proposed to perform nonlinear registration between two 
brain images when at least one of them has MS lesions. It consists of inpainting white matter 
lesions; the inpainted image is then used for non linear registration in lieu of the original patient 
image. Secondly, a dedicated inpainting algorithm has been proposed to fill the lesions, using the 
  

 Naïve CFM BI GWMI 
Dataset Affine 7.5e-08 1.9e-06 0.0011 0.00043 
Dataset Mask 7.7e-09 2.6e-06 0.0012 0.0047 
Dataset Inpaint 1.7e-08 2.1e-06 0.027 0.00092 

 
Table I: P-values of the right tail T-test between LWMI and each method for each set of simulation 
and for the whole brain mask. 
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 Naïve CFM BI GWMI 
Dataset Affine 5.6e-14 2.8e-07 7.1e-08 3.2e-15 
Dataset Mask 3.7e-13 6.0e-05 1.0e-08 1.9e-13 
Dataset Inpaint 1.9e-13 6.3e-09 1.2e-11 1.9e-13 

 
Table II: P-values of the right tail T-test between LWMI and each method for each set of 
simulation and for the lesion mask. 
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Fig. 2. Mean and standard deviation of the error in the whole brain for each set of simulations and 
each method. 
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Fig. 3. Mean and standard deviation of the error in the lesion mask for each set of simulations and 
each method. 
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properties of the images to inpaint (images of the brain) and the inpainting mask (MS lesions). The 
lesions are inpainted using the intensity of surrounding normal appearing white matter voxels. 
 
Since our lesion inpainting approach is an easy preprocessing step before the registration, any 
standard nonrigid registration algorithm can be used without modification. Besides, any brain with 
white matter lesions can be used as the reference image or the floating image of the registration 
algorithm. This is not the case with the CFM method. Indeed, if a mask is used to remove the 
influence of a region of the floating image, the voxels of the reference mapped to this region will 
have a null cost. Consequently, the algorithm will tend to map voxels of the reference to the area of 
the floating image with no cost and the lesions in the floating image would have the tendency to 
attract the surrounding tissue. So, with the cost function masking approach, the brain with lesions 
has to be used as the reference of the registration. As for morphometry or lesion mapping, the 
reference image of the registration should be the reference template (a control subject or an average 
of a group of controls), a solution would be to do the registration with the patient as reference and 
the lesions masked, and then, to invert the transformation. The inpainting method does not raise this 
issue. The lesions of the patient are inpainted, and then, the patient image can be used as either the 
reference or the floating image (or both) during the registration. 
 
The evaluation of the different methods, summarized in Figure 2 and Figure 3, favours the LWMI 
method over CFM. The mean error obtained with the LWMI method is clearly reduced compared 
to the other methods, especially in the lesion area. This is of importance when the spatial 
distribution of the lesions is the object of the study. 
 
Instead of removing the outliers as the CFM method does, the inpainting method tries to reconstruct 
the cost function as it would be without the lesions. The registration algorithm is then driven to a 
better solution with this reconstruction than when no information is available at the lesion location. 
The GWMI method uses the a priori knowledge that the lesions are in the white matter and BI fills 
the lesions with surrounding voxels, using local information for the inpainting. The LWMI method 
combines these two properties to inpaint the lesions using the local values of the white matter and 
consequently, produces the best results of the evaluation. With a better reconstruction method, the 
solution found by the registration is also better. 
 
The inpainting method we proposed (LWMI) uses the output of the segmentation of the brain in 
CSF, GM and NAWM. A high accuracy is not required for this segmentation. Indeed, we only need 
the intensity of the NAWM in the neighbourhood of the inpainted area. If we are not confident in 
the segmentation accuracy or if the lesion boundary is fuzzy or if we want to improve the 
robustness of the method, a good prescription would be to erode the NAWM mask and to increase 
the size of the neighbourhood  used in the inpainting method. )x(V
 
We assume in this paper that grey matter lesions have only a minor influence on the registration. If 
this assumption is considered too strong, grey matter lesions can also be inpainted the same way 
white matter lesions are inpainted, by filling them with the surrounding grey matter voxels 
intensity. 
 
Our LWMI inpainting method can be applied to different contrast modalities (T1, T2, proton 
density...) and other neurological diseases affecting the white matter. The only requirement is that 
intensity in the lesions must be uniform, without details to reconstruct, create or extend from the 
neighborhood. The extension of our inpainting based approach to DTI images will be the object of  
future work. 
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