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Projections, multipliers and decomposable maps
on noncommutative Lp-spaces

Cédric Arhancet - Christoph Kriegler

Abstract
We describe a noncommutative analogue of the absolute value of a regular operator

acting on a noncommutative Lp-space. We equally prove that two classical operator norms,
the regular norm and the decomposable norm are identical. We also describe precisely the
regular norm of several classes of regular multipliers. This includes Schur multipliers and
Fourier multipliers on some unimodular locally compact groups which can be approximated
by discrete groups in various senses. A main ingredient is to show the existence of a
bounded projection from the space of completely bounded Lp operators onto the subspace
of Schur or Fourier multipliers, preserving complete positivity. On the other hand, we show
the existence of bounded Fourier multipliers which cannot be approximated by regular
operators, on large classes of locally compact groups, including all infinite abelian locally
compact groups. We finish by introducing a general procedure for proving positive results
on selfadjoint contractively decomposable Fourier multipliers, beyond the amenable case.

Contents
1 Introduction 3

2 Preliminaries 8
2.1 Noncommutative Lp-spaces and operator spaces . . . . . . . . . . . . . . . . . . . 8
2.2 Matrix ordered operator spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Relations between matricial orderings and norms . . . . . . . . . . . . . . . . . . 12
2.4 Positive and completely positive maps on noncommutative Lp-spaces . . . . . . . 14
2.5 Completely positive maps on commutative Lp-spaces . . . . . . . . . . . . . . . . 16
2.6 Markov maps and selfadjoint maps . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Decomposable maps and regular maps 17
3.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 On the infimum of the decomposable norm . . . . . . . . . . . . . . . . . . . . . 21
3.3 The Banach space of decomposable operators . . . . . . . . . . . . . . . . . . . . 21
3.4 Reduction to the selfadjoint case . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Decomposable vs regular on Schatten spaces . . . . . . . . . . . . . . . . . . . . . 28
3.6 Decomposable vs regular on approximately finite-dimensional algebras . . . . . . 30
3.7 Modulus of regular operators vs 2x2 matrix of decomposable operators . . . . . . 36
3.8 Decomposable vs completely bounded . . . . . . . . . . . . . . . . . . . . . . . . 39

2010 Mathematics subject classification: 46L51, 46L07.
Key words: noncommutative Lp-spaces, operator spaces, regular operators, decomposable operators, Fourier
multipliers, Schur multipliers, factorizable maps, complementations, Chabauty-Fell topology.

1



4 Decomposable Schur multipliers and Fourier multipliers on discrete groups 45
4.1 Twisted von Neumann algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Complementation for Schur multipliers and Fourier multipliers on discrete groups 47
4.3 Description of the decomposable norm of multipliers . . . . . . . . . . . . . . . . 51

5 Approximation by discrete groups 52
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Different notions of groups approximable by discrete groups . . . . . . . . . . . . 54
5.3 The case of second countable compactly generated locally compact groups . . . . 59

6 Decomposable Fourier multipliers on non-discrete locally compact groups 60
6.1 Generalities on Fourier multipliers on unimodular groups . . . . . . . . . . . . . 60
6.2 The completely bounded homomorphism theorem for Fourier multipliers . . . . . 68
6.3 Extension of Fourier multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 Groups approximable by lattice subgroups . . . . . . . . . . . . . . . . . . . . . . 71
6.5 Examples of computations of the density . . . . . . . . . . . . . . . . . . . . . . . 82
6.6 Pro-discrete groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.7 Amenable groups and convolutors . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.8 Description of the decomposable norm of multipliers . . . . . . . . . . . . . . . . 97

7 Strongly and CB-strongly non decomposable operators 100
7.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 Strongly non regular completely bounded Fourier multipliers on abelian groups . 101
7.3 Strongly non regular completely bounded convolutors on non-abelian groups . . . 112
7.4 CB-strongly non decomposable Schur multipliers . . . . . . . . . . . . . . . . . . 113
7.5 CB-strongly non decomposable Fourier multipliers . . . . . . . . . . . . . . . . . 115
7.6 CB-strongly non decomposable operators on approximately finite-dimen. algebras 119

8 Property (P) and decomposable Fourier multipliers 123
8.1 A characterization of selfadjoint contractively decomposable multipliers . . . . . 123
8.2 Factorizability of some matrix block multipliers . . . . . . . . . . . . . . . . . . . 126
8.3 Application to the noncommutative Matsaev inequality . . . . . . . . . . . . . . 131

Bibliography 132

2



1 Introduction
The absolute value |T | and the regular norm ‖T‖reg of a regular operator T already appear in
the seminal work of Kantorovich [95] on operators on linear ordered spaces. These constructions
essentially rely on the structure of (Dedekind complete) Banach lattices. These notions are of
central importance in the theory of linear operators between Banach lattices, including classical
Lp-spaces, since the absolute value is a positive operator. Indeed it is well-known that positive
contractions are well-behaved operators. Actually, contractively regular operators on Lp-spaces
share in general the same nice properties as contractions on Hilbert spaces. We refer to the
books [1], [109] and [131] and to the papers [120] and [122] for more information.

Due to the lack of local unconditional structure, on a Schatten space and more generally on
a noncommutative Lp-space, the canonical order on the space of selfadjoint elements does not
induce a structure of a Banach lattice, see [48, Chapter 17] and [123, page 1478]. Nevertheless,
there exists a purely Banach space characterization of regular operators on classical Lp-spaces
[82, Theorem 2.7.2] which says that a linear operator T : Lp(Ω)→ Lp(Ω′) is regular if and only
if for any Banach space X the map T ⊗ IdX induces a bounded operator between the Bochner
spaces Lp(Ω, X) and Lp(Ω′, X). In this case, the regular norm is given by

(1.1) ‖T‖reg,Lp(Ω)→Lp(Ω′) = sup
X
‖T ⊗ IdX‖Lp(Ω,X)→Lp(Ω′,X) ,

where the supremum runs over all Banach spaces X. Using this property, Pisier [117] gives
a natural extension of this notion for noncommutative Lp-spaces. He says that a linear map
T : Lp(M)→ Lp(N) between noncommutative Lp-spaces, associated with approximately finite-
dimensional von Neumann algebras M and N , is regular if for any noncommutative Banach
space E (that is, an operator space), the map T ⊗ IdE induces a bounded operator between
the vector-valued noncommutative Lp-spaces Lp(M,E) and Lp(N,E). As in the commutative
case, the regular norm is defined by

(1.2) ‖T‖reg,Lp(M)→Lp(N) = sup
E
‖T ⊗ IdE‖Lp(M,E)→Lp(N,E) ,

where the supremum runs over all operator spaces E. For classical Lp-spaces, this norm coincides
with (1.1). Nevertheless, Pisier does not give a definition of the absolute value of a regular
operator and the definition of the latter is only usable for approximately finite-dimensional von
Neumann algebras.

In this paper, we define a noncommutative analogue of the absolute value of a regular
operator acting on an arbitrary noncommutative Lp-space for any 1 6 p 6 ∞. For that,
recall that a linear map T : Lp(M)→ Lp(N) is decomposable [65, 92] if there exist linear maps
v1, v2 : Lp(M)→ Lp(N) such that the linear map

(1.3) Φ =
[
v1 T
T ◦ v2

]
: Sp2 (Lp(M))→ Sp2 (Lp(N)),

[
a b
c d

]
7→
[
v1(a) T (b)
T ◦(c) v2(d)

]
is completely positive (a stronger condition than positivity of operators) where T ◦(c) def= T (c∗)∗
and where Sp2 (Lp(M)) and Sp2 (Lp(N)) are vector-valued Schatten spaces. In this case, v1 and
v2 are completely positive and the decomposable norm of T is defined by

(1.4) ‖T‖dec,Lp(M)→Lp(N) = inf
{

max{‖v1‖ , ‖v2‖}
}
,

where the infimum is taken over all maps v1 and v2. See the books [23], [55] and [119] for
more information on this classical notion in the case p = ∞. If 1 < p < ∞ and if M and N
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are approximately finite-dimensional, it is alluded in the introduction of [92] that these maps
coincide with the regular maps. First, we greatly strengthen this statement by showing that the
regular norm ‖T‖reg,Lp(M)→Lp(N) and the decomposable norm ‖T‖dec,Lp(M)→Lp(N) are identical
for a regular map T (see Theorem 3.24). Hence, the decomposable norm is an extension of
the regular norm for noncommutative Lp-spaces associated to arbitrary von Neumann algebras.
Moreover, we prove that if T : Lp(Ω)→ Lp(Ω′) is a regular operator between classical Lp-spaces

then the map Φ =
[
|T | T
T ◦ |T |

]
: Sp2 (Lp(Ω))→ Sp2 (Lp(Ω′)) is completely positive (Theorem 3.27)

where |T | : Lp(Ω) → Lp(Ω′) denotes the absolute value of T . In addition, we show that the
infimum (1.4) is actually a minimum (Proposition 3.5). Consequently, the map (1.3) with some
v1, v2 which realize the infimum (1.4) can be seen as a natural noncommutative analogue of the
absolute value |T |.

The ingredients of the identification of the decomposable norm and the regular norm involve
a reduction of the problem on noncommutative Lp-spaces to the case of finite-dimensional
Schatten spaces Spn by approximation. Moreover, a 2x2-matrix trick gives a second reduction
to selfadjoint maps between these spaces. Finally, the case of selfadjoint maps acting on finite-
dimensional Schatten spaces is treated in Theorem 3.21. To conclude, note that the ideas of
the manuscript [88] (which seems definitely postponed) could be used to define a notion of
regular operator between vector-valued noncommutative Lp-spaces associated with QWEP von
Neumann algebras. Of course, it is likely that the identification of the decomposable norm and
the regular norm is true in this generalized context.

The next task is devoted to identify precisely decomposable Fourier multipliers on non-
commutative Lp-spaces Lp(VN(G)) of a group von Neumann algebra VN(G) associated to a
unimodular locally compact group G. Recall that if G is a locally compact group then VN(G)
is the von Neumann algebra, whose elements act on the Hilbert space L2(G), generated by the
left translation unitaries λs : f 7→ f(s−1·), s ∈ G. If G is abelian, then VN(G) is ∗-isomorphic
to the algebra L∞(Ĝ) of essentially bounded functions on the dual group Ĝ of G. As basic
models of quantum groups, they play a fundamental role in operator algebras and this task
can be seen as an effort to develop Lp-Fourier analysis of non-abelian locally compact groups,
see the contributions [31], [89], [90], [93], [103] and [108] in this line of research and references
therein. If G is discrete, a Fourier multiplier Mϕ : Lp(VN(G)) → Lp(VN(G)) is an operator
which maps λs to ϕ(s)λs, where ϕ : G → C is the symbol function (see Definition 6.3 for the
general case of unimodular locally compact groups).

We connect this problem with several notions of approximation by discrete groups of the
underlying locally compact group G. We are able to show that a symbol ϕ : G→ C inducing a
decomposable Fourier multiplier Mϕ : Lp(VN(G)) → Lp(VN(G)) already induces a decompos-
able Fourier multiplier Mϕ : VN(G) → VN(G) at the level p = ∞ for some classes of locally
compact groups. We also give a comparison between the decomposable norm at the level p and
the operator norm at the level ∞ in some cases (see Theorem 4.7, Theorem 4.9, Theorem 6.47,
Theorem 6.49 and Theorem 6.52). Our method for this last point relies on some constructions
of compatible bounded projections at the level p = 1 and p = ∞ from the spaces of (weak*
continuous if p = ∞) completely bounded operators on Lp(VN(G)) onto the spaces Mp,cb(G)
of completely bounded Fourier multipliers combined with an argument of interpolation. We
highlight that the nature of the group G seems to play a central role in this problem. Indeed,
mysteriously, our results are better for a pro-discrete group G than for a non-abelian nilpotent
Lie group G. More precisely, let us consider the following definition1.

1. The subscript w* means “weak* continuous” and “CB” means completely bounded. The compatibility is
taken in the sense of interpolation theory [17, 151].
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Definition 1.1 Let G be a (unimodular) locally compact group. We say that G has property
(κ) if there exist compatible bounded projections P∞G : CBw∗(VN(G)) → CBw∗(VN(G)) and
P 1
G : CB(L1(VN(G))) → CB(L1(VN(G))) onto M∞,cb(G) and M1,cb(G) preserving complete

positivity. In this case, we introduce the constant

κ(G) = inf max
{
‖P∞G ‖CBw∗ (VN(G))→CBw∗ (VN(G)) ,

∥∥P 1
G

∥∥
CB(L1(VN(G)))→CB(L1(VN(G)))

}
where the infimum is taken over all admissible couples (P∞G , P 1

G) of compatible bounded projec-
tions and we let κ(G) =∞ if G does not have (κ).

Haagerup has essentially proved that κ(G) = 1 if G is a discrete group by a well-known
average argument using the unimodularity and the compactness of the quantum group VN(G).
The key novelty in our approach is the use of approximating methods by discrete groups in
various senses to construct bounded projections for non-discrete groups beyond the case of a dual
of a unimodular compact quantum group. IfG is a second countable pro-discrete locally compact
group, we are able to show that κ(G) = 1 (see Theorem 6.39). Another main result of the paper
gives κ(G) <∞ for the elements of some class of locally compact groups approximable by lattice
subgroups, see Corollary 6.26. Note that a straightforward duality argument combined with
some results of Derighetti [45, Theorem 5], Arendt and Voigt [5, Theorem 1.1] says that if G is an
abelian locally compact group then κ(G) = 1 (see Proposition 6.45). Furthermore, in most cases,
we will show the existence of compatible projections P pG : CB(Lp(VN(G))) → CB(Lp(VN(G)))
onto Mp,cb(G) for all 1 6 p 6 ∞2. So we have a strengthening (κ′) of property (κ) for
some groups. It is an open question to know if (κ′) is really different from (κ). Finally, in a
forthcoming paper, examples of locally compact groups without (κ) will be described by the
first named author.

Using classical results from approximation properties of discrete groups, it is not difficult
to see that there exist completely bounded Fourier multipliers Mϕ : Lp(VN(G))→ Lp(VN(G))
on some class of discrete groups which are not decomposable (Proposition 3.32). In Section 7,
we focus on a more difficult task. We examine the problem to construct completely bounded
operators T : Lp(M) → Lp(M) which cannot be approximated by decomposable operators,
in the sense that T does not belong to the closure Dec(Lp(M)) of the space Dec(Lp(M)) of
decomposable operators on Lp(M) with respect to the operator norm ‖·‖Lp(M)→Lp(M) (or the
completely bounded norm ‖·‖cb,Lp(M)→Lp(M)).

We particularly investigate different types of multipliers. We show the existence of such
completely bounded Fourier multipliers, on large classes of locally compact groups, including
all infinite abelian locally compact groups (see Theorem 7.14). Note that it is impossible to
find such bad multipliers on finite groups by an argument of finite dimensionality. Our strategy
relies on the use of transference theorems which we prove and structure theorems on groups.
It consists in dealing with all possible cases. In the abelian situation, the construction of our
examples in the critical cases (e.g. if the dual group Ĝ is an infinite totally disconnected group
or an infinite torsion discrete group) is proved by a Littlewood-Paley decomposition argument
on the Bochner space Lp(G,X) where X is a UMD Banach space, which allows us to obtain in
addition the complete boundedness of multipliers. We also examine the case of Schur multipliers.
In particular, we prove that the discrete noncommutative Hilbert transform H : Sp → Sp on the
Schatten space Sp is not approximable by decomposable operators (Corollary 7.22). We equally
deal with convolutors (Subsection 7.3) and operators on arbitrary noncommutative Lp-spaces
associated with infinite dimensional approximately finite-dimensional von Neumann algebras
(Theorem 7.35).

2. If p =∞, replace CB(Lp(VN(G))) by CBw∗ (VN(G))
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In the case of an amenable group G, transference methods [28, 30, 110] between Schur
multipliers and Fourier multipliers can sometimes be used for proving theorems on selfadjoint
completely bounded Fourier multipliers on VN(G), see e.g. [7, Corollary 4.5] and [11]. We
finish the paper by introducing a general procedure for proving positive results on selfadjoint
contractively decomposable Fourier multipliers on non-amenable discrete groups relying on the
new characterization of Proposition 8.2. This result should allow with a reasonable work to
generalize properties which are true for unital completely positive selfadjoint Fourier multipli-
ers by using unital completely positive selfadjoint 2x2 block matrices of Fourier multipliers.
Subsection 8.3 illustrates this method by describing Fourier multipliers which satisfy the non-
commutative Matsaev inequality (Theorem 8.6), using the new result of factorizability of such
2x2 block matrices of Fourier multipliers (Theorem 8.5).

The paper is organized as follows. Section 2 gives background and preliminary results.
Some relations between matricial orderings and norms in Subsection 2.3 are fundamental to
reduce the problem of the comparison of the regular norm and the decomposable norm to
the selfadjoint case. Moreover, in passing, we identify completely positive maps on classical
Lp-spaces (Proposition 2.21 and Proposition 2.22).

In Section 3, we will investigate the notions of decomposable maps and regular maps on non-
commutative Lp-spaces. We will see in Theorem 3.24 that on approximately finite-dimensional
semifinite von Neumann algebras, the notions of decomposable and regular operators coincide
isometrically. The proof of this result requires several reduction intermediate steps, such as
self-adjoint maps in place of general maps (Subsection 3.4) and Schatten spaces in place of
general noncommutative Lp-spaces (Theorem 3.21 in Subsection 3.5). Moreover, we investigate
in this section the relation of the (completely) bounded norm on noncommutative Lp-spaces
with the decomposable norm. We will see in Theorem 3.26 that for completely positive maps
on Lp-spaces over approximately finite-dimensional algebras, the bounded norm and the com-
pletely bounded norm coincide. If the von Neumann algebra has QWEP, then we will see in
Proposition 3.30 that the completely bounded norm is dominated by the decomposable norm,
so in case of completely positive maps, the complete bounded norm, the bounded norm and
the decomposable norm all coincide (Proposition 3.31). However, we will exhibit a class of
concrete examples where the decomposable norm is larger than the complete bounded norm
(Theorem 3.38). Finally, this section contains information on the infimum of the decomposable
norm (Subsection 3.2), the absolute value |T | and decomposability of an operator T acting on
a commutative Lp-space (Subsection 3.7) and examples of completely bounded but non decom-
posable Fourier multipliers on group von Neumann algebras (Proposition 3.32). We also give
explicit examples of computations of the decomposable norm, see Theorem 3.37.

In the following Section 4, we give a generalization of the average argument of Haagerup.
We will show the existence of contractive projections from some spaces of completely bounded
operators onto the spaces of Fourier multipliers, Schur multipliers or even a combination of
the two (Theorem 4.2 and Subsection 4.2). This concerns discrete groups, possibly deformed
by a 2-cocycle and we will also show the independence of the completely bounded norm and
the complete positivity with respect to that 2-cocycle, for a Fourier/Schur-multiplier. So the
natural framework will be the one of twisted (discrete) group von Neumann algebras, explained
in Subsection 4.1. In particular, this covers the case of noncommutative tori when the group
equals Zd. As an application, we will describe the decomposable norm of such Fourier and
Schur multipliers on the Lp level and see that in the framework of this section, this norm equals
the (complete) bounded norm on the L∞ level (Subsection 4.3).

In Section 5, we introduce and explore some approximation properties of locally compact
groups. We connect these to some notions of approximation introduced by different authors.
We clarify these properties in the large setting of second countable compactly generated locally
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compact groups, see Theorem 5.13.
Hereafter, Section 6 contains an in-depth study of decomposablility of Fourier multipliers on

non-discrete locally compact groups. After having introduced these Fourier multipliers and their
basic properties in Subsection 6.1, we will show in Subsection 6.2 how their complete bounded
norm is changed under a continuous homomorphism between two locally compact groups. In
Subsection 6.3, we describe an extension property of Fourier multipliers which passes from a
lattice subgroup to the locally compact full group. In Subsection 6.4, we prove Theorem 6.16
which gives a complementation for second countable unimodular locally compact groups which
satisfy the approximation by lattice subgroups by shrinking (ALSS) property of Definition 5.3
together with a crucial density condition (6.12). Then in Subsection 6.5, we describe some
concrete groups in which Theorem 6.16 applies. These examples contain direct and semidirect
products of groups, groups acting on trees, a large class of locally compact abelian groups and
the semi-discrete Heisenberg group. In Subsection 6.6, we show the complementation result for
pro-discrete groups by a similar method than in Theorem 6.16, but it turns out that there is
no need of a density condition in this case.

There is another notion of generalization of Fourier multipliers on non-abelian groups G, but
acting on classical Lp-spaces Lp(G) instead of noncommutative Lp-spaces Lp(VN(G)). These are
the convolutors that is the bounded operators commuting with left translations. In Subsection
6.7, we show a complementation result for them on locally compact amenable groups. Then in
Subsection 6.8 we apply our complementation to describe the decomposable norm of multipliers.

In Section 7, we construct completely bounded operators T : Lp(M)→ Lp(M) which cannot
be approximated by decomposable operators. In Proposition 3.32, we shall see that in general,
the class of completely bounded operators on a noncommutative Lp-space is larger than the class
of decomposable operators. In Section 7, we deepen this fact and show that in many situations
of Lp-spaces and classes of operators on them, there are (completely) bounded operators such
that in a small (norm or CB-norm) neighborhood of the operator, there is no decomposable
map. This notion of (CB-)strongly non decomposable operator is defined in Subsection 7.1.
Our first class of objects are the Fourier multipliers on abelian locally compact groups. We
show in Theorem 7.14 that on all infinite locally compact abelian groups, there always exists
a (CB-)strongly non decomposable Fourier multiplier on Lp(G). By a transference procedure,
this theorem extends to convolutors acting on several non-abelian locally compact groups con-
taining infinite locally compact abelian groups (Subsection 7.3). Then our next goal are Schur
multipliers. In Subsection 7.4 (see Corollary 7.22) we will show that the very classical discrete
noncommutative Hilbert transform and the triangular truncation T : Sp → Sp are CB-strongly
non decomposable. Then we study CB-strongly non decomposable Fourier multipliers on dis-
crete non-abelian groups. We establish some general results and apply them to Riesz transforms
associated with cocycles and to free Hilbert transforms (Subsection 7.5). Finally, we enlarge
the class of spaces and consider Lp-spaces over general approximately finite-dimensional von
Neumann algebras (Subsection 7.6). Namely, in Theorem 7.35, we show that for 1 < p < ∞,
p 6= 2 and for any infinite dimensional approximately finite-dimensional von Neumann algebra
M , there always exists a CB-strongly non decomposable operator on Lp(M).

In Section 8, we study a certain property for operators on noncommutative Lp-spaces which
is a combination of contractively decomposable and selfadjointness on L2(M). In general, this
notion is more restrictive than being separately contractively decomposable and selfadjoint.
However, in Proposition 8.2, we will see that for Fourier multipliers acting on twisted von
Neumann algebras over discrete groups and a T-valued 2-cocycle, this difference disappears. As a
consequence, we show in the last two Subsections 8.2 and 8.3 that for contractively decomposable
and selfadjoint Fourier multipliers on twisted von Neumann algebras, the noncommutative
Matsaev inequality holds.
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2 Preliminaries
2.1 Noncommutative Lp-spaces and operator spaces
Let M be a von Neumann algebra equipped with a semifinite normal faithful weight τ . We
denote by m+

τ the set of all positive x ∈ M such that τ(x) < ∞ and mτ its complex linear
span which is a weak* dense ∗-subalgebra of M . If nτ is the left ideal of all x ∈ M such that
τ(x∗x) <∞ then we have

(2.1) mτ = span
{
y∗z : y, z ∈ nτ

}
.

Suppose 1 6 p < ∞. If τ is in addition a trace then for any x ∈ mτ , the operator |x|p

belongs to m+
τ and we set ‖x‖Lp(M) = τ

(
|x|p

) 1
p . The noncommutative Lp-space Lp(M) is the

completion of mτ with respect to the norm ‖·‖Lp(M). One sets L∞(M) = M . We refer to [123],
and the references therein, for more information on these spaces. The subspace M ∩ Lp(M) is
dense in Lp(M). The positive cone Lp(M)+ of Lp(M) is given by

(2.2) Lp(M)+ =
{
y∗y : y ∈ L2p(M)

}
.

Recall that we also have the following dual description:

(2.3) Lp(M)+ =
{
x ∈ Lp(M) : 〈x, y〉Lp(M),Lp∗ (M) > 0 for any y ∈ Lp

∗
(M)+

}
.

At several times, we will use the following elementary3 result.

Lemma 2.1 Let M be a semifinite von Neumann algebra equipped with a normal semifinite
faithful trace. Suppose 1 6 p <∞. Then M+ ∩ Lp(M) is dense in Lp(M)+ for the topology of
Lp(M).

The readers are referred to [55], [112] and [119] for details on operator spaces and completely
bounded maps. If T : E → F is a completely bounded map between two operators spaces E
and F , we denote by ‖T‖cb,E→F its completely bounded norm. If E⊗̂F is the operator space
projective tensor product of E and F , we have a canonical complete isometry (E⊗̂F )∗ =
CB(E,F ∗), see [55, Chapter 7].

The theory of vector-valued noncommutative Lp-spaces was initiated by Pisier [118] for the
case where the underlying von Neumann algebra is hyperfinite and equipped with a normal
semifinite faithful trace. Suppose 1 6 p 6∞. Under these assumptions, for any operator space
E, we can define by complex interpolation

(2.4) Lp(M,E) def=
(
M ⊗min E,L1(Mop)⊗̂E

)
1
p

where ⊗min and ⊗̂ denote the injective and the projective tensor product of operator spaces.
When E = C, we get the noncommutative Lp-space Lp(M).

If Ω is a measure space then we denote by B(L2(Ω)) the von Neumann algebra of bounded
operators on the Hilbert space L2(Ω). Using its canonical trace, we obtain the vector-valued

3. Let x be a positive element of Lp(M). We can write x = y∗y for some y ∈ L2p(M). Since M ∩ L2p(M)
is dense in L2p(M), there exists a sequence (yn) of elements of M ∩ L2p(M) which approximate y in L2p(M).
Then we have

‖x− y∗nyn‖Lp(M) = ‖y∗y − y∗nyn‖Lp(M) 6 ‖y∗(y − yn)‖Lp(M) + ‖(y∗ − y∗n)yn‖Lp(M) −−−−−→
n→+∞

0.

.
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Schatten space SpΩ(E) = Lp(B(L2(Ω)), E). With Ω = N or Ω = {1, . . . , n} equipped with the
counting measure and E = C we recover the classical Schatten spaces Sp and Spn.

Recall the following classical characterization of completely bounded maps, which is essen-
tially [118, Lemma 1.4].

Proposition 2.2 Let E and F be operator spaces. Suppose 1 6 p 6∞. A linear map T : E →
F is completely bounded if and only if IdSp⊗T extends to a bounded operator IdSp⊗T : Sp(E)→
Sp(F ). In this case, the completely bounded norm ‖T‖cb,E→F is given by

(2.5) ‖T‖cb,E→F = ‖IdSp ⊗ T‖Sp(E)→Sp(F ) .

If Ω is a (localizable) measure space, the Banach space Sp(Lp(Ω)) is isometric to the Bochner
space Lp(Ω, Sp) of Sp-valued functions. Thus, in particular, if Ω′ is another (localizable) measure
space then a linear map T : Lp(Ω)→ Lp(Ω′) is completely bounded if and only if T⊗IdSp extends
to a bounded operator T ⊗ IdSp : Lp(Ω, Sp)→ Lp(Ω′, Sp). In this case, we have

(2.6) ‖T‖cb,Lp(Ω)→Lp(Ω′) =
∥∥T ⊗ IdSp

∥∥
Lp(Ω,Sp)→Lp(Ω′,Sp).

If E and F are operator spaces and if T : E → F is a linear map, we will use the map
T op : Eop → F op, x 7→ T (x). Of course, since the underlying Banach spaces of E and Eop and
of F and F op are identical, the map T is bounded if and only if the map T op is bounded. The
following lemma shows that the situation is similar for the complete boundedness. Furthermore,
this result is useful when we use duality since in the category of operator spaces we have
Lp(M)∗ = Lp∗(M)op if 1 6 p <∞. In passing, recall that Lp(M)op = Lp(Mop).

Lemma 2.3 Let T : E → F be a linear map between operators spaces. Then T is completely
bounded if and only if the map T op : Eop → F op is completely bounded. Moreover, in this case
we have ‖T‖cb,E→F = ‖T op‖cb,Eop→F op .

Proof : Assume that T is completely bounded and let [xij ]ij ∈ Mn(Eop). Then∥∥[T (xij)]ij
∥∥

Mn(F op) =
∥∥[T (xji)]ij

∥∥
Mn(F ) 6 ‖T‖cb,E→F

∥∥[xji]ij
∥∥

Mn(E)

= ‖T‖cb,E→F
∥∥[xij ]ij

∥∥
Mn(Eop).

We infer that ‖T op‖cb,Eop→F op 6 ‖T‖cb,E→F . Since (Eop)op = E completely isometrically, the
reverse inequality follows by symmetry.

2.2 Matrix ordered operator spaces
A complex vector space V is matrix ordered [35, page 173] if

1. V is a ∗-vector space (hence so is Mn(V ) for any n > 1),

2. each Mn(V ), n > 1, is partially ordered by a cone Mn(V )+ ⊂ Mn(V )sa, and

3. if α = [αij ] ∈ Mn,m, then α∗Mn(V )+α ⊂ Mm(V )+.

Now let V and W be matrix ordered vector spaces and let T : V →W be a linear map. We say
that T is completely positive if IdMn ⊗ T : Mn(V )→ Mn(W ) is positive for each n. We denote
the set of completely positive maps from V to W by CP(V,W ).

An operator space E is called a matrix ordered operator space [132, page 143] if it is a
matrix ordered vector space and if in addition

9



1. the ∗-operation is an isometry on Mn(E) for any integer n > 1 and

2. the cones Mn(E)+ are closed in the norm topology.

For a matrix ordered operator space E and its dual operator space E∗, we can define an
involution on E∗ by ϕ∗(v) = ϕ(v∗) for any ϕ ∈ E∗ and a cone on Mn(E∗) for each n > 1 by
Mn(E∗)+ = CB(E,Mn)∩CP(E,Mn). Note that we have an isometric identification Mn(E∗) =
CB(E,Mn). A lemma of Itoh [85] (see [133, Lemma 2.3.8] for a complete proof) says that if E
is a matrix ordered operator space, we have

(2.7) Mn(E∗)+ =
{

[yij ] ∈ Mn(E∗) :
n∑

i,j=1
yij(xij) > 0 for any [xij ] ∈ Mn(E)+

}
.

Lemma 2.4 Let E be a matrix ordered operator space. We have

Mn(E)+ =
{
x ∈ Mn(E) :

n∑
i,j=1

yij(xij) > 0 for any [yij ] ∈ Mn(E∗)+

}
.

Proof : Note that the dual cone S1
n(E∗)+ of Mn(E)+ is defined by S1

n(E∗)+ =
{

[yij ] ∈ S1
n(E∗) :∑n

i,j=1 yij(xij) > 0 for any [xij ] ∈ Mn(E)+
}
and identifies to Mn(E∗)+ by (2.7). Since Mn(E)+

is closed in the norm topology, hence weakly closed, we conclude by the bipolar theorem.
By [132, Corollary 3.2], the operator space dual E∗ with this positive cone is a matrix

ordered operator space [132, Corollary 3.2]. The category of matrix ordered operator spaces
contains the class of C∗-algebras.

Let M be a von Neumann algebra equipped with a faithful normal semifinite trace. If
1 6 p 6 ∞, the noncommutative Lp-space Lp(M) is canonically equipped with an isometric
involution and we can define a cone on Mn(Lp(M)) by letting

(2.8) Mn(Lp(M))+
def= Lp(Mn(M))+ (= Spn(Lp(M))+).

Note the following easy4 observation.

4. Consider x ∈ Mn(Lp(M))+, i.e. x ∈ Spn(Lp(M))+. There exists y ∈ S2p
n (L2p(M)) such that y∗y = x. We

can write y =
∑n

i,j=1 eij ⊗ yij for some yij ∈ L2p(M). For any matrix α ∈ Mn,m, we have

α∗ · x · α = α∗ · y∗y · α = α∗ ·
( n∑
i,j=1

eij ⊗ yij
)∗( n∑

k,l=1

ekl ⊗ ykl
)
· α

= α∗ ·
( n∑
i,j=1

eji ⊗ y∗ij
)( n∑

k,l=1

ekl ⊗ ykl
)
· α =

n∑
i,j,k,l=1

α∗ejieklα⊗ y∗ijykl

=
( n∑
i,j=1

α∗eji ⊗ y∗ij
)( n∑

k,l=1

eklα⊗ ykl
)

=
( n∑
i,j=1

eijα⊗ yij
)∗( n∑

k,l=1

eklα⊗ ykl
)
.

We conclude that α∗ · x · α is a positive element of Mn(Lp(M)) = Spn(Lp(M)). We conclude that Lp(M) is
matrix ordered. Moreover, for any x ∈ Mn(Lp(M)), using [117, Lemma 1.7] twice and the isometric involution,
we see that

‖x∗‖Mn(Lp(M)) = sup
{
‖α · x∗ · β‖Spn(Lp(M)) : ‖α‖

S
2p
n

6 1, ‖β‖
S

2p
n

6 1
}

= sup
{
‖β∗ · x · α∗‖Spn(Lp(M)) : ‖α‖

S
2p
n

6 1, ‖β‖
S

2p
n

6 1
}

= sup
{
‖β · x · α‖Spn(Lp(M)) : ‖α‖

S
2p
n

6 1, ‖β‖
S

2p
n

6 1
}

= ‖x‖Mn(Lp(M)) .

.
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Proposition 2.5 Let M be a von Neumann algebra equipped with a faithful normal semifinite
trace. Suppose 1 6 p 6 ∞. Then the noncommutative Lp-space Lp(M) is a matrix ordered
operator space.

If N is another von Neumann algebra equipped with a faithful normal semifinite trace then
it is easy to see that a map T : Lp(M) → Lp(N) is completely positive if the map IdSp ⊗ T
induces a (completely) positive map IdSp ⊗ T : Sp(Lp(M)) → Sp(Lp(N)). Moreover, for any
matrix α ∈ Mn,m, the map

(2.9) Lp(Mn(M))→ Lp(Mm(M)), x 7→ α∗xα

is completely positive.

Lemma 2.6 Let M be a von Neumann algebra equipped with a faithful normal semifinite
trace. Suppose 1 6 p 6 ∞. If b ∈ Mn(Lp(M)) and if bt is the transpose of b we have
b ∈ Mn(Lp(Mop))+ if and only if bt ∈ Mn(Lp(M))+.

Proof : We start with the case p = ∞. We can identify Mop with M equipped with the
opposed product. We will use the notation ◦ for some products where the subscript indicates
the space. Let b ∈ Mn(Mop)+. Then we can write b = c∗ ◦Mn(Mop) c for some c ∈ Mn(M). For
any 1 6 i, j 6 n, we have

bij =
n∑
k=1

(c∗)ik ◦Mop ckj =
n∑
k=1

ckj(c∗)ik =
n∑
k=1

(ct)jk(ct∗)ki =
(
ct ◦Mn(M) c

t∗)t.
Hence bt = ct ◦Mn(M) c

t∗ belongs to Mn(M)+. The reverse implication follows by symmetry.
Suppose that b ∈ Mn(Lp(Mop))+, i.e. b ∈ Spn(Lp(Mop))+ by (2.8). By Lemma 2.1, there exists
a sequence (bk) in Mn(Mop)+ ∩ Spn(Lp(Mop)) converging to b for the topology of Spn(Lp(M)).
By the first part of the proof, each (bk)t belongs to Mn(M)+ and of course to Spn(Lp(M)). In
particular, (bk)t belongs to Mn(Lp(M))+. Passing to the limit as k approaches infinity yields
bt ∈ Mn(Lp(M))+. Again, a symmetry argument completes the proof.

We will often use the following observation.

Lemma 2.7 Let E and F be matrix ordered operator spaces. A bounded map T : E → F is
(completely) positive if and only if the adjoint map T ∗ : F ∗ → E∗ is (completely) positive.

Proof : By Lemma 2.4, a map T : E → F is positive if and only if 〈T (x), y〉F,F∗ > 0 for
any x ∈ E+ and any y ∈ F ∗+ if and only if 〈x, T ∗(y)〉E,E∗ > 0 for all such x, y if and only if
T ∗ : F ∗ → E∗ is positive again by (2.7). The completely positive case is similar.

For further use in Lemma 3.22, we record the following.

Lemma 2.8 Let E and F be matrix ordered operator spaces.

1. Let (Tα) be a net of positive (resp. completely positive) mappings from E into F . Suppose
that limα Tα = T in the weak operator topology. Then T is also positive (resp. completely
positive).

2. Let (Tα) be a net of positive (resp. completely positive) mappings from E into F ∗. Suppose
that limα Tα = T in the point weak* topology5 of B(E,F ∗). Then T is also positive (resp.
completely positive).

5. If X is a Banach space and Y is a dual Banach space, a net (Tα) in B(X,Y ) converges to an operator
T ∈ B(X,Y ) in the point weak* topology if and only if for any x ∈ X and any y∗ ∈ Y∗ we have 〈Tα(x), y∗〉Y,Y∗ −→

α

〈T (x), y∗〉Y,Y∗ .
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Proof : 1. Suppose that each Tα : E → F is a positive map. By Lemma 2.4, the map T : E → F
is positive if and only if 〈T (x), y〉F,F∗ > 0 for any x ∈ E+ and any y ∈ F ∗+. Using again Lemma
2.4, we infer that 〈T (x), y〉F,F∗ = limα〈Tα(x), y〉F,F∗ > 0. Thus we conclude that T is positive.

Suppose that each Tα is completely positive. By Lemma 2.4, the map IdMn
⊗ T : Mn(E)→

Mn(F ) is positive if and only if
∑n
i,j=1〈T (xij), yij〉F,F∗ for any [xij ] ∈ Mn(E)+ and any [yij ] ∈

Mn(F ∗)+. Using again Lemma 2.4, we infer that
n∑

i,j=1
〈T (xij), yij〉F,F∗ = lim

α

n∑
i,j=1
〈Tα(xij), yij〉F,F∗ > 0.

Letting n run over all integers, we conclude that T is completely positive.
2. Suppose that each Tα : E → F ∗ is a positive map. By (2.7), the map T : E → F ∗ is

positive if and only if 〈T (x), y〉F∗,F > 0 for any x ∈ E+ and any y ∈ F+. Using again (2.7), we
infer that 〈T (x), y〉F∗,F = limα〈Tα(x), y〉F∗,F > 0. Thus we conclude that T is positive.

Suppose that each Tα is completely positive. By (2.7), the map IdMn
⊗T : Mn(E)→ Mn(F ∗)

is positive if and only if
∑n
i,j=1〈T (xij), yij〉F∗,F for any [xij ] ∈ Mn(E)+ and any [yij ] ∈ Mn(F )+.

Using again (2.7), we infer that 〈T (xij), yij〉F∗,F = limα

∑n
i,j=1〈Tα(xij), yij〉F∗,F > 0. Letting

n run over all integers, we conclude that T is completely positive.
If E is a matrix ordered operator space, by [133, page 80], the vector-valued Schatten space

Spn(E) = Rn(1− 1
p )⊗hE⊗h Rn( 1

p ) admits a structure of a matrix ordered operator space. The
cones are defined by the closures

Mk(Spn(E))+ =
{
x∗ � y � x ∈ Mk(Spn(E)) : x ∈ Ml,k(Rn( 1

p )), y ∈ Ml(E)+, l ∈ N
}
.

Lemma 2.9 Suppose 1 6 p 6 ∞. Let E and F be matrix ordered operator spaces and let
T : E → F be a bounded completely positive map. Then for any integer n, the map IdSpn ⊗
T : Spn(E)→ Spn(F ) is completely positive.

Proof : For any n ∈ N, any x ∈ Ml,k(Rn( 1
p )) and any y ∈ Ml(E)+, the element (IdSpn⊗T )(x∗�

y� x) = x∗� T (y)� x belongs to Mk(Spn(E))+. An argument of continuity gives the result.

2.3 Relations between matricial orderings and norms
For any x ∈ Spn(E) and any a, b ∈ Mn, the result [118, Lemma 1.6 (i)] says that

(2.10) ‖axb‖Spn(E) 6 ‖a‖S∞n ‖x‖Spn(E) ‖b‖S∞n .

Moreover, for any diagonal matrix x = diag(x1, . . . , xn) ∈ Spn(E), [118, Corollary 1.3] gives

(2.11) ‖x‖Spn(E) =
( n∑
k=1
‖xk‖pE

) 1
p

.

Lemma 2.10 Let E be an operator space. Suppose 1 6 p < ∞. Then for any b, c ∈ E, we

have
∥∥∥∥[0 b
c 0

]∥∥∥∥
Sp2 (E)

=
(
‖b‖pE + ‖c‖pE

) 1
p and

∥∥∥∥[0 b
c 0

]∥∥∥∥
S∞2 (E)

= max
{
‖b‖E , ‖c‖E

}
.

Proof : Using the inequality (2.10), we see that∥∥∥∥[0 b
c 0

]∥∥∥∥
Sp2 (E)

=
∥∥∥∥[b 0

0 c

] [
0 1
1 0

]∥∥∥∥
Sp2 (E)

6

∥∥∥∥[b 0
0 c

]∥∥∥∥
Sp2 (E)

∥∥∥∥[0 1
1 0

]∥∥∥∥
S∞2

=
∥∥∥∥[b 0

0 c

]∥∥∥∥
Sp2 (E)

.
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By symmetry, we conclude that
∥∥∥∥[0 b
c 0

]∥∥∥∥
Sp2 (E)

=
∥∥∥∥[b 0

0 c

]∥∥∥∥
Sp2 (E)

. On the other hand, the

equality (2.11) yields
∥∥∥∥[b 0

0 c

]∥∥∥∥
Sp2 (E)

=
(
‖b‖pE + ‖c‖pE

) 1
p . The case p = ∞ is similar, so the

lemma is proven.

Lemma 2.11 Let M be a von Neumann algebra equipped with a faithful normal semifinite

trace. Suppose 1 6 p 6∞. Let a, b and c be elements of Lp(M) such that the element
[
a b
b∗ c

]
of Sp2 (Lp(M)) is positive. Then we have ‖b‖Lp(M) 6

1
2

1
p

(
‖a‖pLp(M) + ‖c‖pLp(M)

) 1
p .

Proof : Suppose there exist some a, c ∈ Lp(M)+ such that
[
a b
b∗ c

]
∈ Sp2 (Lp(M))+. Since[

a −b
−b∗ c

]
=
[
1 0
0 −1

] [
a b
b∗ c

] [
1 0
0 −1

]
is a positive element of Sp2 (Lp(M)), we obtain the

inequalities −
[
a 0
0 c

]
6

[
0 b
b∗ 0

]
6

[
a 0
0 c

]
. Using (2.11) and Lemma 2.10, we obtain

2
1
p ‖b‖Lp(M) =

∥∥∥∥[ 0 b
b∗ 0

]∥∥∥∥
Sp2 (Lp(M))

6

∥∥∥∥[a 0
0 c

]∥∥∥∥
Sp2 (Lp(M))

=
(
‖a‖pLp(M) + ‖c‖pLp(M)

) 1
p .

The following result is folklore. Unable to locate a proof in the literature, we give a very
short proof based on Lemma 2.11.

Proposition 2.12 Let M be a von Neumann algebra equipped with a faithful normal semifinite
trace. Suppose 1 6 p 6 ∞. Let b be an element of Spn(Lp(M)). Then ‖b‖Spn(Lp(M)) 6 1 if and
only if there are a, c ∈ Spn(Lp(M))+ with ‖a‖Spn(Lp(M)) 6 1 and ‖c‖Spn(Lp(M)) 6 1 such that the

element
[
a b
b∗ c

]
of Sp2n(Lp(M)) is positive.

Proof : The implication ⇐ is Lemma 2.11. For the implication ⇒, we only need the case
n = 1. Consider b ∈ Lp(M) with ‖b‖Lp(M) 6 1. By Lemma 2.1, there exists a sequence (bn) in
M+ ∩Lp(M) converging to b for the topology of Lp(M). By [112, Exercise 8.8 (vi)], the matrix[
|b∗n| bn
b∗n |bn|

]
is a positive element. Using the continuity of the modulus and passing to the limit

as n approaches infinity yields
[
|b∗| b
b∗ |b|

]
> 0. Moreover, we have

∥∥|b|∥∥Lp(M) =
∥∥|b∗|∥∥Lp(M) =

‖b‖Lp(M) 6 1.

Lemma 2.13 Suppose 1 6 p 6 ∞. Let M be a von Neumann algebra equipped with a faithful
normal semifinite trace. Let a and b be selfadjoint elements of Lp(M) satisfying −b 6 a 6 b.

Then, in Sp2 (Lp(M)), we have
[
a b
b a

]
> 0.

Proof : The case p = ∞ is well-known, see [55, Proposition 1.3.5]. Let us turn to the case
1 6 p < ∞. By Lemma 2.1, there exists a sequence (yn) in M+ ∩ Lp(M) converging to the
positive element b−a for the topology of Lp(M) and a sequence (zn) of elements ofM+∩Lp(M)
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converging to the positive element a + b. Note that an = zn−yn
2 converges to a and that

bn = yn+zn
2 converges to b. Moreover, we have −bn 6 an 6 bn. According to the case p = ∞,

we have
[
an bn
bn an

]
> 0. Finally passing to the limit as n approaches infinity yields

[
a b
b a

]
> 0.

Lemma 2.14 Let M be a von Neumann algebra equipped with a faithful normal semifinite

trace. Suppose 1 6 p 6 ∞. Let a, b and c be elements of Lp(M) satisfying
[
a b
b c

]
> 0 in

Sp2 (Lp(M)). Then we have − 1
2 (a+ c) 6 b 6 1

2 (a+ c).

Proof : The case p =∞ is well-known, see [55, Proposition 1.3.5]. By Lemma 2.1, there exists

a sequence
([

an bn
bn cn

])
in M2(M)+ ∩Sp2 (Lp(M)) converging to

[
a b
b c

]
in Sp2 (Lp(M)). Recall

that for any integer i0, j0 = 1, 2 and any 1 6 p 6 ∞, the linear map Sp2 (Lp(M)) → Lp(M),
[xij ] 7→ xi0j0 is a contraction. We infer that the sequences (an), (bn) and (cn) of Lp(M) converge

to a, b and c respectively. According to the case p =∞, the positivity of the element
[
an bn
bn cn

]
of M2(M) implies − 1

2 (an + cn) 6 bn 6 1
2 (an + cn). Finally passing to the limit as n approaches

infinity yields − 1
2 (a+ c) 6 b 6 1

2 (a+ c).

2.4 Positive and completely positive maps on noncommutative Lp-
spaces

Lemma 2.15 Let M and N be von Neumann algebras equipped with semifinite faithful normal
traces. Suppose 1 6 p 6∞. Then a map T : Lp(M)→ Lp(N) is completely positive if and only
if T op : Lp(M)→ Lp(N) is completely positive.

Proof : Assume that T : Lp(M) → Lp(M) is completely positive. Let b ∈ (Mn(Lp(M)op))+.
Then applying Lemma 2.6 twice, we deduce that (IdMn ⊗ T op)(b) = [T (bij)] = [T ((bt)ij)]t =
((IdMn ⊗ T )(bt))t belongs to (Mn(Lp(M)op))+. We infer that T op : Lp(M)op → Lp(M)op is
completely positive. The reverse statement is obtained by symmetry.

The boundedness assumption of [117, Theorem 0.1 and Lemma 2.3] is unnecessary since we
have the following elementary result.

Proposition 2.16 Let M be a von Neumann algebra equipped with a faithful normal semifinite
trace. Suppose 1 6 p 6∞. Any positive map T : Lp(M)→ Lp(M) is bounded.

Proof : We first show that there exists a constant K > 0 satisfying for any x ∈ Lp(M)+ with
‖x‖Lp(M) 6 1 the inequality ‖T (x)‖Lp(M) 6 K. Suppose that it is not the case then there exists
a sequence (xn) of positive elements of Lp(M) with ‖xn‖Lp(M) 6 1 and ‖T (xn)‖Lp(M) > 4n.
We have

∑∞
n=1

∥∥ 1
2nxn

∥∥
Lp(M) 6

∑∞
n=1

1
2n <∞. Hence the series

∑∞
n=1

1
2nxn is convergent and

defines a positive element x of Lp(M). Now, for any integer n > 1, we have 0 6 1
2nxn 6 x.

We deduce that 0 6 1
2nT (xn) 6 T (x). Hence we obtain 1

2n
∥∥T (xn)

∥∥
Lp(M) 6

∥∥T (x)
∥∥

Lp(M) and
finally 2n 6

∥∥T (x)
∥∥

Lp(M). Impossible.
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Now, if x ∈ Lp(M) we have a decomposition x = x1 − x2 + i(x3 − x4) with x1, x2, x3, x4 ∈
Lp(M)+ and ‖x1‖Lp(M) , ‖x2‖Lp(M) , ‖x3‖Lp(M) , ‖x4‖Lp(M) less or equal to ‖x‖Lp(M). Hence

‖T (x)‖Lp(M) =
∥∥T (x1)− T (x2) + i

(
T (x3)− T (x4)

)∥∥
Lp(M)

6 ‖T (x1)‖Lp(M) + ‖T (x2)‖Lp(M) + ‖T (x3)‖Lp(M) + ‖T (x4)‖Lp(M)

6 K
(
‖x1‖Lp(M) + ‖x2‖Lp(M) + ‖x3‖Lp(M) + ‖x4‖Lp(M)

)
6 4K ‖x‖Lp(M) .

This result will imply in particular that a decomposable map is bounded.
The following result is proved in [117, Proposition 2.2 and Lemma 2.3] for Sp. It has

been long announced in [87, page 2] for QWEP von Neumann algebras (but seems definitely
postponed). We will give a proof for hyperfinite von Neumann algebras, see Theorem 3.26.
Only Proposition 3.10, Proposition 3.30 and Proposition 3.31 depend on this result.

Theorem 2.17 Suppose 1 < p 6 ∞. Let M,N be QWEP von Neumann algebras equipped
with faithful semifinite normal traces. Let T : Lp(M) → Lp(N) be a completely positive map.
Then T is completely bounded and ‖T‖Lp(M)→Lp(N) = ‖T‖cb,Lp(M)→Lp(N).

The next lemmas are important for the proof of Theorem 3.24.

Lemma 2.18 Let M and N be von Neumann algebras equipped with faithful normal semifinite
traces. Suppose 1 6 p 6∞. Let T, S : Lp(M)→ Lp(N) be selfadjoint6 maps such that −S 6cp

T 6cp S. Then the map
[
S T
T S

]
: Lp(M)→ Sp2 (Lp(N)) is completely positive.

Proof : Suppose x ∈ Spn(Lp(M))+. Then −(IdSpn ⊗S)(x) 6 (IdSpn ⊗ T )(x) 6 (IdSpn ⊗S)(x). By

Lemma 2.13, we deduce that
(

IdSpn ⊗
[
S T
T S

])
(x) =

[
(IdSpn ⊗ S)(x) (IdSpn ⊗ T )(x)
(IdSpn ⊗ T )(x) (IdSpn ⊗ S)(x)

]
> 0.

Lemma 2.19 Let M and N be von Neumann algebras equipped with faithful normal semifinite
traces. Suppose 1 6 p 6 ∞. Let T, S1, S2 : Lp(M) → Lp(N) be selfadjoint maps. If the map[
S1 T
T S2

]
: Lp(M)→ Sp2 (Lp(N)) is completely positive then − 1

2 (S1 +S2) 6cp T 6cp
1
2 (S1 +S2).

Proof : Suppose x ∈ Spn(Lp(M))+. We have[
(IdSpn ⊗ S1)(x) (IdSpn ⊗ T )(x)
(IdSpn ⊗ T )(x) (IdSpn ⊗ S2)(x)

]
=
(

IdSpn ⊗
[
S1 T
T S2

])
(x) > 0.

By Lemma 2.14, we deduce that

−1
2
(
(IdSpn ⊗ S1)(x) + (IdSpn ⊗ S2)(x)

)
6 (IdSpn ⊗ T )(x) 6 1

2
(
(IdSpn ⊗ S1)(x) + (IdSpn ⊗ S2)(x)

)
.

Hence we obtain

−1
2
(
(IdSpn ⊗ (S1 + S2))(x)

)
6 (IdSpn ⊗ T )(x) 6 1

2
(
(IdSpn ⊗ (S1 + S2))(x)

)
.

We conclude that − 1
2 (S1 + S2) 6cp T 6cp

1
2 (S1 + S2).

6. Here, this means that T (x∗) = T (x)∗ and S(x∗) = S(x)∗.
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2.5 Completely positive maps on commutative Lp-spaces
We start with a characterization of the positive cone of Spn(Lp(Ω)) where Ω is a measure space.

Lemma 2.20 Let Ω be a (localizable) measure space. Suppose 1 6 p < ∞. Then an element
[fij ] of Spn(Lp(Ω)) is positive if and only if [fij(ω)] is a positive element of Mn for almost every
ω ∈ Ω.

Proof : We have Spn(Lp(Ω)) = Lp(Ω, Spn) isometrically. Consider f ∈ Lp(Ω, Spn)+. Using
(2.2), there exists h ∈ L2p(Ω, S2p

n ) such that h∗h = f . Hence, for almost any ω ∈ Ω, we have
h(ω)∗h(ω) = f(ω) in the space Spn. Consequently, for almost any ω ∈ Ω, we have f(ω) ∈ (Spn)+.

For the converse, consider an element f of Lp(Ω, Spn) such that for almost any ω ∈ Ω we
have f(ω) ∈ (Spn)+. Let g ∈ Lp∗(Ω, Sp∗n )+. By the first part of the proof, for almost any
ω ∈ Ω, we have g(ω) ∈ (Sp∗n )+. Using (2.3), we deduce that for almost any ω ∈ Ω we have

Tr (f(ω)g(ω)) > 0. We infer that
(∫

Ω
⊗Tr

)
(fg) =

∫
Ω

Tr (f(ω)g(ω)) dω > 0. Using again

(2.3), we conclude that f ∈ Lp(Ω, Spn)+.

Proposition 2.21 Let Ω be a (localizable) measure space and let M be a von Neumann al-
gebra equipped with a faithful normal semifinite trace. Suppose 1 6 p 6 ∞. A positive map
T : Lp(M)→ Lp(Ω) into a commutative Lp-space is completely positive.

Proof : The case p =∞ is a particular case of [55, Theorem 5.1.4], so we can suppose 1 6 p <∞.
Let x = [xij ] be a positive element of Spn(Lp(M)). Note that in Spn, for almost any ω ∈ Ω, we
have (

(IdSpn ⊗ T )([xij ])
)
(ω) =

(
[T (xij)]

)
(ω) =

[
T (xij)(ω)

]
.

By Proposition 2.5, for any matrix u ∈ Mn,1, the element u∗[xij ]u of Lp(M) is positive. By the
positivity of T , we see that T

(
u∗[xij ]u

)
is a positive element of Lp(Ω). Using Lemma 2.20, we

deduce that for almost every ω ∈ Ω

u∗
[
T (xij)(ω)

]
u =

n∑
i,j=1

uiT (xij)(ω)uj = T

( n∑
i,j=1

uixijuj

)
(ω) = T

(
u∗[xij ]u

)
(ω) > 0.

We infer that for almost every ω ∈ Ω, the matrix
[
T (xij)(ω)

]
is a positive element of Mn. By

Lemma 2.20, we conclude that
[
T (xij)

]
is a positive element of Spn(Lp(Ω)).

Using duality, we also have the following variant.

Proposition 2.22 Let Ω be a (localizable) measure space and let M be a von Neumann algebra
equipped with a faithful normal semifinite trace. Suppose 1 6 p 6 ∞. A positive mapping
T : Lp(Ω)→ Lp(M) defined on a commutative Lp-space is completely positive.

Proof : The case p = ∞ follows from [55, Theorem 5.1.5], so we can suppose 1 6 p < ∞.
According to Lemma 2.7, the map T : Lp(Ω)→ Lp(M) is positive if and only if T ∗ : Lp∗(M)→
Lp∗(Ω) is positive. Thus, by Proposition 2.21, the map T ∗ is completely positive. Using again
Lemma 2.7, we conclude that T is completely positive.

Remark 2.23 Note that the situation is different for the complete boundedness between com-
mutative Lp-spaces. Indeed, there exists some example of a measure space Ω and a bounded
operator T : Lp(Ω)→ Lp(Ω) which is not completely bounded, see7 [118, Proposition 8.1.3] and
[10].
7. We warn the reader that the proof of [53] is false. Indeed, the main argument of the paper which begins page
7 with “therefore we can get a Lp(H) multiplier” is really problematic since H can be a finite subgroup (for
example, consider the case G = Z).
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2.6 Markov maps and selfadjoint maps
LetM and N be von Neumann algebras equipped with faithful normal semifinite traces τM and
τN . We say that a linear map T : M → N is a (τM , τN )-Markov map if T is a normal unital
completely positive map which is trace preserving, i.e. for any x ∈ m+

τM we have τN (T (x)) =
τM (x). When (M, τM ) = (N, τN ), we say that T is a τM -Markov map. It is not difficult to check
that a (τM , τN )-Markov map T induces a completely positive and completely contractive map
Tp : Lp(M) → Lp(N) on the associated noncommutative Lp-spaces Lp(M) and Lp(N) for any
1 6 p 6 ∞. Moreover, it is easy to prove that there exists a unique normal map T ∗ : N → M
such that

(2.12) τN
(
T (x)y

)
= τM

(
xT ∗(y)

)
, x ∈M ∩ L1(M), y ∈ N ∩ L1(N).

It is easy to show that T ∗ is a (τN , τM )-Markov map. In this case, by density, we have

(2.13) τN
(
Tp(x)y

)
= τM

(
x(T ∗)p∗(y)

)
, x ∈ Lp(M), y ∈ Lp

∗
(N).

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace τ . Let
T : M →M be a normal contraction. We say that T is selfadjoint8 if

(2.14) τ(T (x)y∗) = τ(xT (y)∗), x, y ∈M ∩ L1(M).

In this case, for any x, y in M ∩ L1(M), we have∣∣τ(T (x)y
)∣∣ =

∣∣τ(xT (y∗)∗
)∣∣ 6 ‖x‖L1(M) ‖T (y∗)∗‖M 6 ‖x‖L1(M) ‖y‖M .

Hence the restriction of T to M ∩L1(M) extends to a contraction T1 : L1(M)→ L1(M). It also
extends by interpolation to a contraction Tp : Lp(M) → Lp(M) for any 1 6 p 6 ∞. Moreover,
for any 1 6 p <∞, we have (Tp)∗ = (Tp∗)◦. Furthermore, the operator T2 : L2(M)→ L2(M) is
selfadjoint. If T is positive then each Tp is positive and hence (Tp)◦ = Tp. Thus in this case, for
any 1 6 p <∞, we have (Tp)∗ = Tp∗ . Finally, if T : M →M is a normal complete contraction,
then each Tp is completely contractive.

Finally, it is easy to check that a τM -Markov map T : M → M is selfadjoint if and only if
T ∗ = T ◦.

3 Decomposable maps and regular maps
In this section, we start by analyzing decomposable maps on noncommutative Lp-spaces. In
particular, in Subsection 3.2, we prove that the infimum of the decomposable norm is actually a
minimum. In Subsection 3.6, we state our first main result, Theorem 3.24, and give the end of
the proof of this result. In passing, we prove that completely positive maps on noncommutative
Lp-spaces of approximately finite-dimensional algebras are necessarily completely bounded. In
Subsection 3.8, we compare the space of completely bounded operators and the space of decom-
posable operators. We show that these are different in general. We also give explicit examples
of computations of the decomposable norm, see Theorem 3.37.

3.1 Preliminary results
Recall that if A is a Banach algebra and if a ∈ A and ω ∈ A∗, we let ωa be the element of A∗
defined by 〈b, ωa〉A,A∗ = 〈ab, ω〉A,A∗ where b ∈ A. If ν ∈ A∗∗ and ω ∈ A∗ we let Rν(ω) defined

8. We warn the reader that a different notion of selfadjoint map is also used in the paper.
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by
〈
Rν(ω), a

〉
A∗,A

= 〈ωa, ν〉A∗,A∗∗ where a ∈ A. Finally, if η, ν ∈ A∗∗ we define the (first) Arens
product ην ∈ A∗∗ by 〈ω, ην〉A∗,A∗∗ = 〈Rν(ω), η〉A∗,A∗∗ . If A is a C*-algebra, it is well-known
that A∗∗ is an (abstract) von Neumann algebra.

Let M be a von Neumann algebra of predual M∗. Since we have a canonical inclusion
M∗ ⊂ M∗, we can consider the annihilator (M∗)⊥ = {ν ∈ M∗∗ : 〈ϕ, ν〉M∗,M∗∗ = 0 for any ϕ ∈
M∗} of M∗ in M∗∗. It is well-known [21, Proposition 4.2.3] that there exists a unique central
projection e of M∗∗ such that (M∗)⊥ = (1 − e)M∗∗. Moreover, we have M∗ = Re(M∗) and9
M∗ = M∗ ⊕1 R1−e(M∗). The non-zero elements of R1−eM

∗ are the singular functionals.
A bounded map T : M → N is called singular [149] if T ∗(N∗) ⊂ R1−eM

∗. By [149, Theorem
1], for any bounded map T : M → N there exists a unique couple (Tw∗ : M → N,Tsing : M → N)
of bounded maps with Tw∗ weak* continuous, Tsing singular and such that T = Tw∗ + Tsing.
Consider the completely contractive and completely positive map ΦM : M∗∗ →M∗∗, η 7→ ηe =
eηe and the completely isometric canonical maps iM : M → M∗∗ and iN∗ : N∗ → N∗. By the
proof of [149, Theorem 1]10, the map Tw∗ is given by

Tw∗ = T̃ ◦ ΦM ◦ iM

where T̃ = (iN∗)∗ ◦ T ∗∗ : M∗∗ → N is the unique weak* continuous extension of T .

Proposition 3.1 Let M and N be von Neumann algebras. Then the map Pw∗ : B(M,N) →
B(M,N), T 7→ Tw∗ is a contractive projection. Moreover, if T : M → N is completely positive
then the map Pw∗(T ) is completely positive. Finally, if T : M → N is completely bounded then
Pw∗(T ) is also completely bounded with ‖Pw∗(T )‖cb,M→N 6 ‖T‖cb,M→N .

Proof : It is obvious that Pw∗ is a projection. It is well-known that
∥∥T̃∥∥

M∗∗→N = ‖T‖M→N .
Now, it is clear that, by composition, Pw∗ is contractive. If T : M → N is completely positive,
using [132, Theorem 4.9] with Lemma 2.7, it is immediate to see that Tw∗ is completely positive.
By [23, Section 1.4.8], if T : M → N is completely bounded, then T̃ : M∗∗ → N is completely
bounded with the same completely bounded norm. By composition, we deduce that Pw∗(T ) is
completely bounded and that ‖Pw∗(T )‖cb,M→N 6 ‖T‖cb,M→N .

Lemma 3.2 Let M and N be von Neumann algebras equipped with semifinite faithful nor-
mal traces. Suppose 1 6 p 6 ∞. Let T : Lp(M) → Lp(N) be a linear map. Then T is
decomposable if and only if T op is decomposable. In the case, we have ‖T‖dec,Lp(M)→Lp(N) =
‖T op‖dec,Lp(M)op→Lp(N)op .

Proof : Assume that T : Lp(M) → Lp(N) is decomposable. By (1.4), there exist linear maps

v1, v2 : Lp(M) → Lp(N) such that
[
v1 T
T ◦ v2

]
: Sp2 (Lp(M)) → Sp2 (Lp(N)) is completely positive

with max{‖v1‖ , ‖v2‖} 6 ‖T‖dec,Lp(M)→Lp(N) + ε. We claim that
[
v2 T
T ◦ v1

]
: Sp2 (Lp(M)op) →

Sp2 (Lp(N)op) is also completely positive. Indeed, let b ∈ Mn(Sp2 (Lp(M)op))+ = Sp2n(Lp(Mop))+.
Denoting bt the transposed matrix, where transposition is executed in Sp2n, i.e. both in the Mn

and in the Sp2 component, an obvious computation gives(
IdMn ⊗

[
v2 T
T ◦ v1

])
(b) =

((
IdMn ⊗

[
v2 T ◦

T v1

])
(bt)
)t

9. That means that preduals of von Neumann algebras are L-summands in their biduals.
10. The formula of the weak* extension of the proof of [149, Theorem 1] is formally different but equivalent to
ours. Indeed, in [149, Theorem 1], the weak* extension T̃ is given by T̃ = (T ∗|N∗)∗ and we have (T ∗|N∗)∗ =
(T ∗ ◦ iN∗ )∗ = (iN∗ )∗ ◦ T ∗∗.
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which is positive in Mn(Sp2 (Lp(M)op)) according to Lemma 2.6, applied twice, provided that

we show that the map
[
v2 T ◦

T v1

]
: Sp2 (Lp(M)) → Sp2 (Lp(N)) is completely positive. But this

can be seen using the identity [
v2 T ◦

T v1

]
= FN

[
v1 T
T ◦ v2

]
FM ,

where FM : Sp2 (Lp(M))→ Sp2 (Lp(M)) denotes the flip mapping[
a b
c d

]
7→
[
0 1
1 0

] [
a b
c d

] [
0 1
1 0

]
=
[
d c
b a

]
which is completely positive according to (2.9) (and similarly for FN ). We infer that the
linear map T op : Lp(M)op → Lp(N)op is decomposable and that ‖T op‖dec,Lp(M)op→Lp(N)op 6
max{‖v2‖ , ‖v1‖} 6 ‖T‖dec,Lp(M)→Lp(N) + ε. Letting ε→ 0 and using symmetry, we can finish
the proof of the lemma.

We will use the following easy11 lemma several times.

Lemma 3.3 Let M and N be von Neumann algebras equipped with semifinite faithful normal
traces. Suppose 1 6 p <∞. The Banach adjoint of a bounded operator[

T11 T12
T21 T22

]
: Sp2 (Lp(M))→ Sp2 (Lp(N))

identifies to
[
(T11)∗ (T12)∗
(T21)∗ (T22)∗

]
: Sp

∗

2 (Lp∗(N)) → Sp
∗

2 (Lp∗(M)) and the Banach preadjoint of a

weak* continuous operator
[
T11 T12
T21 T22

]
: M2(M) → M2(N) identifies to the bounded operator[

(T11)∗ (T12)∗
(T21)∗ (T22)∗

]
: S1

2(L1(N))→ S1
2(L1(M)).

The following complements [92, Lemma 3.2] and completes a gap in the proof of the case
p = 1.

Proposition 3.4 Let M and N be two von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 6 p <∞. A bounded map T : Lp(M)→ Lp(N) is decomposable if
and only if the Banach adjoint T ∗ : Lp∗(N)→ Lp∗(M) is decomposable. In this case, we have

(3.1) ‖T‖dec,Lp(M)→Lp(N) = ‖T ∗‖dec,Lp∗ (N)→Lp∗ (M) .

11. The first part is a consequence of the following computation (and the second part can be proved similarly):〈[
T11 T12
T21 T22

]([
a b
c d

])
,

[
x y
z w

]〉
S
p
2 (Lp(N)),Sp

∗
2 (Lp∗ (N))

=
〈[
T11(a) T12(b)
T21(c) T22(d)

]
,

[
x y
z w

]〉
S
p
2 (Lp(N)),Sp

∗
2 (Lp∗ (N))

= τ(T11(a)x) + τ(T12(b)y) + τ(T21(c)z) + τ(T22(d)w) = τ(aT ∗11(x)) + τ(bT ∗12(y)) + τ(cT ∗21(z)) + τ(dT ∗22(w))

=
〈[
a b
c d

]
,

[
T ∗11 T ∗12
T ∗21 T ∗22

]([
x y
z w

])〉
S
p
2 (Lp(M)),Sp

∗
2 (Lp∗ (M))

.
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Proof : Suppose 1 6 p < ∞. Suppose that T : Lp(M) → Lp(N) is decomposable. There

exist some maps v1, v2 : Lp(M) → Lp(N) such that
[
v1 T
T ◦ v2

]
is completely positive. Using

Lemma 3.3, we obtain that
([

v1 T
T ◦ v2

])∗
=
[
v∗1 T ∗

(T ◦)∗ v∗2

]
=
[
v∗1 T ∗

(T ∗)◦ v∗2

]
. By Lemma 2.7,

this operator is completely positive as a map Sp
∗

2 (Lp∗(M))op → Sp
∗

2 (Lp∗(N))op. So by Lemma
2.15, it also define a completely positive map Sp

∗

2 (Lp∗(M)) → Sp
∗

2 (Lp∗(N)). We conclude
that T ∗ : Lp(M) → Lp(N) is decomposable with ‖T ∗‖dec,Lp(M)→Lp(N) 6 max{‖v∗1‖ , ‖v∗2‖} =
max{‖v1‖ , ‖v2‖}. Taking the infimum, we obtain ‖T ∗‖dec,Lp(M)→Lp(N) 6 ‖T‖dec,Lp(M)→Lp(N).
If p 6= 1, a symmetric argument gives the result.

Suppose p = 1 and that the map T ∗ : N → M is decomposable. There exist some

maps v1, v2 : N → M such that
[
v1 T ∗

(T ∗)◦ v2

]
is completely positive. Note that v1 and v2

are not necessarily weak* continuous. However, it is not difficult to see by uniqueness that

Pw∗

([
v1 T ∗

(T ∗)◦ v2

])
=
[
(v1)w∗ T ∗

(T ∗)◦ (v2)w∗

]
where Pw∗ : B(M2(N),M2(M))→ B(M2(N),M2(M))

is the projection of Proposition 3.1. Moreover, the same result says that
[
(v1)w∗ T ∗

(T ∗)◦ (v2)w∗

]
is

still completely positive and that max{‖(v1)w∗‖ , ‖(v2)w∗‖} 6 max{‖v1‖ , ‖v2‖}. Using Lemma

3.3, we obtain that
([

(v1)w∗ T ∗

(T ∗)◦ (v2)w∗

])
∗

=
[
((v1)w∗)∗ T

T ◦ ((v2)w∗)∗

]
. By Lemma 2.7 and

Lemma 2.15, this operator is completely positive as a map S1
2(L1(M)) → S1

2(L1(N)). We
conclude that T is decomposable with ‖T‖dec,L1(M)→L1(N) 6 max{‖((v1)w∗)∗‖ , ‖((v2)w∗)∗‖} =
max{‖(v1)w∗‖ , ‖(v2)w∗‖} 6 max{‖v1‖ , ‖v2‖}. Taking the infimum, we obtain the inequality
‖T‖dec,L1(M)→L1(N) 6 ‖T ∗‖dec,N→M .

Let M1, M2 and M3 be von Neumann algebras equipped with faithful normal semifinite
traces. Suppose 1 6 p 6 ∞. Let T1 : Lp(M1) → Lp(M2) and T2 : Lp(M2) → Lp(M3) be some
decomposable maps. It is easy to see that the composition T2 ◦ T1 is decomposable and that

(3.2) ‖T2 ◦ T1‖dec 6 ‖T2‖dec ‖T1‖dec .

Let M1, M2 and M3 be approximately finite-dimensional von Neumann algebras equipped
with normal semifinite faithful traces. Suppose 1 6 p 6 ∞. Let T1 : Lp(M1) → Lp(M2) and
T2 : Lp(M2)→ Lp(M3) be some regular maps. It is easy to see that the composition T2 ◦ T1 is
regular and that

(3.3) ‖T2 ◦ T1‖reg 6 ‖T2‖reg ‖T1‖reg .

LetM and N be approximately finite-dimensional von Neumann algebras equipped with normal
semifinite faithful traces. Suppose 1 < p < ∞. According to [117, Corollary 3.3] and [117,
Theorem 3.7] (see also [122, (6) page 264]), we have the isometric interpolation identity 12

(3.4) Reg
(
Lp(M),Lp(N)

)
=
(
CBw∗(M,N),CB(L1(M),L1(N))

) 1
p

where we use the Caldéron’s second method or upper method [17, page 88] and where the sub-
script w* means “weak* continuous”. By Lemma 2.3 and (3.4), note that we have isometrically

Reg(Lp(Mop),Lp(Nop)) = (CBw∗(Mop, Nop),CB(L1(Mop),L1(Nop)))
1
p

= (CBw∗(M,N),CB(L1(M),L1(N)))
1
p = Reg(Lp(M),Lp(N)).

12. The compatibility means, roughly speaking, that the elements of CB(M,N) ∩ CB(L1(M),L1(N)) are the
maps simultaneous bounded from M into N and from L1(M) into L1(N).
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So a map T : Lp(M)→ Lp(N) is regular if and only if the opposite map T op : Lp(M)→ Lp(N)
is regular with equality of regular norms.

Suppose 1 6 p < ∞. Let M and N be hyperfinite von Neumann algebras equipped with
normal faithful semifinite traces. A bounded map T : Lp(M)→ Lp(N) is regular if and only if
the Banach adjoint map T ∗ : Lp∗(N)→ Lp∗(M) is regular. In this case, we have

(3.5) ‖T‖reg,Lp(M)→Lp(N) = ‖T ∗‖reg,Lp∗ (N)op→Lp∗ (M)op .

3.2 On the infimum of the decomposable norm
Proposition 3.5 Let M and N be two von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 6 p 6 ∞. Let T : Lp(M) → Lp(N) be a decomposable map. Then
the infimum in the definition of ‖T‖dec is actually a minimum i.e. we can choose v1 and v2 in
(1.4) such that ‖T‖dec,Lp(M)→Lp(N) = max{‖v1‖ , ‖v2‖}.

Proof : See [65, page 184] for the case p = ∞. Suppose 1 < p < ∞. For any integer n,

let vn, wn : Lp(M) → Lp(N) be bounded maps such that the map
[
vn T
T ◦ wn

]
: Sp2 (Lp(M)) →

Sp2 (Lp(N)) is completely positive with max{‖vn‖ , ‖wn‖} 6 ‖T‖dec + 1
n . Note that since

Lp(N) is reflexive, the closed unit ball of the space B(Lp(M),Lp(N)) of bounded operators
in the weak operator topology is compact. Hence the bounded sequences (vn) and (wn) ad-
mit convergent subnets (vα) and (wα) in the weak operator topology which converge to some

v, w ∈ B(Lp(M),Lp(N)). Now, it is easy to see that
[
v T
T ◦ w

]
= limα

[
vα T
T ◦ wα

]
in the weak

operator topology of B(Sp2 (Lp(M)), Sp2 (Lp(N))). By Lemma 2.8, the operator on the left hand
side is completely positive as a weak limit of completely positive mappings. Moreover, using
the weak lower semicontinuity of the norm, we see that ‖v‖ 6 lim infα ‖vα‖ 6 ‖T‖dec and
‖w‖ 6 lim infα ‖wα‖ 6 ‖T‖dec. Hence, we have max{‖v‖ , ‖w‖} = ‖T‖dec.

The case p = 1 can be proved by duality using the proof of Proposition 3.4.

Remark 3.6 Suppose 1 < p <∞. If T : Lp(M)→ Lp(N) is a contractively decomposable map,
we ignore if we can find some linear maps v1, v2 such that the map Φ of (1.3) is completely
positive and contractive.

3.3 The Banach space of decomposable operators
Proposition 3.7 Let M and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 6 p 6 ∞. If λ ∈ C and T : Lp(M) → Lp(N) is decomposable then the
map λT is decomposable and ‖λT‖dec,Lp(M)→Lp(N) = |λ| ‖T‖dec,Lp(M)→Lp(N).

Proof : By symmetry, it suffices to prove ‖λT‖dec 6 |λ| ‖T‖dec, since then ‖T‖dec =
∥∥ 1
λλT

∥∥
dec 6

1
|λ| ‖λT‖dec. We can write λ = |λ|θ where θ is a complex number such that |θ| = 1. Assume

that v1, v2 : Lp(M) → Lp(N) are linear maps such that the map
[
v1 T
T ◦ v2

]
: Sp2 (Lp(M)) →

Sp2 (Lp(N)) is completely positive. By (2.9), the linear map
[
1 0
0 θ

]∗ [
v1(·) T (·)
T ◦(·) v2(·)

] [
1 0
0 θ

]
is also completely positive on Sp2 (Lp(M)). But it is easy to check that the latter opera-

tor equals
[
v1 θT

θT ◦ v2

]
. Thus the map |λ| ·

[
v1 θT

θT ◦ v2

]
=
[
|λ|v1 λT
(λT )◦ |λ|v2

]
is also completely
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positive. We deduce that T is decomposable and that ‖λT‖dec 6 max
{
‖|λ|v1‖ , ‖|λ|v2‖

}
=

|λ|max
{
‖v1‖ , ‖v2‖

}
. Passing to the infimum yields the desired inequality ‖λT‖dec 6 |λ| ‖T‖dec.

It is not proved in [92] that ‖·‖dec,Lp(M)→Lp(N) is a norm.

Proposition 3.8 Let M and N be two von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 6 p 6 ∞. Then Dec(Lp(M),Lp(N)) is a vector space and
‖·‖dec,Lp(M)→Lp(N) is a norm on Dec(Lp(M),Lp(N)).

Proof : Let T1, T2 : Lp(M) → Lp(N) be decomposable maps. There exist some liner maps

v1, v2, w1, w2 : Lp(M)→ Lp(N) such that
[
v1 T1
T ◦1 v2

]
and

[
w1 T2
T ◦2 w2

]
are completely positive. We

can write
[
v1 T1
T ◦1 v2

]
+
[
w1 T2
T ◦2 w2

]
=
[
v1 + w1 T1 + T2
T ◦1 + T ◦2 v2 + w2

]
=
[
v1 + w1 T1 + T2

(T1 + T2)◦ v2 + w2

]
. Moreover,

this map is completely positive. Hence T1 + T1 is decomposable. Furthermore, we deduce that

‖T1 + T2‖dec 6 max
{
‖v1 + w1‖ , ‖v2 + w2‖

}
6 max

{
‖v1‖+ ‖w1‖ , ‖v2‖+ ‖w2‖

}
6 max

{
‖v1‖ , ‖v2‖

}
+ max

{
‖w1‖ , ‖w2‖

}
.

Passing to the infimum, we conclude that the sum T1+T2 is decomposable and that ‖T1 + T2‖dec 6
‖T1‖dec + ‖T2‖dec. The absolute homogeneity is Proposition 3.7. For the separation property,
we can use Proposition 3.30 if the von Neumann algebras are QWEP. If it is not the case,

suppose ‖T‖dec = 0. By Proposition 3.5, the map
[

0 T
T ◦ 0

]
: Sp2 (Lp(M))→ Sp2 (Lp(N)) is com-

pletely positive. Now, let b ∈ Lp(M) with ‖b‖Lp(M) 6 1. By Proposition 2.12 there exist some

a, c ∈ Lp(M) with ‖a‖Lp(M) 6 1 and ‖c‖Lp(M) 6 1 such that the element
[
a b
b∗ c

]
of Sp2 (Lp(M))

is positive. We deduce that the element
[

0 T (b)
T (b)∗ 0

]
is also positive. Using Lemma 2.11, we

infer that T (b) = 0. We conclude that T = 0.

Lemma 3.9 Let M and N be von Neumann algebras equipped with faithful normal semifinite
traces. Suppose 1 6 p 6 ∞ and let T : Lp(M) → Lp(N) be a decomposable map. Then
T ◦ : Lp(M)→ Lp(N) defined by T ◦(x) = (T (x∗))∗ is also decomposable and we have ‖T‖dec =
‖T ◦‖dec.

Proof : Consider some completely positive maps v1, v2 : Lp(M) → Lp(N) such that
[
v1 T
T ◦ v2

]
is completely positive. Using (2.9), note that the map

FM : Sp2 (Lp(M))→ Sp2 (Lp(M)),
[
a b
c d

]
7→
[
0 1
1 0

] [
a b
c d

] [
0 1
1 0

]
=
[
d c
b a

]
is completely positive and similarly FN : Sp2 (Lp(N))→ Sp2 (Lp(N)). We deduce that the map[

v2 T ◦

T v1

]
= FN ◦

[
v1 T
T ◦ v2

]
◦ FM

is completely positive. Hence T ◦ is decomposable and ‖T ◦‖dec 6 max{‖v1‖ , ‖v2‖}. Passing to
the infimum gives ‖T ◦‖dec 6 ‖T‖dec. Since (T ◦)◦ = T , we even have ‖T ◦‖dec = ‖T‖dec.
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Proposition 3.10 Let M and N be two QWEP von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 6 p 6∞. Then the space Dec(Lp(M),Lp(N)) is a Banach
space with respect to the norm ‖·‖dec,Lp(M)→Lp(N).

Proof : We consider a sequence (Tn) of decomposable maps from Lp(M) into Lp(N) with∑∞
n=1 ‖Tn‖dec <∞. We suppose first that each Tn is selfadjoint, i.e. Tn(x∗) = Tn(x)∗ for any

x ∈ Lp(M). Proposition 3.30 shows that ‖·‖cb,Lp(M)→Lp(N) 6 ‖·‖dec, so that
∑∞
n=1 Tn = T in

the space CB(Lp(M),Lp(N)) for some completely bounded map T : Lp(M)→ Lp(N). For any
integer n, by Proposition 3.19, there exists a completely positive map Sn : Lp(M) → Lp(N)
such that −Sn 6cp Tn 6cp Sn and ‖Sn‖ 6 2 ‖Tn‖dec.

In particular,
∑∞
n=1 ‖Sn‖ <∞ and we can define a bounded operator Rk =

∑∞
n=k+1 Sn for

each integer k. By Lemma 2.8, each Rk is completely positive and we have −R0 6cp T 6cp R0.
Thus, T = 1

2 (T +R0− (R0− T )) is decomposable according to Proposition 3.12. Moreover,
for any k > 1, we have −Rk 6cp T −

∑k
n=1 Tn 6cp Rk, which implies by Proposition 3.19 that∥∥∥∥∥T −

k∑
n=1

Tn

∥∥∥∥∥
dec

6 ‖Rk‖ =

∥∥∥∥∥
∞∑

n=k+1
Sn

∥∥∥∥∥ 6
∞∑

n=k+1
‖Sn‖ −−−−−→

k→+∞
0.

Thus, the series
∑k
n=1 Tn converges in the space Dec(Lp(M),Lp(N)) and its sum is T . This

ends the proof in the case that where each Tn is selfadjoint.
Now if the Tn are not necessarily selfadjoint, put Un = 1

2 (Tn + T ◦n) and Vn = 1
2i (Tn − T

◦
n),

which are both selfadjoint. By Lemma 3.9, we have ‖Tn‖dec = ‖T ◦n‖dec. Thus, we have
‖Un‖dec 6 ‖Tn‖dec and ‖Vn‖dec 6 ‖Tn‖dec, and by the first part of the proof, we have∑∞
n=1 Un = U and

∑∞
n=1 Vn = V where the convergence of both series is in Dec(Lp(M),Lp(N)).

It easily follows that
∑∞
n=1 Tn =

∑+∞
n=1(Un + iVn) = U + iV in Dec(Lp(M),Lp(N)).

Proposition 3.11 Let M and N be two von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 6 p 6 ∞. Let T : Lp(M) → Lp(N) be a completely positive map.
Then T is decomposable and ‖T‖dec,Lp(M)→Lp(N) 6 ‖T‖Lp(M)→Lp(N).

Proof : Using Lemma 2.9, we see that the linear map
[
T T
T T

]
: Sp2 (Lp(M)) → Sp2 (Lp(N)) is

completely positive. We infer that T is decomposable and that the inequality is true.

Proposition 3.12 LetM and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 6 p 6∞. Let T : Lp(M)→ Lp(N) be a linear map. Then the following
are equivalent.

1. The map T is decomposable.

2. The map T belongs to the span of the completely positive maps from Lp(M) into Lp(N).

3. There exist some completely positive maps T1, T2, T3, T4 : Lp(M)→ Lp(N) such that

T = T1 − T2 + i(T3 − T4).

If the latter case is satisfied, we have ‖T‖dec,Lp(M)→Lp(N) 6 ‖T1 + T2 + T3 + T4‖Lp(M)→Lp(N).
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Proof : If there exist some completely positive maps T1, T2, T3, T4 : Lp(M)→ Lp(N) such that
T = T1 − T2 + i(T3 − T4) then T belongs to to the span of the completely positive maps from
Lp(M) into Lp(N). If T belongs to the span of the completely positive maps from Lp(M) into
Lp(N), by Proposition 3.11 and Proposition 3.8, we deduce that T is decomposable. Moreover,
the proof of these results shows that if T = T1 − T2 + i(T3 − T4) for some completely positive
maps T1, T2, T3, T4 then we can use13 v1 = v2 = T1 + T2 + T3 + T4 in (1.3). Hence we have
‖T‖dec,Lp(M)→Lp(N) 6 ‖T1 + T2 + T3 + T4‖Lp(M)→Lp(N).

Now, suppose that the map T is decomposable. There exist some completely positive maps

v1, v2 : Lp(M)→ Lp(N) such that Φ =
[
v1 T
T ◦ v2

]
is completely positive. By (2.9), the maps T1 =

1
4
[
1 1

]
Φ
[
1
1

]
, T2 = 1

4
[
1 −1

]
Φ
[

1
−1

]
, T3 = 1

4
[
1 i

]
Φ
[

1
−i

]
and T4 = 1

4
[
1 −i

]
Φ
[
1
i

]
are

completely positive from Lp(M) into Lp(N) and it is easy to check that T = T1−T2 +i(T3−T4).

Remark 3.13 Suppose 1 6 p 6∞. Let T : Lp(M)→ Lp(N) be a decomposable operator. We
can define

‖T‖[d] = inf
{
‖T1‖+ ‖T2‖+ ‖T3‖+ ‖T4‖

}
where the infimum runs over all the above possible decompositions of T as T = T1−T2+i(T3−T4)
where each Ti is completely positive. It is stated in [119, page 230] that ‖·‖[d] is a norm, but
it is not correct. Indeed, let M = C. We have Lp(M) = C. Let T : C → C, x 7→ x. Then we
will prove that ‖T‖[d] = 1 and that ‖(1 + i)T‖[d] = 2 6=

√
2 = |1 + i| ‖T‖[d]. First, since T is

completely positive, we have∥∥T∥∥[d] = inf
{
a1 + a2 + a3 + a4 : ak > 0, 1 = a1 − a2 + i(a3 − a4)

}
.

For such a decomposition, we have 1 = <(a1 − a2 + i(a3 − a4)) = a1 − a2. We deduce that
‖T‖[d] > a1 = 1 + a2 > 1. The decomposition 1 = 1− 0 + i(0− 0) gives the reverse inequality.
Moreover, we have∥∥(1 + i)T

∥∥
[d] = inf

{
a1 + a2 + a3 + a4 : ak > 0, 1 + i = a1 − a2 + i(a3 − a4)

}
.

For such a decomposition, we have 1 = <(a1 − a2 + i(a3 − a4)) = a1 − a2 and 1 = =(a1 −
a2 + i(a3 − a4)) = a3 − a4. We deduce that a1 = 1 + a2 > 1 and a3 = 1 + a4 > 1. Then
‖(1 + i)T‖[d] > a1 +a3 > 1 + 1 = 2. The decomposition 1 + i = 1− 0 + i(1− 0) gives the reverse
inequality.

Proposition 3.14 LetM and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 6 p 6 ∞. Any finite rank bounded map T : Lp(M) → Lp(N) is decom-
posable.

Proof : Suppose 1 6 p < ∞. It suffices to prove that a rank one operator T = Tr (y·) ⊗ x is
decomposable where y ∈ Lp∗(M) and x ∈ Lp(N). We can write x = x1 − x2 + i(x3 − x4) and
y = y1 − y2 + i(y3 − y4) with xk, yk > 0. Hence we can suppose that y > 0 and x > 0. By
Proposition 2.21, we deduce that the linear form Tr (y·) : Lp(M) → C is completely positive.
It is easy to deduce that Tr (y·)⊗ x is completely positive, hence decomposable by Proposition
3.11. The case p =∞ is similar.

13. The argument is similar to the one of [55, Proposition 5.4.1] and use a straightforward generalization of a
part of [55, Proposition 1.3.5].
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3.4 Reduction to the selfadjoint case
Lemma 3.15 Let E be an operator space and suppose 1 6 p 6∞. Then for any a, b, c, d ∈ E,
we have ∥∥∥∥[0 b

c 0

]∥∥∥∥
Sp2 (E)

6

∥∥∥∥[a b
c d

]∥∥∥∥
Sp2 (E)

.

Proof : Consider the Schur multiplier MA : S∞2 → S∞2 where A =
[
0 1
1 0

]
. Using Lemma 2.10

with E = C and p =∞, we note that for any a, b, c, d ∈ C∥∥∥∥[a b
c d

]∥∥∥∥2

S∞2

=
∥∥∥∥[a b
c d

]∗ [
a b
c d

]∥∥∥∥
S∞2

=
∥∥∥∥[|a|2 + |c|2 ab+ cd

ab+ cd |b|2 + |d|2
]∥∥∥∥

S∞2

> max
{
|a|2 + |c|2, |b|2 + |d|2

}
> max

{
|c|, |b|

}2 =
∥∥∥∥[0 b
c 0

]∥∥∥∥2

S∞2

.

We deduce that the Schur multiplier MA is a contraction, hence a complete contraction. By
duality, MA : S1

2 → S1
2 is also a complete contraction. Using Lemma 3.20, we deduce that MA

is contractively regular on Sp2 and the lemma follows.

Lemma 3.16 LetM and N be approximately finite-dimensional von Neumann algebras equipped
with faithful normal semifinite traces. Suppose 1 6 p 6 ∞ and let T : Lp(M) → Lp(N) be a
regular map. Then T ◦ : Lp(M) → Lp(N) defined by T ◦(x) = (T (x∗))∗ is also regular and we
have ‖T ◦‖reg = ‖T‖reg.

Proof : We recall that by (3.4), Reg(Lp(M),Lp(N)) is a complex interpolation space fol-
lowing Calderón’s upper method. Choose now an analytic function F : S → CB(M,N) +
CB(L1(M),L1(N)) of G defined on the usual complex interpolation strip S = {z ∈ C : 0 6
<z 6 1}, such that F ′(θ) = T with ‖F‖G 6 ‖T‖reg + ε. Put G(z) = F (z)◦. Then the function
G also belongs to G with ‖G‖G = ‖F‖G and we have G′(θ) = T ◦. Thus the map T ◦ is regular
and ‖T ◦‖reg 6 ‖T‖reg + ε. Letting ε → 0 we obtain ‖T ◦‖reg 6 ‖T‖reg. Since (T ◦)◦ = T , we
even have ‖T ◦‖reg = ‖T‖reg.

Proposition 3.17 Let M and N be approximately finite-dimensional von Neumann algebras
equipped with faithful normal semifinite traces. Suppose 1 6 p 6 ∞ and that T : Lp(M) →
Lp(N) is a linear mapping. Define T̃ : Sp2 (Lp(M))→ Sp2 (Lp(N)) by

T̃

([
a b
c d

])
=
[

0 T (b)
T ◦(c) 0

]
.

Then T̃ is selfadjoint in the sense that T̃ (x∗) =
(
T̃ (x)

)∗. Moreover, T is regular if and only if
the map T̃ : Sp2 (Lp(M))→ Sp2 (Lp(N)) is regular and in this case, we have ‖T‖reg,Lp(M)→Lp(N) =
‖T̃‖reg,Sp2 (Lp(M))→Sp2 (Lp(N)).

Proof : Assume first that 1 6 p < ∞. Let E be any operator space. Assume first that T

is regular. For any
[
a b
c d

]
∈ Sp2 (Lp(M,E)), according to Lemma 2.10 with E replaced by
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Lp(N,E), we have∥∥∥∥(T̃ ⊗ IdE
) [a b
c d

]∥∥∥∥
Sp2 (Lp(N,E))

=
∥∥∥∥[ 0 (T ⊗ IdE)(b)

(T ◦ ⊗ IdE)(c) 0

]∥∥∥∥
Sp2 (Lp(N,E))

=
(∥∥(T ⊗ IdE)(b)

∥∥p
Lp(N,E) +

∥∥(T ◦ ⊗ IdE)(c)
∥∥p

Lp(N,E)

) 1
p

.

The above quantity can be estimated by ‖T‖reg

(
‖b‖pLp(M,E) + ‖c‖pLp(M,E)

) 1
p due to Lemma

3.16. According to Lemmas 2.10 and 3.15 with E replaced by Lp(M,E), this in turn can be
estimated by

‖T‖reg

∥∥∥∥[0 b
c 0

]∥∥∥∥
Sp2 (Lp(M,E))

6 ‖T‖reg

∥∥∥∥[a b
c d

]∥∥∥∥
Sp2 (Lp(M,E))

.

This shows that ‖T̃ ⊗ IdE‖Sp2 (Lp(M,E))→Sp2 (Lp(N,E)) 6 ‖T‖reg. Passing to the supremum over all
operator spaces E, we deduce that T̃ is regular and that ‖T̃‖reg 6 ‖T‖reg.

For the converse inequality, assume that T̃ is regular and let x ∈ Lp(M,E). Applying
Lemma 2.10 twice, we have∥∥(T ⊗ IdE)(x)

∥∥
Lp(N,E) =

∥∥∥∥[0 (T ⊗ IdE)(x)
0 0

]∥∥∥∥
Sp2 (Lp(N,E))

=
∥∥∥∥([ 0 T

T ◦ 0

]
⊗ IdE

)[
0 x
0 0

]∥∥∥∥
Sp2 (Lp(N,E))

6 ‖T̃‖reg

∥∥∥∥[0 x
0 0

]∥∥∥∥
Sp2 (Lp(M,E))

= ‖T̃‖reg ‖x‖Lp(M,E) .

We conclude that T is regular and that ‖T‖reg 6 ‖T̃‖reg. The case p = ∞ is similar, using in
the second part of Lemma 2.10 each time.

Proposition 3.18 LetM and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 6 p 6∞. Let T : Lp(M)→ Lp(N) be a linear map. Then T is decompos-
able if and only if the map T̃ : Sp2 (Lp(M))→ Sp2 (Lp(N)) from Proposition 3.17 is decomposable,
and in this case, we have ‖T‖dec,Lp(M)→Lp(N) = ‖T̃‖dec,Sp2 (Lp(M))→Sp2 (Lp(N)).

Proof : Let x =
[
a b
c d

]
∈ Sp2 (Lp(M)). We have

T̃ (x∗) = T̃

([
a∗ c∗

b∗ d∗

])
=
[

0 T (c∗)
T ◦(b∗) 0

]
=
[

0 T (c∗)
T (b)∗ 0

]
and also (

T̃ (x)
)∗ =

[
0 T (b)

T ◦(c) 0

]∗
=
[

0 T ◦(c)∗
T (b)∗ 0

]
=
[

0 T (c∗)
T (b)∗ 0

]
,

We conclude that T̃ is selfadjoint, i.e. T̃ ◦ = T̃ .
Now, suppose that T is decomposable. Choose some maps v1, v2 : Lp(M) → Lp(N) such

that
[
v1 T
T ◦ v2

]
: Sp2 (Lp(M))→ Sp2 (Lp(N)) is completely positive. By (2.9), the mapping

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



v1 T 0 0
T ◦ v2 0 0
0 0 v1 T
0 0 T ◦ v2

 (·)


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 =


[
v1 0
0 v2

]
T̃

T̃

[
v1 0
0 v2

]
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is also completely positive from Sp4 (Lp(M)) into Sp4 (Lp(N)). Therefore the map T̃ is decom-

posable and ‖T̃‖dec 6

∥∥∥∥[v1 0
0 v2

]∥∥∥∥ = max{‖v1‖ , ‖v2‖}, the latter according to [118, Corollary

1.3]. By passing to the infimum over all admissible v1, v2, we see that ‖T̃‖dec 6 ‖T‖dec.
Now suppose that the map T̃ is decomposable. Let v1, v2 : Sp2 (Lp(M)) → Sp2 (Lp(N)) such

that the map
[
v1 T̃
T̃ v2

]
: Sp4 (Lp(M)) → Sp4 (Lp(N)) is completely positive. For i = 1, 2, put

wi : Lp(M) → Lp(N), a 7→
(
vi

([
a 0
0 0

]))
ii

. Then each wi is also completely positive as a

composition of completely positive mappings. We also define

J : Sp2 (Lp(M)) −→ Sp4 (Lp(M))[
a b
c d

]
7−→


a 0 0 b
0 0 0 0
0 0 0 0
c 0 0 d

 .

It is easy to see that J is a completely positive and completely isometric embedding. Then an
easy computation gives

[
1 0 0 0
0 0 0 1

]
·

([
v1 T̃
T̃ v2

](
J

([
a b
c d

])))
·


1 0
0 0
0 0
0 1



=
[
1 0 0 0
0 0 0 1

]
·

[v1 T̃
T̃ v2

]

a 0 0 b
0 0 0 0
0 0 0 0
c 0 0 d



 ·


1 0
0 0
0 0
0 1



=
[
1 0 0 0
0 0 0 1

]
·

v1

([
a 0
0 0

]) [
0 T (b)
0 0

]
[

0 0
T ◦(c) 0

]
v2

([
0 0
0 d

])
 ·


1 0
0 0
0 0
0 1

 =
[
w1(a) T (b)
T ◦(c) w2(d)

]
.

Using (2.9), we deduce by composition that the map
[
w1 T
T̃ w2

]
is completely positive. We infer

that T is decomposable and that ‖T‖dec 6 max{‖w1‖ , ‖w2‖} 6 max{‖v1‖ , ‖v2‖} and passing
to the infimum over all admissible v1, v2 shows that ‖T‖dec 6 ‖T̃‖dec.

Proposition 3.19 LetM and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 6 p 6 ∞. A selfadjoint14 map T : Lp(M) → Lp(N) is decomposable if
and only if one of the two following infimums is finite. In this case, we have

‖T‖dec,Lp(M)→Lp(N) = inf
{
‖S‖ : S : Lp(M)→ Lp(N) cp, −S 6cp T 6cp S

}
= inf

{
‖T1 + T2‖ : T1, T2 : Lp(M)→ Lp(N) cp, T = T1 − T2

}
.

Proof : The first equality is a consequence of Lemma 2.18 and Lemma 2.19. To prove the second
equality, first assume that there exists some completely positive map S : Lp(M)→ Lp(N) such
that

−S 6cp T 6cp S.

14. Here, that means that T (x∗) = T (x)∗ for any x ∈ Lp(M).
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Then T1 = 1
2 (S + T ) and T2 = 1

2 (S − T ) are completely positive and we have T1 + T2 =
1
2 (S + T ) + 1

2 (S − T ) = S and T1 − T2 = 1
2 (S + T )− 1

2 (S − T ) = T .
Conversely, suppose that we can write T = T1 − T2 for some completely positive maps

T1, T2 : Lp(M)→ Lp(N). Then we have

−(T1 + T2) 6cp T 6cp (T1 + T2).

This proves the second equality.

3.5 Decomposable vs regular on Schatten spaces
Similarly to the commutative case, an absolute contraction between noncommutative Lp-spaces
is contractively regular.

Lemma 3.20 Let M and N be approximately finite-dimensional von Neumann algebras which
are equipped with faithful normal semifinite traces. Let T : M → N be a completely contractive
map such that the restriction to M ∩ L1(M) induces a completely contractive map from L1(M)
into L1(N). Then for any 1 6 p 6∞, we have ‖T‖reg,Lp(M)→Lp(N) 6 1.

Proof : Let E be any operator space. According to [55, Proposition 8.1.5], the map T ⊗
IdE : L∞(M,E) = M ⊗min E → L∞(N,E) = N ⊗min E is completely contractive. Moreover,
by [55, Corollary 7.1.3] the map T ⊗ IdE : L1(M,E) = L1(M)⊗̂E → L1(N,E) = L1(N)⊗̂E is
also completely contractive, where ⊗̂ denotes the operator space projective tensor product. By
interpolation, we infer that the map T ⊗ IdE : Lp(M,E)→ Lp(N,E) is completely contractive
for any 1 6 p 6∞. Passing over the supremum of all operator spaces, we obtain the lemma.

Suppose 1 6 p < ∞. If n and d are integers then a particular case of [117, Theorem 1.5]
gives for any x ∈ Spn(Md)

(3.6) ‖x‖Spn(Md) = inf
{
‖α‖S2p

n
‖y‖Mn(Md) ‖β‖S2p

n
: x = (α⊗ Id)y(β ⊗ Id)

}
.

Theorem 3.21 Let n,m ∈ N and 1 6 p 6∞. Then any linear mapping T : Spm → Spn satisfies

‖T‖reg,Spm→Spn = ‖T‖dec,Spm→Spn .

Proof : Assume that the theorem is true for all selfadjoint maps T : Spm → Spn, i.e. T (x∗) =
T (x)∗. Then we can deduce from Propositions 3.18 and 3.17, with the selfadjoint mapping
T̃ : Sp2m → Sp2n, that ‖T‖dec = ‖T̃‖dec = ‖T̃‖reg = ‖T‖reg. Hence we can assume in addition
that T is selfadjoint.

First we show ‖T‖reg 6 ‖T‖dec. The following proof is inspired by the proof of [117, Lemma
2.3]. Let ε > 0. According to Proposition 3.19, there exist some completely positive maps
T1, T2 : Spn → Spn such that T = T1 − T2 and ‖T1 + T2‖ 6 ‖T‖dec + ε. According to Choi’s
characterization [34, Theorem 1], there exist a1, . . . , al, b1, . . . , bl ∈ Mm,n such that T1(x) =∑l
k=1 a

∗
kxak and T2(x) =

∑l
k=1 b

∗
kxbk. Let x be an element of Spn(Md) with ‖x‖Spn(Md) < 1. By

(3.6), there exists a decomposition x = (α ⊗ Id)y(β ⊗ Id) with α, β ∈ S2p
m of norm less than 1

and y ∈ Mm(Md) which is also of norm less than 1. Using the notations

α1 = [a∗1α, . . . , a∗l α], β1 = (a∗1β∗, . . . , a∗l β∗),

and
α2 = [b∗1α, . . . , b∗l α], β2 = (b∗1β∗, . . . , b∗l β∗)
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of M1,l(Mn,m), we can write

(T ⊗ IdMd
)(x) = (T ⊗ IdMd

)
(
(α⊗ Id)y(β ⊗ Id)

)
= (T ⊗ IdMd

)
(

(α⊗ Id)
( n∑
i,j=1

eij ⊗ yij
)

(β ⊗ Id)
)

=
n∑

i,j=1
(T ⊗ IdMd

)(αeijβ ⊗ yij)

=
n∑

i,j=1
T (αeijβ)⊗ yij =

n∑
i,j=1

T1(αeijβ)⊗ yij − T2(αeijβ)⊗ yij

=
n∑

i,j=1

l∑
k=1

a∗kαeijβak ⊗ yij − b∗kαeijβbk ⊗ yij

=
n∑

i,j=1

l∑
k=1

(a∗kα⊗ Id)(eij ⊗ yij)(βak ⊗ Id)− (b∗kα⊗ Id)(eij ⊗ yij)(βbk ⊗ Id)

=
l∑

k=1
(a∗kα⊗ Id)

(
n∑

i,j=1
eij ⊗ yij

)
(βak ⊗ Id)− (b∗kα⊗ Id)

(
n∑

i,j=1
eij ⊗ yij

)
(βbk ⊗ Id)

=
l∑

k=1
(a∗kα⊗ Id)y(βak ⊗ Id)− (b∗kα⊗ Id)y(βbk ⊗ Id)

=
(

[a∗1α, . . . , a∗l α]⊗ Id
)

y 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 y




βa1
...
...
βal

⊗ Id



−
(

[b∗1α, . . . , b∗l α]⊗ Id
)

y 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 y




βb1
...
...
βbl

⊗ Id


= (α1 ⊗ Id) · (Il ⊗ y) · (β∗1 ⊗ Id)− (α2 ⊗ Id) · (Il ⊗ y) · (β∗2 ⊗ Id).

The matrix Il ⊗ y ∈ Ml(Mn(Md)) is of norm less than 1. A simple computation shows that[
(T ⊗ IdMd

)(x) 0
0 0

]
=
[
(α1 ⊗ Id) · (Il ⊗ y) · (β∗1 ⊗ Id)− (α2 ⊗ Id) · (Il ⊗ y) · (β∗2 ⊗ Id) 0

0 0

]
=
([
α1 −α2
0 0

]
⊗ Id

)[
Il ⊗ y 0

0 Il ⊗ y

]([
β∗1 0
β∗2 0

]
⊗ Id

)
.

On the other hand, we have∥∥∥∥[α1 −α2
0 0

]∥∥∥∥
S2p

2n

=
∥∥∥∥[α1 −α2

0 0

]∗∥∥∥∥
S2p

2n

= Tr
(([

α1 −α2
0 0

] [
α∗1 0
−α∗2 0

])p) 1
2p

= Tr
([
α1α

∗
1 + α2α

∗
2 0

0 0

]p) 1
2p

= Tr
(
(α1α

∗
1 + α2α

∗
2)p
) 1

2p

= Tr
(( l∑

k=1
a∗kαα

∗ak + b∗kαα
∗bk

)p) 1
2p

=
∥∥T1(αα∗) + T2(αα∗)

∥∥ 1
2
Spn
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6 ‖T1 + T2‖
1
2
Spm→Spn

‖αα∗‖
1
2
Spm

= ‖T1 + T2‖
1
2
Spm→Spn

‖α‖S2p
m

6 ‖T1 + T2‖
1
2
Spm→Spn

.

In the same way, it follows that
∥∥∥∥[β∗1 0
β∗2 0

]∥∥∥∥
S2p

2n

6 ‖T1 + T2‖
1
2
Spm→Spn

. Using (3.6), we infer that

∥∥(T ⊗ IdMd
)(x)

∥∥
Spn(Md) =

∥∥∥∥[(T ⊗ IdMd
)(x) 0

0 0

]∥∥∥∥
Sp2n(Md)

6 ‖T1 + T2‖
1
2
Spm→Spn

‖T1 + T2‖
1
2
Spm→Spn

.

This yields ‖T ⊗ IdMd
‖Spm(Md)→Spn(Md) 6 ‖T1 + T2‖Spm→Spn 6 ‖T‖dec + ε, hence ‖T‖reg 6

‖T‖dec + ε. Passing ε→ 0 yields one of the desired estimates ‖T‖reg 6 ‖T‖dec.
Finally we shall show ‖T‖dec 6 ‖T‖reg. Assume that ‖T‖reg 6 1. According to [119,

Theorem 5.12], note that we have isometrically

(3.7) CB(S∞n ) = Mn ⊗h Mn

where ⊗h denotes the Haagerup tensor product. Moreover, using the properties of this tensor
product [118, pages 95-97], we obtain

Mop
n ⊗h Mop

n = (Cn ⊗h Rn)op ⊗h (Cn ⊗h Rn)op = Rop
n ⊗h Cop

n ⊗h Rop
n ⊗h Cop

n

= Cn ⊗h Rn ⊗h Cn ⊗h Rn = Cn ⊗h S1
n ⊗h Rn = Mn(S1

n) = Mn ⊗min S
1
n = CB(S1

n).

We have γθ(T ) 6 1 with θ = 1
p and γθ defined in [121, Theorem 8.5], according to [117,

Corollary 3.3]. Then the selfadjointness of T together with [121, Corollary 8.7] yields that
‖T‖dec 6 ‖T1 + T2‖Spm→Spn 6 1 where T = T1−T2 and T1, T2 are completely positive mappings
Mn → Mn given there. The proof of the theorem is complete.

3.6 Decomposable vs regular on approximately finite-dimensional al-
gebras

In this subsection, we will extend by approximation Theorem 3.21 to approximately finite-
dimensional von Neumann algebras. We start with two lemmas which show that, under suitable
assumptions, the decomposability or the regularity of maps is preserved under a passage to the
limit.

Lemma 3.22 Let M and N be von Neumann algebras equipped with faithful normal semifinite
traces. Suppose 1 6 p 6∞. Let (Tα) be a net of decomposable operators from Lp(M) into Lp(N)
such that ‖Tα‖dec,Lp(M)→Lp(N) 6 C for some constant C which converges to some T : Lp(M)→
Lp(N) in the weak operator topology (in the point weak* topology of B(M,N) if p =∞). Then
T is decomposable and ‖T‖dec,Lp(M)→Lp(N) 6 lim infα ‖Tα‖dec,Lp(M)→Lp(N).

Proof : We assume first that 1 < p < ∞. By Proposition 3.5, for any α, there exist some

maps vα, wα : Lp(M) → Lp(N) such that the map
[
vα Tα
T ◦α wα

]
: Sp2 (Lp(M)) → Sp2 (Lp(N)) is

completely positive with max{‖vα‖ , ‖wα‖} = ‖Tα‖dec 6 C. Note that since Lp(N) is reflexive,
the closed unit ball of the space B(Lp(M),Lp(N)) of bounded operators in the weak operator
topology is compact. Hence the bounded nets (vα) and (wα) admit convergent subnets (vβ) and
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(wβ) in the weak operator topology which converge to some v, w ∈ B(Lp(M),Lp(N)). Now, it
is easy to see that [

v T
T ◦ w

]
= lim

β

[
vβ Tβ
T ◦β wβ

]
in the weak operator topology of B(Sp2 (Lp(M)), Sp2 (Lp(N))). By Lemma 2.8, the operator on
the left hand side is completely positive as a weak limit of completely positive mappings. Hence
the operator T is decomposable. Moreover, using the weak lower semicontinuity of the norm,
we see that ‖v‖ 6 lim infβ ‖vβ‖ 6 lim infβ ‖Tβ‖dec and ‖w‖ 6 lim infβ ‖wβ‖ 6 lim infβ ‖Tβ‖dec.
Hence, we have ‖T‖dec 6 max{‖v‖ , ‖w‖} 6 lim infβ ‖Tβ‖dec. By considering a priori only
subnets β of α such that limβ ‖Tβ‖dec = lim infα ‖Tα‖dec (see [107, Exercise 2.55 (f)]), we finish
the proof in the case 1 < p <∞.

Assume now that p =∞. Then the Banach space B(M,N) is still a dual space, namely that
of the projective tensor product M⊗̂L1(N). Consequently, the bounded nets (vα) and (wα) ad-
mit convergent subnets (vβ) and (wβ) which converge in the weak* topology of B(M,N) to some
v, w, where vβ , wβ are constructed as above. Note that the weak* convergence implies point

weak* convergence and thus allows us to apply Lemma 2.8 and deduce that
[
v T
T ◦ w

]
: M2(M)→

M2(N) is completely positive. Using the weak* lower semicontinuity of the norm, we infer
that ‖v‖ 6 lim infβ ‖vβ‖ 6 lim infβ ‖Tβ‖dec and similarly ‖w‖ 6 lim infβ ‖Tβ‖dec and thus
‖T‖dec 6 max{‖v‖ , ‖w‖} 6 lim infβ ‖Tβ‖dec = lim infα ‖Tα‖dec, again under suitable choices of
subnets β of α.

Assume finally that p = 1. According to (3.1), we note that the case p = ∞ is applica-
ble15 to T ∗α and T ∗ and thus ‖T‖dec,L1(M)→L1(N) = ‖T ∗‖dec,N→M 6 lim infα ‖T ∗α‖dec,N→M =
lim infα ‖Tα‖dec,L1(M)→L1(N) where we used again (3.1) in the last equality.

Lemma 3.23 Let M and N be approximately finite-dimensional von Neumann algebras which
are equipped with faithful normal semifinite traces. Suppose 1 < p < ∞. Let (Tα) be a net of
maps from Lp(M) into Lp(N) such that ‖Tα‖reg,Lp(M)→Lp(N) 6 C for some constant C which
converges to some T : Lp(M) → Lp(N) in the strong operator topology. Then the map T is
regular and ‖T‖reg,Lp(M)→Lp(N) 6 lim infα ‖Tα‖reg,Lp(M)→Lp(N).

Proof : Let E be an operator space. For any x ∈ Lp(M)⊗ E, an easy computation gives16

lim
α

(Tα ⊗ IdE)(x) = (T ⊗ IdE)(x).

15. If X is a dual Banach space X with predual X∗, it is well-known that the mapping B(X∗) → Bw∗ (X),
T 7→ T ∗ is a weak operator-point weak* homeomorphism onto the space Bw∗ (X) of weak* continuous operators
of B(X) and the point weak* topology and the weak* topology coincide on bounded sets by [112, Lemma 7.2].
16. If

∑n

k=1 xk ⊗ yk ∈ Lp(M)⊗ E then∥∥∥∥∥(Tα ⊗ IdE)
( n∑
k=1

xk ⊗ yk

)
− (T ⊗ IdE)

( n∑
k=1

xk ⊗ yk

)∥∥∥∥∥
Lp(M,E)

=

∥∥∥∥∥
n∑
k=1

Tα(xk)⊗ yk −
n∑
k=1

T (xk)⊗ yk

∥∥∥∥∥
Lp(M,E)

=

∥∥∥∥∥
n∑
k=1

(Tα(xk)− T (xk))⊗ yk

∥∥∥∥∥
Lp(M,E)

6

n∑
k=1

‖Tα(xk)− T (xk)‖Lp(M) ‖yk‖E −→
α

0.
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We deduce17 that T ⊗IdE induces a bounded operator on Lp(M,E) and that the net (Tα⊗IdE)
converges strongly to T ⊗ IdE . By the strong lower semicontinuity of the norm, we deduce that

‖T ⊗ IdE‖Lp(M,E)→Lp(N,E) 6 lim inf
α
‖Tα ⊗ IdE‖Lp(M,E)→Lp(N,E) 6 lim inf

α
‖Tα‖reg,Lp(M)→Lp(N) .

Taking the supremum, we get the desired conclusion.

Theorem 3.24 LetM and N be approximately finite-dimensional von Neumann algebras which
are equipped with faithful normal semifinite traces. Suppose 1 6 p 6 ∞. Let T : Lp(M) →
Lp(N) be a linear mapping. Then T is regular if and only if T is decomposable. In this case,
we have

‖T‖dec,Lp(M)→Lp(N) = ‖T‖reg,Lp(M)→Lp(N) .

Proof : The case p = ∞ is [55, Lemma 5.4.3] and a straightforward generalization of [117,
Remark following Definition 2.1] since L∞(M,E) = M ⊗min E. The case p = 1 is also true by
duality using Lemma 2.15, (3.1) and (3.5).

Let us now turn to the case 1 < p <∞. We denote by τ and σ the traces of M and N .
Case 1: M and N are finite-dimensional. By [145, Theorem 11.2] and [51, proof of Proposition 7
page 109, Theorem 5 page 105, Corollary page 103], there exist m1, . . . ,mK , n1, . . . , nL ∈ N and
λ1, . . . , λK , µ1, . . . , µL ∈ (0,∞) such that (M, τ) = (Mm1⊕· · ·⊕MmK , λ1 Trm1 ⊕ · · ·⊕λK TrmK )
and (N, σ) = (Mn1 ⊕ · · · ⊕MnL , µ1 Tr n1 ⊕ · · · ⊕ µL Tr nL).

Case 1.1: All λk and µl belong to N. Then let m =
∑K
k=1 λkmk and n =

∑L
l=1 µlnl. Let further

J : M → Mm be the normal unital trace preserving ∗-homomorphism defined by

J(x1 ⊕ · · · ⊕ xK) =



x1
. . .

x1 0
. . .

xK

0
. . .

xK


,

where xk appears λk times on the diagonal, k = 1, . . . ,K. Let moreover E : Mm → M be the
associated conditional expectation. Moreover, we introduce similar maps J ′ : N → Mn and
E′ : Mn → N . We denote by the same symbols the induced maps on the associated Lp-spaces.

Lemma 3.20 is applicable for both J ′ and E and we obtain the estimates ‖J ′‖reg,Lp(N)→Spn 6 1
and ‖E‖reg,Spm→Lp(M) 6 1. Moreover, by Proposition 3.11, we also infer that ‖J‖dec,Lp(M)→Spm 6
1 and ‖E′‖dec,Spn→Lp(N) 6 1. Suppose that T : Lp(M) → Lp(N) is regular. By Theorem 3.21
applied to J ′TE : Spm → Spn together with (3.2) and (3.3), we obtain that T = E′(J ′TE)J is
decomposable and that

‖T‖dec,Lp(M)→Lp(N) =
∥∥E′J ′TEJ∥∥dec 6 ‖E′‖dec ‖J

′TE‖dec ‖J‖dec

6 ‖J ′TE‖reg 6 ‖J ′‖reg ‖T‖reg ‖E‖reg 6 ‖T‖reg,Lp(M)→Lp(N) .

17. Let X be a Banach space and D a dense subset of X. Let (Tα) be a bounded net of bounded linear operators
in B(X). Suppose that, for each x ∈ D, the net (Tα(x))α is convergent in X. Then there exists a bounded linear
operator T : X → X such that (Tα) converges strongly to T .
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Let T : Lp(M)→ Lp(N) be a decomposable map. In a similar manner, we obtain the inequalities
‖J‖reg , ‖E′‖reg , ‖J ′‖dec , ‖E‖dec 6 1 and that T is regular and we have

‖T‖reg,Lp(M)→Lp(N) = ‖E′J ′TEJ‖reg 6 ‖E′‖reg ‖J
′TE‖reg ‖J‖reg

6 ‖J ′TE‖dec 6 ‖J ′‖dec ‖T‖dec ‖E‖dec 6 ‖T‖dec,Lp(M)→Lp(N) .

Case 1.2: All λk and µl belong to Q+. Then there exists a common denominator of the λk’s
and the µl’s, that is, there exists t ∈ N such that λk = λ′k

t , µl = µ′l
t for some integers λ′k and µ′l.

Since we have ‖x‖Lp(M1,tτ1) = t
1
p ‖x‖Lp(M1,τ1) for any semifinite von Neumann algebra (M1, τ1),

it is easy to deduce that

‖T‖dec,Lp(M,tτ)→Lp(N,tσ) = ‖T‖dec,Lp(M,τ)→Lp(N,σ)

and also that T : Lp(M, tτ) → Lp(N, tσ) is regular if and only if T : Lp(M, τ) → Lp(N, σ) is
regular with equal regular norms in this case. Thus, Case 1.2 follows from Case 1.1.

Case 1.3: λk, µl ∈ (0,∞). For ε > 0, let λk,ε, µl,ε ∈ Q+ be ε-close to λk and µl in the
sense that (1 + ε)−1λk 6 λk,ε 6 (1 + ε)λk, and similarly for µl, µl,ε. We introduce the trace
τε = λ1,ε Trm1 ⊕ · · · ⊕ λK,ε TrmK on M = Mm1 ⊕ · · · ⊕MmK . Consider the (non-isometric)
identity mapping IdεM : Lp(M, τ)→ Lp(M, τε). Note that for any x = x1⊕ . . .⊕xK ∈ Lp(M, τ),
the definition of multiplication and adjoint in the sum space Mm1⊕· · ·⊕MmK yields immediately
that |x|p = |x1|p ⊕ . . . ⊕ |xK |p. Thus, ‖x‖pLp(M,τ) = τ(|x|p) =

∑K
k=1 λk Trmk(|xk|p). By the

same argument, ‖x‖Lp(M,τε) =
∑K
k=1 λk,ε Trmk(|xk|p). Thus,

‖IdεM‖
p
Lp(M,τ)→Lp(M,τε) = sup

x∈Lp(M,τ)\{0}

∑K
k=1 λk,ε Trmk(|xk|p)∑K
k=1 λk Trmk(|xk|p)

6 sup
x∈Lp(M,τ)\{0}

∑K
k=1(1 + ε)λk Trmk(|xk|p)∑K

k=1 λk Trmk(|xk|p)
= 1 + ε.

In the same manner, using (1+ε)−1λk 6 λk,ε, one obtains that
∥∥(IdεM )−1

∥∥p
cb,Lp(M,τε)→Lp(M,τ) 6

1 + ε. We infer that ‖IdεM‖cb,
∥∥(IdεM )−1

∥∥
cb → 1 as ε→ 0. In the case p =∞, this convergence

also holds, since ‖x‖L∞(M,τε) = ‖x‖L∞(M,τ). We also define the trace σε = µ1,ε Tr n1 ⊕ · · · ⊕
µL,ε TrmL on the algebra N . Moreover, we also have a map IdεN : Lp(N, σ) → Lp(N, σε) and
‖IdεN‖cb ,

∥∥(IdεN )−1
∥∥

cb go to 1 when ε approaches 0. Since IdεM , IdεN and their inverses are
completely positive (since they are identity mappings and complete positivity is independent
of the trace), by Proposition 3.11, their decomposable norms approach 1 when ε approaches 0.
Moreover, interpolating between p = 1 and p =∞, using Lemma 3.20, we also infer that their
regular norms approach 1 as ε goes to 0. Suppose that T : Lp(M, τ) → Lp(N, σ) is regular.
Using Case 1.2 with the map IdεNT (IdεM )−1 : Lp(M, τε) → Lp(N, σε), (3.2) and (3.3), we see
that

‖T‖dec,Lp(M,τ)→Lp(N,σ) =
∥∥(IdεN )−1IdεNT (IdεM )−1IdεM

∥∥
dec,Lp(M,τ)→Lp(N,σ)

6
∥∥(IdεN )−1∥∥

dec

∥∥IdεNT (IdεM )−1∥∥
dec ‖Id

ε
M‖dec

=
∥∥(IdεN )−1∥∥

dec

∥∥IdεNT (IdεM )−1∥∥
reg ‖Id

ε
M‖dec

6
∥∥(IdεN )−1∥∥

dec ‖Id
ε
N‖reg ‖T‖reg

∥∥(IdεM )−1∥∥
reg ‖Id

ε
M‖dec .
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Going to the limit, we obtain ‖T‖dec 6 ‖T‖reg. In the same vein, one shows that any map
T : Lp(M, τ) → Lp(N, σ) is regular and that we have ‖T‖reg 6 ‖T‖dec. The proof of Case 1.3,
and thus of Case 1, is complete.

Case 2: M and N are approximately finite-dimensional and finite. In this case [22, page 291],
M =

⋃
αMα

w∗
and N =

⋃
β Nβ

w∗
where (Mα) and (Nβ) are nets directed by inclusion of

finite dimensional unital ∗-subalgebras (as in Case 1). Moreover, we denote by Jα : Mα → M ,
J ′β : Nβ → N the canonical unital ∗-homomorphisms and by Eα : M → Mα and E′β : N → Nβ
the associated conditional expectations given by [140, Corollary 10.6] since the traces are finite.
All these maps induce completely contractive and completely positive maps on the associated
Lp-spaces denoted by the same notations such that18

(3.8) lim
α
JαEα(x) = x and lim

β
J ′βE′β(y) = y

(for the Lp-norm) for any x ∈ Lp(M) and any y ∈ Lp(N). Let T : Lp(M) → Lp(N) be
a bounded map. The net19 (J ′βE′β , JαEα)(α,β) of B(Lp(N)) × B(Lp(M)) is obviously con-
vergent to (IdLp(N), IdLp(M)) where each factor is equipped with the strong topology. Using
the strong continuity of the product on bounded sets, we infer that the net (J ′βE′βTJαEα)
converges strongly to T . Suppose that T is decomposable. Using Case 1 with the operator
E′βTJα : Lp(Mα)→ Lp(Nβ), we deduce that T is regular and that, using (3.2) and (3.3)∥∥T∥∥reg,Lp(M)→Lp(N) 6 lim inf

α,β

∥∥J ′βE′βTJαEα∥∥reg 6 lim inf
α,β

∥∥J ′β∥∥reg

∥∥E′βTJα∥∥reg ‖E
′
α‖reg

6 lim inf
α,β

∥∥E′βTJα∥∥dec 6 lim inf
α,β

∥∥E′β∥∥dec ‖T‖dec ‖Jα‖dec 6 ‖T‖dec,Lp(M)→Lp(N) .

For the converse inequality, suppose that the map T : Lp(M) → Lp(N) is regular. Since
T = limα,β J

′
βE′βTJαEα is the strong, hence weak, limit of decomposable operators, hence

decomposable by Proposition 3.22, we obtain, using again (3.2) and (3.3),

‖T‖dec,Lp(M)→Lp(N) 6 lim inf
α,β

∥∥J ′βE′βTJαEα∥∥dec 6 lim inf
α,β

∥∥J ′β∥∥dec ‖E
′
βTJα‖dec‖E′α‖dec

6 lim inf
α,β

∥∥E′βTJα∥∥reg 6 lim inf
α,β

∥∥E′β∥∥reg ‖T‖reg ‖Jα‖reg 6 ‖T‖reg,Lp(M)→Lp(N) .

Thus, Case 2 is proved.

Case 3: M and N are general approximately finite-dimensional semifinite von Neumann al-
gebras. By [143, page 57], there exist an increasing net of projections (ei) which is strongly
convergent to 1 with τ(ei) < ∞ for any i. We set Mi

def= eiMei. The trace τ |Mi
is obviously

finite. Moreover, it is well-known20 that Mi is approximately finite-dimensional. We conclude
that Mi is a von Neumann algebra satisfying the properties of Case 2. We also introduce the
completely positive and completely contractive selfadjoint normal map Qi : M →Mi, x 7→ eixei
and the canonical inclusion map Ji : Mi → M . We do the same construction on N and obtain
some maps Q′j : N → Nj and J ′j : Nj → N . All these maps induce completely positive and

18. Recall that ∪αLp(Mα) is dense in Lp(M). Let x ∈ Lp(M) and ε > 0. There exists α0 and y ∈ Lp(Mα0 )
such that ‖x− y‖Lp(M) 6 ε. Hence for any α > α0, since y ∈ Lp(Mα), we have

‖x− JαEα(x)‖Lp(M) 6 ‖x− y‖Lp(M) + ‖y − JαEα(x)‖Lp(M) 6 ε+ ‖JαEα(y − x)‖Lp(M) 6 2ε.

19. The index set A×B is directed by letting (α, β) 6 (α′, β′) if α 6 α′ and β 6 β′.
20. This observation relies on the equivalence between “injective” and “approximately finite-dimensional”.
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completely contractive maps on all Lp levels, 1 6 p 6 ∞. Moreover, for any 1 6 p < ∞ and
any x ∈ Lp(M) we have21 x = limi eixei = limi JiQi(x) and similarly y = limj J

′
jQ
′
j(y) for any

y ∈ Lp(N). We conclude by the same arguments as in Case 2.

Remark 3.25 Using Proposition 3.12, this theorem also shows that the space of regular op-
erators between Lp(M) and Lp(N) is precisely the span of the completely positive maps from
Lp(M) into Lp(N). This assertion is alluded in [117, Theorem 3.7] and proved22 in [117, Lemma
2.3] and [121, Theorem 8.8] for Lp(M) = Lp(N) = Sp.

With the same method, we can prove the particular case of Theorem 2.17. Using the same
notations, we only indicate the changes.

Theorem 3.26 LetM and N be approximately finite-dimensional von Neumann algebras which
are equipped with faithful normal semifinite traces. Suppose 1 6 p 6 ∞. Let T : Lp(M) →
Lp(N) be a completely positive map. Then T is completely bounded and we have

‖T‖Lp(M)→Lp(N) = ‖T‖cb,Lp(M)→Lp(N) .

Proof :
Case 1: M and N are finite-dimensional. Then as explained in the proof of Theorem 3.24, we
can write (M, τ) = (Mm1 ⊕ · · · ⊕MmK , λ1 Trm1 ⊕ · · · ⊕ λk TrmK ) and (N, σ) = (Mn1 ⊕ · · · ⊕
MnL , µ1 Tr n1 ⊕ · · · ⊕ µL Tr nL).
Case 1.1: All λk and µl belong to N. We thus have, as in the proof of Theorem 3.24, unital trace
preserving ∗-homomorphisms J : M → Mm and J ′ : N → Mn as well as associated conditional
expectations E : Mm → M and E′ : Mn → N . Suppose that T : Lp(M) → Lp(N) is completely
positive. By a straightforward extension of [117, Proposition 2.2 and Lemma 2.3] applied to
J ′TE : Spm → Spn, we obtain that T = E′(J ′TE)J is completely bounded and that

‖T‖cb,Lp(M)→Lp(N) =
∥∥E′J ′TEJ∥∥cb 6 ‖E′‖cb ‖J

′TE‖cb ‖J‖cb 6 ‖J ′TE‖ 6 ‖J ′‖ ‖T‖ ‖E‖ 6 ‖T‖ .

Case 1.2: All λk and µl belong to Q+. It is easy to prove that T : Lp(M, tτ) → Lp(N, tσ) is
bounded if and only if T : Lp(M, τ) → Lp(N, σ) is bounded with equal norms a similar result
for the complete boundedness. Thus, Case 1.2 follows from Case 1.1.
Case 1.3: λk, µl ∈ (0,∞). Suppose that T : Lp(M, τ)→ Lp(N, σ) is completely positive. Using
Case 1.2 with the map IdεNT (IdεM )−1 : Lp(M, τε) → Lp(N, σε), we see that T is completely
bounded and that

‖T‖cb,Lp(M,τ)→Lp(N,σ) =
∥∥(IdεN )−1IdεNT (IdεM )−1IdεM

∥∥
cb,Lp(M,τ)→Lp(N,σ)

6
∥∥(IdεN )−1∥∥

cb

∥∥IdεNT (IdεM )−1∥∥
cb ‖Id

ε
M‖cb =

∥∥(IdεN )−1∥∥
cb

∥∥IdεNT (IdεM )−1∥∥ ‖IdεM‖cb

6
∥∥(IdεN )−1∥∥

cb ‖Id
ε
N‖ ‖T‖

∥∥(IdεM )−1∥∥ ‖IdεM‖cb .

21. Since the product of strongly convergent bounded nets of bounded operators on Lp(M) define a strongly
convergent net, it suffices to prove that the net (eix) converges to x in Lp(M). Now using the GNS representation
π : M → B(L2(M)) and [96, Corollary 7.1.16], we deduce that for any x ∈ L2(M), the net (eix) converges to
x in L2(M). Using interpolation between 2 and ∞, we obtain the convergence for 2 < p < ∞. For the case
1 6 p < 2, it suffices to write an element x ∈ Lp(M) as x = yz with y, z ∈ L2p(M) and use Hölder inequality.
22. The proof of [121, Theorem 8.8] for Schatten spaces does not generalize in a straightforward manner to the
case of noncommutative Lp-spaces. Indeed, the equality (3.7) is not true with a von Neumann algebraM instead
of Mn. For example, by [119, page 97], the space `∞n ⊗h `∞n is isometric to the space M∞n of Schur multipliers
on Mn and the space CB(`∞n ) is isometric to B(`∞n ) by [55, Proposition 2.2.6] and it is easy to see that M∞n is
not isometric to B(`∞n ).
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Going to the limit, we obtain ‖T‖cb,Lp(M)→Lp(N) 6 ‖T‖Lp(M)→Lp(N). Thus Case 1 is complete.
Case 2: M and N are approximately finite-dimensional and finite. Let T : Lp(M) → Lp(N)
be a completely positive map. The net (J ′βE′βTJαEα) converges strongly to T . Using Case
1 with the operator E′βTJα : Lp(Mα) → Lp(Nβ) and [112, Theorem 7.4] we deduce that T is
completely bounded and that∥∥T∥∥cb,Lp(M)→Lp(N) 6 lim inf

α,β

∥∥J ′βE′βTJαEα∥∥cb 6 lim inf
α,β

∥∥J ′β∥∥cb

∥∥E′βTJα∥∥cb ‖Eα‖cb

6 lim inf
α,β

∥∥E′βTJα∥∥ 6 lim inf
α,β

∥∥E′β∥∥ ‖T‖ ‖Jα‖ 6 ‖T‖Lp(M)→Lp(N) .

Thus, Case 2 is proved. The Case 3 is similar to the Case 2.

3.7 Modulus of regular operators vs 2x2 matrix of decomposable op-
erators

For any regular operator T : Lp(Ω) → Lp(Ω′) on classical Lp-spaces, it is well-known that∥∥|T |∥∥Lp(Ω)→Lp(Ω′) = ‖T‖reg,Lp(Ω)→Lp(Ω′), see e.g. [109, Proposition 1.3.6].

Theorem 3.27 Let Ω and Ω′ be (localizable) measure spaces. Suppose 1 6 p 6 ∞. Let
T : Lp(Ω) → Lp(Ω′) be a (weak* continuous if p = ∞) regular operator. Then the map Φ =[
|T | T
T ◦ |T |

]
: Sp2 (Lp(Ω))→ Sp2 (Lp(Ω′)) is completely positive, i.e. the infimum of (1.3) is attained

with v1 = v2 = |T |.

Proof : We say that a finite collection α = {A1, . . . , Anα} of disjoint measurable subsets
of Ω with finite measures is a semipartition of Ω. We introduce a preorder on the set A of
semipartitions of Ω by letting α 6 α′ if each set in α is a union of some sets in α′. It is not
difficult to prove that A is a directed set. For any α ∈ A, we denote by {A1, . . . , Anα} the
elements of α of measure > 0. Similarly, we introduce the set B of semipartitions of Ω′. It is
not difficult to see23 that the operator `pnα → span{1A1 , . . . , 1Anα }, ej 7→

1
µ(Aj)

1
p

1Aj is a positive

isometric isomorphism onto the subspace span{1A1 , . . . , 1Anα } of Lp(Ω). By composition with
the canonical identification of span{1A1 , . . . , 1Anα } in Lp(Ω), we obtain a positive isometric
embedding Jα : `pnα → Lp(Ω). We equally define the average operator Pα : Lp(Ω)→ `pnα by

Pα(f) =
nα∑
j=1

(
1

µ(Aj)1− 1
p

∫
Aj

f dµ
)
ej , f ∈ Lp(Ω).

We need the following folklore lemma.

Lemma 3.28 Suppose 1 6 p <∞.

23. Since the functions 1Aj are disjoint, for any complex numbers a1, . . . , anα , we have∥∥∥∥∥
nα∑
j=1

aj

µ(Aj)
1
p

1Aj

∥∥∥∥∥
Lp(Ω)

=
( nα∑
j=1

∥∥∥∥∥ aj

µ(Aj)
1
p

1Aj

∥∥∥∥∥
p

Lp(Ω)

) 1
p

=
( nα∑
j=1

|aj |p

µ(Aj)

∥∥1Aj
∥∥p

Lp(Ω)

) 1
p

=
( nα∑
j=1

|aj |p
) 1
p

=

∥∥∥∥∥
nα∑
j=1

ajej

∥∥∥∥∥
`
p
nα

.
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1. For any α ∈ A, the map Pα is positive and contractive.

2. For any f ∈ Lp(Ω), we have limα JαPα(f) = f .

Proof : 1. The positivity is obvious. Using Jensen’s inequality, it is elementary to check the
contractivity.

2. Since ‖JαPα‖Lp(Ω)→Lp(Ω) is uniformly bounded by 1, by [27, III 17.4, Proposition 5] it
suffices to show this for f in the dense class of integrable simple functions constructed with
subsets of measure > 0. So let f be such a function, say with respect to some semipartition
αf . For any α ∈ A which refines αf , it is easy to see that JαPα(f) = f . Hence, for this f , the
assertion is true.

The net24
([
JβPβ JβPβ
JβPβ JβPβ

]
,

[
|T |JαPα TJαPα
T ◦JαPα |T |JαPα

])
(α,β)

of the product B(Sp2 (Lp(Ω′))) ×

B(Sp2 (Lp(Ω)), Sp2 (Lp(Ω′))) is obviously convergent to
(

IdSp2 (Lp(Ω′)),

[
|T | T
T ◦ |T |

])
where each fac-

tor is equipped with the strong operator topology. Using the strong continuity of the product
on bounded sets (see [56, Proposition C.19]), we infer that the net([

JβPβ |T |JαPα JβPβTJαPα
JβPβT ◦JαPα JβPβ |T |JαPα

])
(α,β)

converges strongly to the map
[
|T | T
T ◦ |T |

]
: Sp2 (Lp(Ω))→ Sp2 (Lp(Ω′)). By Lemma 2.8, since we

have the equality[
JβPβ |T |JαPα JβPβTJαPα
JβPβT ◦JαPα JβPβ |T |JαPα

]
= (IdSp2 ⊗ Jβ) ◦

[
Pβ |T |Jα PβTJα
PβT ◦Jα Pβ |T |Jα

]
◦ (IdSp2 ⊗ Pα),

it suffices to show that the three linear maps IdSp2 ⊗ Jβ : Sp2 (`pnβ ) → Sp2 (Lp(Ω′)), Φα,β =[
Pβ |T |Jα PβTJα
PβT ◦Jα Pβ |T |Jα

]
: Sp2 (`pnα) → Sp2 (`pnβ ) and IdSp2 ⊗ Pα : Sp2 (Lp(Ω)) → Sp2 (`pnα) are all com-

pletely positive. By Proposition 2.21, the positive maps Jβ : `pnβ → Lp(Ω′) and Pα : Lp(Ω)→ `pnα
are completely positive. It remains to show the second assertion. For any 1 6 j 6 nα, we have

(PβTJα)(ej) = (PβT )
(

1
µ(Aj)

1
p

1Aj
)

= 1
µ(Aj)

1
p

Pβ
(
T (1Aj )

)
= 1
µ(Aj)

1
p

nβ∑
i=1

1
ν(Bi)1− 1

p

(∫
Bi

T (1Aj ) dµ′
)
ei.

We deduce that the matrix [tα,β,ij ] of the linear map PβTJα : `pnα → `pnβ in the canonical basis
is
[ 1
µ(Aj)

1
p

1
ν(Bi)

1− 1
p

∫
Bi
T (1Aj ) dµ′

]
. Moreover, we have

(PβT ◦Jα)(ej) = (PβT ◦)
(

1
µ(Aj)

1
p

1Aj
)

= 1
µ(Aj)

1
p

Pβ
(
T (1Aj )

)
= 1
µ(Aj)

1
p

nβ∑
i=1

1
ν(Bi)1− 1

p

(∫
Bi

T (1Aj ) dµ′
)
ei.

24. The index set A×B is directed by letting (α, β) 6 (α′, β′) if α 6 α′ and β 6 β′.
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Hence the matrix of PαT ◦Jα is [tα,β,ij ]ij . Finally, we equally have

(Pβ |T |Jα)(ej) = (Pβ |T |)
(

1
µ(Aj)

1
p

1Aj
)

= 1
µ(Aj)

1
p

Pβ
(
|T |(1Aj )

)
= 1
µ(Aj)

1
p

nβ∑
i=1

1
ν(Bi)1− 1

p

(∫
Bi

|T |(1Aj ) dµ′
)
ei.

Now, we note that∫
Bi

|T |(1Aj ) dµ′ >
∫
Bi

|T (1Aj )|dµ′ >
∣∣∣∣∫
Bi

T (1Aj ) dµ′
∣∣∣∣ = µ(Aj)

1
p ν(Bi)1− 1

p |tα,β,ij |.

Thus, the map Pβ |T |Jα is associated with some matrix [sα,β,ij ] with sα,β,ij = |tα,β,ij |+ rα,β,ij
where rα,β,ij > 0 for any i, j. Further, let ψα,β,ij ∈ C such that tα,β,ij = |tα,β,ij |ψα,β,ij .

We denote by iα : `pnα ↪→ Spnα the canonical diagonal embedding, J̃α = IdSp2 ⊗ iα : Sp2 (`pnα)→
Sp2 (Spnα) and by Qα : Sp2 (Spnα)→ Sp2 (`pnα) the canonical projection. Note that QαJ̃α = IdSp2 (`pnα ).
Now, we show that the map J̃βΦα,βQα : Sp2 (Spnα)→ Sp2 (Spnβ ) is completely positive. If we take

aij =
[√
|tα,β,ij |ψα,β,ijeij 0

0
√
|tα,β,ij |eij

]
, b

(1)
ij =

[√
rα,β,ijeij 0

0 0

]
and b(2)

ij =
[
0 0
0 √

rα,β,ijeij

]
,

we obtain for any x ∈ Sp2 (Spnα)

(J̃βΦα,βQα)(x) = (J̃βΦα,βQα)
([
x11 x12
x21 x22

])
=
(
J̃β

[
Pβ |T |Jα PβTJα
PβT ◦Jα Pβ |T |Jα

])([∑nα
j=1 x11jjej

∑nα
j=1 x12jjej∑nα

j=1 x21jjej
∑nα
j=1 x22jjej

])
= J̃β

([∑nα
j=1 x11jjPβ |T |Jαej

∑nα
j=1 x12jjPβTJαej∑nα

j=1 x21jjPβT ◦Jαej
∑nα
j=1 x22jjPβ |T |Jαej

])
= J̃β

([∑nα
j=1 x11jj

∑nβ
i=1 sα,β,ijei

∑nα
j=1 x12jj

∑nβ
i=1 tα,β,ijei∑nα

j=1 x21jj
∑nβ
i=1 tα,β,ijei

∑nα
j=1 x22jj

∑nβ
i=1 sα,β,ijei

])
=

nα∑
j=1

nβ∑
i=1

[
x11jjsα,β,ijeii x12jjtα,β,ijeii
x21jjtα,β,ijeii x22jjsα,β,ijeii

]

=
nα∑
j=1

nβ∑
i=1

([
x11jj |tα,β,ij |eii x12jjtα,β,ijeii
x21jjtα,β,ijeii x22jj |tα,β,ij |eii

]
+
[
x11jjrα,β,ijeii 0

0 x22jjrα,β,ijeii

])

=
nα∑
j=1

nβ∑
i=1

([√
|tα,β,ij |ψα,β,ijeij 0

0
√
|tα,β,ij |eij

] [
x11 x12
x21 x22

] [√
|tα,β,ij |ψα,β,ijeji 0

0
√
|tα,β,ij |eji

]

+
[√

rα,β,ijeij 0
0 0

] [
x11 x12
x21 x22

] [√
rα,β,ijeji 0

0 0

]
+
[
0 0
0 √

rα,β,ijeij

] [
x11 x12
x21 x22

] [
0 0
0 √

rα,β,ijeji

])
=

nα∑
j=1

nβ∑
i=1

(
aijxa

∗
ij + b

(1)
ij xb

(1)∗
ij + b

(2)
ij xb

(2)∗
ij

)
.

We infer that J̃βΦα,βQα is completely positive. Since Φα,β = Qβ(J̃βΦα,βQα)J̃α, we conclude
that Φα,β is completely positive. The case 1 6 p <∞ is proved.
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Let now p =∞ and assume in addition that T : L∞(Ω)→ L∞(Ω′) is weak* continuous with
pre-adjoint T∗ : L1(Ω′) → L1(Ω). Then by (3.5) and by the case p = 1 proved above, the map[
|T∗| T∗

(T∗)◦ |T∗|

]
: S1

2(L1(Ω′))→ S1
2(L1(Ω)) is completely positive. Note that |T∗|∗ = |(T∗)∗| = |T |

where we use [1, Theorem 2.28 page 85] in the first equality and it is easily checked that

((T∗)◦)∗ = T ◦. So by Lemma 2.7, its adjoint
[
|T∗|∗ (T∗)∗

((T∗)◦)∗ |T∗|∗
]

=
[
|T | T
T ◦ |T |

]
: S∞2 (L∞(Ω)) →

S∞2 (L∞(Ω′)) is also completely positive.

Remark 3.29 We do not know if the weak* continuity is necessary in the case p = ∞ in the
assumptions of the above result.

3.8 Decomposable vs completely bounded
The authors of [92] say that the following result is true without the QWEP assumption (and
without proof). However, we think that QWEP is necessary25 for 1 < p <∞.

Proposition 3.30 Let M and N be two QWEP von Neumann algebras which are equipped
with faithful normal semifinite traces. Suppose 1 6 p 6 ∞. Let T : Lp(M) → Lp(N) be a de-
composable map. Then T is completely bounded and ‖T‖cb,Lp(M)→Lp(N) 6 ‖T‖dec,Lp(M)→Lp(N).

Proof : By Proposition 3.5, there exist linear maps v1, v2 : Lp(M)→ Lp(N) such that the map

Φ =
[
v1 T
T ◦ v2

]
: Sp2 (Lp(M)) → Sp2 (Lp(N)) is completely positive with max

{
‖v1‖ , ‖v2‖

}
=

‖T‖dec. Let b be an element of Spn(Lp(M)) with ‖b‖Spn(Lp(M)) 6 1. By Lemma 2.12, we can find

a, c ∈ Spn(Lp(M)) with ‖a‖Spn(Lp(M)) 6 1 and ‖c‖Spn(Lp(M)) 6 1 such that
[
a b
b∗ c

]
is a positive

element of Sp2n(Lp(M)). We deduce that[
(IdSpn ⊗ v1)(a) (IdSpn ⊗ T )(b)
(IdSpn ⊗ T )(b)∗ (IdSpn ⊗ v2)(c)

]
=
[

(IdSpn ⊗ v1)(a) (IdSpn ⊗ T )(b)
(IdSpn ⊗ T )◦(b∗) (IdSpn ⊗ v2)(c)

]
=
[

(IdSpn ⊗ v1)(a) (IdSpn ⊗ T )(b)
(IdSpn ⊗ T

◦)(b∗) (IdSpn ⊗ v2)(c)

]
= (IdSpn ⊗ Φ)

([
a b
b∗ c

])
is a positive element of Sp2n(Lp(N)). By Lemma 2.11, using Theorem 2.17, we obtain

∥∥(IdSpn ⊗ T )(b)
∥∥
Spn(Lp(N)) 6

1
2

1
p

(∥∥(IdSpn ⊗ v1)(a)
∥∥p
Spn(Lp(N)) +

∥∥(IdSpn ⊗ v2)(c)
∥∥p
Spn(Lp(N))

) 1
p

6
1

2
1
p

(
‖v1‖pcb ‖a‖

p
Spn(Lp(M)) + ‖v2‖pcb ‖c‖

p
Spn(Lp(M))

) 1
p

6 max
{
‖v1‖ , ‖v2‖}

1
2

1
p

(
‖a‖pSpn(Lp(M)) + ‖c‖pSpn(Lp(M))

) 1
p

6 max
{
‖v1‖ , ‖v2‖

}
= ‖T‖dec .

We obtain
∥∥IdSpn ⊗ T

∥∥
Spn(Lp(M))→Spn(Lp(N)) 6 ‖T‖dec. We conclude that ‖T‖cb 6 ‖T‖dec.

25. Another point of view is to replace the formula of definition (1.4) by ‖T‖dec,Lp(M)→Lp(N) =
inf
{

max{‖v1‖cb , ‖v2‖cb}
}
.
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Proposition 3.31 Let M and N be two QWEP von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 6 p 6∞. Let T : Lp(M)→ Lp(N) be a completely positive
map. Then T is decomposable and we have ‖T‖cb = ‖T‖dec = ‖T‖.

Proof : By Proposition 3.11, we know that T is decomposable and that ‖T‖dec 6 ‖T‖. If M
and N are QWEP, by Proposition 3.30, we have ‖T‖cb 6 ‖T‖dec.

To complement the above proposition, we observe that completely bounded operators are
not decomposable in general. For that, we give a result on group von Neumann algebras of
discrete groups, see Section 4.1 for background.

Proposition 3.32 1. Let G be a non-amenable weakly amenable discrete group. Then there
exists a completely bounded Fourier multiplier Mϕ : VN(G) → VN(G) which is not de-
composable.

2. Suppose 1 < p < ∞. Let G be a non-amenable discrete group with AP and such
that VN(G) has QWEP. Then there exists a completely bounded Fourier multiplier
Mϕ : Lp(VN(G))→ Lp(VN(G)) which is not decomposable.

Proof : 1. By the proofs of [29, Theorem 12.3.10] and [93, Theorem 4.4], there exists a net(
Mϕα

)
of finite-rank completely bounded Fourier multipliers on VN(G) with ‖Mϕα‖cb 6 C

such that Mϕα → IdVN(G) in the point weak* topology. If all the Fourier multipliers were
decomposable, since two comparable complete norms on a linear space are in fact equivalent,
the von Neumann algebra VN(G) would have the bounded normal decomposable approximation
property of [106, Theorem 4.3 (iv)] (see also [92, page 355]) and VN(G) would be injective. By
[137, Theorem 3.8.2], we conclude that G is amenable. This is the desired contradiction.

2. By [93, Theorem 4.4], there exists a net of completely contractive finite-rank Fourier
multipliers Mϕα : Lp(VN(G)) → Lp(VN(G)) such that Mϕα → IdLp(VN(G)) in the point-norm
topology. If all the Fourier multipliers were decomposable, again since two comparable complete
norms on a linear space are in fact equivalent, the space Lp(VN(G)) would have the bounded
decomposable approximation property of [92, page 356]. By [92, Theorem 5.2] the von Neumann
algebra VN(G) would be injective. By [137, Theorem 3.8.2], we conclude that G is amenable.
This is a second contradiction.

Remark 3.33 Note that we can use the free group Fn where 2 6 n 6 ∞ (n countable) with
the two parts of the last result. Indeed, by [66, Theorem 1.8] (see also [41, Corollary 3.11]), the
group Fn is weakly amenable, hence has AP by [68, page 677]. Moreover, it is well-known that
VN(Fn) has QWEP, see e.g. [119, Theorem 9.10.4].

We will describe in Theorem 3.38 an explicit result in the same vein. For that, we need
intermediate results.

Lemma 3.34 Let M be a von Neumann algebra equipped with a faithful normal semifinite
trace. Suppose 1 6 p 6∞. For any integer n > 2, the maps

αn : Lp(M) −→ Spn(Lp(M))

x 7−→

x · · · x
...

...
x · · · x
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and

σn : Spn2(Lp(M)) −→ Spn(Lp(M))

b
11
11 · · · b1n11
...

...
bn1
11 · · · bnn11

 · · ·

b
11
1n · · · b1n1n
...

...
bn1
1n · · · bnn1n


...

...b
11
n1 · · · b1nn1
...

...
bn1
n1 · · · bnnn1

 · · ·

b
11
nn · · · b1nnn
...

...
bn1
nn · · · bnnnn




7−→

b
11
11 · · · b1n1n
...

...
bn1
n1 · · · bnnnn



are completely positive.

Proof : For any x ∈ Lp(M), we have αn(x) =

x · · · x
...

...
x · · · x

 =

1
...
1

x [1 · · · 1
]
. Moreover,

for any b ∈ Spn2(Lp(M)), we have σn(b) = AbA∗ where A ∈ Mn,n2 is defined by

A =


[
1 0 · · · 0

] [
0 0 · · · 0

]
· · ·

[
0 0 · · · 0

][
0 0 · · · 0

] [
0 1 · · · 0

]
. . .

[
0 0 · · · 0

]
...

...[
0 0 · · · 0

]
· · ·

[
0 0 · · · 0

] [
0 · · · 0 1

]

 .

Now, we appeal to (2.9).

Proposition 3.35 LetM and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 6 p 6 ∞. Let n > 2 be an integer and consider some bounded maps
Tij : Lp(M) → Lp(N) where 1 6 i, j 6 n. If αn is the completely positive map from Lemma
3.34 then the map

Φ: Spn(Lp(M)) −→ Spn(Lp(N))a11 · · · a1n
...

...
an1 · · · ann

 7−→

T11(a11) · · · T1n(a1n)
...

...
Tn1(an1) · · · Tnn(ann)


is completely positive if and only if the map Φ ◦ αn is completely positive.

Proof : One direction is obvious. For the reverse direction, we have

σn ◦
(
IdSpn ⊗ (Φ ◦ αn)

)
a11 · · · a1n

...
...

an1 · · · ann


 = σn


Φ ◦ αn(a11) · · · Φ ◦ αn(a1n)

...
...

Φ ◦ αn(an1) · · · Φ ◦ αn(ann)
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= σn





T11(a11) · · · T1n(a11)
...

...
Tn1(a11) · · · Tnn(a11)

 · · ·

T11(a1n) · · · T1n(a1n)
...

...
Tn1(a1n) · · · Tnn(a1n)


...

...T11(an1) · · · T1n(an1)
...

...
Tn1(an1) · · · Tnn(an1)

 · · ·

T11(ann) · · · T1n(ann)
...

...
Tn1(ann) · · · Tnn(ann)






=

T11(a11) · · · T1n(a1n)
...

...
Tn1(an1) · · · Tnn(ann)

 = Φ


a11 · · · a1n

...
...

an1 · · · ann


 .

Hence Φ = σn ◦ (IdSpn⊗ (Φ◦αn)). Note that if Φ◦αn is completely positive then IdSpn⊗ (Φ◦αn)
is also completely positive by Lemma 2.9. In this case, since σn is completely positive we deduce
that Φ is completely positive.

Proposition 3.36 LetM and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 6 p 6∞. Let T : Lp(M)→ Lp(N) be a linear map. Then T is decompos-
able if and only if the map T̃ ◦ α2 : Lp(M)→ Sp2 (Lp(N)) where T̃ is the map from Proposition
3.17 is decomposable. Moreover, in this case, we have

‖T‖dec,Lp(M)→Lp(N) 6 ‖T̃ ◦ α2‖dec,Lp(M)→Sp2 (Lp(N)) 6 2
1
p ‖T‖dec,Lp(M)→Lp(N) .

Furthermore, T̃ ◦ α2 is selfadjoint.

Proof : Let x ∈ Lp(M). We have

T̃ ◦ α2(x∗) = T̃

([
x∗ x∗

x∗ x∗

])
=
[

0 T (x∗)
T ◦(x∗) 0

]
=
[

0 T (x∗)
T (x)∗ 0

]
and also(
T̃ ◦ α2(x)

)∗ =
(
T̃

([
x x
x x

]))∗
=
[

0 T (x)
T ◦(x) 0

]∗
=
[

0 T ◦(x)∗
T (x)∗ 0

]
=
[

0 T (x∗)
T (x)∗ 0

]
.

We conclude that T̃ ◦ α2 is selfadjoint, i.e. (T̃ ◦ α2)◦ = T̃ ◦ α2.
Suppose that T is decomposable. By Proposition 3.5, there exist some maps v1, v2 : Lp(M)→

Lp(N) such that
[
v1 T
T ◦ v2

]
is completely positive with max

{
‖v1‖ , ‖v2‖

}
= ‖T‖dec. Using (2.9),

we note that the map

Sp2 (Lp(M))→ Sp2 (Lp(M)),
[
a b
c d

]
7→
[
1 0
0 −1

] [
a b
c d

] [
1 0
0 −1

]
=
[
a −b
−c d

]

is completely positive. By composition, we deduce that the map
[
v1 −T
−T ◦ v2

]
◦α2 is completely

positive. We define the map S
def=
[
v1 0
0 v2

]
◦ α2 : Lp(M) → Sp2 (Lp(N)). Then by the above,

S is completely positive and is easy to check using (2.11) that ‖S‖ 6 2
1
p ‖T‖dec. Moreover,

−S 6cp T̃ ◦ α2 6cp S. By Proposition 3.19, we conclude that
∥∥T̃ ◦ α2

∥∥
dec 6 2

1
p ‖T‖dec.
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Now suppose that the map T̃ ◦ α2 : Lp(M) → Sp2 (Lp(N)) is decomposable. Moreover let

v1, v2 : Lp(M) → Sp2 (Lp(N)) such that the map
[

v1 T̃ ◦ α2
T̃ ◦ α2 v2

]
: Sp2 (Lp(M)) → Sp4 (Lp(N))

is completely positive. Put w1 : Lp(M) → Lp(N), a 7→ (v1(a))11 and w2 : Lp(M) → Lp(N),
a 7→ (v2(a))22. Then each wi is also completely positive as a composition of completely positive
mappings. Then an easy computation gives

[
1 0 0 0
0 0 0 1

]
·

([
v1 T̃ ◦ α2

T̃ ◦ α2 v2

]([
a b
c d

]))
·


1 0
0 0
0 0
0 1



=
[
1 0 0 0
0 0 0 1

]
·
[

v1(a) T̃ ◦ α2(b)
T̃ ◦ α2(c) v2(d)

]
·


1 0
0 0
0 0
0 1

 =
[
w1(a) T (b)
T ◦(c) w2(d)

]
.

Using (2.9), we deduce by composition that the map
[
w1 T
T ◦ w2

]
is completely positive. We infer

that T is decomposable and that ‖T‖dec 6 max{‖w1‖ , ‖w2‖} 6 max{‖v1‖ , ‖v2‖} and passing
to the infimum over all admissible v1, v2 shows that ‖T‖dec 6 ‖T̃‖dec.

In the following result, we generalize the results of [55, Theorem 5.4.7] and [65, page 204]
done for p =∞.

Theorem 3.37 Let M be a von Neumann algebra equipped with a normal finite faithful nor-
malized trace and let u1, . . . , un ∈M be arbitrary unitaries. Suppose 1 6 p 6∞. Consider the
map T : `pn → Lp(M) defined by T (ek) = uk. Then ‖T‖dec,`pn→Lp(M) = n1− 1

p .

Proof : As observed, we can suppose 1 6 p < ∞. Note that the unit element 1 of M belongs
to Lp(M) since M is finite. The map ϕ : `pn → C,

∑n
k=1 ckek 7→

∑n
k=1 ck is a positive linear

functional. Since `pn is a commutative Lp-space, by Proposition 2.22, we deduce that the linear
map

v : `pn −→ Lp(M)∑n
k=1 ckek 7−→

(∑n
k=1 ck

)
1

is completely positive. Moreover, using the normalization of the trace in the third equality and
Hölder’s inequality in the last inequality, we have∥∥∥∥∥v

( n∑
k=1

ckek

)∥∥∥∥∥
Lp(M)

=

∥∥∥∥∥
( n∑
k=1

ck

)
1

∥∥∥∥∥
Lp(M)

=

∣∣∣∣∣
n∑
k=1

ck

∣∣∣∣∣ ‖1‖Lp(M)

=

∣∣∣∣∣
n∑
k=1

ck

∣∣∣∣∣ 6
n∑
k=1
|ck| 6 n1− 1

p

( n∑
k=1
|ck|p

) 1
p

.

We infer that ‖v‖ 6 n1− 1
p .

We consider the map T̃ =
[

0 T
T ◦ 0

]
: Sp2 (`pn) → Sp2 (Lp(M)) and the map α4 : `pn → Sp4 (`pn)

of Lemma 3.34 with M = `∞n . Since e∗k = ek, we have

[
v 0
0 v

]
T̃

T̃

[
v 0
0 v

]
 ◦ α4

 (ek) =


v(ek) 0 0 T (ek)

0 v(ek) T ◦(ek) 0
0 T (ek) v(ek) 0

T ◦(ek) 0 0 v(ek)

 =


1 0 0 uk
0 1 u∗k 0
0 uk 1 0
u∗k 0 0 1

 .
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The 2x2 matrix ũk =
[

0 uk
u∗k 0

]
is a (selfadjoint) unitary. Hence we have

∥∥∥∥[ 0 uk
u∗k 0

]∥∥∥∥
M2(M)

6 1.

By [55, Proposition 1.3.2], we conclude that the matrix on the right hand side of the above

equation is positive. Thus the map


[
v 0
0 v

]
T̃

T̃

[
v 0
0 v

]
◦α4 is positive. Using again Proposition

2.22, we obtain that this map is indeed completely positive. By Proposition 3.35, we deduce that

the map


[
v 0
0 v

]
T̃

T̃

[
v 0
0 v

]
 is completely positive. Hence T̃ is decomposable with

∥∥T̃∥∥dec 6

∥∥∥∥[v 0
0 v

]∥∥∥∥ 6 ‖v‖ where the last inequality is easy to prove using [118, Corollary 1.3]. Using

Proposition 3.18, we conclude that T is decomposable and that ‖T‖dec =
∥∥T̃∥∥dec 6 ‖v‖ 6 n1− 1

p .
On the other hand, let S : `pn → Sp2 (Lp(M)) be a completely positive map satisfying −S 6cp

T̃ ◦ α2 6cp S where α2 : `pn → Sp2 (`pn). If we let xk
def= S(ek) and ũk

def= T̃ ◦ α2(ek), then

ũk =
[

0 uk
u∗k 0

]
is a selfadjoint unitary with −xk 6 ũk 6 xk. Thus we have

xk = 1
2
[
(xk − ũk) + (xk + ũk)

]
,

with xk ± ũk > 0. Consider the finite trace τ1
def= Tr ⊗ τ on M2(M) where τ is the normalized

trace on M . Then it follows that

τ1(xk) = τ1

(
1
2
[
(xk − ũk) + (xk + ũk)

])
= 1

2

[
τ1
(
xk − ũk

)
+ τ1

(
xk + ũk

)]
= 1

2

[
‖xk − ũk‖1 + ‖xk + ũk‖1

]
>

1
2 ‖xk − ũk − (xk + ũk)‖1 = ‖ũk‖S1

2(L1(M))

where ‖ũk‖S1
2(L1(M)) = τ1

((
ũ∗kũk

) 1
2
)

= τ1(I2⊗1) = 2. Moreover, we have ‖I2 ⊗ 1‖
Sp
∗

2 (Lp∗ (M)) =

2
1
p∗ . By duality, we obtain

‖x1 + · · ·+ xn‖Sp2 (Lp(M)) >
〈x1 + · · ·+ xn, I2 ⊗ 1〉
‖I2 ⊗ 1‖

Sp
∗

2 (Lp∗ (M))
= τ1(x1 + · · ·+ xn)
‖I2 ⊗ 1‖

Sp
∗

2 (Lp∗ (M))
= 21− 1

p∗ n.

We deduce that

‖S‖`pn→Sp2 (Lp(M)) >

∥∥S(1)
∥∥
Sp2 (Lp(M))

‖1‖`pn
= n−

1
p

∥∥S(e1) + · · ·+ S(en)
∥∥
Sp2 (Lp(M))

= n−
1
p ‖x1 + · · ·+ xn‖Sp2 (Lp(M)) > n−

1
p 21− 1

p∗ n = n1− 1
p 21− 1

p∗ .

Using Proposition 3.36 in the first inequality and Proposition 3.19 in the second inequality, we
conclude that

‖T‖dec,`pn→Lp(M) > 2−
1
p

∥∥T̃ ◦ α2
∥∥

dec,`pn→Sp2 (Lp(M)) > 2−
1
pn1− 1

p 21− 1
p∗ = n1− 1

p .

Let n > 1 be an integer and let G = Fn be a free group with n generators denoted by
g1, . . . , gn.
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Theorem 3.38 Suppose 1 6 p 6 ∞. Let n > 2 be an integer. Consider the map Tn : `pn →
Lp(VN(Fn)) defined by Tn(ek) = λgk . We have ‖Tn‖cb 6

(
2
√
n− 1

)1− 1
p and ‖Tn‖dec = n1− 1

p .
In particular, if 1 < p 6∞ we have ‖Tn‖dec

‖Tn‖cb
−−−−−→
n→+∞

+∞.

Proof : The equality is a consequence of Theorem 3.37. For any 1 6 k 6 n, using the normalized
trace τFn , note that∥∥λgk∥∥L1(VN(Fn)) = τFn(|λgk |) = τFn

((
λ∗gkλgk

) 1
2
)

= τFn(1) = 1.

For any A1, . . . , Al ∈ S1
n, using the isometry S1

n(`1n) = `1n(S1
n) in the last equality, we deduce

that ∥∥∥∥∥(IdS1
n
⊗ Tn

)( l∑
k=1

Ak ⊗ ek
)∥∥∥∥∥

S1
n(L1(VN(Fn)))

=

∥∥∥∥∥
l∑

k=1
Ak ⊗ λgk

∥∥∥∥∥
S1
n(L1(VN(Fn)))

6
l∑

k=1
‖Ak‖S1

n

∥∥λgk∥∥L1(VN(Fn)) =
l∑

k=1
‖Ak‖S1

n
=

∥∥∥∥∥
l∑

k=1
Ak ⊗ ek

∥∥∥∥∥
S1
n(`1n)

.

We deduce that ‖Tn‖cb,`1n→L1(VN(Fn)) 6 1. Note that [55, Theorem 5.4.7] gives the estimate
‖Tn‖cb,`∞n →VN(Fn) 6 2

√
n− 1. Hence, by interpolation, we deduce that

‖Tn‖cb,`pn→Lp(VN(Fn)) 6
(
‖Tn‖cb,`1n→L1(VN(Fn))

) 1
p
(
‖Tn‖cb,`∞n →VN(Fn)

)1− 1
p 6

(
2
√
n− 1

)1− 1
p .

In Section 7, we will continue these investigations.

4 Decomposable Schur multipliers and Fourier multipliers
on discrete groups

In this section, we give a generalization of the average argument of Haagerup. This construction
simultaneously gives a complementation for spaces of completely bounded Schur multipliers and
completely bounded Fourier multipliers on discrete groups, possibly deformed by a 2-cocycle
and the independence of the completely bounded norm and the complete positivity with respect
to the 2-cocycle. In Subsection 4.3 below, we give our first results on decomposable Fourier
multipliers (and Schur multipliers).

4.1 Twisted von Neumann algebras
A basic reference on this subject is [155]. See also [13] and references therein. Let G be a
discrete group. We first recall that a 2-cocycle on G with values in T is a map σ : G×G → T
such that

(4.1) σ(s, t)σ(st, r) = σ(t, r)σ(s, tr)

for any s, t, r ∈ G. We will consider only normalized 2-cocycles, that is, satisfying σ(s, e) =
σ(e, s) = 1 for any s ∈ G. This implies that σ(s, s−1) = σ(s−1, s) for any s ∈ G. The set
Z2(G,T) of all normalized 2-cocycles becomes an abelian group under pointwise product, the
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inverse operation corresponding to conjugation: σ−1 = σ, where σ(s, t) = σ(s, t), and the
identity element being the trivial cocycle on G denoted by 1.

Now, suppose that G is equipped with a T-valued 2-cocycle. For any s ∈ G, we define the
bounded operator λσ,s ∈ B(`2G) defined by

(4.2) λσ,sεt = σ(s, t)εst

where (εt)t∈G is the canonical basis of `2G. We define the twisted group von Neumann algebra
VN(G, σ) as the von Neumann subalgebra of B(`2G) generated by the ∗-algebra

C(G, σ) = span
{
λσ,s : s ∈ G

}
.

For example, let d ∈ {2, 3, . . . ,∞} and set G = Zd. To each d× d real skew symmetric matrix
θ, one may associate σθ ∈ Z2(Zd,T) by σθ(m,n) = e2iπ〈m,θn〉 where m,n ∈ Zd. The resulting
algebras Tdθ = VN(Zd, σθ) are the so-called d-dimensional noncommutative tori. See [33] for a
study of harmonic analysis on this algebra.

If σ = 1, we obtain the left regular representation λ : G→ B(`2G) and the group von Neumann
algebra VN(G) of G.

The von Neumann algebra VN(G, σ) is a finite algebra with trace given by τG,σ(x) =〈
εe, x(εe)

〉
`2
G

where x ∈ VN(G, σ). In particular τG,σ(λσ,s) = δs,e. The generators λσ,s sat-
isfy the relations

(4.3) λσ,sλσ,t = σ(s, t)λσ,st,
(
λσ,s

)∗ = σ(s, s−1)λσ,s−1 .

Moreover, we have
τG,σ

(
λσ,sλσ,t

)
= σ(s, t)δs,t−1 , s, t ∈ G.

Given a discrete group G and a T-valued 2-cocycle σ, we can consider the fundamental
unitaryW : εt⊗εr 7→ εt⊗εtr on `2G⊗2`

2
G and another unitary operator σ̃ : εt⊗εr → σ(t, r)εt⊗εr

representing σ. We define the σ-fundamental unitary as the unitary operator

(4.4) W (σ) = Wσ̃ : εt ⊗ εr 7→ σ(t, r)εt ⊗ εtr.

Lemma 4.1 Suppose that σ and ω are T-valued 2-cocycles on a discrete group G. Then, for
any s ∈ G we have

W (ω)(λσ·ω,s ⊗ Id`2
G

)(
W (ω))∗ = λσ,s ⊗ λω,s.

Proof : On the one hand, for any s, t, r ∈ G, using (4.2) in the second equality and (4.4) in the
third equality, we have

W (ω)(λσ·ω,s ⊗ Id`2
G

)
(εt ⊗ εr) = W (ω)(λσ·ω,sεt ⊗ εr)

= (σ · ω)(s, t)W (ω)(εst ⊗ εr) = σ(s, t)ω(s, t)ω(st, r)εst ⊗ εstr.

On the other hand, using (4.4) in the first equality and (4.2) in the third equality, we have

(λσ,s ⊗ λω,s)W (ω)(εt ⊗ εr) = (λσ,s ⊗ λω,s)(ω(t, r)εt ⊗ εtr)
= ω(t, r)(λσ,sεt ⊗ λω,sεtr) = σ(s, t)ω(t, r)ω(s, tr)εst ⊗ εstr.

Using (4.1) with ω instead of σ, we conclude that these quantities are equal.
Using this lemma, we obtain a well-defined kind of “twisted coproduct” which is a unital

normal ∗-monomorphism:

(4.5) ∆σ,ω : VN(G, σ · ω) −→ VN(G, σ)⊗VN(G,ω)
λσ·ω,s 7−→ λσ,s ⊗ λω,s
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A very particular case of this construction is considered in [33, Corollary 2.2] for noncommuta-
tive tori with σ = 1, under the notation x 7→ x̃.

Suppose 1 6 p 6∞. Then a linear map T : Lp(VN(G, σ))→ Lp(VN(G, σ)) is a (completely)
bounded Fourier multiplier on Lp(VN(G, σ)) if T is (completely) bounded (and normal if p =∞)
and if there exists a complex function ϕ : G→ C such that T

(
λσ,s

)
= ϕsλσ,s for any s ∈ G. In

this case, we denote T by

Mϕ : Lp(VN(G, σ)) −→ Lp(VN(G, σ))
λσ,s 7−→ ϕsλσ,s.

We denote by Mp(G, σ) the space of bounded Fourier multipliers on Lp(VN(G, σ)) and by
Mp,cb(G, σ) the space of completely bounded Fourier multipliers on Lp(VN(G, σ)).

More generally, if I is a set, we denote by Mp,cb
I (G, σ) the space of (normal if p = ∞)

completely bounded operators Φ: Lp(B(`2I)⊗VN(G, σ))→ Lp(B(`2I)⊗VN(G, σ)) such that Φ =
[Mϕij ]i,j∈I for some functions ϕij : G → C. For a (normal if p = ∞ bounded operator Φ, this
is equivalent to the existence of a family of functions (ϕij : G→ C)i,j∈I such that

(4.6) (Tr ⊗τG,σ)
(
T (eij ⊗ λσ,s)(ekl ⊗ λσ,t)∗

)
= ϕij(s)δs,tδi,kδj,l

for any s, t ∈ G and any i, j, k, l ∈ I.
If σ is a T-valued 2-cocycle on a discrete group G and if H is a subgroup of G, we denote

by σ|H : H ×H → T the restriction of σ to H ×H. It follows from [155, Subsection 4.26] that
there is a canonical normal unital ∗-monomorphism J of VN(H,σ|H) into VN(G, σ) sending
λσ|H,s to λσ,s for each s ∈ H which is trace preserving. Its Lp-extension Jp : Lp(VN(H,σ|H))→
Lp(VN(G, σ)), λσ|H,s 7→ λσ,s is a complete contraction for 1 6 p 6∞.

Moreover, it is easy to see for 1 6 p 6 ∞ that the adjoint of Jp∗ (preadjoint if p = 1)
is given by (Jp∗)∗ : Lp(VN(G, σ)) → Lp(VN(H,σ|H)), λσ,s 7→ δs∈Hλσ|H,s, which is again a
complete contraction. Thus, for an element

T = [Mϕij ]i,j∈I : SpI (Lp(VN(H,σ|H)))→ SpI (Lp(VN(H,σ|H)))

of Mp,cb
I (H,σ|H), we can consider the completely bounded map

S = (IdSp
I
⊗ Jp)T (IdSp

I
⊗ (Jp∗)∗) : SpI (Lp(VN(G, σ)))→ SpI (Lp(VN(G, σ))).

We clearly have ‖S‖cb 6 ‖T‖cb and using (Jp∗)∗Jp = IdLp(VN(H,σ|H)), we also have ‖T‖cb 6

‖S‖cb. Thus we can identify isometricallyMp,cb
I (H,σ|H) as a subspace of CB(Lp(B(`2I)⊗VN(G, σ)))

by identifying [Mϕij ]i,j∈I to [Mϕ̃ij ]i,j∈I where ϕ̃ : G → C denotes the extension of ϕ : H → C
on G which is zero off H.

4.2 Complementation for Schur multipliers and Fourier multipliers on
discrete groups

The following proposition generalizes an average trick of Haagerup [67, proof of Lemma 2.5]26.
The important point of the proof (for 1 6 p 6 ∞) is the fact that the map ∆ below is trace
preserving. The trace is not preserved for any non-discrete locally compact group G.

Theorem 4.2 Let I be an index set equipped with the counting measure. Let G be a discrete
group equipped with two normalized T-valued 2-cocycles σ, ω and H be a subgroup of G. Suppose

26. We warn the reader that the assumption “normal” is lacking in [67, Lemma 2.5] for maps defined on M(Γ).
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1 6 p 6 ∞. Let T : SpI (Lp(VN(G, σ))) → SpI (Lp(VN(G, σ))) be a completely bounded operator.
For any i, j ∈ I, we define the complex function ϕij : H → C by

ϕij(s) = (Tr ⊗τG,σ)
(
T (eij ⊗ λσ,s)(eij ⊗ λσ,s)∗

)
, s ∈ H

(and ϕij(s) = 0 if s ∈ G\H). Then the map

P pI,H : CB(SpI (Lp(VN(G, σ)))) −→ CB(SpI (Lp(VN(G, σ))))
T 7−→ [Mϕij ]

is a well-defined contractive projection onto Mp,cb
I (H,σ|H). There are the following additional

properties of P pI,H .

1. For p =∞, the same assertions are true by replacing CB(SpI (Lp(VN(G, σ)))) by the space
CBw∗(B(`2I)⊗VN(G, σ)).

2. If T is completely positive then the map P pI,H(T ) is completely positive.

3. For any values p, q ∈ [1,∞] and any T ∈ CB(SpI (Lp(VN(G, σ))))∩CB(SqI (Lq(VN(G, σ))))
we have (P pI,H(T ))([xij ]) = (P qI,H(T ))([xij ]) for any element [xij ] of SpI (Lp(VN(G, σ))) ∩
SqI (Lq(VN(G, σ))). So the mappings P pI,H , 1 6 p 6∞, are compatible.

4. Furthermore, if p =∞ and if T is selfadjoint then P∞I,H(T ) is selfadjoint. If T = [Tij ] is a
normal operator where Tij : VN(G, σ)→ VN(G, σ) and if each Tii is unital then P∞I,H(T )
is unital.

5. Finally, the identity map P pI,H |Mp,cb
I

(H,σ|H) yields an isometry

Mp,cb
I (H,σ|H) = Mp,cb

I (H,σ · ω|H).

Proof : Using the map (4.5), it is easy to see that we can define a well-defined unital normal
∗-isomorphism

∆: MI(VN(H,σ · ω|H))→ MI(VN(G, σ))⊗MI(VN(G,ω))

onto the sub von Neumann algebra ∆
(
MI(VN(H,σ · ω|H))

)
of MI(VN(G, σ))⊗MI(VN(G,ω))

such that
∆(eij ⊗ λσ·ω|H,s) = eij ⊗ λσ,s ⊗ eij ⊗ λω,s, s ∈ H.

Using the flip MI⊗VN(G, σ)⊗MI⊗VN(G,ω)→ MI⊗MI⊗VN(G, σ)⊗VN(G,ω), x⊗y⊗z⊗ t 7→
x ⊗ z ⊗ y ⊗ t, it is not difficult to check that the operator ∆ preserves the traces. Con-
sequently ∆ is a Markov map in the sense of Section 2.6 and admits a canonical extension
∆p : SpI (Lp(VN(H,σ · ω|H))) → Lp(B(`2I)⊗VN(G, σ)⊗B(`2I)⊗VN(G,ω)) which is completely
contractive and completely positive (and normal if p =∞).

Suppose that T : SpI (Lp(VN(G, σ)))→ SpI (Lp(VN(G, σ))) is a completely bounded operator.
The operator

P pI,H(T ) = (∆∗)p
(
T ⊗ IdSp

I
(Lp(VN(G,ω)))

)
∆p

is a completely bounded map on the space SpI (Lp(VN(H,σ ·ω|H))). Note that if T is completely
positive then P pI,H(T ) is also a completely positive map. Moreover, we have∥∥P pI,H(T )

∥∥
cb,Sp

I
(Lp(VN(H,σ·ω|H)))→Sp

I
(Lp(VN(H,σ·ω|H))) 6

∥∥(∆∗)p
(
T ⊗ IdSp

I
(Lp(VN(G,ω)))

)
∆p

∥∥
cb

6 ‖T‖cb,Sp
I

(Lp(VN(G,σ)))→Sp
I

(Lp(VN(G,σ))) .

48



Thus P pI,H is contractive. For any i, j, k, l ∈ I and any s, s′ ∈ H, we have

(Tr ⊗τH,σ·ω|H)
((

(∆∗)p
(
T ⊗ IdSp

I
(Lp(VN(G,ω)))

)
∆p(eij ⊗ λσ·ω|H,s)

)
(ekl ⊗ λσ·ω|H,s′)∗

)
= (Tr ⊗τH,σ·ω|H)

(
(∆∗)p

(
T ⊗ IdSp

I
(Lp(VN(G,ω)))

)
(eij ⊗ λσ,s ⊗ eij ⊗ λω,s)(e∗kl ⊗ λ∗σ·ω|H,s′)

)
= (Tr ⊗τH,σ·ω|H)

((
(∆∗)p

(
T (eij ⊗ λσ,s)⊗ eij ⊗ λω,s

))(
elk ⊗ (σ · ω)(s′, s′−1)λσ·ω|H,s′−1

)
= (σ · ω)(s′, s′−1)(Tr ⊗τG,σ ⊗ Tr ⊗τG,ω)

((
T (eij ⊗ λσ,s)⊗ eij ⊗ λω,s

)
∆p∗

(
elk ⊗ λσ·ω|H,s′−1

))
= (σ · ω)(s′, s′−1)(Tr ⊗τG,σ ⊗ Tr ⊗τG,ω)

(
(T (eij ⊗ λσ,s)⊗ eij ⊗ λω,s)(elk ⊗ λσ,s′−1 ⊗ elk ⊗ λω,s′−1)

)
= (σ · ω)(s′, s′−1)(Tr ⊗τG,σ)

(
T (eij ⊗ λσ,s)(elk ⊗ λσ,s′−1)

)
(Tr ⊗τG,ω)

(
eijelk ⊗ λω,sλω,s′−1

)
= (σ · ω)(s′, s′−1)ω(s′, s′−1)(Tr ⊗τG,σ)

(
T (eij ⊗ λσ,s)(elk ⊗ λσ,s′−1)

)
δi,kδj,lδs,s′

= (Tr ⊗τG,σ)
(
T (eij ⊗ λσ,s)(elk ⊗ σ(s′, s′−1)λσ,s′−1)

)
δi,kδj,lδs,s′

= (Tr ⊗τG,σ)
(
T (eij ⊗ λσ,s)(ekl ⊗ λσ,s′)∗

)
δi,kδj,lδs,s′ .

Hence according to (4.6), P pI,H(T ) is the operator [Mϕij ]. Moreover, according to the dis-
cussion at the end of Subsection 4.1, if we choose ω = 1, then P pI,H(T ) ∈ Mp,cb

I (H,σ|H) ⊂
CB(SpI (Lp(VN(G, σ)))). If T = [Mψij ] right from the beginning, for some symbols ψij : G→ C
vanishing off H, then for s ∈ H

ϕij(s) = (Tr ⊗τG,σ)
(
T (eij ⊗ λσ,s)(eij ⊗ λσ,s)∗

)
= ψij(s)(Tr ⊗τG,σ)

(
(eij ⊗ λσ,s)(eij ⊗ λσ,s)∗

)
= ψij(s)τG,σ(λσ,sλ∗σ,s) = ψij(s)σ(s, s−1)τG,σ(λσ,sλσ,s−1)

= ψij(s)σ(s, s−1)σ(s, s−1)δs,s = ψij(s).

Thus, in this case P pI,H(T ) = T , so that P pI,H is indeed a projection onto Mp,cb
I (H,σ|H). For

a general ω, since the definition of ϕij does not depend on ω, we have that Mp,cb
I (H,σ|H) =

Mp,cb
I (H,σ · ω|H) isometrically.
The statement about the compatibility of P pI,H for different values of p ∈ [1,∞] follows

directly from the defining formula of P pI,H and the fact that (∆∗)p,∆p and IdSp
I

(Lp(VN(G,σ))) are
all compatible for two different values of p.

Suppose p = ∞. If T : MI(VN(G, σ)) → MI(VN(G, σ)) is selfadjoint then for any s ∈ H
and any i, j ∈ I we have

ϕij(s) = (Tr ⊗τG,σ)
(
T (eij ⊗ λσ,s)(eij ⊗ λσ,s)∗

)
= (Tr ⊗τG,σ)

(
eij ⊗ λσ,s(T (eij ⊗ λσ,s))∗

)
= ϕij(s).

It is not difficult to conclude that P∞I,H(T ) is selfadjoint.
Suppose that T = [Tij ] is a matrix of operators such that each Tii is unital, i.e. T (eii⊗λe) =

eiiλe. We have

ϕii(e) = (Tr ⊗τG,σ)
(
T (eii ⊗ λσ,e)(eii ⊗ λσ,e)∗

)
= (Tr ⊗τG,σ)

(
(eii ⊗ λσ,e)(eii ⊗ λσ,e)∗

)
= 1.

We conclude that P∞I,H(T ) is unital.

Remark 4.3 This result admits a generalization for unimodular discrete quantum groups. We
warn the reader that the formula given in [39, Remark 7.6] for unimodular locally compact
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quantum groups does not make sense27 already in the case of the locally compact group R of
real numbers.

The case G = H = {e} gives the following complementation for the space of completely
bounded Schur multipliers. Compare to [8, Proposition 2.6].

Corollary 4.4 Suppose that I is equipped with the counting measure. Let T : SpI → SpI be a
completely bounded operator. We define the matrix ϕ by

(4.7) ϕij = Tr
(
T (eij)e∗ij

)
, i, j ∈ I.

Then the map P pI : CB(SpI )→ CB(SpI ), T 7→Mϕ is a well-defined contractive projection onto the
subspace Mp,cb

I of completely bounded Schur multipliers. Moreover, if T is completely positive
then the Schur multiplier P pI (T ) is completely positive. For p =∞ the same assertions are true
by replacing CB(SpI ) by the space CBw∗(B(`2I)).

The case where I contains one element and where G = H shows that the complete positivity
of a multiplier is independent from the T-valued 2-cocycle σ.

Corollary 4.5 Let G be a discrete group. Let σ be a T-valued 2-cocycle on G. Suppose
1 6 p 6 ∞. Then a complex function ϕ : G → C induces a completely positive multiplier
Mϕ : Lp(VN(G, σ)) → Lp(VN(G, σ)) if and only if ϕ induces a completely positive multiplier
Mϕ : Lp(VN(G))→ Lp(VN(G)).

We also see that if ϕ : G→ C is a function then ϕ induces a completely bounded multiplier
Mϕ : Lp(VN(G, σ)) → Lp(VN(G, σ)) if and only if ϕ induces a completely bounded multiplier
Mϕ : Lp(VN(G))→ Lp(VN(G)). In this case, we have the equality

(4.8) ‖Mϕ‖cb,Lp(VN(G,σ))→Lp(VN(G,σ)) = ‖Mϕ‖cb,Lp(VN(G))→Lp(VN(G)) .

Note that [13, Proposition 4.3] gives a proof of this equality for p =∞.
The case where I contains one element and where σ = ω = 1 gives the following.

Corollary 4.6 Let G be a discrete group and H be a subgroup of G. Suppose 1 6 p < ∞.
Let T : Lp(VN(G)) → Lp(VN(G)) be a completely bounded operator. We define the complex
function ϕ : H → C by

ϕ(s) = τG
(
T (λs)(λs)∗

)
, s ∈ H.

Then the map P pH : CB(Lp(VN(G)))→ CB(Lp(VN(G))), T 7→Mϕ is a well-defined contractive
projection onto the subspace Mp,cb(H) (identified as a subspace of CB(Lp(VN(G)))). Moreover,
if T is completely positive then the map P pH(T ) is completely positive. For p = ∞ the same
assertions are true by replacing CB(Lp(VN(G))) by the space CBw∗(VN(G)).

27. With the notations of [39, Remark 7.6], if we identify L∞(Ĝ) with L∞(R), and x with a function f , we
obtain L(f) =

∫
R[Φ(ft)

]
−t

dµR(t) where Φ: L∞(R)→ L∞(R) and where we use translations by t and −t. This
integral is meaningless. We would like to thank Adam Skalski for his confirmation of this problem by email on
his own initiative.
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4.3 Description of the decomposable norm of multipliers
The following theorem is our first result describing decomposable multipliers on noncommutative
Lp-spaces.

Theorem 4.7 Let G be a discrete group equipped with a normalized T-valued 2-cocycle σ.
Suppose 1 6 p 6∞. Then a function φ : G→ C induces a decomposable Fourier multiplier on
Lp(VN(G, σ)) if and only if it induces a decomposable Fourier multiplier on VN(G).

Proof : ⇒: Let Mφ : Lp(VN(G, σ))→ Lp(VN(G, σ)) be a decomposable Fourier multiplier. By
Proposition 3.12, we can write Mφ = T1−T2 +i(T3−T4) where each Tj is a completely positive
map on Lp(VN(G, σ)). Using the projection P pG of Theorem 4.2 with G = H, I = {0} and
ω = 1, we obtain that

Mφ = P pG(Mφ) = P pG
(
T1 − T2 + i(T3 − T4)

)
= P pG(T1)− P pG(T2) + i

(
P pG(T3)− P pG(T4)

)
and that each P pG(Tj) = Mφj is a completely positive Fourier multiplier on Lp(VN(G, σ)). By
Corollary 4.5, each φj also induces a completely positive Fourier multiplier on Lp(VN(G)). By
the proof of [41, Proposition 4.2], we see that the (continuous) function φj is28 positive definite.
Hence it induces a completely positive Fourier multiplier on VN(G) again by [41, Proposition
4.2]. We conclude that φ induces a decomposable Fourier multiplier on VN(G).
⇐: Let Mφ : VN(G)→ VN(G) be a decomposable Fourier multiplier. Similarly, with Theo-

rem 4.2, we can write Mφ = Mφ1 −Mφ2 + i(Mφ3 −Mφ4) where each Mφj : VN(G)→ VN(G) is
completely positive. By [76, page 216]29, each Fourier multiplier φj induces a completely posi-
tive30 multiplier on Lp(VN(G)) and also on Lp(VN(G, σ)) by Corollary 4.5. Using Proposition
3.12, we conclude that φ induces a decomposable Fourier multiplier on Lp(VN(G, σ)).

The following is essentially [151, Section 1.17.1 Theorem 1], see also [119, page 58].

Lemma 4.8 Let (E0, E1) be an interpolation couple and let C be a complemented subspace of
E0 +E1. We assume that the corresponding bounded projection P : E0 +E1 → E0 +E1 satisfies
P (Ei) ⊂ Ei and that the restriction P : Ei → Ei is bounded for i = 0, 1. Then (E0 ∩C,E1 ∩C)
is an interpolation couple and the canonical inclusion J : C → E0 +E1 induces an isomorphim
J̃ from (E0 ∩ C,E1 ∩ C)θ onto the subspace P ((E0, E1)θ) = (E0, E1)θ ∩ C of (E0, E1)θ. More
precisely, if x ∈ (E0 ∩ C,E1 ∩ C)θ, we have∥∥J̃(x)

∥∥
(E0,E1)θ 6 ‖x‖(E0∩C,E1∩C)θ 6 max

{
‖P‖E0→E0

, ‖P‖E1→E1

}∥∥J̃(x)
∥∥

(E0,E1)θ .

In particular, if max{‖P‖E0→E0
, ‖P‖E1→E1

} = 1 then J̃ is an isometry.

Let (E0, E1) be an interpolation couple. If T0 : E0 → E0, T1 : E1 → E1 are (completely)
bounded maps such that T0 and T1 agree on E0∩E1, then we say that T0 and T1 are compatible.
In this case, it is elementary and well-known that there exists a unique (completely) bounded
map T0+T1 : E0+E1 → E0+E1 which extends T0 and T1 and we have ‖T0 + T1‖E0+E1→E0+E1

6
max{‖T0‖E0→E0

, ‖T1‖E1→E1
} and similarly for the completely bounded norms. Moreover, if

T0 and T1 are projections onto F0 and F1 then T0 + T1 is a projection onto F0 + F1.
It allows us to deduce the following description of decomposable Fourier multipliers on

amenable groups.
28. Here we use the inclusion VN(G) ⊂ Lp(VN(G)) and the realization of Lp(VN(G)) as a subspace of measurable
operators. See also Proposition 6.11 which is a more general result.
29. See also Lemma 6.6 which is a generalization.
30. We use here the fact, left to the reader, that if T : M → N is a completely positive map which induces a
bounded map Tp : Lp(M)→ Lp(N) then Tp is also completely positive.
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Let G be a discrete group. Recall that the group von Neumann algebra VN(G) is approxi-
mately finite-dimensional if and only if G is amenable, see [137, Theorem 3.8.2]. Using Corollary
4.6 with H = G, we obtain the following result.

Theorem 4.9 Let G be an amenable discrete group. Suppose 1 6 p 6 ∞. Then a function
φ : G → C induces a decomposable Fourier multiplier Mφ : Lp(VN(G)) → Lp(VN(G)) if and
only if it induces a (completely) bounded Fourier multiplier Mφ : VN(G) → VN(G). In this
case, we have the isometric identity

‖Mφ‖dec,Lp(VN(G))→Lp(VN(G)) = ‖Mφ‖cb,VN(G)→VN(G) = ‖Mφ‖VN(G)→VN(G) .

Proof : By [41, Corollary 1.8], since G is amenable, we have M∞(G) = M∞,cb(G) isometrically.
The first part is Theorem 4.7 using [65, Theorem 2.1] (which says that the decomposable norm
and the completely bounded norm coincide for operators on approximately finite-dimensional
von Neumann algebras). By [76], we have M∞(G) = M1(G) isometrically. Now, we use Lemma
4.8 with the interpolation couple (3.4) and with C = M∞(G) and we also use the projection
Corollary 4.6 with H = G. Note that we have isometrically(

CBw∗(VN(G)) ∩M∞(G),CB(L1(VN(G))) ∩M∞(G)
) 1
p =

(
M∞(G),M∞(G)

) 1
p = M∞(G).

We infer that the space Reg(Lp(VN(G))) ∩M∞(G) = (CBw∗(VN(G)),CB(L1(VN(G))))
1
p ∩

M∞(G) equipped with the regular norm ‖·‖reg,Lp(VN(G))→Lp(VN(G)) is isometric to the space
M∞,cb(G). We finally employ Theorem 3.24 to pass isometrically from regular operators to
decomposable operators.

Similarly, we obtain the following description of decomposable Schur multipliers with the
projection of Corollary 4.4.

Theorem 4.10 Suppose 1 6 p 6 ∞. Then a function φ : I × I → C induces a decomposable
Schur multiplier on SpI if and only if it induces a (completely) bounded Schur multiplier on
B(`2I). In this case, we have the isometric identity

‖Mφ‖dec,Sp
I
→Sp

I
= ‖Mφ‖reg,Sp

I
→Sp

I
= ‖Mφ‖cb,B(`2

I
)→B(`2

I
) = ‖Mφ‖B(`2

I
)→B(`2

I
) .

5 Approximation by discrete groups
The complementation Theorem 4.2 from Section 4 is stated only for discrete groups G. In order
to exhibit a suitable class of admissible non-discrete locally compact groups, approximations
by discrete subgroups of G become important. In this section, we introduce and study several
notions of approximation which are of independent interest, but which will be important in the
subsequent Section 6.

5.1 Preliminaries
Chabauty-Fell topology. For a topological space Y , let F (Y ) denote the set of closed
subsets of Y . For a compact subset K and an open subset U of Y , set31

OK = {F ∈ F (Y ) : F ∩K = ∅} and O′U = {F ∈ F (Y ) : F ∩ U 6= ∅}.

31. Note that OK1 ∩ · · · ∩ OKm = OK1∪···∪Km .
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The finite intersections OK1 ∩ · · · ∩ OKm ∩ O′U1
∩ · · · ∩ O′Un constitute a basis of a topology

on F (Y ), called the Chabauty-Fell topology, introduced in [59, page 472] under the name of
H-topology. By [59, Theorem 1], if Y is locally compact then F (Y ) is a (Hausdorff) compact
space. See also [15] and [77] for more information.

Geometric convergence. The Chabauty-Fell topology is related to the geometric conver-
gence of Thurston. By [15, Proposition E.1.2], if Y is a locally compact metrizable space then
a sequence (Fn) of closed subsets of Y converges to an element F of F (Y ) if and only if the
two following conditions are satisfied:

• Let (Fnk) be a subsequence of (Fn) and let xk ∈ Fnk such that the sequence (xk) converges
in Y to some x in Y . Then we have x ∈ F .

• Any point in F is the limit in Y of a sequence (xn) with xn ∈ Fn for each n.

Spaces of closed subgroups. By [59, IV page 474] (see also [24, Chapitre VIII, §5, no. 3,
Théorème 1]), if Y = G is a locally compact group, the space C (G) of closed subgroups of
G equipped with the induced topology is closed in F (G), hence compact. Moreover, in this
case, it is folklore but not entirely obvious that a basis of neighborhoods of a closed subgroup
H ∈ C (G) is given by the sets

(5.1) NK
U (H) =

{
H ′ ∈ C (G) : H ′ ∩K ⊂ HU and H ∩K ⊂ H ′U

}
whereK runs over the compact subsets of G and U runs over the neighborhoods of eG. In words,
H ′ is very close to H if, on a large compact set K, the elements of H ′ belong uniformly to a
small neighborhood of H, and conversely. In this specific case, the convergence of a sequence
was introduced by Chabauty [32, page 147] to generalize Mahler’s well-known compactness
criterion to lattices in locally compact groups. The following is folklore.

Proposition 5.1 Let G be a locally compact group. The sets NK
U (H) generate the neighborhood

filter of H in the Chabauty-Fell topology.

Lattices and fundamental domains. A lattice Γ in a locally compact group G is a discrete
subgroup for which G/Γ has a bounded G-invariant Borel measure [14, Definition B.2.1 page
332]. A locally compact G that admits a lattice is necessarily unimodular [14, Proposition B.2.2
page 332]. The same reference says that if Γ is a cocompact32 (i.e. G/Γ is compact) discrete
subgroup of a locally compact group G then Γ is a lattice of G.

Let Γ be a discrete group of a locally compact group G. If A is a subset of G and γ ∈ Γ,
then the set Aγ is called an image of A. A fundamental domain X relative to Γ is a Borel
measurable subset of G satisfying the following two properties:

XΓ = G,(5.2)
Xγ ∩Xγ′ = ∅ for any distinct elements γ, γ′ of Γ.(5.3)

These properties say that every element x ∈ G is covered by one and only one image of X.
These conditions are equivalent to the following statement: X is a Borel measurable subset of
G such that the restriction of the canonical mapping G→ G/Γ of G onto left cosets, restricted
to X, becomes a bijection onto G/Γ. We obtain a set X with these two properties, if we select
a representative s from every left coset sΓ of Γ relative to G. However, in general, such a set X

32. The word uniform is also used.
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is not a Borel set. If G is σ-compact the result [14, Proposition B.2.4 page 333] (see also [134,
Lemma 2]) gives the existence of a fundamental domain for any discrete subgroup Γ and if in
addition Γ is a lattice in G then every fundamental domain for Γ has finite Haar measure [14,
Proposition B.2.4 page 333].

5.2 Different notions of groups approximable by discrete groups
Recall that a locally compact group G is approximable by a sequence (Γj) of discrete sub-
groups [101, Definition 1] [150, page 36] if for any non-empty open set O of G, there exists
an integer j0 such that for any j > j0 we have O ∩ Γj 6= ∅. We say that a locally compact
group G is approximable by discrete subgroups (ADS) if G is approximable by some sequence
(Γj) of discrete subgroups. It is obvious that a second countable locally compact group G is
approximable by a sequence (Γj) of discrete subgroups if and only if (Γj) converges to G for
the Chabauty-Fell topology. Using the definition of the geometric convergence we obtain the
following characterization.

Proposition 5.2 Let G be second countable locally compact group. Let (Γj) be a sequence of
discrete subgroups of G. The following are equivalent.

1. The group G is approximable by the sequence (Γj).

2. Any s ∈ G is the limit in G of a sequence (γj) with γj ∈ Γj for any integer j.

Moreover, note that a connected ADS locally compact group G is necessarily nilpotent (see
[75, Theorem 2.18]) and that a connected simply connected Lie group is ADS if and only if G
is nilpotent and if it admits a discrete cocompact subgroup ([73, Theorem 1.6, 1.7 and 1.9].
We refer to [73] [74] [75] [101] [150] and [152] for more information on this notion. Now, we
introduce different notions of approximation by discrete groups. These will be used in Section
6.

Definition 5.3 Let G be a second countable locally compact group.

1. The group G is said to be approximable by lattice subgroups (ALS) if there exists a sequence
(Γj) of lattices in G such that (Γj) converges to G for the Chabauty-Fell topology.

2. The group G is said to be (right) uniformly approximable by a sequence (Γj) of discrete
subgroups if there exists a right invariant metric dist such that for any ε > 0, there exists
an integer j0 such that for all j > j0 and all s ∈ G there exists γj ∈ Γj such that
dist(s, γj) < ε. The group G is said to be uniformly ADS if G is uniformly approximable
by a sequence (Γj) of discrete subgroups. We also define the notion “uniformly ALS”
where “discrete groups” is replaced by “lattice subgroups”.

3. The group G is said to be approximable by shrinking by a sequence (Γj) of lattice subgroups
with associated fundamental domains (Xj) if for any neighborhood V of the identity eG
(equivalently, for any ball V = B(eG, ε) with ε > 0, associated with a right invariant
metric generating the topology of G) there exists some integer j0 such that Xj ⊂ V for
any j > j0. The group G is said to be approximable by lattice subgroups by shrinking
(ALSS) if there exists a sequence (Γj)j>1 of lattice subgroups in G and some associated
fundamental domains (Xj) such that G is approximable by shrinking by (Γj) and (Xj).
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Remark 5.4 1. If we assume in Part 3 of Definition 5.3 that the subgroups Γj are only
discrete subgroups instead of being lattices, we obtain the same definition. Indeed, for
any sufficiently small ε > 0 and any sufficiently large j, we have Xj ⊂ B(eG, ε) where
B(eG, ε) is relatively compact according to the local compactness of G. Thus the closure
Xj is compact. The canonical mapping π : G → G/Γj being continuous, π(Xj) is also
compact. But since Xj is a fundamental domain, we have π(Xj) = G/Γj and a fortiori
π(Xj) = G/Γj . Therefore, G/Γj is compact, and so by [14, Proposition B.2.2], the discrete
subgroup Γj is automatically a lattice.

2. We shall see in Part 3 of Proposition 5.9 that a second countable locally compact group
which is uniformly ADS with respect to a sequence (Γj) of discrete subgroups admits
fundamental domains which are almost all included in small balls. Therefore, combined
with the first part of this remark, we deduce that ifG is uniformly ADS thenG is uniformly
ALS.

3. Part 3 of Definition 5.3 is inspired by the notion ADS from [31, page 3]. It is formally
slightly weaker since we assume that the Xj are becoming smaller and smaller around eG
instead of forming a neighborhood basis of eG as in [31]. Moreover, the authors of [31]
use only lattice subgroups. However, we shall see in Part 3 of Proposition 5.9 that our
notion of ALSS is equivalent to ADS from [31, page 3].

4. It is obvious that the property uniformly ADS implies the property ADS, that uniformly
ALS implies ALS and that ALS implies ADS.

Recall that any locally compact group G which contains a lattice subgroup Γ is unimodular
[14, Proposition B.2.2] and that the subset of unimodular closed subgroups of G is closed in
C (G) for the Chabauty topology, see [24, Chapitre VIII, §5, no. 3, Théorème 1].

We start with a result giving the existence of fundamental domains satisfying some inclusion
constraint. In this proposition and the subsequent lemma, we equip G with a left invariant
metric dist generating its topology and consider balls B(eG, r) = {s ∈ G : dist(s, eG) < r}.
Note however, that the statement in Proposition 5.5 remains valid if one replaces the distance
dist by a right invariant one dist′, generating the topology of G, together with balls B̃(eG, r) =
{s ∈ G : dist′(s, eG) < r}. Indeed, note that since both dist and dist′ generate the same
topology, if D contains a ball B̃(eG, r̃), it will contain a ball B(eG, r), so Ω will contain a ball
B(eG, r′) and thus also a ball B̃(eG, r′′).

Proposition 5.5 Let G be a second countable locally compact group together with a discrete
subgroup Γ ⊂ G. Let D ⊂ G be a measurable subset satisfying

⋃
γ∈ΓDγ = G. Then there exists

a fundamental domain X ⊂ D associated with Γ. Moreover, if D contains a ball B(eG, r) then
X contains a ball B(eG, r′).

Proof : Note first that since G is second countable, Γ endowed with the trace topology is
again second countable. Since Γ is discrete, this implies that Γ is at most countable, and we
choose one enumeration (γj) of Γ. According to [135, Exercice D.1 page 104], the canonical map
p : G→ G/Γ is a covering. By [135, Theorem 5 page 76], if U is some suitable neighborhood of
eΓ in G/Γ then there exists a continuous section q : U → G, that is, q(sΓ)Γ = sΓ for any element
sΓ of U . Using Zorn Lemma and [135, Theorem 5 page 76] again, it is not difficult33 to prove

33. Assume that V is a maximal measurable subset of G/Γ containing U and that σ : V → G is a measurable
section which extends q. Suppose that V is different from G/Γ. If r is an element in the complement of V we
can find a neighborhood W of r in G/Γ, and a continuous section η : W → G on W . Gluing the sections σ and
η|W∩(G/Γ−V ) we get a measurable extension of σ.
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that we can extend q to a measurable map q : G/Γ→ G. Replacing q by q̃ : sΓ 7→ q(sΓ)q(eΓ)−1,
we can assume that q(eΓ) = e. In this situation, the associated mapping

G/Γ× Γ→ G, (sΓ, γ) 7→ q(sΓ)γ

is bijective, and is, together with its inverse Y : G→ G/Γ×Γ, s 7→ (sΓ, (q(sΓ))−1s), measurable.
Moreover, consider the measurable map γ = proj2 ◦ Y : G→ Γ, s 7→ (q(sΓ))−1s.

Lemma 5.6 There exists some ρ > 0 such that γ(B(e, ρ)) ⊂ {e}.

Proof : Let dist be a left invariant metric on G generating its topology as a locally compact
group and distG/Γ the associated distance on G/Γ. Consider the strictly34 positive number
r0 = dist(Γ\{e}, e) > 0. Since B(e, r0) ∩ Γ = {e}, for any s ∈ G, the condition dist(γ(s), e) <
r0 implies that γ(s) = e. Now by definition of γ, we have dist(γ(s), e) < r0 if and only if
dist(q(sΓ)−1s, e) < r0 and finally if and only if dist(s, q(sΓ)) < r0. Since q is continuous in a
neighborhood of eΓ, there exists r1 > 0 such that distG/Γ(sΓ, eΓ) < r1 implies dist(q(sΓ), e) <
r0
2 . If dist(s, e) < min{r1,

r0
2 } we have distG/Γ(sΓ, eΓ) 6 dist(s, e) < r1, hence dist(e, q(sΓ)) <

r0
2 and thus the triangle inequality gives

dist
(
s, q(sΓ)

)
6 dist(s, e) + dist

(
e, q(sΓ)

)
<
r0

2 + r0

2 = r0.

The lemma is proved.
Define now A1 = {s ∈ D : γ(s) = γ1} = D ∩ γ−1({γ1}), which is measurable as the

intersection of two measurable sets. Assuming without loss of generality that γ1 = e, we have
that B(e, r′) ⊂ A1 for r′ = min(r, ρ) since B(e, r) ⊂ D. Define then recursively for k > 2, the
subsets

Ak =
{
s ∈ D : γ(s) = γk, 6 ∃ j ∈ {1, . . . , k − 1}, 6 ∃ l ∈ N : sγl ∈ Aj

}
= D ∩ γ−1({γk}) ∩

k−1⋂
j=1

⋂
l∈N

Acjγ
−1
l .

It can easily be shown recursively that Ak is measurable as the countable intersection of mea-
surable sets. Define finally X =

⋃∞
k=1Ak.

We claim that X is a (measurable) fundamental domain of Γ which is contained in D. First,
it is measurable as a countable union of measurable sets. Since by definition, we have Ak ⊂ D
for any integer k > 1, we also have X ⊂ D.

Lemma 5.7 For any γ ∈ Γ\{e}, we have Xγ ∩X = ∅.

Proof : Indeed, let s ∈ X, so that s ∈ Ak0 for some k0 ∈ N. This implies that γ(s) = γk0 .
Put t = sγ. Since γ 6= e, we cannot have γ(t) = γ(s), because otherwise Y (t) = (tΓ, γ(t)) =
(sΓ, γ(s)) = Y (s), and since Y is bijective, we obtain t = s, which is a contradiction. So
γ(t) = γk1 for some k1 6= k0.

If k1 > k0, then t cannot belong to Ak1 . Indeed, t ∈ Ak1 implies that we cannot find l ∈ N
such that tγl ∈ Ak0 since k0 < k1. This implies with γl = γ−1 that s = tγ−1 6∈ Ak0 , which is a
contradiction.

If k1 < k0, then t cannot belong to Ak1 either. Indeed, since s ∈ Ak0 , we cannot find l ∈ N
such that sγl ∈ Ak1 since k1 < k0. This implies with γl = γ that t = sγ 6∈ Ak1 . Thus t 6∈ X, so
we have Xγ ∩X = ∅.

34. The subset {e} is open in Γ, so Γ\{e} is closed.
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Lemma 5.8 We have

(5.4)
∞⋃
k=1

AkΓ =
{
s ∈ D : γ(s) ∈ {γ1, γ2, . . .}

}
Γ.

Proof : For the inclusion ⊂, we note that if s ∈ Ak for some k ∈ N, then in particular s ∈ D
and γ(s) = γk, so that sΓ is contained in the right hand side of (5.4). For the inclusion ⊃, if
s ∈ D and γ(s) = γk for some k ∈ N, then either s ∈ Ak, which implies that sΓ is contained in
the left hand side of (5.4) or there exists l ∈ N and j ∈ {1, . . . , k− 1} such that sγl ∈ Aj . Then
sΓ = sγlγ

−1
l Γ ⊂ AjΓ, so that it is also contained in the left hand side of (5.4). Whence, (5.4)

is shown.
The left hand side of (5.4) equals clearly XΓ, and the right hand side equals DΓ, since γ(s)

must belong to {γ1, γ2, . . .} for any s ∈ D. Since DΓ = G, we obtain XΓ = G, so that X is a
fundamental domain. Since B(e, r′) ⊂ A1, we also have B(e, r′) ⊂ X.

Proposition 5.9 Let G be a second countable locally compact group.

1. If the group G is ALSS with respect to (Γj) and (Xj) then G is uniformly ALS with respect
to (Γj).

2. Let G be an ADS group with respect to a sequence (Γj) of discrete subgroups. Suppose
that for some j0 ∈ N, some compact K ⊂ G and any j > j0 there exists a fundamental
domain Xj with respect to Γj such that Xj ⊂ K. Then the group G is uniformly ADS
with respect to (Γj). We have a similar property for ALS and uniformly ALS.

3. If the group G is uniformly ADS with respect to discrete subgroups (Γj) then G is ALSS
with respect to (Γj) and some particular sequence (Xj) of fundamental domains. Moreover,
the Xj can be chosen to be neighborhoods of eG if j is large enough. In particular, if G is
uniformly ALS then G is ALSS.

4. The group G is uniformly ADS if and only if it is uniformly ALS if and only if it is ALSS.

Proof : 1. First assume that G is ALSS with respect to a sequence of lattice subgroups (Γj)
with associated fundamental domains (Xj). Take a right invariant metric dist on G generating
its topology as a locally compact group. Fix ε > 0. By the ALSS property, there exists some
integer j0 such that the fundamental domains Xj are contained in B(e, ε) for any j > j0. For
any s ∈ G and any j, there exists x ∈ Xj and γ ∈ Γj such that s = xγ. For any j > j0, we
conclude that

dist(s, γ) = dist(xγ, γ) = dist(x, e) < ε.

Thus, the group G is uniformly ALS.
2. Let G be an ADS group with respect to a sequence (Γj) of discrete subgroups in G.

Suppose that for some j0 ∈ N, some compact K ⊂ G and any j > j0, there exists a fundamental
domain Xj with respect to Γj such that Xj ⊂ K. Fix a right invariant metric dist on G. The
compact subset K is totally bounded. Then for any ε > 0, there exist some s1, . . . , sN ∈ K
such that for j > j0,

Xj ⊂ K ⊂
N⋃
k=1

B

(
sk,

ε

2

)
.

Moreover, since G is ADS, for any 1 6 k 6 N , there exists some jk ∈ N such that for all i > jk
there is some γi ∈ Γi with dist(sk, γi) < ε

2 . Note that this implies that if x ∈ B(sk, ε2 ) we have

dist(x, γi) 6 dist(x, sk) + dist(sk, γi) <
ε

2 + ε

2 = ε.
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Thus, for jmax
def= max{j0, j1, . . . , jN}, any j > jmax, any x ∈ Xj and any i > jmax, there exists

some γi ∈ Γi such that dist(x, γi) < ε.
For an arbitrary s ∈ G and any j > jmax, we write s = xj γ̃j with xj ∈ Xj and γ̃j ∈ Γj and

we have (setting i = j above) dist(xj , γj) < ε for some γj ∈ Γj so also

dist(s, γj γ̃j) = dist(xγ̃j , γj γ̃j) = dist(x, γj) < ε.

Note that γj γ̃j belongs to Γj . Thus the group G is uniformly ADS. The proof of the second
property is identical.

3. Now assume that G is uniformly ADS with respect to a sequence (Γj) of discrete sub-
groups. We fix a right invariant metric dist of G which generates the topology of G and with
respect to which the uniformly ADS property holds. There exists δ > 0 such that any closed
ball of radius < δ is compact.

For any j, we introduce the Dirichlet cell

DΓj =
{
s ∈ G : dist(s, e) 6 dist(s, γ) for any γ ∈ Γj

}
.

We first show that for given ε > 0, there exists j0 ∈ N such that DΓj ⊂ B(e, ε) for j > j0.
Note that by the uniformly ADS property there exists a j0 ∈ N such that for all s ∈ G and any
j > j0 there exists γj ∈ Γj such that dist(s, γj) 6 ε

2 . If s ∈ B(e, ε)c and if j > j0 we obtain

dist(s, γj) 6
ε

2 < ε 6 dist(s, e).

Hence s does not belong to DΓj . We deduce that B(e, ε)c ⊂ Dc
Γj if j > j0. The claim is proved.

Now we prove that the Dirichlet cell DΓj satisfies
⋃
γ∈Γj DΓjγ = G if j is large enough. Let

s ∈ G. For any j, consider the positive real number

rj = inf
γ′∈Γj

dist(s, γ′).

There exists j1 such that for any j > j1 and any s ∈ G there exists γj ∈ Γj such that
dist(s, γj) < δ

3 , hence rj <
δ
3 .

Lemma 5.10 For any j > j1, there exists γ ∈ Γj such that dist(s, γ) 6 dist(s, γ′) for any
γ′ ∈ Γj.

Proof : If s ∈ Γj , it is obvious that the infimum is a minimum. Suppose s /∈ Γj . We have
rj > 0. We let K = B′(x, 2rj) ∩ Γj . This subset is nonempty and compact. If γ′ ∈ Γj\K we
have dist(x, γ′) > 2rj . We deduce that

rj = inf
γ′∈Γj

dist(s, γ′) = inf
γ′∈K

dist(s, γ′).

Finally, the map γ′ 7→ dist(s, γ′) is continuous on the compact K, hence attains its infimum on
K.

In particular, for any γ′′ ∈ Γj , using the right-invariance of the distance, we obtain

dist(sγ−1, e) = dist(s, γ) 6 dist(s, γ′′γ) = dist(sγ−1, γ′′).

Therefore, sγ−1 ∈ DΓj , that is s ∈ DΓjγ.
Moreover, DΓj =

⋂
γ∈Γj{s ∈ G : dist(s, e) 6 dist(s, γ)} is an intersection of closed sets, and

hence itself closed, hence measurable.
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Note that Γj\{e} is closed. Hence we have r′j = dist(e,Γj\{e}) > 0. Thus the ball B(e, r
′
j

2 )
is contained in DΓj . According to Proposition 5.5, there exists some fundamental domain
Xj ⊂ DΓj associated with Γj , which is a neighborhood of e ∈ G. Furthermore, if j > j0 we
have Xj ⊂ DΓj ⊂ B(e, ε). Hence we conclude that the group G is ALSS with respect to (Γj)
and (Xj). The proof of the second property is identical.

4. This statement is now obvious.

5.3 The case of second countable compactly generated locally com-
pact groups

The following uses a trick of the proof of [152, Lemma 5.7]. For the sake of completeness,
we give all the details. Recall that a topological group is compactly generated if it has a
compact generating set [78, Definition 5.12]. For example, a connected locally compact group
is compactly generated [42, Proposition 2.C.3 (2)].

Lemma 5.11 Let G be a compactly generated locally compact group and (Γi) a sequence of
subgroups of G which converges to G for the Chabauty-Fell topology. Then there exists a compact
subset K of G and i0 such that G = KΓi for any i > i0.

Proof : By the proof of [78, Theorem 5.13], there exists an open subset V of G containing
e with G =

⋃
n>1(V ∪ V −1)n such that V is compact. We let U = V ∪ V −1. The subset U

is open and contains e. Moreover, the set K = U = V ∪ V −1 = V ∪ V −1 is compact and we
have G =

⋃
n>1K

n. Since e belongs to U , we have UG = G. Moreover, by [78, Theorem 4.4],
the subset K3 is compact and included in UG. Using [78, Theorem 4.4] again, we deduce that
(Us)s∈G is an open covering of K3. By compactness there exist some elements s1, . . . , sm ∈ G
such that

K3 ⊂
m⋃
j=1

Usj .

Since (Γi) approximates the group G, there exists some i0 such that for any i > i0 we have
{s1, . . . , sm} ⊂ UΓi. For i > i0, we deduce that K3 ⊂ U2Γi ⊂ K2Γi. By induction35, we obtain
Kn ⊂ K2Γi for any n > 3. Moreover, we have K2 ⊂ K2Γi. For any i > i0, we deduce that

G\K ⊂
⋃
n>2

Kn ⊂ K2Γi.

Note that K ⊂ KΓi. Thus the compact K ∪K2 has the desired property.

Corollary 5.12 Let G be a compactly generated locally compact group and (Γi) a sequence of
discrete subgroups which converges to G for the Chabauty-Fell topology. For any large enough
i, the subgroup Γi is a cocompact lattice.

Proof : Use the above Lemma 5.11 and recall that a discrete subgroup Γ which is cocompact36
is a lattice.

Theorem 5.13 Let G be a second countable compactly generated locally compact group. The
following are equivalent.
35. If Kn ⊂ K2Γi for some n > 3 then we have Kn+1 = KKn ⊂ KK2Γi = K3Γi ⊂ K2ΓiΓi = K2Γi.
36. If G = KΓi for a compact K, then for the canonical and continuous q : G → G/Γi, we have q(K) = G/Γi,
so that G/Γi is compact.
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1. G is ADS.

2. G is ALS.

3. G is uniformly ALS.

4. G is ALSS.

Proof : The implications 2. ⇒ 1. and 3. ⇒ 2. are obvious. By Corollary 5.12, we have the
implication 1. ⇒ 2. By the part 3 of Proposition 5.9, the properties 3. and 4. are equivalent.

Suppose that G is ALS with respect to a sequence (Γj) of lattice subgroups in G. Then by
Lemma 5.11, there exists a compact subset K of G and i0 such that G = KΓi for any i > i0.
By Proposition 5.5, there exists37 a fundamental domain Xi for Γi in G such that Xi ⊂ K for
any i > i0. From part 2 of Proposition 5.9, we conclude that G is ALSS and thus 2. implies 3.

6 Decomposable Fourier multipliers on non-discrete lo-
cally compact groups

In this section, we start by giving general results on Fourier multipliers on noncommutative
Lp-spaces. After this, we construct our projections by approximation. Then we study (classes
of) examples, including direct and semi-direct products of groups, the semi-discrete Heisenberg
group, groups acting on trees and pro-discrete groups. We conclude by drawing the relevant
consequences for decomposable multipliers.

6.1 Generalities on Fourier multipliers on unimodular groups
Group von Neumann algebras of locally compact groups. Let G be a locally compact
group equipped with a fixed left invariant Haar measure µG. For a complex function g : G→ C,
we write λ(g) for the left convolution operator (in general unbounded) by g on L2(G). This
means that the domain of λ(g) consists of all f of L2(G) for which the integral (g ∗ f)(t) =∫
G
g(s)f(s−1t) dµG(s) exists for almost all t ∈ G and for which the resulting function g ∗ f

belongs to L2(G), and for such f , we let λ(g)f = g ∗ f . Finally, by [78, Corollary 20.14], each
g ∈ L1(G) induces a bounded operator λ(g) : L2(G)→ L2(G).

Let VN(G) be the von Neumann algebra generated by the set
{
λ(g) : g ∈ L1(G)

}
. It is

called the group von Neumann algebra of G and is equal to the von Neumann algebra generated
by the set {λs : s ∈ G} where

(6.1) λs :
{

L2(G) −→ L2(G)
f 7−→ (t 7→ f(s−1t))

is the left translation by s. Recall that for any g ∈ L1(G) we have λ(g) =
∫
G
g(s)λs dµG(s)

where the latter integral is understood in the weak operator sense38.

37. If G is a second countable locally compact group and if Γ is a cocompact lattice in G then there exists a
relatively compact fundamental domain X for Γ in G. This result [134, 8] of Siegel does not suffice here.
38. That means (see e.g. [61, Theorem 5 page 289]) that λ(g) : L2(G)→ L2(G) is the unique bounded operator
such that

〈λ(g)f, h〉L2(G) =
∫
G

g(s)〈λsf, h〉L2(G) dµG(s), f, h ∈ L2(G).
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Let H be a closed subgroup of G equipped with a fixed left Haar measure. The prescription
λH,s 7→ λG,s, s ∈ H (where λH,s denotes the left translation by h on L2(H) and λG,s the
corresponding left translation by h on L2(G)) extends to a normal injective ∗-homomorphism
from VN(H) to VN(G), see e.g. [40] and [46, Theorem 2 page 113].

We also use the notation λ(µ) : L2(G)→ L2(G) for the convolution operator by the measure
µ.

Plancherel weights. Let G be a locally compact group. A function g ∈ L2(G) is called left
bounded [64, Definition 2.1] if the convolution operator λ(g) induces a bounded operator on
L2(G). The Plancherel weight τG : VN(G)+ → [0,∞] is39 defined by the formula

τG(x) =
{
‖g‖2L2(G) if x 1

2 = λ(g) for some left bounded function g ∈ L2(G)
+∞ otherwise

.

By [64, Proposition 2.9] (see also [114, Theorem 7.2.7]), the canonical left ideal nτG =
{
x ∈

VN(G) : τG(x∗x) <∞
}
is given by

nτG =
{
λ(g) : g ∈ L2(G) is left bounded

}
.

Recall that m+
τG denotes the set

{
x ∈ VN(G)+ : τG(x) <∞

}
and that mτG is the complex linear

span of m+
τG which is a ∗-subalgebra of VN(G). By [64, Proposition 2.9] and [140, Proposition

page 280], we have

m+
τG =

{
λ(g) : g ∈ L2(G) continuous and left bounded, λ(g) > 0

}
.

By [64, page 125] or [114, Proposition 7.2.8], the Plancherel weight τG on VN(G) is tracial
if and only if G is unimodular, which means that the left Haar measure of G and the right Haar
measure of G coincide. Now, in the sequel, we suppose that the locally compact group G is
unimodular.

We will use the involution f∗(t) = f(t−1). By [100, Theorem 4], if f, g ∈ L2(G) are left
bounded then f ∗ g and f∗ are left bounded and we have

(6.2) λ(f)λ(g) = λ(f ∗ g) and λ(f)∗ = λ(f∗).

If f, g ∈ L2(G) it is well-known [24, Corollaire page 168 and (17) page 166] that the function
f ∗g is continuous and that we have (f ∗g)(eG) = (g∗f)(eG) =

∫
G
ǧf dµG where eG denotes the

identity element of G and where ǧ(s) def= g(s−1). By [141, (4) page 282], if f, g ∈ L2(G) are left
bounded, the operator λ(g)∗λ(f) belongs tomτG and we have the fundamental “noncommutative
Plancherel formula”

(6.3) τG
(
λ(g)∗λ(f)

)
= 〈g, f〉L2(G) which gives τG

(
λ(g)λ(f)

)
=
∫
G

ǧf dµG = (g ∗ f)(eG).

By (2.1), if we consider the subset Ce(G) = span
{
g∗ ∗ f : g, f ∈ L2(G) left bounded

}
of C(G),

we have

(6.4) mτG = λ
(
Ce(G)

)
and we can see τG as the functional that evaluates functions of Ce(G) at eG ∈ G. Although
the formula τG

(
λ(h)

)
= h(e) seems to make sense for every function h in Cc(G), we warn the

reader that it is not true40 in general that λ
(
Cc(G)

)
⊂ mτG contrary to what is unfortunately

too often written in the literature.
39. This is the natural weight associated with the left Hilbert algebra Cc(G).
40. In fact, suppose that G is compact. Since L2(G) ⊂ L1(G), any function of L2(G) is left bounded. Moreover,
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Averaging projections. If K is a compact subgroup of a locally compact group G equipped
with its normalized Haar measure µK , we can consider the element pK = λK(µK) of VN(K).
It is easy to see that it identifies to the element λG(µ0

K) of VN(G) where µ0
K is the canonical

extension of the measure µK on the locally compact space G. We say that it is the averaging
projection associated with K. The following lemma is folklore. For the sake of completeness,
we give a short proof.

Lemma 6.1 If K is a normal compact subgroup then the averaging projection pK associated
with K is a central projection in VN(G) and finally the map

(6.5) π : VN(G/K) −→ VN(G)pK
λsK 7−→ λspK

is a well-defined ∗-isomorphism.

Proof : For any s ∈ G, we have sK = Ks and consequently λsλ(µ0
K) = λ(δs ∗ µ0

K) = λ(µ0
K)λs.

Hence pK is central. For any s ∈ G, if sK = s′K, we have λspK = λsλ(µ0
K) = λ(δs ∗ µ0

K) =
λ(δs′ ∗ µ0

K) = λs′λ(µ0
K) = λs′pK . Hence π is well-defined. Other statements are obvious.

If K is in addition an open subgroup, the following allows us to consider maps on the
associated noncommutative Lp-spaces.

Lemma 6.2 Let K be a compact open normal subgroup of a unimodular locally compact group
G. We suppose that G is equipped with a Haar measure µG and that K is equipped with its
normalized Haar measure µK . We have pK = 1

µG(K)λ(1K) and the map µG(K)π : VN(G/K)→
VN(G)pK is trace preserving. Finally if 1 6 p 6∞, the ∗-isomorphism π induces a completely
bounded map from Lp(VN(G/K)) into Lp(VN(G)pK) of completely bounded norm less than

1
µG(K)

1
p
.

Proof : The subgroup K is open, so µG|K is a Haar measure on K and µK = 1
µG(K)µG|K . So

pK = λ
(
µ0
K

)
= λ

((
1

µG(K)µG|K
)0)

= 1
µG(K)λ

(
(µG|K)0) = 1

µG(K)λ(1KµG) = 1
µG(K)λ(1K).

Note that the group G/K is discrete by [78, Theorem 5.21] sinceK is open and that pK = pKp
∗
K .

For any s ∈ G, using Plancherel formula (6.3) in the second equality, we obtain

τG(π(λsK)) = τG(λspK) = τG(p∗KλspK) = 1
µG(K)2 τG(λ(1K)∗λsλ(1K))

= 1
µG(K)2 〈1K , 1sK〉L2(G) = 1

µG(K)1K(s) = 1
µG(K)τG/K(λsK).

The statements on induced maps by π on Lp(VN(G/K)) are now standard using interpolation.

the group G is unimodular so the map f 7→ f∗ is an anti-unitary operator on L2(G). We infer that L2(G)∗ =
L2(G) and consequently that

Ce(G) = span L2(G) ∗ L2(G).
As already noted, we always have Ce(G) ⊂ C(G). If in addition λ(C(G)) ⊂ λ(Ce(G)), we have C(G) = Cc(G) ⊂
Ce(G) (if f, g ∈ L1(G) and λ(f) = λ(g), it is easy to see that f = g almost everywhere), then we obtain
span L2(G) ∗ L2(G) = C(G). But this is true only if G is finite (see [79, 34.16, 34.40 (ii) and 37.4]).
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Noncommutative Lp-spaces of group von Neumann algebras. By (6.3), the linear
map L1(G) ∩ L2(G)→ L2(VN(G)), g 7→ λ(g) is an isometric map which can be extended to an
isometry between L2(G) and L2(VN(G)) using [139, Corollary 9.3].

We need a convenient dense subspace of Lp(VN(G)). If p = ∞, [46, Corollary 7 page 51]
says41 that λ(Cc(G)) is weak* dense in VN(G), so by Kaplansky’s density theorem, the ball of
λ(Cc(G)) is weak* dense in the ball of VN(G). Moreover, it is proved in [38, Proposition 4.7]
(see [58, Proposition 3.4] for the case p = 1) that λ(spanCc(G) ∗Cc(G)) is dense in Lp(VN(G))
in the case 1 6 p <∞.

Fourier multipliers on noncommutative Lp-spaces. Note that if φ ∈ L1
loc(G) is a locally

integrable function and if f ∈ Cc(G) then the product φf belongs to L1(G) and consequently
induces a bounded operator λ(φf) : L2(G) → L2(G). Recall that this operator is equal to the
weak integral

∫
G
φ(s)f(s)λs dµG(s). Finally, recall that L2

loc(G) ⊂ L1
loc(G).

Definition 6.3 Let G be a unimodular locally compact group. Suppose 1 6 p 6 ∞. Then we
say that a (weak* continuous if p = ∞) bounded operator T : Lp(VN(G)) → Lp(VN(G)) is a
(Lp) Fourier multiplier if there exists a locally 2-integrable function φ ∈ L2

loc(G) such that for
any f ∈ Cc(G) ∗ Cc(G) (f ∈ Cc(G) if p = ∞) the element

∫
G
φ(s)f(s)λs dµG(s) belongs to

Lp(VN(G)) and

(6.6) T

(∫
G

f(s)λs dµG(s)
)

=
∫
G

φ(s)f(s)λs dµG(s), i.e. T (λ(f)) = λ(φf).

In this case, we let T = Mφ.

Note that we take symbols in L2
loc(G) to use Plancherel formula (6.3) in the sequel. Moreover,

there exists42 at most one function φ (up to identity almost everywhere) such that T = Mφ and
we say that φ induces the bounded Fourier multiplier Mφ.

Then Mp(G) is defined to be the space of all bounded Lp Fourier multipliers and Mp,cb(G)
to be the subspace consisting of completely bounded Lp Fourier multipliers.

The following results generalize the alluded observations of [76] done for discrete groups.

Lemma 6.4 Let G be a unimodular locally compact group. Suppose 1 6 p 6 ∞. We have
the isometries Mp(G) → Mp∗(G), Mφ 7→ Mφ and Mp,cb(G) → Mp∗,cb(G), Mφ 7→ Mφ.
Moreover, the Banach adjoint (Mφ)∗ : Lp∗(VN(G)) → Lp∗(VN(G)) (preadjoint if p = ∞) of
Mφ : Lp(VN(G))→ Lp(VN(G)) identifies to the Fourier multiplier whose symbol is φ̌.

Proof : Let Mφ : Lp(VN(G) → Lp(VN(G)) be an element of Mp(G). For any f, g ∈ Cc(G) ∗
Cc(G) (f ∈ Cc(G) and g ∈ Cc(G) ∗ Cc(G) if p = ∞ and f ∈ Cc(G) ∗ Cc(G) and g ∈ Cc(G) if
p = 1), we have g, φf ∈ L1(G)∩L2(G) since φ ∈ L2

loc(G). Using Plancherel formula (6.3) in the
second and third equalities, we deduce that

τ
(
Mφ(λ(f))λ(g)

)
= τ

(
λ(φf)λ(g)

)
=
∫
G

φ̌f̌g dµG = τ
(
λ(f)λ

(
φ̌g
))

= τ
(
λ(f)Mφ̌

(
λ(g)

))
.

We conclude that the adjoint (Mφ)∗ : Lp∗(VN(G)) → Lp∗(VN(G)) (preadjoint if p = ∞) iden-
tifies to the multiplier Mφ̌. Thus the map Mφ 7→Mφ̌ provides an isometry Mp(G)→Mp∗(G).

On the other hand, note that the map κ : VN(G) → VN(G), λs 7→ λs−1 is a ∗-anti-
automorphism of VN(G) which preserves the trace. Hence it induces a complete isometric

41. Note that PM2(G) = VN(G).
42. Note that if f, g ∈ L1(G) and λ(f) = λ(g), it is easy to see that f = g almost everywhere.
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map κp∗ : Lp∗(VN(G))op → Lp∗(VN(G)). Now, if Mϕ belongs to Mp∗(G) note that the map
κop
p∗◦Mϕ◦κp∗ : Lp∗(VN(G))→ Lp∗(VN(G)) identifies to the multiplierMϕ̌. We conclude that the

map Mp∗(G)→Mp∗(G), Mϕ 7→Mϕ̌ is an isometry. We conclude by composition that the map
Mp(G) → Mp∗(G), Mφ 7→ Mφ is an isometry. To show the isometry Mp,cb(G) = Mp∗,cb(G),
we proceed in the same way using Lemma 2.3.

Lemma 6.5 Let G be a unimodular locally compact group. We have the following isometries

M2(G) = M2,cb(G) = L∞(G).

Proof : Suppose that φ ∈ L2
loc(G) induces a bounded Fourier multiplier. Using the Plancherel

isometry L2(VN(G)) ∼= L2(G), for any function f ∈ Cc(G) ∗ Cc(G), we obtain (since φf ∈
L1(G) ∩ L2(G)) that

∥∥Mφ(λ(f))
∥∥

L2(VN(G)) =
∥∥λ(φf)

∥∥
L2(VN(G)) = ‖φf‖L2(G). We deduce that

‖Mφ‖L2(VN(G))→L2(VN(G)) = sup
f∈Cc(G)∗Cc(G),‖f‖L2(G)61

‖φf‖L2(G) = ‖φ‖L∞(G) .

Conversely, if φ ∈ L∞(G) then for any f ∈ Cc(G) ∗ Cc(G) we have φf ∈ L1(G) ∩ L2(G)
and consequently λ(φf) ∈ L2(VN(G)). Moreover, we have

∥∥λ(φf)
∥∥

L2(VN(G)) = ‖φf‖L2(G) 6

‖φ‖L∞(G) ‖f‖L2(G). So φ induces a bounded Fourier multiplier on L2(VN(G)). This shows that
M2(G) = L∞(G).

Moreover, the operator space structure of L2(VN(G)) turns it into an operator Hilbert
space [119, page 139], so that the completely bounded mappings on L2(VN(G)) coincide with
the bounded ones by [119, page 127]. We conclude that M2,cb(G) = M2(G) = L∞(G).

Lemma 6.6 Let G be a unimodular locally compact group. Suppose 1 6 p 6 q 6 2. We have
the contractive inclusions M1(G) ⊂ Mp(G) ⊂ Mq(G) ⊂ M2(G) and M1,cb(G) ⊂ Mp,cb(G) ⊂
Mq,cb(G) ⊂M2,cb(G).

Proof : Note that the first inclusion is a particular case of the second inclusion. IfMφ belongs to
Mp(G) then by Lemma 6.4, it also belongs to Mp∗(G), consequently, by complex interpolation,
Mφ belongs to M2(G). Using again interpolation between 2 and p, we deduce that Mφ belongs
to Mq(G). The second chain is proved in the same manner.

Lemma 6.7 Let G be a unimodular locally compact group. Suppose 1 6 p 6∞. Let (Mφi) be
a bounded net of bounded Fourier multipliers on Lp(VN(G)) and suppose that φ is an element
of L∞(G) which induces a bounded Fourier multiplier on Lp(VN(G)) such that (φi) converges
to φ for the weak* topology of L∞(G). Then the net (Mφi) converges to Mφ in Mp(G) for the
weak operator topology of B(Lp(VN(G))) (for the point weak* topology if p =∞).

Proof : For any f, g ∈ Cc(G) ∗ Cc(G) (to adapt if p = ∞ or if p = 1), we have fǧ ∈ L1(G).
Using Plancherel formula (6.3) and the weak* convergence of (φi), we deduce that

τ
(
(Mφ −Mφi)(λ(f))λ(g)

)
= τ

(
λ((φ− φi)f)λ(g)

)
=
∫
G

(φ− φi)fǧ dµG

=
〈
φ− φi, f ǧ

〉
L∞(G),L1(G) −−→i 0.

By density, using a ε
4 -argument and the boundedness of the net, we conclude43 the proof.

43. More precisely, if X is a Banach space, if E1 is dense subset of X, if E2 is a dense subset of X∗ and if (Ti)
is a bounded net of B(X) with an element T of B(X) such that 〈Ti(x), x∗〉 −−−−−→

i→+∞
〈T (x), x∗〉 for any x ∈ E1

and any x∗ ∈ E2, then the net (Ti) converges to T for the weak operator topology of B(X). Use a similar result
for the case p =∞.
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Lemma 6.8 Let G be a unimodular locally compact group and 1 < p 6 ∞. Then the space
Mp,cb(G) is weak* closed in CB(Lp(VN(G))). Similarly, the space Mp(G) is weak* closed in
B(Lp(VN(G))).

Proof : By the Banach-Dieudonné theorem [81, page 154], it suffices to show that the closed
unit ball of Mp,cb(G) is weak* closed in CB(Lp(VN(G))). Let (Mφj ) be a net in that unit
ball converging for the weak* topology to some completely bounded map T : Lp(VN(G)) →
Lp(VN(G)). By Lemma 6.5 and Lemma 6.6, for any j, we have

‖φj‖L∞(G) 6
∥∥Mφj

∥∥
cb,Lp(VN(G))→Lp(VN(G)) 6 1.

Hence there exists a subnet of (φj) converging for the weak* topology to some φ ∈ L∞(G). It
remains to show that T = Mφ. Recall that the predual of the space CB(Lp(VN(G))) is given by
Lp(VN(G))⊗̂Lp∗(VN(G)), where ⊗̂ denotes the operator space projective tensor product and
the duality bracket is given by

〈R, x⊗ y〉CB(Lp(VN(G))),Lp(VN(G))⊗̂Lp∗ (VN(G)) =
〈
R(x), y

〉
Lp(VN(G)),Lp∗ (VN(G)).

This implies that
〈
Mφj (x), y

〉
−→
j
〈T (x), y〉 for any x ∈ Lp(VN(G)) and any y ∈ Lp∗(VN(G)).

By Lemma 6.7, it suffices to show that φ induces a completely bounded Fourier multiplier. For
any fkl, gkl ∈ Cc(G)∗Cc(G) (fkl ∈ Cc(G) if p =∞) where 1 6 k, l 6 N , we have fklǧkl ∈ L1(G)
and for any j∣∣∣〈[Mφj (λ(fkl))

]
,
[
λ(gkl)

]〉
MN (Lp(VN(G))),S1

N
(Lp∗ (VN(G)))

∣∣∣
6
(

sup
∥∥Mφj

∥∥
cb,Lp(VN(G))→Lp(VN(G))

)∥∥[λ(fkl)
]∥∥

MN (Lp(VN(G)))

∥∥[λ(gkl)
]∥∥
S1
N

(Lp∗ (VN(G))),

that is, using Plancherel formula (6.3),∣∣∣∣∣∣
N∑

k,l=1

∫
G

φj(s)fkl(s)ǧkl(s) dµG(s)

∣∣∣∣∣∣
6
(

sup
∥∥Mφj

∥∥
cb,Lp(VN(G))→Lp(VN(G))

)∥∥[λ(fkl)
]∥∥

MN (Lp(VN(G)))

∥∥[λ(gkl)
]∥∥
S1
N

(Lp∗ (VN(G))).

Passing to the limit, by density, we conclude that φ induces a completely bounded Fourier
multiplier on Lp(VN(G)).

The statement on the space Mp(G) can be proved in a similar manner, using the predual
Lp(VN(G))⊗̂Lp∗(VN(G)) of B(Lp(VN(G))) where ⊗̂ denotes the Banach space projective tensor
product.

Remark 6.9 We do not know if Mp,cb(G) and Mp(G) are maximal commutative subsets of
CB(Lp(VN(G))) and B(Lp(VN(G))) which is a stronger assertion.

If G is an abelian locally compact group and if Mϕ : Lp(G)→ Lp(G) is a positive multiplier
in Mp(Ĝ), note that ϕ is equal almost everywhere to a function of the Fourier-Stieltjes algebra
B(Ĝ), thus to a continuous function. The next lemma extends this result to the noncommutative
context.
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Lemma 6.10 Let G be a unimodular44 locally compact group. Suppose 1 6 p 6 ∞. Let
ϕ : G→ C be a complex function which induces a positive Fourier multiplierMϕ : Lp(VN(G))→
Lp(VN(G)). Then ϕ is equal almost everywhere to a continuous function.

Proof : We can suppose 1 < p < ∞. Let g ∈ Cc(G). Then the operator λ(g∗ ∗ g) =
λ(g)∗λ(g) : L2(G) → L2(G) is positive. Moreover, by (6.4), it belongs to mτG ⊂ Lp(VN(G)).
We conclude that λ(g∗ ∗g) belongs to Lp(VN(G))+. We deduce thatMϕ

(
λ(g∗ ∗g)

)
is a positive

element of Lp(VN(G)). Since ϕ(g∗ ∗g) belongs to L1(G)∩L2(G), the operator Mϕ

(
λ(g∗ ∗g)

)
=

λ(ϕ(g∗ ∗ g)) is bounded on L2(G). Now, for any ξ ∈ L2(G), by positivity,

0 6
〈
Mϕ

(
λ(g∗ ∗ g)

)
ξ, ξ
〉

L2(G) =
〈(∫

G

ϕ(s)(g∗ ∗ g)(s)λs dµG(s)
)
ξ, ξ

〉
L2(G)

=
∫
G

〈(
ϕ(s)(g∗ ∗ g)(s)λs

)
ξ, ξ
〉
L2(G)

dµG(s)

=
∫
G

(∫
G

g(t−1)g(t−1s) dµG(t)
)
ϕ(s)

〈
λsξ, ξ

〉
L2(G) dµG(s)

=
∫
G

(∫
G

g(t)g(ts) dµG(t)
)
ϕ(s)

〈
λsξ, ξ

〉
L2(G) dµG(s)

=
∫
G

∫
G

g(t)g(s)ϕ(t−1s)
〈
λt−1sξ, ξ

〉
L2(G) dµG(s) dµG(t).

Hence the function s 7→ ϕ(s)
〈
λsξ, ξ

〉
L2(G) of L∞(G) is positive definite [146, VII.3, Definition

3.20], [50, page 296]. By [146, VII.3, Corollary 3.22], we deduce that it coincides almost every-
where with a continuous function on G. To conclude the lemma, it suffices now to show that
there exists a neighborhood K1 of e ∈ G such that for any s0 ∈ G, there exists ξ ∈ L2(G) such
that

〈
λsξ, ξ

〉
L2(G) does not vanish for s ∈ K1s0. To this end, let K0 be a compact neighborhood

of e and set K = K−1
1 · K0, which is also compact. Let ξ0 ∈ L2(G) such that ξ0 > 0 almost

everywhere and ξ0 > 0 on K. Put ξ = ξ0 + λs−1
0
ξ0. Then〈

λsξ, ξ
〉

L2(G) =
〈
λs
(
ξ0 + λs−1

0
ξ0
)
, ξ0 + λs−1

0
ξ0

〉
L2(G)

>
〈
λss−1

0
ξ0, ξ0

〉
L2(G)

=
∫
G

ξ0
(
s0s
−1t
)
ξ0(t) dµG(t) >

∫
K0

ξ0
(
s0s
−1t
)
ξ0(t) dµG(t).

For t ∈ K0 and s ∈ K1s0, we have s0s
−1t ∈ K−1

1 K0 = K, so that ξ0(s0s
−1t) > 0. Also,

ξ0(t) > 0 for such t. Thus, the last integral is strictly positive for s ∈ K1s0, and the lemma is
shown.

Proposition 6.11 Let G be a unimodular locally compact group. Suppose 1 6 p 6 ∞. The
following are equivalent for a complex measurable function ϕ : G→ C45.

1. ϕ induces a completely positive Fourier multiplier Mϕ : Lp(VN(G))→ Lp(VN(G)).

2. ϕ induces a completely positive Fourier multiplier Mϕ : VN(G)→ VN(G).

3. ϕ is equal almost everywhere to a continuous positive definite function.

44. If p =∞ or p = 1, the assumption “unimodular” is unnecessary and we can replace “positive” by “bounded”
by [41, page 458].
45. This proposition admits a generalization for n-positive maps.
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Proof : 3. ⇒ 2.: This is [41, Proposition 4.3].
2. ⇒ 1.: Suppose first that Mϕ : VN(G) → VN(G) is completely positive. Since Mϕ is

bounded on VN(G), by Lemma 6.6, ϕ induces a Fourier multiplier on Lp(VN(G)) which is46
completely positive.

1. ⇒ 3.: According to Lemma 6.10, the function ϕ is continuous almost everywhere, so
we can assume that ϕ is continuous without changing the operator Mϕ. For i = 1, . . . , n let
fi ∈ Cc(G). Note that by [104, Proposition 2.1] the matrix [λ(f∗i ∗ fj)] = [λ(fi)∗λ(fj)] is a
positive element of Mn(VN(G)) and an element of Mn(Lp(VN(G))) by (6.4), hence a positive
element of Mn(Lp(VN(G))). Consequently, (IdMn

⊗ Mϕ)[λ(f∗i ∗ fj)] = [λ(ϕ(f∗i ∗ fj))] is an
element of Mn(Lp(VN(G))+ ∩Mn(VN(G)). In particular, for any g1, . . . , gn ∈ Cc(G) we have

n∑
i,j=1

〈
λ
(
ϕ(f∗i ∗ fj)

)
gj , gi

〉
L2(G) > 0

that is
n∑

i,j=1

∫
G

ϕ(s)(f∗i ∗ fj)(s)(gi ∗ g̃j)(s) dµG(s) > 0.

By [41, Proposition 4.3 and Proposition 4.2], we conclude that the function ϕ is continuous and
positive definite.

Proposition 6.12 Let G be a unimodular locally compact group. Suppose 1 6 p < ∞. Let
(Mφn) be a bounded sequence of bounded Fourier multipliers on Lp(VN(G)) such that (φn)
converges almost everywhere to some φ ∈ L∞(G). Then φ induces a bounded Fourier multiplier
Mφ on Lp(VN(G)) and

‖Mφ‖Lp(VN(G))→Lp(VN(G)) 6 lim inf
n→+∞

‖Mφn‖Lp(VN(G))→Lp(VN(G)) .

Proof : By Lemma 6.5, the functions φn are uniformly bounded in the norm ‖·‖L∞(G). Consider
some functions f, g ∈ Cc(G) ∗ Cc(G) (to adapt if p = 1). In particular, the functions φnf and
g belong to L1(G) ∩ L2(G). Using the Plancherel isometry (6.3), we note that∣∣∣∣∫

G

φnfg dµG
∣∣∣∣ =

∣∣∣〈λ(φnf), λ(g)
〉

Lp(VN(G)),Lp∗ (VN(G))

∣∣∣
=
∣∣∣〈Mφn(λ(f)), λ(g)

〉
Lp(VN(G)),Lp∗ (VN(G))

∣∣∣
6 ‖Mφn‖Lp(VN(G))→Lp(VN(G)) ‖λ(f)‖Lp(VN(G)) ‖λ(g)‖Lp∗ (VN(G)) .

Taking the limit with the dominated convergence theorem, we obtain∣∣∣∣∫
G

φfg dµG
∣∣∣∣ 6 lim inf

n→+∞
‖Mφn‖Lp(VN(G))→Lp(VN(G)) ‖λ(f)‖Lp(VN(G)) ‖λ(g)‖Lp∗ (VN(G))

and finally by the Plancherel isometry∣∣∣〈λ(φf), λ(g)
〉

Lp(VN(G)),Lp∗ (VN(G))

∣∣∣ 6 lim inf
n→+∞

‖Mφn‖Lp→Lp ‖λ(f)‖Lp(VN(G)) ‖λ(g)‖Lp∗ (VN(G)) .

Using the density of λ(spanCc(G)∗Cc(G)), we deduce that φ induces a bounded multiplier and
that the inequality is true.

46. We use here the fact, left to the reader, that if T : M → N is a completely positive map which induces a
bounded map Tp : Lp(M)→ Lp(N) then Tp is also completely positive.
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6.2 The completely bounded homomorphism theorem for Fourier mul-
tipliers

Suppose 1 6 p <∞. Let us remind the definition of a Schur multiplier on SpΩ = Lp(B(L2(Ω)))
where (Ω, µ) is a (localizable) measure space [103, Section 1.2]. If f ∈ L2(Ω × Ω), we denote
by Kf : L2(Ω) → L2(Ω), u 7→

∫
Ω f(z, ·)u(z) dz the integral operator with kernel f . We say

that a measurable function φ : Ω×Ω→ C induces a bounded Schur multiplier on SpΩ if for any
f ∈ L2(Ω×Ω) satisfying Kf ∈ SpΩ we have Kφf ∈ SpΩ and if the map S2

Ω∩S
p
Ω → SpΩ, Kf 7→ Kφf

extends to a bounded map Mφ from SpΩ into SpΩ called the Schur multiplier associated with φ.
We denote by Mp,cb

Ω the space of completely bounded Schur multipliers on SpΩ. We refer to the
surveys [147] and [148] for the case p =∞.

Let G be a unimodular locally compact group. The right regular representation ρ : G →
B(L2(G)) is given by (ρtξ)(s) = ξ(st). Recall that ρ is a strongly continuous unitary represen-
tation. We will use the notation Adpρs : SpG → SpG, x 7→ ρsxρs−1 . A bounded Schur multiplier
Mφ : SpG → SpG is a Herz-Schur multiplier if MφAdpρs = AdpρsMφ for any s ∈ G. In this case,
there exists a measurable function ϕ : G → C such that φ(r, s) = ϕ(rs−1) for almost every
r, s ∈ G and we let MHS

ϕ = Mφ. We denote by Mp,cb,HS
G the subspace of Mp,cb

G of completely
bounded Herz-Schur multipliers.

In the sequel Gdisc stands for the group G equipped with the discrete topology.

Proposition 6.13 Let G and H be second countable locally compact groups and σ : G → H
be a continuous homomorphism. Suppose 1 6 p 6 ∞. If ϕ : H → C is a continuous function
which induces a completely bounded Herz-Schur multiplierMHS

ϕ : SpH → SpH , then the continuous
function ϕ ◦ σ : G → C induces a completely bounded Herz-Schur multiplier MHS

ϕ◦σ : SpG → SpG
and ∥∥MHS

ϕ◦σ
∥∥

cb,Sp
G
→Sp

G

6
∥∥MHS

ϕ

∥∥
cb,Sp

H
→Sp

H

.

Moreover, if σ(G) is dense in H, we have an isometry47 MHS
ϕ 7→MHS

ϕ◦σ.

Proof : Let G π−→ G/Ker(σ) σ̃−→ Ran σ i−→ H be the canonical decomposition of the homomor-
phism σ. By [31, Lemma 9.2] (see also the arxiv version, Lemma 8.2), we have∥∥MHS

ϕ◦i◦σ̃◦π
∥∥

cb,Sp
G
→Sp

G

=
∥∥MHS

ϕ◦i◦σ̃
∥∥

cb,Sp
G/Ker σ→S

p

G/Ker σ
.

We have a natural isomorphism Jσ̃ : Sp(G/Kerσ)disc
→ Sp(Ranσ)disc

, es1,s2 7→ eσ̃(s1),σ̃(s2) where the
es1,s2 ’s are the matrix units. Therefore, the group isomorphism σ̃ : G/Kerσ → Ran σ yields
an isometric isomorphism from the space of completely bounded Herz-Schur multipliers over
Sp(Ranσ)disc

to the space of completely bounded Herz-Schur multipliers over Sp(G/Kerσ)disc
by

sending each MHS
ψ to MHS

ψ◦σ̃ = Jσ̃−1MHS
ψ Jσ̃. Thus, we obtain using [31, Lemma 9.2] three times∥∥MHS

ϕ◦i◦σ̃
∥∥

cb,Sp
G/Ker σ→S

p

G/Ker σ
=
∥∥MHS

ϕ◦i◦σ̃
∥∥

cb,Sp(G/Ker σ)disc
→Sp(G/Ker σ)disc

=
∥∥MHS

ϕ◦i
∥∥

cb,Sp(Ran σ)disc
→Sp(Ran σ)disc

6
∥∥MHS

ϕ

∥∥
cb,Sp

Hdisc
→Sp

Hdisc

=
∥∥MHS

ϕ

∥∥
cb,Sp

H
→Sp

H

.

This shows the first part of the proposition.
It remains to show the isometric statement in the case where Ran σ is dense in H. According

to the above, we only need to show that

(6.7)
∥∥MHS

ϕ

∥∥
cb,Sp

H
→Sp

H

6
∥∥MHS

ϕ◦i
∥∥

cb,Sp(Ran σ)disc
→Sp(Ran σ)disc

.

47. The proof shows that if Mϕ◦σ is completely bounded then Mϕ is completely bounded.
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According to [103, Theorem 1.19], we have∥∥MHS
ϕ

∥∥
cb,Sp

H
→Sp

H

= sup
F⊂H finite

∥∥MHS
ϕ |F

∥∥
cb,Sp

F
→Sp

F

.

Here, the restriction to F means that one considers the mapping
∑
s1,s2∈F as1,s2es1,s2 7→∑

s1,s2∈F ϕ(s−1
1 s2)as1,s2es1,s2 . We fix some finite subset F = {s1, . . . , sN} ⊂ H and some ε > 0.

Then for any 1 6 k, l 6 N , by continuity of ϕ, there exist a neighborhood Vk,l of s−1
k sl such

that |ϕ(t)−ϕ(s−1
k sl)| < ε if t ∈ Vk,l. Since the mapping G×G→ G, (s, t) 7→ s−1t is continuous,

there exist neighborhoods Wk,l of sk and W ′k,l of sl such that (Wk,l)−1W ′k,l ⊂ Vk,l. For any
1 6 k 6 N , let now Uk =

⋂N
l=1Wk,l ∩

⋂N
l=1W

′
l,k which is a neighborhood Uk of sk. Since Ran σ

is dense in H, there exists tk ∈ Ran σ ∩ Uk and we obtain a subset F̃ε = {t1, . . . , tN} of Ran σ
with the same cardinality as F . Moreover, t−1

k tl belongs to U−1
k Ul ⊂ Vk,l and consequently,

|ϕ(t−1
k tl)− ϕ(s−1

k sl)| < ε for any k, l ∈ {1, . . . , N}.
Denote MA,MB : SpN → SpN the Schur multipliers with symbols A = [ϕ(t−1

k tl)] and B =
[ϕ(s−1

k sl)]. Then, we obtain using the identifications Sp
F̃ε

= SpN and SpF = SpN in the first
equality∣∣∣∣∥∥MHS

ϕ◦i|F̃ε
∥∥

cb,Sp
F̃ε
→Sp

F̃ε

−
∥∥MHS

ϕ |F
∥∥

cb,Sp
F
→Sp

F

∣∣∣∣ =
∣∣∣‖MA‖cb,Sp

N
→Sp

N
− ‖MB‖cb,Sp

N
→Sp

N

∣∣∣
6 ‖MA −MB‖cb,Sp

N
→Sp

N
=

∥∥∥∥∥∥
N∑

k,l=1

(
ϕ(t−1

k tl)− ϕ(s−1
k sl)

)
Mekl

∥∥∥∥∥∥
cb,Sp

N
→Sp

N

=
N∑

k,l=1

∣∣ϕ(t−1
k tl)− ϕ(s−1

k sl)
∣∣ ‖Mekl‖cb,Sp

N
→Sp

N
< N2ε.

We have shown ∥∥MHS
ϕ◦i|F̃ε

∥∥
cb,Sp

F̃ε
→Sp

F̃ε

−−−→
ε→0

∥∥MHS
ϕ |F

∥∥
cb,Sp

F
→Sp

F

.

But again according to [103, Theorem 1.19], the left hand side is dominated by∥∥MHS
ϕ◦i
∥∥

cb,Sp(Ran σ)disc
→Sp(Ran σ)disc

.

Hence we obtain (6.7).
Now, we state a completely bounded version of the classical homomorphism theorem [54,

page 184].

Theorem 6.14 Let G and H be locally compact groups and σ : G→ H be a continuous homo-
morphism. Suppose 1 6 p 6∞. We suppose that G and H are second countable and amenable
if 1 < p < ∞. If ϕ : H → C is a continuous function which induces a completely bounded
Fourier multiplier Mϕ : Lp(VN(H))→ Lp(VN(H)), then the continuous function ϕ ◦σ : G→ C
induces a completely bounded Fourier multiplier Mϕ : Lp(VN(G))→ Lp(VN(G)) and

‖Mϕ◦σ‖cb,Lp(VN(G))→Lp(VN(G)) 6 ‖Mϕ‖cb,Lp(VN(H))→Lp(VN(H)) .

Moreover, if σ(G) is dense in H, we have an isometry48 Mϕ 7→ Mϕ◦σ. Finally, if Mϕ is
completely positive then Mϕ◦σ is also completely positive.

48. The proof shows that if Mϕ◦σ is completely bounded then Mϕ is completely bounded.
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Proof : The case p =∞ is [136, Theorem 6.2]. By duality, we obtain the case p = 1. Now, we
suppose that 1 < p <∞. Note that by Lemma 6.5 and Lemma 6.6, the function ϕ is bounded.
Then by amenability of G and H, using [30, Theorem 4.2 and Corollary 5.3]49 with [31, Remark
9.3] and Proposition 6.13, we obtain

‖Mϕ◦σ‖cb,Lp(VN(G))→Lp(VN(G)) =
∥∥MHS

ϕ◦σ
∥∥

cb,Sp
G
→Sp

G

6
∥∥MHS

ϕ

∥∥
cb,Sp

H
→Sp

H

= ‖Mϕ‖cb,Lp(VN(H))→Lp(VN(H)) .

The isometric statement is proved in the same way.
Finally, suppose that Mϕ is completely positive. By Proposition 6.11, we deduce that its

symbol ϕ is a continuous positive definite function. Since σ is continuous, the function ϕ ◦ σ is
also continuous. Moreover, if α1, . . . , αn ∈ C and s1, . . . , sn ∈ G, we infer that

n∑
k,l=1

αkαlϕ ◦ σ(sks−1
l ) =

n∑
k,l=1

αkαlϕ
(
σ(sk)σ(sl)−1) > 0.

We conclude that ϕ ◦ σ is positive definite. We conclude by using again Proposition 6.11.

6.3 Extension of Fourier multipliers
The following is an extension of [67, Lemma 2.1 (2)] and a variant of [31, Theorem B.1]. In [31,
Theorem B.1], we warn the reader that a factor µG(X)−1 is missing. Contrary to what is said,
the alluded method does not give constant 1.

Theorem 6.15 Let Γ be a lattice of a second countable unimodular locally compact group G
and X be a fundamental domain associated with Γ. We denote by γ : G→ Γ and x : G→ X the
measurable mappings uniquely determined by the decomposition s = ω(s)γ(s) for any s ∈ G.
Suppose 1 6 p 6∞. We assume that G is amenable if 1 < p <∞. Let φ : Γ→ C be a complex
function which induces a completely bounded Fourier multiplier Mφ : Lp(VN(Γ))→ Lp(VN(Γ)).
Then the complex function φ̃ = 1

µG(X)1X∗(φµΓ)∗1X−1 : G→ C where µΓ is the counting measure
on Γ defined by

(6.8) φ̃(s) = 1
µG(X)

∫
X
φ(γ(sω)) dµG(ω), s ∈ G

is continuous and induces a completely bounded Fourier multiplierM
φ̃

: Lp(VN(G))→ Lp(VN(G))
and we have

(6.9)
∥∥M

φ̃

∥∥
cb,Lp(VN(G))→Lp(VN(G)) 6

∥∥Mφ

∥∥
cb,Lp(VN(Γ))→Lp(VN(Γ)).

Finally, if Mφ is completely positive then M
φ̃
is also completely positive.

Proof : The case p = ∞ is [67, Lemma 2.1 (2)] and the case p = 1 follows by duality. The
continuity of φ̃ is alluded50 in [67] and in the proof of [67, Lemma 2.1], the formula (6.8) is
shown.
49. We warn the reader that the proof of [30, Theorem 5.2] is only valid for second countable groups. The proof
uses Lebesgue’s dominated convergence theorem in the last line of page 7007 and this result does not admit a
generalization for nets. See [94] for more information.
50. We have

φ̃(s) =
1

µG(X)

∫
X
φ(γ(sω)) dµG(ω) =

1
µG(X)

∫
G

φ(γ(t))1X(s−1t) dµG(t).
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Now, we consider the remaining case 1 < p < ∞. Since G and Γ are both amenable, we
obtain using [30, Theorem 4.2, Corollary 5.3]51 in the first and in the last equality together
with [31, Remark 9.3], and [103, Lemma 2.6] in the inequality∥∥M

φ̃

∥∥
cb,Lp(VN(G))→Lp(VN(G)) =

∥∥MHS
φ̃

∥∥
cb,Sp

G
→Sp

G

6
∥∥MHS

φ

∥∥
cb,SpΓ→S

p
Γ

=
∥∥Mφ

∥∥
cb,Lp(VN(Γ))→Lp(VN(Γ)).

Suppose that Mφ is completely positive. According to the proof of [67, Lemma 2.1], for any
s, t ∈ G, we have

φ̃(st−1) = 1
µG(X)

∫
X
φ
(
γ(sω′)γ(tω′)−1)dµG(ω′).(6.10)

We will show that φ̃ is positive definite. Let α1, . . . , αn ∈ C and s1, . . . , sn ∈ G. Since φ is
positive definite by Proposition 6.11, we obtain

n∑
k,l=1

αkαlφ̃(sks−1
l ) = 1

µG(X)

n∑
k,l=1

αkαl

∫
X
φ
(
γ(skω′)γ(slω′)−1) dµG(ω′)

= 1
µG(X)

∫
X

n∑
k,l=1

αkαlφ
(
γ(skω′)γ(slω′)−1)dµG(ω′) > 0.

Since the function φ̃ is continuous, we conclude that M
φ̃
is completely positive by using again

Proposition 6.11.

6.4 Groups approximable by lattice subgroups
If (Y,distY ) and (Z,distZ) are metric spaces and if f : Y → Z is uniformly continuous, we
denote by ω(f, ·) : [0,+∞[→ [0,+∞[ a modulus of continuity of f . We have limδ→0 ω(f, δ) = 0
and ω(f, 0) = 0. The function ω(f, ·) is increasing and for any s, t ∈ Y we have

(6.11) distZ
(
f(s), f(t)

)
6 ω

(
f, distY (s, t)

)
.

Let G be a topological group. We denote by ν : G→ G, s 7→ s−1 the inversion map.
The following theorem gives a variant of Theorem 4.2 for a particular class of unimodular

groups.

Theorem 6.16 Let G be a second countable unimodular locally compact group which satisfies
ALSS with respect to a sequence of lattices (Γj)j>1 and associated fundamental domains (Xj)j>1.

Then for any s1, s2 ∈ G, we have∣∣φ̃(s1)− φ̃(s2)
∣∣ 6 1

µG(X)

∫
G

|φ(γ(t))| |1X(s−1
1 t)− 1X(s−1

2 t)| dµG(t) 6
‖φ‖L∞(G)

µG(X)

∫
G

|1s1X(t)− 1s2X(t)| dµG(t)

= ‖φ‖L∞(G)
µG
(
s1X∆s2X

)
µG(X)

= ‖φ‖L∞(G)
µG
(
(s−1

2 s1X)∆X
)

µG(X)
−−−−−→
s2→s1

0

where the last line follows from [72, Theorem A page 266].
51. We warn the reader that the proof of [30, Theorem 5.2] is only valid for second countable groups. The proof
uses Lebesgue’s dominated convergence theorem in the last line of page 7007 and this result does not admit a
generalization for nets. See [94] for more information.
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Suppose 1 6 p 6 ∞. We assume that G is amenable if 1 < p < ∞. Suppose that for some
constant c > 0 and any compact subset K of G we have

(6.12) lim
j→∞

sup
γ∈Γj∩K

∣∣∣∣ 1
µ(Xj)

∫
G

µ2(Xj ∩ γXjs)
µ2(Xj)

dµ(s)− c
∣∣∣∣ = 0

where µ = µG is a Haar measure of G. Then for 1 6 p 6∞, there exists a linear mapping

P pG : CB(Lp(VN(G)))→Mp,cb(G)

of norm at most 1
c with the properties:

1. If T : Lp(VN(G))→ Lp(VN(G)) is completely positive, then P pG(T ) is completely positive.

2. If T = Mψ is a Fourier multiplier on Lp(VN(G)) with bounded continuous symbol ψ : G→
C, then P pG(Mψ) = Mψ. Moreover, if we have γXj = Xjγ for any j ∈ N and any γ ∈ Γj,
or alternatively, if Xj is symmetric in the sense that µ(Xj∆X−1

j ) = 0 for any j ∈ N, then
P pG(Mψ) = Mψ for any bounded measurable symbol such that Mψ ∈Mp,cb(G).

For an element T belonging to CB(Lp(VN(G))) and to CB(Lq(VN(G))) for two values p, q ∈
[1,∞], we have P pG(T )x = P qG(T )x for x ∈ Lp(VN(G)) ∩ Lq(VN(G)).

In the above, if p =∞, then we have to take CBw∗(VN(G)) as the domain space of P∞G .

Proof : For any j, we consider the element hj = λ(1Xj ) =
∫

Xj λs dµ(s) of the group von
Neumann algebra VN(G) and define for 1 6 p 6∞ the (normal52if p =∞) completely positive
map

Φpj : Lp(VN(Γj))→ Lp(VN(G)), λγ 7→ µ(Xj)−2+ 1
ph∗jλγhj .

It is noted and shown in [31, page 19] that each Φpj is completely contractive. For any 1 6 p 6∞,
we also consider the adjoint (preadjoint if p = 1) Ψp

j =
(
Φp
∗

j

)∗ : Lp(VN(G)) → Lp(VN(Γj))
of Φp

∗

j which is also completely contractive and completely positive by Lemma 2.7. Now,
use Theorem 4.2 for the discrete group Γj and define for some completely bounded map
T : Lp(VN(G))→ Lp(VN(G)), the Fourier multiplier Mφj : Lp(VN(Γj))→ Lp(VN(Γj)) defined
by

Mφj = 1
c
P pΓj
(
Ψp
jTΦpj

)
if 1 6 p <∞ and Mφj = 1

c
P∞Γj

(
Ψ∞j Pw∗(T )Φ∞j

)
if p =∞,

where the contractive map Pw∗ : CB(VN(G)) → CB(VN(G)) is described in Proposition 3.1,
whose symbol is (if T is normal in the case p =∞)

φj(γ) = 1
c
τΓj
(
Ψp
jTΦpj (λγ)λγ−1

)
= 1
c
τG

(
TΦpj (λγ)Φp

∗

j (λγ−1)
)

(6.13)

= 1
c µ(Xj)3 τG

(
T (h∗jλγhj)h∗jλγ−1hj

)
.

Then we have for 1 6 p <∞∥∥Mφj

∥∥
cb,Lp(VN(Γj))→Lp(VN(Γj))

=
∥∥∥∥1
c
P pΓj (Ψ

p
jTΦpj )

∥∥∥∥
cb,Lp(VN(Γj))→Lp(VN(Γj))

6
1
c

∥∥Ψp
jTΦpj

∥∥
cb,Lp(VN(Γj))→Lp(VN(Γj))

6
1
c
‖T‖cb,Lp(VN(G))→Lp(VN(G))

52. Recall that the product of a von Neumann algebra is separately weak* continuous, e.g. see [23, Proposition
2.7.4 (1)].
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and similarly for p =∞. Let further

(6.14) φ̃j = 1
µ(Xj)

1Xj ∗ (φjµΓj ) ∗ 1X−1
j

: G→ C

where µΓj is the counting measure on the discrete subset Γj of G. According to Theorem 6.15,
M
φ̃j

: Lp(VN(G))→ Lp(VN(G)) is a completely bounded Fourier multiplier with
(6.15)∥∥M

φ̃j

∥∥
cb,Lp(VN(G))→Lp(VN(G)) 6

∥∥Mφj

∥∥
cb,Lp(VN(Γj))→Lp(VN(Γj))

6
1
c
‖T‖cb,Lp(VN(G))→Lp(VN(G)) .

If 1 < p 6∞, note that B(CB(Lp(VN(G)))) is a dual Banach space and admits the predual

(6.16) CB(Lp(VN(G)))⊗̂
(
Lp(VN(G))⊗̂Lp

∗
(VN(G))op),

where ⊗̂ denotes the Banach space projective tensor product and where ⊗̂ denotes the operator
space projective tensor product. The duality bracket is given by〈

R, T ⊗ (x⊗ y)
〉

=
〈
R(T )x, y

〉
Lp(VN(G)),Lp∗ (VN(G)).

The mappings P pj : T 7→M
φ̃j

are linear and uniformly bounded in B(CB(Lp(VN(G)))). From
now on we restrict to the case 1 < p 6∞ and we will return to the case p = 1 only at the end of
the proof. The elements P pj belong to the space Yp = 1

cBall(B(CB(Lp(VN(G))))) for p ∈ (1,∞].
By Banach-Alaoglu’s theorem, note that each Yp is compact with respect to the weak* topology
of the underlying Banach space. Then by Tychonoff’s theorem,

∏
p∈(1,∞] Yp is also compact.

Thus, the net
(
(P pj )p∈(1,∞]

)
admits a convergent subnet

(
(P pj(k))p∈(1,∞]

)
, which converges to

some element ((P pG)p∈(1,∞), P̃
∞
G ) of

∏
p∈(1,∞] Yp, i.e. for any p the net (P pj(k)) converges to P

p
G for

the weak* topology. This implies that (P pj(k)(T )) converges for the weak operator topology (in
the point weak* topology if p = ∞) to P pG(T ). Since the weak* topology on CB(Lp(VN(G)))
coincides on bounded subsets with the weak operator topology (the point weak* topology if
p =∞), we conclude by Lemma 6.8 that P pG(T ) is itself a Fourier multiplier. Finally, in the case
p =∞, we consider the restriction P∞G = P̃∞G |CBw∗ (VN(G)) : CBw∗(VN(G))→ CBw∗(VN(G)).

Note that we clearly have∥∥P pG∥∥CB(Lp(VN(G)))→CB(Lp(VN(G))) 6 lim inf
k→+∞

∥∥P pj(k)
∥∥

CB(Lp(VN(G)))→CB(Lp(VN(G))) 6
1
c
.

We next show that P pG preserves the complete positivity. Suppose that T is (normal if p =∞)
completely positive. Since Φpj and Ψp

j are completely positive, Ψp
jTΦpj is also completely positive

and thus, by Theorem 4.2, Mφj = 1
cP

p
Γj (Ψ

p
jTΦpj ) is completely positive. Using Theorem 6.15,

we conclude that M
φ̃j

is completely positive. Since P pG(T ) is the weak operator topology limit
of M

φ̃j
(point weak* topology limit if p = ∞), the complete positivity of M

φ̃j
carries over to

that of P pG(T ) by Lemma 2.8.
We claim that P pG has the compatibility property stated in the theorem. Note that the

symbol φ̃j of P pj (T ) does not depend on p if T belongs to two different spaces CB(Lp(VN(G)))
and CB(Lq(VN(G))). If in addition x belongs to both Lp(VN(G)) and Lq(VN(G)) and if y
belongs to both Lp∗(VN(G)) and Lq∗(VN(G)), then we have〈

P pG(T )x, y
〉

= lim
k

〈
P pj(k)(T )x, y

〉
= lim

k

〈
P qj(k)(T )x, y

〉
=
〈
P qG(T )x, y

〉
.
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Then it is immediate that the P pG’s are compatible as stated in the theorem.
We finally will show now that P pG(Mψ) = Mψ for any bounded continous symbol ψ : G→ C

(or ψ bounded measurable under the additional symmetry/commutativity assumption on Xj)
giving rise to a completely bounded Lp-multiplier. We start by computing the symbol φj .
For any γ ∈ Γj , note that λγhj = λγλ(1Xj ) = λ(1γXj ) and similarly λγ−1hj = λ(1γ−1Xj ).
Consequently, we have

φj(γ) = 1
c µ(Xj)3 τG

(
Mψ(h∗jλγhj)h∗jλγ−1hj

)
= 1
c µ(Xj)3 τG

(
Mψλ

(
1X−1

j
∗ 1γXj

)
λ
(
1X−1

j
∗ 1γ−1Xj

))
= 1
c µ(Xj)3 τG

(
λ
(
ψ(1X−1

j
∗ 1γXj )

)
λ
(
1X−1

j
∗ 1γ−1Xj

))
= 1
c µ(Xj)3

∫
G

ψ(s)
(
1X−1

j
∗ 1γXj

)
(s)
(
1X−1

j
∗ 1γ−1Xj

)
(s−1) dµ(s)

where the last equality follows from the Plancherel formula (6.3) and from the fact that the
functions ψ(1X−1

j
∗ 1γXj ) and 1X−1

j
∗ 1γ−1Xj belong to the space L1(G) ∩ L2(G), and thus are

left bounded. Now, using [78, Theorem 20.10 (iv)], note that for any s ∈ G(
1X−1

j
∗ 1γXj

)
(s) =

∫
G

1X−1
j

(t−1)1γXj (ts) dµ(t) =
∫
Xj

1γXj (ts) dµ(t) = µ(Xj ∩ γXjs
−1)

and (
1X−1

j
∗ 1γ−1Xj

)
(s−1) = µ(Xj ∩ γ−1Xjs) = µ(γXjs

−1 ∩Xj).

Thus, for any γ ∈ Γj , we conclude that

(6.17) φj(γ) = 1
c µ(Xj)3

∫
G

ψ(s)µ
(
Xj ∩ γXjs

−1)2 dµ(s).

Now, we examine the asymptotic behaviour of the sequence of symbols φj . Since G is second
countable, it admits a right-invariant metric dist(·, ·), i.e. dist(s, t) = dist(sr, tr) for r, s, t ∈ G,
such that the closed balls are compact [70]. We denote by B(x, r) the open ball centered on x
with radius r and B′(x, r) the closed ball. We need the following lemmas.

Lemma 6.17 For any neighborhood V of the identity e in G, any compact subset K of G, any
j sufficiently large and any γ ∈ K, we have

(6.18) Xj ∩ γXjs
−1 = ∅, s ∈ G\γV.

Proof : Since K is compact, we have K ⊂ B(e,RK) for some RK > 0. Let j be so large that
Xj ⊂ B(e, 1

3 ). If s ∈ G\B(e,RK + 1), then we have for ω ∈ Xj and γ ∈ K

dist(e, γωs−1) > dist(e, s−1)− dist(s−1, γωs−1) = dist(s, e)− dist(e, γω)
> dist(s, e)− dist(e, ω)− dist(ω, γω) > dist(s, e)− dist(e, ω)− dist(e, γ)

> RK + 1− 1
3 −RK >

2
3 .

Thus, for such an s, we have Xj ∩ γXjs
−1 = ∅, since Xj ⊂ B(e, 1

3 ). So from now on, we can
assume s ∈ B(e,RK + 1), in other words, varying in a compact set.
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Let ε > 0 such that B(e, ε) ⊂ V . By [78, Theorem 4.9], there exists ε′ > 0 such that
γB(e, ε)γ−1 contains the ball B(e, ε′) for any γ ∈ K. Let γ ∈ K and s ∈ B(e,RK + 1)\γV .
Since s 6∈ γB(e, ε), we have γs−1 6∈ γB(e, ε)−1γ−1 and finally dist(γ, s) = dist(e, γs−1) > ε′.
Consider the compact K ′ = B′(e, 1) ·B′(e,RK + 1)−1 and some 0 < ε′′ 6 min{ 1

2ε
′, 1} such that

ω
(
ν|K ′, ε′′

)
6 1

2ε
′. Consider j so large that Xj ⊂ B(e, ε′′). Let ω ∈ Xj . Then

dist(e, γωs−1) = dist(e, sω−1γ−1) = dist(γ, sω−1) > dist(γ, s)− dist(s, sω−1).

Note that s−1 and ωs−1 vary in the compact K ′ for ω varying in Xj . Now, using (6.11), we
have

dist(s, sω−1) 6 ω
(
ν|K ′,dist(s−1, ωs−1)

)
= ω

(
ν|K ′,dist(e, ω)

)
6 ω

(
ν|K ′, ε′′

)
6

1
2ε
′.

We deduce that dist(e, γωs−1) > ε′ − 1
2ε
′ = 1

2ε
′ > ε′′, so that γωs−1 6∈ B(e, ε′′) and thus

Xj ∩ γXjs
−1 = ∅ since Xj ⊂ B(e, ε′′). We have shown (6.18).

Lemma 6.18 Assume in addition that ψ is a continuous symbol. Then for any compact subset
K of G, we have

(6.19) sup
γ∈Γj∩K

|φj(γ)− ψ(γ)| −−−−→
j→+∞

0.

Proof : We fix a compact subset K of G and a compact neighborhood V of e. Then, for
any j sufficiently large and any γ ∈ K, Lemma 6.17 implies the existence of the integral∫
G
ψ(γ)µ

(
Xj ∩ γXjs

−1)2 dµ(s). By definition of c, for any γ ∈ Γj ∩K, using (6.17) in the first
equality, we have

|φj(γ)− ψ(γ)| =
∣∣∣∣ 1
c µ(Xj)3

∫
G

ψ(s)µ
(
Xj ∩ γXjs

−1)2 dµ(s)− ψ(γ)
∣∣∣∣

= 1
c µ(Xj)3

∣∣∣∣∫
G

ψ(s)µ
(
Xj ∩ γXjs

−1)2 dµ(s)− cµ(Xj)3ψ(γ)
∣∣∣∣

= 1
c µ(Xj)3

∣∣∣∣∫
G

ψ(s)µ
(
Xj ∩ γXjs

−1)2 dµ(s)−
∫
G

ψ(γ)µ
(
Xj ∩ γXjs

−1)2 dµ(s)

+
∫
G

ψ(γ)µ
(
Xj ∩ γXjs

−1)2 dµ(s)− cµ(Xj)3ψ(γ)
∣∣∣∣

6
1

c µ(Xj)3

∫
G

|ψ(s)− ψ(γ)|µ
(
Xj ∩ γXjs

−1)2 dµ(s)

+ 1
c µ(Xj)3 |ψ(γ)|

∣∣∣∣∫
G

µ
(
Xj ∩ γXjs

−1)2 dµ(s)− cµ(Xj)3
∣∣∣∣

6
1

c µ(Xj)3

∫
G

|ψ(s)− ψ(γ)|µ
(
Xj ∩ γXjs

−1)2 dµ(s)

+ 1
c
|ψ(γ)|

∣∣∣∣∣ 1
µ(Xj)

∫
G

µ
(
Xj ∩ γXjs

−1)2
µ(Xj)2 dµ(s)− c

∣∣∣∣∣ .
The last summand converges to 0 as j →∞ uniformly in γ ∈ Γj∩K according to the assumption
(6.12) and the boundedness of ψ. It remains to treat the first summand. Then, for and j
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sufficiently large and γ ∈ Γj ∩K, using Lemma 6.17 in the first equality, we obtain

sup
γ∈Γj∩K

1
c µ(Xj)3

∫
G

|ψ(s)− ψ(γ)|µ
(
Xj ∩ γXjs

−1)2 dµ(s)

= 1
c µ(Xj)3 sup

γ∈Γj∩K

∫
γV

|ψ(s)− ψ(γ)|µ
(
Xj ∩ γXjs

−1)2 dµ(s)

6
1

c µ(Xj)3

(
sup

γ∈Γj∩K

∫
γV

µ
(
Xj ∩ γXjs

−1)2 dµ(s)
)(

sup
s∈γV, γ∈Γj∩K

|ψ(s)− ψ(γ)|
)

=
(

sup
γ∈Γj∩K

1
c µ(Xj)

∫
G

µ
(
Xj ∩ γXjs

−1)2
µ(Xj)2 dµ(s)

)(
sup

s∈γV, γ∈Γj∩K
|ψ(s)− ψ(γ)|

)
.

We will show that for V = B′(e, ε′) the last supremum converges to 0 as ε′ → 0 uniformly
in j. Since it is not difficult to see that the first factor is uniformly bounded for j > 1 and
γ ∈ Γj ∩K by the assumption (6.12) of the theorem, (6.19) follows. Consider some 0 < ε 6 1.
Define the compact K ′ = K · B′(e, 1). Let 0 < ε′ 6 1 such that ω(ν|K ′−1, ε′) 6 ε. If s, t ∈ K ′
and dist(s−1, t−1) 6 ε′, we have by (6.11)

dist(s, t) 6 ω
(
ν|K ′−1,dist(s−1, t−1)

)
6 ω(ν|K ′−1, ε′) 6 ε.

Note that the restriction ψ|K ′ of the continuous function ψ on K ′ is uniformly continuous. For
any j, using (6.11) in the first inequality, we deduce that

sup
s∈γB′(e,ε′), γ∈Γj∩K

|ψ(s)− ψ(γ)| 6 sup
s−1∈B′(γ−1,ε′), γ∈Γj∩K

ω
(
ψ|K ′,dist(s, γ)

)
6 sup
s∈γV, γ∈Γj∩K

ω
(
ψ|K ′, ε

)
= ω

(
ψ|K ′, ε

)
−−−→
ε→0

0.

We continue with the asymptotic behaviour of the symbols φ̃j .

Lemma 6.19 Assume in addition that ψ is a continuous symbol. Then for any s ∈ G, we have

(6.20) φ̃j(s) −−−−→
j→+∞

ψ(s).

Proof : Let s ∈ G. Recall that we have a unique decomposition s = ωj(s)γj(s) with ωj(s) ∈ Xj

and γj(s) ∈ Γj . Then, by (6.8), we have∣∣∣φ̃j(s)− ψ(s)
∣∣∣ =

∣∣∣∣∣ 1
µ(Xj)

∫
Xj
φj(γj(st)) dµ(t)− ψ(s)

∣∣∣∣∣ = 1
µ(Xj)

∣∣∣∣∣
∫

Xj

(
φj(γj(st))− ψ(s)

)
dµ(t)

∣∣∣∣∣
6

1
µ(Xj)

∫
Xj

(
|φj(γj(st))− ψ(γj(st))|+ |ψ(γj(st))− ψ(s)|

)
dµ(t)

6
1

µ(Xj)

∫
Xj
|φj(γj(st))− ψ(γj(st))|dµ(t) + 1

µ(Xj)

∫
Xj
|ψ(γj(st))− ψ(s)|dµ(t).

We start to prove that the first summand converges to 0 as j →∞. Indeed, according to (6.19),
it suffices to show that γj(st) remains in a fixed compact set independent of j, for t varying in
Xj . We will even show that dist(γj(st), s)→ 0 as j →∞ uniformly in t ∈ Xj .

Let ε > 0. Consider the compact Ks = (s ·B′(e, 1))−1. There exists 0 < ε′ 6 min{1, ε} such
that ω

(
ν|Ks, ε

′) 6 ε. Then for some j0 ∈ N, we have Xj ⊂ B(e, ε′) for all j > j0. Note that
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s−1 and (st)−1 and vary in the compact set Ks for j > j0 and t varying in Xj . For these j and
any t ∈ Xj , using (6.11), we see that

dist(γj(st), s) 6 dist(γj(st), st) + dist(st, s) = dist(ωj(st)−1st, st) + dist(st, s)
= dist(ωj(st)−1, e) + dist(st, s) 6 dist(e, ωj(st)) + ω

(
ν|Ks,dist

(
(st)−1, s−1))

6 ε′ + ω
(
ν|Ks,dist

(
t−1, e

))
6 ε+ ω

(
ν|Ks, ε

′) 6 ε+ ε.

We conclude that supt∈Xj dist(γj(st), s)→ 0 as j →∞.
For the second summand, consider ε > 0. Note that the restriction ψ|B′(s, 1) is uniformly

continuous. There exists 0 < ε′ 6 1 such that ω
(
ψ|B′(s, 1), ε′

)
6 ε and there exists j0 such

that supt∈Xj dist(γj(st), s) 6 ε′ for any j > j0. For these j, using (6.11), we deduce that

sup
t∈Xj
|ψ(γj(st))− ψ(s)| 6 sup

t∈Xj
ω
(
ψ|B′(s, 1),dist(γj(st), s)

)
6 sup
t∈Xj

ω
(
ψ|B′(s, 1), ε′

)
= ω

(
ψ|B′(s, 1), ε′

)
6 ε.

That means that supt∈Xj |ψ(γj(st))− ψ(s)| → 0 as j →∞. Thus (6.20) follows.
If f ∈ L∞(G), the particular case p = 2 of (6.15) applied to Mψ instead of T together with

Lemma 6.5 allows us to define a well-defined operator Ξj : L∞(G)→ L∞(G), ψ 7→ φ̃j for any j
with

(6.21)
∥∥Ξj(ψ)

∥∥
L∞(G) 6

1
c
‖ψ‖L∞(G) .

Lemma 6.20 Assume that γXj = Xjγ for any j ∈ N and any γ ∈ Γj or that µ(Xj∆X−1
j ) = 0

for any j ∈ N.

1. If ψ ∈ L1(G) then the formula (6.17) gives a well-defined function φj : Γj → C for any j.

2. For any j, we have a well-defined bounded operator Ξj : L1(G) → L1(G), ψ 7→ φ̃j where
φ̃j is defined by the formula

(6.22) φ̃j = 1
µ(Xj)

1Xj ∗ (φjµΓj ) ∗ 1X−1
j
.

Moreover, for any ψ ∈ L1(G) and any j, we have

(6.23)
∥∥Ξj(ψ)

∥∥
L1(G) 6

1
c
‖ψ‖L1(G) .

Proof : 1. If γXj = Xjγ for any γ ∈ Γj , then using (5.2) in the second equality

µ(Xj ∩ γXjs
−1) = µ(Xj ∩Xjγs

−1) 6 µ(Xj ∩XjΓjs−1) = µ(Xj ∩Gs−1) = µ(Xj).

If µ(Xj∆X−1
j ) = 0, then using unimodularity in the last equality, we see that

µ(Xj ∩ γXjs
−1) 6 µ(Xj ∩X−1

j ∩ γXjs
−1) + µ

(
(Xj −X−1

j ) ∩ γXjs
−1)

6 µ(Xj ∩X−1
j ∩ γXjs

−1) + µ
(
(Xj∆X−1

j ) ∩ γXjs
−1)

6 µ
(
Xj ∩X−1

j ∩ γ(Xj ∩X−1
j )s−1)+ µ

(
Xj ∩X−1

j ∩ γ(Xj −X−1
j )s−1)+ µ

(
Xj∆X−1

j )

6 µ
(
Xj ∩X−1

j ∩ γ(Xj ∩X−1
j )s−1)+

=0︷ ︸︸ ︷
µ
(
γ(Xj∆X−1

j )s−1)+
=0︷ ︸︸ ︷

µ(Xj∆X−1
j )

6 µ(X−1
j ∩ γX−1

j s−1) = µ(Xj ∩ sXjγ
−1).(6.24)
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Using (5.2), we obtain

µ(Xj ∩ γXjs
−1) 6 µ(Xj ∩ sXjΓj) = µ(Xj).

So the integrand of (6.17) is integrable in both cases since ψ ∈ L1(G). We deduce that the
function φj is well-defined.

2. For any j, using (6.17) in the first equality, we have∑
γ∈Γj

|φj(γ)| =
∑
γ∈Γj

∣∣∣∣ 1
c µ(Xj)3

∫
G

ψ(s)µ
(
Xj ∩ γXjs

−1)2 dµ(s)
∣∣∣∣

6
1

c µ(Xj)3

∫
G

∑
γ∈Γj

|ψ(s)|µ(Xj ∩ γXjs
−1)2 dµ(s)

6
1

cµ(Xj)3 ‖ψ‖L1(G) sup
s∈G

∑
γ∈Γj

µ(Xj ∩ γXjs
−1)2

= 1
cµ(Xj)

‖ψ‖L1(G) sup
s∈G

∑
γ∈Γj

µ(Xj ∩ γXjs
−1)2

µ(Xj)2

6
1

cµ(Xj)
‖ψ‖L1(G) sup

s∈G

( ∑
γ∈Γj

µ(Xj ∩ γXjs
−1)

µ(Xj)

)2

.(6.25)

If γXj = Xjγ for any γ ∈ Γj , then we estimate (6.25) further with the pairwise disjointness
(5.3) of the sets Xjγs

−1 for different values of γ ∈ Γj in the second equality and (5.2) in the
third equality ∑

γ∈Γj

µ(Xj ∩ γXjs
−1)

µ(Xj)
=
∑
γ∈Γj

µ(Xj ∩Xjγs
−1)

µ(Xj)
= µ(Xj ∩XjΓjs−1)

µ(Xj)

= µ(Xj ∩Gs−1)
µ(Xj)

= µ(Xj)
µ(Xj)

= 1.

If µ(Xj∆X−1
j ) = 0, then we estimate (6.25) using (6.24) in the first inequality and (5.3) in the

first equality and (5.2) in the last equality, giving∑
γ∈Γj

µ(Xj ∩ γXjs
−1)

µ(Xj)
6
∑
γ∈Γj

µ(Xj ∩ sXjγ
−1)

µ(Xj)
= µ(Xj ∩ sXjΓj)

µ(Xj)
= 1.

By [78, Theorem 19.15], we conclude that the measure φjµΓj is bounded with
∥∥φjµΓj

∥∥
M(G) 6

1
cµ(Xj) ‖ψ‖L1(G). Therefore, using (6.17) and [78, Theorem 20.12] in the first inequality and the
unimodularity of G to write µ(X−1

j ) = µ(Xj) in the third inequality, we obtain∥∥φ̃j∥∥L1(G) 6
1

µ(Xj)
∥∥1Xj

∥∥
L1(G)

∥∥φjµΓj
∥∥

M(G)

∥∥1X−1
j

∥∥
L1(G)

6
1

c µ(Xj)
‖ψ‖L1(G)

∥∥1X−1
j

∥∥
L1(G) 6

1
c
‖ψ‖L1(G) .

Thus, (6.23) is shown.
Next, observe that if ψ has a support away from the origin e ∈ G then φ̃j(r) = 0 for r

close to e. More precisely, we have the following observation. This lemma is not useful if G is
compact.

78



Lemma 6.21 Suppose that ψ(s) = 0 a.e. if dist(s, e) < R for some R > 4. Then we have
(Ξjψ)(r) = 0 for any r ∈ B′(e,R− 4) and any j large enough.

Proof : We pick j0 ∈ N and take j > j0 such that Xj ⊂ B′(e, 1) for these j. By (6.8) (the
computation of [67, Lemma 2.1 (2)] is valid) and (6.17), we have

φ̃j(r) = 1
µ(Xj)

∫
Xj
φj(γj(rt)) dµ(t) = 1

cµ(Xj)4

∫
Xj

∫
G

ψ(s)µ
(
Xj ∩ γj(rt)Xjs

−1)2 dµ(s) dµ(t).

Let r ∈ B′(e,R−4). If dist(s, e) < R the integrand is zero. On the other hand, if dist(s, e) > R,
writing rt = ωj(rt)γj(rt) where ωj(rt) ∈ Xj , we have for any ω′j ∈ Xj

dist(γj(rt)ω′js−1, e) = dist(ωj(rt)−1rtω′js
−1, e) = dist(ωj(rt)−1rtω′j , s)

> dist(s, e)− dist(ωj(rt)−1rtω′j , e)
> dist(s, e)− dist(ωj(rt)−1rtω′j , ω

′
j)− dist(ω′j , e)

> dist(s, e)− dist(ωj(rt)−1rt, e)− 1
> dist(s, e)− dist(ωj(rt)−1rt, t)− dist(t, e)− 1
> dist(s, e)− dist(ωj(rt)−1r, e)− 2
> dist(s, e)− dist(ωj(rt)−1r, r)− dist(r, e)− 2
= dist(s, e)− dist(ωj(rt)−1, e)− dist(r, e)− 2
= dist(s, e)− dist(e, ωj(rt))− dist(r, e)− 2
> dist(s, e)− dist(r, e)− 3 > R−R+ 4− 3 = 1.

So the integrand is also zero. We infer that we have φ̃j(r) = 0.
We turn to the weak* convergence53 of the symbol φ̃j .

Lemma 6.22 Let ψ ∈ L∞(G). Assume in addition that γXj = Xjγ for any j ∈ N and any
γ ∈ Γj or that µ(Xj∆X−1

j ) = 0 for any j ∈ N. Then Ξj(ψ) −→
j
ψ for the weak* topology of

L∞(G).

Proof : Let g ∈ L1(G) be a testing element of weak* convergence. By density of Cc(G) in
L1(G) and the uniform estimate (6.21), we can assume in fact that g ∈ Cc(G).

Then if χ ∈ Cc(G) is a cut-off function with χ(s) = 1 for all s with54 dist(s, e) < R
def=

4 + exc(supp g, {e}), (recall that the metric dist used above is proper) we have ψχ = 1 on
supp(g). So 〈ψ, g〉L∞(G),L1(G) = 〈ψχ, g〉L∞(G),L1(G). Moreover, we have

Ξj(ψ) = Ξj(ψχ) + Ξj(ψ(1− χ)).

Recall that ψ(1 − χ) is zero if dist(s, e) < R. Hence by applying Lemma 6.21 with ψ(1 − χ)
instead of ψ, we deduce that the function Ξj(ψ(1− χ)) is zero if r ∈ B′(e, exc(supp g, {e})), in
particular on supp g. We conclude that 〈φ̃j , g〉 = 〈Ξj(ψχ), g〉.

53. Note that if G is compact, the proof is more simple. No need to use χ.
54. Recall that exc(A,B) = sup{dist(a,B) : a ∈ A}.
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Now let ψε ∈ Cc(G) be an ε-approximation in L1(G) norm of ψχ ∈ L1(G) ∩ L∞(G). Using
(6.23), in the second equality, we obtain∣∣∣〈Ξj(ψ), g

〉
L∞(G),L1(G) − 〈ψ, g〉L∞(G),L1(G)

∣∣∣ =
∣∣〈Ξj(ψχ), g

〉
− 〈ψχ, g〉

∣∣
6
∣∣〈(Ξj − IdL1(G))(ψχ− ψε), g

〉∣∣+
∣∣〈Ξj(ψε)− ψε, g〉∣∣

6

(
1
c

+ 1
)
‖ψχ− ψε‖L1(G) ‖g‖L∞(G) +

∣∣〈Ξj(ψε)− ψε, g〉∣∣
6

(
1
c

+ 1
)
ε ‖g‖L∞(G) +

∣∣〈Ξj(ψε)− ψε, g〉∣∣ .
Thus the first term becomes small uniformly in j > j0. For the second term, we use the point-
wise convergence Ξjψε(s) → ψε(s) from (6.20) together with the domination |Ξjψε(s)g(s)| 6
1
c ‖ψε‖L∞(G) |g(s)|.

If the assumptions of Lemma 6.22 are satisfied, we deduce by Lemma 6.7 that M
φ̃j
→ Mψ

in the weak operator topology of B(Lp(VN(G))) (point weak∗ topology if p = ∞). Moreover,
this convergence also holds if ψ is a continuous and bounded symbol. Indeed, according to
(6.20), we have a pointwise convergence φ̃j(s)→ ψ(s), which together with the uniform bound
‖φ̃j‖L∞(G) 6 1

c‖Mψ‖cb,Lp(VN(G))→Lp(VN(G)) of (6.15) also implies weak* convergence φ̃j → ψ,
so that we can again appeal to Lemma 6.7. According to the description of the predual space
(6.16), we have for the convergent subnet M

φ̃j(k)
of M

φ̃j
that〈

M
φ̃j(k)

f, g
〉

Lp(VN(G),Lp∗ (VN(G))
−→
k

〈
P pG(Mψ)f, g

〉
Lp(VN(G),Lp∗ (VN(G)).

for f ∈ Lp(VN(G)) and g ∈ Lp∗(VN(G)). Since a subnet of a convergent net converges to the
same limit, we deduce P pG(Mψ) = Mψ.

Now, we turn to the case p = 1. We simply put

P 1
G : CB(L1(VN(G)))→ CB(L1(VN(G))), T 7→ P∞G (T ∗)∗.

Note that P∞G (T ∗) belongs to M∞,cb(G), so that it admits indeed a preadjoint P∞G (T ∗)∗ be-
longing to M1,cb(G) by Lemma 6.4. We check now the claimed properties of P 1

G. Linear-
ity and boundedness are clear. If T : L1(VN(G)) → L1(VN(G)) is completely positive, then
by Lemma 2.7, T ∗ is also completely positive and hence also P∞G (T ∗). We conclude that
P 1
G(T ) = P∞G (T ∗)∗ is completely positive. If Mψ ∈ M1,cb(G), then we have P 1

G(Mψ) =
P∞G ((Mψ)∗)∗ = (P∞G (Mψ̌))∗ = (Mψ̌)∗ = Mψ.

It remains to check the claimed compatibility property. We need the following lemma.

Lemma 6.23 For j ∈ N and any completely bounded map T : L1(VN(G)) → L1(VN(G)), we
have P 1

j (T )∗ = P∞j (T ∗).

Proof : In this proof we denote by φTj the symbol of 1
cP

p
Γj (Ψ

p
jTΦpj ). Let S : L1(VN(Γj)) →

L1(VN(Γj)) be a completely bounded map. We denote by ψSj the symbol of the Fourier mul-
tiplier P 1

Γj (S) given by Corollary 4.6 with G = H = Γj . The symbol ψ(S∗)
j of the Fourier

multiplier P∞Γj (S∗) is given by (where γ ∈ Γj)

ψ
(S∗)
j (γ) = τΓj

(
S∗(λγ)λ−1

γ

)
= τΓj

(
λγS(λ−1

γ )
)

= τΓj
(
S(λ−1

γ )λγ
)

= ψSj (γ−1) = ψ̌Sj (γ).
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Using Lemma 6.4 in the second equality, we obtain

(6.26) P∞Γj (S∗) = Mψ̌S
j

= (MψS
j

)∗ =
(
P 1

Γj (S)
)∗
.

Note that Ψ∞j T ∗Φ∞j = (Ψ1
jTΦ1

j )∗. This implies

M
φ

(T∗)
j

= 1
c
P∞Γj

(
Ψ∞j T ∗Φ∞j

)
= 1
c
P∞Γj

(
(Ψ1

jTΦ1
j )∗
)

= 1
c
P 1

Γj
(
Ψ1
jTΦ1

j

)∗ =
(
MφT

j

)∗ = Mφ̌T
j

where we use (6.26) in the central equality. Now, using (6.14), (1Xj )̌ = 1X−1
j

and µ̌Γj = µΓj ,
we deduce

φ̃
(T∗)
j = 1

µ(Xj)
1Xj ∗

(
φ

(T∗)
j µΓj

)
∗ 1X−1

j
= 1
µ(Xj)

1Xj ∗
(
φ̌Tj µΓj

)
∗ 1X−1

j

= 1
µ(Xj)

ˇ︷ ︸︸ ︷
1Xj ∗

(
φTj µΓj

)
∗ 1X−1

j
=

ˇ̃
φTj ,

thus finishing the proof of the lemma since P 1
j (T )∗ =

(
M
φ̃T
j

)∗ = M ˇ̃
φT
j

= M
φ̃

(T∗)
j

= P∞j (T ∗).

Now suppose that T belongs to both CB(L1(VN(G))) and CB(Lp(VN(G))). Recall that the
symbol φ̃Tj of P pj (T ) does not depend on p if T belongs to two different spaces CB(Lp(VN(G)))
and CB(Lq(VN(G))). Consequently the symbols of P pj (T )∗ and P 1

j (T )∗ are identical and the
symbols of P∞j (T ∗) and P p

∗

j (T ∗) are also identical. Using the above lemma, we conclude that

P pj (T )∗ = P p
∗

j (T ∗).

Passing to the limit when j → ∞, we infer that P pG(T )∗ = P p
∗

G (T ∗). Therefore, for any
x ∈ L1(VN(G))∩Lp(VN(G)) and any y ∈ VN(G)∩Lp∗(VN(G)), using the compatibility of the
P qG already proven, we have〈

P 1
G(T )x, y

〉
=
〈
P∞G (T ∗)∗x, y

〉
=
〈
x, P∞G (T ∗)y

〉
=
〈
x, P p

∗

G (T ∗)y
〉

=
〈
x, P pG(T )∗y

〉
=
〈
P pG(T )x, y

〉
.

This shows the compatibility on the L1 level.

Remark 6.24 Suppose 1 < p < ∞. The amenability assumption has only been used once in
the proof because of the use of Theorem 6.15. It would be interesting to find a non-amenable
version of Theorem 6.15.

Remark 6.25 We ignore if the condition (6.12) can be removed.

Since the symbol of a completely bounded Fourier multiplier Mφ : VN(G)→ VN(G) is equal
almost everywhere to a continuous function, see e.g. [67, Corollary 3.3], the above theorem
gives projections at the level p =∞ and p = 1.

Corollary 6.26 Let G be a second countable unimodular locally compact group satisfying ALSS
such that (6.12) holds. Then there exist projections P∞G : CBw∗(VN(G))→ CBw∗(VN(G)) and
P 1
G : CB(L1(VN(G))) → CB(L1(VN(G))) which are compatible, onto M∞,cb(G) and M1,cb(G)

of norm at most 1
c preserving complete positivity.
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6.5 Examples of computations of the density
In this section, we will describe some concrete non-abelian groups in which Theorem 6.16 applies.
Before that, we start by recalling some information on semidirect products.

Semidirect products. Let G1 and G2 be topological groups and consider some group ho-
momorphism η : G2 → Aut(G1) such that the map55

(6.27) G1 ×G2 → G1, (s, t) 7→ ηt(s) is continuous.

The semidirect product G1 oη G2 [60, page 183] is the topological group with the underlying
set G1 ×G2 equipped with the product topology and with the group operations given by

(6.28) (s, t) oη (s′, t′) =
(
sηt(s′), tt′

)
and (s, t)−1 =

(
ηt−1(s−1), t−1).

The group G1 identifies to a closed normal subgroup of G1 oη G2 and G2 as a closed subgroup
[60, page 183] and we have (G1 oη G2)/G1 = G2.

If G1 and G2 are locally compact groups then G1oηG2 is a locally compact group. If G1 and
G2 are in addition equipped with some left Haar measures µG1 and µG2 , by [60, Proposition 9.5
Chapter III] (see also [78, 15.29]) a left Haar measure of G is given by µG = µG1⊗ (δµG2) where
δ : G2 → (0,∞) is defined by δ(t) = mod ηt where t ∈ G2. By [60, Chapter III, (9.6)], a right
Haar measure is given by ∆G1µG1 ⊗∆G2µG2 . It is folklore and easy to deduce that the group
G1 oη G2 is unimodular if and only if G1 and G2 are unimodular and if each automorphism ηt
of G1 is measure-preserving, i.e. if∫

G1

f(ηt(s)) dµG1(s) =
∫
G1

f(s) dµG1(s), t ∈ G2, f ∈ Cc(G1).

In this case, µG = µG1 ⊗ µG2 gives a Haar measure on G.
We will use the following lemma.

Lemma 6.27 Let G1 and G2 be locally compact groups. Let Γ1 and Γ2 be lattices in G1 and
G2. Suppose that η : G2 → Aut(G1) is a homomorphism satisfying (6.27). If ηt(Γ1) ⊂ Γ1
for any t ∈ Γ2 then Γ = Γ1 oη|Γ2 Γ2 is a lattice of G1 oη G2. If in addition X1 and X2 are
associated fundamental domains satisfying ηω2(γ1) = γ1 for any ω2 ∈ X2 and any γ1 ∈ Γ1 then
X = X1 ×X2 is a fundamental domain associated with Γ.

Proof : The first part is [14, Exercise B.3.5]. It remains to show that X is a fundamental
domain of Γ. Indeed, this subset is clearly Borel measurable. Consider some arbitrary element
(s1, s2) of G. Since X1 is a fundamental domain of Γ1, we can write s1 = ω1γ1 with ω1 ∈ X1
and γ1 ∈ Γ1 and similarly s2 = ω2γ2 with ω2 ∈ X2 and s2 ∈ Γ2. Consequently, using (6.28), we
have

(s1, s2) = (ω1γ1, ω2γ2) =
(
ω1ηω2(γ1), ω2γ2

)
= (ω1, ω2) oη (γ1, γ2)

where (ω1, ω2) ∈ X and (γ1, γ2) ∈ Γ. So we obtain (5.2).
Consider some (ω1, ω2), (ω′1, ω′2) ∈ X where ω1, ω

′
1 ∈ X1 and ω2, ω

′
2 ∈ X2 and some elements

(γ1, γ2) and (γ′1, γ′2) of Γ. If (ω1, ω2) oη (γ1, γ2) = (ω′1, ω′2) oη (γ′1, γ′2) then
(
ω1ηω2(γ1), ω2γ2

)
=(

ω′1ηω′2(γ′1), ω′2γ′2
)
, that is

(
ω1γ1, ω2γ2

)
=
(
ω′1γ

′
1, ω
′
2γ
′
2
)
. We deduce that ω1γ1 = ω′1γ

′
1 and

ω2γ2 = ω′2γ
′
2. We conclude that (γ1, γ2) = (γ′1, γ′2). Hence we obtain (5.3).

55. If Aut(G1) is equipped with the well-known Braconnier topology, the continuity of the map (s, t) 7→ ηt(s)
from G1 ×G2 onto G1 is equivalent to the continuity of the homomorphism η : G2 → Aut(G1).
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Groups acting on locally finite trees. We give now some examples of compact non-
discrete ALSS groups acting on locally finite trees for which Theorem 6.16 yields a bounded
map P pG : CB(Lp(VN(G)))→Mp,cb(G) with sharp norm, i.e. with a norm equal to one.

Let (mj)j>1 be a sequence of integers with mj > 2. Let Y = (Yj)j>1 be a sequence of
alphabets with |Yj | = mj and Yj = {yj,1, . . . , yj,mj}. If n > 0, a word of length n over Y is
a sequence of letters of the form w = w1w2 . . . wn with wj ∈ Yj for all j. The unique word of
length 0, the empty word, is denoted by ∅. The set of words of length n is called the nth level.

Now we introduce the prefix relation 6 on the set of all words over Y . Namely, we let w 6 z
if w is an initial segment of the sequence z, i.e. if w = w1 . . . wn, z = z1 . . . zk with n 6 k and
wj = zj for all j ∈ {1, . . . , n}. This relation is a partial order and the partially ordered set T
of words over Y is called the spherically homogeneous tree over Y . We refer to [12] and [63] for
more information.

Let us give now the graph-theoretical interpretation of T . Every word over Y repre-
sents a vertex in a rooted tree. Namely, the empty word ∅ represents the root, the m1 one-
letter words y1,1, . . . , y1,m1 represent the m1 children of the root, the m2 two-letter words
y1,1y2,1, . . . , y1,1y2,m2 represent the m2 children of the vertex y1,1, etc.

An automorphism of T is a bijection of T which preserves the prefix relation. From the
graph-theoretical point of view, an automorphism is a bijection which preserves edge incidence
and the distinguished root vertex ∅. We denote by Aut(T ) the group of automorphisms of T
and if j > 0 by Aut[j](T ) the subgroup of automorphisms whose vertex permutations at level j
and below56 are trivial.

We equip T with the discrete topology and Aut(T ) with the topology of pointwise con-
vergence. By [63, page 133], the sequence (Aut[j](T ))j>0 of finite groups and the canonical
inclusions ψij : Aut[j](T )→ Aut[i](T ) where j > i > 0 define an inverse system and we have an
isomorphism

(6.29) Aut(T ) = lim←−Aut[j](T ).

In particular, Aut(T ) is a profinite group, hence compact and totally disconnected by [153,
Corollary 1.2.4].

If j > 0, we denote by St(j) the jth level stabilizer consisting of automorphisms of T which
fix all the vertices on the level j (and of course on the levels 0, 1, . . . , j − 1). Then St(j) is a
normal subgroup of Aut(T ) which is open if j > 1. By [12, page 20], for any j > 0, we have an
isomorphism

(6.30) Aut(T ) = St(j) o Aut[j](T ).

56. The action is trivial on the levels j, j + 1, j + 2, . . ..
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Proposition 6.28 The compact group Aut(T ) is second countable and ALSS with respect to the
sequence (Aut[j](T ))j>1 of finite lattice subgroups and to the sequence (St(j))j>1 of symmetric
fundamental domains. Moreover, (6.12) holds with c = 1. More precisely, for any integer j ∈ N
and any γ ∈ Aut[j](T ), we have

(6.31) 1
µ(St(j))

∫
Aut(T )

µ(St(j) ∩ γSt(j)s)2

µ(St(j))2 dµ(s) = 1.

Consequently, Theorem 6.16 applies.

Proof : Since the inverse system is indexed by N, by [153, Proposition 4.1.3], the group Aut(T )
is second countable. By (6.30), we have Aut(T ) = St(j)Aut[j](T ). Suppose that γ1, γ2 belong
to Aut[j](T ) and that ω1, ω2 ∈ St(j) satisfy ω1γ1 = ω2γ2. Then ω−1

2 ω1 = γ2γ
−1
1 . Using again

(6.30), we infer that γ1 = γ2. Moreover, St(j) is open hence Borel measurable, and a subgroup
hence symmetric. We conclude that St(j) is a symmetric fundamental domain for Aut[j](T ).

Now, we have a homeomorphism Aut(T )/Aut[j](T ) = (St(j)oAut[j](T ))/Aut[j](T ) = St(j).
Note that the subgroup St(j) is open, hence closed in the compact group Aut(T ) by [78,
Theorem 5.5] and finally compact. We conclude that Aut[j](T ) is a cocompact lattice. Moreover,
by [63, page 133], the sequence (St(j)j>1 is an open neighborhood basis of IdT in Aut(T ).

It remains to compute (6.31). By normality of St(j), for any γ ∈ Aut[j](T ), we have
γSt(j) = St(j)γ. Using that µ is a left Haar measure of Aut(T ) in the last equality, for any
γ ∈ Aut[j](T ), we deduce that

1
µ(St(j))

∫
Aut(T )

µ(St(j) ∩ γSt(j)s)2

µ(St(j))2 dµ(s) = 1
µ(St(j))

∫
Aut(T )

µ(St(j) ∩ St(j)γs)2

µ(St(j))2 dµ(s)

= 1
µ(St(j))

∫
Aut(T )

µ(St(j) ∩ St(j)s)2

µ(St(j))2 dµ(s).

For any s ∈ Aut(T ), the sets St(j) and St(j)s are right cosets of the subgroup St(j) in Aut(T ).
Since two right cosets are either identical or disjoint, we deduce that

St(j) ∩ St(j)s =
{

St(j) if s ∈ St(j)
∅ if s 6∈ St(j)

.

Now, we can conclude since

1
µ(St(j))

∫
Aut(T )

µ(St(j) ∩ St(j)s)2

µ(St(j))2 dµ(s) = 1
µ(St(j))

∫
St(j)

µ(St(j))2

µ(St(j))2 dµ(s) = µ(St(j))
µ(St(j)) = 1.

Remark 6.29 By [63, page 134], note that we have an isomorphism Aut(T ) = lim←−(Sym(Yj) o
· · · o Sym(Y2) o Sym(Y1)). If (Gj , Yj)j>1 denotes a sequence of finite permutation groups (such
that the actions are faithful), the same method gives a generalization for the inverse limit
G = lim←−(Gj o · · · oG2 oG1) of iterated permutational wreath products. The verification is left to
the reader.

Stability under products. The (good) behaviour of (6.12) under direct products is de-
scribed in the following result.
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Proposition 6.30 Let G1 and G2 be two second countable (unimodular) locally compact groups
satisfying ALSS with respect to the sequences (Γ1,j), (Γ2,j) of lattices and to the sequences
(X1,j), (X2,j) of associated fundamental domains. Suppose that (6.12) holds for both groups
G1 and G2 with constants c1 and c2. Then G = G1 × G2 is ALSS with respect to the lattices
(Γj) = (Γ1,j × Γ2,j) and associated fundamental domains (Xj) = (X1,j × X2,j) and it satisfies
(6.12) with constant c = c1 ·c2. Moreover, if X1,j and X2,j are symmetric (resp. γkXk,j = Xk,jγk
for k = 1, 2 and γk ∈ Γk,j) then Xj is symmetric (resp. γXj = Xjγ for γ ∈ Γj). Let 1 6 p 6∞
and suppose that G1 and G2 are amenable if 1 < p < ∞. Then Theorem 6.16 applies to
G = G1 ×G2.

Proof : If G1 and G2 are second countable then G1 ×G2 is also second countable. By Lemma
6.27, Γj = Γ1,j × Γ2,j is a lattice subgroup of G1 × G2 and Xj = X1,j × X2,j is an associated
fundamental domain. If µ1 and µ2 are Haar measures on G1 and G2 then µ = µ1 ⊗ µ2 is a
Haar measure on G. We check that G1×G2 is ALSS with respect to (Γj) and (Xj). Let V be a
neighborhood of e ∈ G1×G2. Then there exist neighborhoods U1 of e1 ∈ G1 and U2 of e2 ∈ G2
such that U1 × U2 ⊂ V . Since G1 and G2 are ALSS, there exists j0 ∈ N such that X1,j ⊂ U1
and X2,j ⊂ U2 for any j > j0. Consequently, Xj = X1,j × X2,j ⊂ U1 × U2 ⊂ V . Consequently
G1 ×G2 is ALSS. Now for γ1 ∈ Γ1,j , we put

I1(γ1) = 1
µ1
(
X1,j

) ∫
G1

µ2
1
(
X1,j ∩ γ1X1,js1

)
µ2

1
(
X1,j

) dµ1(s1)

and similarly, for given γ2 ∈ Γ2,j resp. γ ∈ Γj , we define I2(γ2) resp. I(γ). We claim that
I((γ1, γ2)) = I1(γ1)I2(γ2). Indeed, using the elementary fact (A × B) ∩ (C ×D) = (A ∩ C) ×
(B ∩D), we have

I((γ1, γ2)) = 1
µ
(
X1,j ×X2,j

) ∫
G1×G2

µ2((X1,j ×X2,j) ∩ (γ1, γ2)(X1,j ×X2,j)(s1, s2)
)

µ2
(
X1,j ×X2,j

) dµ(s1, s2)

= 1
µ1
(
X1,j

)
µ2
(
X2,j

) ∫
G1×G2

µ2((X1,j ×X2,j) ∩ (γ1X1,js1)× (γ2X2,js2)
)

µ2
1
(
X1,j

)
µ2

2
(
X2,j

) dµ(s1, s2)

= 1
µ1
(
X1,j

)
µ2
(
X2,j

) ∫
G1×G2

µ2((X1,j ∩ γ1X1,js1)× (X2,j ∩ γ2X2,js2)
)

µ2
1
(
X1,j

)
µ2

2
(
X2,j

) dµ(s1, s2)

= 1
µ1
(
X1,j

)
µ2
(
X2,j

) ∫
G1

µ2
1
(
X1,j ∩ γ1X1,js1

)
µ2

1
(
X1,j

) dµ1(s1)
∫
G2

µ2
2
(
X2,j ∩ γ2X2,js2

)
µ2

2
(
X2,j

) dµ2(s2)

= I1(γ1)I2(γ2).

Now let K be a compact subset of G1 ×G2. We check (6.12), that is

lim
j→∞

sup
(γ1,γ2)∈Γj∩K

|I((γ1, γ2))− c1c2| = 0.

Denoting πk : G1 ×G2 → Gk the canonical continuous projection, we have that πk(K) ⊂ Gk is
compact (k = 1, 2). Then

sup
(γ1,γ2)∈Γj∩K

|I((γ1, γ2))− c1c2| 6 sup
(γ1,γ2)∈Γj∩π1(K)×π2(K)

|I((γ1, γ2))− c1c2|

= sup
γ1∈Γ1,j∩π1(K)

sup
γ2∈Γ2,j∩π2(K)

|I1(γ1)I2(γ2)− c1c2|

6 sup
γ1∈Γ1,j∩π1(K)

sup
γ2∈Γ2,j∩π2(K)

|I1(γ1)I2(γ2)− c1I2(γ2)|+ |c1I2(γ2)− c1c2|
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6 sup
γ1∈Γ1,j∩π1(K)

|I1(γ1)− c1| sup
γ2∈Γ2,j∩π2(K)

|I2(γ2)|+ c1 sup
γ2∈Γ2,j∩π2(K)

|I2(γ2)− c2|

−−−−→
j→+∞

0 · c2 + c1 · 0 = 0.

Thus, (6.12) follows for G1 × G2 and constant c1c2. The statement about preservation of
symmetric fundamental domains (resp. commutation γXj = Xjγ) is easy to check. For the
application of Theorem 6.16, we only note that G1 × G2 is amenable once G1 and G2 are
amenable.

Remark 6.31 Let G be a countable discrete group. The group G is ALSS with respect to the
constant sequences (Γj) and (Xj) defined by Γj = G and by Xj = {e} for any j. Moreover, for
any γ ∈ G and any j, it is obvious that

1
µG(Xj)

∫
G

µ2
G(Xj ∩ γXjs)
µ2
G(Xj)

dµG(s) = 1.

Semidirect products of abelian groups by discrete groups. For semidirect products,
the situation is not as good as direct products.

Proposition 6.32 Let G1 be a second countable abelian locally compact group which is ALSS
with respect to a sequence (Γ1,j) of lattice subgroups associated to a sequence (X1,j) of funda-
mental domains such that (6.12) is satisfied. Let G2 be a countable discrete group. Suppose
that η : G2 → Aut(G1) is a homomorphism satisfying ηt(Γ1,j) ⊂ Γ1,j for any t ∈ G2 and any
j. Then the semidirect product G = G1 oη G2 is second countable and ALSS with respect to
the sequences (Γj) and (Xj) defined by Γj = Γ1,j × G2 and Xj = X1,j × {eG2}. If in addition
ηt(X1,j) ⊂ X1,j for any t ∈ G2 and any j then (6.12) holds with some c ∈ (0, 1]. If the X1,j
are symmetric (resp. γ1X1,j = X1,jγ1 for any γ1 ∈ Γ1,j) then the Xj are symmetric (resp.
γXj = Xjγ for any γ ∈ Γj). Consequently, Theorem 6.16 applies in the case p = 1 and p =∞.
If G2 is in addition amenable, the result applies in the case 1 < p <∞.

Proof : It is obvious that G is second countable. By Lemma 6.27, each Γj is a lattice of G and
each Xj is an associated fundamental domain. We check that G1 ×G2 is ALSS with respect to
(Γj) and (Xj). Let V be a neighborhood of the neutral element e of G1×G2. Then there exist
neighborhood U1 of e1 ∈ G1 such that U1 × {e2} ⊂ V . Since G1 is ALSS, there exists j0 ∈ N
such that X1,j ⊂ U1 for any j > j0. Consequently, Xj = X1,j × {e2} ⊂ U1 × {e2} ⊂ V . Thus
G1 ×G2 is ALSS.

Using [14, Proposition B.2.2 page 332], the existence of a lattice implies that G is unimodular
and µG = µG1⊗µG2 gives a Haar measure onG. It remains to check (6.12). To this end, consider
γ = (γ1, γ2) ∈ Γj , ω = (ω1, eG2) ∈ Xj and s = (s1, s2) ∈ G. Then using (6.28)

γωs = (γ1, γ2) oη (ω1, eG2) oη (s1, s2) = (γ1, γ2) oη (ω1 + s1, s2) =
(
γ1 + ηγ2(ω1 + s1), γ2s2

)
.

This element belongs to Xj = X1,j ×{eG2} if and only if s2 = γ−1
2 and γ1 +ηγ2(ω1 + s1) ∈ X1,j .

By the assumption ηγ2(X1,j) ⊂ X1,j , the latter condition is equivalent with

η−1
γ2

(
γ1 + ηγ2(ω1 + s1)

)
∈ X1,j ,

that is η−1
γ2

(γ1) + ω1 + s1 ∈ X1,j . For any γ = (γ1, γ2) ∈ Γj and s = (s1, s2) ∈ G, we infer from
the above that

µG(Xj ∩ γXjs) = (µG1 ⊗ µG2)
(
(X1,j × {eG2}) ∩ γXjs

)
= µG1

(
{ω1 ∈ X1,j : η−1

γ2
(γ1) + ω1 + s1 ∈ X1,j}

)
.
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Moreover, we have µG(Xj) = µG1⊗G2(X1,j × {eG2}) = µG1(X1,j)µG2({eG2}) = µG1(X1,j).
Therefore, with a change of variable in the second equality and using the fact that G1 satisfies
(6.12) in the passage to the limit, we finally obtain∫

G

µG(Xj ∩ γXjs)2

µG(Xj)3 dµG(s) =
∫
G1

µG1({ω1 ∈ X1,j : ω1 + s1 + η−1
γ2

(γ1) ∈ X1,j})2

µG1(X1,j)3 dµG1(s1)

=
∫
G1

µG1({ω1 ∈ X1,j : ω1 + s1 ∈ X1,j})2

µG1(X1,j)3 dµG1(s1)

=
∫
G1

µG1(X1,j ∩ (X1,j + s1))2

µG1(X1,j)3 dµG1(s1)

−−−−→
j→+∞

c ∈ (0, 1].

The statement about the symmetry (resp. commutativity with elements of Γj) of the funda-
mental domain is easy to check with (6.28). If G2 is amenable then G is an amenable group by
[14, Proposition G.2.2 (ii)], being a group extension of an amenable group by an abelian (hence
also amenable) group.

For applying the above result, we compute the density (6.12) for some abelian groups.
By [43, Corollary 4.2.6], the groups described in the following proposition are the compactly
generated locally compact abelian groups of Lie type.

Proposition 6.33 Suppose that G = Zl × Rn × Tm × F where l, n,m ∈ N and where F is a
finite abelian group. For any integer j, consider the lattice subgroup

Γj = Zl × (2−jZ)n ×
{

2−jr : r ∈ {0, . . . , 2j − 1}
}m × F

and the associated symmetric fundamental domain

Xj = {0}l × [−2−j−1, 2−j−1)n × [−2−j−1, 2−j−1)m × {eF }.

Then the group G is ALSS with respect to the sequences (Γj) and (Xj). Moreover, for any j
and any γ ∈ Γj, we have

1
µG(Xj)

∫
G

µ2
G (Xj ∩ (γ + Xj + s))

µ2
G(Xj)

dµG(s) =
(

2
3

)n+m
.

Proof : Using Lemma 6.27, it is clear that the Γj ’s are lattice subgroups and that the Xj ’s are
associated fundamental domains. It is obvious that G is ALSS with respect to these sequences.
For any j, a simple computation gives

µG(Xj) = (µRn ⊗ µTm)
([
− 2−j−1, 2−j−1)n × [− 2−j−1, 2−j−1)m)

=
(
µR
([
− 2−j−1, 2−j−1))n(µT

([
− 2−j−1, 2−j−1))m = 2−j(n+m).

Now, note that if −2a 6 x 6 2a then we have µR([−a, a]∩ [−a+ x, a+ x]) = 2a− |x|. Further,
for any j and any γ ∈ Γj , we have, writing s = (x1, . . . , xn, y1, . . . , ym, z1, . . . , zl, f)∫

G

µ
(
Xj ∩ (γ + Xj + s)

)2 dµG(s) =
∫
G

µG
(
Xj ∩ (Xj + s)

)2 dµG(s)

=
∫
Rn

n∏
k=1

µR
(
[−2−j−1, 2−j−1) ∩ [−2−j−1 + xk, 2−j−1 + xk)

)2 d(x1, . . . , xn)×
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×
∫
Tm

m∏
l=1

µT
(
[−2−j−1, 2−j−1) ∩ [−2−j−1 + yl, 2−j−1 + yl)

)2 d(y1, . . . , ym)

=
(∫ 2−j

−2−j
(2−j − |x|)2 dx

)n(∫ 2−j

−2−j
(2−j − |y|)2 dy

)m
=
(

2
∫ 2−j

0
(2−j − x)2 dx

)n+m

=
(

2
∫ 2−j

0
u2 du

)n+m

=
(

2
3

)n+m
2−3j(n+m).

Thus∫
G

µG (Xj ∩ (γ + Xj + s))2

µG(Xj)3 dµG(s) = 23j(n+m) ·
(

2
3

)n+m
2−3j(n+m) =

(
2
3

)n+m
∈ (0, 1].

Remark 6.34 The assumptions of Proposition 6.32 are satisfied in the following situation.
Assume that G1 = Zl × Rn × Tm × F where l, n,m ∈ N and where F is a finite abelian group.
Let G2 be a subgroup of Sym(n) × Sym(m) where Sym(n) and Sym(m) are the permutation
groups of n and m elements. For (σ1, σ2) ∈ G2, let further

η(σ1,σ2)(z1, . . . , zl, x1, . . . , xn, y1, . . . , ym, f)(6.32)
=
(
z1, . . . , zl, xσ1(1), . . . , xσ1(n), yσ2(1), . . . , yσ2(m), f

)
.

For any integer j, consider the lattice Γ1,j = Zl×(2−jZ)n×
{

2−jr : r ∈ {0, . . . , 2j − 1}
}m×F of

G1 and the symmetric fundamental domain X1,j = {0}l×[−2−j−1, 2−j−1)n×[−2−j−1, 2−j−1)m×
{eF }. It is easy to check that the transformation (6.32) preserves both Γ1,j and X1,j . Then
G1, G2, (Γ1,j), (X1,j) and η satisfy all the assumptions of Proposition 6.32 and consequently
Theorem 6.16 applies to the group G = G1 oη G2.

More generally, G2 can be any countable discrete (amenable) group such that ηt is given by
a coordinate permutation as in (6.32) for any s ∈ G2.

Now, we give a natural semidirect product for which we can apply Proposition 6.32 and
6.33. Let Hn = R2n+1 be the (continuous) Heisenberg group with group operations

(6.33) (a, b, t) · (a′, b′, t′) = (a+ a′, b+ b′, t+ t′ + a · b′) and (a, b, t)−1 = (−a,−b,−t+ a · b)

where a, b, a′, b′ ∈ Rn and t, t′ ∈ R and where · denotes the canonical scalar product on Rn.
Recall that Hn is unimodular and the Haar measure on Hn is just usual Lebesgue measure on
Rn. We can use our results with the semi-discrete Heisenberg group described in the following
result, see [111, page 1459] for more information on this group.

Proposition 6.35 Let Hn = {(x, y, t) ∈ Hn : x, y ∈ Zn, t ∈ R} be the (amenable) closed
subgroup of the Heisenberg group Hn. For any integer j, we consider the lattice subgroup Γj =
Zn × Zn × 2−jZ of Hn and the associated symmetric fundamental domain Xj = {0} × {0} ×
[−2−j−1, 2−j−1). Then Hn is ALSS with respect to the increasing sequence (Γj) and to the
sequence (Xj). Moreover, for any j and any γ ∈ Γj, we have

(6.34) 1
µ(Xj)

∫
Hn

µ2(Xj ∩ γXjs)
µ2(Xj)

dµ(s) = 2
3 .

In particular, Theorem 6.16 applies.
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Proof : Using (6.33), it is easy to see that Hn is a closed subgroup of Hn, so it is locally
compact. If G1 = {(0, b, t) : b ∈ Zn, t ∈ R} and G2 = {(a, 0, 0) : a ∈ Zn}, it is not difficult
to check by using again (6.33) that G1 and G2 are closed subgroups of Hn, Hn = G1G2,
G1 ∩ G2 = {(0, 0, 0)} and that G1 is normal in Hn. By [60, Proposition page 184], we deduce
an isomorphism Hn = G1 oη G2 of topological groups where

(6.35) η(a,0,0)(0, b, t) = (0, b, t+ b · a), a, b ∈ Zn, t ∈ R.

Note that G1 is isomorphic to Zn ×R and that G2 is isomorphic to Zn. For any j, we consider
Γ1,j = Zn × 2−jZ and Xj,1 = {0}n × [−2−j−1, 2−j−1). For any (a, 0, 0) ∈ G2 and any integer j,
using (6.35), we see that η(a,0,0)(Γ1,j) ⊂ Γ1,j and η(a,0,0)(X1,j) ⊂ X1,j . By Proposition 6.32, we
deduce that Γj is a lattice subgroup of Hn, that Xj is an associated fundamental domain and
that the group Hn is ALSS with respect to the sequences (Γj) and (Xj). Finally the equality
(6.34) is a consequence of Proposition 6.33 and Proposition 6.32.

We finish by bringing to light a bad behaviour of (6.12) with respect to the Heisenberg
group H3.

Proposition 6.36 For any integer j, we consider the lattice subgroup Γj = 2−jZ×2−jZ×2−2jZ
of the Heisenberg group H3 and the associated fundamental domain Xj = [−2−j−1, 2−j−1) ×
[−2−j−1, 2−j−1)×[−2−2j−1, 2−2j−1). Then the Heisenberg group H3 is ALSS with respect to the
increasing sequence (Γj) and to the sequence (Xj). Moreover, for every fixed γ = (γ1, γ2, γ3) ∈
Γj0 for some j0 ∈ N with (γ1, γ2) 6= (0, 0) and γ1 · γ2 = 0 we have

(6.36) lim
j→+∞

1
µ(Xj)

∫
H3

µ2(Xj ∩ γXjs)
µ2(Xj)

dµ(s) = 0.

In particular, for this choice of group, and sequences of lattices and fundamental domains,
Theorem 6.16 is not applicable.

Proof : Note that it is obvious that H3 is ALSS with respect to the sequences (Γj) and (Xj).
First observe that for any s ∈ H3 and any integer j we have

µ(Xj∩γXjs) =
∫
H3

1Xj∩γXjs(t) dµ(t) =
∫
H3

1Xj (t)1γXjs(t) dµ(t) =
∫
H3

1Xj (t)1Xj (γ−1ts−1) dµ(t).

For any s ∈ H3, any j and any γ ∈ Γj , we have using the invariance of the Haar measure in the
third equality (to use u = γ−1ts−1)

1
µ(Xj)

∫
H3

µ(Xj ∩ γXjs)
µ2(Xj)

dµ(s) = 1
µ(Xj)3

∫
H3

µ(Xj ∩ γXjs)µ(Xj ∩ γXjs) dµ(s)

(6.37)

= 1
µ(Xj)3

∫
H3

∫
H3

∫
H3

1Xj (t)1Xj (r)1Xj (γ−1ts−1)1Xj (γ−1rs−1) dµ(r) dµ(t) dµ(s)

= 1
µ(Xj)3

∫
H3

∫
H3

∫
H3

1Xj (t)1Xj (r)1Xj (u)1Xj (γ−1rt−1γu) dµ(r) dµ(t) dµ(u)

= 1
µ(Xj)3

∫
Xj

∫
Xj

∫
Xj

1Xj (γ−1rt−1γu) dµ(r) dµ(u) dµ(t)

= 1
µ(Xj)3

∫
R3

∫
R3

∫
R3

1|r1|,|u1|,|t1|,|r2|,|u2|,|t2|62−j−11|r3|,|u3|,|t3|62−2j−11Xj (γ−1rt−1γu) dr dudt.
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If γ = (γ1, γ2, γ3) ∈ Γj and if r, u, t ∈ Xj , by (6.33), a tedious yet elementary calculation yields
(6.38)
γ−1rt−1γu = (u1+r1−t1, u2+r2−t2, u3+r3−t3−γ1r2+t1t2−t1γ2−t1u2+r1γ2+r1u2−r1t2+γ1t2).

We estimate from above. The last indicator function in the above triple integral can be ma-
jorized by 1|(γ−1rt−1γu)3|62−2j−1 . If |(γ−1rt−1γu)3| 6 2−2j−1 and r, u, t ∈ Xj , then by triangle
inequality and (6.38), we have

| − γ1r2 − t1γ2 + r1γ2 + γ1t2| 6
∣∣(γ−1rt−1γu)3

∣∣+ |u3 + r3 − t3 + t1t2 − t1u2 + r1u2 − r1t2|

6 2−2j−1
(

1 + 1 + 1 + 1 + 2 + 2 + 2 + 2
)

= 6 · 2−2j .

Using the equality 1
µ(Xj)3 = 212j , this says that (6.37) is less than

212j
∫
R3

∫
R3

∫
R3

1|r1|,|u1|,|t1|,|r2|,|u2|,|t2|62−j−11|r3|,|u3|,|t3|62−2j−11|−γ1r2−t1γ2+r1γ2+γ1t2|66·2−2j dr dudt.

We cheaply integrate over u1, u2, r3, u3 and t3 and obtain

= 212j2−8j
∫
R4

1|r1|,|t1|,|r2|,|t2|62−j−11|−γ1r2−t1γ2+r1γ2+γ1t2|66·2−2j dr1 dr2 dt1 dt2.

Now suppose first that γ2 = 0 and γ1 6= 0. Then the last indicator function can be simplified
and we can cheaply integrate over r1 and t1 to estimate further

6 24j2−2j
∫
R2

1|r2|,|t2|62−j−11|−r2+t2|6 1
|γ1|

6·2−2j dr2 dt2

= 22j
∫ 2−j−1

−2−j−1

∫ 2−j−1

−2−j−1
1|t2−r2|6 1

|γ1|
6·2−2j dr2 dt2 = 1

4

∫ 1

−1

∫ 1

−1
1|t′2−r′2|6 1

|γ1|
12·2−j dr′2 dt′2.

where we have performed the change of variables r′2 = 2j+1r2, t′2 = 2j+1t2. Now the last double
integral is easily seen to converge to 0 as j → ∞. The case γ1 = 0 and γ2 6= 0 can be treated
in the same way by symmetry.

6.6 Pro-discrete groups
An inverse system of topological groups indexed by a directed set I consists of a family (Gj)j∈I
of topological groups and a family (ψij : Gj → Gi)i,j∈I,j>i of continuous homomorphisms such
that ψii = IdGi and ψijψjk = ψik whenever k > j > i [153, Definition 1.1.1]. An inverse system
is called a surjective inverse system if each map ψij is surjective. Now let (Gj , ψij) be an inverse
system of topological groups and let G be a topological group. We shall call a family of contin-
uous homomorphisms ψj : G→ Gj compatible with the inverse system if ψijψj = ψi whenever
j > i. An inverse limit of an inverse system (Gj , ψij) of topological groups is a topological
group G together with a compatible family ψj : G → Gj of continuous homomorphisms with
the following universal property: whenever ψ′j : G′ → Gj is a compatible family of continuous
homomorphisms from a topological group G′, there exists a unique continuous homomorphism
ϕ : G′ → G such that ψjϕ = ψ′j for each j. Each inverse system admits an inverse limit, given
by the following construction [153, Proposition 1.1.4]:

(6.39) lim←−Gj =
{
s ∈

∏
j∈I

Gj : pi(s) = ψij(pj(s)) for all i 6 j

}
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with the subspace topology from the product topology and with projection maps ψj given by
the restrictions to lim←−Gj of the projection maps pi :

∏
j∈I Gj → Gi from the product.

We say that a topological group G is pro-discrete if it is isomorphic to the inverse limit
of an inverse system of discrete groups. We have the following characterization for locally
compact groups which is a variation of [130, Lemma 1.3]. For the sake of completeness, we give
a complete proof.

Proposition 6.37 A locally compact group G is pro-discrete if and only if it admits a basis
(Xj) of neighborhoods of the identity eG consisting of open compact normal subgroups. In this
case, we have G = lim←−Gj where the inverse system is given by the groups Gj = G/Xj and by
the homomorphisms ψij : Gj → Gi, sXj 7→ sXi for j > i and where the preorder is the opposite
of inclusion57 of the Xj’s. Moreover, if G is first countable then there exists a countable basis
of open compact normal subgroups. Finally, a pro-discrete locally compact group G is always
totally disconnected.

Proof : Suppose that G admits a family (Xj) of open compact normal subgroups forming a
neighborhood basis of eG. For any j ∈ I, we set Gj

def= G/Xj , which is discrete by [78, Theorem
5.21] since Xj is open. We use the preorder defined in the statement of the result. For j > i,
i.e. Xj ⊂ Xi, we also consider the well-defined homomorphism ψij : Gj → Gi, sXj 7→ sXi.
It is plain to check58 that the (ψij)j>i is an inverse system. We consider the construction
(6.39) of the inverse limit lim←−Gj . Note that the family of continuous homomorphisms ψ′j : G→
G/Xj , s 7→ sXj is compatible59. According to the universal property, there exists a continuous
homomorphism ϕ : G → lim←−Gj satisfying the compatibility ψ′j = ψjϕ. For any s ∈ G, this
means that

sXj = ψ′j(s) = ψj(ϕ(s)) = pj(ϕ(s)),

so that ϕ(s) is equal to the element (sXj)j∈I of the product
∏
j∈I G/Xj .

It remains to check that ϕ is bijective. For the injectivity, suppose that ϕ(s) = e, so
sXj = Xj for all j. Thus, s ∈ Xj for all j. Since G is Hausdorff and since the Xj ’s form a basis
of neighborhoods, we obtain s = eG. For the surjectivity, let t = (sjXj)j∈I be an element of
lim←−Gj . Let F be a finite subset of I. Consider some i ∈ I such that i > j for any j ∈ F . For
j ∈ F , we have

sjXj = pj(t) = ψji(pi(t)) = ψji(siXi) = siXj

so si ∈ sjXj . Hence si belongs to ∩j∈F sjXj . We infer that the collection of the compact
subsets sjXj has the finite intersection property. We conclude that there exists s ∈ ∩j∈IsjXj .
Consequently ϕ(s) = (sXj)j∈I = (sjXj)j∈I = t. We conclude that G ∼= lim←−Gj .Assume now that G is an inverse limit lim←−Gj of discrete groups Gj . Again, we use the
description (6.39). Since each ψj is continuous, each kernel Kerψj = ψ−1

j ({ej}) is the preimage
of an open set, hence open in G. We also know that Kerψj is normal and closed as a kernel of
a continuous homomorphism. It only remains to check that the Kerψj ’s form a neighborhood
basis of the identity eG. Indeed since Kerψj will fall within any given compact neighborhood
of eG for big enough j, Kerψj will also be compact for such j.

Let U be any neighborhood of eG in G. Then by trace topology, there exists a neighborhood
Ũ of eG in

∏
j∈I Gj with U = Ũ ∩ G. By the definition of the product topology, there exists

some finite subset F of I such that the subset Ṽ =
∏
j∈I Aj of

∏
j∈I Gj satisfies Ṽ ⊂ Ũ with

57. We let j > i if and only if Xj ⊂ Xi.
58. If k > j > i we have ψijψjk(sXk) = ψij(sXj) = sXi = ψik(sXk).
59. If j > i we have ψijψ′j(s) = ψij(sXj) = sXi = ψ′i(s).
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Aj = {ej} if j ∈ F and Aj = Gj if j 6∈ F . Since I is directed, we can choose i ∈ I such that
i > j for any j ∈ F . Then for any s ∈ Kerψi and any j ∈ F , we have

pj(s) = ψji(pi(s)) = ψji(ψi(s)) = ψji(ei) = ej .

Hence Kerψj ⊂ Ṽ . Consequently, we have Kerψj ⊂ Ṽ ∩ G ⊂ U . We have shown that the
Kerψj ’s form a neighborhood basis of the identity.

If G is first countable, there exists a countable neighborhood basis of eG, so we can also
extract a sequence of the Kerψj forming a neighborhood basis of eG.

We turn to the last claim. Recall that the intersection of all open subgroups of a locally
compact group is the connected component of the identity eG by [78, Theorem 7.8]. Since G is
Hausdorff, the intersection of closed neighborhoods of eG is {eG}. Since an open subgroup is
always closed [78, Theorem 5.5], we infer that the component of the identity is equal to {eG}.
By [78, Theorem 7.3], we conclude that G is totally disconnected.

In particular, by [24, Proposition 3 page 20], a pro-discrete locally compact group G is
unimodular.

Remark 6.38 Note that a locally compact group G is totally disconnected if and only if the
compact open subgroups form a basis of neighborhoods of the identity eG. The end of the proof
of Proposition 6.37 proves the more general implication ⇐. The converse is [78, Theorem 7.7].

There is the following variant of Theorem 6.16.

Theorem 6.39 Let G = lim←−Gj be a second countable pro-discrete locally compact group with
respect to an inverse system indexed by N. Suppose 1 6 p 6∞. Assume that G is amenable if
1 < p <∞. Then there exists a contractive map

P pG : CB(Lp(VN(G)))→Mp,cb(G)

with the properties:

1. If T is completely positive, then P pG(T ) is also completely positive.

2. If T = Mψ is a Fourier multiplier on Lp(VN(G)) with bounded measurable symbol ψ : G→
C then P pG(Mψ) = Mψ.

Moreover, P pG has the following compatibility: if T ∈ CB(Lp(VN(G))) ∩ CB(Lq(VN(G))) for
some 1 6 p, q 6∞, then P pG(T ) being twice defined as an element of Mp,cb(G) and Mq,cb(G) co-
incides on Lp(VN(G))∩Lq(VN(G)). Note that in the case p =∞, one has to take CBw∗(VN(G))
as the domain space of P∞G .

Proof : Let G = lim←−Gj be a second countable pro-discrete locally compact group. By Propo-
sition 6.37, G admits a (countable) basis (Xj) of neighborhoods of the identity eG consisting
of open compact normal subgroups. By (6.5), we have an isomorphism from the group von
Neumann algebra VN(G/Xj) onto pXjVN(G). Using Lemma 6.2, we obtain a completely pos-
itive and completely contractive map Lp(VN(G/Xj)) → Lp(pXjVN(G)) = pXjLp(VN(G)). By
composing this map with the identification Lp(pXjVN(G)) ⊂ Lp(VN(G)), we obtain a (normal
if p =∞) completely positive and completely contractive map

Φpj : Lp(VN(G/Xj))→ Lp(VN(G)), λG/Xj ,sXj 7→ µG(Xj)
1
p pXjλG,s.
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Furthermore, we consider the adjoint (preadjoint if p = 1) Ψp
j =

(
Φp
∗

j

)∗ : Lp(VN(G)) →
Lp(VN(G/Xj)) of Φp

∗

j which is also (normal if p = ∞) completely contractive and completely
positive by Lemma 2.7 for any 1 6 p 6∞.

Let T : Lp(VN(G))→ Lp(VN(G)) be some completely bounded map. Now, using Theorem
4.2 for the discrete group G/Xj (since Xj is open), we define the completely bounded Fourier
multiplier

Mϕj = P pG/Xj

(
Ψp
jTΦpj

)
: Lp(VN(G/Xj))→ Lp(VN(G/Xj))

if 1 6 p < ∞ and Mϕj = P∞G/Xj
(
Ψ∞j Pw∗(T )Φ∞j

)
: VN(G/Xj) → VN(G/Xj) if p = ∞, where

the contractive map Pw∗ : CB(VN(G)) → CB(VN(G)) is described in Proposition 3.1. Note
that ϕj : G/Xj → C is defined by ϕj(s/Xj) = τG/Xj

(
Ψp
jTΦpj (λsXj )λs−1Xj

)
(if T is normal in

the case p =∞). Then∥∥Mϕj

∥∥
cb,Lp(VN(G/Xj))→Lp(VN(G/Xj))

=
∥∥P pG/Xj(Ψp

jTΦpj
)∥∥

cb,Lp(VN(G/Xj))→Lp(VN(G/Xj))

6
∥∥Ψp

jTΦpj
∥∥

cb,Lp(VN(G/Xj))→Lp(VN(G/Xj))
6 ‖T‖cb,Lp(VN(G))→Lp(VN(G)) ,

in the case 1 6 p < ∞ and similarly in the case p = ∞. Note that each function ϕj is
continuous since G/Xj is discrete. Now, we define the continuous complex function ϕ̃j =
ϕj ◦πj : G→ C where πj : G→ G/Xj is the canonical surjective map. Since the homomorphism
πj is continuous, according to Proposition 6.14, the symbol ϕ̃j induces a completely bounded
Fourier multiplier on Lp(VN(G)) and we have the estimate∥∥M

ϕ̃j

∥∥
cb,Lp(VN(G))→Lp(VN(G)) =

∥∥Mϕj

∥∥
cb,Lp(VN(G/Xj))→Lp(VN(G/Xj))

6 ‖T‖cb,Lp(VN(G))→Lp(VN(G)) .

Now, we suppose that T = Mψ for a (bounded) measurable symbol ψ : G → C giving rise
to a completely bounded Lp Fourier multiplier. We start by giving a description of the symbol
ϕ̃j as an average of ψ.

Lemma 6.40 For any s ∈ G, we have

(6.40) ϕ̃j(s) =
∫

Xj
ψ(st) dµXj (t).

Proof : The subgroup Xj is open, so µG|Xj is a left Haar measure on Xj and µXj = cjµG|Xj
where cj = 1

µG(Xj) . Moreover, for any s ∈ G, the indicator function 1sXj belongs to Cc(G) since
sXj is an open and compact subset of G. For any s, t ∈ G, note that

(1sXj ∗ 1̌Xj )(t) =
∫
G

1sXj (r)1̌Xj (r−1t) dµG(r) =
∫
sXj

1Xj (t−1r) dµG(r)

= µG(sXj ∩ tXj) = µG(sXj)1sXj (t).

We conclude that 1sXj ∈ Cc(G) ∗Cc(G). Then, for any s ∈ G, using the definition of a Fourier
multiplier and Lemma 6.2, we see that

Mψ

(
λG,spXj

)
= Mψ

(
λG,scjλG(1Xj )

)
= cjMψ

(
λG(1sXj )

)
= cjλG(ψ1sXj )

and similarly
λG,s−1pXj = cjλG,s−1λG(1Xj ) = cjλ(1s−1Xj ).
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For any s ∈ G, using the Plancherel Formula (6.3), we obtain

ϕ̃j(s) = ϕj ◦ πj(s) = τG/Xj
(
Ψp
jMψΦpj

(
λG/Xj ,sXj

)
λG/Xj ,s−1Xj

)
= τG

(
MψΦpj

(
λG/Xj ,sXj

)
Φp
∗

j (λG/Xj ,s−1Xj )
)

= µG(Xj)
1
pµG(Xj)1− 1

p τG
(
Mψ

(
λG,spXj

)
λG,s−1pXj

)
= cjτG

(
λG(ψ1sXj )λG

(
1s−1Xj

))
.

Now, using the normality of the subgroup Xj , we see that

ϕ̃j(s) = cj

∫
G

ψ(r)1sXj (r)1s−1Xj (r
−1) dµG(r) = cj

∫
sXj

ψ(r)1Xjs(r) dµG(r)

= cj

∫
sXj

ψ(r) dµG(r) = cj

∫
Xj
ψ(st) dµG(t) =

∫
Xj
ψ(st) dµXj (t).

Let E∞j : L∞(G) → L∞(G) be the normal conditional expectation associated with the σ-
algebra generated by the left cosets of Xj in G and E1

j : L1(G)→ L1(G) the contractive associ-
ated map. By [86, page 183] (see also [84, page 69]), the above lemma says that for any integer
j we have ϕ̃j = E∞j (ψ). Now, we prove the following convergence result.

Lemma 6.41 Let G be a pro-discrete locally compact group and let (Xj) be a decreasing ba-
sis of neighborhoods of the identity eG consisting of open compact normal subgroups. Let
E∞j : L∞(G) → L∞(G) be the normal conditional expectation associated with the σ-algebra
generated by the left cosets of Xj in G. For any ψ ∈ L∞(G), the net (E∞j (ψ)) converges to ψ
for the weak* topology of L∞(G).

Proof : By [82, Proposition 2.6.32], for any f ∈ L∞(G) and any g ∈ L1(G), we have〈
E∞j (f), g

〉
L∞(G),L1(G) =

〈
f,E1

j (g)
〉

L∞(G),L1(G). Consequently, the map E∞j : L∞(G)→ L∞(G)
admits as preadjoint the contractive map E1

j : L1(G) → L1(G). So it suffices to show that the
net (E1

j ) converges for the weak operator topology. Actually, we will show that the convergence
is true60 for the strong topology. Since the net (E1

j ) is uniformly bounded, by [27, Proposition
5, Chapt. III, 17.4], it suffices to show that E1

j (g) converges to g in L1(G) for any g belonging to
some total subset of L1(G). By [25, Lemma 2 a), VII.15], the subset of positive functions with
compact support constant on the left cosets of some Xj is total. So let g be such a function. If
i > j, i.e. if Xi ⊂ Xj , each left coset of Xi in G is a subset of a left coset of Xj in G. Then for
almost all s ∈ G we have(

E1
i (g)

)
(s) =

∫
Xi
g(st) dµXi(t) =

∫
Xi
g(s) dµXi(t) = g(s)

So E1
i (g) = g. Hence, for this g, the assertion is true. The proof is complete.

Using Lemma 6.41 together with Lemma 6.7, we deduce that the sequence (M
ϕ̃j

) converges
to Mψ in the weak operator topology of B(Lp(VN(G))) (in the point weak* topology if p =∞).
Then we proceed as in the proof of Theorem 6.16 to construct the contractive linear maps
P pG : CB(Lp(VN(G)))→Mp,cb(G) and to show that P pG(Mψ) = Mψ whenever Mψ ∈Mp,cb(G).

60. This fact is proved in the second countable case in [86, Theorem 3.3] and alluded without proof in the
general case in [86, page 184] (see also [84, page 69] for a proof). Here, we give an alternative argument. Finally,
Bourbaki transformed this into an exercise [25, Exercise 10 page 89], as usual without giving any reference.
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Finally, we show that the map P pG preserves the complete positivity. Suppose that T is
(normal if p =∞) completely positive. The operator Ψp

jTΦpj is completely positive. Hence the
multiplier Mϕj = P pG/Xj

(
Ψp
jTΦpj

)
is also completely positive. By Theorem 6.14, we infer that

M
ϕ̃j

= Mϕj◦πj is completely positive. Using Lemma 2.8, it is easy to deduce that P pG(T ) is
completely positive.

Remark 6.42 Suppose 1 < p < ∞. Note that in the proof of Theorem 6.39, the only use of
amenability was the use of Theorem 6.14 in passing from a symbol on G/Xj to a symbol on G.

Remark 6.43 According to [111, Theorem 12.3.26], a second countable nilpotent61 compactly
generated totally disconnected locally compact group admits a sequence (Xj) satisfying the
assumptions of the theorem. Moreover, any second countable compactly generated uniscalar62
p-adic Lie group admits such a sequence (Xj) by [62, Theorem 5.2]. Moreover, p-adic can be
replaced by pro-p-adic [62, Proposition 7.4]. Finally, there exists an example of a compactly
generated totally disconnected uniscalar locally compact group which does not have an open
compact normal subgroup, see [20] and [97].

Remark 6.44 Note that the result applies to the profinite groups acting on locally finite trees
described in Subsection 6.5.

6.7 Amenable groups and convolutors
In this section, we observe that we can obtain compatible projections on spaces of Fourier multi-
pliers associated to abelian locally compact groups and more generally on spaces of convolutors
associated to amenable locally compact groups.

Convolution operators. Let G be a locally compact group and 1 6 p 6 ∞. Here we use
the left translation λs : Lp(G)→ Lp(G) with a similar definition to the one of (6.1). A bounded
linear operator T : Lp(G) → Lp(G) (supposed to be weak* continuous in the case p = ∞63) is
said to be a p-convolution operator of G [46, page 8] if for every s ∈ G we have λsT = Tλs.
The set of all convolution operators (or convolutors) of G is denoted CVp(G). If G is abelian
then CVp(G) = Mp(Ĝ) isometrically, see [46, Chapter 1].

If X is a Banach space, the subset CVp(G,X) of B(Lp(G,X)) is defined as the space of
convolution operators T such that T ⊗ IdX extends to a bounded operator on Lp(G,X). The
space CVp,cb(G) of completely bounded convolutors on Lp(G) coincides with CVp(G,Sp).

Proposition 6.45 is slight generalization of a particular case of the result [45, Corollaire page
79] (rediscovered in part in [5, Theorem 1.1]). We will thank Antoine Derighetti to communicate
this reference.

Proposition 6.45 Let G be an amenable locally compact group. Suppose 1 6 p 6 ∞. Then
there exists a contractive projection P pG : B(Lp(G)) → B(Lp(G)) (in the case p = ∞, we have
P∞G : Bw∗(L∞(G)) → Bw∗(L∞(G))) onto CVp(G) such that if T : Lp(G) → Lp(G) is positive64
then P pG(T ) is positive. Moreover, all these mappings are compatible with each other. Moreover,

61. Recall that nilpotent implies unimodular.
62. Note that uniscalar implies unimodular, see [111, Theorem 12.3.26].
63. If G is not compact, note that there exist bounded operators T : L∞(G)→ L∞(G) which commute with left
translations and which are not weak* continuous. We refer to [105] for more information.
64. Recall that the notions of “positivity” and “complete positivity” are identical on commutative Lp-spaces by
Proposition 2.22 and a completely positive map is completely bounded by Theorem 3.26.
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if 1 < p <∞, the restriction of P pG to CB(Lp(G)) induces a well-defined contractive projection
P p,cb
G : CB(Lp(G))→ CB(Lp(G)) onto CVp,cb(G).

Proof : The case 1 < p < ∞ is [45, Theorem 5] and [5, Theorem 1.1]. The case p = 1 of
[5, Theorem 1.1]) gives a projection P 1

G : B(L1(G)) → B(L1(G)). Now for a weak* continuous
operator T : L∞(G) → L∞(G), we let P∞G (T ) = P 1

G(T∗)∗. We obtain the desired projection.
The verifications are left to the reader.

Suppose 1 < p < ∞. Let T : Lp(G) → Lp(G) be a completely bounded operator. For
any f ∈ Lp(G) and any g ∈ Lp∗(G), we consider the complex function hT,f,g : G → C, s 7→〈
T (λs(f)), λs(g)

〉
Lp(G),Lp∗ (G) defined on G. The function hT,f,g is65 bounded. By [78, Theorem

20.4], the maps G→ Lp(G), s 7→ T (λs(f)) and G→ Lp∗(G), s 7→ λs(g) are continuous. Using
the continuity of the duality bracket 〈·, ·〉Lp(G),Lp∗ (G) [2, Corollary 6.40] on bounded subsets,
we deduce that the map hT,f,g is continuous, hence measurable.

Since G is amenable, by [116, Proposition 4.23], there exists a right invariant mean66
M : L∞(G) → C. Since L∞(G) is a unital commutative C*-algebra, the map M is completely
contractive by [55, Lemma 5.1.1]. The map B : Lp(G) × Lp∗(G) → C, (f, g) 7→ M

(
hT,f,g

)
is

clearly bilinear. Moreover, for any integer n, any [fij ] ∈ Mn(Lp(G)) and any [gkl] ∈ Mn(Lp∗(G)),
we have ∥∥[B(fij , gk,l)

]∥∥
Mn2

=
∥∥[M(hT,fij ,gkl)

]∥∥
Mn2

6
∥∥[hT,fij ,gkl]∥∥Mn2 (L∞(G))

=
∥∥∥[s 7→ 〈

T (λs(fij)), λs(gkl)
〉

Lp(G),Lp∗ (G)

]∥∥∥
Mn2 (L∞(G))

=
∥∥∥s 7→ [〈

T (λs(fij)), λs(gkl)
〉

Lp(G),Lp∗ (G)

]∥∥∥
L∞(G,Mn2 )

= sup
s∈G

∥∥∥[〈T (λs(fij)), λs(gkl)
〉

Lp(G),Lp∗ (G)

]∥∥∥
Mn2

.

Now, using [55, (3.2.3)] in the first inequality and the fact left to the reader (to use [117,
Proposition 2.1]) that each λs : Lp(G)→ Lp(G) is completely isometric in the last equality, we
obtain for any s ∈ G∥∥∥[〈T (λs(fij)), λs(gkl)

〉
Lp(G),Lp∗ (G)

]∥∥∥
Mn2

=
∥∥∥〈〈[T (λs(fij))

]
,
[
λs(gkl)

]〉〉∥∥∥
Mn2

6
∥∥∥[T (λs(fij))

]∥∥∥
Mn(Lp(G))

∥∥[λs(gkl)]
∥∥

Mn(Lp∗ (G))

6 ‖T‖cb,Lp(G)→Lp(G)
∥∥[λs(fij)]

∥∥
Mn(Lp(G))

∥∥[λs(gkl)]
∥∥

Mn(Lp∗ (G))

= ‖T‖cb,Lp(G)→Lp(G)
∥∥[fij ]

∥∥
Mn(Lp(G))

∥∥[gkl]
∥∥

Mm(Lp∗ (G)).

Taking the supremum, we infer that∥∥[B(fij , gk,l)]
∥∥

Mn2
6 ‖T‖cb,Lp(G)→Lp(G)

∥∥[fij ]
∥∥

Mn(Lp(G))

∥∥[gkl]
∥∥

Mn(Lp∗ (G)).

65. For any s ∈ G, we have∣∣∣〈T (λs(f)), λs(g)
〉

Lp(G),Lp∗ (G)

∣∣∣ 6 ‖T‖Lp(G)→Lp(G) ‖λs(f)‖Lp(G) ‖λs(g)‖Lp∗ (G)

= ‖T‖Lp(G)→Lp(G) ‖f‖Lp(G) ‖g‖Lp∗ (G) .

66. That is a unital positive bounded linear form M : L∞(G)→ C such that M(ft) = M(f) for any t ∈ G where
ft(s) = f(st).

96



We conclude that B is completely bounded in the sense of [55, page 126] with ‖B‖cb 6
‖T‖cb,Lp(G)→Lp(G). Hence, by [55, Proposition 7.1.2] there exists a unique completely bounded
operator P p,cb

G (T ) : Lp(G)→ Lp(G) such that

B(f, g) =
〈
P p,cb
G (T )(f), g

〉
Lp(G),Lp∗ (G), f ∈ Lp(G), g ∈ Lp

∗
(G).

Moreover, we have
∥∥P p,cb

G (T )
∥∥

cb,Lp(G)→Lp(G) = ‖B‖cb 6 ‖T‖cb,Lp(G)→Lp(G). This operator
coincides with the operator P pG(T ) provided by a slightly simplified67 proof of [5, Theorem 1.1].
The compatibility is left to the reader.

Remark 6.46 Consider a locally compact group G. It would be interesting to know if the
amenability of G is characterized by the property of Proposition 6.45.

6.8 Description of the decomposable norm of multipliers
The following is a variant of Theorem 4.9.

Theorem 6.47 Let G be an amenable second countable unimodular locally compact group which
is ALSS satisfying the assumption (6.12). Suppose 1 6 p 6 ∞. Then a measurable function
φ : G→ C induces a decomposable Fourier multiplier on Lp(VN(G)) if and only if it induces a
(completely) bounded Fourier multiplier on VN(G). In this case, we have

(6.41) c ‖Mφ‖VN(G)→VN(G) 6 ‖Mφ‖dec,Lp(VN(G))→Lp(VN(G)) 6 ‖Mφ‖VN(G)→VN(G) .

Proof : ⇒: We start with the case of a decomposable Fourier multiplier Mφ : Lp(VN(G)) →
Lp(VN(G)) with a continuous symbol. By Proposition 3.12, we can writeMφ = T1−T2 +i(T3−
T4) where each Tj is a completely positive map on Lp(VN(G)). Using the map P pG of Theorem
6.16 (since G is amenable) and the continuity of φ, we obtain that

Mφ = P pG(Mφ) = P pG
(
T1 − T2 + i(T3 − T4)

)
= P pG(T1)− P pG(T2) + i

(
P pG(T3)− P pG(T4)

)
where each P pG(Tj) is a completely positive Fourier multiplier on Lp(VN(G)). Hence, by Propo-
sition 6.11, it induces a completely positive Fourier multiplier on VN(G). We conclude that φ
induces a decomposable Fourier multiplier on VN(G). If φ is only bounded and measurable,
but the approximating fundamental domains Xj are symmetric (resp. γXj = Xjγ for γ ∈ Γj),
then according to Theorem 6.16, we can argue the same way.

Without the assumption of continuity (resp. symmetry or commutativity of the fundamental
domains), we adapt the method of approximation of [31, Remark 9.3] by completely bounded
multipliers on VN(G). Let Mφ : Lp(VN(G)) → Lp(VN(G)) be a decomposable Fourier multi-
plier. Since G is amenable, by Leptin Theorem [116, Theorem 10.4], there exists a contractive
approximative unit (ψi) of the Fourier algebra A(G) such that each ψi has compact support. In
addition, consider a contractive approximate unit (χj) of L1(G) such that each χj is a function
belonging to Cc(G) with ‖χj‖L1(G) = 1 and χj > 0 satisfying the properties of [49, (14.11.1)]
(see [49, Example 14.11.2] for the existence). For any i, j, we let φi,j = χj ∗ (ψiφ).

We claim that for any i, j, we have

(6.42)
∥∥Mφi,j

∥∥
reg,Lp(VN(G))→Lp(VN(G)) 6 ‖Mφ‖reg,Lp(VN(G))→Lp(VN(G)) .

67. We can replace the space of right uniformly continuous functions by L∞(G). Moreover, note that translations
of [5, Theorem 1.1] differ from our notation.
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Indeed, since G is amenable, the von Neumann algebra VN(G) is approximately finite-dimen-
sional by [36, Corollary 6.9 (a)]. Using Theorem 3.24, [117, Definition 2.1], the duality [118,
Theorem 4.7] and Plancherel formula (6.3), we need to show that for any N ∈ N, and any
fkl, gkl ∈ Cc(G) ∗ Cc(G) where 1 6 k, l 6 N we have

∣∣∣〈[Mφi,j (λ(fkl))
]
,
[
λ(gkl)

]〉
Lp(VN(G),MN ),Lp∗ (VN(G),S1

N
)

∣∣∣ =

∣∣∣∣∣∣
N∑

k,l=1

∫
G

φi,j(s)fkl(s)ǧkl(s) dµG(s)

∣∣∣∣∣∣
6 ‖Mφ‖reg,Lp(VN(G))→Lp(VN(G))

∥∥[λ(fkl)]
∥∥

Lp(VN(G),MN )

∥∥[λ(gkl)]
∥∥

Lp∗ (VN(G),S1
N

).

Note that ∣∣∣∣∣∣
N∑

k,l=1

∫
G

ψi(t)φ(t)fkl(t)ǧkl(t) dµG(t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

k,l=1

〈
Mψiφ(λ(fkl)), λ(gkl)

〉∣∣∣∣∣∣
6 ‖Mψi‖reg,Lp(VN(G))→Lp(VN(G)) ‖Mφ‖reg,Lp→Lp

∥∥[λ(fkl)]
∥∥∥∥[λ(gkl)]

∥∥.
By the second and the last part of the proof, we have ‖Mψi‖reg,Lp→Lp 6 ‖Mψi‖VN(G)→VN(G) 6
‖ψi‖A(G) 6 1. Using the fact that ‖[λs−1δkl]‖MN (VN(G)) = 1, it is not difficult to prove that the
regular norm is translation invariant, so that∣∣∣∣∣∣

N∑
k,l=1

∫
G

ψi(s−1t)φ(s−1t)fkl(t)ǧkl(t) dµG(t)

∣∣∣∣∣∣ 6 ‖Mφ‖reg,Lp→Lp
∥∥[λ(fkl)]

∥∥∥∥[λ(gkl)]
∥∥.

Consequently, since ‖χj‖L1(G) 6 1∣∣∣∣∣∣
∫
G

χj(s)
N∑

k,l=1

(∫
G

ψi(s−1t)φ(s−1t)fkl(t)ǧkl(t) dµG(t)
)

dµG(s)

∣∣∣∣∣∣
6
∫
G

|χj(s)|

∣∣∣∣∣∣
∑
k,l

∫
G

ψi(s−1t)φ(s−1t)fkl(t)ǧkl(t) dµG(t)

∣∣∣∣∣∣ dµG(s)

6 ‖Mφ‖reg,Lp→Lp
∥∥[λ(fkl)]

∥∥∥∥[λ(gkl)]
∥∥.

But by Fubini Theorem, we have∣∣∣∣∣∣
∫
G

χj(s)
∑
k,l

(∫
G

ψi(s−1t)φ(s−1t)fkl(t)ǧkl(t) dµG(t)
)

dµG(s)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N∑

k,l=1

∫
G

(∫
G

χj(s)ψi(s−1t)φ(s−1t) dµG(s)
)
fkl(t)ǧkl(t) dµG(t)

∣∣∣∣∣∣ .
We deduce that∣∣∣∣∣∣

N∑
k,l=1

∫
G

(χj ∗ (ψiφ))(t)fkl(t)ǧkl(t) dµG(t)

∣∣∣∣∣∣ 6 ‖Mφ‖reg,Lp→Lp
∥∥[λ(fkl)]

∥∥∥∥[λ(gkl)]
∥∥,
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and finally, (6.42) follows.
Recall that ψi ∈ Cc(G) and φ ∈ L∞(G), so ψiφ ∈ L∞(G) with compact support, so ψiφ ∈

L2(G). Moreover, each function χj belongs to L2(G). We conclude that φi,j = χj∗(ψiφ) belongs
to L2(G) ∗ L2(G), which equals A(G) [58, Théorème page 218], so it is a continuous symbol.
Then the first part of the proof and the last part above show that each function φi,j induces a
(completely) bounded multiplier on VN(G) with a uniform completely bounded norm. Thus,
there exists a constant C <∞ such that for any i, j, we have for f, g ∈ Cc(G)∗Cc(G) (to adapt
if p =∞ or p = 1)∣∣∣∣∫

G

φi,j(t)f(t)ǧ(t) dµG(t)
∣∣∣∣ 6 C ‖λ(f)‖VN(G) ‖λ(g)‖L1(VN(G)) .

If φi,j converges to φ in the weak* topology of L∞(G), then this will yield∣∣∣∣∫
G

φ(t)f(t)ǧ(t) dµG(t)
∣∣∣∣ 6 C ‖λ(f)‖VN(G) ‖λ(g)‖L1(VN(G))

and consequently, that ‖Mφ‖VN(G)→VN(G) 6 C. We show the claimed weak* convergence. For
a given h ∈ L1(G), we write 〈φi,j , h〉L∞(G),L1(G) = 〈χj ∗ (ψiφ)− ψiφ, h〉+ 〈ψiφ− φ, h〉. For the
second summand, note that ‖ψi‖∞ 6 ‖ψi‖A(G) 6 1, so that ψiφ − φ is uniformly bounded in
L∞(G). Moreover, ψi(s) → 1 for any s ∈ G, since it is an approximate unit. By dominated
convergence, we deduce 〈ψiφ − φ, h〉 → 0 as i → ∞. Now for a fixed large i, we have that
〈χj ∗ (ψiφ)− ψiφ, h〉 → 0 according to [49, (14.11.1)].
⇐: Let Mφ : VN(G)→ VN(G) be a decomposable Fourier multiplier. Similarly, with Corol-

lary 6.26, we can write Mφ = Mφ1 −Mφ2 + i(Mφ3 −Mφ4) where each Mφj : VN(G)→ VN(G)
is completely positive. By Proposition 6.11, each Fourier multiplier φj induces a completely
positive multiplier on Lp(VN(G)). Using Proposition 3.12, we conclude that φ induces a de-
composable Fourier multiplier on Lp(VN(G)).

The proof of last part is similar to the proof to the one of Theorem 4.9 together with
Theorem 3.24 when one remembers that the von Neumann algebra VN(G) is approximately
finite-dimensional.

Remark 6.48 If we replace the amenability assumption by supposing that VN(G) is approx-
imately finite-dimensional then the end of the proof shows that for any function ϕ inducing a
completely bounded Fourier multiplier on VN(G) we have the inequalities (6.41).

Similarly, we obtain the following result:

Theorem 6.49 Let G be a second countable amenable pro-discrete locally compact group. Sup-
pose 1 6 p 6 ∞. Then a function φ : G → C induces a decomposable Fourier multiplier
Mφ : Lp(VN(G))→ Lp(VN(G)) if and only if it induces a (completely) bounded Fourier multi-
plier on Mφ : VN(G)→ VN(G). In this case, we have

‖Mφ‖dec,Lp(VN(G))→Lp(VN(G)) = ‖Mφ‖cb,VN(G)→VN(G) = ‖Mφ‖VN(G)→VN(G) .

Remark 6.50 In both situations, a function φ : G→ C which induces a decomposable Fourier
multiplier Mφ : Lp(VN(G))→ Lp(VN(G)) is equal to a continuous function almost everywhere,
see e.g. [67, Corollary 3.3].

The following observation was communicated to us by Sven Raum whom we thank for this.
It shows that in the pro-discrete case, a similar remark to Remark 6.48 is useless.
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Proposition 6.51 A second countable pro-discrete locally compact group G is amenable if and
only if its von Neumann algebra VN(G) is approximately finite-dimensional.

Proof : Consider a pro-discrete locally compact group G such that VN(G) is approximately
finite-dimensional. By Proposition 6.37, there exists an open compact normal subgroup K of
G. Using the central projection pK of Lemma 6.1, we have a ∗-isomorphism π : VN(G/K) →
VN(G)pK , λsK 7→ λspK . It is well-known68 that this implies that VN(G)pK is approximately
finite-dimensional and thus that VN(G/K) is approximately finite-dimensional. Furthermore,
since K is open, the group G/K is discrete by [78, Theorem 5.26]. By [137, Theorem 3.8.2], we
infer that G/K amenable. Since K is amenable, by [14, Proposition G.2.2], we conclude that
the group G is amenable.

The converse is [36, Corollary 6.9 (a)].
Similarly, we obtain a proof of the next result. The first part is69 essentially stated in [4,

Proposition 3.3].

Theorem 6.52 Let G be an amenable locally compact group. Suppose 1 < p < ∞. Then
a convolutor T : Lp(G) → Lp(G) of CVp(G) is regular if and only if it induces a bounded
convolutor T : L∞(G)→ L∞(G). In this case, we have

‖T‖reg,Lp(G)→Lp(G) = ‖T‖L∞(G)→L∞(G) (= ‖T‖cb,L∞(G)→L∞(G)).

This result applies to decomposable Fourier multipliers Mφ : Lp(VN(G)) → Lp(VN(G)) on
an abelian locally compact group G.

Remark 6.53 Consider a locally compact group G. It would be interesting to know if the
amenability of G is characterized by the property of Theorem 6.52.

7 Strongly and CB-strongly non decomposable operators
In this section, we construct completely bounded operators T : Lp(M)→ Lp(M) which cannot
be approximated by decomposable operators. We particularly investigate different types of
multipliers. We also give explicit examples of such operators on the noncommutative Lp-spaces
associated to the free groups (see Theorem 7.28 and Theorem 7.29).

7.1 Definitions
The following definition is an extension of the one of [5, Remark, page 163] on classical Lp-spaces
to noncommutative Lp-spaces since the regular norm and the decomposable norm are identical
by Theorem 3.24.

Definition 7.1 We say that an operator T : Lp(M) → Lp(M) is strongly non decomposable
if T does not belong to the closure Dec(Lp(M)) of the space Dec(Lp(M)) with respect to the
operator norm ‖·‖Lp(M)→Lp(M).

It means that T cannot be approximated by decomposable operators. We also introduce
the following variation of this definition.

68. This observation relies on the equivalence between “injective” and “approximately finite-dimensional”.
69. We warn the reader that the proof [4, Proposition 3.3] is really problematic. The proof of the fundamental
point (the surjectivity of the map τp) is lacking.
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Definition 7.2 We say that a completely bounded operator T : Lp(M)→ Lp(M) is CB-strongly
non decomposable if T does not belong to the closure Dec(Lp(M))

CB
of the space Dec(Lp(M))

with respect to the completely bounded norm ‖·‖cb,Lp(M)→Lp(M).

If M is approximately finite-dimensional, we also use the words strongly non regular and
CB-strongly non regular.

Remark 7.3 These two notions are related. Indeed, let T : Lp(M) → Lp(M) be a completely
bounded operator in Dec(Lp(M))

CB
. There exists a sequence (Tn) of decomposable operators

acting on Lp(M) such that ‖T − Tn‖cb,Lp(M)→Lp(M) tends to zero when n approaches +∞.
Hence, we have

‖T − Tn‖Lp(M)→Lp(M) 6 ‖T − Tn‖cb,Lp(M)→Lp(M) −−−−−→n→+∞
0.

Hence T belongs to the closure Dec(Lp(M)). We deduce that if T is completely bounded and
strongly non decomposable then T is CB-strongly non decomposable.

7.2 Strongly non regular completely bounded Fourier multipliers on
abelian groups

Arendt and Voigt proved that the Hilbert transforms on the groups R, Z and T are strongly non
regular [5, Example 3.3, 3.4, 3.9]. In the case of an arbitrary abelian locally compact group G,
a notion of Hilbert transform is not available in general. Nevertheless, we prove in this section
that there exists a strongly non regular completely bounded Fourier multiplier acting on Lp(G).

Complements on convolution operators. If µ ∈ M(G) is a bounded Borel measure on G,
then λpG(µ) denotes the element of CVp(G), defined by λpG(µ)(f) = f ∗∆

1
p∗

G µ̌ for any continuous
function f : G → C with compact support, [46, page 8]. Moreover, if µ ∈ M(G) and if H is a
closed subgroup of G note that

(7.1) 1Hµ = i(ResHµ)

where i(ν) denotes the image of the measure ν under the inclusion map i of H in G.
If X is a Banach space, the subset CVp(G,X) of B(Lp(G,X)) is defined as the space of

convolution operators T such that T ⊗ IdX extends to a bounded operator on Lp(G,X).

Positive convolution operators. The following is [116, Theorem 9.6] (see also [4, page
280-281] for a good explanation). Let G be an amenable locally compact group and suppose
1 < p < ∞. Let T : Lp(G) → Lp(G) be a positive convolution operator. Then there exists a
positive bounded measure µ ∈ M(G) on G such that T (f) = f ∗ µ for any continuous function
f : G→ C with compact support. Moreover, we have ‖T‖Lp(G)→Lp(G) = ‖µ‖.

Canonical isometry from CVp(H,X) into CVp(G,X). Let G be a locally compact group,
H a closed subgroup of G, X a Banach space and 1 < p < ∞. There exists a canonical linear
isometry

(7.2) i : CVp(H,X)→ CVp(G,X).
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It is a vectorial extension of [46, Theorem 2 page 113], (see also [10, Theorem 2.6]) which can
be proven with a similar proof. Note that the remark [46, Remark page 106] gives for any
µ ∈ M(H) the equality

(7.3) i
(
λpH(µ)

)
= λpG(i(µ)).

where i(µ) denotes the image of the measure µ under the inclusion map i of H in G. Suppose
in addition that G is abelian. Using the isomorphism Ĝ/H⊥ = Ĥ given by χ 7→ χ|H we can
reformulate [46, Theorem 1 page 123] under the equality

i(Mϕ) = Mϕ◦π

where π : Ĝ→ Ĝ/H⊥ is the canonical map.

Isometry from CVp(G/H) into CVp(G). Let G be an amenable locally compact group and
H be a normal closed subgroup of G such that G/H is compact. By [47, page 4 and 11],
there exist an isometry Ω: CVp(G/H)→ CVp(G) and a contraction R : CVp(G)→ CVp(G/H)
satisfying RΩ = IdCVp(G/H) such that for any µ ∈ M(G)

R(λpG(µ)) = λpG/H(THµ)

where the measure TH(µ) is defined by (see [126, 8.2.12 page 233])∫
G/H

g d
(
TH(µ)

)
=
∫
G

g ◦ πH dµG, g ∈ K(G/H).

Let G be a locally compact abelian group and H be a compact subgroup of G. We denote
by π : G → G/H the canonical map. The mapping χ 7→ χ ◦ π is an isomorphism of Ĝ/H onto
H⊥. If ϕ : H⊥ → C is a complex function, we denote by ϕ̃ : Ĝ → C the extension of ϕ on Ĝ
which is zero off H⊥. Let X be a Banach space. By [10, Proposition 2.8], the linear map

(7.4) CVp(G/H,X)→ CVp(G,X), Mϕ →Mϕ̃

is an isometry.

Projection from B(Lp(G)) onto CVp(G). Let G be an amenable group and suppose 1 6
p <∞. The result [5, Theorem 1.1] says that there exists a positive contractive projection

(7.5) PG : B(Lp(G))→ B(Lp(G)).

onto CVp(G).

Projection from CVp(G) onto CVp(H). Let G be a locally compact group and H be
an amenable closed subgroup. Suppose 1 < p < ∞. By [44, Theorems 12 and 15], there
exists a projection P : CVp(G) → CVp(G) onto {S ∈ CVp(G) : suppS ⊂ H} such that if
QH = i−1 ◦ P : CVp(G)→ CVp(H) we have the following properties:

1. P(λpG(µ)) = λpG(1Hµ) for every bounded measure µ ∈ M(G),

2. ‖QH(T )‖Lp(H)→Lp(H) 6 ‖T‖Lp(G)→Lp(G),

3. QH(i(S)) = S for S ∈ CVp(H).
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Restriction of multipliers. Let G be a locally compact abelian group. Let H be a closed
subgroup of the dual group Ĝ. Suppose 1 6 p 6 ∞. Let ϕ : Ĝ → C be a continuous complex
function which induces a bounded Fourier multiplier (i.e. a convolutor) Mϕ : Lp(G) → Lp(G).
Then, by [129, Corollary 4.6] (see also [37, abstract and page 6]), the restriction ϕ|H : H → C
induces a bounded Fourier multiplier Mϕ|H

: Lp(Ĥ)→ Lp(Ĥ) and we have

(7.6)
∥∥∥Mϕ|H

∥∥∥
Lp(Ĥ)→Lp(Ĥ)

6
∥∥Mϕ

∥∥
Lp(G)→Lp(G).

We start with a useful observation.

Lemma 7.4 Let G be a unimodular amenable locally compact group and H be a closed subgroup
of G. Suppose 1 < p <∞. The map QH : CVp(G)→ CVp(H) is positive.

Proof : Let T : Lp(G) → Lp(G) be a positive convolution operator. There exists a positive
measure ν ∈ M(G) such that T = λpG(ν̌). We consider µ = ν̌. We have T = λpG(µ). Using (7.3)
and (7.1), we see that

P
(
λpG(µ)

)
= λpG(1Hµ) = λpG

(
i(ResHµ)

)
= i
(
λHp (ResHµ)

)
.

Using the definition QH = i−1 ◦ P of QH , we obtain finally

QH(T ) = QH
(
λpG(µ)

)
= i−1(P(λpG(µ))

)
= λpH(ResHµ).

Since ResHµ is a positive measure, we deduce that QH(T ) is a positive operator.
Similarly, we can prove the two following results.

Lemma 7.5 Let G be a unimodular amenable locally compact group and H be a normal closed
subgroup of G such that G/H is compact. Suppose 1 < p < ∞. The map R : CVp(G) →
CVp(G/H) is positive.

Lemma 7.6 Let G be a unimodular amenable locally compact group and H be a closed subgroup
of G. Suppose 1 < p <∞. The map i : CVp(H)→ CVp(G) is positive.

Now, we state our first transference result.

Proposition 7.7 Let G be a unimodular amenable locally compact group and H be a closed
subgroup of G. Then a convolution operator T : Lp(H) → Lp(H) is a strongly non regular
Fourier multiplier if and only if the convolutor i(T ) : Lp(G)→ Lp(G) is strongly non regular.

Proof : Note that H is also amenable since it is a subgroup of the amenable group G.
⇐: Suppose that T belongs to Reg(Lp(H))

B(Lp(H))
. Let ε > 0. Then there exist some

positive operators R1, R2, R3, R4 : Lp(H) → Lp(H) and a bounded map R : Lp(H) → Lp(H)
of norm less than ε such that T = R1 − R2 + i(R3 − R4) + R. Since H is amenable, we can
use the map (7.5) and suppose that R1, R2, R3, R4 and R are convolution operators. Using the
isometry i : CVp(H)→ CVp(G) we obtain

i(T ) = i(R1)− i(R2) + i(i(R3)− i(R4)) + i(R).

Using Lemma 7.6, we see that the operators i(Rj) are positive. Moreover, note that we have
‖i(R)‖Lp(G)→Lp(G) = ‖R‖Lp(H)→Lp(H) 6 ε. It follows that the convolution operator i(T ) is
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ε-close to Reg(Lp(G)) in the Banach space B(Lp(G)). So letting ε → 0 yields that i(T ) ∈
Reg(Lp(G))

B(Lp(G))
. This is the desired contradiction.

⇒: Suppose that i(T ) belongs to Reg(Lp(G))
B(Lp(G))

. Let ε > 0. Then there exist some
positive maps R1, R2, R3, R4 : Lp(G)→ Lp(G) and a bounded map R : Lp(G)→ Lp(G) of norm
less than ε such that i(T ) = R1 − R2 + i(R3 − R4) + R. Since G is amenable, using the map
(7.5), we can suppose that R1, R2, R3, R4 and R are convolution operators.

Since H is amenable, we can use the contraction QH : CVp(G)→ CVp(H). We obtain

T = QH
(
i(T )

)
= QH

(
R1 −R2 + i(R3 −R4) +R

)
= QH(R1)−QH(R2) + i

(
QH(R3)−QH(R4)

)
+QH(R).

Moreover, by the contractivity of QH , the convolution operator QH(R) : Lp(H) → Lp(H)
is bounded of norm less than ε. Furthermore, by Lemma 7.4, each convolution operator
QH(Rk) : Lp(H)→ Lp(H) is a positive operator. It follows that T is ε-close to Reg(Lp(H)) in
the Banach space B(Lp(H)). So letting ε→ 0 yields that T ∈ Reg(Lp(H))

B(Lp(H))
. This is the

desired contradiction.

Proposition 7.8 Let G be a unimodular amenable locally compact group and H be a normal
closed subgroup of G such that G/H is compact. If the convolution operator T : Lp(G/H) →
Lp(G/H) is strongly non regular then the convolution operator Ω(T ) : Lp(G)→ Lp(G) is strongly
non regular.

Proof : Suppose that Ω(T ) belongs to Reg(Lp(G))
B(Lp(G))

. Let ε > 0. Then there exist some
positive maps S1, S2, S3, S4 : Lp(G) → Lp(G) and a bounded map S : Lp(G) → Lp(G) of norm
less than ε such that Ω(T ) = S1 − S2 + i(S3 − S4) + S. Since G is amenable, using the map
(7.5), we can suppose that S1, S2, S3, S4 and S are convolution operators. Using the contraction
R : CVp(G)→ CVp(G/H), we obtain

T = R(Ω(T )) = R(S1)−R(S2) + i(R(S3)−R(S4)) +R(S).

Moreover, by the contractivity of R, the convolution operator R(S) : Lp(G/H) → Lp(G/H) is
bounded of norm less than ε. By Lemma 7.5, each convolution operator R(Sk) : Lp(G/H) →
Lp(G/H) is positive. It follows that T is ε-close to Reg(Lp(G/H)) in the Banach space
B(Lp(G/H)). So letting ε → 0 yields that T ∈ Reg(Lp(G/H))

B(Lp(G/H))
. This is the desired

contradiction.

Proposition 7.9 Let G be a compact abelian group and let H be a closed subgroup of G.
If ϕ : H⊥ → C is a complex function, we denote by ϕ̃ : Ĝ → C the extension of ϕ on Ĝ
which is zero off H⊥. If the function ϕ induces a strongly non regular Fourier multiplier
Mϕ : Lp(G/H)→ Lp(G/H) then the function ϕ̃ induces a strongly non regular Fourier multiplier
M
ϕ̃

: Lp(G)→ Lp(G).

Proof : Suppose that Mϕ̃ belongs to Reg(Lp(G))
B(Lp(G))

. Let ε > 0. Then there exist some
positive maps R1, R2, R3, R4 : Lp(G)→ Lp(G) and a bounded map R : Lp(G)→ Lp(G) of norm
less than ε such that M

ϕ̃
= R1 −R2 + i(R3 −R4) +R.

Since G is amenable, the linear map (7.5) yields the existence of some complex functions
φ1, φ2, φ3, φ4 and ψ on Ĝ such that M

ϕ̃
= Mφ1 −Mφ2 + i(Mφ3 −Mφ4) + Mψ such that the

Fourier multipliers Mφk are positive on Lp(G) and Mψ is again of norm less than ε.
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By Lemma 6.10, each function φk is continuous and by Proposition 6.11 induces a positive
operator Mφk : L∞(G) → L∞(G) and the function φk is positive definite. We infer that the
restriction φk|H⊥ : G → C is continuous and positive definite, and thus by [41, Proposition
4.2], induces a positive operator Mφk|H⊥ : L∞(G/H) → L∞(G/H). Then by Proposition 6.11,
it follows that the Fourier multiplier Mφk|H⊥ : Lp(G/H)→ Lp(G/H) is positive.

Note that the group H⊥ = Ĝ/H is discrete. By (7.6), since the function ψ is continuous,
the Fourier multiplier Mψ|H⊥ : Lp(G/H)→ Lp(G/H) is bounded of norm less than ε. Since

Mϕ = Mϕ1|H⊥ −Mϕ2|H⊥ + i
(
Mϕ|H⊥ −Mϕ4|H⊥

)
+Mψ|H⊥

it follows thatMϕ is ε-close to Reg(Lp(G/H)) in the Banach space B(Lp(G/H)), so that letting
ε→ 0 yields that Mϕ ∈ Reg(Lp(G/H))

B(Lp(G/H))
. This is the desired contradiction.

Let (εk)k>0 be a sequence of independent Rademacher variables on some probability space
Ω0. Let X be a Banach space and let 1 < p <∞. We let Radp(X) ⊂ Lp(Ω0, X) be the closure
of span

{
εk ⊗ x | k > 0, x ∈ X

}
in the Bochner space Lp(Ω0, X). Thus, for any finite family

(xk)06k6n of elements of X, we have∥∥∥∥∥
n∑
k=0

εk ⊗ xk

∥∥∥∥∥
Radp(X)

=
(∫

Ω0

∥∥∥∥ n∑
k=0

εk(ω)xk
∥∥∥∥p
X

dω
) 1
p

.

We simply write Rad(X) = Rad2(X). By Kahane’s inequalities (see e.g. [48, Theorem 11.1]),
the Banach spaces Rad(X) and Radp(X) are canonically isomorphic. We will use the following
result which is a variant of [54, Theorem 4.1.9].

Proposition 7.10 Let X be a UMD Banach space. Suppose 1 < p <∞.

1. Let G be a countably infinite discrete abelian group. Assume that there exists a sequence
(Hn)n>0 of subgroups of the (compact) dual group Ĝ such that

(a) each Hn is open,
(b) Hn+1 $ Hn,

(c)
⋂
n>0Hn = {0} and H0 = Ĝ.

For any integer n > 0, consider the subset ∆n = Hn\Hn+1 of Ĝ. Then for any f ∈
Lp(G,X), the series

∑∞
n=0 εn ⊗ (M1∆n

⊗ IdX)(f) converges in Rad(Lp(G,X)) and we
have the norm equivalence

(7.7) ‖f‖Lp(G,X) ≈

∥∥∥∥∥
∞∑
n=0

εn ⊗ (M1∆n
⊗ IdX)(f)

∥∥∥∥∥
Rad(Lp(G,X))

.

2. Let G be a compact abelian group. Assume that there exists a sequence (Yn)n>0 of sub-
groups of the (discrete) dual group Ĝ such that

(a) each Yn is finite
(b) Yn $ Yn+1,

(c) Y0 = {0} and
⋃
n>0 Yn = Ĝ.
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Let ∆0 = Y0 and ∆n = Yn\Yn−1 for n > 1. Then for any f ∈ Lp(G,X), the series∑∞
n=0 εn⊗(M1∆n

⊗IdX)(f) converges in Rad(Lp(G,X)) and we have the norm equivalence

(7.8) ‖f‖Lp(G,X) ≈

∥∥∥∥∥
∞∑
n=0

εn ⊗ (M1∆n
⊗ IdX)(f)

∥∥∥∥∥
Rad(Lp(G,X))

.

Proof : 1. Let F = P(G) denote the full σ-algebra of subsets of G. For n > 0, consider the
annihilator Gn

def= H⊥n in G. Since each Hn is open and compact, each Gn is compact and open
by [126, Remark 4.2.22].

For any negative integer k 6 0 consider the σ-algebra Fk generated by the cosets of G−k
in G. Since G is countably infinite, there are only countably many cosets of G−k in G. So by
[1, Exercice 4 (a) page 227] the elements of Fk are the sets which are a union of cosets of G−k
in G. Since H−k+1 ⊂ H−k for all k 6 0, by [126, Proposition 4.2.24], we have G−k ⊂ G−k+1.
Then it is not difficult to see that Fk−1 ⊂ Fk if k 6 0. We conclude that (Fk)k60 is a filtration
in G. It is elementary to check 70 that ∪n>0Gn = G.

Moreover, since G is countable, the counting measure µG is σ-finite. Since the G−k are
compact, they are finite, so the restriction of µG to each Fk is also σ-finite. So, by [82,
Corollary 2.6.30], the conditional expectation E(·|Fk) with respect to Fk is well-defined and it
is explicitly described in [86, page 183] (see also [84, page 69]), since G−k is compact, by

E(f |Fk) = TG−k(f) ◦ πk (almost everywhere).

where πk : G→ G/G−k is the canonical map and where TG−k is essentially defined in [126, page
100]. For any integer k 6 0, since H−k is open, the Poisson formula [126, 5.5.4] says that

(
TG−k(f) ◦ πk

)
(s) =

∫
H−k

χ(s)f̂(χ) dµH−k(χ) =
∫
Ĝ

χ(s)1H−k(χ)f̂(χ) dµĜ(χ).

We conclude that the conditional expectation E(·|Fk) : Lp(G)→ Lp(G) is71 a Fourier multiplier
whose symbol is the indicator function 1H−k . Hence for any n > 0

M1∆n
= M1Hn\Hn+1

= M1Hn −M1Hn+1
= E(·|F−n)− E(·|F−n−1)

as bounded operators on Lp(G). Note that the right hand side is regular on Lp(G). Conse-
quently, their tensor products with the identity IdX also coincide.

For any f ∈ Lp(G,X) and any integer k 6 0, we let fk
def=

(
E(·|Fk) ⊗ IdX

)
(f). By

[82, Proposition 2.6.3 and Example 3.1.2], we obtain a martingale (fk)k60 with respect to
the filtration (Fk)k60. Note that since G0 = H⊥0 = Ĝ⊥ = {0} we have F0 = F and thus

70. Let s ∈ G and let In
def= s(Hn) be the subgroup of T where we identify s with η(s) where η : G → ˆ̂

G is the
canonical map. Since Hn is compact, In is a closed subgroup of T. Any decreasing sequence of closed subgroups
of T stabilizes (each closed subgroup is finite or equal to T). So there exists N > 0 such that In is the same for
all n > N . Let I be this common value. We have I ⊂ In = s(Hn) for any n > 0.
If I = {1}, then s annihilates Hn for n > N . Hence s ∈ Gn for n > N .
Suppose that I is not trivial. Let i ∈ I \ {1} and let Cn

def= s−1({i}) ∩ Hn. Then the sets Cn are nonempty
for any n > 0 and form a decreasing sequence of compact subsets of Ĝ. The intersection C def=

⋂
n>0 Cn is thus

nonempty. But C ⊂
⋂
n>0 Hn = {0}, so this means 0 ∈ C. Hence 0 ∈ s−1(i). This is a contradiction, since

i 6= 1 and s(0) = 1.
71. We can alternatively compute the conditional expectation with [1, Exercice 4 (c) page 227] instead of the
Poisson formula.
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f0 =
(
E(·|F0) ⊗ IdX

)
(f) = f . Consequently, for any integer N > 1, we have

∑0
k=−N+1 dfk =∑0

k=−N+1(fk − fk−1) = f0 − f−N = f − f−N and dfk = fk − fk−1 =
(
E(·|Fk) ⊗ IdX

)
(f) −(

E(·|Fk−1) ⊗ IdX
)
(f). By [82, Proposition 4.2.3] with the change of index n = −k, we infer

that

‖f − f−N‖Lp(G,X)
∼=

∥∥∥∥∥
N−1∑
n=0

εn ⊗ (M1∆n
⊗ IdX)(f)

∥∥∥∥∥
Rad(Lp(G,X))

.

It is straightforward to check 72 that
⋂
k60 Fk = {∅, G}. We conclude that the restriction

of the measure µG to
⋂
k60 Fk is purely infinite in the sense of [82, Definition 1.2.27 (c)] on

the σ-algebra F−∞
def=
⋂
k60 Fk. According to [82, Theorem 3.3.5 (3)], f−N converges to zero

in Lp(G,X) when N goes to ∞. Since X is UMD, X does not contain the Banach space c0.
Using Hoffmann-Jorgensen-Kwapien Theorem [102] [80], it is not difficult to conclude that the
series

∑∞
n=0 εn⊗ (M1∆n

⊗ IdX)(f) converges in Rad(Lp(G,X)) and to obtain the claimed norm
equivalence of Littlewood-Paley type.

2. Let F denote the Borel σ-algebra generated by the open subsets of G. For n > 0, consider
the annihilator Gn

def= Y ⊥n in G and the σ-algebra Fn generated by the cosets of Gn in G. Since
each Yn is open and compact, each Gn is compact and open by [126, Remark 4.2.22]. Since
Yn ⊂ Yn+1 for all n > 0, we have Gn+1 ⊂ Gn and finally Fn ⊂ Fn+1. We conclude that (Fn)n>0
is a filtration in G. Since G is compact, the Haar measure µG is finite, so trivially σ-finite on
each Fn. So, by [82, Corollary 2.6.30], the conditional expectation E(·|Fn) with respect to Fn
is well-defined and it is explicitly described in [84, page 69] (since Gn is compact) by

E(f |Fn) = TGn(f) ◦ πn (almost everywhere).

where πn : G → G/Gn is the canonical map and where TGn is essentially defined in [126, page
100]. For any integer n > 0, since Yn is open, the Poisson formula [126, (5.5.4)] says that(

TGn(f) ◦ πn
)
(s) =

∫
Yn

χ(s)f̂(χ) dµYn(χ) =
∫
Ĝ

χ(s)1Yn(χ)f̂(χ) dµĜ(χ).

We conclude that the conditional expectation E(·|Fn) : Lp(G) → Lp(G) is a Fourier multiplier
whose symbol is the indicator function 1Yn . Hence for any n > 1

M1∆n
= M1Yn\Yn−1

= M1Yn −M1Yn−1
= E(·|Fn)− E(·|Fn−1)

as bounded operators on Lp(G). Note that the right hand side is regular on Lp(G). Conse-
quently, their tensor products with the identity IdX also coincide. Similarly, we have M1∆0

⊗
IdX = M1Y0

⊗ IdX = E(·|F0)⊗ IdX .
For any f ∈ Lp(G,X) and any integer n > 0, we let fn

def=
(
E(·|Fn) ⊗ IdX

)
(f). By [82,

Proposition 2.6.3 and Example 3.1.2], we obtain a martingale (fn)n>0 with respect to the

72. Let A ∈
⋂
k60 Fk. Suppose that A 6= ∅. Now, we construct a sequence (sk) of elements of G by induction.

There exists some s0 ∈ G such that {s0} = s0G0 ⊂ A. Suppose that s−k ∈ G for some k 6 0 satisfy s−kG−k ⊂
A. Since we can write A =

⋃
s∈I−k+1

sG−k+1 for some index set I−k+1 and since G−k is a subgroup of G−k+1,
we can choose s−k+1 ∈ G such that s−kG−k ⊂ s−k+1G−k+1 ⊂ A. Moreover, we have s−kG−k = s−k−1G−k.
Indeed, since s−k−1G−k−1 ⊂ s−kG−k, we have s−k−1 ∈ s−kG−k. Hence there exists r−k ∈ G−k such that
s−k−1 = s−kr−k. We deduce that s−k = s−k−1r

−1
−k and consequently s−kG−k = s−k−1r

−1
−kG−k = s−k−1G−k.

Finally, we obtain
s0
⋃
k60

G−k =
⋃
k60

s0G−k ⊂
⋃
k60

s−kG−k ⊂ A.

On the other hand, we have already observed that the first set equals G.
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filtration (Fn)n>0. For any integer N > 1, we have
∑N
n=1 dfn =

∑N
n=1(fn − fn−1) = fN − f0

and dfn = fn − fn−1 =
(
E(·|Fn) ⊗ IdX

)
(f) −

(
E(·|Fn−1) ⊗ IdX

)
(f) if n > 1 and df0 = f0 =(

E(·|F0)⊗ IdX
)
(f).

Note that
⋂
n>0Gn = {0}. Indeed, if t ∈ Gn, then for any χ ∈ Yn = G⊥n we have χ(t) = 1.

So if t ∈
⋂
n>0Gn, then χ(t) = 1 for all ξ ∈

⋃
n>0 Yn = Ĝ. Thus t = 0 and the claim is proved.

Then it is not difficult to check73 that (Gn)n>0 is a neighborhood system at 0. Now by [78,
(4.21)] (see also [26, Example page 223]), the family of subsets of the form sGn where n > 0
and where s runs through G is an open basis for G. So the limit σ-algebra F∞ = σ

(⋃
n>0 Fn

)
equals F .

According to [82, Theorem 3.3.2 (2)], fN converges to
(
E(·|F∞)⊗ IdX

)
(f) = f in Lp(G,X)

when N goes to ∞. Similarly to the case 1, we obtain the convergence of the series
∑∞
n=0 εn ⊗

(M1∆n
⊗ IdX)(f) and the equivalence

‖f − f0‖Lp(G,X)
∼=

∥∥∥∥∥
∞∑
n=1

εn ⊗ (M1∆n
⊗ IdX)(f)

∥∥∥∥∥
Rad(Lp(G,X))

.

One easily incorporates ‖f0‖Lp(G,X) =
∥∥(M1∆0

⊗ IdX)(f)
∥∥

Lp(G,X) on both sides with [83, page
5] to deduce the claimed Littlewood-Paley norm equivalence.

Note that in the case X = C, using the Maurey-Khintchine inequalities [48, 16.11] the
equivalences (7.7) and (7.8) become

(7.9) ‖f‖Lp(G) ≈

∥∥∥∥∥∥
( ∞∑
n=0
|M1∆n

f |2
) 1

2
∥∥∥∥∥∥

Lp(G)

.

We need the following characterization [125] of the closure B(Ĝ) of the Fourier-Stieltjes
algebra B(Ĝ) def= {µ̂ : µ ∈ M(G)} of the dual of a locally compact abelian group G in the
space Cb(Ĝ) of bounded continuous complex-valued functions on Ĝ equipped with the norm
‖·‖∞. If f : Ĝ → C is a bounded continuous function then f belongs to B(Ĝ) if and only if
for any sequence (µn) of bounded Borel measures on Ĝ the conditions supn>1 ‖µn‖ < ∞ and
µ̂n(x) −−−−−→

n→+∞
0 for all x ∈ G imply that

∫
Ĝ
f dµn −−−−−→

n→+∞
0.

Proposition 7.11 Let G be an infinite compact abelian group. Suppose 1 < p < ∞. Then
there exists a strongly non regular Fourier completely bounded Fourier multiplier on Lp(G).

Proof : Since G is compact, its dual Ĝ is discrete. Suppose first that Ĝ contains an element
of infinite order, thus a (necessarily closed) subgroup isomorphic with Z. Consider the closed
subgroup H = Z⊥ of G. Then we have an isomorphism Ĝ/H = H⊥ = Z. Hence G/H is
isomorphic to T. According to [5, Example 3.9], the Hilbert transform on T defines a strongly
non regular Fourier multiplier on Lp(G/H). Since Sp is UMD, by Proposition 2.2 the Hilbert
transform is completely bounded on Lp(G/H). Then, by Proposition 7.9 and using the isometry
(7.4), we deduce that there exists a strongly non regular Fourier multiplier on Lp(G).

Now suppose that no element in Ĝ has infinite order, i.e. Ĝ is an infinite abelian torsion
group. Then it contains a countably infinite abelian torsion group (consider some countably

73. If U is an open subset of G containing 0, consider the decreasing sequence of compact subsets (G−U)∩Gn
and conclude that Gn ⊂ U if n is large enough.
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infinite collection of elements in Ĝ and take the subgroup spanned by this collection, which
is again countably infinite). Arguing as before with Proposition 7.9 and the isometry (7.4), it
suffices to find a strongly non regular Fourier multiplier on a group having as dual this countable
group, so we assume now that Ĝ is a countably infinite abelian torsion discrete group.

It is (really) elementary to see there exists a sequence (Yn)n>0 of subgroups of Ĝ with the
properties:

1. each Yn is finite,

2. Yn $ Yn+1,

3. Y0 = {0} and
⋃∞
n=0 Yn = Ĝ.

Consider now ∆0 = Y0, ∆n = Yn\Yn−1 for n > 1. According to Proposition 7.10, the
Littlewood-Paley equivalence (7.9) holds. This in turn is equivalent [54, 1.2.5 pages 8 and
14] to the property that any ψ ∈ L∞(Ĝ) which is constant on any ∆n, n = 0, 1, 2, . . . and
vanishes on all but finitely many ∆n induces a bounded Fourier multiplier Mψ on Lp(G) with
‖Mψ‖Lp(G)→Lp(G) 6 Cp ‖ψ‖L∞(Ĝ). For any integer n, consider the function φn =

∑n
k=0 1∆2k+1

defined on Ĝ. Since ‖φn‖L∞(Ĝ) 6 1, we have ‖Mφn‖Lp(G)→Lp(G) 6 Cp. Let φ =
∑∞
n=0(1Y2n+1 −

1Y2n) ∈ L∞(Ĝ). Since φn(x) → φ(x) as n → ∞ for any x ∈ Ĝ, we conclude using Proposition
6.12 that the Fourier multiplier Mφ is bounded on Lp(G), 1 < p <∞.

Now, we prove that Mφ is strongly non regular. According to [5, Theorem 3.1], it suffices to
show that φ does not belong to the closure of the Fourier-Stieltjes algebra B(Ĝ) in L∞(Ĝ)-norm.
For this in turn, it suffices to find a sequence of measures µn on Ĝ with the properties

1. ‖µn‖M(Ĝ) 6 2,

2. µ̂n(s) −−−−−→
n→+∞

0 for any s ∈ G,

3.
∫
Ĝ

φdµn 6−−−−−→
n→+∞

0.

We choose the sequence (µn) defined by

µn
def= 1
|Yn+1|

∑
x∈Yn+1

δx −
1
|Yn|

∑
x∈Yn

δx.

Then property 1 is clearly satisfied, since the Haar measure on Ĝ is the counting measure.
For property 2, we have µ̂n = 1Gn+1 − 1Gn , where Gn is the annihilator of Yn in G, i.e.

Gn = Y ⊥n = {s ∈ G : ξ(s) = 1 for all ξ ∈ Yn}.

• If s = 0 then µ̂n(s) = 1Gn+1(0)− 1Gn(0) = 0 for all n ∈ N.

• Consider now the case s ∈ G\{0}. Recall that we have seen in the proof of Proposition
7.10 that

⋂
n>0Gn = {0}. Hence, by the fact that the Yn increase and thus the Gn

decrease, there exists an index n0 such that s 6∈ Gn for any n > n0. Therefore, µ̂n(s) = 0
for any n > n0.
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It remains to show property 3. We have∫
Ĝ

φ dµ2n = 1
|Y2n+1|

∑
x∈Y2n+1

φ(x)− 1
|Y2n|

∑
x∈Y2n

φ(x)

= 1
|Y2n+1|

∑
x∈Y2n+1

( ∞∑
k=0

(1Y2k+1 − 1Y2k)
)

(x)− 1
|Y2n|

∑
x∈Y2n

( ∞∑
k=0

(1Y2k+1 − 1Y2k)
)

(x)

= 1
|Y2n+1|

∑
x∈Y2n+1

( ∞∑
k=0

1Y2k+1(x)− 1Y2k(x)
)
− 1
|Y2n|

∑
x∈Y2n

( ∞∑
k=0

1Y2k+1(x)− 1Y2k(x)
)

= 1
|Y2n+1|

∑
x∈Y2n+1

n∑
k=0

(
1Y2k+1(x)− 1Y2k(x)

)
− 1
|Y2n|

∑
x∈Y2n

n−1∑
k=0

(
1Y2k+1(x)− 1Y2k(x)

)
= 1
|Y2n+1|

( n∑
k=0

∑
x∈Y2n+1

1Y2k+1(x)−
∑

x∈Y2n+1

1Y2k(x)
)

− 1
|Y2n|

( n−1∑
k=0

∑
x∈Y2n

1Y2k+1(x)−
∑
x∈Y2n

1Y2k(x)
)

= 1
|Y2n+1|

n∑
k=0

(
|Y2k+1| − |Y2k|

)
− 1
|Y2n|

n−1∑
k=0

(
|Y2k+1| − |Y2k|

)
=
(

1
|Y2n+1|

− 1
|Y2n|

) n−1∑
k=0

(
|Y2k+1| − |Y2k|

)
+ 1
|Y2n+1|

(
|Y2n+1| − |Y2n|

)
= 1− |Y2n|

|Y2n+1|
+
(

1
|Y2n+1|

− 1
|Y2n|

) n−1∑
k=0

(
|Y2k+1| − |Y2k|

)
> 1− |Y2n|

|Y2n+1|
− 1
|Y2n|

n−1∑
k=0

(
|Y2k+1| − |Y2k|

)
.

The second term in the last line is smaller than 1/2 in modulus by the fact that the Yn increase
strictly and the fact that the order of a subgroup divides the order of the whole group. For
the third term, we note that by skipping several indices n we can assume recursively that |Y2n|
is so large that 1

|Y2n|
∑n−1
k=0 (|Y2k+1| − |Y2k|) < 1

4 . Thus the whole expression in the last line is
bigger than 1− 1

2 −
1
4 = 1

4 and hence does not converge to 0.
According to Proposition 2.2, it suffices now to show that Mφ ⊗ IdSp extends to a bounded

operator on the Bochner space Lp(G,Sp). Using both inequalities of Proposition 7.10, the
fact that Sp has UMD and Kahane’s contraction principle [99, Proposition 2.5] for the scalars
δn even, we get∥∥(Mφ ⊗ IdSp)f

∥∥
Lp(G,Sp) . E

∥∥∥∥∥
∞∑
n=0

εn ⊗ (M1∆n
⊗ IdSp)(Mφ ⊗ IdSp)(f)

∥∥∥∥∥
Lp(G,Sp)

= E

∥∥∥∥∥
∞∑
n=0

εn ⊗ δn even(M1∆n
⊗ IdSp)(f)

∥∥∥∥∥
Lp(G,Sp)

6 E

∥∥∥∥∥
∞∑
n=0

εn ⊗ (M1∆n
⊗ IdSp)(f)

∥∥∥∥∥
Lp(G,Sp)

. ‖f‖Lp(G,Sp) .
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The proof is complete.
Recall that a topological space X is 0-dimensional if X is a non-empty T1-space and if the

family of all sets that are both open and closed is a basis for the topology [78, page 11] [57,
page 360]. By [57, Theorem 6.2.1], every 0-dimensional space is totally disconnected, i.e. X
does not contain any connected subsets of cardinality larger than one.

Proposition 7.12 Let G be an infinite discrete abelian group. Suppose 1 < p < ∞. Then
there exists a strongly non regular completely bounded Fourier multiplier on Lp(G).

Proof : Suppose first that G contains an element of infinite order, so a (closed) subgroup H
isomorphic with Z. Then by [5, Example 3.4], the Hilbert transform induces a strongly non
regular Fourier multiplier on Lp(H). Since Sp is UMD and according to [18, Theorem 2.8], the
Hilbert transform is bounded on Lp(H,Sp) so completely bounded on Lp(H) by Proposition
2.2. Now, using Proposition 7.7 and the isometry (7.2), the composed Fourier multiplier Mφ◦π
on Lp(G), where π : Ĝ → Ĝ/H⊥ is the canonical map, is a strongly non regular completely
bounded Fourier multiplier.

Now suppose that every element of G is of finite order, so G is a torsion group. We can
assume that G is countably infinite. Indeed, otherwise choose a countably infinite number of
elements in G, and let H be the subgroup of G generated by these elements. Then H is again
countably infinite. If there is a strongly non regular completely bounded Fourier multiplier
on Lp(H) then Proposition 7.7 and the isometry (7.2) yield a strongly non regular Fourier
multiplier on Lp(G).

Note that since G is countably infinite, by [78, Theorem 24.15], its dual Ĝ is metrizable.
The fact that G is torsion implies by [78, Theorem 24.21] that Ĝ is 0-dimensional. This in turn
implies that Ĝ is totally disconnected.

So Ĝ is an infinite compact abelian metrizable totally disconnected group. By the second
part of [54, Remark page 68], there exists a sequence (Hn)n>0 of closed subgroups of Ĝ such
that

1. each Hn is open,

2. Hn+1 $ Hn,

3.
⋂∞
n=0Hn = {0}, H0 = Ĝ.

Then the sets ∆n = Hn\Hn+1 enjoy the Littlewood-Paley equivalence (7.9) according to Propo-
sition 7.10. With φ =

∑∞
n=1(1H2n−1 − 1H2n), as in the proof of Proposition 7.11, we see that

Mφ is a bounded Fourier multiplier on Lp(G), 1 < p <∞.
It remains to show that Mφ is strongly non regular. Invoking [5, Theorem 3.1 and Remark

3.2], it suffices to show that φ is not equal almost everywhere to a continuous function.
So assume that ψ : Ĝ → C is a continuous function with ψ = φ almost everywhere. We

will show a contradiction, which will end the proof. Since the Hn are closed and open by 1
above, Hn−1\Hn is open. As it is also non-empty by 2, it must be of positive Haar measure.
Therefore, there exists xn ∈ Hn−1\Hn with

ψ(xn) = φ(xn) =
{

0 n even
1 n odd

.

Consider now the sequence yn = x2n−1. By compactness, there exists a subsequence of yn
which converges against some ξ ∈ Ĝ. Since yn belongs to H2n−1, by 2, ym belongs to H2n−1
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for all m > n. As H2n−1 is closed, ξ belongs to H2n−1, so to
⋂∞
n=1H2n−1 =

⋂∞
n=1Hn = {0}.

Therefore, a subsequence of yn converges to 0.
In the same manner, one shows that a subsequence of x2n converges to 0. However, ψ

applied to these two subsequences is constant to 1 and to 0 respectively, so does not converge.
Hence ψ cannot be continuous.

Now use Proposition 7.10 in a similar fashion to the compact case to deduce that Mφ is
completely bounded on Lp(G). The proof is complete.

Recall the following structure theorem for locally compact abelian groups, see e.g. [78,
Theorem 24.30] and [126, Theorem 4.2.31].

Theorem 7.13 Any locally compact abelian group is isomorphic to a product Rn × G0 where
n > 0 is an integer and G0 is a locally compact abelian group containing a compact subgroup K
such that G0/K is discrete.

With the help of the above theorem, we can now prove the following.

Theorem 7.14 Let G be an infinite locally compact abelian group. Suppose 1 < p <∞. Then
there exists a strongly non regular Fourier multiplier on Lp(G) which is completely bounded,
hence by Subsection 7.1, CB-strongly non decomposable.

Proof : We use the above structure Theorem 7.13 to decompose G and we distinguish three
cases.

If n > 1 then G has a closed subgroup H isomorphic to R and we consider the Hilbert
transform on Lp(H) which is strongly non regular by [5, Example 3.3]. Since the Schatten class
Sp has UMD, the Hilbert transform is bounded on Lp(H,Sp) and hence completely bounded
on Lp(H) according to Proposition 2.2. Now appeal to the isometry (7.2) and Proposition
7.7 to extend the Hilbert transform to a strongly non regular and completely bounded Fourier
multiplier on Lp(G).

If n = 0 then G = G0. Suppose first that the compact subgroup K is infinite. Using
Proposition 7.11, there exists a completely bounded Fourier multiplier which is strongly non
regular. Again, using the isometry (7.2) and Proposition 7.7, we obtain a strongly non regular
and completely bounded Fourier multiplier on Lp(G).

If n = 0 and if the compact subgroup K is finite, then it is itself discrete (since it is
Hausdorff) and thus G = G0 is discrete and infinite. Now, use Proposition 7.12 to find a
strongly non regular completely bounded Fourier multiplier on Lp(G).

7.3 Strongly non regular completely bounded convolutors on non-
abelian groups

Theorem 7.15 Let G be a unimodular amenable locally compact group which contains an in-
finite abelian subgroup. Suppose 1 < p < ∞. There exists a strongly non regular completely
bounded convolution operator T : Lp(G)→ Lp(G).

Proof : Suppose that G contains an infinite abelian group H. Note that the closure H of H is
a closed abelian infinite subgroup of G. By Theorem 7.14, there exists a strongly non regular
completely bounded Fourier multiplier on Lp(H). Since G is amenable and unimodular, we
conclude by using Proposition 7.7 .

Corollary 7.16 Let G be an infinite compact group. Suppose 1 < p < ∞. There exists a
strongly non regular completely bounded convolution operator T : Lp(G)→ Lp(G).
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Proof : Note that G is amenable and unimodular. By [154, Theorem 2], the infinite compact
group G contains an infinite abelian subgroup. Hence, we can use Theorem 7.15.

A group G is a locally finite group if each finitely generated subgroup is finite, see [128, page
422]. Recall that a locally finite group is amenable.

Corollary 7.17 Let G be an infinite unimodular locally finite locally compact group. Suppose
1 < p < ∞. There exists a strongly non regular completely bounded convolution operator
T : Lp(G)→ Lp(G).

Proof : By [128, Theorem 14.3.7], such a group has an infinite abelian subgroup.

Corollary 7.18 Let G be a nilpotent locally compact group which contains an infinite abelian
subgroup. Suppose 1 < p < ∞. There exists a strongly non regular completely bounded convo-
lution operator T : Lp(G)→ Lp(G).

Proof : Such a group is unimodular and amenable.

Corollary 7.19 Let G be an amenable discrete group which contains an infinite abelian sub-
group. Suppose 1 < p <∞. There exists a strongly non regular completely bounded convolution
operator T : Lp(G)→ Lp(G).

Proof : Such a group is unimodular.

7.4 CB-strongly non decomposable Schur multipliers
We start with a result which gives a manageable condition which is necessary for that a com-
pletely bounded Schur multiplier belong to the closure of the space of decomposable operators.

Proposition 7.20 Suppose 1 < p < ∞. If the Schur multiplier Mφ : SpI → SpI is completely
bounded and belongs to the closure Dec(SpI )

CB(Sp
I

)
of the space Dec(SpI ) with respect to the

completely bounded norm then Mφ belongs to the closure M∞I
`∞I×I of the space M∞I in the

Banach space `∞I×I .

Proof : Let R : SpI → SpI be a decomposable operator. By Proposition 3.12, we can write
R = R1 − R2 + i(R3 − R4) where each Rj is a completely positive map on SpI . Using the
projection PI : CB(SpI )→Mp,cb

I of Corollary 4.4, we obtain

PI(R) = PI
(
R1 −R2 + i(R3 −R4)

)
= PI(R1)− PI(R2) + i

(
PI(R3)− PI(R4)

)
.

By Proposition 3.12, we conclude that the Schur multiplier PI(R) is decomposable. By Proposi-
tion 4.10, we infer that PI(R) is bounded on S∞I , i.e. belongs to M∞I . According to Proposition
4.10, it also belongs to M∞,cb

I with same norm. Now, using the contractivity of PI , we have∥∥Mφ −R
∥∥

cb,Sp
I
→Sp

I

>
∥∥PI(Mφ −R)

∥∥
cb,Sp

I
→Sp

I

=
∥∥PI(Mφ)− PI(R)

∥∥
cb,Sp

I
→Sp

I

=
∥∥Mφ − PI(R)

∥∥
cb,Sp

I
→Sp

I

>
∥∥Mφ − PI(R)

∥∥
S2
I
→S2

I

> dist`∞
I×I

(Mφ,M
∞
I ).

Hence, we deduce that

distCB(Sp
I

)
(
Mφ,Dec(SpI )

)
> dist`∞

I×I
(Mφ,M

∞
I ).
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It is folklore that if MA : B(`2)→ B(`2) is a bounded Schur multiplier and the limits

lim
i→∞

lim
j→∞

aij = s and lim
j→∞

lim
i→∞

aij = t

exist then s = t, see [112, Ex 8.15 page 118]. This property turns out to be also true for Schur
multipliers belonging to the closure M∞

`∞N×N .

Proposition 7.21 Let MA ∈M∞
`∞N×N . If the limits

lim
i→∞

lim
j→∞

aij = s and lim
j→∞

lim
i→∞

aij = t

exist then s = t.

Proof : Let ε > 0 and let [bij ] be a matrix corresponding to a bounded Schur multiplier
MB : B(`2) → B(`2), such that |bij − aij | 6 ε for any i, j ∈ N. By the description [112,
Corollary 8.8] of bounded Schur multipliers B(`2)→ B(`2), there exist a Hilbert space H, some
bounded sequences (xi) and (yj) of elements of H such that bij = 〈xi, yj〉 for any i, j ∈ N. By
the weak compactness of closed bounded subsets of H, there exist subsequences ik and jl and
x, y ∈ H such that weak-limk xik = x and weak-liml yjl = y. Thus, we have

lim
k→+∞

bikjl = lim
k→+∞

〈xik , yjl〉 = 〈x, yjl〉

and finally
lim

l→+∞
lim

k→+∞
bikjl = lim

l→+∞
〈x, yjl〉 = 〈x, y〉.

By the same reasoning, we also have lim
k→+∞

lim
l→+∞

bikjl = 〈x, y〉. Now, we infer that

∣∣∣∣ lim
k→+∞

bikjl − lim
k→+∞

aikjl

∣∣∣∣ 6 ε and thus
∣∣∣∣ lim
l→+∞

lim
k→+∞

bikjl − t
∣∣∣∣ 6 ε.

Similarly, we have ∣∣∣∣ lim
k→+∞

lim
l→+∞

bikjl − s
∣∣∣∣ 6 ε.

We infer that |s− t| 6 2ε. Letting ε go to zero yields the proposition.
Recall [110, Section 6] that the triangular truncation T : Sp → Sp and the discrete noncom-

mutative Hilbert transform H : Sp → Sp are completely bounded Schur multipliers defined by
T ([aij ]) = [δi6jaij ] and that H([aij ]) = [−iδi<jaij + iδi>jaij ] for any [aij ] ∈ Sp where i2 = −1.
The fact that T and H are completely bounded on Sp can be found in [110, Section 6].

From the last two propositions, we deduce the following result.

Corollary 7.22 The triangular truncation T : Sp → Sp and the discrete noncommutative
Hilbert transform H : Sp → Sp are CB-strongly non decomposable.
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7.5 CB-strongly non decomposable Fourier multipliers
We start with a transference result.

Proposition 7.23 Let G and H be two discrete groups such that H is a subgroup of G. If
ϕ : H → C is a complex function, we denote by ϕ̃ : G → C the extension of ϕ on G which
is zero off H. Suppose 1 < p < ∞. If ϕ induces a CB-strongly non decomposable Fourier
multiplier Mϕ : Lp(VN(H)) → Lp(VN(H)) then ϕ̃ induces a CB-strongly non decomposable
Fourier multiplier M

ϕ̃
: Lp(VN(G))→ Lp(VN(G)).

Proof : Let E be the trace preserving conditional expectation from VN(G) onto VN(H)
and J be the canonical inclusion of VN(H) into VN(G). The map JMϕE is completely
bounded on Lp(VN(G)) and is clearly equal to the Fourier multiplier M

ϕ̃
induced by ϕ̃.

Suppose that M
ϕ̃

belongs to Dec(Lp(VN(G)))
CB(Lp(VN(G)))

. Let ε > 0. Then there exist
some completely positive maps R1, R2, R3, R4 : Lp(VN(G)) → Lp(VN(G)) and a completely
bounded map R : Lp(VN(G))→ Lp(VN(G)) of completely bounded norm less than ε such that
M
ϕ̃

= R1 −R2 + i(R3 −R4) +R. For any h ∈ H, we have

τG
(
M
ϕ̃

(λh)(λh)∗
)

= ϕ̃(h)τG
(
λh(λh)∗

)
= ϕ(h).

Hence, using the map PH given by Corollary 4.6, we obtain

Mϕ = PH
(
M
ϕ̃

)
= PH

(
R1 −R2 + i(R3 −R4) +R

)
= PH(R1)− PH(R2) + i

(
PH(R3)− PH(R4)

)
+ PH(R).

Moreover, by the contractivity of PH , the Fourier multiplier PH(R) : Lp(VN(H))→ Lp(VN(H))
is completely bounded of completely bounded norm less than ε. Furthermore, each Fourier
multiplier PH(Ri) : Lp(VN(H)) → Lp(VN(H)) is completely positive. It follows that Mϕ is
ε-close to Dec(Lp(VN(H))) in the Banach space CB(Lp(VN(H))). So letting ε→ 0 yields that
Mϕ ∈ Dec(Lp(VN(H)))

CB(Lp(VN(H)))
. This is the desired contradiction.

Corollary 7.24 Let G be a discrete group which contains an infinite abelian subgroup. Suppose
1 < p <∞. There exists a CB-strongly non decomposable Fourier multiplier on Lp(VN(G)).

Proof : It suffices to use Proposition 7.23, Theorem 7.14 and Remark 7.3.
For example, consider 1 < p < ∞, n ∈ N and the free group G = Fn of n generators.

Then there exists a CB-strongly non decomposable Fourier multiplier on Lp(VN(Fn)). The
next criterion allows us to give concrete examples in Proposition 7.28 and Proposition 7.29.

Proposition 7.25 Let G be a unimodular locally compact group. Suppose 1 6 p 6∞.

1. Let ϕ : G → C be a complex function inducing a completely bounded Fourier multi-
plier on Lp(VN(G)). Suppose that there exists a bounded, complete positivity preserv-
ing mapping P pG : CB(Lp(VN(G))) → Mp,cb(G), such that P pG(Mϕ) = Mϕ. If Mϕ ∈
Dec(Lp(VN(G)))

CB(Lp(VN(G)))
then Mϕ ∈M∞,cb(G)

L∞(G)
.

2. Assume that the limits lim
n→+∞

ϕ(sn) and lim
n→+∞

ϕ(s−n) exist for some s ∈ G and that Mϕ

belongs to the closure M∞,cb(G)
L∞(G)

for some measurable ϕ : G→ C. Then

lim
n→+∞

ϕ(sn) = lim
n→+∞

ϕ(s−n).
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Proof : 1. Let R : Lp(VN(G)) → Lp(VN(G)) be a decomposable operator. By Proposition
3.12, we can write

R = R1 −R2 + i(R3 −R4)
where each Rj is a completely positive map on Lp(VN(G)). Using the mapping P pG from the
statement of the proposition, we obtain

P pG(R) = P pG
(
R1 −R2 + i(R3 −R4)

)
= P pG(R1)− P pG(R2) + i

(
P pG(R3)− P pG(R4)

)
.

Using Proposition 6.11, we see that the Fourier multiplier P pG(R) is decomposable on VN(G)
and in particular completely bounded by Proposition 3.30. Now, using the boundedness of P pG
and Lemma 6.5, we obtain∥∥P pG∥∥∥∥Mϕ −R

∥∥
cb,Lp(VN(G))→Lp(VN(G)) >

∥∥P pG(Mϕ −R)
∥∥

cb,Lp(VN(G))→Lp(VN(G))

=
∥∥P pG(Mϕ)− P pG(R)

∥∥
cb,Lp(VN(G))→Lp(VN(G)) =

∥∥Mϕ − P pG(R)
∥∥

cb,Lp(VN(G))→Lp(VN(G))

>
∥∥Mϕ − P pG(R)

∥∥
L2(VN(G))→L2(VN(G)) > distL∞(G)

(
Mϕ,M

∞,cb
G

)
.

Hence, we deduce that∥∥P pG∥∥ distCB(Lp(VN(G)))
(
Mϕ,Dec(Lp(VN(G)))

)
> distL∞(G)

(
Mφ,M

∞,cb
G

)
.

2. Suppose that Mϕ belongs to M∞,cb(G)
L∞(G)

. Let ε > 0 and Mψ ∈ M∞,cb(G) with
‖ϕ− ψ‖∞ 6 ε. According to [138, page 2], there exist a Hilbert space H and two maps
P,Q : G → H with ‖P‖∞ = supr∈G ‖P (r)‖H , ‖Q‖∞ = supt∈G ‖Q(t)‖H < ∞ such that
ψ(rt−1) =

〈
P (r), Q(t)

〉
H
for any r, t ∈ G. The sequences (P (si))i>0 and (Q(sj))j>0 are bounded

in H and thus admit weak* convergent subsequences (P (sik)) and (Q(sjl)) to some elements
h1 and h2 of H. Thus, for any l, we have

lim
k→+∞

ψ
(
sik−jl

)
= lim
k→+∞

〈
P (sik), Q(sjl)

〉
=
〈
h1, Q(sjl)

〉
,

which implies

lim
l→+∞

lim
k→+∞

ψ(sik−jl) = lim
l→+∞

〈
h1, Q(sjl)

〉
= 〈h1, h2〉.

We obtain similarly that limk→+∞ liml→+∞ ψ(sik−jl) = 〈h1, h2〉. But by ‖ϕ− ψ‖∞ 6 ε, we
deduce that∣∣∣∣ lim
k→+∞

ϕ
(
sik−jl

)
− lim
k→+∞

ψ
(
sik−jl

)∣∣∣∣ 6 ε and thus
∣∣∣∣ lim
n→+∞

ϕ(sn)− lim
l→+∞

lim
k→+∞

ψ
(
sik−jl

)∣∣∣∣ 6 ε.

Similarly, we have ∣∣∣∣ lim
n→+∞

ϕ(s−n)− lim
k→+∞

lim
l→+∞

ψ
(
sik−jl

)∣∣∣∣ 6 ε.

Hence the limit limn→+∞ ϕ(sn) is 2ε-close to limn→+∞ ϕ(s−n). We deduce 2. by letting ε→ 0.

Theorem 7.26 Let G be a second countable amenable locally compact group and H be a normal
open (and then also closed) subgroup of G (so G/H is discrete). Let π : G → G/H be the
canonical map and ϕ : G/H → C be a continuous bounded complex function. Suppose 1 < p <
∞. If the complex function ϕ ◦ π : G → C induces a CB-strongly non decomposable Fourier
multiplier Mϕ◦π : Lp(VN(G)) → Lp(VN(G)) then ϕ induces a CB-strongly non decomposable
Fourier multiplier Mϕ : Lp(VN(G/H))→ Lp(VN(G/H)).
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Proof : Note that the Fourier multiplier Mϕ is completely bounded by Theorem 6.14. Suppose
thatMϕ belongs to Dec(Lp(VN(G/H)))

CB(Lp(VN(G/H)))
. Let ε > 0. Then, by Proposition 3.12,

there exist some completely positive maps R1, R2, R3, R4 : Lp(VN(G/H))→ Lp(VN(G/H)) and
a completely bounded map R : Lp(VN(G/H)) → Lp(VN(G/H)) of completely bounded norm
less than ε such that Mϕ = R1 −R2 + i(R3 −R4) +R.

Corollary 4.6 yields the existence of some complex functions ϕ1, ϕ2, ϕ3, ϕ4 and ψ such that
Mϕ = Mϕ1 −Mϕ2 + i(Mϕ3 −Mϕ4) +Mψ such that the Fourier multipliers Mϕk are completely
positive on Lp(VN(G/H)) and Mψ is again of completely bounded norm less than ε. Since
G/H is discrete, the functions ψ,ϕ1, ϕ2, ϕ3, ϕ4 are continuous. Then by Theorem 6.14 it fol-
lows that Mϕk◦π : Lp(VN(G)) → Lp(VN(G)) is completely positive and the Fourier multiplier
Mψ◦π : Lp(VN(G))→ Lp(VN(G)) is completely bounded of completely bounded norm less than
ε. Since

Mϕ◦π = Mϕ1◦π −Mϕ2◦π + i
(
Mϕ3◦π −Mϕ4◦π

)
+Mψ◦π

it follows that Mϕ◦π is ε-close to Dec(Lp(VN(G))) in the Banach space CB(Lp(VN(G))), so
that letting ε → 0 yields that Mϕ◦π ∈ Dec(Lp(VN(G)))

CB(Lp(VN(G)))
. This is the desired

contradiction.

Riesz transforms. An affine representation (H, α, b) of a discrete group G is an orthogonal
representation α : G → O(H) over a real Hilbert space H together with a mapping b : G → H
satisfying the cocycle condition b(st) = αs(b(t)) + b(s) [113, Definition 10.6], see also [14]. In
this situation, by [113, Theorem 10.10] the function s 7→ ‖b(s)‖2H is conditionally of negative
type, vanishes at the identity e and is symmetric. By [90, page 532], for any normalized vector
h ∈ H, we can consider the Riesz transform Rh = Mφ whose symbol φ : G→ R is defined by

(7.10) φ(s) = 〈b(s), h〉H
‖b(s)‖H

if b(s) 6= 0 and φ(s) = 0 otherwise. We will use the subgroup G0 = {s ∈ G : b(s) = 0} of G.

Lemma 7.27 Let G be a discrete group equipped with an affine representation (H, α, b). Sup-
pose 1 < p < ∞. The symbol φ from (7.10) induces a completely bounded operator Rh =
Mφ : Lp(VN(G))→ Lp(VN(G)).

Proof : It is essentially shown in [90] thatRh is completely bounded on the subspace Lp0(VN(G)) def=
Ran(IdLp(VN(G)) −M1G0

) of Lp(VN(G)). Indeed, consider some orthonormal basis (ej) of H
with e1 = h and some independent Rademacher variables ε1, ε2, . . . on some probability space
Ω0. For any x ∈ Spm(Lp0(VN(G))), using the inequalities [90, Theorem A1 and Remark 1.8] for
p ∈ [2,∞), we have

∥∥(IdSpm ⊗Rh)(x)
∥∥
Spm(Lp(VN(G))) 6

∥∥∥∥∥∑
i

εi ⊗ (IdSpm ⊗Rei)(x)

∥∥∥∥∥
Lp(Ω0,S

p
m(Lp(VN(G))))

≈
∥∥((IdSpm ⊗Rei)x)∥∥RCp(Spm(Lp(VN(G)))) . ‖x‖Spm(Lp(VN(G))) .

Thus Rh is completely bounded on Lp0(VN(G)) for p ∈ [2,∞).
Since G is discrete, the indicator function 1G0 is continuous. Let G/G0 denote the discrete

space of left cosets of G0 and consider the quasi-left regular representation πG0 : G→ B
(
`2G/G0

)
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given by πG0(s)δtG0 = δstG0 . For any s ∈ G, we can write 1G0(s) = 〈πG0(s)δG0 , δG0〉. Con-
sequently the indicator function 1G0 is a continuous positive definite function. According to
Proposition 6.11, this function induces a completely positive Fourier multiplier on Lp(VN(G)).
We deduce that IdLp(VN(G)) −M1G0

is completely bounded on Lp(VN(G)). If s ∈ G satisfies
φ(s) 6= 0, then s does not belong to G0, so φ = φ · (1− 1G0). Hence we can write

Rh = Rh
(
IdLp(VN(G)) −M1NG0

)
= Mφ·(1−1G0 ).

We conclude that Rh is completely bounded on Lp(VN(G)) for p ∈ [2,∞), and by duality and
selfadjointness (note that φ is real-valued) also for p ∈ (1, 2].

Let H be a real Hilbert space and fix some non-zero vectors h1, . . . , hn in H (or a sequence
if n = ∞). We introduce the affine representation (H, α, b) of the free group Fn defined by
αs = IdH for all s ∈ G and

b
(
gj1i1 · · · g

jN
iN

)
= j1hi1 + · · ·+ jNhiN , j1, . . . , jN ∈ Z

where g1, . . . , gn stand for the generators of Fn.

Proposition 7.28 Let G = Fn the free group on n generators. Suppose 1 < p <∞. The above
Riesz transform Rh, associated with a family (hi) where h = h1 is normalized, is a CB-strongly
non decomposable selfadjoint Fourier multiplier on Lp(VN(Fn)).

Proof : We have shown in Lemma 7.27 that Rh is completely bounded on Lp(VN(Fn)). On
the other hand, for any m ∈ Z\{0}, we have

φ(gm1 ) = 〈b(g
m
1 ), h1〉H

‖b(gm1 )‖H
= 〈mh1, h1〉H
‖mh1‖H

= sign(m) 〈h1, h1〉H
‖h1‖H

= sign(m) ‖h1‖H .

So we have limm→+∞ φ(gm1 ) = ‖h1‖H 6= −‖h1‖H = limm→+∞ φ(g−m1 ). Using Proposition 7.25
(applicable, since G = F∞ is discrete), we conclude that Rh is CB-strongly non decomposable.

Free Hilbert transform. A different class of linear operators which are CB-strongly non
decomposable on Lp(VN(F∞)) is given in [108]. Namely, let G = F∞ be the free group with a
countable sequence of generators g1, g2, . . .. For n ∈ N, let L±n : L2(VN(F∞)) → L2(VN(F∞))
be the orthogonal projection such that

L±n (λs) =
{
λs s starts with the letter g±1

n

0 otherwise
.

Let further ε+
n , ε
−
n ∈ {−1, 1} for any n ∈ N. Following [108], we define the free Hilbert transform

associated with ε = (ε±n ) as Hε =
∑
n∈N ε

+
nL

+
n + ε−nL

−
n . Clearly, since the ranges of the L±n are

mutually orthogonal, Hε is bounded on L2(VN(F∞)). The far reaching generalization in [108,
Section 4] is that Hε induces a completely bounded map on Lp(VN(F∞)) for any 1 < p <∞.

Proposition 7.29 Let 1 < p < ∞ and ε as above. If ε is not identically constant 1 or −1,
then Hε is CB-strongly non decomposable on Lp(VN(F∞)).

Proof : Clearly, Hε = Mφε is a Fourier multiplier with symbol φε(s) depending only on the
first letter of s. This implies that φε(sn) = φε(s) for n ∈ N. According to Proposition 7.25, it
suffices now to find some s ∈ F∞ such that φε(s) 6= φε(s−1). Take n,m ∈ N and a, b ∈ {±} such
that εan 6= εbm, whose existence is guaranteed by Hε 6= ±IdLp(VN(F∞)). Take further s = gangkg

−b
m

for some k ∈ N\{n,m}. Then φε(s) = εan 6= εbm = φε(s−1).
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7.6 CB-strongly non decomposable operators on approximately finite-
dimen. algebras

We start with a transference result.

Proposition 7.30 Let M be a von Neumann algebra and N be a sub von Neumann algebra
equipped with a faithful normal semifinite trace such that the inclusion N ⊂ M is trace pre-
serving. Suppose 1 < p < ∞. We denote by E : Lp(M) → Lp(N) the canonical conditional
expectation and J : Lp(N)→ Lp(M) the canonical embedding map. Then

1. The map
I : CB(Lp(N)) −→ CB(Lp(M))

T 7−→ JTE

is an isometry and the map

Q : CB(Lp(M)) −→ CB(Lp(N))
S 7−→ ESJ

is a contraction. Both maps preserve the complete positivity and satisfy the equality QI =
IdCB(Lp(N)).

2. We have Q(Dec(Lp(M))) = Dec(Lp(N)) and I(Dec(Lp(N))) ⊂ Dec(Lp(M)). Moreover,
the above maps induce an isometry I : Dec(Lp(N)) → Dec(Lp(M)) and a contraction
Q : Dec(Lp(M))→ Dec(Lp(N)).

3. For any completely bounded operator T : Lp(N)→ Lp(N), we have

distCB(Lp(N))
(
T,Dec(Lp(N))

)
= distCB(Lp(M))

(
I(T ),Dec(Lp(M))

)
.

In particular, T is CB-strongly non decomposable if and only if I(T ) is CB-strongly non
decomposable.

Proof : 1. Recall that EJ = IdLp(N). We have QI(T ) = Q(JTE) = EJTEJ = T . Now, it
is obvious that Q is a contraction and that I is an isometry. Since E and J are completely
positive, the maps Q and I preserve the complete positivity.

2. Let T : Lp(N) → Lp(N) be a decomposable operator. Since E and J are contrac-
tively decomposable, we deduce by composition that I(T ) is decomposable. Hence we have
I(Dec(Lp(N))) ⊂ Dec(Lp(M)). Similarly, we have the inclusionQ(Dec(Lp(M))) ⊂ Dec(Lp(N)).
Moreover, we have

Dec(Lp(N)) = QI
(
Dec(Lp(N))

)
⊂ Q

(
Dec(Lp(M))

)
.

We conclude that Q(Dec(Lp(M))) = Dec(Lp(N)). Other statements are obvious.
3. Let T : Lp(N) → Lp(N) be a completely bounded operator. Using the isometric map I

and the inclusion I(Dec(Lp(N))) ⊂ Dec(Lp(M)) we see that

distCB(Lp(N))
(
T,Dec(Lp(N))

)
= distCB(Lp(M))

(
I(T ), I(Dec(Lp(N))

)
> distCB(Lp(M))

(
I(T ),Dec(Lp(M))

)
.

Now, consider a sequence (Tn) of decomposable operators acting on Lp(M) with

‖I(T )− Tn‖cb,Lp(M)→Lp(M) −−−−−→n→+∞
distCB(Lp(M))

(
I(T ),Dec(Lp(M))

)
.
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By part 2, the operator Q(Tn) : Lp(N)→ Lp(N) is decomposable. Moreover, we have

distCB(Lp(N))(T,Dec(Lp(N))) 6 ‖T −Q(Tn)‖cb,Lp(N)→Lp(N)

=
∥∥Q(I(T )− Tn)

∥∥
cb,Lp(N)→Lp(N) 6 ‖I(T )− Tn‖cb,Lp(M)→Lp(M) .

Letting n go to infinity, we obtain that

distCB(Lp(N))
(
T,Dec(Lp(N))

)
6 distCB(Lp(M))

(
I(T ),Dec(Lp(M))

)
.

We will use the following elementary lemma.

Lemma 7.31 Suppose 1 < p <∞. For any matrix A ∈ Mn, we have

‖MA‖S∞n →S∞n 6 n
1
p ‖MA‖Spn→Spn

Proof : Let B ∈ S∞n . We denote by s1(B), . . . , sn(B) the singular values of B. We have

‖B‖Spn =
(

n∑
i=1

si(B)p
) 1
p

6

(
n · sup

16i6n
si(B)p

) 1
p

= n
1
p · sup

16i6n
si(B) = n

1
p · ‖B‖S∞n .

We deduce that

‖MA(B)‖S∞n 6 ‖MA(B)‖Spn 6 ‖MA‖Spn→Spn ‖B‖Spn 6 n
1
p ‖MA‖Spn→Spn ‖B‖S∞n .

Proposition 7.32 Let R be the hyperfinite factor of type II1 equipped with a normal finite faith-
ful trace. Let 1 < p < ∞. There exists a CB-strongly non decomposable operator T : Lp(R) →
Lp(R).

Proof : Let G be the discrete group of permutations of the integers that leave fixed all but
a finite set of integers (the set may vary with the permutation). By [96, page 902], the von
Neumann algebra VN(G) is ∗-isomorphic to the hyperfinite factor R of type II1. Moreover, by
[96, page 902], the group G is locally finite. By [128, Theorem 14.3.7], it has an infinite abelian
subgroup. Now, it suffices to use Corollary 7.24.

We introduce the sub von Neumann algebra K∞ = ⊕n>1Mn of B(`2 ⊗2 `
2) equipped with

its canonical trace and its noncommutative Lp-space Kp = ⊕pn>1S
p
n. We denote by J : K∞ →

B(`2 ⊗2 `
2) the canonical inclusion and E : B(`2 ⊗2 `

2) → K∞ the canonical trace preserving
faithful normal conditional expectation.

Proposition 7.33 Let 1 < p < ∞, p 6= 2. There exists a CB-strongly non decomposable
operator T : Kp → Kp.

Proof : If n = 2m, by [52, page 53], there exists a positive constant C and matrices Dn ∈ Mn

such that Cn 1
2 6 ‖MDn‖S∞n →S∞n and ‖MDn‖Spn→Spn 6 n|

1
2−

1
p | for n large enough. Since the

argument of [52] of the latter inequality is based on interpolation and duality, we have the better
estimate

‖MDn‖cb,Spn→Spn 6 n|
1
2−

1
p |.
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Still working with n = 2m, we consider the matrix

An = 1
n|

1
2−

1
p |
Dn.

By Proposition 3.4, we can suppose p > 2. For n large enough, we have

‖MAn‖S∞n →S∞n =
∥∥∥∥ 1
n|

1
2−

1
p |
MDn

∥∥∥∥
S∞n →S∞n

= 1
n|

1
2−

1
p |
‖MDn‖S∞n →S∞n > cn

1
2

1
n|

1
2−

1
p |

= cn
1
p .

Moreover, we have the estimate

‖MAn‖cb,Spn→Spn =
∥∥∥∥ 1
n|

1
2−

1
p |
MDn

∥∥∥∥
cb,Spn→Spn

6 1.

Now, we introduce the well-defined completely bounded linear operator

Φ: Kp −→ Kp

(Bn) 7−→ (0,MA2(B2), 0,MA4(B4), 0, 0, 0,MA8(B8), 0, . . .)

Using the map I of Proposition 7.30, we note that the map I(Φ) = JΦE : Sp(`2 ⊗2 `
2) →

Sp(`2 ⊗2 `
2) is a completely bounded Schur multiplier MA on Sp(`2 ⊗2 `

2). Now, we will use
the following lemma.

Lemma 7.34 There exists ε > 0 small enough such that if a completely bounded Schur mul-
tiplier MB : Sp(`2 ⊗2 `

2) → Sp(`2 ⊗2 `
2) satisfies ‖MB −MA‖cb,Sp(`2⊗2`2)→Sp(`2⊗2`2) 6 ε then

MB is not decomposable.

Proof : If n = 2m, let Bn the n × n-submatrix of the matrix B occupying the same place as
An in A. The triangular inequality and Lemma 7.31 give

‖MBn‖S∞n →S∞n > ‖MAn‖S∞n →S∞n − ‖MBn −MAn‖S∞n →S∞n
> ‖MAn‖S∞n →S∞n − n

1
p ‖MBn −MAn‖Spn→Spn

> ‖MAn‖S∞n →S∞n − n
1
p ‖MBn −MAn‖cb,Spn→Spn .

We take 0 < ε < c. Suppose ‖MB −MA‖cb,Sp(`2⊗2`2)→Sp(`2⊗2`2) 6 ε. In particular, for any
integer n, we have ‖MBn −MAn‖cb,Spn→Spn 6 ε. If n is large enough we obtain

‖MBn‖S∞n →S∞n > cn
1
p − εn

1
p = (c− ε)n

1
p −−−−−→

n→+∞
+∞.

Hence the matrix B does not induces a bounded Schur multiplier MB on B(`2 ⊗2 `
2). By

Theorem 4.10, we conclude that MB is not decomposable.
Now, suppose that there exists a decomposable operator T : Sp(`2 ⊗2 `

2) → Sp(`2 ⊗2 `
2)

such that ‖T −MA‖cb,Sp(`2⊗2`2)→Sp(`2⊗2`2) 6 ε. We can write

T = T1 − T2 + i(T3 − T4)

where each Tj is a completely positive map acting on Sp(`2 ⊗2 `
2). Using the projection P

of Theorem 4.2, we obtain P (T ) = P (T1) − P (T2) + i(P (T3) − P (T4)). Since each P (Tj) is
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completely positive, we conclude that the Schur multiplier P (T ) : Sp(`2 ⊗2 `
2) → Sp(`2 ⊗2 `

2)
is decomposable. Note also that

‖P (T )−MA‖cb,Sp(`2⊗2`2)→Sp(`2⊗2`2) = ‖P (T −MA)‖cb,Sp(`2⊗2`2)→Sp(`2⊗2`2)

6 ‖T −MA‖cb,Sp(`2⊗2`2)→Sp(`2⊗2`2) 6 ε.

This is impossible by Lemma 7.34. Hence the map MA = I(Φ) is CB-strongly non decompos-
able. By the point 3 of Proposition 7.30, we conclude that Φ is CB-strongly non decomposable.

Theorem 7.35 Let M be an infinite dimensional approximately finite-dimensional von Neu-
mann algebra equipped with a faithful normal semifinite trace. Let 1 < p < ∞, p 6= 2. There
exists a CB-strongly non decomposable operator T : Lp(M)→ Lp(M).

Proof : By the classification given by [71, Theorem 5.1] (see also [124, Theorem 10.1] and [142]),
the operator space Lp(M) is completely isomorphic to precisely one of the following thirteen
operator spaces:

`p, Lp([0, 1]), Sp, Kp, Kp ⊕ Lp([0, 1]), Sp ⊕ Lp([0, 1]), Lp([0, 1],Kp),

Sp⊕Lp([0, 1],Kp), Lp([0, 1], Sp), Lp(R), Sp⊕Lp(R), Lp([0, 1], Sp)⊕Lp(R), Lp(R, Sp).

A careful examination of the proofs of [71, pages 59-60] and [142, pages 143-145] shows that we
can replace “completely isomorphic” by “completely order and completely isomorphic”.

By [5, Examples 3.4 and 3.9], the Hilbert transforms `pZ → `pZ and Lp(T) → Lp(T) are
strongly non regular. Since the Schatten space Sp is UMD, by Proposition 2.2, these operators
are also completely bounded (use [18, Theorem 2.8] for the discrete case). Using Proposition
7.30, Proposition 7.33, Proposition 7.32 and Corollary 7.22, it is not difficult to conclude using
a reasoning by cases.

Corollary 7.36 Suppose 1 6 p < ∞, p 6= 2. Let M be an infinite dimensional approximately
finite-dimensional von Neumann algebra equipped with a faithful normal semifinite trace. The
following properties are equivalent

1. p = 1.

2. CB(Lp(M)) = Dec(Lp(M)).

3. CB(Lp(M)) = Dec(Lp(M))
CB(Lp(M))

.

Proof : Implications 1. ⇒ 2. ⇒ 3. are obvious. Theorem 7.35 says that the contraposition of
3. ⇒ 1. is true.

For the case p =∞, the situation is well-known for every von Neumann algebra. Indeed, by
[65, page 171], if M is a von Neumann algebra then we have the equality CB(M) = Dec(M)
if and only if M is approximately finite-dimensional. Moreover, Haagerup showed that the
following properties are equivalent.

1. M is approximately finite-dimensional.

2. For every C*-algebra A and every completely bounded map T : A→M we have
‖T‖dec = ‖T‖cb.
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3. For every integer n > 1 and for every linear map T : `∞n →M we have ‖T‖dec = ‖T‖cb.

4. There exists a positive constant C > 1, such that for every integer n > 1 and every linear
map T : `∞n →M we have ‖T‖dec 6 C ‖T‖cb.

Now, we show that these equivalences do not admit extensions to the case 1 < p < ∞. It
suffices to use the following proposition and the completely positive and completely isometric
inclusion `pn ⊂ `p.

Proposition 7.37 Suppose 1 < p < ∞. There exists an integer n large enough and a (com-
pletely bounded) linear map T : `pn → `pn such that we have ‖T‖cb,`pn→`pn < ‖T‖dec,`pn→`pn . More
precisely, there does not exist a positive constant C > 1 satisfying for every integer n > 1 and
every linear map T : `pn → `pn the inequality ‖T‖dec,`pn→`pn 6 C ‖T‖cb,`pn→`pn .

Proof : By Theorem 7.14, there exists a strongly non regular Fourier multiplier Mϕ : Lp(T)→
Lp(T) which is completely bounded. We can suppose ‖Mϕ‖cb 6 1. Now, we approximate Mϕ

using the method of the proof [10, Proposition 3.8] (and [7, proof of Theorem 3.5]). We deduce
the existence of Fourier multipliers Can on Lp(Z/nZ) = `pn with ‖Can‖cb 6 1 and arbitrary
large ‖Can‖reg when n goes to the infinity. We can apply this method since ‖T‖dec = ‖T‖reg =
supX ‖T ⊗ IdX‖Lp(Ω,X)→Lp(Ω,X).

8 Property (P) and decomposable Fourier multipliers
In this section, we give a proof of Proposition 8.2 which is our characterization of selfadjoint
contractively decomposable Fourier multipliers. Subsection 8.3 describes new Fourier multipliers
which satisfy the noncommutative Matsaev inequality, relying on Theorem 8.5 which gives the
new result of factorizability.

8.1 A characterization of selfadjoint contractively decomposable mul-
tipliers

Let M be a von Neumann algebra and T : M → M be a weak* continuous operator. Recall
the following definition from [98, Definition 3]. We say that T satisfies (P) if there exist linear

maps v1, v2 : M → M such that the linear map
[
v1 T
T ◦ v2

]
: M2(M) → M2(M) is completely

positive, completely contractive, weak* continuous and selfadjoint74. In this case, v1 and v2 are
completely positive, weak* continuous and selfadjoint. An operator T satisfying (P) is neces-
sarily contractively decomposable, weak* continuous and selfadjoint. The converse statement
is false by [98, Example 2] in general.

We start to show that the converse is true for Fourier multipliers on discrete groups. If
Mφ : VN(G, σ) → VN(G, σ) is a bounded multiplier on a discrete group G equipped with a
T-valued 2-cocycle σ, it is not difficult to check that (Mφ)◦ = M

φ̌
and that Mφ is selfadjoint in

the sense of Subsection 2.6 if and only if its symbol φ : G→ C is a real valued function. Finally,
it is straightforward to prove that the preadjoint (Mφ)∗ : L1(VN(G, σ))→ L1(VN(G, σ)) of Mφ

identifies to Mφ̌.

74. The assumption selfadjoint is equivalent to the selfadjointness of v1, v2 and T .
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Lemma 8.1 Let G be a discrete group equipped with a T-valued 2-cocycle σ. Suppose that
ψ1, ψ2, ψ3, ψ4 : G→ C are some complex valued functions inducing some bounded Fourier mul-
tipliers Mψ1 ,Mψ2 ,Mψ3 and Mψ4 on VN(G, σ). If the operator

T =
[
Mψ1 Mψ2

Mψ3 Mψ4

]
: M2(VN(G, σ))→ M2(VN(G, σ))

is completely contractive then it induces a completely contractive operator T1 on the space
S1

2(L1(VN(G, σ))). Finally the Banach adjoint (T1)∗ : M2(VN(G, σ)) → M2(VN(G, σ)) iden-

tifies to
[
Mψ̌1

Mψ̌2

Mψ̌3
Mψ̌4

]
.

Proof : According to the point 5 of Theorem 4.2, we have

‖T‖cb,M2(VN(G,σ))→M2(VN(G,σ)) = ‖T‖cb,M2(VN(G))→M2(VN(G))

and similarly, ‖T‖cb,S1
2(L1(VN(G,σ)))→S1

2(L1(VN(G,σ))) = ‖T‖cb,S1
2(L1(VN(G)))→S1

2((VN(G))) provided
that one of these terms is finite. So if we prove the first statement of the lemma for the
trivial cocycle σ = 1, then it follows for a general T-valued 2-cocycle σ. We thus sup-
pose now that σ = 1 is trivial. Consider the ∗-anti-automorphism κ : VN(G) → VN(G),

λs 7→ λs−1 . An easy computation gives (IdM2 ⊗ κ)
[
Mψ1 Mψ2

Mψ3 Mψ4

]
(IdM2 ⊗ κ) =

[
Mψ̌1

Mψ̌2

Mψ̌3
Mψ̌4

]
where ψ̌i(s) = ψi(s−1). Since the map κ : VN(G) → VN(G)op is a complete isometry, we

conclude that the linear map
[
Mψ̌1

Mψ̌2

Mψ̌3
Mψ̌4

]
: M2(VN(G)) → M2(VN(G)) is completely con-

tractive. Moreover, by Lemma 6.4, each symbol ψi induces a bounded Fourier multiplier

Mψi : L1(VN(G)) → L1(VN(G)). Consequently,
[
Mψ1 Mψ2

Mψ3 Mψ4

]
induces a bounded operator

on S1
2(L1(VN(G))). Furthermore, by Proposition 3.3 and Lemma 6.4, we see that the Ba-

nach adjoint of the operator
[
Mψ1 Mψ2

Mψ3 Mψ4

]
: S1

2(L1(VN(G))) → S1
2(L1(VN(G))) identifies to

the complete contraction[
(Mψ1)∗ (Mψ2)∗
(Mψ3)∗ (Mψ4)∗

]
=
[
Mψ̌1

Mψ̌2

Mψ̌3
Mψ̌4

]
: M2(VN(G))→ M2(VN(G)).

We conclude that the operator
[
Mψ1 Mψ2

Mψ3 Mψ4

]
: S1

2(L1(VN(G)))→ S1
2(L1(VN(G))) is completely

contractive. Finally, the last statement of the lemma for a general T-valued 2-cocycle σ follows
from

τG,σ ((Mψ)∗(λσ,s)λσ,t) = τG,σ (λσ,sMψ(λσ,t)) = ψ(t)τG,σ (λσ,sλσ,t)
= ψ(t)σ(s, t)δs,t−1 = ψ(s−1)σ(s, s−1)δs,t−1

and
τG,σ

(
Mψ̌(λσ,s)λσ,t

)
= ψ̌(s)τG,σ (λσ,sλσ,t) = ψ(s−1)σ(s, s−1)δs,t−1 .

Proposition 8.2 Let G be a discrete group equipped with a T-valued 2-cocycle σ. Let φ : G→ C
be a complex valued function. The following assertions are equivalent.
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1. The complex function φ induces a selfadjoint contractively decomposable Fourier multiplier
Mφ : VN(G, σ)→ VN(G, σ) on the twisted group von Neumann algebra VN(G, σ).

2. The function φ induces a Fourier multiplier Mφ : VN(G, σ)→ VN(G, σ) with (P).

3. There exist some real valued functions ϕ1, ϕ2 : G→ R such that[
Mϕ1 Mφ

M◦φ Mϕ2

]
: M2(VN(G, σ))→ M2(VN(G, σ))

is unital, completely positive, weak* continuous and selfadjoint.

Proof : The statements 3. ⇒ 2. and 2. ⇒ 1. are obvious. We show 1. ⇒ 3. The multiplier
Mφ is selfadjoint thus we have φ = φ and finally (Mφ)◦ = M

φ̌
= Mφ̌. Since the operator Mφ

is contractively decomposable there exist linear maps v1, v2 : VN(G, σ) → VN(G, σ) such that

the map
[
v1 Mφ

Mφ̌ v2

]
: M2(VN(G, σ)) → M2(VN(G, σ)) is completely positive and completely

contractive. By using the same reasoning as the one in the proof of Proposition 3.4, we can
suppose that this map is in addition weak* continuous. Since G is discrete, we can apply the
projection P∞{1,2},G,σ : CBw∗(M2(VN(G, σ)))→M∞,cb

{1,2}(G, σ) from Theorem 4.2. We obtain that

P∞{1,2},G,σ

([
v1 Mφ

Mφ̌ v2

])
=
[
P∞G (v1) P∞G (Mφ)
P∞G (Mφ̌) P∞G (v2)

]
=
[
P∞G (v1) Mφ

Mφ̌ P∞G (v2)

]
.

We deduce that there exist some complex functions ψ1, ψ2 : G → C such that the map T
def=[

Mψ1 Mφ

Mφ̌ Mψ2

]
: M2(VN(G, σ)) → M2(VN(G, σ)) is completely positive, completely contractive

and weak* continuous. By Lemma 8.1, the operator T induces a completely positive and
completely contractive operator T1 : S1

2(L1(VN(G, σ))) → S1
2(L1(VN(G, σ))). The operator

(T1)∗ : M2(VN(G, σ)) → M2(VN(G, σ)) is also completely contractive and completely posi-

tive by Lemma 2.7. Again by Lemma 8.1, we have (T1)∗ =
[
Mψ̌1

Mφ̌

Mφ Mψ̌2

]
=
[
Mψ1

Mφ̌

Mφ Mψ2

]
where we used [14, Proposition C.4.2] and the fact that ψ1 and ψ1 are definite positive since
Mψ1 : VN(G, σ)→ VN(G, σ) and Mψ2 : VN(G, σ)→ VN(G, σ) are completely positive.

Consider the transpose map75 η : M2 → Mop
2 , A 7→ tA, which is an algebra isomorphism,

hence a complete isometry and a completely positive map (see also Lemma 2.6). An easy com-

putation gives (η⊗ IdVN(G,σ))
[
Mψ1

Mφ̌

Mφ Mψ2

]
(η⊗ IdVN(G,σ)) =

[
Mψ1

Mφ

Mφ̌ Mψ2

]
. We conclude that

the linear map R def=
[
Mψ1

Mφ

Mφ̌ Mψ2

]
: M2(VN(G, σ))→ M2(VN(G, σ)) is completely contractive

and completely positive.

Now, 1
2 (T +R) : M2(VN(G, σ))→ M2(VN(G, σ)) is a matrix block multiplier

[
Mψ3 Mφ

Mφ̌ Mψ4

]
which is completely positive, completely contractive and selfadjoint with Mφ in the corner.
Note that Mψ3 and Mψ4 are completely positive. So ψ3(e) = Mψ3(1) = ‖Mψ3‖ 6 1 and
similarly for ψ4. Hence the linear maps w1 = Mψ3 + τG,σ(·)(1 − ψ3(e))1VN(G,σ) and w2 =

75. Here Mop
2 ientifies to the algebra M2 with the multiplication reversed.
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Mψ4 +τG,σ(·)(1−ψ4(e))1VN(G,σ) are completely positive, selfadjoint and weak* continuous. We
have

w1(λσ,s) =
(
Mψ3 + τG,σ(·)(1− ψ3(e))1VN(σ,σ)

)
(λσ,s)

= Mψ3(λσ,s) + τG,σ(λσ,s)(1− ψ3(e))1VN(G,σ)

= ψ3(s)λσ,s + δs,e(1− ψ3(e))1VN(G,σ) = λσ,s

{
ψ3(s) if s 6= e

1 if s = e

and similarly for w2. We deduce that these maps are selfadjoint unital Fourier multipliers Mϕ1

and Mϕ2 . Now, the map Φ =
[
Mϕ1 Mφ

M◦φ Mϕ2

]
: M2(VN(G, σ)) → M2(VN(G, σ)) is obviously

unital, selfadjoint and weak* continuous. Moreover

Φ =
[
Mϕ1 Mφ

M◦φ Mϕ2

]
=
[
Mψ3 Mφ

M◦φ Mψ4

]
+
[
τG,σ(·)(1− ψ3(e))1VN(G,σ) 0

0 τG,σ(·)(1− ψ4(e))1VN(G,σ)

]
.

It is easy to conclude that Φ is completely positive.

Remark 8.3 Let G be an amenable discrete group. By [41, Corollary 1.8], a contractive
Fourier multiplier Mϕ : VN(G) → VN(G) is completely contractive and finally contractively
decomposable by [65, Theorem 2.1] since VN(G) is approximately finite-dimensional.

8.2 Factorizability of some matrix block multipliers
Second quantization. We denote by Sym(n) the symmetric group of order n. If σ is a
permutation of Sym(n) we denote by |σ| the number card

{
(i, j) : 1 6 i < j 6 n, σ(i) > σ(j)

}
of inversions of σ.

Let H be a complex Hilbert space. The antisymmetric (or fermionic) Fock space over H is
F−1(H) = CΩ⊕ (

⊕
n>1H⊗n) where Ω is a unit vector called the vacuum and where the scalar

product on H⊗n is given, after dividing out the null space, by

〈h1 ⊗ · · · ⊗ hn, k1 ⊗ · · · ⊗ kn〉−1 =
∑

σ∈Sym(n)

(−1)|σ|〈h1, kσ(1)〉H · · · 〈hn, kσ(n)〉H.

The creation operator c(e) for e ∈ H is given by c(e) : F−1(H) → F−1(H), h1 ⊗ · · · ⊗ hn 7→
e⊗ h1 ⊗ · · · ⊗ hn. We have c(e)2 = 0. Moreover, they satisfy the q-commutation relation

(8.1) c(f)∗c(e) + c(e)c(f)∗ = 〈f, e〉HIdF−1(H).

We denote by ω(e) : F−1(H)→ F−1(H) the selfadjoint operator c(e)+ c(e)∗. If e ∈ H has norm
1, then (8.1) says that the operator ω(e) satisfies

(8.2) ω(e)2 = IdF−1(H).

Let H be a real Hilbert space with complexification HC. We let H = HC. The fermion von
Neumann algebra Γ−1(H) is the von Neumann algebra generated by the operators ω(e) where
e ∈ H. It is a finite von Neumann algebra with the trace τ defined by τ(x) = 〈Ω, xΩ〉F−1(H)
where x ∈ Γ−1(H).

Let H and K be real Hilbert spaces and T : H → K be a contraction with complexification
TC : H = HC → KC = K. We define the following linear map

F−1(T ) : F−1(H) −→ F−1(K)
h1 ⊗ · · · ⊗ hn 7−→ TCh1 ⊗ · · · ⊗ TChn.
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Then there exists a unique map Γ−1(T ) : Γ−1(H)→ Γ−1(K) such that for every x ∈ Γ−1(H) we
have (Γ−1(T )(x))Ω = F−1(T )(xΩ). This map is normal, unital, completely positive and trace
preserving. If T : H → K is a surjective isometry, Γ−1(T ) is a ∗-isomorphism from Γ−1(H)
onto Γ−1(K).

Finally for any e, f ∈ H, we have the covariance formula

(8.3) τ
(
ω(e)ω(f)

)
= 〈e, f〉H .

Kernels of positive type. Let X be a topological space. A (real) kernel of positive type on
X [14, Definition C.1.1] is a continuous function Φ: X × X → C (into R) such that, for any
integer n ∈ N, any elements x1, . . . , xn ∈ X and any (real) complex numbers c1, . . . , cn, the
following inequality holds:

n∑
k,l=1

ckclΦ(xk, xl) > 0.

In this case, we have Φ(x, y) = Φ(y, x) for any x, y ∈ X by [14, Proposition C.1.2]. If Φ is such
a kernel, by [16, page 82] and [14, Theorem C.1.4], then there exists a (real) Hilbert space H
and a continuous mapping e : X → H with the following properties:

1. Φ(x, y) =
〈
ex, ey

〉
H

for any x, y ∈ X,

2. the linear span of {ex : x ∈ X} is dense in H.

Factorizable maps. Let M be a von Neumann equipped with a faithful normal finite trace
τM . A τM -Markov map T : M →M is called factorizable76 [3], [69], [91], [127] if there exists a
von Neumann algebra N equipped with a faithful normal finite trace τN , and ∗-monomorphisms
J0 : M → N and J1 : M → N such that J0 is (τM , τN )-Markov and J1 is (τM , τN )-Markov,
satisfying moreover T = J∗0 ◦ J1. We say that T : M → M is QWEP-factorizable [9] if N has
additionally QWEP.

Twisted crossed products. In order to prove our results we need the notion of crossed
product. Let H be a Hilbert space and M be a sub-von Neumann algbra of B(H). We
consider a discrete group G equipped with a T-valued 2-cocycle σ. Let α : G → Aut(M) be
a representation of G on M . The twisted crossed product von Neumann algebra M oσ,α G
[144, Definition 2.1] (see also [155] for a unitary transform of this definition) is generated by
the operators πσ(x) and λσ,s acting on `2G(H) where x ∈M and s ∈ G, defined by

(πσ(x)ξ)(s) = αs−1(x)ξ(s), x ∈M, ξ ∈ `2G(H), s ∈ G.

(λσ,sξ)(t) = σ(t−1, s)ξ(s−1t), ξ ∈ `2G(H), s, t ∈ G.
We have the following relations of commutation [144, Proposition 2.2]:

(8.4) πσ
(
αs(x)

)
λσ,s = λσ,sπσ(x), and λσ,sλσ,t = σ(s, t)λσ,st x ∈M, s, t ∈ G.

We can identify M and VN(G, σ) as subalgebras of M oσ,α G.
Suppose that τ is a G-invariant normal semi-finite faithful trace on M . If E is the normal

conditional expectation from M oσ,α G onto M then τo = τ ◦ E defines a normal semifinite
faithful trace on M oσ,αG, see [155, Proposition 8.16]. For any x ∈M and any s ∈ G, we have

(8.5) τo
(
xλσ,s

)
= δs,eGτ(x).

76. The definition given here is slightly different but equivalent by [69, Remark 1.4 (a)].
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Moreover, τo is finite if and only if τ is finite. Finally we will use the notation M oα G =
M o1,α G.

The following proposition generalizes a part of [41, Proposition 4.2].

Proposition 8.4 Suppose that I is a finite set. Let G be a discrete group equipped with a T-
valued 2-cocycle σ. Let (ϕij)i,j∈I be a family of complex functions on G. Let Ψ: MI(VN(G, σ))→
MI(VN(G, σ)) be a normal completely positive map such that Ψ([λσ,sij ]) =

[
ϕij(sij)λσ,sij

]
for

any family (sij)i,j∈I of elements of G. Then the map Φ: I × G × I × G → C, (i, s, j, s′) 7→
ϕij(s−1s′) is a kernel of positive type, that is: for any integer n ∈ N, any elements i1, . . . , in ∈ I,
any s1, . . . , sn ∈ G and any complex numbers c1, . . . , cn, the following inequality holds:

n∑
k,l=1

ckclϕikil
(
s−1
k sl

)
> 0.

Proof : Consider i1, . . . , in ∈ I and s1, . . . , sn ∈ G and some complex numbers c1, . . . , cn ∈ C.
Let ξ be a unit vector of L2(VN(G, σ)). For any integer 1 6 k 6 n, we let ξk

def= ckλ
−1
σ,sk

ξ. Then
using (4.3) several times, we have

n∑
k,l=1

ckclϕikil
(
s−1
k sl

)
=

n∑
k,l=1

ϕikil
(
s−1
k sl

)
ckcl〈ξ, ξ〉 =

n∑
k,l=1

ϕikil
(
s−1
k sl

)〈
ckξ, clξ

〉
=

n∑
k,l=1

ϕikil
(
s−1
k sl

)〈
λσ,skξk, λσ,slξl

〉
=

n∑
k,l=1

ϕikil
(
s−1
k sl

)〈
ξk, (λσ,sk)∗λσ,slξl

〉
=

n∑
k,l=1

ϕikil
(
s−1
k sl

)
σ(sk, s−1

k )
〈
ξk, λσ,s−1

k
λσ,slξl

〉
=

n∑
k,l=1

ϕikil
(
s−1
k sl

)
σ(sk, s−1

k )σ(s−1
k , sl)

〈
ξk, λσ,s−1

k
sl
ξl
〉

=
n∑

k,l=1
σ(sk, s−1

k )σ(s−1
k , sl)

〈
ξk,Mϕikil

(
λσ,s−1

k
sl

)
ξl
〉

=
n∑

k,l=1
σ(sk, s−1

k )
〈
ξk,Mϕikil

(
σ(s−1

k , sl)λσ,s−1
k
sl

)
ξl
〉

=
n∑

k,l=1
σ(sk, s−1

k )
〈
ξk,Mϕikil

(
λσ,s−1

k
λσ,sl

)
ξl
〉

=
n∑

k,l=1

〈
ξk,Mϕikil

(
(λσ,sk)∗λσ,sl

)
ξl
〉

where the brackets denote scalar products in the Hilbert space L2(VN(G, σ)). Now, we consider
the vector η = (ηl,t)l∈[[1,n]],t∈I ∈ `2n(`2I(L2(VN(G, σ)))), where each ηl,t belongs to L2(VN(G, σ)),
defined by

ηl,t = δt,ilξl.

We consider IdMn ⊗ Ψ =
[
Mϕrt

]
k,l∈[[1,n]],r,t∈I : M[[1,n]]×I(VN(G, σ)) → M[[1,n]]×I(VN(G, σ)) and

the matrix
C =

[
(λσ,sk)∗λσ,sl

]
k,l∈[[1,n]],r,t∈I ∈ M[[1,n]]×I(VN(G, σ)).

Note that C is positive (a matrix [a∗i aj ]ij of Mn(A) is positive [112, page 34] and we use [19,
Lemma 1.3.6]) and that

(IdMn
⊗Ψ)(C) =

[
Mϕrt

(
(λσ,sk)∗λσ,sl

)]
k,l∈[[1,n]],r,t∈I

def= [bk,l,r,t]k,l∈[[1,n]],r,t∈I .
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We have

0 6
〈
η, (IdMn ⊗Ψ)(C)η

〉
`2n(`2

I
(`2
G

))

=
〈
(ηk,r)k∈[[1,n]],r∈I , [bk,l,r,t]k,l∈[[1,n]],r,t∈I(ηl,t)l∈[[1,n]],t∈I

〉
`2n(`2

I
(L2(VN(G,σ))))

=
〈

(ηk,r)k∈[[1,n]],r∈I ,

( n∑
l=1

∑
t∈I

bk,l,r,tηl,t

)
k∈[[1,n]],r∈I

〉
`2n(`2

I
(L2(VN(G,σ))))

=
n∑

k,l=1

∑
r,t∈I

〈
ηk,r, bk,l,r,tηl,t

〉
=

n∑
k,l=1

∑
r,t∈I

〈
ηk,r,Mϕrt

(
(λσ,sk)∗λσ,sl

)
ηl,t
〉

=
n∑

k,l=1

∑
r,t∈I

〈
δr,ikξk,Mϕrt

(
(λσ,sk)∗λσ,sl

)
δt,ilξl

〉
=

n∑
k,l=1

∑
r,t∈I

δr,ikδt,il
〈
ξk,Mϕrt

(
(λσ,sk)∗λσ,sl

)
ξl
〉

=
n∑

k,l=1

〈
ξk,Mϕikil

(
(λσ,sk)∗λσ,sl

)
ξl
〉
.

where the brackets denote scalar products in the Hilbert space L2(VN(G, σ)).
The following result generalizes the results of [127].

Theorem 8.5 Let G be a discrete group equipped with a T-valued 2-cocycle σ on G and I
be a finite set. Let (ϕij)i,j∈I be a family of real valued functions on G such that ϕii(e) = 1
for any i ∈ I. If the (selfadjoint unital trace preserving77) map [Mϕij ] : MI(VN(G, σ)) →
MI(VN(G, σ)) is completely positive then [Mϕij ] is factorizable on a von Neumann algebra of
the form MI

(
Γ−1(H) oσ,α G

)
where α is an action of G on the von Neumann algebra Γ−1(H)

for some Hilbert space H.

Proof : By Proposition 8.4, the map Φ: I ×G× I ×G → R, (i, s, j, s′) 7→ ϕij(s−1s′) is a real
kernel of positive type. Hence for any i, j ∈ I and any s, s′ ∈ G we have ϕij(s−1s′) = ϕji(s′−1s)
in particular

(8.6) ϕij(s) = ϕji(s−1).

Moreover, there exists a real Hilbert space H and a map e : I ×G→ H, (i, s) 7→ ei,s such that
the linear span of {ei,s : i ∈ I, s ∈ G} is dense in H and such that for any i, j ∈ I and any
s, s′ ∈ G

Φ(i, s, j, s′) =
〈
ei,s, ej,s′

〉
H
, i.e. ϕij(s−1s′) =

〈
ei,s, ej,s′

〉
H
.

In particular, we have

(8.7) ϕij(s) =
〈
ei,e, ej,s

〉
H

and
∥∥ei,s∥∥2

H
=
〈
ei,s, ei,s

〉
H

= ϕii
(
s−1s

)
= ϕii(e) = 1.

Note that for any family of real numbers (ai,t)i∈I,t∈G with only finitely many non-zero terms,

77. Hence (Tr ⊗τG,σ)-Markovian.
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we have∥∥∥∥∥ ∑
i∈I,t∈G

ai,tei,st

∥∥∥∥∥
2

H

=
∑
i,j∈I

∑
t,t′∈G

ai,taj,t′
〈
ei,st, ej,st′

〉
H

=
∑
i,j∈I

∑
t,t′∈G

ai,taj,t′ϕij(t−1t′)

=
∑
i,j∈I

∑
t,t′∈G

ai,taj,t′
〈
ei,t, ej,t′

〉
H

=

∥∥∥∥∥ ∑
i∈I,t∈G

ai,tei,t

∥∥∥∥∥
2

H

.

Hence, we can define the following surjective isometric operator θs : H → H, ei,t 7→ ei,st.
Consequently, we obtain a group action θ of G on the Hilbert space H. In order to simplify the
notations in the sequel of the proof, in the von Neumann algebra Γ−1(H), we use the notation
ωi,s instead of ω(ei,s). For any s ∈ G, we define the trace preserving ∗-automorphism

α(s) = Γ−1(θs) :
{

Γ−1(H) −→ Γ−1(H)
ωi,t 7−→ ωi,st

.

The group homomorphism α : G→ Aut(Γ−1(H)) allows us to define the twisted crossed product
von Neumann algebra Γ−1(H) oσ,α G. We identify Γ−1(H) and VN(G, σ) as subalgebras of
Γ−1(H) oσ,α G. We can write the first relations of commutation (8.4) as

(8.8) λσ,sωi,t = ωi,stλσ,s

We denote by τ the faithful finite normal trace on Γ−1(H). Recall that, for any s ∈ G, the map
α(s) is trace preserving. Thus, the trace τ is α-invariant. We equip Γ−1(H) oσ,α G with the
induced canonical finite trace τo. Now, we introduce the von Neumann algebra

(8.9) M = MI

(
Γ−1(H) oσ,α G

)
.

equipped with its canonical trace Tr ⊗τo and we consider the element d =
∑
i∈I eii ⊗ ωi,e of

M . By (8.7) and (8.2), it is easy to see78 that d2 = 1M . We let J1 : MI(VN(G, σ)) → M the
canonical unital ∗-monomorphism and we define the unital ∗-monomorphism

J0 : MI(VN(G, σ)) −→ M
ekl ⊗ λσ,t 7−→ d(ekl ⊗ λσ,t)d = ekl ⊗ ωk,eλσ,tωl,e

.

It is not difficult to check that the maps J0 and J1 are trace preserving, hence markovian. Now,
for any i, j, k, l ∈ I and any s, t ∈ G we have

(Tr ⊗τo)
(
J1(eij ⊗ λσ,s)J0(ekl ⊗ λσ,t)

)
= (Tr ⊗τo)

(
(eij ⊗ λσ,s)(ekl ⊗ ωk,eλσ,tωl,e)

)
= (Tr ⊗τo)

(
eijekl ⊗ λσ,sωk,eλσ,tωl,e

)
= Tr (eijekl)τo(λσ,sωk,eλσ,tωl,e)

= δjkδil τo(ωk,sλσ,sωl,tλσ,t) by (8.8)
= δjkδil τo(ωk,sωl,stλσ,sλσ,t) by (8.8)
= δjkδilσ(s, t) τo(ωk,sωl,stλσ,st) = δjkδilδe,stσ(s, t) τ(ωk,sωl,st) by (8.5)
= δjkδilδe,stσ(s, t)

〈
ek,s, el,st

〉
by (8.3)

78. We have

d2 =
∑
i,j∈I

(eii ⊗ ωi,e)(ejj ⊗ ωj,e) =
∑
i∈I

(
eii ⊗ ω2

i,e

)
=
∑
i∈I

(
eii ⊗ 1Γ−1(H)oσ,αG

)
= 1M .

130



= δjkδilδe,stσ(s, t)ϕkl(t) = δjkδilδs,t−1σ(s, t) ϕji(s−1)
= δjkδilδs,t−1σ(s, t) ϕij(s) by (8.6)
= ϕij(s) Tr

(
eijekl

)
τG,σ

(
λσ,sλσ,t

)
= ϕij(s)(Tr ⊗τG,σ)

(
eijekl ⊗ λσ,sλσ,t

)
= ϕij(s)(Tr ⊗τG,σ)

(
(eij ⊗ λσ,s)(ekl ⊗ λσ,t)

)
= (Tr ⊗τG,σ)

((
[Mϕij ](eij ⊗ λσ,s)

)
(ekl ⊗ λσ,t)

)
.

Hence, for any x, y ∈ M2(VN(G, σ)), we deduce that

(Tr ⊗τG,σ)
((

[Mϕij ](x)
)
y
)

= (Tr ⊗τo)
(
J1(x)J0(y)

)
= (Tr ⊗τG,σ)

(
J∗0J1(x)y

)
.

We conclude that [Mϕij ] = J∗0 ◦ J1, i.e. that the map [Mϕij ] is factorizable.

8.3 Application to the noncommutative Matsaev inequality
In this section, we give an application of Theorem 8.5. Other applications will be given in
subsequent publications. If 1 6 p 6∞ we denote by S : `p → `p the right shift operator defined
by S(a0, a1, a2, . . .) = (0, a0, a1, a2, . . .). If 1 < p < ∞, p 6= 2, the validity of the following
inequality

(8.10)
∥∥P (T )

∥∥
Lp(M)→Lp(M) 6

∥∥P (S)
∥∥

cb,`p→`p

is open within the class of all contractions T : Lp(M)→ Lp(M) on a noncommutative Lp-space
Lp(M) and all complex polynomials P . We refer to the papers [7], [6] and [115] for more
information on this problem. The following result allows us to generalize [7, Corollary 4.5 and
Corollary 4.7].

Theorem 8.6 Let G be a discrete group and σ be a T-valued 2-cocycle on G such that for
any real Hilbert space H, any action α from G onto Γ−1(H) the crossed product Γ−1(H) oα
G has QWEP. Let ϕ : G → R be a real function which induces a (selfadjoint) contractively
decomposable Fourier multiplier Mϕ : VN(G, σ) → VN(G, σ). Suppose 1 6 p 6 ∞. Then, the
induced completely contractive Fourier multiplier Mϕ : Lp

(
VN(G, σ)

)
→ Lp

(
VN(G, σ)

)
satisfies

the noncommutative Matsaev inequality (8.10). More precisely, for any complex polynomial P ,
we have ∥∥P (Mϕ)

∥∥
cb,Lp(VN(G,σ))→Lp(VN(G,σ)) 6

∥∥P (S)
∥∥

cb,`p→`p .

Proof : Using (4.8), we can suppose that σ = 1. Using Proposition 8.2, we see that there exist
Fourier multipliers Mψ1 ,Mψ2 : VN(G)→ VN(G) such that the map[

Mψ1 Mϕ

M◦ϕ Mψ2

]
: M2(VN(G))→ M2(VN(G))

is unital completely positive selfadjoint and weak* continuous. Note that by Lemma 8.1
and interpolation, the above map induces a (completely contractive) well-defined map on
Sp2 (Lp(VN(G))). For any complex polynomial P , we obtain

∥∥P (Mϕ)
∥∥

cb,Lp(VN(G))→Lp(VN(G)) 6

∣∣∣∣∣∣∣∣[P (Mψ1) P (Mϕ)
P (M◦ϕ) P (Mψ2)

]∣∣∣∣∣∣∣∣
cb,Sp2 (Lp(VN(G)))→Sp2 (Lp(VN(G)))

=
∣∣∣∣∣∣∣∣P ([Mψ1 Mϕ

M◦ϕ Mψ2

])∣∣∣∣∣∣∣∣
cb,Sp2 (Lp(VN(G)))→Sp2 (Lp(VN(G)))

.
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By Theorem 8.5, the operator
[
Mψ1 Mϕ

M◦ϕ Mψ2

]
: M2(VN(G))→ M2(VN(G)) is QWEP-factorizable.

Using [69, Theorem 4.4], we deduce that this operator is dilatable on a von Neumann algebra and
it is left to the reader to check that this von Neumann algebra is QWEP. Finally, it is not difficult

to deduce that the operator IdB(`2)⊗
[
Mψ1 Mϕ

M◦ϕ Mψ2

]
: B(`2)⊗M2(VN(G))→ B(`2)⊗M2(VN(G))

is also dilatable on a QWEP von Neumann algebra. We conclude by using [7, Corollary 2.6 and
(1.5)] that∣∣∣∣∣∣∣∣P ([Mψ1 Mϕ

M◦ϕ Mψ2

])∣∣∣∣∣∣∣∣
cb,Sp2 (Lp(VN(G)))→Sp2 (Lp(VN(G)))

=
∣∣∣∣∣∣∣∣P (IdSp ⊗

[
Mψ1 Mϕ

M◦ϕ Mψ2

])∣∣∣∣∣∣∣∣
Sp(Sp2 (Lp(VN(G))))→Sp(Sp2 (Lp(VN(G))))

6
∥∥P (S)

∥∥
cb,`p→`p .

The proof is complete.
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