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Projections, multipliers and decomposable maps

on noncommutative L’-spaces

Cédric Arhancet - Christoph Kriegler

Abstract

We describe a noncommutative analogue of the absolute value of a regular operator
acting on a noncommutative LP-space. We equally prove that two classical operator norms,
the regular norm and the decomposable norm are identical. We also describe precisely the
regular norm of several classes of regular multipliers. This includes Schur multipliers and
Fourier multipliers on some unimodular locally compact groups which can be approximated
by discrete groups in various senses. A main ingredient is to show the existence of a
bounded projection from the space of completely bounded L? operators onto the subspace
of Schur or Fourier multipliers, preserving complete positivity. On the other hand, we show
the existence of bounded Fourier multipliers which cannot be approximated by regular
operators, on large classes of locally compact groups, including all infinite abelian locally
compact groups. We finish by introducing a general procedure for proving positive results
on selfadjoint contractively decomposable Fourier multipliers, beyond the amenable case.
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1 Introduction

The absolute value |T| and the regular norm |T'[|,,, of a regular operator T already appear in
the seminal work of Kantorovich [95] on operators on linear ordered spaces. These constructions
essentially rely on the structure of (Dedekind complete) Banach lattices. These notions are of
central importance in the theory of linear operators between Banach lattices, including classical
LP-spaces, since the absolute value is a positive operator. Indeed it is well-known that positive
contractions are well-behaved operators. Actually, contractively regular operators on LP-spaces
share in general the same nice properties as contractions on Hilbert spaces. We refer to the
books [1], [109] and [131] and to the papers [120] and [122] for more information.

Due to the lack of local unconditional structure, on a Schatten space and more generally on
a noncommutative LP-space, the canonical order on the space of selfadjoint elements does not
induce a structure of a Banach lattice, see [48, Chapter 17] and [123, page 1478]. Nevertheless,
there exists a purely Banach space characterization of regular operators on classical LP-spaces
[32, Theorem 2.7.2] which says that a linear operator T': L?(Q) — L?(') is regular if and only
if for any Banach space X the map T'® Idx induces a bounded operator between the Bochner
spaces LP (€, X) and LP (€, X). In this case, the regular norm is given by

(1.1) HT”rng_,P(Q)_)LP(Q') = Sl)l(P 1T ® IdX||LP(Q7X)_>LP(Q/7X) )

where the supremum runs over all Banach spaces X. Using this property, Pisier [117] gives
a natural extension of this notion for noncommutative LP-spaces. He says that a linear map
T:LP(M) — LP(N) between noncommutative LP-spaces, associated with approximately finite-
dimensional von Neumann algebras M and N, is regular if for any noncommutative Banach
space E (that is, an operator space), the map T' ® Idg induces a bounded operator between
the vector-valued noncommutative LP-spaces LP(M, FE) and LP(N, E). As in the commutative
case, the regular norm is defined by

(1.2) ||T||reg)LP(M)*>LP(N) = S%P 1T ® IdEHLp(M,E)HLp(ME) )

where the supremum runs over all operator spaces E. For classical LP-spaces, this norm coincides
with (1.1). Nevertheless, Pisier does not give a definition of the absolute value of a regular
operator and the definition of the latter is only usable for approzimately finite-dimensional von
Neumann algebras.

In this paper, we define a noncommutative analogue of the absolute value of a regular
operator acting on an arbitrary noncommutative LP-space for any 1 < p < oco. For that,
recall that a linear map T': LP(M) — LP(N) is decomposable [65, 92] if there exist linear maps
v1,v9: LP(M) — LP(N) such that the linear map

(1.3) P = [;10 3;] 2 S5(LP(M)) — S3(LP(N)), {CCL Z} = [%’((?) UTQ(((ZZ))}

is completely positive (a stronger condition than positivity of operators) where T°(c) 2ot T(c*)*
and where S¥(LP(M)) and S§(LP(N)) are vector-valued Schatten spaces. In this case, v; and
vy are completely positive and the decomposable norm of T is defined by

(1.4) ||T||dec7Lp(M)_>Lp(N) = inf { max{||v]f, ||v2||}},

where the infimum is taken over all maps v; and ve. See the books [23], [55] and [119] for
more information on this classical notion in the case p = co. If 1 < p < oo and if M and N



are approximately finite-dimensional, it is alluded in the introduction of [92] that these maps
coincide with the regular maps. First, we greatly strengthen this statement by showing that the
regular norm |||, cy 1.0 (ar)— 1. () @0d the decomposable norm [|7'l| jee. 1,0 (ar)— 1.0 () are identical
for a regular map T (see Theorem 3.24). Hence, the decomposable norm is an extension of
the regular norm for noncommutative LP-spaces associated to arbitrary von Neumann algebras.
Moreover, we prove that if T: LP(2) — LP(Q') is a regular operator between classical LP-spaces
‘;:J EJ : SE(LP(Q)) — SE(LP(Q)) is completely positive (Theorem 3.27)
where |T|: LP(2) — LP(Q') denotes the absolute value of T. In addition, we show that the
infimum (1.4) is actually a minimum (Proposition 3.5). Consequently, the map (1.3) with some
v1, vy which realize the infimum (1.4) can be seen as a natural noncommutative analogue of the
absolute value |T'|.

The ingredients of the identification of the decomposable norm and the regular norm involve
a reduction of the problem on noncommutative LP-spaces to the case of finite-dimensional
Schatten spaces S? by approximation. Moreover, a 2x2-matrix trick gives a second reduction
to selfadjoint maps between these spaces. Finally, the case of selfadjoint maps acting on finite-
dimensional Schatten spaces is treated in Theorem 3.21. To conclude, note that the ideas of
the manuscript [88] (which seems definitely postponed) could be used to define a notion of
regular operator between vector-valued noncommutative LP-spaces associated with QWEP von
Neumann algebras. Of course, it is likely that the identification of the decomposable norm and
the regular norm is true in this generalized context.

The next task is devoted to identify precisely decomposable Fourier multipliers on non-
commutative LP-spaces LP(VN(G)) of a group von Neumann algebra VN(G) associated to a
unimodular locally compact group G. Recall that if G is a locally compact group then VN(G)
is the von Neumann algebra, whose elements act on the Hilbert space L?(G), generated by the
left translation unitaries A\s: f — f(s7!), s € G. If G is abelian, then VN(G) is *-isomorphic
to the algebra L‘X’(@) of essentially bounded functions on the dual group G of G. As basic
models of quantum groups, they play a fundamental role in operator algebras and this task
can be seen as an effort to develop LP-Fourier analysis of non-abelian locally compact groups,
see the contributions [31], [39], [90], [93], [103] and [108] in this line of research and references
therein. If G is discrete, a Fourier multiplier M, : L?(VN(G)) — LP(VN(G)) is an operator
which maps As to ¢(s)As, where ¢: G — C is the symbol function (see Definition 6.3 for the
general case of unimodular locally compact groups).

We connect this problem with several notions of approximation by discrete groups of the
underlying locally compact group G. We are able to show that a symbol ¢: G — C inducing a
decomposable Fourier multiplier M, : L?(VN(G)) — L?(VN(G)) already induces a decompos-
able Fourier multiplier M, : VN(G) — VN(G) at the level p = oo for some classes of locally
compact groups. We also give a comparison between the decomposable norm at the level p and
the operator norm at the level co in some cases (see Theorem 4.7, Theorem 4.9, Theorem 6.47,
Theorem 6.49 and Theorem 6.52). Our method for this last point relies on some constructions
of compatible bounded projections at the level p = 1 and p = oo from the spaces of (weak™
continuous if p = 0o) completely bounded operators on LP(VN(G)) onto the spaces PP (G)
of completely bounded Fourier multipliers combined with an argument of interpolation. We
highlight that the nature of the group G seems to play a central role in this problem. Indeed,
mysteriously, our results are better for a pro-discrete group G than for a non-abelian nilpotent
Lie group G. More precisely, let us consider the following definition®.

then the map & = [

1. The subscript w* means “weak* continuous” and “CB” means completely bounded. The compatibility is
taken in the sense of interpolation theory [17, ]



Definition 1.1 Let G be a (unimodular) locally compact group. We say that G has property
(k) if there exist compatible bounded projections PE: CBy-(VN(G)) — CBy-(VN(G)) and
PL: CB(LY(VN(G))) — CB(LY(VN(G))) onto M><(G) and M- (G) preserving complete
positivity. In this case, we introduce the constant

_ fe%s) 1
#(G) = inf maX{ 1PE B, (i) —CBe (vi(@)) - 1 Pe e (vneyy—cnw (vnia) }

where the infimum is taken over all admissible couples (PE°, PL) of compatible bounded projec-
tions and we let k(G) = 0o if G does not have (k).

Haagerup has essentially proved that x(G) = 1 if G is a discrete group by a well-known
average argument using the unimodularity and the compactness of the quantum group VN(G).
The key novelty in our approach is the use of approximating methods by discrete groups in
various senses to construct bounded projections for non-discrete groups beyond the case of a dual
of a unimodular compact quantum group. If G is a second countable pro-discrete locally compact
group, we are able to show that x(G) = 1 (see Theorem 6.39). Another main result of the paper
gives kK(G) < oo for the elements of some class of locally compact groups approximable by lattice
subgroups, see Corollary 6.26. Note that a straightforward duality argument combined with
some results of Derighetti [45, Theorem 5], Arendt and Voigt [5, Theorem 1.1] says that if G is an
abelian locally compact group then £(G) = 1 (see Proposition 6.45). Furthermore, in most cases,
we will show the existence of compatible projections Pg: CB(LP(VN(G))) — CB(LP(VN(G)))
onto MPP(G) for all 1 < p < 00®. So we have a strengthening (k') of property (k) for
some groups. It is an open question to know if (k') is really different from (k). Finally, in a
forthcoming paper, examples of locally compact groups without (k) will be described by the
first named author.

Using classical results from approximation properties of discrete groups, it is not difficult
to see that there exist completely bounded Fourier multipliers M, : L?(VN(G)) — LP(VN(G))
on some class of discrete groups which are not decomposable (Proposition 3.32). In Section 7,
we focus on a more difficult task. We examine the problem to construct completely bounded
operators T: LP(M) — LP(M) which cannot be approximated by decomposable operators,
in the sense that T' does not belong to the closure Dec(L?(M)) of the space Dec(LP(M)) of
decomposable operators on LP(M) with respect to the operator norm |||, as)_10(ar) (OF the
completely bounded norm |||y, 10 (ar)—s 10 (ar))-

We particularly investigate different types of multipliers. We show the existence of such
completely bounded Fourier multipliers, on large classes of locally compact groups, including
all infinite abelian locally compact groups (see Theorem 7.14). Note that it is impossible to
find such bad multipliers on finite groups by an argument of finite dimensionality. Our strategy
relies on the use of transference theorems which we prove and structure theorems on groups.
It consists in dealing with all possible cases. In the abelian situation, the construction of our
examples in the critical cases (e.g. if the dual group G is an infinite totally disconnected group
or an infinite torsion discrete group) is proved by a Littlewood-Paley decomposition argument
on the Bochner space L?(G, X ) where X is a UMD Banach space, which allows us to obtain in
addition the complete boundedness of multipliers. We also examine the case of Schur multipliers.
In particular, we prove that the discrete noncommutative Hilbert transform H: SP — SP on the
Schatten space SP is not approximable by decomposable operators (Corollary 7.22). We equally
deal with convolutors (Subsection 7.3) and operators on arbitrary noncommutative LP-spaces
associated with infinite dimensional approximately finite-dimensional von Neumann algebras
(Theorem 7.35).

2. If p = oo, replace CB(LP(VN(G))) by CBy*(VN(Q))



In the case of an amenable group G, transference methods [28, 30, ] between Schur
multipliers and Fourier multipliers can sometimes be used for proving theorems on selfadjoint
completely bounded Fourier multipliers on VN(G), see e.g. [7, Corollary 4.5] and [11]. We
finish the paper by introducing a general procedure for proving positive results on selfadjoint
contractively decomposable Fourier multipliers on non-amenable discrete groups relying on the
new characterization of Proposition 8.2. This result should allow with a reasonable work to
generalize properties which are true for unital completely positive selfadjoint Fourier multipli-
ers by using unital completely positive selfadjoint 2x2 block matrices of Fourier multipliers.
Subsection 8.3 illustrates this method by describing Fourier multipliers which satisfy the non-
commutative Matsaev inequality (Theorem 8.6), using the new result of factorizability of such
2x2 block matrices of Fourier multipliers (Theorem 8.5).

The paper is organized as follows. Section 2 gives background and preliminary results.
Some relations between matricial orderings and norms in Subsection 2.3 are fundamental to
reduce the problem of the comparison of the regular norm and the decomposable norm to
the selfadjoint case. Moreover, in passing, we identify completely positive maps on classical
LP-spaces (Proposition 2.21 and Proposition 2.22).

In Section 3, we will investigate the notions of decomposable maps and regular maps on non-
commutative LP-spaces. We will see in Theorem 3.24 that on approximately finite-dimensional
semifinite von Neumann algebras, the notions of decomposable and regular operators coincide
isometrically. The proof of this result requires several reduction intermediate steps, such as
self-adjoint maps in place of general maps (Subsection 3.4) and Schatten spaces in place of
general noncommutative LP-spaces (Theorem 3.21 in Subsection 3.5). Moreover, we investigate
in this section the relation of the (completely) bounded norm on noncommutative LP-spaces
with the decomposable norm. We will see in Theorem 3.26 that for completely positive maps
on LP-spaces over approximately finite-dimensional algebras, the bounded norm and the com-
pletely bounded norm coincide. If the von Neumann algebra has QWEP, then we will see in
Proposition 3.30 that the completely bounded norm is dominated by the decomposable norm,
so in case of completely positive maps, the complete bounded norm, the bounded norm and
the decomposable norm all coincide (Proposition 3.31). However, we will exhibit a class of
concrete examples where the decomposable norm is larger than the complete bounded norm
(Theorem 3.38). Finally, this section contains information on the infimum of the decomposable
norm (Subsection 3.2), the absolute value |T'| and decomposability of an operator T acting on
a commutative LP-space (Subsection 3.7) and examples of completely bounded but non decom-
posable Fourier multipliers on group von Neumann algebras (Proposition 3.32). We also give
explicit examples of computations of the decomposable norm, see Theorem 3.37.

In the following Section 4, we give a generalization of the average argument of Haagerup.
We will show the existence of contractive projections from some spaces of completely bounded
operators onto the spaces of Fourier multipliers, Schur multipliers or even a combination of
the two (Theorem 4.2 and Subsection 4.2). This concerns discrete groups, possibly deformed
by a 2-cocycle and we will also show the independence of the completely bounded norm and
the complete positivity with respect to that 2-cocycle, for a Fourier/Schur-multiplier. So the
natural framework will be the one of twisted (discrete) group von Neumann algebras, explained
in Subsection 4.1. In particular, this covers the case of noncommutative tori when the group
equals Z¢. As an application, we will describe the decomposable norm of such Fourier and
Schur multipliers on the LP level and see that in the framework of this section, this norm equals
the (complete) bounded norm on the L™ level (Subsection 4.3).

In Section 5, we introduce and explore some approximation properties of locally compact
groups. We connect these to some notions of approximation introduced by different authors.
We clarify these properties in the large setting of second countable compactly generated locally



compact groups, see Theorem 5.13.

Hereafter, Section 6 contains an in-depth study of decomposablility of Fourier multipliers on
non-discrete locally compact groups. After having introduced these Fourier multipliers and their
basic properties in Subsection 6.1, we will show in Subsection 6.2 how their complete bounded
norm is changed under a continuous homomorphism between two locally compact groups. In
Subsection 6.3, we describe an extension property of Fourier multipliers which passes from a
lattice subgroup to the locally compact full group. In Subsection 6.4, we prove Theorem 6.16
which gives a complementation for second countable unimodular locally compact groups which
satisfy the approzimation by lattice subgroups by shrinking (ALSS) property of Definition 5.3
together with a crucial density condition (6.12). Then in Subsection 6.5, we describe some
concrete groups in which Theorem 6.16 applies. These examples contain direct and semidirect
products of groups, groups acting on trees, a large class of locally compact abelian groups and
the semi-discrete Heisenberg group. In Subsection 6.6, we show the complementation result for
pro-discrete groups by a similar method than in Theorem 6.16, but it turns out that there is
no need of a density condition in this case.

There is another notion of generalization of Fourier multipliers on non-abelian groups G, but
acting on classical LP-spaces LP(G) instead of noncommutative LP-spaces LP(VN(G)). These are
the convolutors that is the bounded operators commuting with left translations. In Subsection
6.7, we show a complementation result for them on locally compact amenable groups. Then in
Subsection 6.8 we apply our complementation to describe the decomposable norm of multipliers.

In Section 7, we construct completely bounded operators T': LP(M) — LP(M) which cannot
be approximated by decomposable operators. In Proposition 3.32, we shall see that in general,
the class of completely bounded operators on a noncommutative LP-space is larger than the class
of decomposable operators. In Section 7, we deepen this fact and show that in many situations
of LP-spaces and classes of operators on them, there are (completely) bounded operators such
that in a small (norm or CB-norm) neighborhood of the operator, there is no decomposable
map. This notion of (CB-)strongly non decomposable operator is defined in Subsection 7.1.
Our first class of objects are the Fourier multipliers on abelian locally compact groups. We
show in Theorem 7.14 that on all infinite locally compact abelian groups, there always exists
a (CB-)strongly non decomposable Fourier multiplier on L?(G). By a transference procedure,
this theorem extends to convolutors acting on several non-abelian locally compact groups con-
taining infinite locally compact abelian groups (Subsection 7.3). Then our next goal are Schur
multipliers. In Subsection 7.4 (see Corollary 7.22) we will show that the very classical discrete
noncommutative Hilbert transform and the triangular truncation 7 : S? — SP are CB-strongly
non decomposable. Then we study CB-strongly non decomposable Fourier multipliers on dis-
crete non-abelian groups. We establish some general results and apply them to Riesz transforms
associated with cocycles and to free Hilbert transforms (Subsection 7.5). Finally, we enlarge
the class of spaces and consider LP-spaces over general approximately finite-dimensional von
Neumann algebras (Subsection 7.6). Namely, in Theorem 7.35, we show that for 1 < p < oo,
p # 2 and for any infinite dimensional approximately finite-dimensional von Neumann algebra
M, there always exists a CB-strongly non decomposable operator on L?(M).

In Section 8, we study a certain property for operators on noncommutative LP-spaces which
is a combination of contractively decomposable and selfadjointness on L2(M). In general, this
notion is more restrictive than being separately contractively decomposable and selfadjoint.
However, in Proposition 8.2, we will see that for Fourier multipliers acting on twisted von
Neumann algebras over discrete groups and a T-valued 2-cocycle, this difference disappears. As a
consequence, we show in the last two Subsections 8.2 and 8.3 that for contractively decomposable
and selfadjoint Fourier multipliers on twisted von Neumann algebras, the noncommutative
Matsaev inequality holds.



2 Preliminaries

2.1 Noncommutative LP-spaces and operator spaces

Let M be a von Neumann algebra equipped with a semifinite normal faithful weight 7. We
denote by m} the set of all positive z € M such that 7(x) < co and m, its complex linear
span which is a weak* dense *-subalgebra of M. If n, is the left ideal of all z € M such that
T(x*z) < 0o then we have

(2.1) m, =span{y*z:y,z € n;}.

Suppose 1 < p < oco. If 7 is in addition a trace then for any = € m,, the operator |z|P

1
belongs to m and we set 2l Lo (ar) = 7(|z[?)”. The noncommutative LP-space LP(M) is the
completion of m; with respect to the norm |||, (5. One sets L>(M) = M. We refer to [123],

and the references therein, for more information on these spaces. The subspace M NLP(M) is
dense in L?(M). The positive cone LP (M) of LP(M) is given by

(2.2) LP(M)y = {y*y : y e L*(M)}.

Recall that we also have the following dual description:

(2.3) LP(M)y = {z € LP(M) : (2,9)1o(ar),Lo* (ary = 0 for any y € TP (M) }.
At several times, we will use the following elementary® result.

Lemma 2.1 Let M be a semifinite von Neumann algebra equipped with a normal semifinite
faithful trace. Suppose 1 < p < oo. Then My NLP(M) is dense in LP (M), for the topology of
LP(M).

The readers are referred to [55], [112] and [119] for details on operator spaces and completely
bounded maps. If T: E — F is a completely bounded map between two operators spaces E
and F, we denote by [T, 5, its completely bounded norm. If EQF' is the operator space

projective tensor product of E and F, we have a canonical complete isometry (E@F)* =
CB(E, F*), see [55, Chapter 7).

The theory of vector-valued noncommutative LP-spaces was initiated by Pisier [118] for the
case where the underlying von Neumann algebra is hyperfinite and equipped with a normal
semifinite faithful trace. Suppose 1 < p < co. Under these assumptions, for any operator space
E, we can define by complex interpolation

(2.4) LP(M, E) € (M @uin B, L'(M*)BE)

=

where ®min and ® denote the injective and the projective tensor product of operator spaces.
When E = C, we get the noncommutative LP-space L?(M).

If © is a measure space then we denote by B(L?(Q2)) the von Neumann algebra of bounded
operators on the Hilbert space L2(£2). Using its canonical trace, we obtain the vector-valued

3. Let x be a positive element of LP(M). We can write x = y*y for some y € L2P(M). Since M N L2P(M)
is dense in L2 (M), there exists a sequence (yn) of elements of M N L2?(M) which approximate y in L2P(M).
Then we have

lz = yrunllLe = 18"y — vnynliLe ) < 16 @ = y)llLe ) + 18" — v2)ynllLe () ——— 0

n—-+oo



Schatten space SP(E) = LP(B(L*(Q)), E). With Q = Nor Q = {1,...,n} equipped with the
counting measure and E = C we recover the classical Schatten spaces SP and S?.

Recall the following classical characterization of completely bounded maps, which is essen-
tially [118, Lemma 1.4].

Proposition 2.2 Let E and F' be operator spaces. Suppose 1 < p < co. A linear map T: E —
F is completely bounded if and only if Idg» T extends to a bounded operator Idg» T : SP(E) —
SP(F'). In this case, the completely bounded norm |T(|,, g, is given by

(2.5) 1TNlep, 5 r = Mdsr @ Tl gy 50 () -

If Q is a (localizable) measure space, the Banach space SP(LP()) is isometric to the Bochner
space LP(€), SP) of SP-valued functions. Thus, in particular, if ' is another (localizable) measure
space then a linear map T': LP(Q) — LP () is completely bounded if and only if T®Idg» extends
to a bounded operator T'® Idg» : LP(£2, SP) — LP(£Y, SP). In this case, we have

(2.6) ||T||cb,LP(Q)HLP(Q’) = HT ® IdS”HLP(Q,SPHLP(Q/,SP)'

If £ and F are operator spaces and if T: E — F is a linear map, we will use the map
T°P: E°P — F°P x+— T(x). Of course, since the underlying Banach spaces of E and E°P and
of F and F°P are identical, the map T is bounded if and only if the map T°P is bounded. The
following lemma shows that the situation is similar for the complete boundedness. Furthermore,
this result is useful when we use duality since in the category of operator spaces we have
LP(M)* = LP (M) if 1 < p < co. In passing, recall that LP(M)°P = LP(M°P).

Lemma 2.3 Let T: E — F be a linear map between operators spaces. Then T is completely
bounded if and only if the map T°P: E°P — F°P 4s completely bounded. Moreover, in this case
we have ||Tch,E—>F = ||Top||cb,E0p—>F0p'

Proof : Assume that T is completely bounded and let [z;;];; € M, (E°P). Then

7 @ii)is g, (pory = N @5))i5 ]y, ) < N, 11235 |,
= ||T||cb,EAF H[xij}inMn(EOP)'

We infer that || T°P(|,, gor , por < |l e, g - Since (E°P)°P = E completely isometrically, the
reverse inequality follows by symmetry. [ |

2.2 Matrix ordered operator spaces

A complex vector space V' is matrix ordered [35, page 173] if
1. V is a x-vector space (hence so is M,,(V) for any n > 1),
2. each M,,(V), n > 1, is partially ordered by a cone M, (V) C M,,(V)sa, and
3. if a = [o;] € My m, then oM, (V) ;a0 C My, (V) 4.

Now let V and W be matrix ordered vector spaces and let T: V' — W be a linear map. We say
that T is completely positive if Idy, ® T: M, (V) = M,, (W) is positive for each n. We denote
the set of completely positive maps from V' to W by CP(V,W).

An operator space E is called a matrix ordered operator space [132, page 143] if it is a
matrix ordered vector space and if in addition



1. the x-operation is an isometry on M, (E) for any integer n > 1 and
2. the cones M,,(F)+ are closed in the norm topology.

For a matrix ordered operator space F and its dual operator space E*, we can define an
involution on E* by ¢*(v) = ¢(v*) for any ¢ € E* and a cone on M,,(E*) for each n > 1 by
M, (E*)* = CB(E,M,,) NCP(E,M,,). Note that we have an isometric identification M,,(E*) =
CB(E,M,,). A lemma of Itoh [35] (see [133, Lemma 2.3.8] for a complete proof) says that if £
is a matrix ordered operator space, we have

(27)  Mu(E"); = {[yz-ﬂ EMA(E) s 3 yiylsg) > 0 for any [y € Mn<E>+}.

i,j=1
Lemma 2.4 Let E be a matriz ordered operator space. We have
Ma(E): = {a € MA(E) s 3 i) > 0 for any ] € M. (E)s |
i,j=1

Proof : Note that the dual cone S} (E*); of M, (E) is defined by S}(E*)+ = {[yi;] € Sy(E*) :
> i j=1 Yij(xig) = 0 for any [24] € M, (E)+ } and identifies to My, (E*); by (2.7). Since M, (E) 4

is closed in the norm topology, hence weakly closed, we conclude by the bipolar theorem. MW
By [132, Corollary 3.2], the operator space dual E* with this positive cone is a matrix
ordered operator space [132, Corollary 3.2]. The category of matrix ordered operator spaces

contains the class of C*-algebras.

Let M be a von Neumann algebra equipped with a faithful normal semifinite trace. If
1 < p < oo, the noncommutative LP-space LP(M) is canonically equipped with an isometric
involution and we can define a cone on M,,(LP(M)) by letting

(2.8) M, (LP(M))+ & LP(M,, (M) 4 (= SE(LP(M))4).

Note the following easy* observation.

4. Consider © € My (LP(M))4, ie. z € SE(LP(M))1. There exists y € S2P(L2P(M)) such that y*y = z. We
can write y = > eij ® y;; for some y;; € L2P(M). For any matrix o € Mp,m, we have

ij=1
n * n
i,j=1 J=1
n n n
=a"- ( Z €ji ®yfj) ( Z €kl ®ykl) Co= Z a’ejierio ® Ykl
i,j=1 k=1 0,4,k =1
n n n * n
= ( Z ey ®y2}) ( Z epa ®ykl> = ( Z eija®yij) ( Z ero ®ykl)~
ij=1 k=1 i,j=1 k=1
We conclude that a* - z - a is a positive element of M, (L?(M)) = Sh(LP(M)). We conclude that LP(M) is
matrix ordered. Moreover, for any « € M, (LP(M)), using [117, Lemma 1.7] twice and the isometric involution,
we see that
2 I, e aryy = 59 { o2 Bll gz uoary ¢ lolgze < 1, [18llgzp <1}
—sup { 18" = a*llgn uoaryy ¢ lolgze < 1, [Bllgzp <1}
= sup{ 18-z allse weay : ||01H5721p <1, ||5HS721p < 1} = 1@, (e (ar)) -
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Proposition 2.5 Let M be a von Neumann algebra equipped with a faithful normal semifinite
trace. Suppose 1 < p < oo. Then the noncommutative LP-space LP(M) is a matriz ordered
operator space.

If N is another von Neumann algebra equipped with a faithful normal semifinite trace then
it is easy to see that a map T: LP(M) — LP(N) is completely positive if the map Idgr @ T
induces a (completely) positive map Idgr, ® T': SP(LP(M)) — SP(LP(N)). Moreover, for any
matrix o € M, ,,, the map

(2.9) LP(M,(M)) — LP(M,,(M)), z— o'z«
is completely positive.

Lemma 2.6 Let M be a von Neumann algebra equipped with a faithful normal semifinite
trace. Suppose 1 < p < oco. If b € M, (LP(M)) and if b is the transpose of b we have
b € M,,(LP(M°P)) if and only if b* € M,,(LP(M)).

Proof : We start with the case p = co. We can identify M°P with M equipped with the
opposed product. We will use the notation o for some products where the subscript indicates
the space. Let b € M,,(M°P),. Then we can write b = c* oy, (arer) ¢ for some ¢ € M,,(M). For
any 1 < 4,7 < n, we have
n n n
bij = Y (ik omer ek = 3 cri(€ )ik = D _(c)jn(c ki = (' on, ar )",
k=1 k=

k=1 = 1

Hence b" = ¢ oy, (ar) ¢ belongs to M, (M)y. The reverse implication follows by symmetry.
Suppose that b € M, (LP(M°P)),, i.e. b € SP(LP(M°P)); by (2.8). By Lemma 2.1, there exists
a sequence (by) in M, (M°P) N SE(LP(M°P)) converging to b for the topology of S?(L?(M)).
By the first part of the proof, each (bx)! belongs to M,, (M), and of course to SE(LP(M)). In
particular, (by)" belongs to M, (LP(M)). Passing to the limit as k approaches infinity yields
b' € M,,(LP(M))+. Again, a symmetry argument completes the proof. [ |

We will often use the following observation.

Lemma 2.7 Let E and F' be matriz ordered operator spaces. A bounded map T: E — F is
(completely) positive if and only if the adjoint map T*: F* — E* is (completely) positive.

Proof : By Lemma 2.4, a map T: E — F is positive if and only if (I'(z),y)ppr+ > 0 for
any € Ey and any y € F{ if and only if (x,7*(y))g,g- > 0 for all such z,y if and only if
T*: F* — E* is positive again by (2.7). The completely positive case is similar. ]

For further use in Lemma 3.22, we record the following.

Lemma 2.8 Let E and F be matriz ordered operator spaces.

1. Let (Ty,) be a net of positive (resp. completely positive) mappings from E into F. Suppose
that lim, T, = T in the weak operator topology. Then T is also positive (resp. completely
positive).

2. Let (T,) be a net of positive (resp. completely positive) mappings from E into F*. Suppose
that lim,, T, = T in the point weak* topology’ of B(E, F*). Then T is also positive (resp.
completely positive).

5. If X is a Banach space and Y is a dual Banach space, a net (Ty) in B(X,Y) converges to an operator
T € B(X,Y) in the point weak* topology if and only if for any € X and any y« € Yx we have (To (), y+)v,y, —
«@

(T(@),yx)v, .-

11



Proof : 1. Suppose that each T,,: E — F'is a positive map. By Lemma 2.4, the mapT: F — F
is positive if and only if (T'(z),y) p,r~ > 0 for any x € E, and any y € F}. Using again Lemma
2.4, we infer that (T'(z),y)rp+ = lim (T (x), y)Fp+ = 0. Thus we conclude that T is positive.

Suppose that each T, is completely positive. By Lemma 2.4, the map Idy;, ® T: M, (E) —
M,,(F) is positive if and only if Y77, (T(xi;),yij) r,r~ for any [z4;] € My, (E)4 and any [y;;] €
M,,(F*)+. Using again Lemma 2.4, we infer that

n

> (T (wij), yij)pp- = = lim Z a(@ij), Yij) ppe 2 0.

7,7=1 1,j=1

Letting n run over all integers, we conclude that T' is completely positive.

2. Suppose that each T, : E — F* is a positive map. By (2.7), the map T: E — F* is
positive if and only if (T'(x),y)p~ p > 0 for any x € E; and any y € F. Using again (2.7), we
infer that (T'(z),y)p+ r = lima(Ta(x),y) p+ r = 0. Thus we conclude that T' is positive.

Suppose that each T, is completely positive. By (2.7), the map Idy, ®T: M, (E) — M, (F*)
is positive if and only if > = (T(xij), yij) p=,r for any [x;;] € My, (E)+ and any [y;;] € M, (F) 4
Using again (2.7), we infer that (T'(z;), yi;) p+ r = lim, szﬂ(Ta(zij),yij)F*f > 0. Letting
n run over all integers, we conclude that T is completely positive. [ ]

If F is a matrix ordered operator space, by [133, page 80], the vector-valued Schatten space
SP(E) =R,(1— 5) ®n E®n Ry ( ) admits a structure of a matrix ordered operator space. The
cones are defined by the closures

My (SE(E))+ = {z* 0y @z € Mi(SR(E)) : « € Mik(Ra(3)), y € My(E)+, I € N}.

Lemma 2.9 Suppose 1 < p < co. Let E and F be matriz ordered operator spaces and let
T: E — F be a bounded completely positive map. Then for any integer n, the map Idgr @
T: SP(E) — SE(F) is completely positive.

Proof : For any n € N, any = € M; (R

n(>)) and any y € My(E), the element (Idg» @ T')(2* ©
y©z) =2*®T(y) ®x belongs to My (S?

1
p
(E))+. An argument of continuity gives the result. W

2.3 Relations between matricial orderings and norms

For any x € S?(FE) and any a,b € M, the result [118, Lemma 1.6 (i)] says that
(2.10) n(B) S 2(8) I0lls -
Moreover, for any diagonal matrix « = diag(x1,...,2,) € SE(E), [L18, Corollary 1.3] gives

1

p

(2.11) Il gz ) = (Z ||xk||§;)
k=1

Lemma 2.10 Let E be an operator space. Suppose 1 < p < oco. Then for any b,c € E, we

0 b 1 0 b
pave |00l = ety ana | [0 0] = max 1ol e 3
SE(E) S$°(B)
Proof : Using the inequality (2.10), we see that
e [ e | RS 1 O W [
c 0 S2(E) 0 ¢l|1 O SE(E) 1 0 goo 0 ¢ SE(E)

12



On the other hand, the

By symmetry, we conclude that H [0 8} = H {g ﬂ
53 (E)
b 0 1
= (|Ib]l'; + llcll’; ). The case p = oo is similar, so the
0 clllsgm)

lemma is proven. ]

53 (E)

equality (2.11) yields

Lemma 2.11 Let M be a von Neumann algebra equipped with a faithful normal semifinite

trace. Suppose 1 < p < 0o. Let a,b and ¢ be elements of LP(M) such that the element {bci ﬂ

1
of S5(LP(M)) is positive. Then we have |[blly,(pp) < QL%( Ha||£p(M) + Hc||€p(M))p.
a

b*

a b 1 O0f|a bl|1 0], - .
{—b* c] = [0 _1} {b* c} {0 _J is a positive element of SY(LP(M)), we obtain the

Proof : Suppose there exist some a,c € LP(M) such that [ i] € SP(LP(M))4. Since

inequalities — {8 2} < [b(l 8] < {a 2} Using (2.11) and Lemma 2.10, we obtain
a 0
0 c
|

The following result is folklore. Unable to locate a proof in the literature, we give a very
short proof based on Lemma 2.11.

=

1 0 b
2% bl ar) = H > o = (0l + elian)

S5 (LP (M)

ST (LP(M)) ’

Proposition 2.12 Let M be a von Neumann algebra equipped with o faithful normal semifinite
trace. Suppose 1 < p < oo. Let b be an element of SE(LP(M)). Then [[bl|gr 10(rpy) < 1 if and

only if there are a,c € SH(LP(M))4 with |allgeqoary) < 1 and [cllge o) < 1 such that the

element [; ﬂ of S5 (LP(M)) is positive.

Proof : The implication < is Lemma 2.11. For the implication =, we only need the case
n = 1. Consider b € LP(M) with [[b]|,(5s) < 1. By Lemma 2.1, there exists a sequence (by,) in
M NLP(M) converging to b for the topology of LP(M). By [112, Exercise 8.8 (vi)], the matrix
sz é"d is a positive element. Using the continuity of the modulus and passing to the limit
b b .
b*  |b] Lp (M)

1llLo(ary < 1. u

as n approaches infinity yields { } > 0. Moreover, we have |||b|||Lp(M) = H‘b*

Lemma 2.13 Suppose 1 < p < oo. Let M be a von Neumann algebra equipped with a faithful
normal semifinite trace. Let a and b be selfadjoint elements of LP(M) satisfying —b < a < b.

Then, in S5(LP(M)), we have {Z 2} > 0.

Proof : The case p = oo is well-known, see [55, Proposition 1.3.5]. Let us turn to the case
1 < p < co. By Lemma 2.1, there exists a sequence (y,) in M4 N LP(M) converging to the
positive element b—a for the topology of L”(M) and a sequence (zy,) of elements of My NLP (M)

13



converging to the positive element a 4 b. Note that a, = *23¥* converges to a and that

bn, = y"+2” converges to b. Moreover, we have —b,, < a, < b,. According to the case p = oo
an bn

b7l aﬂ

we have [ ] > 0. Finally passing to the limit as n approaches infinity yields {Z 2] > 0.

Lemma 2.14 Let M be a von Neumann algebra equipped with a faithful normal semifinite
trace. Suppose 1 < p < 0o. Let a, b and ¢ be elements of LP(M) satisfying {Z ﬂ > 0 in
SY(LP(M)). Then we have —(a+c) <b< (a+c).

Proof : The case p = oo is well-known, see [55, Proposition 1.3.5]. By Lemma 2.1, there exists

a sequence < {Z” lc)”] > in Ma(M) NSY(LP(M)) converging to {Z ﬂ in SY(LP(M)). Recall

that for any integer ig,jo = 1,2 and any 1 < p < oo, the linear map S5 (LP(M)) — LP(M),
[xij] — @4y, is a contraction. We infer that the sequences (a,,), (b,) and (c,) of LP(M) converge

. . e b
to a,b and ¢ respectively. According to the case p = oo, the positivity of the element [Z" cn}
n n

of My(M) implies —% (ay, + ¢,) < by < 3(an +¢,). Finally passing to the limit as n approaches
infinity yields —%(a+¢) <b < 3(a+c). [

2.4 Positive and completely positive maps on noncommutative LP-
spaces

Lemma 2.15 Let M and N be von Neumann algebras equipped with semifinite faithful normal
traces. Suppose 1 < p < oco. Then a map T: LP(M) — LP(N) is completely positive if and only
if T°P: LP(M) — LP(N) is completely positive.

Proof : Assume that T: LP(M) — LP(M) is completely positive. Let b € (M, (LP(M)°P)),..

Then applying Lemma 2.6 twice, we deduce that (Idy, ® T°P)(b) = [T'(bi;)] = [T((b")i;)]F =
((Idyg, @ T)(bY))! belongs to (M, (LP(M)°P)),. We infer that T°P: L"(M)Op — LP(M)°P is
completely positive. The reverse statement is obtained by symmetry. [ ]

The boundedness assumption of [117, Theorem 0.1 and Lemma 2.3] is unnecessary since we

have the following elementary result.

Proposition 2.16 Let M be a von Neumann algebra equipped with a faithful normal semifinite
trace. Suppose 1 < p < co. Any positive map T: LP(M) — LP(M) is bounded.

Proof : We first show that there exists a constant K > 0 satisfying for any « € LP(M), with
%[0 (ar) < 1 the inequality || T'(z)|[1» () < K. Suppose that it is not the case then there exists
a sequence () of positive elements of L?(M) with |zp|[1,ay < 1 and [T(zn)llpparn = 47
We have Y7, |
defines a positive element x of LP(M). Now, for any integer n > 1, we have 0 < 2 =Ty < T.
We deduce that 0 < 3-7(z,) < T(z). Hence we obtain 3+ ||T(zn ||LP(M) HT and

finally 2" < ||T(z)

1 o 1 . © 1 .
ﬁanLp(M) <D =1 5w < oo. Hence the series )~ | 5o, is convergent and

HLP(M)

||LP(M). Impossible.
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Now, if z € LP(M) we have a decomposition = 1 — xo + i(x3 — x4) with a1, 29, 23,24 €
LP(M) 4 and [|zllLe ary > 22l (ary > 123l Le ar) » 124l Lo (ar) less or equal to [[z(| (py). Hence

IT@) oy = [T @) = T(w2) +1(T(ws) = T(2)) || ary

< ||T(‘T1)||LP(M) + ”T(xZ)HLP(M) + HT(x3)||LP(M) + ||T(m4)||Lp(M)
< K( HﬂleLp(M) + ”'rQ”LP(M) + ||x3||LP(M) + Hx4HLP(M) ) SA4AK ||37||Lp(M) .
|
This result will imply in particular that a decomposable map is bounded.
The following result is proved in [117, Proposition 2.2 and Lemma 2.3] for SP. It has
been long announced in [87, page 2] for QWEP von Neumann algebras (but seems definitely

postponed). We will give a proof for hyperfinite von Neumann algebras, see Theorem 3.26.
Only Proposition 3.10, Proposition 3.30 and Proposition 3.31 depend on this result.

Theorem 2.17 Suppose 1 < p < oo. Let M, N be QWEP wvon Neumann algebras equipped
with faithful semifinite normal traces. Let T: LP(M) — LP(N) be a completely positive map.
Then T is completely bounded and HT||L,,(M)%LP(N) = HTHCb7L”(M)—>LP(N)'

The next lemmas are important for the proof of Theorem 3.24.

Lemma 2.18 Let M and N be von Neumann algebras equipped with faithful normal semifinite
traces. Suppose 1 < p < oo. Let T, S: LP(M) — LP(N) be selfadjoint® maps such that —S <cp

T <op S. Then the map [? g} : LP(M) — SE(LP(N)) is completely positive.

Proof : Suppose x € SE(LP(M)). Then —(Idgr ® S)(z) < (Idgr ®T)( ) < (Idgr ® S)(x). By

. S T Idsp ® S)( (Idgr ® T')(x)
Lemma 2.13, we deduce that (Id55 ® [T S]) [ (Idgr © T)( (der ® S)(z) >0. n

Lemma 2.19 Let M and N be von Neumann algebras equipped with faithful normal semifinite
traces. Suppose 1 < p < oo. Let T,S1,Sy: LP(M) — LP(N) be selfadjoint maps. If the map

ﬁ} g} : LP(M) — S5(LP(N)) is completely positive then —3(S1492) <op T <cp 5 (S1+S52).
2
Proof : Suppose x € SE(LP(M))+. We have

{(Idsﬁ ® S1)(z) (Idgr ® T)(f)}
(Idsz @ T)(z) (Idgz @ S2)(x)

By Lemma 2.14, we deduce that

(Idsg ® [5; STZD () > 0.

— (s @ 81)(2) + sy © 52)(2) < (Hdgp @ T)(x) < 5 (1 © 51)(@) + (s @ S2)(a).
2 2
Hence we obtain

—5 (s © (81 +52))(@)) < (Mg ©T)(2) < 3 ((dsy © (51 + 52))(2).

We conclude that ,%(51 +52) <p T <op %(Sl + 53). [

6. Here, this means that T'(z*) = T'(z)* and S(z*) = S(z)*.
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2.5 Completely positive maps on commutative LP-spaces
We start with a characterization of the positive cone of S?(L?(2)) where Q is a measure space.

Lemma 2.20 Let Q be a (localizable) measure space. Suppose 1 < p < oco. Then an element
[fij] of SE(LP(Q)) is positive if and only if [fi;(w)] is a positive element of M, for almost every
w e Q.

Proof : We have SE(LP(Q)) = LP(Q,SP) isometrically. Consider f € LP(2,SE);. Using
(2.2), there exists h € L??(Q, S?P) such that h*h = f. Hence, for almost any w € 2, we have
h(w)*h(w) = f(w) in the space SE. Consequently, for almost any w € 2, we have f(w) € (S2).

For the converse, consider an element f of LP(€), SP) such that for almost any w € Q we
have f(w) € (S?);. Let g € LP'(Q,S2"),. By the first part of the proof, for almost any
w € Q, we have g(w) € (S?"),. Using (2.3), we deduce that for almost any w € Q we have

Tr (f(w)g(w)) = 0. We infer that (/ ® Tr )(fg) = /Tr(f(w)g(w)) dw > 0. Using again
(2.3), we conclude that f € LP(Q, S,’;)JF.Q ? ]

Proposition 2.21 Let Q be a (localizable) measure space and let M be a von Neumann al-
gebra equipped with a faithful normal semifinite trace. Suppose 1 < p < oco. A positive map
T:1LP(M) — LP(Q) into a commutative LP-space is completely positive.

Proof : The case p = oo is a particular case of [55, Theorem 5.1.4], so we can suppose 1 < p < 0.
Let « = [z;;] be a positive element of SE(LP(M)). Note that in S?, for almost any w € Q, we

have

((dgz ® T)([2i5]) () = ([T(2i5)]) (W) = [T(2i;)(w)].
By Proposition 2.5, for any matrix u € M, 1, the element u*[x;;]u of LP (M) is positive. By the
positivity of T', we see that T'(u*[z;;]u) is a positive element of LP(Q2). Using Lemma 2.20, we
deduce that for almost every w € )

u* [T (i) (w)]u = Z 0T (x5) (w)u,; = T( Z uixijuj> (w) = T (u*[zij]u) (w) > 0.
ij=1 ij=1
We infer that for almost every w € €2, the matrix [T(x;;)(w)] is a positive element of M,,. By
Lemma 2.20, we conclude that [T'(z;;)] is a positive element of S%(LF(€2)). [ |
Using duality, we also have the following variant.

Proposition 2.22 Let Q be a (localizable) measure space and let M be a von Neumann algebra
equipped with a faithful normal semifinite trace. Suppose 1 < p < oco. A positive mapping
T:1P(Q) — LP(M) defined on a commutative LP-space is completely positive.

Proof : The case p = oo follows from [55, Theorem 5.1.5], so we can suppose 1 < p < oo.
According to Lemma 2.7, the map T': LP(Q) — LP(M) is positive if and only if 7*: LP" (M) —
LP” (Q) is positive. Thus, by Proposition 2.21, the map T™* is completely positive. Using again
Lemma 2.7, we conclude that T is completely positive. [ ]

Remark 2.23 Note that the situation is different for the complete boundedness between com-
mutative LP-spaces. Indeed, there exists some example of a measure space {2 and a bounded
operator T': LP(2) — LP(2) which is not completely bounded, see” [115, Proposition 8.1.3] and

7. We warn the reader that the proof of [53] is false. Indeed, the main argument of the paper which begins page
7 with “therefore we can get a LP(H) multiplier” is really problematic since H can be a finite subgroup (for
example, consider the case G = 7).
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2.6 Markov maps and selfadjoint maps

Let M and N be von Neumann algebras equipped with faithful normal semifinite traces 7); and
7n. We say that a linear map T: M — N is a (7p7, 7v)-Markov map if T is a normal unital
completely positive map which is trace preserving, i.e. for any z € mf ~we have 75 (T'(z)) =
Ta(x). When (M, mpr) = (N, 7n), we say that T is a 7a7-Markov map. It is not difficult to check
that a (7as, 7v)-Markov map 7' induces a completely positive and completely contractive map
T,: LP(M) — LP(N) on the associated noncommutative LP-spaces L? (M) and LP(N) for any
1 < p < 0co. Moreover, it is easy to prove that there exists a unique normal map 7%: N — M
such that

(2.12) ™ (T(z)y) = T (2T*(y)), € MNLY(M),y € NNL'(N).
It is easy to show that T is a (7, 7as)-Markov map. In this case, by density, we have
(2.13) ™ (Tp()y) = Tar (2(T)pe (y)), @ € LP(M),y € L7 (N).

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace 7. Let
T: M — M be a normal contraction. We say that T is selfadjoint® if

(2.14) (T(z)y*) = 7(2T(y)*), x,y € M NLY(M).
In this case, for any z,y in M NLY(M), we have
[7(T(@)y)| = |7 @T &))< Nl o 1T ar < lllorarn 19l -

Hence the restriction of T'to M NLY(M) extends to a contraction Ty : L*(M) — L*(M). It also
extends by interpolation to a contraction T),: LP(M) — LP(M) for any 1 < p < co. Moreover,
for any 1 < p < oo, we have (T),)* = (T,~)°. Furthermore, the operator T: L?(M) — L2(M) is
selfadjoint. If T is positive then each T}, is positive and hence (7},)° = T,. Thus in this case, for
any 1 < p < o0, we have (T},)* = Tp-. Finally, if T: M — M is a normal complete contraction,
then each T, is completely contractive.

Finally, it is easy to check that a 7j;-Markov map T: M — M is selfadjoint if and only if
T =1T°.

3 Decomposable maps and regular maps

In this section, we start by analyzing decomposable maps on noncommutative LP-spaces. In
particular, in Subsection 3.2, we prove that the infimum of the decomposable norm is actually a
minimum. In Subsection 3.6, we state our first main result, Theorem 3.24, and give the end of
the proof of this result. In passing, we prove that completely positive maps on noncommutative
LP-spaces of approximately finite-dimensional algebras are necessarily completely bounded. In
Subsection 3.8, we compare the space of completely bounded operators and the space of decom-
posable operators. We show that these are different in general. We also give explicit examples
of computations of the decomposable norm, see Theorem 3.37.

3.1 Preliminary results

Recall that if A is a Banach algebra and if « € A and w € A*, we let w, be the element of A*
defined by (b, we) 4,4+ = (ab,w) s a~ where b€ A. If v € A** and w € A* we let R, (w) defined

8. We warn the reader that a different notion of selfadjoint map is also used in the paper.
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by <Rl,(w), a>A*7A = (Waq, V) o+ 4+~ Where a € A. Finally, if n, v € A** we define the (first) Arens
product nv € A™ by (w,nv)ax a=» = (R, (w),n)ax a==. If Ais a C*-algebra, it is well-known
that A** is an (abstract) von Neumann algebra.

Let M be a von Neumann algebra of predual M,. Since we have a canonical inclusion
M, C M*, we can consider the annihilator (M)t = {v € M** : (p, V) pr« p+= = 0 for any ¢ €
M.} of M, in M**. It is well-known [21, Proposition 4.2.3] that there exists a unique central
projection e of M** such that (M,)* = (1 — e)M**. Moreover, we have M, = R.(M*) and’
M* = M, @1 Ry_.(M*). The non-zero elements of Ry_.M* are the singular functionals.

A bounded map T': M — N is called singular [149] if T*(N,) C Ri_M*. By [149, Theorem
1], for any bounded map T': M — N there exists a unique couple (Ty+: M — N, Tying: M — N)
of bounded maps with Ty~ weak™ continuous, Tsne singular and such that T' = T+ + Tying.
Consider the completely contractive and completely positive map ®p;: M** — M**, n+— ne =
ene and the completely isometric canonical maps iy : M — M™** and iy, : N, — N*. By the
proof of [149, Theorem 1]*°, the map Ty~ is given by

Ty =T 0 ®pr0ing
where T = (in,)* o T**: M** — N is the unique weak* continuous extension of 7T

Proposition 3.1 Let M and N be von Neumann algebras. Then the map Py«: B(M,N) —
B(M,N), T — Ty~ is a contractive projection. Moreover, if T: M — N is completely positive
then the map Py« (T) is completely positive. Finally, if T: M — N is completely bounded then
Py« (T) is also completely bounded with || Py« (T)|| o pr—sn < 1T ety nr—sn-

Proof : It is obvious that Py~ is a projection. It is well-known that ||T| .. v = [Tl n-
Now, it is clear that, by composition, Py« is contractive. If T: M — N is completely positive,
using [132, Theorem 4.9] with Lemma 2.7, it is immediate to see that Ty, is completely positive.
By [23, Section 1.4.8], if T: M — N is completely bounded, then 7': M** — N is completely
bounded with the same completely bounded norm. By composition, we deduce that Py« (T) is
completely bounded and that || P+ (T) ey ar—n < 1T llch 2z n- u

Lemma 3.2 Let M and N be von Neumann algebras equipped with semifinite faithful nor-
mal traces. Suppose 1 < p < oo. Let T: LP(M) — LP(N) be a linear map. Then T is
decomposable if and only if T°P is decomposable. In the case, we have ||T||dec’Lp(M)HLp(N) =

TPl qec, Lo (ayor Lo (w)or -
Proof : Assume that T': LP(M) — LP(N) is decomposable. By (1.4), there exist linear maps

v1,vy: LP(M) — LP(N) such that [;10 Z} : SP(LP(M)) — SE(LP(N)) is completely positive
2

vy T . QP(TP op

o] staranm -

SP(LP(N)°P) is also completely positive. Indeed, let b € M,, (S5 (LP(M)°P))y = S5 (LP(M°P))4.

Denoting b' the transposed matrix, where transposition is executed in S | i.e. both in the M,

and in the S} component, an obvious computation gives

o G R (G D)

9. That means that preduals of von Neumann algebras are L-summands in their biduals.

10. The formula of the weak* extension of the proof of [119, Theorem 1] is formally different but equivalent to
ours. Indeed, in [149, Theorem 1], the weak* extension T is given by T = (T*|N.)* and we have (T*|N.)* =
(T* oin,)* = (in,)* o T**.

with max{[[vr [, [2ll} < ITllgee.tr(ar)simny + & We claim that
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which is positive in M,, (S5 (LP(M)°P)) according to Lemma 2.6, applied twice, provided that
V2 T° D

we show that the map [T " ] : SP(LP(M)) — SE(LP(N)) is completely positive. But this
1
can be seen using the identity

V2 T° _ (% T
|:T "U1:| - ]:N |:To ”U2:| ]:M,

where Fpy: SY(LP(M)) — S5(LP(M)) denotes the flip mapping

abH01ab01idc

c d 1 0f||c d||1 O |b a
which is completely positive according to (2.9) (and similarly for Fy). We infer that the
linear map T°P: LP(M)°P — LP(N)°P is decomposable and that [|T°P|| .. 10 (aryor 1o (v)er <

max{||val, [[vi[} < [T\l gec,t0 ey 10 () + € Letting € — 0 and using symmetry, we can finish
the proof of the lemma. [ |

We will use the following easy'! lemma several times.

Lemma 3.3 Let M and N be von Neumann algebras equipped with semifinite faithful normal
traces. Suppose 1 < p < co. The Banach adjoint of a bounded operator

Ty Tio
SH(LP(M)) — SH(LP(N
By Tm] (LP(01)) — SHLF(N))
identifies to [E - ] S N)) — Sg* (LP"(M)) and the Banach preadjoint of a
weak* continuous operator ;11 ?2} My(M) — Ma(N) identifies to the bounded operator
21 Ioo

(Th1)«  (Tha)« ) 1
{(Tm)* (sz) ] S3(LY(N)) — SI(LY(M)).

The following complements [92, Lemma 3.2] and completes a gap in the proof of the case
p=1.

Proposition 3.4 Let M and N be two von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 < p < oco. A bounded map T: LP(M) — LP(N) is decomposable if
and only if the Banach adjoint T*: LP" (N) — LP (M) is decomposable. In this case, we have

(3.1) 1T\l qec, e vy Loy = 1T lqee,Le® (V)17 (ar) -

11. The first part is a consequence of the following computation (and the second part can be proved similarly):

(ol (e d) 2 i) (58 @l 2 i)
To1  Thao c d|l)’|z w SE(LP(N)),SE" (LP* () To1(c) Toa(d)]’' |z w SE(LP(N)),SE" (LP* (V)

= 7(Tu(a)x) + 7(T12(b)y) + 7(T21(c)2) + 7(Ta2(Dw) = 7(aTy(x)) + 7(bTT5(y)) + 7(cT51(2)) + T(dT5(w))

(e a2 ()
¢ d]" Ty Tl \lz wl)/spweian,st” we* ()
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Proof : Suppose 1 < p < oco. Suppose that T: LP(M) — LP(N) is decomposable. There

exist some maps vy, ve: LP(M) — LP(N) such that ;10 is completely positive. Using
Lemma 3.3, we obtain that (Eﬁ Z;}) = {(;i)* f;} = [(;i})o fg] By Lemma 2.7,

this operator is completely positive as a map Sg* (LP"(M))°P — ng* (LP"(N))°P. So by Lemma
2.15, it also define a completely positive map Sg* (LP"(M)) — Sg* (LP"(N)). We conclude
that 7: LP(M) — LP(N) is decomposable with [T |[4ec 1o(arorevy < max{[lof], (o3[} =
max{|[o1], [[vz|[}. Taking the infimum, we obtain [T gee, Lo (ar) 1o (8) S 1T lace Lo (a1 5o ()
If p # 1, a symmetric argument gives the result.

Suppose p = 1 and that the map T*: N — M is decomposable. There exist some

*

maps vy,v2: N — M such that [( ] is completely positive. Note that v; and v,

U1 T
T*)o vy
are not necessarily weak* continuous. However, it is not difficult to see by uniqueness that

P,- ({ e ZQD _ {((?;Z;v; (US*W*] where Py : B(Ma(N), My(M)) —>B(M2(N),M2(Jj/_f))
() T ]

is the projection of Proposition 3.1. Moreover, the same result says that [(T*)O (12)
2 )w*

still completely positive and that max{||(v1)w«|, || (v2)w= ||} < max{||v1],]||vz2|}. Using Lemma

i . we  T* ((v1)w)« T

3.3, we obtain that (v12 o }) = [ o . By Lemma 2.7 and
([@ ) (2] ), T () T

Lemma 2.15, this operator is completely positive as a map S3(LY(M)) — S3(LY(N)). We
conclude that T is decomposable with ||T'||4ec 11 (ar 1 (v) < max{[|((v1)ws )<l [[((v2)we )|} =
max{||(v1)w= ||, [|(v2) w-
1T aee,Lt ary—r vy < N7 laee, v u
Let My, M> and M3 be von Neumann algebras equipped with faithful normal semifinite
traces. Suppose 1 < p < oo. Let Ty: LP(My) — LP(Ms) and Ty: LP(Ms) — LP(Ms) be some
decomposable maps. It is easy to see that the composition 75 o T} is decomposable and that

(32) ||T2 o TlHdeC < ||T2||dec ||T1Hdec :

} < max{||v1]|,||v2||}. Taking the infimum, we obtain the inequality

Let My, My and M5 be approximately finite-dimensional von Neumann algebras equipped
with normal semifinite faithful traces. Suppose 1 < p < oo. Let Ty: LP(M;) — LP(Ms) and
Ty: LP(Msy) — LP(M3) be some regular maps. It is easy to see that the composition T5 o T} is
regular and that

(3.3) T2 0 Thll ep < T2 leg 1711l

reg reg reg °

Let M and N be approximately finite-dimensional von Neumann algebras equipped with normal

semifinite faithful traces. Suppose 1 < p < oo. According to [117, Corollary 3.3] and [117,
Theorem 3.7] (see also [122, (6) page 264]), we have the isometric interpolation identity '?

(3.4) Reg(L?(M),L7(N)) = (CBy- (M, N), CB(L} (M), L1(N)))?

where we use the Caldéron’s second method or upper method [17, page 88] and where the sub-
script w* means “weak™® continuous”. By Lemma 2.3 and (3.4), note that we have isometrically

Reg(LP(M®P), LP(N°P)) = (CBy- (M, N°P), CB(L! (M®P), L} (N°P)))»
= (CBy+ (M, N),CB(L' (M), L'(N)))¥ = Reg(LP(M),L”(N)).

12. The compatibility means, roughly speaking, that the elements of CB(M, N) N CB(L!(M),L'(N)) are the
maps simultaneous bounded from M into N and from L*(M) into L1 (N).
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So a map T': LP(M) — LP(N) is regular if and only if the opposite map T°P: LP(M) — LP(N)
is regular with equality of regular norms.

Suppose 1 < p < co. Let M and N be hyperfinite von Neumann algebras equipped with
normal faithful semifinite traces. A bounded map T': LP(M) — LP(N) is regular if and only if
the Banach adjoint map 7% : L?" (N) — L? (M) is regular. In this case, we have

(3.5) 1T M| eg, e vy 1o (v) = 1T lreg,o* (vyor 10 (aryor -

3.2 On the infimum of the decomposable norm

Proposition 3.5 Let M and N be two von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 < p < 0o. Let T: LP(M) — LP(N) be a decomposable map. Then
the infimum in the definition of ||T'|| .. is actually a minimum i.e. we can choose vi and vy in

(1.4) such that ||T||dec,Lp(M)—>Lp(N) = max{||v1], [[va][}-

Proof : See [65, page 184] for the case p = co. Suppose 1 < p < oco. For any integer n,
let vy, wy: LP(M) — LP(N) be bounded maps such that the map {;” 5] : SE(LP(M)) —

SP(LP(N)) is completely positive with max{[|v,|l, |wnll} < T[4 + =. Note that since
LP(N) is reflexive, the closed unit ball of the space B(L?(M),L?(N)) of bounded operators
in the weak operator topology is compact. Hence the bounded sequences (v,) and (w,) ad-
mit convergent subnets (v,) and (w,) in the weak operator topology which converge to some
v,w € B(LP(M),LP(N)). Now, it is easy to see that {%}O 5} = lim, ;}fé UIJ;
operator topology of B(S5(LP(M)), SE(LP(N))). By Lemma 2.8, the operator on the left hand
side is completely positive as a weak limit of completely positive mappings. Moreover, using
the weak lower semicontinuity of the norm, we see that ||v|| < liminf, |[ve| < [T 4. and
] < limint [wa| < T, Hence, we have max{ o]l [w]} = [T,

The case p = 1 can be proved by duality using the proof of Proposition 3.4. [ ]

in the weak

Remark 3.6 Supposel < p < oo. T: LP(M) — LP(N) is a contractively decomposable map,
we ignore if we can find some linear maps vy, vy such that the map ® of (1.3) is completely
positive and contractive.

3.3 The Banach space of decomposable operators

Proposition 3.7 Let M and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 < p < oo. If N\ € C and T: LP(M) — LP(N) is decomposable then the
map \T is decomposable and ||)\T||deC7Lp(M)_>Lp(N) = (A T M gee, Lo (ar)— 1o () -

Proof : By symmetry, it suffices to prove ||AT'|| ;.. < |A| 7] gec, since then || T 4. = H%)\THdec <
ﬁ AT || jor- We can write A = |A|§ where # is a complex number such that |§] = 1. Assume

that vq,ve: LP(M) — LP(N) are linear maps such that the map B}O Z} : SE(LP(M)) —
2

. . _ 1 0] " [w() TH][L 0

P(1,p
SY(LP(N)) is completely positive. By (2.9), the linear map [0 9] [T°(~) w0 o
is also completely positive on S5(LP(M)). But it is easy to check that the latter opera-
0T vy 0T [Alvr AT

tor equals [Ul } Thus the map |A| - [ } = {O\T)O Ao
2

0T° vy 0T° vy } is also completely
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positive. We deduce that T' is decomposable and that [|AT|,., < max { [[[Nv][, [[[A|v2]l } =
|Amax { [|[v]], [lv2]| }. Passing to the infimum yields the desired inequality | AT 400 < [A] 17| goc-
|

It is not proved in [92] that |[-[| qec 1.0 (ar)—10 () I8 & nOrm.

Proposition 3.8 Let M and N be two von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 < p < oo. Then Dec(LP(M),LP(N)) is a vector space and
[l dec,to (vr)—1r () @8 @ norm on Dec(LP (M), LP(N)).

Proof : Let Ty,T5: LP(M) — LP(N) be decomposable maps. There exist some liner maps

v1, 2, w1, we: LP(M) — LP(N) such that Ulo Tl} and {wé TZ} are completely positive. We
Tl (%) T2 wo

1 4w | _(nntwr Ti+Tz _ | ntwr Ti+Tp

Tlo (%) TQO w2 Tlo + TQO Vg + W2 (Tl + TQ)O Vg + Wo

this map is completely positive. Hence T7 + T} is decomposable. Furthermore, we deduce that

can write } . Moreover,

1Ty + To | goe < max { [Joy + w1, [Jvz + w2 }
< max { [log|| + lwa ]|, [Jozll + [Jwe]| } < max { o1, [lva]l } +max { [Jw:]], [[wall }.

Passing to the infimum, we conclude that the sum T 475 is decomposable and that |1} + 15| 4o, <
1Tl gec + 172/ gec- The absolute homogeneity is Proposition 3.7. For the separation property,
we can use Proposition 3.30 if the von Neumann algebras are QWEP. If it is not the case,

suppose T[4, = 0. By Proposition 3.5, the map {190 %;] : SE(LP(M)) — SP(LP(N)) is com-

pletely positive. Now, let b € LP(M) with [[b][» () < 1. By Proposition 2.12 there exist some

a,c € LP(M) with ||al[;»pr) < 1 and [l¢[[,(5s) < 1 such that the element {b%‘
0 T
T®)* 0

infer that T'(b) = 0. We conclude that T' = 0. [ |

ﬂ of SB(LP(M))

is positive. We deduce that the element [ } is also positive. Using Lemma 2.11, we

Lemma 3.9 Let M and N be von Neumann algebras equipped with faithful normal semifinite
traces. Suppose 1 < p < oo and let T: LP(M) — LP(N) be a decomposable map. Then
T°: LP(M) — LP(N) defined by T°(x) = (T'(x*))* is also decomposable and we have ||T|,,. =
”TOHdec'
. I (%1} T
Proof : Consider some completely positive maps vy, ve: LP(M) — LP(N) such that T
2
is completely positive. Using (2.9), note that the map

T R e E A N A T S

is completely positive and similarly Fy: S5(LP(N)) — S§(LP(N)). We deduce that the map

(%) T° o 1 T
|:T 1}1] _fNO |:TO U2:| OfM

is completely positive. Hence T is decomposable and ||T°]| ;.. < max{||v1][, ||vz|}. Passing to
the infimum gives |7 aee < [T gpc- Since (T°)° = T, we even have [T°[ace = [Tl M
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Proposition 3.10 Let M and N be two QWEP von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 < p < 0o. Then the space Dec(LP(M),LP(N)) is a Banach
space with respect to the norm ||{| gec 1.0 (v 10 (n)-

Proof : We consider a sequence (7)) of decomposable maps from LP(M) into LP(N) with
> 1 Tnlqee < 00. We suppose first that each T}, is selfadjoint, i.e. T, (z*) = T, (z)* for any
x € LP(M). Proposition 3.30 shows that |||, 1.0 (ar) 1o (v) < [Illgec: SO that > T, =Tin
the space CB(LP(M),LP(N)) for some completely bounded map T': L?(M) — LP(N). For any
integer n, by Proposition 3.19, there exists a completely positive map S, : L?(M) — LP(N)
such that —S,, <cp Ty <cp Sn and [|Sn|| < 2|70 ]| gec-

In particular, > 0 | [lSn|| < co and we can define a bounded operator Ry = Y. >" | S, for
each integer k. By Lemma 2.8, each R}, is completely positive and we have —Ry <¢p T <cp Ro.

Thus, T'= (T + Ry — (Ry — T)) is decomposable according to Proposition 3.12. Moreover,

for any k > 1, we have —Rj, <cp T — 22:1 T, <¢p Ry, which implies by Proposition 3.19 that

k 9] o0
T-> Tl <IBll=| > Sull< D> lSall Pl
n=1 dec n=k+1 n=k+1

Thus, the series ZZ=1 T,, converges in the space Dec(LP(M),LP(N)) and its sum is 7. This
ends the proof in the case that where each T,, is selfadjoint.

Now if the T;, are not necessarily selfadjoint, put U, = %(Tn +7T2)and V, = %(Tn -T2,
which are both selfadjoint. By Lemma 3.9, we have |T,|;.. = [Ty |ldec. Thus, we have
1Unllgee € I Tnllgee @0d [[Villgjee < |70 |lqees and by the first part of the proof, we have
S Up=Uand ) "V, =V Where the convergence of both series is in Dec(LP (M), LP(N)).
Tt easily follows that anl T, = S (U, +1iV,) = U +iV in Dec(L?(M),LP(N)). [ |

Proposition 3.11 Let M and N be two von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 < p < oo. Let T: LP(M) — LP(N) be a completely positive map.
Then T is decomposable and ||T||gec 1o (ar)—1o(v) < I T Lo a1y 10 (3)-

Proof : Using Lemma 2.9, we see that the linear map [; g] s SP(LP(M)) — SE(LP(N)) is

completely positive. We infer that T is decomposable and that the inequality is true. [ ]

Proposition 3.12 Let M and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 < p < oo. Let T: LP(M) — LP(N) be a linear map. Then the following
are equivalent.

1. The map T is decomposable.
2. The map T belongs to the span of the completely positive maps from LP(M) into LP(N).

3. There exist some completely positive maps Th,To, T3, Ty: LP(M) — LP(N) such that

T =T —Ty+i(Ts — Ty).

If the latter case is satisfied, we have | T gee 1o (ar)—renvy < I1T0 4 T2 + T3+ Tall Lo (ary e () -
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Proof : If there exist some completely positive maps T, T, T5,Ty: LP(M) — LP(N) such that
T =T, — Ty +i(T5 — Ty) then T belongs to to the span of the completely positive maps from
LP(M) into LP(N). If T belongs to the span of the completely positive maps from L?(M) into
LP(N), by Proposition 3.11 and Proposition 3.8, we deduce that T" is decomposable. Moreover,
the proof of these results shows that if T'=T; — Ty + i(T3 — T4) for some completely positive
maps 11, Ty, T3, Ty then we can use'® vy = vo = Ty + Ty + T3 + Ty in (1.3). Hence we have
TNl gee,Lo ()=o) < T3+ T2+ T3+ Tall Lo (ary e (v)-

Now, suppose that the map T is decomposable. There exist some completely positive maps
1,091 LP(M) — LP(N) such that ® = ;ﬂ})
1 1 1 1 1 . 1 Rt . 1
Z[l 1]<I> 1 , T = 1[1 —1]<I> 1 , Ty = 1[1 1](I> s and Ty = 1[1 —1]<I> .| are
completely positive from LP (M) into L?(N) and it is easy to check that T'= T1 —To+i(T3 —Ty).

|

Z} is completely positive. By (2.9), the maps 71 =
2

Remark 3.13 Suppose 1 < p < co. Let T: LP(M) — LP(N) be a decomposable operator. We
can define
T g = inf { T3l + T2l + T3] + 172 }

where the infimum runs over all the above possible decompositions of T as T = Ty —To+i(T5—T4)
where each T; is completely positive. It is stated in [119, page 230] that H‘”[d] is a norm, but
it is not correct. Indeed, let M = C. We have LP(M) = C. Let T: C — C, z +— x. Then we
will prove that ||T']|; = 1 and that [|(1 +1)T[|y4 = 2 # V2 =1+ Tl First, since T' is
completely positive, we have

||T||[d] = inf {a1 +astaz+tas: ap =0, 1 =a; —az+1i(as a4)}.

For such a decomposition, we have 1 = R(a1 — a2 + i(as — a4)) = a1 — as. We deduce that
ITljg = a1 = 1+ az > 1. The decomposition 1 =1 — 0 +i(0 — 0) gives the reverse inequality.
Moreover, we have

H(1+1)T’|[d] inf{a1+a2+a3+a4: ar =20, 14+i=ay a2+i(a3a4)}.

For such a decomposition, we have 1 = R(a; — ag + i(ag — a4)) = a1 — az and 1 = S(a; —
as +i(as — a4)) = az — aq. We deduce that a3 = 1+ a2 > 1 and a3 = 1+ a4 > 1. Then
(L +1)T[|g > a1 +a3 > 1+1 = 2. The decomposition 1 +i=1-0+1i(1—0) gives the reverse
inequality.

Proposition 3.14 Let M and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 < p < co. Any finite rank bounded map T: LP(M) — LP(N) is decom-
posable.

Proof : Suppose 1 < p < oco. It suffices to prove that a rank one operator T' = Tr (y-) ® z is
decomposable where y € LP" (M) and z € LP?(N). We can write & = x; — x5 + i(x3 — 24) and
y =y1 — y2 +1i(ys — ya) with zp,yr > 0. Hence we can suppose that y > 0 and z > 0. By
Proposition 2.21, we deduce that the linear form Tr (y-): L?(M) — C is completely positive.
It is easy to deduce that Tr (y-) ® = is completely positive, hence decomposable by Proposition
3.11. The case p = oo is similar. [ ]

13. The argument is similar to the one of [55, Proposition 5.4.1] and use a straightforward generalization of a
part of [55, Proposition 1.3.5].
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3.4 Reduction to the selfadjoint case

Lemma 3.15 Let E be an operator space and suppose 1 < p < oo. Then for any a,b,c,d € E,
we have

0 b a b

c 0 c d

Proof : Consider the Schur multiplier M4: S3° — S5° where A = [0 L

53(E)

SP(E) ‘

1 0}. Using Lemma 2.10

with £ = C and p = oo, we note that for any a,b,c,d € C

e

> max {|a|> + [¢2, |b? + [d[*} = max {|¢], |b|}* =

2 ‘

_|Iflal® +1¢|*  ab+ed
g |l abtcd [O]* +|d|?

Sge 537

0 o
c 0
We deduce that the Schur multiplier M4 is a contraction, hence a complete contraction. By

duality, M4: S3 — S1 is also a complete contraction. Using Lemma 3.20, we deduce that M4
is contractively regular on S3 and the lemma follows. [ ]

2

557

Lemma 3.16 Let M and N be approximately finite-dimensional von Neumann algebras equipped
with faithful normal semifinite traces. Suppose 1 < p < oo and let T: LP(M) — LP(N) be a
reqular map. Then T°: LP(M) — LP(N) defined by T°(x) = (T'(z*))* is also regular and we
have |T°[lreg = Tl eq-
Proof : We recall that by (3.4), Reg(L?(M),LP(N)) is a complex interpolation space fol-
lowing Calderén’s upper method. Choose now an analytic function F: S — CB(M,N) +
CB(LY(M),LY(N)) of G defined on the usual complex interpolation strip S = {z € C : 0 <
Rz < 1}, such that F'(0) =T with [|[F[|g < [|T[,cq +&. Put G(2) = F(z)°. Then the function
G also belongs to G with ||G||g = [|F'[|g and we have G'() = T°. Thus the map T° is regular
and [ T°(|reg < [T eq + & Letting e — 0 we obtain [|T°|[seg < [|T,0q- Since (7°)° =T, we
even have |[T°|reg = 7] oq- n
Proposition 3.17 Let M and N be approximately finite-dimensional von Neumann algebras
equipped with faithful normal semifinite traces. Suppose 1 < p < oo and that T: LP(M) —
LP(N) is a linear mapping. Define T: S5(LP(M)) — SH(LP(N)) by

(e bY_[ 0 T®)
c d|) |T°(e) 0O |’
Then T is selfadjoint in the sense that T(z*) = (T(x))* Moreover, T is reqular if and only if
the map T: SY(LP(M)) — SH(LP(N)) is regular and in this case, we have T veg 1o (1) =10 () =
T [|reg, 52 (e (A1) = 52 (L (N)) -
Proof : Assume first that 1 < p < oo. Let E be any operator space. Assume first that T'

b] € SE(LP(M,E)), according to Lemma 2.10 with E replaced by

is regular. For any d
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LP(N, E), we have

H (T ®1dg) [Z Z}

_ H[ 0 (T®IdE)(b)]
SI(LP(N,E)) (T° ®1dg)(c) 0

_ (H(T® 1) O}, vz + 1(7° ®IdE)(c)Hip(N’E)); .

53 (LP(N,E))

The above quantity can be estimated by ||T,q, <||b|\€p(M o ||c|\£p(M E)> due to Lemma
3.16. According to Lemmas 2.10 and 3.15 with E replaced by LP(M, E), this in turn can be

estimated by
0 b a b
c 0 c d

This shows that HT®IdE||S§(Lp(MﬁE))_}Sg(Lp(ME)) < |IT...- Passing to the supremum over all

=

Il ST llvee

reg
S3(Lr(M,E))

S5 (L (M, E))

reg~'
operator spaces E, we deduce that 7" is regular and that ||7'||reg < [|7|,0q-

For the converse inequality, assume that T is regular and let 2 € LP (M, E). Applying
Lemma 2.10 twice, we have

||(T®IdE)(x)HLp(N,E) = H {8 (T®I(?E)<x)}

(L o eme) s )

= ||T||reg ||'r||LP(M7E) :

S5 (LP(N,E))

< T lveg
S3(LP(N,B))

b )

We conclude that T is regular and that [T, < |7||reg- The case p = oo is similar, using in
the second part of Lemma 2.10 each time. [ ]

S5 (LP(M,E))

Proposition 3.18 Let M and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 <p < oco. Let T: LP(M) — LP(N) be a linear map. Then T is decompos-
able if and only if the map T': S5(LP(M)) — S5(LP(N)) from Proposition 3.17 is decomposable,

and in this case, we have HTHdeC’Lp(M)HLp(N) = HT||dCC’S§(LP(M))_>S§(L,,(N)).

b
d

=2 ([ 3)= [ "5 <[l 6]

(T(x))*:[T"O(c) Tc()b)]*:[ﬂ%)* Tot()c)*}:[ : T(C*)}’

We conclude that T is selfadjoint, i.e. T° = T.
Now, suppose that T is decomposable. Choose some maps vy,v2: LP(M) — LP(N) such

Proof : Let x = [(z ] € SE(LP(M)). We have

and also

that B},{) Z} : SE(LP(M)) — SE(LP(N)) is completely positive. By (2.9), the mapping
2
0 01 0l|vy T 0 O 0 010 v; 0 7
0 1 0 0| |7T° wvo 0O O () 0 1.0 0 |0 wu
1 0 0 0 0 0 v T 10 0 0] 7 vy 0
0 0 0 1 0 0 T° w 0 0 0 1 0 vy
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is also completely positive from S¥(LP(M)) into S%(LP(N)). Therefore the map T is decom-

U1 0
|: 0 ’UQil
1.3]. By passing to the infimum over all admissible vy, va, we see that ||T[|dec < || 7| 4ec-

Now suppose that the map 7' is decomposable. Let vy, vy: S5(LP(M)) — S5(LP(N)) such

posable and ||T|qec < ’ = max{||v1|, ||v2]|}, the latter according to [118, Corollary

that the map B{ 5] s SY(LP(M)) — SY(LP(N)) is completely positive. For i = 1,2, put
2

w;: LP(M) — LP(N), a — (vi <[g 8})) Then each w; is also completely positive as a

composition of completely positive mappings. We also define

Ji SHLA(M)) — SB(L(
A

It is easy to see that J is a completely positive and completely isometric embedding. Then an
easy computation gives

M)
0 b
00
0 0
0 d

o O o
o O oo

10
[1000] ([U} f}@(@ bD)) 0 0
00 0 1 T v c d 00
) 0 1
a 0 0 b 10
[t 00 0 vy T1[]0 0 0 0 00
{0001} [Tvgoooo oo
“\|c 0 0 d 0 1

_FO()ﬂ “Q3ﬂ

1
o
et o) = (o d))] [0

Using (2.9), we deduce by composition that the map [u%l 5] is completely positive. We infer
2

that T' is decomposable and that [|T'[q, < max{{lwal|, [lwe[]} < max{[lvy[|,[lvz][} and passing
to the infimum over all admissible vy, vy shows that ||T']| .. < [|T|dec- ]

_— o o o

Proposition 3.19 Let M and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 < p < oo. A selfadjoint'® map T: LP(M) — LP(N) is decomposable if
and only if one of the two following infimums is finite. In this case, we have

1T lgee. a1yt () = inf {IS] = S LP(M) = LP(N) ep, —S <ep T <ep S}
= 1nf{ HT1 +T2|| : T17T2: Lp(M) — Lp(N) Cp, T = T1 —TQ}.

Proof : The first equality is a consequence of Lemma 2.18 and Lemma 2.19. To prove the second
equality, first assume that there exists some completely positive map S: LP(M) — LP(N) such
that

=S <Kp T <ep S.

14. Here, that means that T'(z*) = T'(z)* for any = € LP(M).
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Then T4 = (S +1T) and T> = (S — T) are completely positive and we have T} + Ty =
S+ +4(S-T)=Sand Ty —To =4(S+T) - (S-T)="T.

Conversely, suppose that we can write T = T; — Ty for some completely positive maps
Ty, T5: LP(M) — LP(N). Then we have

*(Tl + TQ) gcp T gcp (Tl + T2)

This proves the second equality. [ ]

3.5 Decomposable vs regular on Schatten spaces

Similarly to the commutative case, an absolute contraction between noncommutative LP-spaces
is contractively regular.

Lemma 3.20 Let M and N be approxzimately finite-dimensional von Neumann algebras which
are equipped with faithful normal semifinite traces. Let T: M — N be a completely contractive
map such that the restriction to M NLY (M) induces a completely contractive map from L' (M)
into LY(N). Then for any 1 < p < 0o, we have 1T\l eg, 1o (1)1 () < 1-

Proof : Let E be any operator space. According to [55, Proposition 8.1.5], the map T ®
Idg: L®(M,E) = M Quin E — L®(N,E) = N Quin E is completely contractive. Moreover,
by [55, Corollary 7.1.3] the map T ® Idg: L'(M, E) = LY(M)&E — LY(N, E) = LY(N)®EF is
also completely contractive, where ® denotes the operator space projective tensor product. By
interpolation, we infer that the map T'® Idg: LP(M, E) — L?(N, E) is completely contractive
for any 1 < p < oco. Passing over the supremum of all operator spaces, we obtain the lemma.
|

Suppose 1 < p < co. If n and d are integers then a particular case of [117, Theorem 1.5]
gives for any z € SP(My)

(3.6) ||z

st = 0 {llellszr 19l o) 18llsze - 2 = (@ @ Ta)y(B @ Ta) -

Theorem 3.21 Letn,m € N and 1 < p < oco. Then any linear mapping T': SE, — SP satisfies

||T||reg,s,’;—>s£ = ”T”dec,Sﬂ’;ﬂSﬁ'

Proof : Assume that the theorem is true for all selfadjoint maps T': SE, — SE, ie. T(z*) =
T(xz)*. Then we can deduce from Propositions 3.18 and 3.17, with the selfadjoint mapping
T:8% — Sh that || T]l4ec = ITlldcc = [T |lreg = I T Hence we can assume in addition
that T is selfadjoint.

First we show [|T'|,., < [[T]l4ec- The following proof is inspired by the proof of [117, Lemma
2.3]. Let € > 0. According to Proposition 3.19, there exist some completely positive maps
Ti,T5: SE — SP such that T = Ty — T5 and || Th + T3|| < ||T]|gec + € According to Choi’s
characterization [34, Theorem 1], there exist as,...,a;,b1,...,b € M, ,, such that Ty (x) =
Zic:l atzay and Th(x) = 22:1 byxby. Let x be an element of ST (Mg) with [|lz]|gsy,) < 1. By
(3.6), there exists a decomposition = = (a ® I4)y(8 ® 14) with «, 8 € S? of norm less than 1
and y € M,,,(Mg) which is also of norm less than 1. Using the notations

a1 = [G;{Oé, .. '7azka], ﬁl = (afﬁ*a cee 7a7ﬁ*)a

reg’

and
a2:[b>lka7"‘7bzka]ﬂ ﬂ2:(biﬁ*vab7 *)
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of My ;(My, ), we can write

(T ®@1dwm,)(z) = (T @ Idw,) (0 © La)y(8 © 1a))

= (T®Ide)< a®1d ( Z €45 ®y1j>(ﬂ®1d>> = i (T®Ide)(ae”ﬂ®yU)

4,j=1 4,j=1

|
IM3

T(aeyB) ® yij = Z T1(aeiiB) @ yij — Ta(aeiiB) @ yij

1,j=1

N

&
Il
—_

l

I
ZM§

-
<
Il

-

£

apaei;far @ yij — bpoeijBby @ yij

=1
-

I
INgE

(apa ®@1a)(eij @ yiz)(Bak @ 1a) — (bpe @ 1a) (€55 @ yij) (Box @ La)

i,j=1k=1
l n n
=) (ara®lq) ( d e yij) (Bax ®14) — (bra @ 1q) ( d e yij) (Bbr ®14)
k=1 i,7=1 ij=1
l
= ) (apa®@La)y(Bar @ 1a) — (bpa @ 1a)y(Bby @ 1a)
k=1
Y 0 . 0 ﬁal
. . 0o . : :
:([ala,...7ala]®1d) . ) ®Id
: L0 :
0 -~ 0 vy Bay
y 0 - 0 8b,
. . 0 . : :
_([ 1a,...,bla}®1d) ) ) ® 1y
: o0 :
0 -~ 0 vy Bb,

=@l - Loy Bil)—(eeel) Loy (8 @)
The matrix I; ® y € M;(M,,(My)) is of norm less than 1. A simple computation shows that

[<T ® Idy,) () o} _ {(a1 91) - L@y) (B ©l) — (a2 @1a) - (L&) (B @ 1) 0]
0 0 0 0

(a1 —as] Loy 0 pr 0
<[O O_®Id)|: 0 Iz@y} <[55 0 @I ).
On the other hand, we have
1
15 =I5 o = (5 =1 2)))
0 0 sz 0 0 s2p 0 0 —a5 0

1
* * P\ 2p 1
=Tr ([alal gazaz 8:| ) =Tr ((Oé1asf + 042043)1)) .

l D % 1
=Tr ((Zaiaa*ak +b2aa*bk) > = ||Ti(aa®) + To(aa®)||2

k=1
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1 1 1
< ”Tl +T2||§g;_>sfz ||Oéa*||§% = ”Tl JFT?H;%_)Sz ”O‘Hsfn‘f’

< | T + T

1
I
D D -
Sin—Sh

1
< Ty + Tal|2e _, gp- Using (3.6), we infer that

In the same way, it follows that H [ﬁi 0}
Bz 0

Sin
T®Id z) 0 1 1
T e Ide)(m)HSﬁ(Md) - H {( OMd)( ) 0] <7+ TQ”S?’n—»Sﬁ 7y + T2”S%—>S£’; ’
53, (Ma)

This yields |7 ® Idm, sz wvy)—szong) S 171+ T2llge sr < [T lgee + €, hence [T, <
| T[] gec +€- Passing € — 0 yields one of the desired estimates ||T'[|, ., < [ 7[4ec-

Finally we shall show [|T'| .. < [|T,cq Assume that [T, < 1. According to [119,
Theorem 5.12], note that we have isometrically

reg

(3.7) CB(S°) = M, ®;, M,

where ®;, denotes the Haagerup tensor product. Moreover, using the properties of this tensor
product [118, pages 95-97], we obtain

MYP @5, MyP = (Cp, @, Ry,)P @4 (Cp, @4 R,)P = RIP @1, C)P @4 RyP @, COP

We have vp(T) < 1 with § = % and 7y defined in [121, Theorem 8.5], according to [117,
Corollary 3.3]. Then the selfadjointness of T' together with [121, Corollary 8.7] yields that
17| gee < 177 + T2||gp_,5» < 1 where T'=T1 — T and T4, T are completely positive mappings
M,, = M,, given there. The proof of the theorem is complete. [ |

3.6 Decomposable vs regular on approximately finite-dimensional al-
gebras

In this subsection, we will extend by approximation Theorem 3.21 to approximately finite-
dimensional von Neumann algebras. We start with two lemmas which show that, under suitable
assumptions, the decomposability or the regularity of maps is preserved under a passage to the
limit.

Lemma 3.22 Let M and N be von Neumann algebras equipped with faithful normal semifinite
traces. Suppose 1 < p < 0o. Let (Ty) be a net of decomposable operators from LP (M) into LP(N)
such that || Tl gec, Lo (rr)—s1o(ny < C for some constant C which converges to some T': LF (M) —
LP(N) in the weak operator topology (in the point weak* topology of B(M,N) if p = 00). Then
T is decomposable and ||T||deC7Lp(M)_)Lp(N) < liminf, ||Ta\|deC7Lp(M)_>Lp(N).

Proof : We assume first that 1 < p < oco. By Proposition 3.5, for any «, there exist some

maps Ua, W : LP(M) — LP(N) such that the map [;iﬁ Za] : SP(LP(M)) — SE(LP(N)) is
completely positive with max{||va||, [|wall} = [|Tallge. < C. Note that since LP(NV) is reflexive,
the closed unit ball of the space B(LP(M),L?(N)) of bounded operators in the weak operator

topology is compact. Hence the bounded nets (v,) and (w,) admit convergent subnets (vg) and
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(wg) in the weak operator topology which converge to some v, w € B(LP(M),LP(N)). Now, it

is easy to see that
v T . vg 1p
ol )

in the weak operator topology of B(S5(LF(M)),SY(LP(N))). By Lemma 2.8, the operator on
the left hand side is completely positive as a weak limit of completely positive mappings. Hence
the operator T' is decomposable. Moreover, using the weak lower semicontinuity of the norm,
we see that [|v|| < liminfg ||vg|| < liminfg [|T3]| .. and [|w| < liminfg ||wg|| < liminfg [|T3] .-
Hence, we have [T, < max{|[v|,[|w|} < liminfg |73 ,... By considering a priori only
subnets 3 of a such that limg || T3] . = liminf, || T4, (see [107, Exercise 2.55 (f)]), we finish
the proof in the case 1 < p < cc.

Assume now that p = co. Then the Banach space B(M, N) is still a dual space, namely that
of the projective tensor product M&L!(N). Consequently, the bounded nets (v,) and (w,) ad-
mit convergent subnets (vg) and (wg) which converge in the weak* topology of B(M, N) to some
v, w, where vg,wg are constructed as above. Note that the weak™® convergence implies point

weak* convergence and thus allows us to apply Lemma 2.8 and deduce that { Y Z} s Mo(M) —

TO
My (N) is completely positive. Using the weak™ lower semicontinuity of the norm, we infer
that |jv]| < liminfg |lvg| < liminfg [|Tpl|,.. and similarly ||w|| < liminfg||7pll,,. and thus
17| goe < max{||v|, |w|} <liminfg ||T3 4. = liminf, |74 || 4o, again under suitable choices of
subnets 5 of .

Assume finally that p = 1. According to (3.1), we note that the case p = oo is applica-
ble'” to Ty and T and thus || Tllyee, 1 (ar)rr(v) = 1T laee,v—nr < Himinfa |75 lace.v—ar =
liminfo |Tall gec 11 (A1) 1.1 () Where we used again (3.1) in the last equality. [ |

Lemma 3.23 Let M and N be approzimately finite-dimensional von Neumann algebras which
are equipped with faithful normal semifinite traces. Suppose 1 < p < oo. Let (Ty) be a net of
maps from L (M) into LP(N) such that || Tull,eq 10 (ar)—s1o(ny < € for some constant C' which
converges to some T: LP(M) — LP(N) in the strong operator topology. Then the map T is
reqular and |1 g 1.0(ar) 1o vy < Hminfa [Tallieg 1oar)— 10 (v)-

Proof : Let E be an operator space. For any z € LP(M) ® E, an easy computation gives'®

lim(To @ Idg)(2) = (T ® Idg)(z).

15. If X is a dual Banach space X with predual X, it is well-known that the mapping B(X«) — By (X),
T +— T* is a weak operator-point weak* homeomorphism onto the space By (X) of weak* continuous operators
of B(X) and the point weak* topology and the weak* topology coincide on bounded sets by [112, Lemma 7.2].
16. 1f ' @ @ yp € LP(M) ® E then

(Ta®1dE)(Z$k®yk> —(T®IdE)<Zwk®yk)

k=1 k=1

n n
ZTa(ﬂ?k) ® Yk — ZT(%) ® Yk
k=1 =1

L?(M,E) LP(M,E)

n

D (Taler) = T(@r) © i

k=1

n
< I Ta (k) = T(xr)liie ary lklle — 0.
Lp(M,E) k=1
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We deduce!” that T ®Idg induces a bounded operator on LP(M, E) and that the net (T, ® Idg)
converges strongly to T'® Idg. By the strong lower semicontinuity of the norm, we deduce that

1T @ 1dE|Le (v, 5) =10 (v, B) < limainf 1Ta ® Il 0 ar,5)—1e(v,B) < limainf 1Telveg e (r)—s Lo (N -
Taking the supremum, we get the desired conclusion. [ ]

Theorem 3.24 Let M and N be approximately finite-dimensional von Neumann algebras which
are equipped with faithful normal semifinite traces. Suppose 1 < p < oo. Let T: LP(M) —
LP(N) be a linear mapping. Then T is regular if and only if T is decomposable. In this case,
we have

||THdec,LP(]\/I)~>LP(N) = HT||reg,LP(M)~>LP(N) :

Proof : The case p = oo is [55, Lemma 5.4.3] and a straightforward generalization of [117,
Remark following Definition 2.1] since L°(M, E) = M ®muin E. The case p =1 is also true by
duality using Lemma 2.15, (3.1) and (3.5).

Let us now turn to the case 1 < p < co. We denote by 7 and ¢ the traces of M and N.
Case 1: M and N are finite-dimensional. By [1415, Theorem 11.2] and [51, proof of Proposition 7
page 109, Theorem 5 page 105, Corollary page 103], there exist my, ..., mg,n1,...,ny € Nand
Ay ey AR M, -5 pin € (0,00) such that (M, 7) = (M, @ -®Mp e, At Tr o, @ BAK Tr )
and (N,o) = (M, ®--- &My, , 1 Trpp, @ D pp Trpy, ).

Case 1.1: All A\, and p; belong to N. Then let m = Zle Apmy and n = Zlel wn;. Let further
J: M — M,, be the normal unital trace preserving *-homomorphism defined by

T

X1 0
J@1 @ Dag) = )

TK

TK

where xj appears Ay times on the diagonal, k = 1,..., K. Let moreover E: M,, — M be the
associated conditional expectation. Moreover, we introduce similar maps J': N — M,, and
E’: M,, -+ N. We denote by the same symbols the induced maps on the associated LP-spaces.

Lemma 3.20 is applicable for both J" and E and we obtain the estimates ||J[|, o, 10(n) g2 < 1
and ||E| g 52 10(ar) < 1. Moreover, by Proposition 3.11, we also infer that |[.J{| gec 1.0 (2r)—52, <
1 and [|E'l|4ec s p0(ny < 1. Suppose that T': LP(M) — LP(N) is regular. By Theorem 3.21
applied to J'TE: S, — SP together with (3.2) and (3.3), we obtain that 7' = E'(J'TE)J is
decomposable and that

HT||dec,LP(M)—>LP(N) = ||]E/J/T]EJH(16C < ||E/||dec ||J/T]E||dec ||JHdec

g ||J/T]E||reg g H‘],”reg ||T||reg ||]EHreg g ||T||reg,LP(M)_>LP(N) .

17. Let X be a Banach space and D a dense subset of X. Let (T ) be a bounded net of bounded linear operators
in B(X). Suppose that, for each z € D, the net (T (z))q is convergent in X. Then there exists a bounded linear
operator T: X — X such that (Tw) converges strongly to 7'

32



Let T: LP(M) — LP(N) be a decomposable map. In a similar manner, we obtain the inequalities
[ g s 1E | eg + 1 lgec » [|Ellgee < 1 and that T' is regular and we have

1T seg,Lo(ar) Loy = BT TET|] oy < B[ ;eq [ TE] o [|7]]
< HJITEHdeC < ||J/||dec ||THdec ||EHdec < HT||dec,LP(M)~>LP(N) .

Case 1.2: All \x and p; belong to Q,. Then there exists a common denominator of the A\p’s

reg reg reg

and the p;’s, that is, there exists ¢t € N such that A\ = /\T'k, W= ”Ti for some integers A}, and pu;.
1
Since we have (||| ar, 47,y = t7 [|#llLo(ar, -, for any semifinite von Neumann algebra (M, 71),

it is easy to deduce that

1T W qee, Lo (v, 7)o (N t0) = 1T ldee, 1o (v1,m) 10 (3,0

and also that T: LP(M,tr) — LP(N,to) is regular if and only if T: LP(M,7) — LP(N,0) is
regular with equal regular norms in this case. Thus, Case 1.2 follows from Case 1.1.

Case 1.3: g, w € (0,00). For ¢ > 0, let Ag e, 1 € Q4 be e-close to Ay and gy in the
sense that (1 +&)7'A\y < A\pc < (14 €))\g, and similarly for py, .. We introduce the trace
Te = MeTrm, @ ®Axe Trom, on M = M,,, & --- & M,,,,. Consider the (non-isometric)
identity mapping Id5,; : LP(M, ) — LP(M, 7.). Note that for any t = 21 ® ... ®xx € LP(M, 1),
the definition of multiplication and adjoint in the sum space M,,, ®- - -®M,, . yields immediately
that [z[P = |21[P & ... @ |vx|P. Thus, [[z||7, ., = 7(|2]7) = S Ak oo, (J2]?). By the

same argument, ||z s (ar,r) = Zk:l Ak,e T 1y (|21]P). Thus,

(11d5,7 = su ZkK 1 Mee Ty (J24l")
Lp(M,r Lp(M,r.) —
(M) =LE T L)\ [0} S Ak T oy (| [?)

c oy T ONT(nP)

welo (M0} Sy A Ty (|2]P)

In the same manner, using (1+¢) ' Az < Ag,c, one obtains that ||(Id5,) ™! ch Lo (M) Lo (M.7)

1+e. We infer that [[Id5]|cp, | (Idi/[)_lHCb — 1 as ¢ = 0. In the case p = oo, this convergence
also holds, since |||« (arre) = [Tl (ar,,)- We also define the trace 0. = p1Trp, &+ &
pr.e Tr,,, on the algebra N. Moreover, we also have a map Id% : LP(N,0) — LP(N,0°) and
1A |l o, 5 ||(Id§v)_1HCb go to 1 when e approaches 0. Since Id5;, Id% and their inverses are
completely positive (since they are identity mappings and complete positivity is independent
of the trace), by Proposition 3.11, their decomposable norms approach 1 when ¢ approaches 0.
Moreover, interpolating between p = 1 and p = oo, using Lemma 3.20, we also infer that their
regular norms approach 1 as & goes to 0. Suppose that T: L?(M,7) — LP(N, o) is regular.
Using Case 1.2 with the map Idy7(Id5,)~!: LP(M,7.) — LP(N,0.), (3.2) and (3.3), we see
that

<

||T||dec,LP(M,T)~>LP(N,J) = H(Idif)_lld?VT(Ids ) '1d3 Hdcc ,Lr(M,7)—LP(N,o)

< N) N M) dec

<[ AdR) ™| gee TR T (Ad5) ™ 4o M |

= ||(Id§\7)71||dec HId?VT IdE )71||reg HId ”dec
<R ™| e TR e 17 e 1050 oy 1T e -
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Going to the limit, we obtain |74, < [Tl ee- In the same vein, one shows that any map
T:LP(M,7) — LP(N,0) is regular and that we have ||T|,., < |T||o.. The proof of Case 1.3,
and thus of Case 1, is complete.

reg

Case 2: M and N are approzimately finite-dimensional and finite. In this case [22, page 291],

M =1, M, and N = Us Nﬁw where (M,) and (Ng) are nets directed by inclusion of
finite dimensional unital *-subalgebras (as in Case 1). Moreover, we denote by J,: M, — M,
Ji: Ng — N the canonical unital +-homomorphisms and by Eq: M — M, and Ej;: N — Ng
the associated conditional expectations given by [140, Corollary 10.6] since the traces are finite.
All these maps induce completely contractive and completely positive maps on the associated
LP-spaces denoted by the same notations such that'®

(3.8) hén JoEqo(z) =2 and hén ‘]éE/ﬁ W) =y

(for the LP-norm) for any « € LP(M) and any y € LP(N). Let T: LP(M) — LP(N) be
a bounded map. The net'” (J3E}, JaEa)(a,) of B(LP(N)) x B(LP(M)) is obviously con-
vergent to (Idps(ny,Idrr(ary) where each factor is equipped with the strong topology. Using
the strong continuity of the product on bounded sets, we infer that the net (J3E,TJoEq)
converges strongly to 7. Suppose that T is decomposable. Using Case 1 with the operator
E3TJo: LP(My) — LP(Ng), we deduce that 7' is regular and that, using (3.2) and (3.3)

HTHreg,LP(M)%LP(N) reg reg HE/ﬂTJO‘Hreg ||E;||reg

< lim inf | TEEST JoEq || < lim inf |75 ]|

< hI(I]lkIlf ||]EZBT']‘X||dec < hI(IIllBDf ||E23Hdec ||T||dec ||‘]0t||dec < ”THdeQL?’(M)—)LT’(N) .

For the converse inequality, suppose that the map T: LP(M) — LP(N) is regular. Since
T = lim, g JéEQ;TJaEa is the strong, hence weak, limit of decomposable operators, hence
decomposable by Proposition 3.22, we obtain, using again (3.2) and (3.3),

I ey < T TS Tl 008 g 5T T S

< llrélbnf H]E/ﬂTJOZHreg < hrgknf ||]E/ﬁ||reg ||THrcg ||J04||rcg < ||THrcg,Lp(M)~>LP(N) .

Thus, Case 2 is proved.

Case 3: M and N are general approximately finite-dimensional semifinite von Neumann al-
gebras. By [143, page 57|, there exist an increasing net of projections (e;) which is strongly

convergent to 1 with 7(e;) < oo for any i. We set M; def e;Me;. The trace 7|y, is obviously
finite. Moreover, it is well-known?® that M; is approximately finite-dimensional. We conclude
that M; is a von Neumann algebra satisfying the properties of Case 2. We also introduce the
completely positive and completely contractive selfadjoint normal map Q;: M — M;, x — e;xe;
and the canonical inclusion map J;: M; — M. We do the same construction on N and obtain
some maps Q; N — Nj and JJ/»: N; — N. All these maps induce completely positive and

18. Recall that UoLP(My) is dense in LP(M). Let x € LP(M) and € > 0. There exists ag and y € LP (M)
such that |lz — yllpp(ar) < €. Hence for any o > ao, since y € LP(Ma), we have

lz — JaBa@)llLe (ary < 12 = YllLe(ary + 1Y — JaBa (@)l (ary < €+ 1JaEaly — @)L ar) < 26

19. The index set A X B is directed by letting (o, 3) < (a/,8’) if a < o’ and 8 < 5.
20. This observation relies on the equivalence between “injective” and “approximately finite-dimensional”.
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completely contractive maps on all L? levels, 1 < p < co. Moreover, for any 1 < p < oo and
any x € LP(M) we have?! z = lim; e;ze; = lim; J;Q;(x) and similarly y = lim; J;Q’(y) for any
y € LP(N). We conclude by the same arguments as in Case 2. [ ]

Remark 3.25 Using Proposition 3.12, this theorem also shows that the space of regular op-
erators between LP(M) and LP(N) is precisely the span of the completely positive maps from
LP(M) into LP(N). This assertion is alluded in [1 17, Theorem 3.7] and proved?? in [117, Lemma
2.3] and [121, Theorem 8.8] for L?(M) = LP(N) = SP.

With the same method, we can prove the particular case of Theorem 2.17. Using the same
notations, we only indicate the changes.

Theorem 3.26 Let M and N be approximately finite-dimensional von Neumann algebras which
are equipped with faithful normal semifinite traces. Suppose 1 < p < oo. Let T: LP(M) —
LP(N) be a completely positive map. Then T is completely bounded and we have

||T||LP(M)~>LP(N) = ”T”cb,LP(M)HLP(N) :

Proof :

Case 1: M and N are finite-dimensional. Then as explained in the proof of Theorem 3.24, we
can write (M, 7) = (M, ® - ® My, M1 T, @ - BN Ty ) and (N,0) = (M,,, & - P
MnLhu‘l Trnl D ®/LLTrnL)'

Case 1.1: All Ax, and p; belong to N. We thus have, as in the proof of Theorem 3.24, unital trace
preserving *-homomorphisms J: M — M,, and J': N — M,, as well as associated conditional
expectations E: M,, - M and E': M,, = N. Suppose that T: LP(M) — LP(N) is completely
positive. By a straightforward extension of [117, Proposition 2.2 and Lemma 2.3] applied to
J'TE: S — SP | we obtain that T = E'(J'TE)J is completely bounded and that

1T e, Lo ary oy = BT TET ||y < NE oy 1T TEllgy, 1], < I TE < 17T IE] < 171 -

Case 1.2: All A\, and w; belong to Q4. It is easy to prove that T': LP(M,tr) — LP(N,to) is
bounded if and only if 7': LP(M,7) — LP(N,0) is bounded with equal norms a similar result
for the complete boundedness. Thus, Case 1.2 follows from Case 1.1.

Case 1.3: A, p € (0,00). Suppose that T: LP(M,7) — LP(N, o) is completely positive. Using
Case 1.2 with the map Id3,T(Id5,)~': LP(M,7.) — LP(N,o0.), we see that T is completely
bounded and that

||T||Cb LP(M,7)—LP(N,0) — || Ida _1Id8 T(Ida ) 1Id ch ,LP(M,7)—LP(N,o)
05 1 T3 Ml = 1050y [0S 7105, 1t
< [J(ax) 7|y IR T (Rd5) = || 115y e, -

21. Since the product of strongly convergent bounded nets of bounded operators on LP(M) define a strongly
convergent net, it suffices to prove that the net (e;z) converges to « in LP(M). Now using the GNS representation
7: M — B(L2(M)) and [96, Corollary 7.1.16], we deduce that for any x € L?(M), the net (e;x) converges to
z in L2(M). Using interpolation between 2 and co, we obtain the convergence for 2 < p < co. For the case
1 < p < 2, it suffices to write an element x € LP(M) as = yz with y, z € L?P(M) and use Holder inequality.
22. The proof of [121, Theorem 8.8] for Schatten spaces does not generalize in a straightforward manner to the
case of noncommutative LP-spaces. Indeed, the equality (3.7) is not true with a von Neumann algebra M instead
of My,. For example, by [119, page 97], the space £5° ®p, £5° is isometric to the space MM of Schur multipliers
on M,, and the space CB(£3°) is isometric to B(£3°) by [55, Proposition 2.2.6] and it is easy to see that 9M2° is
not isometric to B(£5°).
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Going to the limit, we obtain ||T|., 1o (ar)— 1o (v) < 171 (ar) 10 () Thus Case 1 is complete.
Case 2: M and N are approzimately finite-dimensional and finite. Let T: LP(M) — LP(N)
be a completely positive map. The net (JéIEf@TJaIEa) converges strongly to T. Using Case
1 with the operator EGTJy: LP(M,) — LP(Ng) and [112, Theorem 7.4] we deduce that T is
completely bounded and that

HTch Le(M)>Lr(N) S hminf H%E/BTJ&E@H S hminf ||J//3||Cb HE%T‘IaHCb Ealleb
hmmf ||IE' TJol|| < hmlnf ||]E IITN el < ||T||LP(M)_>LP(N) .
Thus, Case 2 is proved. The Case 3 is similar to the Case 2. [ |

3.7 Modulus of regular operators vs 2x2 matrix of decomposable op-
erators

For any regular operator T: LP(2) — LP(Q)) on classical LP-spaces, it is well-known that
H|T|HLP(Q)HLP(Q’) = ||T\|reg’Lp(Q)ﬁLp(Q,), see e.g. [109, Proposition 1.3.6].

Theorem 3.27 Let Q and ' be (localizable) measure spaces. Suppose 1 < p < oo. Let
T:LP(Q) — LP(QY) be a (weak* continuous if p = oo) regular operator. Then the map ® =
PZTO é:d : SE(LP(Q)) — SE(LP(QY)) is completely positive, i.e. the infimum of (1.3) is attained
with v1 = ve = |T.

Proof : We say that a finite collection o = {A4;,..., A4, } of disjoint measurable subsets
of 2 with finite measures is a semipartition of €. We introduce a preorder on the set A of
semipartitions of € by letting o < o/ if each set in « is a union of some sets in o’. It is not
difficult to prove that A is a directed set. For any a € A, we denote by {4i,...,4,_} the
elements of a of measure > 0. Similarly, we introduce the set B of semipartitions of . Tt is

not difficult to see?® that the operator /2 — span{la,,...,1a, }, e; — 711,4 is a positive
° ° 1(A;) P

isometric isomorphism onto the subspace span{la,,...,14, } of LP(Q). By composition with

the canonical identification of span{la,,...,14,_ } in LP(£2), we obtain a positive isometric

embedding J,: £ — LP(Q). We equally define the average operator P, : LP(Q2) — £5 by
N 1
Palf) =) <_1/ fdu>€j, fel?(Q).
j=1 #(Aj)l pJA;
We need the following folklore lemma.

Lemma 3.28 Suppose 1 < p < 0.

23. Since the functions 1Aj are disjoint, for any complex numbers a1, ..., an,, we have
Mo Mo p 1 MNa 1
aj aj v |aj|? P ?
Sy, (Z » ) (Z Ita, |
1 J 1 J ] JlLpe(Q
. ) w(Aj) ()
o1 w(AG)P LP(Q) G |45 LP(Q) j=1
zen
Iag ” ) Z ajej
Jj=1 gﬁ
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1. For any a € A, the map P, is positive and contractive.
2. For any f € LP(Q), we have lim, JoPo(f) = f.

Proof : 1. The positivity is obvious. Using Jensen’s inequality, it is elementary to check the
contractivity.

2. Since ||JaPallLs(@)—1r (o) is uniformly bounded by 1, by [27, III 17.4, Proposition 5] it
suffices to show this for f in the dense class of integrable simple functions constructed with
subsets of measure > 0. So let f be such a function, say with respect to some semipartition
ay. For any o € A which refines ay, it is easy to see that J, P, (f) = f. Hence, for this f, the
assertion is true. |

The net?* ([jigg jgﬁﬂ ) [g]j]]aga ‘%{}17;0‘ ]) of the product B(ST(LP(QY))) x
ol o [ [0} (OL,IB)

B(SY(LP(9)), S5 (LP(€'))) is obviously convergent to <IdS§(LP(Q,))7 [|T| T ]) where each fac-

e T
tor is equipped with the strong operator topology. Using the strong continuity of the product
on bounded sets (see [56, Proposition C.19]), we infer that the net

JoPa|T|JuPa  JgPaTJoPa
JoPsTIaPa JsPolTIIaPal ) o s

converges strongly to the map [|T| T} : SE(LP(Q)) — SP(LP(Q')). By Lemma 2.8, since we

Te T
have the equality

JsPs|T|JaPs  JgPTJaPa | PslT| e PsTJs
{JBPBT"JaPa IsPa\T|TuP| ~ Wss @ Js) e |\ piqpe s poiry g, | © sy @ Pa);

it suffices to show that the three linear maps Idgr ® Jg: S5(& ) — SH(LP(RY)), Pap =

PolT|Jo PsTJa | . o P . gp P
{PgToJa PalT| | Sy(en,) = S5(6 ) and Idgr ® Po: S5(LP(Q)) — S5(€4 ) are all com-

pletely positive. By Proposition 2.21, the positive maps Jg: €5 — LP(€)) and P : LP(Q2) — ¢F

ng
are completely positive. It remains to show the second assertion. For any 1 < 7 < n,, we have

1
g, ) = +Ps(T(1a,
(A A) aapp P raa)

) u(ip% Z u(Bj)l—; ([ roaan)e

We deduce that the matrix [to g,i;] of the linear map PgT'Jy: £ — Efw in the canonical basis

] 1 S5, T(14;) dy']. Moreover, we have

W(A)7 v(B)' P

(PoTTa)(e;) = %T)(

is[

L) =~ Ps(TTL4,)

(PsT ) = (P57) PR

H(A;)”

B M(,;)i Z:; V(Bil)lé (/B T(l"‘f)d‘") €i-

24. The index set A x B is directed by letting (o, 8) < (/,8') if a < o’ and 8 < B’
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Hence the matrix of P,T°J, is [ta,3,;)i;- Finally, we equally have
1

(PoIT1a) ;) = <PaT|>(M1AJ-) =P (7104)

> 11_;</& T|<1Aj)d,/>ei.

n(A;)? = v(Bi)

Now, we note that

[y s [ raaiar | [ 1)
B; B;

i B;

= (A;) 7 v(Bi)' " 7 |tapiil-

Thus, the map Ps|T|J, is associated with some matrix [sq,g,i;] With Sag,ij = [ta.8,ij| + Ta.8,ij
where 14,55 > 0 for any 4, j. Further, let ¥, gi; € C such that to 5. = [ta.5,ij|Va.6.ij-

We denote by iq: £, < S the canonical diagonal embedding, Jo = Idgr ®ia: S5 (€5, ) —
S5(SP ) and by Qq: SH(SE_) — S5(¢2 ) the canonical projection. Note that QaJ, = Idge ez .
Now, we show that the map Js®4 5Qq: S5(SE ) — S5(Sk ) is completely positive. If we take

[ VtasislYasie 0 M) _ [VTapaiei 0| 4@ _ |0 0
g = 0 ltapijleis] 9 0 of % = Nk
@,B,ij|Cij a,B,ijCij

we obtain for any = € S5(S% )

xr21 T22

<~B [Ps|T|Ja PﬁTJaD <[ng1$ujj€j ZJ:ilxnjjej])
|PsT° ] Pp|T|Ja D50y 215i€5 Dl T2255€;

(J5Pa,5Qa) (@) = (J3Pa,3Qa) <[$H WD

= Js ( Ej:l 2115 Pl T Jae; D252 w125, PsT Jae; })
- Na o a

12252 2215, PeT0Jaes 3 52 2225 Ps|T | Jae;

S\ e . ng o Na . ng o

( Zj:l L1155 Zz‘nzl Sa,p,ij€i Zj:l L12jj 22:1 ta,ﬂnﬂl})
Mo . B o, Na . B o

_Zj:l T21jj D ;L1 ta,pijei Zj:l T22jj D ;L1 SaB.iji
Nneg N

T11558a,8,ij€ii  T12jjta,B,ijCii

T2155ta,8,ij€i  T22j55,8,ijCii

n
_ Z T11jjltapajlei  Ti2jita.pijei 4|1 B0 i 0
1 To1jjta.p.ijCii T22jjlta.p.ijlei 0 2220, 8,ij i
Ng NB -
Y Vita,pijltapisei; 0 11 T1z| [V ta,Bij] Ya,piisesi 0
— . 0 Vitagijleis] [v21 22 0
+[ Ta,B,ij €ij 0] [ivn 9612] [\/Ta,ﬁ,ijeji 0}

0 21 X292 0 0

o

+ 0 0 11 T12 0 0
0 Tapij€ij| (21 22| |0 /Tagij€ji
Ny 71,5

* (1), 7 (1)=* (2),.7,(2)
=2 . (aij:mijerij xb;” + by by )

We infer that j/g@a,gQa is completely positive. Since ®, 5 = Qg(j/gfbaﬁ@a)ja, we conclude
that ®, g is completely positive. The case 1 < p < oo is proved.
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Let now p = oo and assume in addition that T': L>°(Q) — L*(Q') is weak™ continuous with
pre-adjoint T : L*(€') — L1(2). Then by (3.5) and by the case p = 1 proved above, the map

[(g*)t é J SILYQ)) — SI(LL(£2)) is completely positive. Note that |T%|* = [(T%)*| = |T|

where we use [I, Theorem 2.28 page 85] in the first equality and it is easily checked that

((T)°)* = T°. So by Lemma 2.7, its adjoint {((g*)f)* ?;j:} = [';;' EJ 0 8P (L>(Q)) —

59 (Le°(€Y)) is also completely positive. [ |

Remark 3.29 We do not know if the weak* continuity is necessary in the case p = co in the
assumptions of the above result.

3.8 Decomposable vs completely bounded

The authors of [92] say that the following result is true without the QWEP assumption (and
without proof). However, we think that QWEP is necessary®® for 1 < p < co.

Proposition 3.30 Let M and N be two QWEP von Neumann algebras which are equipped
with faithful normal semifinite traces. Suppose 1 < p < oco. Let T: LP(M) — LP(N) be a de-
composable map. Then T is completely bounded and ||T'|q, 10 (ary—1o(v) < 1T qee, 1o (10) 10 (3) -

Proof : By Proposition 3.5, there exist linear maps vy, ve: L?(M) — LP(N) such that the map

o = ;}O : SE(LP(M)) — SE(LP(N)) is completely positive with max { |[vi]|, [Jv2] } =

7]l goc- Let b be an element of SE(LP(M)) with [[b]|gr (1,0 (as)) < 1. By Lemma 2.12, we can find

. a

a,c € SH(LP(M)) with [[allgr 1(ar)) < 1 and [c[lgzgpan) < 1 such that [b*
element of S5 (LP(M)). We deduce that

[(Ids:; ®uvi)(a) (Idgr ® T)(b)] _ { (Idsr @ vi)(a)  (Idgr ® T)(b)]

(Idsy @ T)(b)"  (Idgp ® v2)(c) (Idgy @ T)°(b")  (Idsp ® va)(c)

(S R ()

b] . s
. 1S a positive

is a positive element of S5 (LP(N)). By Lemma 2.11, using Theorem 2.17, we obtain
2n

1 1
H(Ids’n’, ® T>(b)||S£(Lp(N)) S 9% (H(Idsﬁ ® ”1)(a)| I:;E,(LP(N)) + H(Idsﬁ ® U2)(C)Hg5(Lp(N))) ’
1 L
< o (ol Mg oy + 02 Nl mcany )

S

1

<mas {lnll leall} 55 (Nl ) + 1€l cocany )
P

<max { o]l loall } = 1T e -

We obtain ||Idgr ® THSP < T]| goe- We conclude that ||, < [|T| qee- [ |

LP(M))—Sh(LP(N))

25.  Another point of view is to replace the formula of definition (1.4) by ||THdeCYLp(M)HLp(N) =
inf { max{[[o1 oy , o2llop} }-
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Proposition 3.31 Let M and N be two QWEP von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 < p < oco. Let T: LP(M) — LP(N) be a completely positive
map. Then T is decomposable and we have ||T|| ., = [|T||4oc = [ITIl-

Proof : By Proposition 3.11, we know that 7" is decomposable and that ||| .. < ||T]|. If M
and N are QWEP, by Proposition 3.30, we have ||T||., < [Tl jec- [ |

To complement the above proposition, we observe that completely bounded operators are
not decomposable in general. For that, we give a result on group von Neumann algebras of
discrete groups, see Section 4.1 for background.

Proposition 3.32 1. Let G be a non-amenable weakly amenable discrete group. Then there
exists a completely bounded Fourier multiplier My: VN(G) — VN(G) which is not de-
composable.

2. Suppose 1 < p < oo. Let G be a non-amenable discrete group with AP and such
that VN(G) has QWEP. Then there exists a completely bounded Fourier multiplier
M, : LP(VN(G)) — LP(VN(G)) which is not decomposable.

Proof : 1. By the proofs of [29, Theorem 12.3.10] and [93, Theorem 4.4], there exists a net
(M,,,) of finite-rank completely bounded Fourier multipliers on VN(G) with || M, [, < C
such that M,, — Idyn(g) in the point weak® topology. If all the Fourier multipliers were
decomposable, since two comparable complete norms on a linear space are in fact equivalent,
the von Neumann algebra VN(G) would have the bounded normal decomposable approximation

property of [106, Theorem 4.3 (iv)] (see also [92, page 355]) and VN(G) would be injective. By
[137, Theorem 3.8.2], we conclude that G is amenable. This is the desired contradiction.
2. By [93, Theorem 4.4], there exists a net of completely contractive finite-rank Fourier

multipliers M, : LP(VN(G)) — LP(VN(G)) such that M,, — Idps(yn(e)) in the point-norm
topology. If all the Fourier multipliers were decomposable, again since two comparable complete
norms on a linear space are in fact equivalent, the space L?(VN(G)) would have the bounded

decomposable approximation property of [92, page 356]. By [92, Theorem 5.2] the von Neumann
algebra VN(G) would be injective. By [137, Theorem 3.8.2], we conclude that G is amenable.
This is a second contradiction. [ |

Remark 3.33 Note that we can use the free group F,, where 2 < n < co (n countable) with
the two parts of the last result. Indeed, by [66, Theorem 1.8] (see also [11, Corollary 3.11]), the
group F,, is weakly amenable, hence has AP by [68, page 677]. Moreover, it is well-known that
VN(F,,) has QWEP, see e.g. [119, Theorem 9.10.4].

We will describe in Theorem 3.38 an explicit result in the same vein. For that, we need
intermediate results.

Lemma 3.34 Let M be a von Neumann algebra equipped with a faithful normal semifinite
trace. Suppose 1 < p < co. For any integer n > 2, the maps

an: LP(M) —  SP(LP(M))

T —
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and

On: SP,(LP(M)) — SE(LP(M))
bir - byt bin -+ by

oot o by bt o b bt bl

: — | :

[t bt ] R bpi e b
Lot o o] bt e b

are completely positive.

Proof : For any x € LP(M), we have o, (z) = | | =]:]2[1 -+ 1]. Moreover,

€T v €T 1

10 0] [0 0 0] 0 0 0]
[0 0 0] [0 1 0] 0 0 0]
A=
0 0 0] [0 0 0] [o 0 1]
Now, we appeal to (2.9). [ |

Proposition 3.35 Let M and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 < p < oo. Let n > 2 be an integer and consider some bounded maps
T;j: LP(M) — LP(N) where 1 < i,j < n. If o, is the completely positive map from Lemma
3.34 then the map

®: SP(LP(M)) — Sh(LP(N))
a1 - Qip Tn(an) s Tln(aln)
— :
ap1 - Apn Tnl(an1> T Tnn(ann)

1s completely positive if and only if the map @ o «, is completely positive.
Proof : One direction is obvious. For the reverse direction, we have

aiy - am Doay(ay) -+ Poaylaiy)
oy 0 (Idgr @ (P 0 ) : : =0n

Ui - G Doan(an) - Poan(anm)
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[[T11(a11) -+ Tin(ann) Ti(ar,) - Tin(an)]]
Toi(a1r) - Tpn(arn) Toi(a1n) - Tan(ain)
Tii(ant) - Tin(an) Ti(ann) - Tin(ann)

[ Toi(ant) -+ Tonl(an) Toi(ann) - Tonlann)] |

Tii(a11) -+ Tip(ain) ain - am
Tni(an1) - Tun(ann) Unl 0 G

Hence ® = 0,0 (Idgr ® (Poa,)). Note that if ® o, is completely positive then Idgr @ (P o)
is also completely positive by Lemma 2.9. In this case, since o,, is completely positive we deduce
that ® is completely positive. [ ]

Proposition 3.36 Let M and N be von Neumann algebras equipped with faithful normal semifi-
nite traces. Suppose 1 < p < oco. Let T: LP(M) — LP(N) be a linear map. Then T is decompos-
able if and only if the map T o ay: LP(M) — S5(LP(N)) where T is the map from Proposition
3.17 is decomposable. Moreover, in this case, we have

~ 1
1T | gec, .o (any—ro(vy S N7 0 @2llaee,o(ary—s2mr(v)) < 27 (| T\l gee, 1o (v) 10 () -

Furthermore, T o ay is selfadjoint.

Proof : Let x € LP(M). We have

Pome) =7 ([ 2]) = [ty 757 [ 7]
and also

o) = (2([7 2])) = [t V) = "6 =l T8
We conclude that T o oy is selfadjoint, i.e. (T o az)® =T o ay.

Suppose that T is decomposable. By Proposition 3.5, there exist some maps vy, ve: LP(M) —

LP(N) such that B}O Z} is completely positive with max { [|v1| , [[v2]| } = [|T|| 4ec- Using (2.9),
2

we note that the map

sywan) - sgron, [0 0 [0 0 aHe O =10 )

U1

is completely positive. By composition, we deduce that the map [To

-T .
] o g is completely
U2

positive. We define the map S def [%1

S is completely positive and is easy to check using (2.11) that ||S|| < 27 1T/l 4ee- Moreover,
8 <ep Toaa <¢p S. By Proposition 3.19, we conclude that ||T o OéQHdeC <2v 17|

ﬂ o ap: LP(M) — SE(LP(N)). Then by the above,
2

dec*
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Now suppose that the map T o ay: LP(M) — SP(LP(N)) is decomposable. Moreover let
1,091 LP(M) — SP(LP(N)) such that the map {Tzla T;‘ﬂ : SP(LP(M)) — SP(LP(N))
2 2
is completely positive. Put wy: LP(M) — LP(N), a — (vi1(a))11 and we: LP(M) — LP(N),
a — (v2(a))22. Then each w; is also completely positive as a composition of completely positive
mappings. Then an easy computation gives

i 10
o0 0 (et ")) ] o
{ 0 1
i 10

o8 b T 2 e )

Using (2.9), we deduce by composition that the map {ITUi w } is completely positive. We infer
2

that T is decomposable and that [|T||qec < max{|w1]|, ||wz|} < max{||vi||,||v2||} and passing

to the infimum over all admissible vy, v shows that ||T']] ;.. < [|T||dec- [ |

In the following result, we generalize the results of [55, Theorem 5.4.7] and [65, page 204]
done for p = co.

Theorem 3.37 Let M be a von Neumann algebra equipped with a normal finite faithful nor-

malized trace and let uq,...,u, € M be arbitrary unitaries. Suppose 1 < p < co. Consider the
1

map T': &, — LP(M) defined by T (ex) = u. Then |T'|| g v 10 (ar) = n'"w.

Proof : As observed, we can suppose 1 < p < oo. Note that the unit element 1 of M belongs
to LP(M) since M is finite. The map ¢: £ — C, Y/, crpex — > p_; Ck is a positive linear
functional. Since P is a commutative LP-space, by Proposition 2.22, we deduce that the linear
map
v: 17 — LP(M)
Shorcker r (pogex)l

is completely positive. Moreover, using the normalization of the trace in the third equality and
Holder’s inequality in the last inequality, we have

n n
U(chek) |(ch>l
k=1 k=1
n . n %
< lal<nH(Sal)
k=1

k=1

n
D ek

k=1

12l ar

Lp (M) Lp(M)

We infer that v < n'"v.

’190 g] : SE(er)y — SH(LP(M)) and the map ay: (8 — ST(¢P)

of Lemma 3.34 with M = £5°. Since e}, = e, we have

We consider the map T = [

{v 0] 7 v(ex) 0 0 T(ex) 1 0 0 u
0 v oay | (ex) = vieg) T°(eg) 0 _ |0 1 wu O
7 {v 0] o 0 T(ex) wvler) 0 0 u 1 0

0 v T°(ey) 0 0 v(er) u, 0 0 1
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Uk |:0 uk] ‘
0 u;; 0 M2 (M)
By [55, Proposition 1.3.2], we conclude that the matrix on the right hand side of the above

The 2x2 matrix 4 = [ 0* < 1.
Uy,

} is a (selfadjoint) unitary. Hence we have

v 0

. .. 0 v
equation is positive. Thus the map }
T

v 0] is positive. Using again Proposition

0 v
2.22, we obtain that this map is indeed completely positive. By Proposition 3.35, we deduce that

{U O} ]

0 v - -

the map is completely positive. Hence T is decomposable with ||T' <
~ l: :| dec

v 0
T 0 v
v 0
0 v
Proposition 3.18, we conclude that T is decomposable and that ||| ;.. = HTHdeC < vl € n'"r.
On the other hand, let S: ¢2 — SP(LP(M)) be a completely positive map satisfying —S <cp
Toay <ep S where ag: €2 — SH(2). Tf we let xy, 2of S(ex) and iy AR as(er), then
U

U = [O* O} is a selfadjoint unitary with —z; < 4y < zg. Thus we have
k

< |Jv]| where the last inequality is easy to prove using [118, Corollary 1.3]. Using

T = [(331@ - ’1119) + (.%‘k + ﬂk)],

N | =

with zj, &+ @ > 0. Consider the finite trace 7 T ® 7 on My (M) where 7 is the normalized
trace on M. Then it follows that

1 1

mi(z) = 71<2[($k — k) + (z +ﬂk)]) = 5[71(5% — i) + 71 (zk -Hlk)}

1 N - 1 _ - -
= 5 [l =l + llzw + ielly | > 5 e = = (o + @)l = el syosany

1
where HakHS%(Ll(M)) =7 ((ﬂ,ﬁﬂk) 2) = 71(Io®1) = 2. Moreover, we have ||Is ® 1Hs§* (L (M)

25" . By duality, we obtain
(14 Fx,,1201) Tz +- -+ xy)

1
21+ + Tl sp (Lo ary) = = =277 n.
2 (L2 (M) T2 ® 1||S§*(LP*(M)) T2 ® 1”55*@17*(]\/[))

We deduce that

1Sl

PLe(M) 1

1S1ler 52 (Lo (a1)) = W =n"7||S(e) +--- + S(en)Hsg(Lp(M))
= n_% ||x1 4+ x””Sg(LP(M)) > n_%Ql_pL*’rL = nl—%21—p%‘,

Using Proposition 3.36 in the first inequality and Proposition 3.19 in the second inequality, we
conclude that

_1 ~ _1
1T ace,en o any 2 277 [T 0 02l gog g1 s uoaryy 2 2777

Let n > 1 be an integer and let G = F,, be a free group with n generators denoted by
g1, 9n.
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Theorem 3.38 Suppose 1 < p < co0. Let n > 2 be an integer. Consider the map T, : £ —
LP(VN(F,,)) defined by T,,(ex) = Ag,. We have ||T, ||, < (2vn— ) P oand || Ty go. = n'"v.

In particular, if 1 < p < oo we have Wollgee ~+00.
| n“cb n—-+4oo

Proof : The equality is a consequence of Theorem 3.37. For any 1 < k < n, using the normalized
trace 7p, , note that

1
H/\gk ||L1(VN(]F7L)) (‘)‘gk |) = TF,, (()‘;k/\gk) 2) = TFn(l) =1
For any Ay,...,A4; € S}, using the isometry S}(£L) = ¢1(S}) in the last equality, we deduce
that
!
Idsl ®T (ZAk(X)ek) = ZAk(X)/\gk
SE(LY(VN(Fn))) k=1 S1(L1(VN(F,)))

1 l
< Z [ Akl g2 H/\ngLl(VN(]Fn)) = Z e P
=1 =1 S1(eL)

We deduce that ||T5 ||, 0 HLl(VN(]F y < 1. Note that [55, Theorem 5.4.7] gives the estimate
1 Tnl o, 5 VN(F,) < 2v/n — 1. Hence, by interpolation, we deduce that

D=

1 .
(1Tl e 425 S VN(F,, ))1 P < (%/ﬁ)l »

HTTLch,EﬁHLP(VN(Fn)) < (HTTL”Cb,fL—)Ll(VN(H“ ) )
In Section 7, we will continue these investigations.

4 Decomposable Schur multipliers and Fourier multipliers
on discrete groups

In this section, we give a generalization of the average argument of Haagerup. This construction
simultaneously gives a complementation for spaces of completely bounded Schur multipliers and
completely bounded Fourier multipliers on discrete groups, possibly deformed by a 2-cocycle
and the independence of the completely bounded norm and the complete positivity with respect
to the 2-cocycle. In Subsection 4.3 below, we give our first results on decomposable Fourier
multipliers (and Schur multipliers).

4.1 Twisted von Neumann algebras

A Dasic reference on this subject is [155]. See also [13] and references therein. Let G be a
discrete group. We first recall that a 2-cocycle on G with valuesin Tisamap o: G x G — T
such that

(4.1) o(s,t)o(st,r) =o(t,r)o(s,tr)
for any s,t,r € G. We will consider only normalized 2-cocycles, that is, satisfying o(s,e) =

o(e,s) = 1 for any s € G. This implies that o(s,s71) = o(s71,s) for any s € G. The set
72(G,T) of all normalized 2-cocycles becomes an abelian group under pointwise product, the
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inverse operation corresponding to conjugation: o~! = &, where 7(s,t) = o(s,t), and the

identity element being the trivial cocycle on G denoted by 1.
Now, suppose that G is equipped with a T-valued 2-cocycle. For any s € G, we define the
bounded operator A\, s € B(¢%) defined by

(4.2) Ao, s€t = (8, t)es

where (g;)teq is the canonical basis of 6%. We define the twisted group von Neumann algebra
VN(G, o) as the von Neumann subalgebra of B(¢%,) generated by the *-algebra

C(G,0) =span{X,, : s€ G}.
For example, let d € {2,3,...,00} and set G = Z%. To each d x d real skew symmetric matrix
6, one may associate oy € Z*(Z?, T) by og(m,n) = e?7 (™) where m,n € Z?. The resulting
algebras T¢ = VN(Z?, o) are the so-called d-dimensional noncommutative tori. See [33] for a
study of harmonic analysis on this algebra.
If o = 1, we obtain the left regular representation A\: G — B(¢%) and the group von Neumann
algebra VN(G) of G.

The von Neumann algebra VN(G, o) is a finite algebra with trace given by 7¢,(z) =
<€e,m(€e)>€2 where z € VN(G,0). In particular 7¢,o(As,s) = 0s.e. The generators A, s sat-
G

isfy the relations

*

(4.3) Ao, Aot = 0(8,8) Ao st (/\078) =o0(s,5 )N s-1.
Moreover, we have
TG,o ()\U,s)\a,t) = U(sat)(ss,t*% 87t eG.

Given a discrete group G and a T-valued 2-cocycle o, we can consider the fundamental
unitary W: €; Q¢e, +— €4 Qeg,- on EQG ®2€é and another unitary operator &: €,®¢, — o(t,r)e;®¢,
representing 0. We define the o-fundamental unitary as the unitary operator

(4.4) W) =Ws5:e,@e, o(t,r)e; ® &g

Lemma 4.1 Suppose that o and w are T-valued 2-cocycles on a discrete group G. Then, for
any s € G we have
W (Ags @Tdgz ) (W) = Ap s @ A

Proof : On the one hand, for any s,t,r € G, using (4.2) in the second equality and (4.4) in the
third equality, we have

W (N5 ® Idg ) (e ®@er) = W (N st @ 1)
= (0-w)(s, W (e @ &,) = o (s, t)w(s, hw(st, T)est @ et
On the other hand, using (4.4) in the first equality and (4.2) in the third equality, we have
Aos @ Ao s) W (e, @ 1) = (Nos @ Auvs) (Wt T)er ® 1)
=w(t,r)(Ao,s6t @ Aw s€tr) = 0 (8, t)w(t, r)w(s, tr)es @ Egtr.

Using (4.1) with w instead of o, we conclude that these quantities are equal. ]

Using this lemma, we obtain a well-defined kind of “twisted coproduct” which is a unital
normal *-monomorphism:

ANsw: VN(G,0-w) — VN(G,0)®VN(G,w)

(4.5) Nows Nos © Aovs
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A very particular case of this construction is considered in [33, Corollary 2.2] for noncommuta-
tive tori with o = 1, under the notation x — Z.

Suppose 1 < p < oo. Then a linear map T: L?(VN(G, o)) — L?(VN(G, o)) is a (completely)
bounded Fourier multiplier on L?(VN(G, 0)) if T' is (completely) bounded (and normal if p = o0)
and if there exists a complex function ¢: G — C such that T(/\ms) = QsAs,s for any s € G. In
this case, we denote T' by

M,: LP(VN(G,0)) — LP(VN(G,0))
)\U,S — 905)\0,3

We denote by 9P(G, o) the space of bounded Fourier multipliers on LP(VN(G, o)) and by
IMP-<P (@G, o) the space of completely bounded Fourier multipliers on LP(VN(G, 0)).

More generally, if I is a set, we denote by QJTIE’Cb(GJ) the space of (normal if p = o0)
completely bounded operators ®: L?(B(¢2)®@VN(G, 0)) — LP(B(¢{?)@VN(G, o)) such that ® =
[My,;]ijer for some functions ¢;;: G — C. For a (normal if p = oo bounded operator ®, this
is equivalent to the existence of a family of functions (¢;;: G — C); jer such that

(4.6) (TI‘ ®TG,U)(T(61‘]‘ ® /\a,s)(ekl ® /\07,5)*) = (pij(s)(ss,t5i7k5‘,l

for any s,t € G and any 4,5, k,l € I.

If o is a T-valued 2-cocycle on a discrete group G and if H is a subgroup of G, we denote
by o|H: H x H — T the restriction of ¢ to H x H. It follows from [155, Subsection 4.26] that
there is a canonical normal unital *-monomorphism J of VN(H,¢|H) into VN(G, o) sending
Ao|H,s t0 As s for each s € H which is trace preserving. Its LP-extension J,: LP(VN(H,o|H)) —
LP(VN(G,0)), Ao|m,s = Ao,s is a complete contraction for 1 < p < oo.

Moreover, it is easy to see for 1 < p < oo that the adjoint of J,+ (preadjoint if p = 1)
is given by (J,-)*: LP(VN(G,0)) — LP(VN(H,0|H)), Xss = OserAs|H,s» Which is again a
complete contraction. Thus, for an element

T =My, lijer: SP(VN(H,0|H))) — ST (LP(VN(H, 0| H)))
of mﬁ’Cb(H ,0|H), we can consider the completely bounded map
S = gy ® J,)T(Idgr ® (J,)"): SPLP(VN(G,0)) = SPLP(VN(G,0))).

We clearly have ||S||., < [|T|ly, and using (Jp-)*Jp, = Idps(vn(a,0|m@)), We also have || T, <
15|, Thus we can identify isometrically > "(H, o|H) as a subspace of CB(L?(B(f2)@VN(G, o))
by identifying [M,,,]i jer to [Mg,;]i jer where ¢: G — C denotes the extension of p: H — C

on G which is zero off H.

4.2 Complementation for Schur multipliers and Fourier multipliers on
discrete groups

The following proposition generalizes an average trick of Haagerup [67, proof of Lemma 2.5]%°.
The important point of the proof (for 1 < p < o00) is the fact that the map A below is trace

preserving. The trace is not preserved for any non-discrete locally compact group G.

Theorem 4.2 Let I be an index set equipped with the counting measure. Let G be a discrete
group equipped with two normalized T-valued 2-cocycles o,w and H be a subgroup of G. Suppose

26. We warn the reader that the assumption “normal” is lacking in [67, Lemma 2.5] for maps defined on I(T").
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1<p<oo. Let T: SY(LP(VN(G,0))) = ST(LP(VN(G, 0))) be a completely bounded operator.
For any i,j € I, we define the complex function p;;: H — C by

QDU(S) = (TI‘ ®TG70)(T(61‘3‘ ® )\073)(6@‘ ® )\075)*), seH
(and @;;(s) =0 if s € G\H). Then the map

Py CB(ST(LP(VN(G,0))) — CB(ST(LP(VN(G,0))))
T — [Map”]

is a well-defined contractive projection onto E)ﬁ’I)’Cb(H,U|H). There are the following additional
properties of Py p.

1. For p = oo, the same assertions are true by replacing CB(SY(LP(VN(G, 0)))) by the space
CBy- (B(/2)@VN(G, 0)).

2. If T is completely positive then the map PﬁH(T) is completely positive.

3. For any values p,q € [1,00] and any T € CB(ST(LP(VN(G, 0))))NCB(SY(LY(VN(G, 0))))
we have (Pf 5 (T))([2i]) = (Pf z(T))([xi]) for any element [xi5] of ST(LP(VN(G,0))) N
ST(LY(VN(G,0))). So the mappings Pf j, 1 < p < oo, are compatible.

4. Furthermore, if p = oo and if T is selfadjoint then Pr%;(T) is selfadjoint. If T' = [T};] is a
normal operator where Tj;: VN(G,0) — VN(G, o) and if each Tj; is unital then Pp%;(T)
is unital.

5. Finally, the identity map P£H|9ﬁ?,cb(H)a‘H) yields an isometry
MY (H, o|H) = M2 (H, 0 - w|H).

Proof : Using the map (4.5), it is easy to see that we can define a well-defined unital normal
*-isomorphism

A: M;(VN(H, o - w|H)) — M;(VN(G, 0)) @M (VN(G, w))

onto the sub von Neumann algebra A(M;(VN(H, 0 - w|H))) of M;(VN(G, 0))@M;(VN(G,w))
such that
A(eij 0y /\crw\H,s) =€ ® )\a,s R e & )\w,sv se€ H.

Using the flip M;®VN(G, 0)®@MQ@VN(G,w) = M;®@M;QVN(G, 0)@VN(G,w), 1@y 2zt —
T ®z®y®t, it is not difficult to check that the operator A preserves the traces. Con-
sequently A is a Markov map in the sense of Section 2.6 and admits a canonical extension
Ay: SP(LP(VN(H,o - w|H))) — LP(B({)®VN(G,0)®@B({2)®VN(G,w)) which is completely
contractive and completely positive (and normal if p = c0).

Suppose that T': S7(LP(VN(G,0))) — S7(LP(VN(G, 0))) is a completely bounded operator.
The operator

PPy (T) = (A, (T @ Idsp o yn(aw)) Do

is a completely bounded map on the space ST (LP(VN(H, o -w|H))). Note that if T is completely
positive then PF ,,(T) is also a completely positive map. Moreover, we have

||P£H(T)Hcb,Sf(LP(VN(H,a~w|H)))—>Sf(LP(VN(H,<7~w|H))) S ||(A*)p(T ® IdS?(LP(VN(va))))ApHCb

ST lle, 57 (Lr (vN(GL0))) =57 (Lo (VN(GL0))) -
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Thus P?,; is contractive. For any i, j,k,l € I and any s,s’ € H, we have

(Tr ®TH 6| 1) (((A*) (T ® IdsP(Lp(VN(G.w))))Ap(eij @ Aol H,5)) (ER1 © Ao, s’)*)

= (T‘r ®TH,a-w\H ( (T & IdSP(LP(VN(G w))))(ez] ® )\O' s ® €ij & >\w S)<ek:l ® )‘0' ‘w|H,s’ ))
(TI‘ ®THG' w\H)( 6” ® AU 5) ® €ij &® )‘w 5)) (elk X (0’ . w)(S s 3/—1))\0'0‘)‘}:}75/71)
o-w)(s, s 1) (Tr X716, @ Tr @710 w)((T(eij & Ag’s) e ® )\w,S)Ap* (elk & AO"UJlH,S/—l))

! ool—1

a

(
(Tl" ®TG o ® Tr yre] w)((T(eij & )\O',S) &® €ij ® )\w,s)(elk & )‘a,s’_l e ® )‘w,s’_l))
‘W (

= (

= (

=( Tr ®TG o) (T(ei; @ Aos) (et @ Agr-1)) (Tr @7 ) (€ij€10 @ A, s A 57-1)
= (o -w)(s,sVw(s, (Tr ®71¢: g)( (eij ® Ao,s) (1 @ )\078/—1))51-’;653-,555’5/

=( (et @0 (', 81Ny -1))0i 10710550

= ( (ert @ Aas')*)0ik0;,10s,57-

a

) )
o-w)(s, s
) )

)

)
Tr ®7¢ a)(T(e” ® >\a s)
Tr ®TG o’)( (61 )

Hence according to (4.6), Pf ;(T) is the operator [My, ]. Moreover, according to the dis-
cussion at the end of Subsection 4.1, if we choose w = 1, then Py 4 (T) € MY (H,o|H) C
CB(S}(LP(VN(G,0)))). If T = [M,,,] right from the beginning, for some symbols t;;: G — C
vanishing off H, then for s € H
¢ij(s) = (Tr ®7.0) (T(ei; @ Aas)(€ij @ Ags)")

= @/}ij(S)(TI‘ ®TG,U)((€U & )\o,s)(eij ® )\o,s)*)

= ¢ij(S)TG,G(>\U,S>\:‘,S) = 1/’@] (S)U(Sv Sil)TG,G(Aa’,sAJ,sfl)

=i (s)(s, s 1)o(s,5 1) 0ss = i (s).

Thus, in this case Py ;(T) = T, so that P, is indeed a projection onto E)JIII”Cb(H,(ﬂH). For
a general w, since the definition of ¢;; does not depend on w, we have that SD”(]ID’Cb(H, o|H) =
MY (H, 0 - w|H) isometrically.

The statement about the compatibility of Pﬁ g for different values of p € [1,00] follows
directly from the defining formula of PiH and the fact that (A*),, A, and Idsr(Lr(vN(G,0))) ar€
all compatible for two different values of p.

Suppose p = co. If T: M;(VN(G, o)) — M;(VN(G, o)) is selfadjoint then for any s € H
and any 4,j € I we have

0ij(8) = (Tr @7¢.0) (T(eij © Aos) (€15 @ Ao,s)*) = (Tr @7g.0) (€ij @ Ao s(T(€15 @ Ao s))¥)
= pij(s).

It is not difficult to conclude that Pp%(T') is selfadjoint.
Suppose that T' = [T};] is a matrix of operators such that each Tj; is unital, i.e. T(e; ® Ae) =
eiide. We have

pii(e) = (Tr @76,0) (T(eis @ Aae)(€is @ Aore)*) = (Tr @7¢,0) ((€is @ Ase)(€ii @ Aoe)) = 1.
We conclude that PP%(T) is unital. [ |

Remark 4.3 This result admits a generalization for unimodular discrete quantum groups. We
warn the reader that the formula given in [39, Remark 7.6] for unimodular locally compact
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quantum groups does not make sense®” already in the case of the locally compact group R of
real numbers.

The case G = H = {e} gives the following complementation for the space of completely
bounded Schur multipliers. Compare to [3, Proposition 2.6].

Corollary 4.4 Suppose that I is equipped with the counting measure. Let T: ST — SV be a
completely bounded operator. We define the matriz ¢ by

(4.7) @ij = Tr (T(eij)e;), i,j €.

Then the map Py : CB(SY) — CB(SY), T — M, is a well-defined contractive projection onto the
subspace EUIII)’Cb of completely bounded Schur multipliers. Moreover, if T is completely positive

then the Schur multiplier Py (T') is completely positive. For p = co the same assertions are true
by replacing CB(SY?) by the space CBy-(B(£3)).

The case where I contains one element and where G = H shows that the complete positivity
of a multiplier is independent from the T-valued 2-cocycle o.

Corollary 4.5 Let G be a discrete group. Let o be a T-valued 2-cocycle on G. Suppose
1 < p < oo. Then a complex function p: G — C induces a completely positive multiplier
M,: LP(VN(G,0)) — LP(VN(G, o)) if and only if ¢ induces a completely positive multiplier
M, : LP(VN(G)) — LP(VN(G)).

We also see that if p: G — C is a function then ¢ induces a completely bounded multiplier
M,: L?(VN(G,0)) — LP(VN(G,0)) if and only if ¢ induces a completely bounded multiplier
M, : LP(VN(G)) — L?(VN(G)). In this case, we have the equality

(4.8) HMw\\cb,Ln(VN(GJ)HLP(VN(G,U)) = HM@ch,LP(VN(G))HLP(VN(G)) .

Note that [13, Proposition 4.3] gives a proof of this equality for p = co.
The case where I contains one element and where o = w = 1 gives the following.

Corollary 4.6 Let G be a discrete group and H be a subgroup of G. Suppose 1 < p < 0.
Let T: LP(VN(G)) — LP(VN(G)) be a completely bounded operator. We define the complex
function ¢: H — C by

o(s) = Tg(T()\s)()\S)*), se H.
Then the map P¥: CB(LP(VN(G))) — CB(LP(VN(G))), T + M, is a well-defined contractive
projection onto the subspace 9MP°(H) (identified as a subspace of CB(LP(VN(G)))). Moreover,

if T is completely positive then the map PY(T) is completely positive. For p = oo the same
assertions are true by replacing CB(LP(VN(G))) by the space CBy+(VN(QG)).

27. With the notations of [39, Remark 7.6], if we identify L°°(G) with L*°(R), and = with a function f, we
obtain L(f) = fR[é(ft)] ., dug (t) where ®@: L>°(R) — L°°(R) and where we use translations by ¢ and —t. This

integral is meaningless. We would like to thank Adam Skalski for his confirmation of this problem by email on
his own initiative.
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4.3 Description of the decomposable norm of multipliers

The following theorem is our first result describing decomposable multipliers on noncommutative
LP-spaces.

Theorem 4.7 Let G be a discrete group equipped with a mnormalized T-valued 2-cocycle o.
Suppose 1 < p < co. Then a function ¢: G — C induces a decomposable Fourier multiplier on
LP(VN(G, o)) if and only if it induces a decomposable Fourier multiplier on VN(G).

Proof : =: Let My: LP(VN(G, o)) — LP(VN(G, 0)) be a decomposable Fourier multiplier. By
Proposition 3.12, we can write My = T1 — Ty +i(T3 — T4) where each T is a completely positive
map on LP(VN(G,0)). Using the projection PZ of Theorem 4.2 with G = H, I = {0} and
w = 1, we obtain that

My = PE(My) = PE(Ty — To +i(Ts — Ta)) = PE(T1) — P4(Te) +1(Pa(Ts) — PE(TY))

and that each P&(T);) = My, is a completely positive Fourier multiplier on L?(VN(G, 0)). By
Corollary 4.5, each ¢; also induces a completely positive Fourier multiplier on L?(VN(G)). By
the proof of [11, Proposition 4.2], we see that the (continuous) function ¢; is*® positive definite.
Hence it induces a completely positive Fourier multiplier on VN(G) again by [11, Proposition
4.2]. We conclude that ¢ induces a decomposable Fourier multiplier on VN(G).

<: Let My: VN(G) — VN(G) be a decomposable Fourier multiplier. Similarly, with Theo-
rem 4.2, we can write My = My, — Mg, +i(Mg, — My, ) where each My, : VN(G) — VN(G) is
completely positive. By [76, page 216]*°, each Fourier multiplier o} induces a completely posi-
tive’® multiplier on LP(VN(G)) and also on LP(VN(G, o)) by Corollary 4.5. Using Proposition
3.12, we conclude that ¢ induces a decomposable Fourier multiplier on L?(VN(G, 0)). ]

The following is essentially [151, Section 1.17.1 Theorem 1], see also [119, page 58].

Lemma 4.8 Let (Ey, E1) be an interpolation couple and let C' be a complemented subspace of
FEo+ E1. We assume that the corresponding bounded projection P: Eqg+ E1 — Eo+ E1 satisfies
P(E;) C E; and that the restriction P: E; — E; is bounded for i =0,1. Then (EgNC, E;NC)
is an interpolation couple and the canonical inclusion J: C' — Ey + E1 induces an isomorphim
J from (Eo N C, E; N C)? onto the subspace P((Eo, F1)?) = (Eo, 1)’ N C of (Eo, E1)?. More
precisely, if v € (Eg N C, E; N C)?, we have

HJ(m)H(EU,El)S S ”x”(EoﬂC,EmC)e < max{ ||PHE0—>E0 ) ||P||E1—>E1 } ||J(x)||(E0,E1)9 :
In particular, if max{||P| g, g, 1P, 5} =1 then J is an isometry.

Let (Ey, F1) be an interpolation couple. If Ty: Eg — Ey, T1: E; — E; are (completely)
bounded maps such that T and 77 agree on EgN E4, then we say that Tp and T7 are compatible.
In this case, it is elementary and well-known that there exists a unique (completely) bounded
map To+T1: Eg+E1 — Eo+E; which extends Ty and Ty and we have || Ty + T1||E0+E1HE0+E1 <
max{||Toll g, g, » 171 5, i, } and similarly for the completely bounded norms. Moreover, if
To and T; are projections onto Fy and Fi then Ty + 17 is a projection onto Fy + F7.

It allows us to deduce the following description of decomposable Fourier multipliers on
amenable groups.

28. Here we use the inclusion VN(G) C LP(VN(G)) and the realization of LP(VN(G)) as a subspace of measurable
operators. See also Proposition 6.11 which is a more general result.

29. See also Lemma 6.6 which is a generalization.

30. We use here the fact, left to the reader, that if T: M — N is a completely positive map which induces a
bounded map Tj: LP(M) — LP(N) then T}, is also completely positive.
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Let G be a discrete group. Recall that the group von Neumann algebra VN(G) is approxi-
mately finite-dimensional if and only if G is amenable, see [137, Theorem 3.8.2]. Using Corollary
4.6 with H = G, we obtain the following result.

Theorem 4.9 Let G be an amenable discrete group. Suppose 1 < p < co. Then a function
¢: G — C induces a decomposable Fourier multiplier My: LP(VN(G)) — LP(VN(G)) if and
only if it induces a (completely) bounded Fourier multiplier My: VN(G) — VN(G). In this
case, we have the isometric identity

HM¢>||dec,LI’(VN(G))—)LP(VN(G)) = ||M¢||cb,VN(G)—>VN(G) = ||M¢||VN(G)—>VN(G) :

Proof : By [41, Corollary 1.8], since G is amenable, we have 9> (G) = 9>P(G) isometrically.
The first part is Theorem 4.7 using [65, Theorem 2.1] (which says that the decomposable norm
and the completely bounded norm coincide for operators on approximately finite-dimensional
von Neumann algebras). By [76], we have 9> (G) = M (G) isometrically. Now, we use Lemma
4.8 with the interpolation couple (3.4) and with C' = 9> (G) and we also use the projection
Corollary 4.6 with H = GG. Note that we have isometrically

(CBy- (VN(G)) N 9(G), CB(L' (VN(G))) N M¥(G)) 7 = (I=(G), M= (G)) ¥ = M=(G).

We infer that the space Reg(LP(VN(G))) N9M=(G) = (CBy-(VN(G)), CB(L(VN(G))))» N
M>(G) equipped with the regular norm ||| .o 1o (vi(G))—Le(vN(G)) 18 isometric to the space

9M>b(G). We finally employ Theorem 3.24 to pass isometrically from regular operators to
decomposable operators. [ ]

Similarly, we obtain the following description of decomposable Schur multipliers with the
projection of Corollary 4.4.

Theorem 4.10 Suppose 1 < p < co. Then a function ¢: I x I — C induces a decomposable
Schur multiplier on ST if and only if it induces a (completely) bounded Schur multiplier on
B(¢2). In this case, we have the isometric identity

HMQSHdec,s;wsf = ||M¢”reg,5f—>5’§’ - HM¢”cb,B(£§)HB(Z§) - ||M¢HB(Z§HB(@)-

5 Approximation by discrete groups

The complementation Theorem 4.2 from Section 4 is stated only for discrete groups G. In order
to exhibit a suitable class of admissible non-discrete locally compact groups, approximations
by discrete subgroups of G become important. In this section, we introduce and study several
notions of approximation which are of independent interest, but which will be important in the
subsequent Section 6.

5.1 Preliminaries

Chabauty-Fell topology. For a topological space Y, let Z(Y) denote the set of closed
subsets of Y. For a compact subset K and an open subset U of Y, set?!

Ok ={FeZ(Y): FNK=0} and Op={FeZ(Y) : FNU#0}.

31. Note that OK1 Nn---N OKm = OKIUA.AuKm.
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The finite intersections Ok, N -+ N Og,, N Oy, N--- N O constitute a basis of a topology
on Z(Y), called the Chabauty-Fell topology, introduced in [59, page 472] under the name of
H-topology. By [59, Theorem 1], if Y is locally compact then .Z#(Y) is a (Hausdorff) compact
space. See also [15] and [77] for more information.

Geometric convergence. The Chabauty-Fell topology is related to the geometric conver-
gence of Thurston. By [15, Proposition E.1.2], if Y is a locally compact metrizable space then
a sequence (F,) of closed subsets of Y converges to an element F of .#(Y) if and only if the
two following conditions are satisfied:

e Let (Fy,,) be a subsequence of (F,) and let z), € F,, such that the sequence (x},) converges
in Y to some z in Y. Then we have z € F.

e Any point in F is the limit in YV of a sequence (z,,) with z,, € F,, for each n.

Spaces of closed subgroups. By [59, IV page 474] (see also [24, Chapitre VIII, §5, no. 3,
Théoréme 1]), if Y = G is a locally compact group, the space € (G) of closed subgroups of
G equipped with the induced topology is closed in #(G), hence compact. Moreover, in this
case, it is folklore but not entirely obvious that a basis of neighborhoods of a closed subgroup
H € €(G) is given by the sets

(5.1) NEH)={H €%(G) : HNK C HU and HNK C H'U}

where K runs over the compact subsets of G and U runs over the neighborhoods of e. In words,
H' is very close to H if, on a large compact set K, the elements of H' belong uniformly to a
small neighborhood of H, and conversely. In this specific case, the convergence of a sequence
was introduced by Chabauty [32, page 147] to generalize Mahler’s well-known compactness
criterion to lattices in locally compact groups. The following is folklore.

Proposition 5.1 Let G be a locally compact group. The sets N (H) generate the neighborhood
filter of H in the Chabauty-Fell topology.

Lattices and fundamental domains. A lattice I in a locally compact group G is a discrete
subgroup for which G/T" has a bounded G-invariant Borel measure [14, Definition B.2.1 page
332]. A locally compact G that admits a lattice is necessarily unimodular [14, Proposition B.2.2
page 332]. The same reference says that if ' is a cocompact®® (i.e. G/T is compact) discrete
subgroup of a locally compact group G then I is a lattice of G.

Let T be a discrete group of a locally compact group G. If A is a subset of G and v € T,
then the set A7 is called an image of A. A fundamental domain X relative to I' is a Borel
measurable subset of G satisfying the following two properties:

(5.2) XT = @,
(5.3) Xy N Xy = for any distinct elements v,~" of T.

These properties say that every element x € G is covered by one and only one image of X.
These conditions are equivalent to the following statement: X is a Borel measurable subset of
G such that the restriction of the canonical mapping G — G/T of G onto left cosets, restricted
to X, becomes a bijection onto G/T". We obtain a set X with these two properties, if we select
a representative s from every left coset sI' of I" relative to G. However, in general, such a set X

32. The word uniform is also used.
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is not a Borel set. If G is o-compact the result [14, Proposition B.2.4 page 333] (see also [134,
Lemma 2]) gives the existence of a fundamental domain for any discrete subgroup I" and if in
addition T is a lattice in G then every fundamental domain for I" has finite Haar measure |
Proposition B.2.4 page 333].

)

5.2 Different notions of groups approximable by discrete groups

Recall that a locally compact group G is approximable by a sequence (I';) of discrete sub-
groups [101, Definition 1] [150, page 36] if for any non-empty open set O of G, there exists
an integer jo such that for any j > jo we have O NT; # (. We say that a locally compact
group G is approximable by discrete subgroups (ADS) if G is approximable by some sequence
(T';) of discrete subgroups. It is obvious that a second countable locally compact group G is
approximable by a sequence (I';) of discrete subgroups if and only if (I';) converges to G for
the Chabauty-Fell topology. Using the definition of the geometric convergence we obtain the
following characterization.

Proposition 5.2 Let G be second countable locally compact group. Let (I';) be a sequence of
discrete subgroups of G. The following are equivalent.

1. The group G is approximable by the sequence (T';).
2. Any s € G is the limit in G of a sequence (vy;) with v; € I'; for any integer j.

Moreover, note that a connected ADS locally compact group G is necessarily nilpotent (see
[75, Theorem 2.18]) and that a connected simply connected Lie group is ADS if and only if G
is nilpotent and if it admits a discrete cocompact subgroup ([73, Theorem 1.6, 1.7 and 1.9].
We refer to [73] [74] [75] [101] [150] and [152] for more information on this notion. Now, we
introduce different notions of approximation by discrete groups. These will be used in Section
6.

Definition 5.3 Let G be a second countable locally compact group.

1. The group G is said to be approximable by lattice subgroups (ALS ) if there exists a sequence
(T';) of lattices in G such that (I'j) converges to G for the Chabauty-Fell topology.

2. The group G is said to be (right) uniformly approxzimable by a sequence (I';) of discrete
subgroups if there exists a right invariant metric dist such that for any e > 0, there exists
an integer jo such that for all j > jo and all s € G there exists v; € I'; such that
dist(s,v;) < e. The group G is said to be uniformly ADS if G is uniformly approximable
by a sequence (I';) of discrete subgroups. We also define the notion “uniformly ALS”
where “discrete groups” is replaced by “lattice subgroups”.

3. The group G is said to be approzimable by shrinking by a sequence (I';) of lattice subgroups
with associated fundamental domains (X;) if for any neighborhood V' of the identity eq
(equivalently, for any ball V. = Bl(eg,e) with € > 0, associated with a right invariant
metric generating the topology of G) there exists some integer jo such that X; C V for
any j = jo. The group G is said to be approximable by lattice subgroups by shrinking
(ALSS) if there exists a sequence (I';)j>1 of lattice subgroups in G and some associated
fundamental domains (X;) such that G is approzimable by shrinking by (I';) and (X;).
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Remark 5.4 1. If we assume in Part 3 of Definition 5.3 that the subgroups I'; are only
discrete subgroups instead of being lattices, we obtain the same definition. Indeed, for
any sufficiently small ¢ > 0 and any sufficiently large j, we have X; C B(eqg,€) where
B(eg,¢) is relatively compact according to the local compactness of G. Thus the closure
X; is compact. The canonical mapping 7: G — G/T; being continuous, 7(X;) is also
compact. But since X; is a fundamental domain, we have n(X;) = G/T'; and a fortiori
n(X;) = G/T;. Therefore, G/T'; is compact, and so by [14, Proposition B.2.2], the discrete

subgroup I'; is automatically a lattice.

2. We shall see in Part 3 of Proposition 5.9 that a second countable locally compact group
which is uniformly ADS with respect to a sequence (I';) of discrete subgroups admits
fundamental domains which are almost all included in small balls. Therefore, combined
with the first part of this remark, we deduce that if G is uniformly ADS then G is uniformly
ALS.

3. Part 3 of Definition 5.3 is inspired by the notion ADS from [31, page 3]. It is formally
slightly weaker since we assume that the X; are becoming smaller and smaller around e¢
instead of forming a neighborhood basis of e as in [31]. Moreover, the authors of [31]
use only lattice subgroups. However, we shall see in Part 3 of Proposition 5.9 that our
notion of ALSS is equivalent to ADS from [31, page 3].

4. Tt is obvious that the property uniformly ADS implies the property ADS, that uniformly
ALS implies ALS and that ALS implies ADS.

Recall that any locally compact group G which contains a lattice subgroup I' is unimodular
[14, Proposition B.2.2] and that the subset of unimodular closed subgroups of G is closed in
% (Q) for the Chabauty topology, see [24, Chapitre VIII, §5, no. 3, Théoréme 1].

We start with a result giving the existence of fundamental domains satisfying some inclusion
constraint. In this proposition and the subsequent lemma, we equip G with a left invariant
metric dist generating its topology and consider balls B(eg,r) = {s € G : dist(s,eq) < r}.
Note however, that the statement in Proposition 5.5 remains valid if one replaces the distance
dist by a right invariant one dist’, generating the topology of G, together with balls B(ec, r)=
{s € G : dist'(s,eq) < r}. Indeed, note that since both dist and dist’ generate the same
topology, if D contains a ball B(eq, 7), it will contain a ball B(eg,r), so Q will contain a ball
B(eg,r') and thus also a ball B(eg,r").

Proposition 5.5 Let G be a second countable locally compact group together with a discrete
subgroup I' C G. Let D C G be a measurable subset satisfying UvEF D~y = G. Then there exists
a fundamental domain X C D associated with T'. Moreover, if D contains a ball B(eg,r) then
X contains a ball B(eg,r’).

Proof : Note first that since G is second countable, I' endowed with the trace topology is
again second countable. Since I' is discrete, this implies that I is at most countable, and we
choose one enumeration (v;) of I'. According to [135, Exercice D.1 page 104], the canonical map
p: G — G/I' is a covering. By [135, Theorem 5 page 76], if U is some suitable neighborhood of
eI’ in G/TI" then there exists a continuous section g: U — G, that is, ¢(sI')I" = sI" for any element
sT' of U. Using Zorn Lemma and [135, Theorem 5 page 76] again, it is not difficult®* to prove

33. Assume that V' is a maximal measurable subset of G/T" containing U and that o: V — G is a measurable
section which extends q. Suppose that V is different from G/I'. If r is an element in the complement of V we
can find a neighborhood W of r in G/T", and a continuous section n: W — G on W. Gluing the sections ¢ and
77|Wm(G/F—V) we get a measurable extension of o.
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that we can extend ¢ to a measurable map ¢: G/I" — G. Replacing ¢ by G: sI" +— q(sI')q(el’) 1,
we can assume that g(eI') = e. In this situation, the associated mapping

G/T xT — G, (sT',7y) — q(sT')y

is bijective, and is, together with its inverse Y: G — G/T'xT, s + (sT, (q(sI")) ~1s), measurable.
Moreover, consider the measurable map v = proj, o Y: G — T, s — (q(sT)) " !s.

Lemma 5.6 There exists some p > 0 such that v(B(e,p)) C {e}.

Proof : Let dist be a left invariant metric on G generating its topology as a locally compact
group and distg/p the associated distance on G/T". Consider the strictly®* positive number
ro = dist(I'\{e},e) > 0. Since B(e,r¢) NI' = {e}, for any s € G, the condition dist(vy(s),e) <
ro implies that v(s) = e. Now by definition of v, we have dist(y(s),e) < r¢ if and only if
dist(q(sT")~ts,e) < rg and finally if and only if dist(s,q(sI')) < rg. Since ¢ is continuous in a
neighborhood of eI, there exists r; > 0 such that distg,p(sI',el') < rq implies dist(q(sI'), e) <
. If dist(s,e) < min{ry, 2} we have distg,p(sI', el’) < dist(s,e) < r1, hence dist(e, ¢(sI")) <
and thus the triangle inequality gives

NI

dist (s, g(sI')) < dist(s, e) + dist(e, g(sI')) < %0 + %0 =1y.

The lemma is proved. n

Define now A1 = {s € D : ~(s) = 11} = DN~y *({m}), which is measurable as the
intersection of two measurable sets. Assuming without loss of generality that v; = e, we have
that B(e,r’) C Ay for v’ = min(r, p) since B(e,r) C D. Define then recursively for k > 2, the
subsets

Ar={seD: ()=, Aje{l,....k—1}, Z1eN: sy € A;}

k—1
=Dy '{wmhn () ) A5

j=11€eN

It can easily be shown recursively that Ay is measurable as the countable intersection of mea-
surable sets. Define finally X = (J;—; A.

We claim that X is a (measurable) fundamental domain of T which is contained in D. First,
it is measurable as a countable union of measurable sets. Since by definition, we have A, C D
for any integer k > 1, we also have X C D.

Lemma 5.7 For any v € I'\{e}, we have XyNX = 0.

Proof : Indeed, let s € X, so that s € Ay, for some ky € N. This implies that y(s) = k,-
Put t = sv. Since vy # e, we cannot have y(t) = v(s), because otherwise Y (t) = (tT',v(t)) =
(sT',v(s)) = Y(s), and since Y is bijective, we obtain ¢ = s, which is a contradiction. So
~v(t) = g, for some ki # ko.

If k1 > ko, then ¢t cannot belong to Ay,. Indeed, t € Ay, implies that we cannot find [ € N
such that ty; € Ay, since ko < k1. This implies with v; = y~! that s = ty~1 & Ay, which is a
contradiction.

If k1 < ko, then t cannot belong to Ay, either. Indeed, since s € Ay,, we cannot find [ € N
such that sy; € Ay, since k1 < kg. This implies with v; = v that ¢t = sy € Ag,. Thus ¢t € X, so
we have Xy N X = (). [ ]

34. The subset {e} is open in I', so T'\{e} is closed.
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Lemma 5.8 We have

(5.4) U Al = {seD: v(s) € {m1,7,.. . }}T.
k=1

Proof : For the inclusion C, we note that if s € Ay for some k € N, then in particular s € D
and ~y(s) = vk, so that sI' is contained in the right hand side of (5.4). For the inclusion D, if
s € D and 7(s) =~y for some k € N, then either s € A, which implies that sI" is contained in
the left hand side of (5.4) or there exists { € Nand j € {1,...,k— 1} such that sy; € A;. Then
sT' = syy; 'T' € A;T, so that it is also contained in the left hand side of (5.4). Whence, (5.4)
is shown. [ ]

The left hand side of (5.4) equals clearly XT", and the right hand side equals DT, since v(s)
must belong to {y1,72,...} for any s € D. Since DI' = G, we obtain XI" = G, so that X is a
fundamental domain. Since B(e,r’) C A;, we also have B(e,r’) C X. [ |

Proposition 5.9 Let G be a second countable locally compact group.

1. If the group G is ALSS with respect to (T';) and (X;) then G is uniformly ALS with respect
to (FJ)

2. Let G be an ADS group with respect to a sequence (I';) of discrete subgroups. Suppose
that for some jo € N, some compact K C G and any j > jo there exists a fundamental
domain X; with respect to I'; such that X; C K. Then the group G is uniformly ADS
with respect to (I';). We have a similar property for ALS and uniformly ALS.

3. If the group G is uniformly ADS with respect to discrete subgroups (I';) then G is ALSS
with respect to (I';) and some particular sequence (X;) of fundamental domains. Moreover,

the X; can be chosen to be neighborhoods of eq if j is large enough. In particular, if G is
uniformly ALS then G is ALSS.

4. The group G is uniformly ADS if and only if it is uniformly ALS if and only if it is ALSS.

Proof : 1. First assume that G is ALSS with respect to a sequence of lattice subgroups (T';)
with associated fundamental domains (X;). Take a right invariant metric dist on G generating
its topology as a locally compact group. Fix € > 0. By the ALSS property, there exists some
integer jo such that the fundamental domains X; are contained in B(e,¢) for any j > jo. For
any s € G and any j, there exists x € X; and v € I'; such that s = 2. For any j > jo, we
conclude that

dist(s,~y) = dist(ay,vy) = dist(z, e) < €.

Thus, the group G is uniformly ALS.

2. Let G be an ADS group with respect to a sequence (I';) of discrete subgroups in G.
Suppose that for some jy, € N, some compact K C G and any j > jg, there exists a fundamental
domain X; with respect to I'; such that X; C K. Fix a right invariant metric dist on G. The
compact subset K is totally bounded. Then for any € > 0, there exist some si,...,sy € K

such that for j > jo,
N
€
Xj Cc K C ]CL_JlB<Sk72)

Moreover, since G is ADS, for any 1 < k < N, there exists some j; € N such that for all i > j
there is some v; € I'; with dist(sg,v;) < §. Note that this implies that if z € B(sg, §) we have

dist(x, ;) < dist(z, s) + dist(sg, i) < g + % =ec.
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Thus, for jmax et max{Jjo, j1,.--,JN}, Ny j = jmax, any & € X; and any ¢ > jmax, there exists
some 7; € T'; such that dist(z,v;) < e.

For an arbitrary s € G and any j > jmax, we write s = x;7; with «; € X; and 7; € I'; and
we have (setting ¢ = j above) dist(x;,~,) < ¢ for some y; € I'; so also

dist(s,v;7;) = dist(z7;,v,7,) = dist(z,v;) < e.

Note that v;7; belongs to I';. Thus the group G is uniformly ADS. The proof of the second
property is identical.

3. Now assume that G is uniformly ADS with respect to a sequence (I';) of discrete sub-
groups. We fix a right invariant metric dist of G which generates the topology of G and with
respect to which the uniformly ADS property holds. There exists § > 0 such that any closed
ball of radius < ¢ is compact.

For any j, we introduce the Dirichlet cell

Dr, = {s€ G : dist(s,e) < dist(s,7) for any v € I'; }.

We first show that for given € > 0, there exists jo € N such that Dr, C B(e,¢) for j = jo.
Note that by the uniformly ADS property there exists a jo € N such that for all s € G and any
J = jo there exists ; € I'; such that dist(s,v;) < 5. If s € B(e,¢)¢ and if j > jo we obtain

dist(s, v;) < % < e < dist(s, e).

Hence s does not belong to Dr;. We deduce that B(e,e)¢ C Dlij if j > jo. The claim is proved.

Now we prove that the Dirichlet cell Dr, satisfies | J Dr,y = G if j is large enough. Let

vET;
s € G. For any j, consider the positive real number

r; = inf dist(s,7’).
17 Jer, (s:7)

There exists j; such that for any j > j1 and any s € G there exists 7; € I'; such that
dist(s,v;) < %, hence r; < g.

Lemma 5.10 For any j > ji, there exists v € T'; such that dist(s,~) < dist(s,v") for any
’Y/ € I‘j,

Proof : If s € T';, it is obvious that the infimum is a minimum. Suppose s ¢ I';. We have
r; > 0. We let K = B’(z,2r;) NT;. This subset is nonempty and compact. If v € T';\ K we
have dist(x,~’) > 2r;. We deduce that

; = inf dist(s,7') = inf dist(s,v’).
T, ’y}rele ist(s,v") nf dis (s,7")

Finally, the map ' + dist(s,~’) is continuous on the compact K, hence attains its infimum on
K. [ ]

In particular, for any 4" € T';, using the right-invariance of the distance, we obtain
dist(sy™ 1, e) = dist(s, v) < dist(s, ") = dist(sy~!,4").
Therefore, sy~' € Dr,, that is s € D, 7.

Moreover, Dr; = ﬂn/erj{s € G : dist(s,e) < dist(s,7)} is an intersection of closed sets, and
hence itself closed, hence measurable.
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Note that T';\{e} is closed. Hence we have 1’ = dist(e,I';\{e}) > 0. Thus the ball B(e, )
is contained in Dr;. According to Proposition 5.5, there exists some fundamental domain
X C Dr, associated with I';, which is a neighborhood of e € G. Furthermore, if j > jo we
have X; C Dr; C B(e,¢). Hence we conclude that the group G is ALSS with respect to (I';)
and (X;). The proof of the second property is identical.

4. This statement is now obvious. [ ]

5.3 The case of second countable compactly generated locally com-
pact groups

The following uses a trick of the proof of [152, Lemma 5.7]. For the sake of completeness,
we give all the details. Recall that a topological group is compactly generated if it has a
compact generating set [78, Definition 5.12]. For example, a connected locally compact group

is compactly generated [12, Proposition 2.C.3 (2)].

Lemma 5.11 Let G be a compactly generated locally compact group and (I';) a sequence of
subgroups of G which converges to G for the Chabauty-Fell topology. Then there exists a compact
subset K of G and iy such that G = KT'; for any i > ig.

Proof : By the proof of [78, Theorem 5.713]7 there exists an open subset V' of G containing
e with G = U,,5,(VUV™)" such that V is compact. We let U = V UV ~'. The subset U

is open and contains e. Moreover, the set K = U = VUV~-1 =V U V_l is compact and we
have G = Un>1 K™. Since e belongs to U, we have UG = G. Moreover, by [78, Theorem 4.4],
the subset K* is compact and included in UG. Using [78, Theorem 4.4] again, we deduce that

(Us)seq is an open covering of K3. By compactness there exist some elements sy, ...,s, € G
such that
m
3
K° C U US]'.
j=1

Since (I';) approximates the group G, there exists some iy such that for any ¢ > iy we have
{81,..+,8m} C UL;. Fori >ig, we deduce that K* C U?T'; C K°T;. By induction®®, we obtain
K™ C K?T; for any n > 3. Moreover, we have K2 C K2T';. For any i > iy, we deduce that

G\K c | J K" c K°T;.

n>2

Note that K ¢ KT';. Thus the compact K U K2 has the desired property. [ ]

Corollary 5.12 Let G be a compactly generated locally compact group and (I';) a sequence of
discrete subgroups which converges to G for the Chabauty-Fell topology. For any large enough
i, the subgroup T'; is a cocompact lattice.

Proof : Use the above Lemma 5.11 and recall that a discrete subgroup I' which is cocompact>©
is a lattice. m

Theorem 5.13 Let G be a second countable compactly generated locally compact group. The
following are equivalent.

35. If K™ C K2T; for some n > 3 then we have K"t = KK"™ ¢ KK?T'; = K3T'; ¢ K2I;T'; = K°T;.
36. If G = KT'; for a compact K, then for the canonical and continuous ¢: G — G/T';, we have ¢(K) = G/I';,
so that G/T"; is compact.
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1. G is ADS.

2. G is ALS.

3. G is uniformly ALS.
4. G is ALSS.

Proof : The implications 2. = 1. and 3. = 2. are obvious. By Corollary 5.12, we have the

implication 1. = 2. By the part 3 of Proposition 5.9, the properties 3. and 4. are equivalent.
Suppose that G is ALS with respect to a sequence (I';) of lattice subgroups in G. Then by
Lemma 5.11, there exists a compact subset K of G and iy such that G = KT; for any ¢ > 1.
By Proposition 5.5, there exists®” a fundamental domain X; for I'; in G such that X; C K for
any i > ig. From part 2 of Proposition 5.9, we conclude that G is ALSS and thus 2. implies 3.
|

6 Decomposable Fourier multipliers on non-discrete lo-
cally compact groups

In this section, we start by giving general results on Fourier multipliers on noncommutative
LP-spaces. After this, we construct our projections by approximation. Then we study (classes
of) examples, including direct and semi-direct products of groups, the semi-discrete Heisenberg
group, groups acting on trees and pro-discrete groups. We conclude by drawing the relevant
consequences for decomposable multipliers.

6.1 Generalities on Fourier multipliers on unimodular groups

Group von Neumann algebras of locally compact groups. Let G be a locally compact
group equipped with a fixed left invariant Haar measure pug. For a complex function g: G — C,
we write A(g) for the left convolution operator (in general unbounded) by g on L?(G). This
means that the domain of A(g) consists of all f of L2(G) for which the integral (g * f)(t) =
Jo9(s)f(s7't) dug(s) exists for almost all t € G and for which the resulting function g * f
belongs to L?(G), and for such f, we let A(g)f = g * f. Finally, by [78, Corollary 20.14], each
g € L(G) induces a bounded operator A(g): L2(G) — L2(G).

Let VN(G) be the von Neumann algebra generated by the set {A(g) : ¢ € LY(G)}. It is
called the group von Neumann algebra of G and is equal to the von Neumann algebra generated
by the set {\; : s € G} where

' L3(G) — L3(Q)
(6.1) A {f (e f(s))

is the left translation by s. Recall that for any g € L'(G) we have A(g) = [, g(s)As duc(s)

where the latter integral is understood in the weak operator sense>®.

37. If G is a second countable locally compact group and if I" is a cocompact lattice in G then there exists a

relatively compact fundamental domain X for I' in G. This result [134, 8] of Siegel does not suffice here.
38. That means (see e.g. [61, Theorem 5 page 289]) that A\(g): L2(G) — L2(G) is the unique bounded operator
such that

A9 S, b2 (@) =/ 9(s)Asfih)12(qyduc(s), f,heL(Q).
G
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Let H be a closed subgroup of G equipped with a fixed left Haar measure. The prescription
Ais V> Ag.s, 8 € H (where Ay s denotes the left translation by h on L?(H) and A\g s the
corresponding left translation by h on L?(G)) extends to a normal injective *-homomorphism
from VN(H) to VN(G), see e.g. [40] and [46, Theorem 2 page 113].

We also use the notation A(u): L2(G) — L2(G) for the convolution operator by the measure

L

Plancherel weights. Let G be a locally compact group. A function g € L?(G) is called left
bounded [(4, Definition 2.1] if the convolution operator A(g) induces a bounded operator on
L?(G). The Plancherel weight 7¢: VN(G)* — [0, 00] is*” defined by the formula

re(z) = {||g||i2(c) if 22 = A(g) for some left bounded function g € L%(G)

+00 otherwise

By [64, Proposition 2.9] (see also [111, Theorem 7.2.7]), the canonical left ideal n,, = {z €
VN(G) : 7¢(z*z) < oo} is given by

n., = {A(9) : g €L*(G) is left bounded}.

Recall that m} denotes the set {x € VN(G)T : 7¢(2) < 0o} and that m, is the complex linear
span of m} . which is a *-subalgebra of VN(G). By [(4, Proposition 2.9] and [110, Proposition
page 280], we have

mf ={\g):g€ L?*(G) continuous and left bounded, A(g) > 0}.

By [64, page 125] or [114, Proposition 7.2.8], the Plancherel weight 7¢ on VN(G) is tracial
if and only if G is unimodular, which means that the left Haar measure of G and the right Haar
measure of G coincide. Now, in the sequel, we suppose that the locally compact group G is
unimodular.

We will use the involution f*(t) = f(t~1). By [100, Theorem 4], if f,g € L%(G) are left
bounded then f * g and f* are left bounded and we have
(6.2) A(SAg) = A(f+g) and  A(f)" = A(f7).

If f,g € L?(G) it is well-known [24, Corollaire page 168 and (17) page 166] that the function
f*g is continuous and that we have (f*g)(eq) = (g% f)(eq) = [, §f dua where eq denotes the

identity element of G and where §(s) et g(s™h). By [141, (4) page 282], if f,g € L?(G) are left
bounded, the operator A(g)*A(f) belongs to m,, and we have the fundamental “noncommutative
Plancherel formula”

(6.3) 7a(AM9)*A(f)) = (9, f)r2() which gives TG(A(g)A(f))=/G§fdua=(g*f)(ec)-

By (2.1), if we consider the subset C.(G) = span {g* * f : g, f € L*(G) left bounded} of C(G),

we have

(6.4) m., = ACe(G))

and we can see 7g as the functional that evaluates functions of C.(G) at e € G. Although
the formula 7¢ (A(h)) = h(e) seems to make sense for every function h in C.(G), we warn the

reader that it is not true’” in general that )\(C’C(G)) C m,, contrary to what is unfortunately
too often written in the literature.

39. This is the natural weight associated with the left Hilbert algebra C¢(G).
40. In fact, suppose that G is compact. Since L2(G) C L'(G), any function of L2(G) is left bounded. Moreover,
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Averaging projections. If K is a compact subgroup of a locally compact group G equipped
with its normalized Haar measure pg, we can consider the element px = Ax(px) of VN(K).
It is easy to see that it identifies to the element Ag(u%) of VN(G) where u9 is the canonical
extension of the measure px on the locally compact space G. We say that it is the averaging
projection associated with K. The following lemma is folklore. For the sake of completeness,
we give a short proof.

Lemma 6.1 If K is a normal compact subgroup then the averaging projection px associated
with K is a central projection in VN(G) and finally the map

m: VN(G/K) — VN(G)pr

(6:5) AsK — AsDK

is a well-defined x-isomorphism.

Proof : For any s € G, we have sK = Ks and consequently AsA\(1%) = A(0s * u%) = A9 ) As.
Hence pk is central. For any s € G, if sK = 'K, we have \spx = A A (%) = A(ds * pf) =
A8s * 1% ) = A M%) = Ay px. Hence 7 is well-defined. Other statements are obvious. ]

If K is in addition an open subgroup, the following allows us to consider maps on the
associated noncommutative LP-spaces.

Lemma 6.2 Let K be a compact open normal subgroup of a unimodular locally compact group

G. We suppose that G is equipped with a Haar measure ug and that K is equipped with its

normalized Haar measure pyx. We have px = m)\(h{) and the map pe(K)r: VN(G/K) —

VN(G)pk is trace preserving. Finally if 1 < p < 0o, the x-isomorphism m induces a completely

bounded map from LP(VN(G/K)) into LP(VN(G)pk) of completely bounded norm less than
1

—1
pa(K)P

Proof : The subgroup K is open, so ug|i is a Haar measure on K and pux = mMG‘K. So

1 1 1
WA((MGM)O) = m)‘(lKﬂG) = MG(K))\(lK)'

Note that the group G/K is discrete by [78, Theorem 5.21] since K is open and that px = prpi.
For any s € G, using Plancherel formula (6.3) in the second equality, we obtain

16(T(Ask)) = Ta(AsPr) = Ta(PKAsPK) = 76¢(M1x)" AsA(1k))

e (K)?
1

1 1
a WQK’ Lik)2(q) = le(s) = WTG/K()\SK)'

The statements on induced maps by 7 on L?(VN(G/K)) are now standard using interpolation.
|

the group G is unimodular so the map f ~ f* is an anti-unitary operator on L2(G). We infer that L?(G)* =
L2(G) and consequently that

Ce(@) = span L2(G) * L2(G).
As already noted, we always have C.(G) C C(G). If in addition A(C(G)) C A(Ce(G)), we have C(G) = C(G) C
Ce(G) (if f,g € LY(G) and A(f) = X(g), it is easy to see that f = g almost everywhere), then we obtain
spanL2(G) * L2(G) = C(G). But this is true only if G is finite (see [79, 34.16, 34.40 (ii) and 37.4]).
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Noncommutative LP-spaces of group von Neumann algebras. By (6.3), the linear
map L' (G) NL2(G) — L3(VN(G)), g — A(g) is an isometric map which can be extended to an
isometry between L?(G) and L2(VN(G)) using [139, Corollary 9.3].

We need a convenient dense subspace of LP(VN(G)). If p = oo, [16, Corollary 7 page 51]
says*t that \(C.(Q)) is weak* dense in VN(G), so by Kaplansky’s density theorem, the ball of
MC.(G)) is weak™ dense in the ball of VN(G). Moreover, it is proved in [38, Proposition 4.7]
(see [58, Proposition 3.4] for the case p = 1) that A(span C.(G) * C.(G)) is dense in LP(VN(G))
in the case 1 < p < 0.

Fourier multipliers on noncommutative LP-spaces. Note that if ¢ € LL _(G) is a locally
integrable function and if f € C.(G) then the product ¢f belongs to L*(G) and consequently
induces a bounded operator A(¢f): L2(G) — L?(G). Recall that this operator is equal to the
weak integral [, ¢(s)f(s)As dug(s). Finally, recall that LY (G) C Li, (G).

loc

Definition 6.3 Let G be a unimodular locally compact group. Suppose 1 < p < oo. Then we
say that a (weak® continuous if p = oo) bounded operator T: LP(VN(G)) — LP(VN(G)) is a
(LP) Fourier multiplier if there exists a locally 2-integrable function ¢ € L2 _(G) such that for
any [ € Ce(G) x Ce(G) (f € C(G) if p = o) the element [, ¢(s)f(s)As duc(s) belongs to
LP(VN(G)) and

(6.6) T(Lf@MMm®>=L¢@ﬂ@&Mdﬁ7i&YUUD=MW)
In this case, we let T = M.

Note that we take symbols in LZ _(G) to use Plancherel formula (6.3) in the sequel. Moreover,
there exists*? at most one function ¢ (up to identity almost everywhere) such that T' = Mg and
we say that ¢ induces the bounded Fourier multiplier M.

Then IMP(G) is defined to be the space of all bounded LP Fourier multipliers and 9P (G)
to be the subspace consisting of completely bounded L? Fourier multipliers.

The following results generalize the alluded observations of [76] done for discrete groups.

Lemma 6.4 Let G be a unimodular locally compact group. Suppose 1 < p < oo. We have
the isometries MP(G) — MY (G), My — My and MP<P(G) — MPP(G), My — M,.
Moreover, the Banach adjoint (Mg)*: LP" (VN(G)) — LP" (VN(Q)) (preadjoint if p = oo) of
My: LP(VN(GQ)) — LP(VN(G)) tdentifies to the Fourier multiplier whose symbol is .

Proof : Let My: LP(VN(G) — L?(VN(G)) be an element of MP(G). For any f,g € C.(G) *
C.(G) (f € C.(G) and g € C.(G) * C.(G) if p =00 and f € C.(G) * C.(G) and g € C.(Q) if
p=1), we have g, ¢f € L'(G) NL%(G) since ¢ € L2 (G). Using Plancherel formula (6.3) in the
second and third equalities, we deduce that

NMMMﬂM@D:TOWﬁMm%jL&EMm:TOUMww):dMﬁMﬂMmD

We conclude that the adjoint (My)*: LP" (VN(G)) — LP" (VN(G)) (preadjoint if p = o) iden-
tifies to the multiplier M. Thus the map My — M provides an isometry MMP(G) — mr"(Q).

On the other hand, note that the map x: VN(G) — VN(G), As — A,—1 is a *-anti-
automorphism of VN(G) which preserves the trace. Hence it induces a complete isometric

41. Note that PM2(G) = VN(G).
42. Note that if f,g € L1(G) and A(f) = A(g), it is easy to see that f = g almost everywhere.
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map #,-: LP (VN(G))°P — LP" (VN(G)). Now, if M, belongs to 9" (G) note that the map
Kb oMok, : LP (VN(G)) — LP" (VN(Q)) identifies to the multiplier Ms. We conclude that the
map NP (G) — MP"(G), M, — My is an isometry. We conclude by composition that the map
MP(G) — MP"(G), My — My is an isometry. To show the isometry 9P (G) = M <P(@),
we proceed in the same way using Lemma 2.3. [ ]

Lemma 6.5 Let G be a unimodular locally compact group. We have the following isometries
M2(G) = M>P(G) = L=(Q).
Proof : Suppose that ¢ € L2 (G) induces a bounded Fourier multiplier. Using the Plancherel

loc

isometry L2(VN(G)) = L2(G), for any function f € C.(G) x C.(G), we obtain (since ¢f €
LY(G)NLA(G)) that [|MeO | 2 vniay = MO vniey) = 19F1lL2(q)- We deduce that

M| = sup [rexal = 19/l () -
LHVNENZL2VNED ™ e (o @ i fla<t b9
Conversely, if ¢ € L°(G) then for any f € C.(G) x C.(G) we have ¢f € LY (G) N L*(G)
and consequently A(¢f) € L?(VN(G)). Moreover, we have H)x((bf)HLQ(VN(G)) = [[6fllr2q) <
&l () I fllr2()- So ¢ induces a bounded Fourier multiplier on L2(VN(G)). This shows that
M?(G) = L>(G).
Moreover, the operator space structure of L?(VN(G)) turns it into an operator Hilbert

space [119, page 139], so that the completely bounded mappings on L2(VN(G)) coincide with
the bounded ones by [119, page 127]. We conclude that 9M*<P(G) = M?(G) = L=(G). [ |

Lemma 6.6 Let G be a unimodular locally compact group. Suppose 1 < p < q < 2. We have
the contractive inclusions M (G) C MP(G) C MY(G) C M2(G) and MHP(G) C MPP(G) C
ML (G) € M2<P(G).

Proof : Note that the first inclusion is a particular case of the second inclusion. If My belongs to
9P (@) then by Lemma 6.4, it also belongs to MMP (G), consequently, by complex interpolation,
My belongs to M?(G). Using again interpolation between 2 and p, we deduce that Mg belongs
to M?(G). The second chain is proved in the same manner. ]

Lemma 6.7 Let G be a unimodular locally compact group. Suppose 1 < p < co. Let (My,) be
a bounded net of bounded Fourier multipliers on LP(VN(G)) and suppose that ¢ is an element
of L*°(G) which induces a bounded Fourier multiplier on LP(VN(G)) such that (¢;) converges
to ¢ for the weak™ topology of L>°(G). Then the net (My,) converges to My in 9MMP(G) for the
weak operator topology of B(LP(VN(Q))) (for the point weak* topology if p = o0).

Proof : For any f,g € C.(Q) * C.(G) (to adapt if p = oo or if p = 1), we have f§ € L}(Q).
Using Plancherel formula (6.3) and the weak* convergence of (¢;), we deduce that

T((My — My, )M 9)) = T(A((¢ = ¢:) )M 9)) = /G(fb = ¢i)fgdpc
= <¢ - ¢ia f§>Loo(G),L1(G) T> 0.

By density, using a %-argument and the boundedness of the net, we conclude*” the proof. M

43. More precisely, if X is a Banach space, if E; is dense subset of X, if E5 is a dense subset of X* and if (T})
is a bounded net of B(X) with an element T of B(X) such that (T;(z),2*) ——— (T'(z),2*) for any « € E;
i—+4oo

and any z* € Eo, then the net (T};) converges to T for the weak operator topology of B(X). Use a similar result
for the case p = oo.
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Lemma 6.8 Let G be a unimodular locally compact group and 1 < p < oo. Then the space
MP-b(G) is weak* closed in CB(LP(VN(Q))). Similarly, the space IMP(G) is weak* closed in
B(LP(VN(Q))).

Proof : By the Banach-Dieudonné theorem [81, page 154], it suffices to show that the closed
unit ball of MPP(G) is weak* closed in CB(LP(VN(G))). Let (Mg,) be a net in that unit
ball converging for the weak* topology to some completely bounded map 7: LP(VN(G)) —
LP(VN(G)). By Lemma 6.5 and Lemma 6.6, for any j, we have

||¢J'||Loc(c) < HMd)jch,LP(VN(G))—>LP(VN(G)) <L

Hence there exists a subnet of (¢;) converging for the weak™ topology to some ¢ € L>(G). It
remains to show that 7' = My. Recall that the predual of the space CB(L?(VN(Q))) is given by
LP(VN(G))®LP" (VN(G)), where & denotes the operator space projective tensor product and
the duality bracket is given by

(R,z® y>CB(LP(VN(G))),LP(VN(G))@LP*(VN(G)) = (R(x), y>LP(VN(G)),LP* (VN(G))"

This implies that (M, (z),y) — (T'(z),y) for any 2 € LP(VN(G)) and any y € LP" (VN(G)).
: j

By Lemma 6.7, it suffices to show that ¢ induces a completely bounded Fourier multiplier. For
any frr, gri € Ce(G)*Co(G) (frr € Ce(Q) if p = 00) where 1 < k,I < N, we have fr;dr € L1(G)
and for any j

‘([M¢_,»(>\(sz))], [)‘(gkl)} >MN(LP(VN(G))),S}V(LP* (VN(G)))‘
< (SUP Mg, ch,LP(VN(G))—>LP(VN(G)) ) [[ACfi)] HMN(LP(VN(G))) [[[AMgw)] ||5}V(Lp* (VN(G)))’

that is, using Plancherel formula (6.3),

N
Z /G ¢ (8) frr(s)gri(s) duc(s)

k=1
< (SUP HM% ch,LP(VN(G))—>LP(VN(G)) ) || [A(fir)] HMN(LP(VN(G))) H [Agw)] ||5}V(Lp* (VN(G))*

Passing to the limit, by density, we conclude that ¢ induces a completely bounded Fourier
multiplier on L?(VN(G)).

The statement on the space MP(G) can be proved in a similar manner, using the predual
LP(VN(G))&LP" (VN(Q)) of B(L?(VN(G))) where & denotes the Banach space projective tensor
product. [ |

Remark 6.9 We do not know if 9P°?(G) and 9P(G) are maximal commutative subsets of
CB(LP(VN(Q))) and B(L?(VN(G))) which is a stronger assertion.

If G is an abelian locally compact group and if M, : L?(G) — L?(G) is a positive multiplier

in MP(G), note that ¢ is equal almost everywhere to a function of the Fourier-Stieltjes algebra

B(G), thus to a continuous function. The next lemma extends this result to the noncommutative
context.
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Lemma 6.10 Let G be a unimodular** locally compact group. Suppose 1 < p < oo. Let
@: G — C be a complex function which induces a positive Fourier multiplier M, : L? (VN(G)) —
LP(VN(G)). Then ¢ is equal almost everywhere to a continuous function.

Proof : We can suppose 1 < p < oo. Let g € C.(G). Then the operator \(¢g* x g) =
Mg)*Mg): L3(G) — L%(G) is positive. Moreover, by (6.4), it belongs to m,, C LP(VN(Q)).
We conclude that A(g* * g) belongs to L?(VN(G))4. We deduce that M, (A(g* *g)) is a positive
element of LP(VN(G)). Since ¢(g* *g) belongs to L!(G) NL?(G), the operator M, (A(g**g)) =
Ap(g* * g)) is bounded on L?(G). Now, for any ¢ € L?(G), by positivity,

0 < (Mo(N™ 96 ey = { ([ #(6)a" x ) el .6

L2(G)
- /G <(<P(S)(g* *g)(S)As)§,€>L2(G) duc(s)
:/G(/Gg(t—l)g(t—ls) dMG(t)>W(S)<AS§,§>L2(G) duc(s)
= /G (/Gg(t)g(ts) dMG(t)><,0(s)<>\8§,§>L2(G) duc(s)
= /G /ng(s)wu'_ls)<)\tfls§7 §>L2 @) d,ug(s) d/”’G (t)
Hence the function s — ()0(8)<As£a§>L2(G) of L*°(QG) is positive definite [146, VII.3, Definition
3.20], [50, page 296]. By [146, VIL.3, Corollary 3.22], we deduce that it coincides almost every-

where with a continuous function on G. To conclude the lemma, it suffices now to show that
there exists a neighborhood K of e € G such that for any so € G, there exists € € L2(G) such
that <)\S§, §>L2(G) does not vanish for s € Kysq. To this end, let K be a compact neighborhood

of e and set K = Kl_l - Ko, which is also compact. Let & € L?(G) such that & > 0 almost
everywhere and £y > 0 on K. Put £ =, + )\55150. Then

M)y = (M (G0 + A1) 0+ A 0) > (Mnbobo),

L2(G) 2(G)

:/fo(sosflf)fo(t) dug(t) 2/ €o(sos™ )& (t) duc ().
G Ko
For t € Ky and s € K;sg, we have sos™ 1t € KflKO = K, so that &(sgs™'t) > 0. Also,

&o(t) > 0 for such ¢t. Thus, the last integral is strictly positive for s € Kjsg, and the lemma is
shown. [ |

Proposition 6.11 Let G be a unimodular locally compact group. Suppose 1 < p < oo. The
following are equivalent for a complex measurable function ¢: G — C*,

1. ¢ induces a completely positive Fourier multiplier M,: L?(VN(G)) — LP(VN(G)).
2. ¢ induces a completely positive Fourier multiplier M,: VN(G) — VN(G).

3. ¢ is equal almost everywhere to a continuous positive definite function.

44. If p = oo or p = 1, the assumption “unimodular” is unnecessary and we can replace “positive” by “bounded”
by [41, page 458].
45. This proposition admits a generalization for n-positive maps.
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Proof : 3. = 2.: This is [41, Proposition 4.3].

2. = 1.: Suppose first that M,: VN(G) — VN(G) is completely positive. Since M., is
bounded on VN(G), by Lemma 6.6, ¢ induces a Fourier multiplier on LP?(VN(G)) which is*®
completely positive.

1. = 3.: According to Lemma 6.10, the function ¢ is continuous almost everywhere, so
we can assume that ¢ is continuous without changing the operator M, . For ¢ = 1,...,n let
fi € C.(G). Note that by [104, Proposition 2.1] the matrix [A(f] * f;)] = [A(fi)*A(f;)] is a
positive element of M, (VN(G)) and an element of M, (L?(VN(G))) by (6.4), hence a positive
element of M, (LP(VN(G))). Consequently, (Idm, ® My)[A(f * f;)] = [Me(ff * f;))] is an
element of M, (L?(VN(G))+ N M, (VN(G)). In particular, for any g1,...,gn € C.(G) we have

n

i,j=1
that is
Z/ )7 = £5)(5) (00 * 37)(5) i (s) > 0.
7,7=1
By [41, Proposition 4.3 and Proposition 4.2], we conclude that the function ¢ is continuous and
positive definite. [ |

Proposition 6.12 Let G be a unimodular locally compact group. Suppose 1 < p < oo. Let
(My,) be a bounded sequence of bounded Fourier multipliers on LP(VN(QG)) such that (¢n)
converges almost everywhere to some ¢ € L°(G). Then ¢ induces a bounded Fourier multiplier
My on LP(VN(G)) and

lim inf

||M¢>||LP(VN(G))—>LP(VN(G)) S P ||M¢n||LP(VN(G))—>LP(VN(G)) :

Proof : By Lemma 6.5, the functions ¢, are uniformly bounded in the norm |||« (g,. Consider

some functions f,g € C.(G) * C.(G) (to adapt if p = 1). In particular, the functions ¢, f and
g belong to L'(G) N L2(G). Using the Plancherel isometry (6.3), we note that

= ‘</\(¢nf)’ /\(g)>LP(VN(G)),LP* (VN(G))‘

= ‘ <M¢n, (M), A(g)>Lp(VN(G)))LP* (VN(G)) ‘

LP(VN(G))—LP(VN(Q)) ||)‘(f)||Lp(VN(G)) H)\(g)HLP* (VN(G)) -

fgduc

Taking the limit with the dominated convergence theorem, we obtain

/G 69 duc

< 17%9_‘1_{5 1My, ||LP(VN(G))—>LP(VN(G)) ||/\(f)||Lp(VN(G)) H)\(g)HLP*(VN(G))
and finally by the Plancherel isometry

< liminf | My,
n—-+oo

’</\(¢f)7 A(g)>Lp(VN(G))7Lp* (VN(Q)) LP—LP ”/\(f)”LP(VN(G)) H>‘(g)||Lp* (VN(G)) -

Using the density of A(span C.(G) % C.(G)), we deduce that ¢ induces a bounded multiplier and
that the inequality is true. [ |

46. We use here the fact, left to the reader, that if T: M — N is a completely positive map which induces a
bounded map Tj: LP(M) — LP(N) then T}, is also completely positive.
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6.2 The completely bounded homomorphism theorem for Fourier mul-
tipliers

Suppose 1 < p < co. Let us remind the definition of a Schur multiplier on S5, = L?(B(L?(Q2)))
where (Q, ;1) is a (localizable) measure space [103, Section 1.2]. If f € L2(Q x Q), we denote
by Ky: L*(Q) — L*(Q), u — [, f(z,-)u(z) dz the integral operator with kernel f. We say
that a measurable function ¢: Q x Q — C induces a bounded Schur multiplier on S} if for any
f € L2(Qx Q) satisfying Ky € SP we have K,y € SP and if the map S3NSE — S, Ky +— Ky
extends to a bounded map My from SP into SP called the Schur multiplier associated with ¢.
We denote by zmgcb the space of completely bounded Schur multipliers on S¥. We refer to the
surveys [147] and [148] for the case p = oo.

Let G be a unimodular locally compact group. The right regular representation p: G —
B(L%(@G)) is given by (p:€)(s) = £(st). Recall that p is a strongly continuous unitary represen-
tation. We will use the notation Adp St — S%, x — psaps—1. A bounded Schur multiplier
My: S7, — S7, is a Herz-Schur multlpher if MgAdD) = Adj M, for any s € G. In this case,
there exists a measurable function ¢: G — C such that (b(r s) = @(rs™!) for almost every
r,s € G and we let MES = M,;. We denote by ‘.mng’HS the subspace of EU%’Cb of completely
bounded Herz-Schur multipliers.

In the sequel Ggisc stands for the group G equipped with the discrete topology.

Proposition 6.13 Let G and H be second countable locally compact groups and o: G — H
be a continuous homomorphism. Suppose 1 < p < oo. If p: H — C is a continuous function
which induces a completely bounded Herz-Schur multiplier Mgs : ST — S%,, then the continuous
function p oo: G — C induces a completely bounded Herz-Schur multiplier Mgfg St — SZ,
and

L, S IMEE]

H SOOUHCb ,SE, cb, 5% —S% "

Moreover, if o(G) is dense in H, we have an isometry*’ ngs M;IOSU

Proof : Let G & G/Ker(o) 2y Rano - H be the canonical decomposition of the homomor-

phism o. By [31, Lemma 9.2] (see also the arxiv version, Lemma 8.2), we have
HS —
s, = sy s

We have a natural isomorphism Jj : S(G /Kot 0)aine S?Ran )tine?
€sy.s, 'S are the matrix units. Therefore, the group isomorphism 6: G/ Kero — Rano yields
an isometric isomorphism from the space of completely bounded Herz-Schur multipliers over

to the space of completely bounded Herz-Schur multipliers over S(G / Ker 0)aie by

€s1.50 7 €5(sy),5(sy) Where the

S(Rdn 0)dis

sending each M5 to M5, = J5-1 M}!SJ5. Thus, we obtain using [31, Lemma 9.2] three fimes

HM ozocrHCb S Ker o 5 Kor o = H Owg”cb Sta, Kor o) giac —S(s, Kor o) gia
= HMgoSlHbes(R e =S oy < HMSSH MSSH

cb,S? —SP - | cb,S? —sSP *
77 Hgisc Haisc U H H

This shows the first part of the proposition.
It remains to show the isometric statement in the case where Ran o is dense in H. According
to the above, we only need to show that

©7) 950, <NV

47. The proof shows that if Moo is completely bounded then M, is completely bounded.
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According to [103, Theorem 1.19], we have

1225 sup | M%) |

P p —
bSH=H  peH finite

cb,S% S
Here, the restriction to F' means that one considers the mapping ZSI’SZEF Qsy,55Cs1,80
D s1.saeF (57 152) s, 5,5, .5,- We fix some finite subset F' = {s1,...,sy} C H and some & > 0.
Then for any 1 < k,I < N, by continuity of ¢, there exist a neighborhood V4 ; of s,;lsl such
that |o(t) —¢(s; 's1)| < e if t € Vi;. Since the mapping G x G — G, (s,t) = s~ 1t is continuous,
there exist neighborhoods Wy, ; of s; and W,QJ of s; such that (Wk,l)_lWAl C Vi, For any
1<k<N,let now U, = ﬂf;l Wi N ﬂl]il I/VZ'J€ which is a neighborhood Uy, of s;. Since Ran o
is dense in H, there exists ¢, € Rano N Uy and we obtain a subset F. = {t1,...,tn} of Rano
with the same cardinality as F'. Moreover, t,;ltl belongs to U, U, ¢ Vi1 and consequently,
lo(ty ') — p(sy. 's1)| < e for any k,l € {1,...,N}.

Denote M4, Mp: S% — S% the Schur multipliers with symbols A = [p(t;'#;)] and B =
[¢(s;. "s1)]. Then, we obtain using the identifications S% = SX and S% = S% in the first
equality :

HS
‘HM 01|Fs cb,S% —5% ||M¢ ‘F||cb,S§~>S; - ‘HMA||0b7SZ—>S§’v N ”MB||cb,S§i;—>SJ’Q
N
< [ Ma - MB||Cb,s§';,_>5§, = Z (@(tzltz) - 90(51:131))Mem
k,i=1 cb,S%, ST,
N
Z (b ") = @ (s 50| [ Moy llop 5 sn. < Ne.
We have shown
HS HS
HMwoz cb,S% —S% o0 ||M |F|’cb,5’§’,%5§'
But again according to [103, Theorem 1.19], the left hand side is dominated by
H cpozHCb S(Rano‘)d _>S§7Rana)d ’
Hence we obtain (6.7). [ |

Now, we state a completely bounded version of the classical homomorphism theorem [54,
page 184].

Theorem 6.14 Let G and H be locally compact groups and o: G — H be a continuous homo-
morphism. Suppose 1 < p < 0o. We suppose that G and H are second countable and amenable
ifl <p<oo. Ifp:H — C isa continuous function which induces a completely bounded
Fourier multiplier M, : LP(VN(H)) — LP(VN(H)), then the continuous function poc: G — C
induces a completely bounded Fourier multiplier M, : LP(VN(G)) — L?(VN(G)) and

< M

1Moo ||, LP(VN(G))=Lr (VN(G)) S cb, L2 (VN(H))—Le (VN(H)) *

Moreover, if o(G) is dense in H, we have an isometry'® My, — Myo,. Finally, if M, is
completely positive then Mo, is also completely positive.

48. The proof shows that if Moo is completely bounded then M, is completely bounded.
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Proof : The case p = oo is [136, Theorem 6.2]. By duality, we obtain the case p = 1. Now, we
suppose that 1 < p < oo. Note that by Lemma 6.5 and Lemma 6.6, the function ¢ is bounded.
Then by amenability of G and H, using [30, Theorem 4.2 and Corollary 5.3]*" with [31, Remark
9.3] and Proposition 6.13, we obtain

”Msooo”cb L2 (VN(G))—LP(VN(G)) — HMSOSUHCb,sgasg S HMESH

= [ M|,

cb,S2 5P,
LP(VN(H))—Lr(VN(H)) *

The isometric statement is proved in the same way.

Finally, suppose that M, is completely positive. By Proposition 6.11, we deduce that its
symbol ¢ is a continuous positive definite function. Since ¢ is continuous, the function ¢ o o is
also continuous. Moreover, if ay,...,a, € C and sq,...,s, € G, we infer that

Z araip o o(sgs; ' Z axaip(o(sk)o(s) ™) = 0.

k=1 k=1

We conclude that ¢ o o is positive definite. We conclude by using again Proposition 6.11. ®

6.3 Extension of Fourier multipliers

The following is an extension of [(7, Lemma 2.1 (2)] and a variant of [31, Theorem B.1]. In [31,
Theorem B.1], we warn the reader that a factor ug(X)™! is missing. Contrary to what is said,
the alluded method does not give constant 1.

Theorem 6.15 Let I' be a lattice of a second countable unimodular locally compact group G
and X be a fundamental domain associated with I'. We denote by v: G — T and x: G — X the
measurable mappings uniquely determined by the decomposition s = w(s)vy(s) for any s € G.
Suppose 1 < p < 0o. We assume that G is amenable if 1 < p < 0o. Let ¢: I' — C be a complex
function which induces a completely bounded Fourier multiplier My : LP(VN(T')) — LP(VN(T)).
Then the complex function 5 = mlx*(¢ur)*1x—l : G — C where ur is the counting measure
on ' defined by

(6.8) ¢(s) =

o(v(sw)) dpg(w), seG

—55 L o) dete)

is continuous and induces a completely bounded Fourier multiplier M$: LP(VN(G)) — LP(VN(GQ))
and we have

(6.9) 25| < || M

¢b,LP (VN(G))—LP (VN(G)) ¢b,LP (VN(T))—Le (VN(I))

Finally, if My is completely positive then MZJ s also completely positive.
Proof : The case p = oo is [67, Lemma 2.1 (2)] and the case p = 1 follows by duality. The

continuity of ¢ is alluded® in [67] and in the proof of [67, Lemma 2.1], the formula (6.8) is
shown.

49. We warn the reader that the proof of [30, Theorem 5.2] is only valid for second countable groups. The proof
uses Lebesgue’s dominated convergence theorem in the last line of page 7007 and this result does not admit a
generalization for nets. See [94] for more information.
50. We have

1

o(s) = M%(X)/be(v(sw))duc(w) = m/cﬂv(t))lx(sflt) dpg(t).
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Now, we consider the remaining case 1 < p < co. Since G and I' are both amenable, we
obtain using [30, Theorem 4.2, Corollary 5.3]°! in the first and in the last equality together
with [31, Remark 9.3], and [103, Lemma 2.6] in the inequality

HM ||cb ,LP(VN(G))—LP(VN(G)) HMHSch,Sg—>S§’; < ||M</§IS||

= || My||

cb,S2—SP
ch,LP (VN(I'))—LP (VN(I)) "

Suppose that M, is completely positive. According to the proof of [67, Lemma 2.1], for any
s,t € G, we have

1
pa(X)

(6.10) Bst™) = /X 6 (v(s)7(t) ) dpir (o).

We will show that 5 is positive definite. Let aq,...,a, € C and s1,...,s, € G. Since ¢ is
positive definite by Proposition 6.11, we obtain

Z akﬁlg(sksfl) = a0y Y(spw’)y(siw’) ™) dpg (W)
k=1 kl 1
1 / i —_— / n—1 /
= arao(v(spw’)y(siw") ™) dug (W) = 0.
na(X) Jx Pt

Since the function (E is continuous, we conclude that Mg is completely positive by using again
Proposition 6.11. ]

6.4 Groups approximable by lattice subgroups

If (Y,disty) and (Z,distz) are metric spaces and if f: Y — Z is uniformly continuous, we
denote by w(f,-): [0, +00[— [0, +00[ a modulus of continuity of f. We have lims_,ow(f,d) =0
and w(f,0) = 0. The function w(f,-) is increasing and for any s, € Y we have

(6.11) distz (f(s), f(t)) < w(/f,disty (s, )).

Let G be a topological group. We denote by v: G — G, s +—+ s~ ! the inversion map.
The following theorem gives a variant of Theorem 4.2 for a particular class of unimodular
groups.

Theorem 6.16 Let G be a second countable unimodular locally compact group which satisfies
ALSS with respect to a sequence of lattices (I'j);>1 and associated fundamental domains (X;);j>1.

Then for any s1,s2 € G, we have

1 _ _ ||¢HL G
[6o1) = $ls2)] < ——s / |¢(7(t))\|1x(811t)—1X(521t)|duc(t)\# | Iax(t) = Lax(Oldnc(t)
G
ol PO pella 089
@ ey TET@) ne(X) sa—s1
where the last line follows from [72, Theorem A page 266].

51. We warn the reader that the proof of [30, Theorem 5.2] is only valid for second countable groups. The proof
uses Lebesgue’s dominated convergence theorem in the last line of page 7007 and this result does not admit a
generalization for nets. See [94] for more information.
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Suppose 1 < p < co. We assume that G is amenable if 1 < p < co. Suppose that for some
constant ¢ > 0 and any compact subset K of G we have

1 12 (X, NX;s) =
L ) e =0

where = pg is a Haar measure of G. Then for 1 < p < oo, there exists a linear mapping

P%: CB(LP(VN(QG))) — MP>(G)

6.12) lim sup ’
( i—oo yer;nK | 1(Xy)

of norm at most % with the properties:
1. If T: LP(VN(G)) — LP(VN(G)) is completely positive, then P%(T') is completely positive.

2. If T = My is a Fourier multiplier on L? (VN(G)) with bounded continuous symbolp: G —
C, then PE(My) = My. Moreover, if we have vX; = X, for any j € N and any v € T';,
or alternatively, if X; is symmetric in the sense that u(XjAXj_l) =0 for any j € N, then
PE(My) = My for any bounded measurable symbol such that M, € IMPP(G).

For an element T belonging to CB(L?(VN(G))) and to CB(LY(VN(G))) for two values p,q €
[1, 00|, we have P& (T)x = PL(T)x for x € LP(VN(G)) NLY(VN(G)).
In the above, if p = oo, then we have to take CBy-(VN(G)) as the domain space of PZ.

Proof : For any j, we consider the element h; = A(1x,) = ij As du(s) of the group von
Neumann algebra VN(G) and define for 1 < p < oo the (normal®?if p = co) completely positive
map
O LP(VN(T;)) = LP(VN(G)), Ay = u(X) "2 T 5N By
It is noted and shown in [31, page 19] that each <I>§ is completely contractive. For any 1 < p < oo,
we also consider the adjoint (preadjoint if p = 1) ¥% = (@g?*)*: LP(VN(G)) — LP(VN(T;))
of <I>§* which is also completely contractive and completely positive by Lemma 2.7. Now,
use Theorem 4.2 for the discrete group I'; and define for some completely bounded map
T: LP(VN(G)) — LP(VN(G)), the Fourier multiplier My, : LP(VN(I';)) — LP(VN(T';)) defined
by
1 s 1 o0 o0 o] :
My, = EPffj (W?T(I’?) ifl<p<ooand My, = EPFj (U Py (T)®5°)  if p = o0,

where the contractive map Pg+: CB(VN(G)) — CB(VN(G)) is described in Proposition 3.1,
whose symbol is (if T is normal in the case p = 00)

(6.13) 6;(7) = %ij (TPTRP(A\)A, 1) = %TG (T@?(Aw)éﬁ*()\fl))

1
= ———76(T(hI\ hj)RI A -1hj).
cu(Xj)?)TG( (B Ayh)hjAs=1h;)

Then we have for 1 < p < oo

1
o, Lpy (wrre)

b, L2 (VN(I;))—Le (VN(T;)) H b LP (VN(T, )5 Lo (VN(T, )

1 1
< = || vPToP <=
= . H\I/JT(I)JHcb,LP(VN(l"j))—>LP(VN(1"j)) e ‘|T|‘cb7LP(VN(G))—>LP(VN(G))
52. Recall that the product of a von Neumann algebra is separately weak* continuous, e.g. see [23, Proposition
2.7.4 (1)].
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and similarly for p = co. Let further

1

(6.14) b; = ij)lxj #(¢jpr,) #1511 G = C

where pr, is the counting measure on the discrete subset I'; of G. According to Theorem 6.15,
My L (VN(G)) — LP(VN(G)) is a completely bounded Fourier multiplier with
J

(6.15)
1
HM@ ch,LP(VN(G))—>LP(VN(G)) < ||M¢J' ||cb,LP(VN(Fj))—>LP(VN(Fj)) < E ”T||cb,LP(VN(G))—>LP(VN(G)) .

If 1 < p < 00, note that B(CB(L?(VN(G)))) is a dual Banach space and admits the predual
(6.16) CB(LP(VN(G)))&(LP(VN(G))BLP" (VN(G))°P),

where & denotes the Banach space projective tensor product and where & denotes the operator
space projective tensor product. The duality bracket is given by

(R,T® (x®y)) = (R(T)Z,Y) Lo ynay) Lo (V@)

The mappings P} : T+ M~ are linear and uniformly bounded in B(CB(L?(VN(G)))). From
now on we restrict to the case 1 < p < oo and we will return to the case p = 1 only at the end of
the proof. The elements P;’ belong to the space Y, = 1Ball(B(CB(L?(VN(G))))) for p € (1, 00].
By Banach-Alaoglu’s theorem, note that each Y, is compact with respect to the weak* topology
of the underlying Banach space. Then by Tychonoff’s theorem, Hpe(l, o0] Y, is also compact.

Thus, the net ((P )pe(l, Oo]) admits a convergent subnet ((Pﬂk))pe(l,oo]), which converges to

some element, ((P%)pe(1,00): P, ) of [[cq, = 1Yy, ie. for any p the net (Pﬁk)) converges to Py, for

the weak* topology. This 1mphes that (PP ) (T)) converges for the weak operator topology (in

the point weak* topology if p = 00) to Pp( ). Since the weak* topology on CB(LP(VN(G)))

coincides on bounded subsets with the weak operator topology (the point weak* topology if

p = 00), we conclude by Lemma 6.8 that P%(T) is itself a Fourier multiplier. Finally, in the case

p = 00, we consider the restriction P2 = ]BZ;OJO|CBW* wN(@) : CBy+(VN(G)) — CBy~(VN(G)).
Note that we clearly have

1

P
HPG||CB(LP(VN(G)))—>CB(LP(VN(G))) ggggﬂ (k) HCB(LP(VN(G)))—>CB(LP(VN(G))) < P

We next show that P, preserves the complete positivity. Suppose that 7" is (normal if p = co)
completely positive. Since ®% and W} are completely positive, U/T'®" is also completely positive
and thus, by Theorem 4.2, My = le (PET®Y) is completely positive. Using Theorem 6.15,
we conclude that M ~ is completely p051t1ve Since PZ(T) is the weak operator topology limit
of M ~ (point weak* topology limit if p = o), the complete positivity of M~ carries over to

J

that of PZ(T) by Lemma 2.8.

We claim that Pf has the compatibility property stated in the theorem. Note that the
symbol ¢; of P(T') does not depend on p if 7' belongs to two different spaces CB(L?(VN(G)))
and CB(L4(VN(G))). If in addition z belongs to both L?(VN(G)) and L?(VN(G)) and if y
belongs to both LP" (VN(G)) and L¢" (VN(G)), then we have

<Pg(T)xvy> = lilzn <Pp )(T)l‘,y> = h,in <P;‘1(Ic) (T)x, y> = <Pg¥(T)x7y>'

ik
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Then it is immediate that the P5’s are compatible as stated in the theorem.

We finally will show now that P% (M) = My, for any bounded continous symbol ¢: G — C
(or ¢ bounded measurable under the additional symmetry/commutativity assumption on X;)
giving rise to a completely bounded LP-multiplier. We start by computing the symbol ¢;.
For any v € I'j, note that \yh; = A A(1x,) = A(1,x;) and similarly A, 1h; = A(1,-1x,)-
Consequently, we have

1

®i(v) = WTG (My(hs Ayhj)h5 A= hy)

1

WTG (M’/’)\(]‘Xj_l * 1'YX_1)>\(1XJ_1 * 17—1X]-))
1

WTG <)\(7/1(1XJ—1 * 1'YXJ))/\(1X;1 * 17*1Xj))

= CM(;J)B /Gw(s)(1X;1 * 17Xj)(s)(1X;1 1, ) (s71) dpuls)

<

where the last equality follows from the Plancherel formula (6.3) and from the fact that the
functions ¢(1y-1 * 1yx,) and 1y-1 % 1,-1x, belong to the space L'(G) N L?*(G), and thus are
J J

left bounded. Now, using [78, Theorem 20.10 (iv)], note that for any s € G
(11 * Lx, ) (5) = /G o ()L, (1) dp() = /X L, (ts) du(t) = (X, (X5~

and
(]‘X;l * lvflxj)(sfl) = /IJ(XJ n ’}/71st) = ‘[L(’)/stil mX])

Thus, for any v € I';, we conclude that

1 N2
(6.17) 40) = oo /G W()n(X; N 7X,s)? duls).

Now, we examine the asymptotic behaviour of the sequence of symbols ¢;. Since G is second
countable, it admits a right-invariant metric dist(-,-), i.e. dist(s,t) = dist(sr,tr) for r,s,t € G,
such that the closed balls are compact [70]. We denote by B(x,r) the open ball centered on x
with radius 7 and B’(x,r) the closed ball. We need the following lemmas.

Lemma 6.17 For any neighborhood V' of the identity e in G, any compact subset K of G, any
J sufficiently large and any v € K, we have

(6.18) X;NyX;s =0, seG\WW.

Proof : Since K is compact, we have K C B(e, Ry ) for some Rx > 0. Let j be so large that
X, C B(e, 3). If s € G\B(e, Rk + 1), then we have for w € X; and v € K

dist(e,yws ™) > dist(e, s7') — dist(s ™1, yws ') = dist(s, e) — dist(e, yw)
> dist(s, e) — dist(e,w) — dist(w, yw) > dist(s, e) — dist(e, w) — dist(e, )

Thus, for such an s, we have X; NyX;s™! = 0, since X; C B(e, %) So from now on, we can
assume s € B(e, Rk + 1), in other words, varying in a compact set.
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Let € > 0 such that B(e,e) C V. By [78, Theorem 4.9], there exists ¢ > 0 such that
vB(e,e)y~! contains the ball B(e,e’) for any v € K. Let v € K and s € B(e, Ry + 1)\7V.
Since s € vB(e,€), we have ys~! ¢ 7B(e,5)_1’y_1 and finally dist(y,s) = dist(e ys7h) = €.
Consider the compact K'=B'(e,1)- B'(e, Rk +1)~! and some 0 < ¢’ < min{3¢’, 1} such that
w(v|K’',e") < i&’. Consider j so large that X; C B(e,e”). Let w € X;. Then

dist(e, yws™!) = dist(e, sw™ 1y = dist (v, sw™!) > dist(y, s) — dist(s, sw™).

Note that s! and ws™! vary in the compact K’ for w varying in X;. Now, using (6.11), we
have

1
dist(s, sw™") < w(v|K',dist(s " ws ™)) = w(v|K’', dist(e,w)) < w(v|K',e") < 56/.
We deduce that dist(e,yws™") > &/ — 4¢/ = 3¢/ > €”, so that yws™! ¢ Ble,e”) and thus
X; NyX;s7! =0 since X; C B(e,e”). We have shown (6.18). [ |

Lemma 6.18 Assume in addition that ¥ is a continuous symbol. Then for any compact subset

K of G, we have

(6.19) sup [¢;(y) =¥ ()| ———=0.
~E;NK J—too

Proof : We fix a compact subset K of G and a compact neighborhood V of e. Then, for
any j sufficiently large and any v € K, Lemma 6.17 implies the existence of the integral

Jou( Y)p(X; NyX;s™ )2 du(s). By definition of ¢, for any v € I'; N K, using (6.17) in the first
equahty, we have

19i(v) —¥(v)| =

/w (%X, N X5~ )Qdms)—w(v)‘

p(X; NyX;s™ )2 dp(s) — CM(Xj)3¢('Y)’

(X NyX;s™? /¢ (X; NX; s~ )2d,u(s)

/ P)(X; N 7% )Qdu(S)—cu(Xj)?’w(v)‘

/W (M| (X5 NyXjs™ )Qdu(s)
+W ‘/ (X; NyX;s™ )du()—C,U(X)3
/w (D (X5 N 7X557) dpa(s)
1 1 a(Xn9Xs )’ _
+ WO u<xj>/c o e

The last summand converges to 0 as j — oo uniformly in v € I';N K according to the assumption
(6.12) and the boundedness of ¢. It remains to treat the first summand. Then, for and j
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sufficiently large and v € I'; N K, using Lemma 6.17 in the first equality, we obtain

sup / [(s) — 0] (X5 0 7X55 1) du(s)

yEL;NK cpu(X

— / () — ()| (X, 17X~ duls)
\4

CM(Xj) YET,;NK J~

1 e
i (o [ n X ) (st~ 0]

- (e S 09) 940

We will show that for V = B’(e,&’) the last supremum converges to 0 as ¢’ — 0 uniformly
in j. Since it is not difficult to see that the first factor is uniformly bounded for 7 > 1 and
v €T, N K by the assumption (6.12) of the theorem, (6.19) follows. Consider some 0 < ¢ < 1.
Define the compact K’ = K - B'(e,1). Let 0 < &’ < 1 such that w(v|K'71,¢’) <e. If s,t € K’
and dist(s~1,¢t71) < &, we have by (6.11)

N

dist(s, 1) < w(v|K' "' dist(s™, ¢t 7)) <w(v|K',€) <e.

Note that the restriction )|K’ of the continuous function % on K’ is uniformly continuous. For
any j, using (6.11) in the first inequality, we deduce that

sup [¥(s) = ¥(7)] < sup w(Y|K', dist(s, 7))
seyB’(e,e’), vel';NK sTleB/(y~1l,e’), vel;NK

< sup w(Y|K' ) =w(¥|K',e) — 0.
seyV,vel,NK e—0
We continue with the asymptotic behaviour of the symbols E

Lemma 6.19 Assume in addition that v is a continuous symbol. Then for any s € G, we have

(6.20) Bi(s) —— ¥(s).

Jj—+oo

Proof : Let s € G. Recall that we have a unique decomposition s = w;(s)y;(s) with w;(s) € X;
and 7;(s) € T';. Then, by (6.8), we have

)~ = | gy . @atutom anto) - ‘ . @60 = ) autt
1
< gy L (19105060) = vyl + Wtay(e) 651 o)
<ot | 16505(50) ~ s (st dutt) + i [ wla(st)) = vl due).
\H(Xj) X, Y ! n(X;) X; !

We start to prove that the first summand converges to 0 as j — co. Indeed, according to (6.19),
it suffices to show that +;(st) remains in a fixed compact set independent of j, for ¢ varying in
X;. We will even show that dist(vy;(st),s) — 0 as j — oo uniformly in ¢ € X;.

Let € > 0. Consider the compact K, = (s- B'(e,1))~!. There exists 0 < ¢’ < min{1,e} such
that w(V|Ks,5') < €. Then for some jg € N, we have XJ C B(e,é’) for all j > jo. Note that
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571 and (st)~! and vary in the compact set K for j > jo and ¢ varying in X;. For these j and
any t € X;, using (6.11), we see that

dist(v;(st), s) < dist(v;(st), st) + dist(st, s) = dist(w; (st) " 'st, st) + dist(st, s)
= dist(w;(st) ", e) + dist(st, s) < dist(e, w;(st)) + w (V| K, dist ((st) "', s71))
< +wV| K, dist(t ' e)) <e+w(v|Ky, &) <ede
We conclude that sup,cx, dist(vy;(st),s) — 0 as j — oo.
For the second summand, consider € > 0. Note that the restriction |B’(s,1) is uniformly

continuous. There exists 0 < & < 1 such that w(w|B’(s, 1),5’) < ¢ and there exists jg such
that sup;cx; dist(~;(st),s) < € for any j > jo. For these j, using (6.11), we deduce that

sup [$(7;(st)) = ¥(s)| < sup w(¥|B' (s, 1), dist(v;(st), )

tex
< sup w(¥|B'(s,1),¢') =w(9|B'(s,1),&') <e.
tex;
That means that sup,cx, [¥(7v;(st)) — ¥(s)| — 0 as j — oo. Thus (6.20) follows. [ |

If f € L>°(G), the particular case p = 2 of (6.15) applied to My, instead of T together with
Lemma 6.5 allows us to define a well-defined operator Z;: L>°(G) — L>®°(G), ¢ — ¢, for any j
with

_ 1
(621) H‘:‘j(d))HLoo(G) < E ‘W)”LQC(G’) .

Lemma 6.20 Assume that 7X; = X;v for any j € N and any v € I'; or that u(XjAX;l) =0
for any j € N.
1. If ¢ € LY(Q) then the formula (6.17) gives a well-defined function ¢;: T'; — C for any j.

2. For any j, we have a well-defined bounded operator =;: L*(G) — LY(G), ¢ — ;j; where
¢; is defined by the formula

—~ 1
(6.22) P; = rxj)lxj * (¢jur;) * 1X;1'

Moreover, for any v € LY(G) and any j, we have
— 1
(6.23) 1% @) sy < £ 1l -

Proof : 1. If yX; = X,y for any v € T';, then using (5.2) in the second equality
p(Xj NyXys™h) = pX; NXyys™) < pX; NXhys™) = p(X; NGs™) = u(X;y).
If p(X; AXj_l) = 0, then using unimodularity in the last equality, we see that
(X5 NAX s < (X, N X;l NyX;s™ )+ p((X; — X;l) NyX s~ 1)
< p(X; N Xj_1 NAyX;s™ 1) + u((XjAXj_l) NyX;s™ 1)
<X NXny(XNXhs ™) + u(X N X Ny (X = X5 )sTh + u(XAX
—0 =0
p(X5 N XN (X NXTHs ™) 4+ p(y(XAXG s + u(XAX5 )
,u(X;1 N 'ijfls_l) = p(X; NsX;yh).

<
(6.24) <
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Using (5.2), we obtain
u(X; NyXys™h) < ulXy NsXTy) = pu(Xy).

So the integrand of (6.17) is integrable in both cases since ¢ € L}(G). We deduce that the
function ¢; is well-defined.
2. For any j, using (6.17) in the first equality, we have

PRIIESS

ST J, YOG 7 s

ver; veL;
1 / a2
S — =3 [ ()|(X; NyX;s™h) dp(s)
cp(X;)? GW; ! !
1
< —=||¥ sup w(X; NyX,s71)?2
iy | ||L1(G>SEG%% (X; X5
1 w(X; NyX;s71)?2
= =3 [¥llLi(q) sup .
cu(Xy) ) e 7;}, n(X;)?
2
1 w(X; NyX,s™h)
(6.25) < —=7 ¥l sup .
cp(X;) D e w;j w(X;)

If vX; = X, for any v € I';, then we estimate (6.25) further with the pairwise disjointness
(5.3) of the sets X;ys~! for different values of v € T'; in the second equality and (5.2) in the
third equality

3 pX;NXys™h ) pX;NXys)  pX NXys)

o=t w(X;) = 1(X;) a n(X;)
_ XN GsTh X))
1(X;) nX;)

If M(XjAX;l) = 0, then we estimate (6.25) using (6.24) in the first inequality and (5.3) in the
first equality and (5.2) in the last equality, giving

(X5 NyX;st) w(X; NsXy ™) p(X;nsXry)
3 M%) 5 -

1(X;) w(X;) B wX;)

el vel';

By [78, Theorem 19.15], we conclude that the measure ¢;ur; is bounded with ||¢jupj HM(G) <
m [¥]l1,1(g)- Therefore, using (6.17) and [7%, Theorem 20.12] in the first inequality and the
unimodularity of G to write ,u(X;l) = u(X;) in the third inequality, we obtain

—~ 1
||¢J'||L1(G) S (X)) ||1Xj||L1(G) Hd)j'quHM(G) HlX;IHLl(G)
1 1
< enX,) 1%l (e Hlx;lHLl(G) S2 19l (@ -
Thus, (6.23) is shown. [ |

Next, observe that if 1) has a support away from the origin e € G then &5:(7") =0 for r
close to e. More precisely, we have the following observation. This lemma is not useful if G is
compact.
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Lemma 6.21 Suppose that (s) = 0 a.e. if dist(s,e) < R for some R > 4. Then we have
(Ej¥)(r) =0 for any r € B'(e, R —4) and any j large enough.

Proof : We pick jo € N and take j > jo such that X; C B’(e, 1) for these j. By (6.8) (the
computation of [67, Lemma 2.1 (2)] is valid) and (6.17), we have

510 = iy o GO ) = e [ w8 000%™ duts) aue)

Let r € B'(e, R—4). If dist(s,e) < R the integrand is zero. On the other hand, if dist(s,e) > R,
writing 7t = w;(rt)y;(rt) where w;(rt) € X;, we have for any w’; € X;

dist(y; (Tt)w;-sfl, e) = dist(w; (rt)flrtw;sfl, e) = dist(w; (rt)flrtw;-, s)
> dist(s, e) — dist(w;(rt)” rtw ,€)
> dist(s, e) — dist(w;(rt)” lrtwj, wj) dist(wj, e)
> dist(s, e) — dist(w;(rt) "'rt,e) —
> dist(s, e) — dist(w;(rt) " 'rt,t) — dlst(t e)—1
> dist(s, e) — dist(w;(rt) "'r,e) —
> dist(s, e) — dist(w; (rt) 'r,7r) — dlst(r e)—2
= dist(s, e) — dist(w;(rt)” l,e) dist(r, e) — 2
= dist(s, e) — dist(e, w;(rt)) — dist(r,e) — 2
> dist(s,e) — dist(r,e) =3 >R—-—R+4-3=1.
So the integrand is also zero. We infer that we have a):(r) =0. [ |

We turn to the weak* convergence®® of the symbol ;ﬁg

Lemma 6.22 Let ¢y € L>(G). Assume in addition that vX; = X;v for any j € N and any
v €Ty or that ,u(XjAXjfl) =0 for any j € N. Then Z;(¥) — ¢ for the weak™ topology of
J

L*>*(G).
Proof : Let g € L'(G) be a testing element of weak* convergence. By density of C.(G) in

L}(G) and the uniform estimate (6.21), we can assume in fact that g € C.(G).

Then if x € C.(G) is a cut-off function with x(s) = 1 for all s with®® dist(s,e) < R e
4 + exc(supp g, {e}), (recall that the metric dist used above is proper) we have ¥y = 1 o
supp(g). So (¥, g)r=(q),.L () = (¥X,9)L=(G),L (c)- Moreover, we have

25(¥) = Z5(x) + E5($(1 - x)).

Recall that ¥ (1 — x) is zero if dist(s,e) < R. Hence by applying Lemma 6.21 with (1 — x)
instead of 1, we deduce that the function Z;(¢)(1 — x)) is zero if r € B’(e, exc(supp g, {e})), in
particular on supp g. We conclude that (¢;,9) = (E;(¥x), 9)-

-

53. Note that if G is compact, the proof is more simple. No need to use x.
54. Recall that exc(A, B) = sup{dist(a, B) : a € A}.
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Now let 1. € C.(G) be an e-approximation in L'(G) norm of ¢y € L}(G) N L*°(G). Using
(6.23), in the second equality, we obtain

(Z5(¥):9) oo (y.11 (@) — (¥ 91=(@) Ll(G)‘ = [(E;(¥x),9) — (¥x, 9)|
‘<(E‘—IdLl G))('(/)X ’(/)E >‘+’<_J wa ¢s,9>‘

1
S ( + 1) 19X = Yellia e N9l @) + 1(Ei ) = e, 9))|

1
S (c + 1) e gl ay + [(Zi(we) = ve, 9)] -

Thus the first term becomes small uniformly in j > jo. For the second term, we use the point-
wise convergence Z;1.(s) — ¥:(s) from (6.20) together with the domination |Z;1.(s)g(s)| <
¢ el (g lg(s)]. u

If the assumptions of Lemma 6.22 are satisfied, we deduce by Lemma 6.7 that M b — My,

in the weak operator topology of B(LP(VN(G))) (point weak* topology if p = c0). Moreover,
this convergence also holds if ¢ is a continuous and bounded symbol. Indeed, according to
(6.20), we have a pointwise convergence ¢;(s) — 1(s), which together with the uniform bound

;1L () < C||M¢||Cb Lr(VN(G))—Lr(VN(G)) of (6.15) also implies weak* convergence ¢j — 1,
so that we can again appeal to Lemma 6.7. According to the description of the predual space
(6.16), we have for the convergent subnet M - of M ~ that

T 8:9) oo ooty 7 FEML9) i onccn

for f € LP(VN(G)) and g € L? (VN(G)). Since a subnet of a convergent net converges to the
same limit, we deduce P%(My) = My.
Now, we turn to the case p = 1. We simply put

PA: CB(LY(VN(@®))) — CB(LY(VN(Q®))), T + P (T)..

Note that PZ°(T*) belongs to M>P(G), so that it admits indeed a preadjoint P°(T*). be-
longing to MLP(G) by Lemma 6.4. We check now the claimed properties of PL. Linear-
ity and boundedness are clear. If T: L}(VN(G)) — LY(VN(G)) is completely positive, then
by Lemma 2.7, T is also completely positive and hence also Pg°(T7%). We conclude that
PL(T) = P(T*). is completely positive. If M, € MHP(G), then we have PL(M,) =
PE((My)"): = (P (My). = (M), = My,

It remains to check the claimed compatibility property. We need the following lemma.

Lemma 6.23 For j € N and any completely bounded map T: L' (VN(G)) — LY(VN(G)), we
have P} (T)* = Py°(T*).

Proof : In this proof we denote by ¢ the symbol of %Pffj (WIT®Y). Let S: LY(VN(T;)) —
L'(VN(T})) be a completely bounded map. We denote by 7 the symbol of the Fourier mul-
tiplier Pllj (S) given by Corollary 4.6 with G = H = I';. The symbol w;s*) of the Fourier
multiplier PR°(S5™) is given by (where v € I';)

() = 7, (S* (M)A = 70, (A S(ATY) = 71, (ST HA,) = 0¥ (77 1) = 45 ().
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Using Lemma 6.4 in the second equality, we obtain
(6.26) PR (57) = Mys = (Mys)" = (P,(5))".

Ok FHOO 1 1= fad :
Note that W57 = (¥;T®;)*. This implies

1 o] 00 1% F, OO 1 00 1 1y* 1 1 1 1\* *
M(b;w) = EPFJ' (\Ilj 7] ) = EPFJ' ((\IJjT<I>j) )= EPF], (\Ilefbj) = (M¢;T) = Mc/EJ,T
where we use (6.26) in the central equality. Now, using (6.14), (1Xj)v = 1y-1 and fir; = pr,,
J
we deduce
Q@:le'*(gb@*)ur)*l 71:L1X,*((5Tp{n)*l -1
J M(Xj) J J i X; M(Xj) J J X;
= T e (0Tr) % Ly = oF
M(X]) J 7 j XJ 77
thus finishing the proof of the lemma since P} (T)* = (M;;J;)* = MET/ = M(;;/) =Px(T"). m

Now suppose that 7" belongs to both CB(L!(VN(G))) and CB(LP(VN(G))). Recall that the

symbol ¢ of Pf(T) does not depend on p if T belongs to two different spaces CB(L?(VN(G)))
and CB(L?(VN(G))). Consequently the symbols of P}(T)* and le (T)* are identical and the

symbols of P>°(T*) and P} ’ (T™*) are also identical. Using the above lemma, we conclude that

PP(T)* = PP (T™).

J

Passing to the limit when j — oo, we infer that P5(T)* = Pg (T*). Therefore, for any
z € LY(VN(G))NLP(VN(G)) and any y € VN(G)NLP (VN(G)), using the compatibility of the
PZ already proven, we have

(P&(T)a,y) = (P (T")u,y) = (z, P& (T")y) = (&, PG (T")y) = (2, PE(T)"y)
= <Pg(T).’L‘, y>

This shows the compatibility on the L' level. [ ]

Remark 6.24 Suppose 1 < p < co. The amenability assumption has only been used once in
the proof because of the use of Theorem 6.15. It would be interesting to find a non-amenable
version of Theorem 6.15.

Remark 6.25 We ignore if the condition (6.12) can be removed.

Since the symbol of a completely bounded Fourier multiplier My, : VN(G) — VN(G) is equal
almost everywhere to a continuous function, see e.g. [67, Corollary 3.3], the above theorem
gives projections at the level p = 0o and p = 1.

Corollary 6.26 Let G be a second countable unimodular locally compact group satisfying ALSS
such that (6.12) holds. Then there exist projections P : CBy«(VN(G)) — CBy« (VN(G)) and
PL: CB(LY(VN(G))) — CB(LY(VN(QG))) which are compatible, onto IM>><(G) and M (G)
of norm at most % preserving complete positivity.
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6.5 Examples of computations of the density

In this section, we will describe some concrete non-abelian groups in which Theorem 6.16 applies.
Before that, we start by recalling some information on semidirect products.

Semidirect products. Let G; and G2 be topological groups and consider some group ho-
momorphism 7: G2 — Aut(G) such that the map®®

(6.27) G1 X G3 = Gy, (s,t) — n(s) is continuous.

The semidirect product Gy %, Go [60, page 183] is the topological group with the underlying
set G1 X G4 equipped with the product topology and with the group operations given by

(6.28) (s,8) % (', ) = (sme(8),tt') and  (s,8)"' = (-1 (s71),t71).

The group G identifies to a closed normal subgroup of G %, G2 and G as a closed subgroup
[60, page 183] and we have (G1 %, G2)/G1 = Ga.

If G; and G are locally compact groups then G %, G5 is a locally compact group. If G; and
G4 are in addition equipped with some left Haar measures pg, and pg,, by [60, Proposition 9.5
Chapter III] (see also [78, 15.29]) a left Haar measure of G is given by pe = e, ® (0ug,) where
d: G2 — (0,00) is defined by 6(¢t) = modn; where ¢ € Go. By [60, Chapter III, (9.6)], a right
Haar measure is given by Ag, g, ® Ag,pa,- 1t is folklore and easy to deduce that the group
G1 Xy Gg is unimodular if and only if G; and G5 are unimodular and if each automorphism 7,
of (71 is measure-preserving, i.e. if

; f(ne(s)) dpa, (s) = ; f(s)dpc,(s), te Gy felCe(Gr)

In this case, pg = pag, ® pa, gives a Haar measure on G.
We will use the following lemma.

Lemma 6.27 Let Gy and Go be locally compact groups. Let I'y and I's be lattices in G, and
Gs. Suppose that n: Go — Aut(G1) is a homomorphism satisfying (6.27). If n:(T'1) C Ty
for any t € T's then ' =T'y Xy, T2 is a lattice of G1 X, Ga. If in addition X; and Xa are
associated fundamental domains satisfying n,,,(v1) = 71 for any we € Xo and any v1 € Ty then
X =X; x X5 is a fundamental domain associated with T'.

Proof : The first part is [14, Exercise B.3.5]. It remains to show that X is a fundamental
domain of I'. Indeed, this subset is clearly Borel measurable. Consider some arbitrary element
(s1,82) of G. Since X; is a fundamental domain of I'y, we can write s1 = wyy; with wy € X;
and vy, € Iy and similarly s = waye with wy € X5 and sz € T'a. Consequently, using (6.28), we
have

(s1,82) = (Wi, way2) = (W1nwy (1), w2y2) = (W1, w2) Xy (71,72)

where (wq,w2) € X and (y1,72) € I'. So we obtain (5.2).

Consider some (w1, ws), (W],w)) € X where wy,w] € X; and wy,w) € X3 and some elements
(71,72) and (71, 75) of T If (w1, wa) Xy (71,72) = (W, wh) Xy (71,73) then (winw, (1), w2y2) =
(w’lnwé(’y{),w’zfyé), that is (wiy1,w2y2) = (Wiv],whys). We deduce that w1y = wiy] and
way2 = whys. We conclude that (y1,72) = (71,7%). Hence we obtain (5.3). |

55. If Aut(G1) is equipped with the well-known Braconnier topology, the continuity of the map (s,t) — n:(s)
from G1 x G2 onto G is equivalent to the continuity of the homomorphism 7: G2 — Aut(G1).
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Groups acting on locally finite trees. We give now some examples of compact non-
discrete ALSS groups acting on locally finite trees for which Theorem 6.16 yields a bounded
map P%: CB(LP(VN(G))) — MP:P(@) with sharp norm, i.e. with a norm equal to one.

Let (m;);>1 be a sequence of integers with m; > 2. Let Y = (Y;);>1 be a sequence of
alphabets with [V;| = m; and Y; = {y;1,...,Yjm,}- If n > 0, a word of length n over Y is
a sequence of letters of the form w = wyws ... w, with w; € Y; for all j. The unique word of
length 0, the empty word, is denoted by (). The set of words of length n is called the nth level.

Now we introduce the prefix relation < on the set of all words over Y. Namely, we let w < z
if w is an initial segment of the sequence z, i.e. if w = wy...wy, 2= 21...2; with n < k and
w; = z; for all j € {1,...,n}. This relation is a partial order and the partially ordered set 7
of words over Y is called the spherically homogeneous tree over Y. We refer to [12] and [63] for
more information.

Let us give now the graph-theoretical interpretation of 7. Every word over Y repre-
sents a vertex in a rooted tree. Namely, the empty word () represents the root, the m; one-

letter words ¥1.1,...,¥%1,m, represent the m; children of the root, the my two-letter words
Y1,1Y2,1, - - - » Y1,1Y2,m, represent the mo children of the vertex yy 1, etc.
0
— | T
— | T~

Y11Y2.1 ‘.y1.1y2,2 Y1,1Y2,mso b Y1,mi¥2,1 Jyl.7111y2.2 Y1,mq1 Y2,mo

An automorphism of 7T is a bijection of T which preserves the prefix relation. From the
graph-theoretical point of view, an automorphism is a bijection which preserves edge incidence
and the distinguished root vertex (). We denote by Aut(7) the group of automorphisms of 7~
and if j > 0 by Aut(;)(7) the subgroup of automorphisms whose vertex permutations at level j
and below’® are trivial.

We equip 7 with the discrete topology and Aut(7) with the topology of pointwise con-
vergence. By [03, page 133], the sequence (Aut;;(7));>0 of finite groups and the canonical
inclusions ¢;;: Aut;1(7) — Autp;)(7T) where j > ¢ > 0 define an inverse system and we have an
isomorphism

(6.29) Aut(T) = lim Auty; (7).

In particular, Aut(7) is a profinite group, hence compact and totally disconnected by [153,
Corollary 1.2.4].

If j > 0, we denote by St(j) the jth level stabilizer consisting of automorphisms of 7 which
fix all the vertices on the level j (and of course on the levels 0,1,...,5 — 1). Then St(j) is a
normal subgroup of Aut(7) which is open if j > 1. By [12, page 20], for any j > 0, we have an
isomorphism

(6.30) Aut(T) = St(j) = Aut[j] (7).

56. The action is trivial on the levels j,7 + 1,5+ 2,....
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Proposition 6.28 The compact group Aut(T) is second countable and ALSS with respect to the
sequence (Aut(;1(T));>1 of finite lattice subgroups and to the sequence (St(j));>1 of symmetric
fundamental domains. Moreover, (6.12) holds with ¢ = 1. More precisely, for any integer j € N
and any v € Autp;(T), we have

1 p(St(5) NySt(5)s)?
(6.31) 7/ : dpu(s) = 1.
1(St(7)) Jauscr) n(St(4))?
Consequently, Theorem 6.16 applies.
Proof : Since the inverse system is indexed by N, by [153, Proposition 4.1.3], the group Aut(7)

is second countable. By (6.30), we have Aut(7) = St(j)Aut;;(7). Suppose that 1,2 belong
to Aut;)(7) and that wy,ws € St(j) satisfy wiy1 = way2. Then wy'wi = 7277 . Using again
(6.30), we infer that 1 = 2. Moreover, St(j) is open hence Borel measurable, and a subgroup
hence symmetric. We conclude that St(j) is a symmetric fundamental domain for Aut; (7).

Now, we have a homeomorphism Aut(7")/Aut;)(T) = (St(j) x Auty;(T))/Aut;(T) = St(j).
Note that the subgroup St(j) is open, hence closed in the compact group Aut(7) by [78,
Theorem 5.5] and finally compact. We conclude that Aut;;(7) is a cocompact lattice. Moreover,
by [63, page 133], the sequence (St(j);>1 is an open neighborhood basis of Id7 in Aut(7).

It remains to compute (6.31). By normality of St(j), for any v € Aut;(7), we have
~St(j) = St(j)y. Using that p is a left Haar measure of Aut(7) in the last equality, for any
v € Auty;)(T), we deduce that

| PG NS 1 p(SG) NSy |
w(513)) /Aum ) A1) /Autm wGe )
! p(SIG) NS

) /AW) ) e

For any s € Aut(7), the sets St(j) and St(j)s are right cosets of the subgroup St(j) in Aut(7).
Since two right cosets are either identical or disjoint, we deduce that

St(5) if s € St(4)

St(4) N St(j)s = {@ if s ¢ St(j)

Now, we can conclude since

! PSS p(St())?
TGP S SO = i ‘

Remark 6.29 By [63, page 134], note that we have an isomorphism Aut(7) = I'&n(Sym(Yj) 2
-+ 0Sym(Y3) 1 Sym(Y1)). If (G},Y;);>1 denotes a sequence of finite permutation groups (such
that the actions are faithful), the same method gives a generalization for the inverse limit
G = @(Gj 1---1G2 1 Gy) of iterated permutational wreath products. The verification is left to
the reader.

Stability under products. The (good) behaviour of (6.12) under direct products is de-
scribed in the following result.
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Proposition 6.30 Let G1 and Gy be two second countable (unimodular) locally compact groups
satisfying ALSS with respect to the sequences (I'1 j;), (I'2,;) of lattices and to the sequences
(X41,5), (Xa,;) of associated fundamental domains. Suppose that (6.12) holds for both groups
G4 and Gy with constants ¢; and co. Then G = G1 X Go is ALSS with respect to the lattices
(Tj) = ('1,; x Ty ;) and associated fundamental domains (X;) = (X1,; x Xo,;) and it satisfies
(6.12) with constant ¢ = c1-ca. Moreover, if X1 ; and Xo ; are symmetric (resp. vuXk,; = Xk jVk
fork =1,2 and v, € Ty ;) then X; is symmetric (resp. yX; = Xy fory€T';). Let1 <p < oo
and suppose that G1 and Gy are amenable if 1 < p < oo. Then Theorem 6.16 applies to
G = Gl X G2.

Proof : If Gy and G4 are second countable then G; x G5 is also second countable. By Lemma
6.27, I'; = I'1 ; x 'y ; is a lattice subgroup of G x G2 and X; = X ; X X ; is an associated
fundamental domain. If p; and po are Haar measures on GG; and Gy then p = p; ® pg is a
Haar measure on G. We check that G1 x G2 is ALSS with respect to (I';) and (X;). Let V be a
neighborhood of e € G; X G5. Then there exist neighborhoods U; of e; € G and Us of e; € Go
such that U; x Uy C V. Since G and G2 are ALSS, there exists jo € N such that X; ; C U3
and Xp ; C Us for any j > jo. Consequently, X; = X ; x Xo; C Uy x Uy C V. Consequently
G1 x Gy is ALSS. Now for IS Fl,j? we put

1 / 13 (Xq,; N1 Xq,;81)
1 (X1y) Ja, p3 (X,)
and similarly, for given v, € T's; resp. v € I';, we define I5(y2) resp. I(y). We claim that

I((v1,72)) = I1(71)I2(72). Indeed, using the elementary fact (A x B) N (C' x D) = (ANC) x
(BN D), we have

Li(m) = dp(s1)

1 P2 (X5 x Xo,5) N (71,72)(X1,; x Xa,5)(s1,52))
I((1, R —— , ) ’ ; sy,
((71 '72)) M(Xl,j X X27j) /Gleg MQ (Xl,j X XQ,J‘) N(Sl 82)
1 / 12 (Xy,; x Xo.5) N (11 X1,581) X (72Xa,582)) q
- . 5 1151, 52)
i (Xaj) 12 (Xa,5) Jayxa 13 (Xa,5) 13 (Xa,5)
1 / 12 (X5 NyXy s1) x (Xo,j Ny2Xa,;s2)) q
= > 5 1(s1,52)
(X )12 (Xa,5) Jayxa 17 (X1,5) 13 (Xa,5)
1 / 13 (X1, N7 Xy,551) / 13 (X2, N72X2,552)
= dpq (s dus(s
Ml(Xl,j)M(X?,j) G M%(Xl,j) 1) G2 M%(XQJ) 2(52)
= I1(y1)12(72).

Now let K be a compact subset of G x Gi2. We check (6.12), that is

lim sup [ I((71,72)) — cicz2] = 0.
I (y1,72)€T;NK

Denoting 7 : G1 X G2 — G}, the canonical continuous projection, we have that 7 (K) C Gy, is
compact (k= 1,2). Then

sup [1((71,72)) — ciea| < sup [7((y1,72)) — c1c2
(v1,72)€T;NK (v1,72)€l;Nm (K) x 72 (K)
= sup sup [11(y1)12(2) — circo]
’Ylerl,jﬂﬂ'l(K) ’yzEFg,]'ﬂTrQ(K)
< sup sup  |[Li(n)L2(72) — al2(e)] + [e1l2(y2) — cicz

’7161—‘17]‘071'1(}() ’YQEFQJQTFQ(K)
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< sup |11 (1) — 1 sup [12(72)] + 1 sup [12(72) — 2
71€F1,jﬂ7r1(K) ’Yzerzyjmﬂ'z(K) ’YzEFQ,jmﬂ'g(K)

——0-ca+c1-0=0.

J—+oo
Thus, (6.12) follows for G; X G5 and constant c¢jca. The statement about preservation of
symmetric fundamental domains (resp. commutation 7X; = X;v) is easy to check. For the
application of Theorem 6.16, we only note that G; x G5 is amenable once G; and G are
amenable. [ |

Remark 6.31 Let G be a countable discrete group. The group G is ALSS with respect to the
constant sequences (I';) and (X;) defined by I'; = G and by X; = {e} for any j. Moreover, for
any v € G and any j, it is obvious that

1 / 1e:(X; NX;s)
ne(X5) Jo o pE(X;5)

dpe(s) =1

Semidirect products of abelian groups by discrete groups. For semidirect products,
the situation is not as good as direct products.

Proposition 6.32 Let Gy be a second countable abelian locally compact group which is ALSS
with respect to a sequence (I'y ;) of lattice subgroups associated to a sequence (X1 ;) of funda-
mental domains such that (6.12) is satisfied. Let Gy be a countable discrete group. Suppose
that n: Go — Aut(G1) is a homomorphism satisfying n,(I'1;) C I'1; for any t € G2 and any
j. Then the semidirect product G = G1 %, G2 is second countable and ALSS with respect to
the sequences (I'j) and (X;) defined by T'; =T'1; x Go and X; = X1 ; x {eq,}. If in addition
nt(X1;) C X1j for any t € Gy and any j then (6.12) holds with some ¢ € (0,1]. If the X ;
are symmetric (resp. v1X1,; = X1 v for any y1 € T'1 ;) then the X; are symmetric (resp.
vX,; = X;v for any v € ;). Consequently, Theorem 6.16 applies in the case p=1 and p = cc.
If G5 is in addition amenable, the result applies in the case 1 < p < oco.

Proof : It is obvious that G is second countable. By Lemma 6.27, each I'; is a lattice of G' and
each X is an associated fundamental domain. We check that G; x G is ALSS with respect to
(T'j) and (X;). Let V be a neighborhood of the neutral element e of G; X G2. Then there exist
neighborhood U; of e; € Gy such that Uy x {es} C V. Since G, is ALSS, there exists jo € N
such that X, ; C Uy for any j > jo. Consequently, X; = X; ; x {ea} C Uy x {e2} C V. Thus
G1 x Go is ALSS.

Using [14, Proposition B.2.2 page 332], the existence of a lattice implies that G is unimodular
and pe = e, ®lg, gives a Haar measure on G. It remains to check (6.12). To this end, consider
v=(1,7) €, w=(w,eq,) € X; and s = (s1,52) € G. Then using (6.28)

Yws = (71,72) Xy (W1, eas) Xy (51,52) = (71,72) Xy (W1 + 51,52) = (71 + Ny, (W1 + 31)a7282)~

This element belongs to X; = X; j x {eg, } if and only if s5 = 75 ' and 1 + 1, (w1 +51) € X1 ;.
By the assumption 7., (X1, ;) C X; j, the latter condition is equivalent with

77;21 (M1 4 1he (w1 +51)) € Xy,

that is 77;21(71) +wi +s1 € Xy ;. For any v = (71,72) € I'; and s = (s1, s2) € G, we infer from
the above that

16 (X5 NyX;s) = (na, © pa,)((X1; x {ea,}) NX;s)
= Ug, ({wl S lej : 7];21(")/1) + w1 + 81 € Xl,j})'
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Moreover, we have pna(X;) = peioe, (X1; X {ea,}) = pe, (Xij)ua,({ea,}) = pe, (Xy,).
Therefore, with a change of variable in the second equality and using the fact that G satisfies
(6.12) in the passage to the limit, we finally obtain

X N~X;s)2 ({wr €Xyj w451+ () € Xp,})?
/Md G(S):/ p, ({wn 1,j ¢ W1 1 377’y2 (m) 15}) dug, (s1)
o nalX) o S

:/ MGI({wl € Xl’j et +381 = Xl,j})z dpc, (31)

. pa, (X1 5)

pan (X 0 (X + 1))
= - : duG 5
/cl pan (Xa,5)° )
+> [AS <0a 1}
Jj—+o0

The statement about the symmetry (resp. commutativity with elements of I';) of the funda-
mental domain is easy to check with (6.28). If G2 is amenable then G is an amenable group by
[14, Proposition G.2.2 (ii)], being a group extension of an amenable group by an abelian (hence
also amenable) group. [ |

For applying the above result, we compute the density (6.12) for some abelian groups.
By [13, Corollary 4.2.6], the groups described in the following proposition are the compactly
generated locally compact abelian groups of Lie type.

Proposition 6.33 Suppose that G = Z! x R™ x T™ x F where I,n,m € N and where F is a
finite abelian group. For any integer j, consider the lattice subgroup

T;=2'x (2772)" x {279r: r€{0,...,2 = 1}}" x F
and the associated symmetric fundamental domain
X, = {0} x [—2797 27T i [ i T ym ¢ fep)

Then the group G is ALSS with respect to the sequences (I'j) and (X;). Moreover, for any j
and any v € I';, we have

1 pe (XN (y+X, +5)) 2\
MG(XJ')/G W2(K) d“G(S"(?)) '

Proof : Using Lemma 6.27, it is clear that the I';’s are lattice subgroups and that the X;’s are
associated fundamental domains. It is obvious that G is ALSS with respect to these sequences.
For any j, a simple computation gives

16 (Xj) = (upe @ ppe) ([ = 27971,27971) " s [ - 27771 277 ™)

= (MR([ -2 2—f—1))n(m([ _9—i-1 Q—j—l)) ' g-i(ntm)

Now, note that if —2a < x < 2a then we have ug([—a,a] N[—a + z,a + z]) = 2a — |z|. Further,
for any j and any v € I';, we have, writing s = (21, ..., Zn, Y1, -, Ym, 21, - - - 21, [)

/ (X5 0 (7 +X; +5))” dug(s) =/ ne (X5 N (X5 + ) e (s)
G G

= / H UR ([—Q_j_l’Q—j_l) N [—2_j_1 + .'L‘k,2_j_1 + .%‘k))Qd(ﬂ;‘l, - ,a:n)x
" k=1
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X

.

/ Hr ([72 / 132 / 1)ﬂ[*2 ’ 1+yla2 J 1+yl)) d(yla"'aym)
T

Il
SN

n+m

92— 7j7$2$n 2—J L ) mi 27 7j71;217
(/2](2 ||>d></2j<2 |y|>dy> (2/ e )d)

o—i n+m 2 n+m
2/ u? du == 9~ 3i(ndm),
0 3
Thus

2 n+m n+m
pa (X5 N (y + X+ 5)) 3j(n+m) [ 2 —3j(n+m) 2
d — 93itn+m) (2 9=3i(ntm) _ (2 € (0,1].
/| T e - : (0.1]

Remark 6.34 The assumptions of Proposition 6.32 are satisfied in the following situation.
Assume that G = Z! x R® x T™ x F where [,n,m € N and where F is a finite abelian group.
Let G2 be a subgroup of Sym(n) x Sym(m) where Sym(n) and Sym(m) are the permutation
groups of n and m elements. For (o1,02) € G, let further

(6.32) Norso0) (Z1r oo s 2,21, o Ty YLy - Y )

= (21,3 2Ty (1) - > Ty () Yoa (1) - - - » Yora(m) s ) -

For any integer j, consider the lattice I'y j = Z! x (279Z)" x {27 : 7 € {0,...,27 — 1}}"" x F of
G and the symmetric fundamental domain X; ; = {0} x[-27771 27i=h)ny [—273-1 2=i-1)ymx
{er}. It is easy to check that the transformation (6.32) preserves both I'y ; and X; ;. Then
G1, Go, (I'1;), (X1,;) and 7 satisfy all the assumptions of Proposition 6.32 and consequently
Theorem 6.16 applies to the group G = G1 x,, G.

More generally, G5 can be any countable discrete (amenable) group such that 7, is given by
a coordinate permutation as in (6.32) for any s € Ga.

Now, we give a natural semidirect product for which we can apply Proposition 6.32 and
6.33. Let H,, = R?"*! be the (continuous) Heisenberg group with group operations

(6.33) (a,b,t)-(a’,b/,t")=(a+a ,b+b,t+t +a-V) and (a,b,t)"' = (—a,—b,~t+a-b)

where a,b,a’,b’ € R™ and t,t’ € R and where - denotes the canonical scalar product on R".
Recall that H,, is unimodular and the Haar measure on H,, is just usual Lebesgue measure on
R™. We can use our results with the semi-discrete Heisenberg group described in the following
result, see [111, page 1459] for more information on this group.

Proposition 6.35 Let H, = {(z,y,t) € H,, : x,y € Z",t € R} be the (amenable) closed
subgroup of the Heisenberg group H,. For any integer j, we consider the lattice subgroup I'; =
Z" x ™ x 2797 of H,, and the associated symmetric fundamental domain X; = {0} x {0} x
[—2797127971). Then H,, is ALSS with respect to the increasing sequence (I';) and to the
sequence (X;). Moreover, for any j and any v € T';, we have

1 / p(X; N9X;s)
nw(X;) Ju,  #2(Xp)

In particular, Theorem 6.16 applies.

dpu(s) = 2

(6.34) 5
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Proof : Using (6.33), it is easy to see that H, is a closed subgroup of H,, so it is locally
compact. If Gy = {(0,b,t) : b € Z",t € R} and G2 = {(a,0,0) : a € Z"}, it is not difficult
to check by using again (6.33) that G and Gs are closed subgroups of H,, H, = G1Gs,
G1 N G2 = {(0,0,0)} and that Gy is normal in H,. By [60, Proposition page 184], we deduce
an isomorphism H,, = G %, G2 of topological groups where

6.35 w00 (0,0,8) = (0,b,t+b-a), a,beZ" teR.
(6.35) 7(a,0,0) (

Note that G is isomorphic to Z™ x R and that G5 is isomorphic to Z". For any j, we consider
I'y;=2Z"%x279Z and X;; = {0} x [-27771,27771). For any (a,0,0) € G2 and any integer j,
using (6.35), we see that 1¢,,0,0)(I'1,;) C I'1,j and 74,0,0(X1,5) C X31,;. By Proposition 6.32, we
deduce that I'; is a lattice subgroup of H,,, that X, is an associated fundamental domain and
that the group H,, is ALSS with respect to the sequences (I';) and (X;). Finally the equality
(6.34) is a consequence of Proposition 6.33 and Proposition 6.32. [ ]

We finish by bringing to light a bad behaviour of (6.12) with respect to the Heisenberg
group Hs.

Proposition 6.36 For any integer j, we consider the lattice subgroup T'; = 2771 Zx 271 7x 27217,
of the Heisenberg group Hs and the associated fundamental domain X; = [—27771 27771) x
[-27971 2707y x [-272=1 2=2i—1) Then the Heisenberg group Hs is ALSS with respect to the
increasing sequence (I';) and to the sequence (X;). Moreover, for every fixed v = (y1,72,73) €
I';, for some jo € N with (y1,72) # (0,0) and v1 - y2 = 0 we have

) 1 P2 (X, NAyX;s)
6.36 lim / J 277 du(s) = 0.
(6:36) AR W) Sy ey M)

In particular, for this choice of group, and sequences of lattices and fundamental domains,
Theorem 6.16 is not applicable.

Proof : Note that it is obvious that Hj is ALSS with respect to the sequences (I';) and (X;).
First observe that for any s € Hs and any integer j we have

u(X;MyX;s) = /

Hs

1X]-ﬂ'ijs(t) d:U/(t) = /

I, ()1, (1) dpa(t) = / Ix, ()1x, ("5~ ) du(t).
JIEY

Hs
For any s € H, any j and any v € I';, we have using the invariance of the Haar measure in the
third equality (to use u =y~ 1ts™1)

(6.37)
1 w(X; NyX;s) 1
A

Q(Xj) dM(S) = #(Xj)g /]H[3 ,U(Xj N ’ijs),u(Xj N »),st) d,u(s)

L, ()1, () 1x, (v s~ ), ("7~ dpa(r) dpa(t) da(s)

L, (8)Lx, (r) L, (w)Lx, (v~ 7t~ ya) dpa(r) dpa(t) dpa(u)

[ 167 ) ) ) )

—1,.4-1
/RS /R Vsl us s dral, fua ol <273 = el Jus sl <2=201 1x, (¥ 7 rt ™ yu) dr dudt.
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If v = (71,72,73) € I and if r,u,t € X, by (6.33), a tedious yet elementary calculation yields
(6.38)
Yt yu = (ur i —t, upra—ta, us+rs—ts—yiratHtita—tiya —tius+r1YaFrius —r1ta Y1 t2).

We estimate from above. The last indicator function in the above triple integral can be ma-
jorized by 1j(y-1p¢-1yu),<2-2-1. If |(v"trt~yu)s] < 27271 and r,u,t € X;, then by triangle
inequality and (6.38), we have

| = y1re = tiye + 12 + yate| < (vt yu)s| + Jus + rs — ts + tits — tug + riup — it

<2—2j—1(1+1+1+1+2+2+2+2) =6-2"%,

Using the equality #(Tl)g, = 212/ this says that (6.37) is less than

125 ) ) )
2 /R /]R /]R Lirsus el ral uzl ez <29 =1 Ljra us| [ ts| <229 =1 | —yira —t1 v 4ri ma i ta] <6-2-2 A du di.

We cheaply integrate over uq, us,r3, us and t3 and obtain

_ o12j5-8j . A
— 91279 /R41\r1|,|t1\,Irz\,\t2|<2_7_11\—V1T2—t1vz+r1"/2+’v1t2\<6'2_2-7 dry drg dty di.

Now suppose first that 72 = 0 and v; # 0. Then the last indicator function can be simplified
and we can cheaply integrate over r; and ¢; to estimate further

47 0—2j _ .
<292 / 1|r2\,|t2|<2*3*11\7r2+t2|<ﬁ6-2*2] drg dto
R2 1
2791 Lpmit

1 1
. 1
— 92j ) [ Cdr! dt
=2 1\t27r2\< 1_6.2—2j d’I’Q dtg = 1|t’ —rl|< 1 19.0-j d’/’2 dt2.
Cg-i-1 ) _9-i1 [EEY 4 J_1 )y 2RI

where we have performed the change of variables ry = 29+1ry ), = 271, Now the last double
integral is easily seen to converge to 0 as j — oco. The case 73 = 0 and 2 # 0 can be treated
in the same way by symmetry. [ |

6.6 Pro-discrete groups

An inverse system of topological groups indexed by a directed set I consists of a family (G;),er
of topological groups and a family (v;;: G; = Gi)i jer,j>: of continuous homomorphisms such
that v;; = Idg, and ;1 = ¢ whenever k > j > 4 [153, Definition 1.1.1]. An inverse system
is called a surjective inverse system if each map 1);; is surjective. Now let (G}, 1;;) be an inverse
system of topological groups and let G be a topological group. We shall call a family of contin-
uous homomorphisms v;: G — G; compatible with the inverse system if 1);;2; = 1; whenever
j = 4. An inverse limit of an inverse system (G;, ¥;;) of topological groups is a topological
group G together with a compatible family ¢;: G — G; of continuous homomorphisms with
the following universal property: whenever ¢%: G’ — G is a compatible family of continuous
homomorphisms from a topological group G’, there exists a unique continuous homomorphism
¢: G" — G such that ;¢ = 9} for each j. Each inverse system admits an inverse limit, given

by the following construction [153, Proposition 1.1.4]:
(6.39) hm G = {s € HGj 1 pi(s) = ii(p;(s)) for all ¢ < j}
JeI
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with the subspace topology from the product topology and with projection maps v; given by
the restrictions to lim G; of the projection maps p;: Hjel Gj — G from the product.

We say that a topological group G is pro-discrete if it is isomorphic to the inverse limit
of an inverse system of discrete groups. We have the following characterization for locally
compact groups which is a variation of [130, Lemma 1.3]. For the sake of completeness, we give
a complete proof.

Proposition 6.37 A locally compact group G is pro-discrete if and only if it admits a basis
(X;) of neighborhoods of the identity e consisting of open compact normal subgroups. In this
case, we have G = lim G; where the inverse system is given by the groups G; = G/X; and by
the homomorphisms ¥;;: G — G, sX;j — sX; for j = i and where the preorder is the opposite
of inclusion®” of the X;’s. Moreover, if G is first countable then there exists a countable basis
of open compact normal subgroups. Finally, a pro-discrete locally compact group G is always
totally disconnected.

Proof : Suppose that G admits a family (X;) of open compact normal subgroups forming a

neighborhood basis of eg. For any j € I, we set G def G/X;, which is discrete by [78, Theorem

5.21] since X; is open. We use the preorder defined in the statement of the result. For j > 1,
ie. X; C X;, we also consider the well-defined homomorphism ;;: G; — G;, sX; — sX;.
It is plain to check® that the (¢;;);>; is an inverse system. We consider the construction
(6.39) of the inverse limit lim G;. Note that the family of continuous homomorphisms ¢} : G —
G/X;, s — sX; is compatible®®. According to the universal property, there exists a continuous
homomorphism ¢: G — TLnGj satisfying the compatibility 1/1;- = vYjp. For any s € G, this
means that

sX;j = 1j(s) = ¥;(e(s)) = p;(e(s)),
so that ¢(s) is equal to the element (sX;)jes of the product [[;.; G/X;.

It remains to check that ¢ is bijective. For the injectivity, suppose that o(s) = e, so
sX; = X; for all j. Thus, s € X; for all j. Since G is Hausdorff and since the X;’s form a basis
of neighborhoods, we obtain s = eg. For the surjectivity, let ¢ = (s;X;);cr be an element of
I.&HG]‘. Let F be a finite subset of I. Consider some i € I such that ¢ > j for any j € F. For
J € F, we have

5;X; = pi(t) = ¥5i(pi(t)) = vji(s:Xi) = siX;
so s; € 5;X;. Hence s; belongs to Njers;X;. We infer that the collection of the compact
subsets s;X; has the finite intersection property. We conclude that there exists s € Njers;X;.
Consequently ¢(s) = (sX;)jer = (s;X;)jer =t. We conclude that G = lim G,.

Assume now that G is an inverse limit lim G of discrete groups 57 Again, we use the
description (6.39). Since each 1; is continuous, each kernel Ker; = w;l({ej}) is the preimage
of an open set, hence open in G. We also know that Ker; is normal and closed as a kernel of
a continuous homomorphism. It only remains to check that the Ker;’s form a neighborhood
basis of the identity eg. Indeed since Ker1); will fall within any given compact neighborhood
of eg for big enough j, Ker; will also be compact for such j.

Let U be any neighborhood of e in G. Then by trace topology, there exists a neighborhood
U of e in Hjel G; with U = U N G. By the definition of the product topology, there exists

some finite subset F' of I such that the subset V = [Ijer Aj of [1,c; G satisfies V c U with

57. We let j > i if and only if X; C X;.
58. If k > ] > i we have ’l/)ij’d)jk(sxk) = ’L/Ji]' (SXJ') = SXi = q,/;m(st)
59. If j > i we have ;9 (s) = i;(sX;) = sXi = ¥j(s).
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Aj={e;}if j€ Fand Aj = G, if j ¢ F. Since [ is directed, we can choose ¢ € I such that
i > j for any j € F. Then for any s € Ker; and any j € F, we have

pj(8) = ¥5:(pi(s)) = ¥ (Yi(s)) = ¥ji(ei) = e;.

Hence Ker; C V. Consequently, we have Ker Y; C VNG c U. We have shown that the
Ker 1);’s form a neighborhood basis of the identity.

If G is first countable, there exists a countable neighborhood basis of es, so we can also
extract a sequence of the Ker; forming a neighborhood basis of ec.

We turn to the last claim. Recall that the intersection of all open subgroups of a locally

compact group is the connected component of the identity eg by [78, Theorem 7.8]. Since G is
Hausdorff, the intersection of closed neighborhoods of eq is {eg}. Since an open subgroup is
always closed [78, Theorem 5.5], we infer that the component of the identity is equal to {eg}.
By [78, Theorem 7.3], we conclude that G is totally disconnected. [ ]

In particular, by [24, Proposition 3 page 20], a pro-discrete locally compact group G is
unimodular.

Remark 6.38 Note that a locally compact group G is totally disconnected if and only if the
compact open subgroups form a basis of neighborhoods of the identity eg. The end of the proof
of Proposition 6.37 proves the more general implication <. The converse is [78, Theorem 7.7].

There is the following variant of Theorem 6.16.

Theorem 6.39 Let G = lim G, be a second countable pro-discrete locally compact group with
respect to an inverse system indezxed by N. Suppose 1 < p < co. Assume that G is amenable if
1 < p < oo. Then there exists a contractive map

P%: CB(LP(VN(QG))) — MP>(G)
with the properties:

1. If T is completely positive, then PL(T) is also completely positive.

2. If T = M,y is a Fourier multiplier on LP(VN(G)) with bounded measurable symbol : G —
C then Pg(Mw) = M¢.

Moreover, P has the following compatibility: if T € CB(LP(VN(G))) N CB(LY(VN(Q))) for
some 1 < p,q < 0o, then PE(T) being twice defined as an element of MPP(G) and M (G) co-
incides on LP(VN(G))NLY(VN(G)). Note that in the case p = 0o, one has to take CBy« (VN(G))
as the domain space of P°.

Proof : Let G =1im G be a second countable pro-discrete locally compact group. By Propo-
sition 6.37, G admits a (countable) basis (X;) of neighborhoods of the identity ec consisting
of open compact normal subgroups. By (6.5), we have an isomorphism from the group von
Neumann algebra VN(G/X;) onto px; VN(G). Using Lemma 6.2, we obtain a completely pos-
itive and completely contractive map L?(VN(G/X;)) — LP(px, VN(G)) = px,LP(VN(G)). By
composing this map with the identification L”(px, VN(G)) C L?(VN(G)), we obtain a (normal
if p = 0o) completely positive and completely contractive map

' LP(VN(G/X;)) = LP(VN(G)), Agy/x; %, = 16 (X5) 7Px, Adis-
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Furthermore, we consider the adjoint (preadjoint if p = 1) ¥ = (@1;7*)*: LP(VN(G)) —
LP(VN(G/X;)) of <I>§’* which is also (normal if p = 00) completely contractive and completely
positive by Lemma 2.7 for any 1 < p < oc.

Let T: LP(VN(G)) — L?(VN(G)) be some completely bounded map. Now, using Theorem
4.2 for the discrete group G/X; (since X; is open), we define the completely bounded Fourier

multiplier

My, =P?

G x, (BTOY) : LP(VN(G/X;)) — LP(VN(G/X;))

if 1 <p<ooand My, = = Pgx, (U5° Py (T)®5°) : VN(G/X;) — VN(G/X;) if p = oo, where
the contractive map Py-: CB(VN(G)) — CB(VN(G)) is described in Proposition 3.1. Note

that o;: G/X; — C is defined by ¢;(s/X;) = 7q/x, (W?T@?(Asxj))\sﬂxj) (if T is normal in
the case p = 00). Then

1M, viTe;)||

b, LP(VN(G/X;))—LP (VN(G/X;)) H G/X; (
< |lwTed|

cb,LP(VN(G/X;))=LP (VN(G/X;))

b, LP (VN(G/X;))—L? (VN(G/X;)) < ”T”cb,LP(VN(G))HLP(VN(G)) )

in the case 1 < p < oo and similarly in the case p = oo. Note that each function ¢; is
continuous since G/X; is discrete. Now, we define the continuous complex function ¢; =
pjom;: G — C where m;: G — G/X; is the canonical surjective map. Since the homomorphism

7; is continuous, according to Proposition 6.14, the symbol ¢; induces a completely bounded
Fourier multiplier on L?(VN(G)) and we have the estimate

||M;'j ch,LP(VN(G))—>LP(VN(G)) - HMw H

cb,LP (VN(G/X, )= Lr (VN(G/X,))
ST llep, e (viey —revnee)) -

Now, we suppose that T" = M, for a (bounded) measurable symbol ¢: G — C giving rise
to a completely bounded L? Fourier multiplier. We start by giving a description of the symbol
©; as an average of 1.

Lemma 6.40 For any s € G, we have
(6.40) Bi(s) = [ wlst) din, 1)

Proof : The subgroup X; is open, so ug|x; is a left Haar measure on X; and ux; = c¢;ualx,

where ¢; = m Moreover, for any s € G, the indicator function 1,x; belongs to C.(G) since
J

sX; is an open and compact subset of G. For any s,t € G, note that

(Lx, * Ix,)(t) = /G Lx, (M) Ix, (r ') duc(r) = ./sz Ly, (t'r) dpg(r)
= ,LLG(SX]' ﬂth) = /.Lg(SXj)lsz (t)

We conclude that 1,x; € Cc(G) * C(G). Then, for any s € G, using the definition of a Fourier
multiplier and Lemma 6.2, we see that

My (AG’SPXJ‘) = My ()\G,st)\G(lxj)) = ¢; My ()‘G(lsxj)) = cjAa(¥1sx,)

and similarly
Ag,s—1Px; = CjAgs—1 A (1x;) = ¢A(li-1x;)-
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For any s € G, using the Plancherel Formula (6.3), we obtain

Pj(s) = pjom;(s) = Tax, (‘1’pr (/\G/XJ,SX JAG/x;.5-1%,)
=1q (wab (Aayx;.sx,) @Y (Ac/xj,s—lx,-))
= 1 (X)) 7 (X5) 776 (My(Aa,spx, ) Aa.s1px,) = ¢7a (Aa(@lax,)Aa (L-ix,)) -

Now, using the normality of the subgroup X;, we see that
=6 [ 0,01, () ) = / ()1, o(r) dpia ()
_CJ/ Y(r) dpc(r —cg/¢stduc /wstdux (t).

Let ES°: L*°(G) — L*°(G) be the normal conditional expectation associated with the o-
algebra generated by the left cosets of X; in G and ]Ej1 LY(G) — LY(G) the contractive associ-
ated map. By [36, page 183] (see also [34, page 69]), the above lemma says that for any integer
J we have ¢; = E3 (1). Now, we prove the following convergence result.

Lemma 6.41 Let G be a pro-discrete locally compact group and let (X;) be o decreasing ba-
sis of meighborhoods of the identity ec consisting of open compact normal subgroups. Let
EX: L*(G) — L*(G) be the normal conditional expectation associated with the o-algebra
generated by the left cosets of X; in G. For any ¢ € L>°(G), the net (E°(¢)) converges to ¢
for the weak™ topology of L>=(G).

Proof : By | Proposition 2.6.32], for any f € L°°(G) and any g € L'(G), we have
(ES°(f) g>L°°(G) Li(@) = (f,Ei(g )>L°°(G) Li(q)- Consequently, the map E*: L*(G) — L*(G)
admits as preadjoint the contractive map E}: L'(G) — L'(G). So it suﬂ"lces to show that the
net (Ejl) converges for the weak operator topology. Actually, we will show that the convergence
is true®” for the strong topology. Since the net (Ejl) is uniformly bounded, by [27, Proposition
5, Chapt. IIT, 17.4], it suffices to show that E}(g) converges to g in L' (G) for any g belonging to
some total subset of L!(G). By [25, Lemma 2 a), VII.15], the subset of positive functions with
compact support constant on the left cosets of some X; is total. So let g be such a function. If
i > j, ie. if X; C Xj, each left coset of X; in G is a subset of a left coset of X; in G. Then for
almost all s € G we have

(E0) ) = [ oot 0= [ (s) e, ) = g1
X; X;
So El(g) = g. Hence, for this g, the assertion is true. The proof is complete. [ ]
Using Lemma 6.41 together with Lemma 6.7, we deduce that the sequence (ML;) converges

J

to My in the weak operator topology of B(L?(VN(G))) (in the point weak* topology if p = 00).
Then we proceed as in the proof of Theorem 6.16 to construct the contractive linear maps
PL: CB(LP(VN(G))) — MMP®(G) and to show that P%(My) = My, whenever My, € 9MP<P(G).

60. This fact is proved in the second countable case in [36, Theorem 3.3] and alluded without proof in the
general case in [30, page 184] (see also [34, page 69] for a proof). Here, we give an alternative argument. Finally,
Bourbaki transformed this into an exercise [25, Exercise 10 page 89], as usual without giving any reference.
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Finally, we show that the map PZ preserves the complete positivity. Suppose that T is

(normal if p = c0) completely positive. The operator \I/;? T(I>§ is completely positive. Hence the
multiplier M, = P7, /X, (\Ilg oY ) is also completely positive. By Theorem 6.14, we infer that
M;;j = Mgy, or, is completely positive. Using Lemma 2.8, it is easy to deduce that PE(T) is

completely positive. [ |

Remark 6.42 Suppose 1 < p < co. Note that in the proof of Theorem 6.39, the only use of
amenability was the use of Theorem 6.14 in passing from a symbol on G/X; to a symbol on G.

Remark 6.43 According to [111, Theorem 12.3.26], a second countable nilpotent®! compactly
generated totally disconnected locally compact group admits a sequence (X;) satisfying the
assumptions of the theorem. Moreover, any second countable compactly generated uniscalar®?
p-adic Lie group admits such a sequence (X;) by [62, Theorem 5.2]. Moreover, p-adic can be
replaced by pro-p-adic [62, Proposition 7.4]. Finally, there exists an example of a compactly
generated totally disconnected uniscalar locally compact group which does not have an open
compact normal subgroup, see [20] and [97].

Remark 6.44 Note that the result applies to the profinite groups acting on locally finite trees
described in Subsection 6.5.

6.7 Amenable groups and convolutors

In this section, we observe that we can obtain compatible projections on spaces of Fourier multi-
pliers associated to abelian locally compact groups and more generally on spaces of convolutors
associated to amenable locally compact groups.

Convolution operators. Let G be a locally compact group and 1 < p < co. Here we use
the left translation A,: LP(G) — LP(G) with a similar definition to the one of (6.1). A bounded
linear operator T': LP(G) — LP(G) (supposed to be weak* continuous in the case p = 00%?) is
said to be a p-convolution operator of G [16, page 8] if for every s € G we have \,T = T ;.
The set of all convolution operators (or convolutors) of G is denoted CV,(G). If G is abelian

then CV,(G) = MP(G) isometrically, see [16, Chapter 1].

If X is a Banach space, the subset CV,(G,X) of B(LP(G, X)) is defined as the space of
convolution operators T such that T'® Idx extends to a bounded operator on L?(G, X). The
space CVp, b (G) of completely bounded convolutors on LP(G) coincides with CV,(G, SP).

Proposition 6.45 is slight generalization of a particular case of the result [15, Corollaire page
79] (rediscovered in part in [5, Theorem 1.1]). We will thank Antoine Derighetti to communicate
this reference.

Proposition 6.45 Let G be an amenable locally compact group. Suppose 1 < p < oo. Then
there exists a contractive projection Pt : B(LP(G)) — B(LP(G)) (in the case p = oo, we have
P& : By« (L®(G)) — By« (L>®(G))) onto CV,(G) such that if T: LP(G) — LP(G) is positive®
then PL(T) is positive. Moreover, all these mappings are compatible with each other. Moreover,

61. Recall that nilpotent implies unimodular.

62. Note that uniscalar implies unimodular, see [111, Theorem 12.3.26].

63. If G is not compact, note that there exist bounded operators T': L*°(G) — L°°(G) which commute with left
translations and which are not weak* continuous. We refer to [105] for more information.

64. Recall that the notions of “positivity” and “complete positivity” are identical on commutative LP-spaces by
Proposition 2.22 and a completely positive map is completely bounded by Theorem 3.26.
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if 1 < p < oo, the restriction of Pt to CB(LP(G)) induces a well-defined contractive projection
PR CB(LP(G)) — CB(LP(Q)) onto CV,.(G).

Proof : The case 1 < p < oo is [15, Theorem 5] and [5, Theorem 1.1]. The case p = 1 of
[5, Theorem 1.1]) gives a projection P: B(L!(G)) — B(L*(G)). Now for a weak* continuous
operator T: L>®(G) — L*®(Q), we let P&(T) = PL(T.)*. We obtain the desired projection.
The verifications are left to the reader.

Suppose 1 < p < oo. Let T: LP(G) — LP(G) be a completely bounded operator. For
any f € LP(G) and any g € L? (G), we consider the complex function hrf,: G — C, s
(T(As(f))s ’\S(g)>Lv(G),LP* @ defined on G. The function hr ¢, is®® bounded. By [78, Theorem

20.4], the maps G — LP(G), s — T(\,(f)) and G — LP (G), s — As(g) are continuous. Using
the continuity of the duality bracket (-,-) () e+ (q) [2, Corollary 6.40] on bounded subsets,
we deduce that the map hr 4 is continuous, hence measurable.

Since G is amenable, by [116, Proposition 4.23], there exists a right invariant mean
M: L>°(G) — C. Since L*°(G) is a unital commutative C*-algebra, the map 9t is completely
contractive by [75, Lemma 5.1.1]. The map B: LP(G) x L? (G) — C, (f,g) = M(hryq) is
clearly bilinear. Moreover, for any integer n, any [f;;] € M, (LP(G)) and any [g] € M, (L?" (G)),
we have

66

” [%(fij7gk7l)] HMTLQ = H [m(thfmgkz)] Han < H [hT7fij,9kZ] HMHQ(LOO(G))

‘ [s = (T(Xs(fij), )\s(gkl)>Lp(G),LP* (G)}
— Hs > [<T(/\s(fij))7As(gkl)>LP(G),Lp* (GJ

HM (Lo (@)

HLOQ(G,Mng)

" el H [ s(fig)), (gkl)>Lp(G>7Lp*(G>} HM2 '

Now, using [55, (3.2.3)] in the first inequality and the fact left to the reader (to use [117,
Proposition 2.1]) that each A\;: L?(G) — L?(G) is completely isometric in the last equality, we
obtain for any s € G

H[ (fi3)) (9’”>>LP<G>’LP*<G>] HM B H<<[T(As(f”))]’ [As(g’“l)mHM 2

H +(fis)) HM (LP(G))HP\S(QM)MM (LP* (@)
< llew, Lo @) o) |Ps i)l lla, o e [Ps @)l o @
= Tllew o) —rr (@) i, o i@ Nlord s, o (-

Taking the supremum, we infer that

||[‘B(fij,gk,z)]HMn2 STl ep, Loy >0 (6) H[fij}HMn(LP(G))H[gkl]HMn(LP*(G))'

65. For any s € GG, we have

T (£)):A(D), pien 1 e | < ITLe(@yro(a 12 (s @) 1A (@) lLo* (@
LP(Q),LP* (Q) (&)

= IITIILP(G)%LP(G) ”f”LP(G) H9||Lp*(c;) :

66. That is a unital positive bounded linear form Mi: L°°(G) — C such that M(fr) = M(f) for any t € G where
fe(s) = f(st).
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We conclude that B is completely bounded in the sense of [55, page 126] with ||B|,, <
||THCb7L,,(G)_>Lp(G). Hence, by [55, Proposition 7.1.2] there exists a unique completely bounded

operator P%°(T): LP(G) — LP(G) such that
B(f,9) = (PE TNV Doy | €@ €17 (G).

b ,
Moreover, we have ||PZ° (T)ch,LP(G)HLP(G) = Blle, < ITllep,10()—10(c)- This operator

coincides with the operator PL(T') provided by a slightly simplified®” proof of [5, Theorem 1.1].
The compatibility is left to the reader. [ ]

Remark 6.46 Consider a locally compact group G. It would be interesting to know if the
amenability of G is characterized by the property of Proposition 6.45.

6.8 Description of the decomposable norm of multipliers

The following is a variant of Theorem 4.9.

Theorem 6.47 Let G be an amenable second countable unimodular locally compact group which
is ALSS satisfying the assumption (6.12). Suppose 1 < p < co. Then a measurable function
¢: G — C induces a decomposable Fourier multiplier on LP(VN(QG)) if and only if it induces a
(completely) bounded Fourier multiplier on VN(G). In this case, we have

(6.41) CHM¢||VN(G)—>VN(G) S HM¢>Hdec,Lp(VN(G))—>LP(VN(G)) S ||M¢||VN(G)—>VN(G)-

Proof : =: We start with the case of a decomposable Fourier multiplier My: LP(VN(G)) —
LP(VN(G)) with a continuous symbol. By Proposition 3.12, we can write My = T1 —To +i(T5 —
Ty) where each Tj is a completely positive map on LP(VN(G)). Using the map P2 of Theorem
6.16 (since G is amenable) and the continuity of ¢, we obtain that

My = PE(My) = PE(Ty — To +i(Ts — Ty)) = P&(Ty) — PE(To) +i(PE(Ts) — PE(Ty))

where each P%(Tj;) is a completely positive Fourier multiplier on L?(VN(G)). Hence, by Propo-
sition 6.11, it induces a completely positive Fourier multiplier on VN(G). We conclude that ¢
induces a decomposable Fourier multiplier on VN(G). If ¢ is only bounded and measurable,
but the approximating fundamental domains X; are symmetric (resp. 7X; = X;v for v € T';),
then according to Theorem 6.16, we can argue the same way.

Without the assumption of continuity (resp. symmetry or commutativity of the fundamental
domains), we adapt the method of approximation of [31, Remark 9.3] by completely bounded
multipliers on VN(G). Let My: LP(VN(G)) — LP(VN(G)) be a decomposable Fourier multi-
plier. Since G is amenable, by Leptin Theorem [116, Theorem 10.4], there exists a contractive
approximative unit (1);) of the Fourier algebra A(G) such that each ¢; has compact support. In
addition, consider a contractive approximate unit (y;) of L'(G) such that each x; is a function
belonging to C.(G) with HXjHLl(G) =1 and x; > O satisfying the properties of [19, (14.11.1)]
(see [19, Example 14.11.2] for the existence). For any i, j, we let ¢; ; = x; * (¥;0).

We claim that for any i, j, we have

(IR T

67. We can replace the space of right uniformly continuous functions by L (G). Moreover, note that translations
of [5, Theorem 1.1] differ from our notation.

|reg,LP(VN(G))—>LP(VN(G)) < HM¢‘|reg,LP(VN(G))ﬁLP(VN(G))'

97



Indeed, since G is amenable, the von Neumann algebra VN(G) is approximately finite-dimen-
sional by [36, Corollary 6.9 (a)]. Using Theorem 3.24, [117, Definition 2.1], the duality [118,
Theorem 4.7] and Plancherel formula (6.3), we need to show that for any N € N, and any
Tty gk € Co(G) x Co(G) where 1 < k,1 < N we have

N
‘<[M¢i,j ()‘(fkl))]v [)‘(gkl)]>LP(VN(G),MN),LP* (VN(@),5,)| — Z /G(bi,j () fr1(s)gri(s) duc(s)
k=1

HM¢Hreng (VN(G))—LP(VN(Q)) H fkl)]HLP(VN(G),MN)H[A(gkl)]HLP*(VN(G),S}V)'
Note that
N
5 / GO0 fu (D) dua (t)] = | 32 (Myo(M(Fr))s M)
k=1 k=1
illreg,LP (VN(G))—LP(VN(G)) ||M¢||reg,Lp_>Lp H[ f/cl HH gkz H

By the second and the last part of the proof, we have |

illreg,Lr e S ([ My, VN(G)5VN(G) S
[4ill a(e) < 1. Using the fact that [|[As-10x][l\y (vi(g)) = 1, it is not difficult to prove that the
regular norm is translation invariant, so that

z / Vils ™ )S(s ™) fra (I (1) A (1) | < 1Mol g oy [N GR)]]-

k,l=1

Consequently, since ||Xj||L1(G) <1

/GXJ(

</G|Xj(8)| %l:/Gwi(s_lt)sb(s_lt)sz(t)ékz(t) dpc(t)| dpc(s)

( [ (700070 uat0) >) djic(s)

k=1

<||M¢||reg,LP—)LPH[ (fk1) HH (gr1) H

But by Fubini Theorem, we have

/Xy /1/% (s7't)o t)fkl(t)ékz(t)dﬂc(t)> duc(s)

ﬁ:/ (/ s)i(s~'t)p(s™'t) d,UG(S)>fkl(t)gkl(t) dpc(t)] .

We deduce that

Z/ () fra (D) (1) A ()| < NMolloq 1o RO A 980)]

k,l=1
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and finally, (6.42) follows.

Recall that ¢; € C.(G) and ¢ € L*°(G), so ¢;¢ € L>(G) with compact support, so ¥;¢ €
L?(@). Moreover, each function x; belongs to L?(G). We conclude that ¢; ; = x;*(1;¢) belongs
to L2(G) * L?(G), which equals A(G) [58, Théoréme page 218], so it is a continuous symbol.
Then the first part of the proof and the last part above show that each function ¢; ; induces a
(completely) bounded multiplier on VN(G) with a uniform completely bounded norm. Thus,
there exists a constant C' < oo such that for any 4, j, we have for f, g € C.(G)*C.(G) (to adapt
ifp=ococorp=1)

’/G bi i (t) f(1)g(t) dua(t)‘ < O vwe) IMDILr (vniey) -

If ¢; j converges to ¢ in the weak™ topology of L*°(G), then this will yield

/qu(t)f(t)é(t) duc(t)‘ < ClIAN vnee) IMD s vy

and consequently, that ||M¢||VN(G) SN S €. We show the claimed weak™ convergence. For
a given h € L'(G), we write (¢; ;, )1 (c),11(q) = (Xj * (¥i0) — ¥i¢, h) + (¢ — ¢, h). For the
second summand, note that [|v;[[oc < [[thill5g) < 1, so that ;¢ — ¢ is uniformly bounded in
L*°(G). Moreover, 1;(s) — 1 for any s € G, since it is an approximate unit. By dominated
convergence, we deduce (;¢p — ¢, h) — 0 as i — oco. Now for a fixed large i, we have that
(x; * (Yi0) — i0, h) — 0 according to [49, (14.11.1)].

<: Let My: VN(G) — VN(G) be a decomposable Fourier multiplier. Similarly, with Corol-
lary 6.26, we can write My = Mg, — My, +i(My, — My,) where each My, : VN(G) — VN(G)
is completely positive. By Proposition 6.11, each Fourier multiplier ¢; induces a completely
positive multiplier on L?(VN(G)). Using Proposition 3.12, we conclude that ¢ induces a de-
composable Fourier multiplier on L?(VN(QG)).

The proof of last part is similar to the proof to the one of Theorem 4.9 together with
Theorem 3.24 when one remembers that the von Neumann algebra VN(G) is approximately
finite-dimensional. [ ]

Remark 6.48 If we replace the amenability assumption by supposing that VN(G) is approx-
imately finite-dimensional then the end of the proof shows that for any function ¢ inducing a
completely bounded Fourier multiplier on VN(G) we have the inequalities (6.41).

Similarly, we obtain the following result:

Theorem 6.49 Let G be a second countable amenable pro-discrete locally compact group. Sup-
pose 1 < p < oo. Then a function ¢: G — C induces a decomposable Fourier multiplier
My: LP(VN(GQ)) — LP(VN(Q)) if and only if it induces a (completely) bounded Fourier multi-
plier on My: VN(G) — VN(G). In this case, we have

HM¢||dec,LP(VN(G))%LP(VN(G)) = ”M(z’“cb,VN(G)HVN(G) = ||M¢HVN(G)HVN(G) :

Remark 6.50 In both situations, a function ¢: G — C which induces a decomposable Fourier
multiplier My : LP(VN(G)) — LP(VN(G)) is equal to a continuous function almost everywhere,
see e.g. [67, Corollary 3.3].

The following observation was communicated to us by Sven Raum whom we thank for this.
It shows that in the pro-discrete case, a similar remark to Remark 6.48 is useless.
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Proposition 6.51 A second countable pro-discrete locally compact group G is amenable if and
only if its von Neumann algebra VN(G) is approzimately finite-dimensional.

Proof : Consider a pro-discrete locally compact group G such that VN(G) is approximately
finite-dimensional. By Proposition 6.37, there exists an open compact normal subgroup K of
G. Using the central projection px of Lemma 6.1, we have a #-isomorphism 7: VN(G/K) —
VN(G)pr, Asic — Asprc- It is well-known®® that this implies that VN(G)px is approximately
finite-dimensional and thus that VN(G/K) is approximately finite-dimensional. Furthermore,
since K is open, the group G/K is discrete by [78, Theorem 5.26]. By [137, Theorem 3.8.2], we
infer that G/K amenable. Since K is amenable, by [14, Proposition G.2.2], we conclude that
the group G is amenable.

The converse is [36, Corollary 6.9 (a)]. [ |

Similarly, we obtain a proof of the next result. The first part is°” essentially stated in [1,
Proposition 3.3].

Theorem 6.52 Let G be an amenable locally compact group. Suppose 1 < p < oo. Then
a convolutor T: LP(G) — LP(G) of CV,(G) is reqular if and only if it induces a bounded
convolutor T: L (G) — L*°(G). In this case, we have

”THreg,LP(G)—)LP(G) = HT||L°°(G)—>L°°(G) (= ||T||cb,L°°(G)—>L°°(G))'

This result applies to decomposable Fourier multipliers My: L?(VN(G)) — L?(VN(G)) on
an abelian locally compact group G.

Remark 6.53 Consider a locally compact group G. It would be interesting to know if the
amenability of G is characterized by the property of Theorem 6.52.

7 Strongly and CB-strongly non decomposable operators

In this section, we construct completely bounded operators T': LP(M) — LP(M) which cannot
be approximated by decomposable operators. We particularly investigate different types of
multipliers. We also give explicit examples of such operators on the noncommutative LP-spaces
associated to the free groups (see Theorem 7.28 and Theorem 7.29).

7.1 Definitions

The following definition is an extension of the one of [5, Remark, page 163] on classical LP-spaces
to noncommutative LP-spaces since the regular norm and the decomposable norm are identical
by Theorem 3.24.

Definition 7.1 We say that an operator T: LP(M) — LP(M) is strongly non decomposable
if T does not belong to the closure Dec(LP(M)) of the space Dec(LP(M)) with respect to the

operator norm ||'||LP(M)%LP(]W)'

It means that T' cannot be approximated by decomposable operators. We also introduce
the following variation of this definition.

68. This observation relies on the equivalence between “injective” and “approximately finite-dimensional”.
69. We warn the reader that the proof [, Proposition 3.3] is really problematic. The proof of the fundamental
point (the surjectivity of the map 7p) is lacking.
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Definition 7.2 We say that a completely bounded operator T: LP(M) — LP(M) is CB-strongly

non decomposable if T does not belong to the closure Dec(LP(M))CB of the space Dec(LP(M))
with respect to the completely bounded norm ||-[| o, 1.0 (ary— 10 (ar)-

If M is approximately finite-dimensional, we also use the words strongly non reqular and
CB-strongly non regular.

Remark 7.3 These two notions are related. Indeed, let T': LP(M) — LP(M) be a completely
- CB

bounded operator in Dec(LP(M)) . There exists a sequence (T,) of decomposable operators

acting on LP(M) such that [|T"— T, 1o(ar)—1e(ar) tends to zero when n approaches +oo.

Hence, we have

17— Tn”LP(M)%LP(M) <|T- Tn”cb,LP(JW)HLP(M) m 0.

Hence T belongs to the closure Dec(LP(M)). We deduce that if T is completely bounded and
strongly non decomposable then T is CB-strongly non decomposable.

7.2 Strongly non regular completely bounded Fourier multipliers on
abelian groups

Arendt and Voigt proved that the Hilbert transforms on the groups R, Z and T are strongly non
regular [5, Example 3.3, 3.4, 3.9]. In the case of an arbitrary abelian locally compact group G,
a notion of Hilbert transform is not available in general. Nevertheless, we prove in this section
that there exists a strongly non regular completely bounded Fourier multiplier acting on L?(G).

Complements on convolution operators. If ;1 € M(G) is a bounded Borel measure on G,

1
then A7, (u) denotes the element of CV,(G), defined by AL, (u)(f) = f*Ag fi for any continuous
function f: G — C with compact support, [16, page 8]. Moreover, if y € M(G) and if H is a
closed subgroup of G note that

(7.1) 1gp = i(Respp)

where i(v) denotes the image of the measure v under the inclusion map 7 of H in G.
If X is a Banach space, the subset CV,(G,X) of B(LP(G, X)) is defined as the space of
convolution operators T such that T ® Idx extends to a bounded operator on L?(G, X).

Positive convolution operators. The following is [116, Theorem 9.6] (see also [1, page
280-281] for a good explanation). Let G be an amenable locally compact group and suppose
1 <p<oo. Let T: LP(G) — LP(G) be a positive convolution operator. Then there exists a
positive bounded measure p € M(G) on G such that T(f) = f * p for any continuous function
f+ G — C with compact support. Moreover, we have ||T'[|y, )0 (c) = [l1l-

Canonical isometry from CV,(H, X) into CV,(G, X). Let G be a locally compact group,
H a closed subgroup of G, X a Banach space and 1 < p < oo. There exists a canonical linear
isometry

(7.2) it CV,(H,X) = CV,(G, X).
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It is a vectorial extension of [16, Theorem 2 page 113], (see also [10, Theorem 2.6]) which can

be proven with a similar proof. Note that the remark [16, Remark page 106] gives for any
p € M(H) the equality
(7.3) i (1)) = N i())-

where i(1) denotes the image of the measure p under the inclusion map i of H in G. Suppose
in addition that G is abelian. Using the isomorphism G/H+ = H given by X + x|H we can
reformulate [46, Theorem 1 page 123] under the equality

i(Msa) = Mgor
where 7: G — @/HJ- is the canonical map.
Isometry from CV,(G/H) into CV,(G). Let G be an amenable locally compact group and
H be a normal closed subgroup of G such that G/H is compact. By [47, page 4 and 11],

there exist an isometry Q: CV,(G/H) — CV,(G) and a contraction R: CV,(G) = CV,(G/H)
satisfying R} = Idcv, (g m) such that for any p € M(G)

RON(1)) = N2, 3y (T i)

where the measure Ty (u) is defined by (see [126, 8.2.12 page 233])

/ gd(TH(u))=/gO7eruc, g € K(G/H).
G/H G

Let G be a locally compact abelian group and H be a compact subgroup of G. We denote
by m: G — G/H the canonical map. The mapping x — X o 7 is an isomorphism of G/H onto

H*L. If o: H- — C is a complex function, we denote by @: G — C the extension of ¢ on G
which is zero off H+. Let X be a Banach space. By [10, Proposition 2.8], the linear map

(7.4) CV,(G/H,X) — CV,(G,X), M, — M;

is an isometry.

Projection from B(L?(G)) onto CV,(G). Let G be an amenable group and suppose 1 <
p < 00. The result [5, Theorem 1.1] says that there exists a positive contractive projection

(7.5) Pg: B(LP(G)) — B(LP(G)).

onto CV,(G).
Projection from CV,(G) onto CV,(H). Let G be a locally compact group and H be
an amenable closed subgroup. Suppose 1 < p < oo. By [44, Theorems 12 and 15], there

exists a projection P: CV,(G) — CV,(G) onto {S € CV,(G) : suppS C H} such that if
Qu =1i"1oP: CV,(G) — CV,(H) we have the following properties:

1. P(AL(w) = A (1gp) for every bounded measure p € M(G),

2. Qua (Dl ry—recery < NT Lo (e)—1e(6)s
3. Quli(S)) = S for 5 € CV,(H).
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Restriction of multipliers. Let G be a locally compact abelian group. Let H be a closed
subgroup of the dual group G. Suppose 1 < p < 0o0. Let ¢: G — C be a continuous complex
function which induces a bounded Fourier multiplier (i.e. a convolutor) M,: L?(G) — L?(G).
Then, by [129, Corollary 4.6] (see also [37, abstract and page 6]), the restriction ¢, : H — C

A A

induces a bounded Fourier multiplier M, —: LP(H) — LP(H) and we have

(7.6)

HMWH‘ Lr(H)—Lr(H) S HMLPHLP(G)%L”(G)'

We start with a useful observation.

Lemma 7.4 Let G be a unimodular amenable locally compact group and H be a closed subgroup
of G. Suppose 1 < p < 0o. The map Qu: CV,(G) — CV,(H) is positive.

Proof : Let T: LP(G) — LP(G) be a positive convolution operator. There exists a positive
measure v € M(G) such that T = A,(). We consider p = v. We have T' = A, (u1). Using (7.3)
and (7.1), we see that

P()‘ZC):(IJ)) =e(lup) = NG (i(ReSHu)) = i()\f(ResH,u)).

Using the definition Qi = i~! o P of Qp, we obtain finally

Qu(T) = Qu(M\g(w) =i " (POG(1)) = Ny (Respp).

Since Respp is a positive measure, we deduce that Qg (T) is a positive operator. [ |

Similarly, we can prove the two following results.

Lemma 7.5 Let G be a unimodular amenable locally compact group and H be a normal closed
subgroup of G such that G/H is compact. Suppose 1 < p < oo. The map R: CV,(G) —
CV,(G/H) is positive.

Lemma 7.6 Let G be a unimodular amenable locally compact group and H be a closed subgroup
of G. Suppose 1 < p < oo. The map i: CV,(H) = CV,(G) is positive.

Now, we state our first transference result.

Proposition 7.7 Let G be a unimodular amenable locally compact group and H be a closed
subgroup of G. Then a convolution operator T: LP(H) — LP(H) is a strongly non regular
Fourier multiplier if and only if the convolutor i(T): LP(G) — LP(G) is strongly non regular.

Proof : Note that H is also amenable since it is a subgroup of the amenable group G.

<«: Suppose that T belongs to Reg(LP(H))B(Lp(H)). Let € > 0. Then there exist some
positive operators Ry, Ra, R3, Ry: LP(H) — LP(H) and a bounded map R: LP(H) — LP(H)
of norm less than ¢ such that T'= Ry — Re + i(R3 — R4) + R. Since H is amenable, we can
use the map (7.5) and suppose that Ry, R, R3, R4 and R are convolution operators. Using the
isometry i: CV,(H) — CV,(G) we obtain

i(T) = i(Ry) —i(Ry) +i(i(R3) — i(R4)) +i(R).

Using Lemma 7.6, we see that the operators i(R;) are positive. Moreover, note that we have
[i(R) e )1y = I Blluor ey < € 1t follows that the convolution operator i(T) is
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e-close to Reg(LP(G)) in the Banach space B(L?(G)). So letting ¢ — 0 yields that i(T) €
— P

Reg(LP(G))B(L ) This is the desired contradiction.

= Suppose that i(T) belongs to Reg(LP(G))B(L D Let € > 0. Then there exist some

positive maps Ry, Rg, R3, Rs: LP(G) — LP(G) and a bounded map R: L?(G) — L?(G) of norm
less than ¢ such that i(T) = Ry — Ry + i(R3 — Ry4) + R. Since G is amenable, using the map
(7.5), we can suppose that Ry, Ra, R3, R4 and R are convolution operators.

Since H is amenable, we can use the contraction Qg : CV,(G) — CV,(H). We obtain

T=Qu(i(T)) = Qu(R1 — R2 +i(Rs — R4) + R)
=Qu(R1) — Qu(R2) +i(Qu(Rs) — Qu(R4)) + Qu(R).

Moreover, by the contractivity of Qp, the convolution operator Qg (R): LP(H) — LP(H)

is bounded of norm less than ¢. Furthermore, by Lemma 7.4, each convolution operator

Qu(Ry): LP(H) — LP(H) is a positive operator. It follows that T is e-close to Reg(LP(H)) in
- B(L"(H

the Banach space B(LP(H)). So letting ¢ — 0 yields that T' € Reg(LP(H)) U This is the

desired contradiction. [ |

Proposition 7.8 Let G be a unimodular amenable locally compact group and H be a normal
closed subgroup of G such that G/H is compact. If the convolution operator T: LP(G/H) —
LP(G/H) is strongly non regular then the convolution operator Q(T): LP(G) — LP(QG) is strongly
non regular.

Proof : Suppose that Q(T) belongs to Reg(Lp(G))B(LP(G)). Let € > 0. Then there exist some
positive maps S1, S2, 53,54 : LP(G) — LP(G) and a bounded map S: L?(G) — L?(G) of norm
less than e such that Q(T) = S; — Se +1i(S5 — S4) + S. Since G is amenable, using the map
(7.5), we can suppose that S, S, S3,S4 and S are convolution operators. Using the contraction
R: CV,(G) — CV,(G/H), we obtain

T = R(UT)) = R(S1) — R(S2) +1i(R(S3) — R(S41)) + R(S).

Moreover, by the contractivity of R, the convolution operator R(S): LP(G/H) — LP(G/H) is
bounded of norm less than . By Lemma 7.5, each convolution operator R(Sy): L?(G/H) —
LP(G/H) is positive. It follows that T is e-close to Reg(LP(G/H)) in the Banach space

e — P
B(LP(G/H)). So letting ¢ — 0 yields that T € Reg(LP(G/H))B(L (@) " This is the desired
contradiction. ]

Proposition 7.9 Let G be a compact abelian group and let H be a closed subgroup of G.
If p: H- — C is a complex function, we denote by @: G — C the extension of ¢ on G
which is zero off HY. If the function ¢ induces a strongly non reqular Fourier multiplier
M, : LP(G/H) — LP(G/H) then the function & induces a strongly non reqular Fourier multiplier
M;—: LP(G) — LP(G).
p ) S A BIL(G) .

roof : Suppose that My belongs to Reg(Lr(G)) . Let ¢ > 0. Then there exist some
positive maps Ry, Rg, R3, Ry: LP(G) — LP(G) and a bounded map R: L?(G) — L?(G) of norm
less than ¢ such that M;; =Ry — Ry +i(Rs — R4) + R.

Since G is amenable, the linear map (7.5) yields the existence of some complex functions

¢1, b, b3, ¢a and 1 on G such that Mz = My, — My, + (Mg, — My,) + My such that the
Fourier multipliers My, are positive on LP(G) and My, is again of norm less than .
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By Lemma 6.10, each function ¢y is continuous and by Proposition 6.11 induces a positive
operator My, : L°(G) — L*°(G) and the function ¢y is positive definite. We infer that the
restriction ¢i|H*: G — C is continuous and positive definite, and thus by [4], Proposition
4.2], induces a positive operator My, g+ : L(G/H) — L>(G/H). Then by Proposition 6.11,
it follows that the Fourier multiplier My, 1 : LP(G/H) — LP(G/H) is positive.

Note that the group H+ = CT/?I is discrete. By (7.6), since the function v is continuous,
the Fourier multiplier My, ;1 : LP(G/H) — LP(G/H) is bounded of norm less than ¢. Since

My = M, m0 — M,

ottt T (Mg — My, jpo) + My

it follows that M, is e-close to Reg(L?(G/H)) in the Banach space B(L?(G/H)), so that letting
€ — 0 yields that M, € WE(L (G/H))

Let (ex)k>0 be a sequence of independent Rademacher variables on some probability space
Q. Let X be a Banach space and let 1 < p < co. We let Rad,(X) C L?(Qg, X) be the closure
of span{e;c Qz|k>0,z¢€ X} in the Bochner space LP (€, X). Thus, for any finite family
(zr)o<kgn Of elements of X, we have

1

p P

dw) .
X

Zﬁk & T = (/
k=0 Rad, (X) o

We simply write Rad(X) = Rada(X). By Kahane’s inequalities (see e.g. [18, Theorem 11.1]),
the Banach spaces Rad(X) and Rad,(X) are canonically isomorphic. We will use the following
result which is a variant of [54, Theorem 4.1.9].

. This is the desired contradiction. |

n

ex(w)zk
k=0

Proposition 7.10 Let X be a UMD Banach space. Suppose 1 < p < o0.

1. Let G be a countably infinite discrete abelian group.. Assume that there exists a sequence
(Hp)n>0 of subgroups of the (compact) dual group G such that
(a) each H, is open,
(b) Hyy1 S Hy,
(c) ﬂn>0 H, = {0} and Hy = G.
For any integer n > 0, consider the subset A, = H,\H,1 of G. Then for any f €

LP(G,X), the series Y " (e, @ (M1, ®Idx)(f) converges in Rad(LP(G, X)) and we
have the norm equivalence

N en® (M, ®1dx)(f)

n=0

(7.7) 1fllLe@x) =

Rad(L? (G, X))
2. Let G be a compact abelian group. Assume that there exists a sequence (Yy)n>o of sub-
groups of the (discrete) dual group G such that

(a) eachY, is finite
(b) Yn ; Yn+1y
(¢) Yo={0} and U, 5o Yn = G.
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Let Ag = Yy and A, = Y,\Y,—1 for n > 1. Then for any f € LP(G,X), the series
Yoo en®(My, @Idx)(f) converges in Rad(LP(G, X)) and we have the norm equivalence

(7.8) 1fllLe@x) =

> en® (M, ®Tdx)(/)
n=0

Rad(L? (G, X))

Proof : 1. Let F = P(G) denote the full o-algebra of subsets of G. For n > 0, consider the

annihilator G,, def H:: in G. Since each H,, is open and compact, each G,, is compact and open
by [126, Remark 4.2.22].

For any negative integer k& < 0 consider the o-algebra Fj, generated by the cosets of G_j
in GG. Since G is countably infinite, there are only countably many cosets of G_ in G. So by
[1, Exercice 4 (a) page 227] the elements of Fj, are the sets which are a union of cosets of G_j
in G. Since H_j41 C H_y, for all £ < 0, by [126, Proposition 4.2.24], we have G_; C G_g41.
Then it is not difficult to see that Fj_1 C Fy, if k < 0. We conclude that (Fy)r<o is a filtration
in G. It is elementary to check " that U, >0Gy = G.

Moreover, since G is countable, the counting measure ug is o-finite. Since the G_j are
compact, they are finite, so the restriction of ug to each Fj is also o-finite. So, by [32,
Corollary 2.6.30], the conditional expectation E(:|F)) with respect to Fj, is well-defined and it
is explicitly described in [36, page 183] (see also [34, page 69]), since G_j, is compact, by

E(f|Fi) =Tc_.(f) omr (almost everywhere).

where 7, : G — G/G_}, is the canonical map and where T _, is essentially defined in [126, page
100]. For any integer k < 0, since H_j is open, the Poisson formula [126, 5.5.4] says that

(Tc,k(f)om)(S):/H X(S)f(x)duH,k(x):/GX(S)lH,k(X)f(x)du@(x)

We conclude that the conditional expectation E(-|F): LP(G) — LP(G) is™* a Fourier multiplier
whose symbol is the indicator function 15 ,. Hence for any n > 0

MlAn = MlHn\H = MlHn o M1H1L+1 = ]E(|f7n) - ]E(.|f*n*1)

n+1

as bounded operators on LP(G). Note that the right hand side is regular on L?(G). Conse-
quently, their tensor products with the identity Idx also coincide.

For any f € LP(G,X) and any integer &k < 0, we let fi def (E(:|Fx) ® Idx)(f). By
[82, Proposition 2.6.3 and Example 3.1.2], we obtain a martingale (fx)r<o With respect to
the filtration (Fy)r<o. Note that since Go = Hy- = G+ = {0} we have Fy = F and thus

70. Let s € G and let I, def s(Hpn) be the subgroup of T where we identify s with n(s) where n: G — G is the

canonical map. Since H,, is compact, I, is a closed subgroup of T. Any decreasing sequence of closed subgroups
of T stabilizes (each closed subgroup is finite or equal to T). So there exists N > 0 such that I,, is the same for
allm > N. Let I be this common value. We have I C I, = s(Hy) for any n > 0.
If I = {1}, then s annihilates H,, for n > N. Hence s € Gy, for n > N.

. def .
Suppose that I is not trivial. Let i € I\ {1} and let C,, = s~1({i}) N H,. Then the sets C,, are nonempty

~ f

for any n > 0 and form a decreasing sequence of compact subsets of G. The intersection C < ﬂn>0 Ch, is thus
nonempty. But C' C ﬂn>0 H,, = {0}, so this means 0 € C. Hence 0 € s~!(i). This is a contradiction, since
i# 1 and s(0) = 1.
71. We can alternatively compute the conditional expectation with [1, Exercice 4 (c) page 227] instead of the
Poisson formula.
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fo= (]E(~|.7-'0) ® IdX)(f) = f. Consequently, for any integer N > 1, we have Zg:—N+1 dfy, =

She—ni(fe = fie1) = fo— fon = f — fon and dfi = fi = fir = (E(|F) @ 1dx)(f) ~
(E(:|Fe—1) ® Idx)(f). By [32, Proposition 4.2.3] with the change of index n = —k, we infer
that

”f - f*N”Lp(va) =

N-1
> en® (M, @1dx)(f)
n=0

Rad(L?(G, X))

It is straightforward to check 7 that Ni<o Fr = {0,G}. We conclude that the restriction
of the measure ug to (<o Fk is purely infinite in the sense of [32, Definition 1.2.27 (c)] on

the o-algebra F_o, < MNk<o Fk- According to [32, Theorem 3.3.5 (3)], f-n converges to zero
in L?(G, X) when N goes to co. Since X is UMD, X does not contain the Banach space cg.
Using Hoffmann-Jorgensen-Kwapien Theorem [102] [80], it is not difficult to conclude that the
series Y~ €, ® (M1, ®Idx)(f) converges in Rad(LP(G, X)) and to obtain the claimed norm
equivalence of Littlewood-Paley type.

2. Let F denote the Borel o-algebra generated by the open subsets of G. For n > 0, consider

the annihilator G,, def Yt in G and the o-algebra F,, generated by the cosets of G,, in G. Since
each Y,, is open and compact, each G,, is compact and open by [126, Remark 4.2.22]. Since
Y, C Y41 foralln > 0, we have G,,11 C Gy, and finally F,, C F,4+1. We conclude that (F,,)n>0
is a filtration in G. Since G is compact, the Haar measure p¢ is finite, so trivially o-finite on
each F,,. So, by [82, Corollary 2.6.30], the conditional expectation E(:|F,,) with respect to F,
is well-defined and it is explicitly described in [84, page 69] (since G, is compact) by

E(f|Fn) =Tg, (f) omn  (almost everywhere).

where m,,: G = G/G,, is the canonical map and where T, is essentially defined in [126, page
100]. For any integer n > 0, since Y, is open, the Poisson formula [126, (5.5.4)] says that

(To,. () o ma) (5) = /

YVL

X($)f () dpy,, () = /G X($)Ly, (00 (0) dig (x)-
We conclude that the conditional expectation E(:|F,): L?(G) — LP(G) is a Fourier multiplier
whose symbol is the indicator function 1y, . Hence for any n > 1

M, =M, =DM, — M,  =E(|Fn)—E(|Fn-1)

A \Yn_1

as bounded operators on LP(G). Note that the right hand side is regular on L?(G). Conse-
quently, their tensor products with the identity Idx also coincide. Similarly, we have M; 2y @
Idx = MlY[) ®Idx = E(|]:0) ® Idx.

For any f € LP(G,X) and any integer n > 0, we let f, def (E(-|Fn) ® Idx)(f). By [52,
Proposition 2.6.3 and Example 3.1.2], we obtain a martingale (fy)n>0 with respect to the

72. Let A € ﬂk<0 Fi. Suppose that A # 0. Now, we construct a sequence (sg) of elements of G by induction.

There exists some sg € G such that {sg} = s0Go C A. Suppose that s_j € G for some k < 0 satisfy s_G_ C

A. Since we can write A = USEI it 5G _ 41 for some index set /_j; and since G_j, is a subgroup of G_j41,
we can choose s_j11 € G such that s_tG_p C s_p41G_k+1 C A. Moreover, we have s_,G_ = s_,_1G_k.
Indeed, since s_j_1G_g_1 C s_xG_j, we have s_p_1 € s_G_j. Hence there exists r_ € G_j such that

S_k—1 = S_kr—k. Wededuce that s_j = S—k—lr:}c and consequently s G_j = S—k—ﬂ":iG—k =s k. 1G_g.

Finally, we obtain
S0 U G_p = U soG_i C U s_G_ C A.
k<0 k<0 k<0

On the other hand, we have already observed that the first set equals G.
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filtration (Fy,)n>0. For any integer N > 1, we have 22[:1 dfy, = Zgﬂ(fn —foc1) =N —fo
and dfp, = fn — fa1 = (E(|}-n) ® IdX)(f) - (E(‘fnfl) ®IdX)(f) ifn>1anddfy = fo =
(E(-|Fo) ® Idx) (f)-

Note that (1,5, Gn = {0}. Indeed, if t € G, then for any x € Y,, = G+ we have x(t) = 1.
So if t € (1,59 Gn, then x(t) =1 for all £ € U,,50 Yn = G. Thus t = 0 and the claim is proved.
Then it is not difficult to check™ that (G,)n>0 is a neighborhood system at 0. Now by [78,
(4.21)] (see also [26, Example page 223]), the family of subsets of the form sG,, where n > 0
and where s runs through G is an open basis for G. So the limit o-algebra F, = o (Un>0 ]:n>
equals F.

According to [32, Theorem 3.3.2 (2)], fn converges to (E(|Fsx) ®Idx)(f) = f in LP(G, X)
when N goes to co. Similarly to the case 1, we obtain the convergence of the series ZZO:O En®
(M;,, ®Idx)(f) and the equivalence

”.f fOHLP GX) Zen MlA ®IdX)(f)

Rad(L?(G,X))

One easily incorporates || foll (q x) = ||(M1AO ®Idx)(f) on both sides with [33, page

||LP(G,X)
5] to deduce the claimed Littlewood-Paley norm equivalence. [ ]

Note that in the case X = C, using the Maurey-Khintchine inequalities [48, 16.11] the
equivalences (7.7) and (7.8) become

(7.9) 1fllLe @) = (Z |M1Anf2>
n=0

L?(G)

We need the following characterization [125] of the closure B(G) of the Fourier-Stieltjes
algebra B(G ) {u p € M(G)} of the dual of a locally compact abelian group G in the
space C’b(G) of bounded continuous complex-valued functions on G equipped with the norm

Il If f: G — C is a bounded continuous function then f belongs to B(G) if and only if
for any sequence (i) of bounded Borel measures on ( the conditions sup,>1 [lal < oo and
() — 0 for all z € G imply that [, fdpu, — 0.

Proposition 7.11 Let G be an infinite compact abelian group. Suppose 1 < p < oco. Then
there exists a strongly non regular Fourier completely bounded Fourier multiplier on LP(G).

Proof : Since G is compact, its dual G is discrete. Suppose first that G contains an element
of infinite order, thus a (necessarily closed) subgroup isomorphic with Z. Consider the closed

subgroup H = Z* of G. Then we have an isomorphism G{/T{ = H' = 7Z. Hence G/H is
isomorphic to T. According to [5, Example 3.9], the Hilbert transform on T defines a strongly
non regular Fourier multiplier on LP(G/H). Since SP is UMD, by Proposition 2.2 the Hilbert
transform is completely bounded on L?(G/H). Then, by Proposition 7.9 and using the isometry
(7.4), we deduce that there exists a strongly non regular Fourier multiplier on LP(G).

Now suppose that no element in G has infinite order, i.e. G is an infinite abelian torsion
group. Then it contains a countably infinite abelian torsion group (consider some countably

73. If U is an open subset of G containing 0, consider the decreasing sequence of compact subsets (G —U) NGy,
and conclude that Gy, C U if n is large enough.
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infinite collection of elements in G and take the subgroup spanned by this collection, which
is again countably infinite). Arguing as before with Proposition 7.9 and the isometry (7.4), it
suffices to find a strongly non regular Fourier multiplier on a group having as dual this countable
group, so we assume now that Gisa countably infinite abelian torsion discrete group.

It is (really) elementary to see there exists a sequence (Y},), >0 of subgroups of G with the
properties:

1. each Y, is finite,
2. Y, G Yoy,
3. Yo = {0} and 22, Vs, = G.

Consider now Ag = Yy, A, = Y,\Y,—1 for n > 1. According to Proposition 7.10, the
Littlewood-Paley equivalence (7.9) holds. This in turn is equivalent [54, 1.2.5 pages 8 and
14] to the property that any i € LOO(G) which is constant on any A,, n = 0,1,2,... and
vanishes on all but finitely many A,, induces a bounded Fourier multiplier M, on L?(G) with
||M¢||LP(G)_,LP(G) < Cp [l (- For any integer n, consider the function ¢, = >0 1ageis
defined on G. Since ||¢p|j 00 () < 1, we have [| My, |1p o) < Cp- Let ¢ = 3207 o (1va, iy —
ly, ) € L®(G). Since ¢,(z) — ¢(x) as n — oo for any = € G, we conclude using Proposition
6.12 that the Fourier multiplier M is bounded on LP(G), 1 < p < cc.

Now, we prove that M, is strongly non regular. According to [5, Theorem 3.1], it suffices to
show that ¢ does not belong to the closure of the Fourier-Stieltjes algebra B(G) in L (G)-norm.
For this in turn, it suffices to find a sequence of measures u, on G with the properties

L. H,UnHM(C:) <2,
2. [in(s) —— 0 for any s € G,
n—+o0o
3. / b dpy, —F—s 0.
é n—-+4o0o
We choose the sequence () defined by

det 1 1
D I M O
= W] V]

TEY 11 €Y,

Then property 1 is clearly satisfied, since the Haar measure on G is the counting measure.
For property 2, we have i, = lg, ., — lg,, where G, is the annihilator of Y,, in G, i..
G,=Y} ={seG: &s)=1forall £ €Y,}.

o If s =0 then fi,,(s) = 1¢, ., (0) — 1¢, (0) = 0 for all n € N.

e Consider now the case s € G\{0}. Recall that we have seen in the proof of Proposition
7.10 that (1,5, Gn = {0}. Hence, by the fact that the Y, increase and thus the G,
decrease, there exists an index ng such that s € G,, for any n > ng. Therefore, [, (s) = 0
for any n > ng.
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It remains to show property 3. We have

/¢dM2n=|Y2n+l| Z e lm S 6()

r€Ya2y €Yoy
1 e S
= Z Z(1Y2k+1 —1vy) () = Z Z oy — lyy) ) (@)
|}/2TL+1‘ I€Y2n+1 k=0 |}/2n| ZL’GY2 =0
1 oo
= 1 -1 1 —1
|Y2n+1‘ xe%:ﬂ (Z_: YZk-H Y%( )> |Y2”| TE€Y2n <§;J Y%-H Y%( )>
1
N |Y: | Z Z g (2) = 1y, (2 — Ly (@ ))
2n+1 TE€Yap 41 k=0 ZEGYQ
1 n
= |Y ‘ <Z Z 1Y2k+1 (l’) Z ]‘sz (l’))
2n+1 k:0w€Y2n+1 1€Y2n+1
n—1
1
- |Y |<Z Z 1Y2k+1 ((E) - Z 1Y2k (1.)>
20\ k=0 €Y, TE€Yay
1 _
(|Yors1] — |Yorl|) — |Y2k+1| — [Ya|
- (1 ) (el )+ g (Yo )
|Y2n+1| |}6n| =0 |}/2n+1‘
n—1
=1— + — Y5 — Yz
Vol " \Tomra] ~ Wan] ) 2 (Pl = [¥ar])
n—1
Y2, | 1
>1- — [Yor1| — [Yaxl)-
Yonia| Yol kzzo( )

The second term in the last line is smaller than 1/2 in modulus by the fact that the Y,, increase
strictly and the fact that the order of a subgroup divides the order of the whole group. For
the third term, We note that by skipping several indices n we can assume recursively that |Y2,|

is so large that |Y ; Zk 0 (1Yap41] — [Yar|) < 3. Thus the whole expression in the last line is

bigger than 1 — 3 — i = Z and hence does not converge to 0.

According to Proposition 2.2, it suffices now to show that My ® Idg» extends to a bounded
operator on the Bochner space LP(G, SP). Using both inequalities of Proposition 7.10, the
fact that S? has UMD and Kahane’s contraction principle [99, Proposition 2.5] for the scalars

671 even;, W€ get

| (M @ Ids») ® (M, ®ldse)(My ® 1dse)(f)

fHLP(G,SP) 5 E

L2(G,S7)

=K Z En ® 5n cvcn(MlAn & IdSp)(f)
n=0

L?(G,SP)

B> en® (M, @1ds)(f)
n=0

S I lleec.sv) -
Lr(G,SP)
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The proof is complete. [ |

Recall that a topological space X is 0-dimensional if X is a non-empty T;-space and if the
family of all sets that are both open and closed is a basis for the topology [78, page 11] [57,
page 360]. By [57, Theorem 6.2.1], every O-dimensional space is totally disconnected, i.e. X
does not contain any connected subsets of cardinality larger than one.

Proposition 7.12 Let G be an infinite discrete abelian group. Suppose 1 < p < oco. Then
there exists a strongly non regular completely bounded Fourier multiplier on LP(Q).

Proof : Suppose first that G contains an element of infinite order, so a (closed) subgroup H
isomorphic with Z. Then by [5, Example 3.4], the Hilbert transform induces a strongly non
regular Fourier multiplier on LP(H). Since S? is UMD and according to [18, Theorem 2.8], the
Hilbert transform is bounded on LP(H, S?) so completely bounded on LP(H) by Proposition
2.2. Now, using Proposition 7.7 and the isometry (7.2), the composed Fourier multiplier Mgor
on LP(G), where 7: G- G /H* is the canonical map, is a strongly non regular completely
bounded Fourier multiplier.

Now suppose that every element of G is of finite order, so G is a torsion group. We can
assume that G is countably infinite. Indeed, otherwise choose a countably infinite number of
elements in G, and let H be the subgroup of G generated by these elements. Then H is again
countably infinite. If there is a strongly non regular completely bounded Fourier multiplier
on LP(H) then Proposition 7.7 and the isometry (7.2) yield a strongly non regular Fourier
multiplier on L?(G).

Note that since G is countably infinite, by [78, Theorem 24.15], its dual G is metrizable.
The fact that G is torsion implies by [78, Theorem 24.21] that G is O-dimensional. This in turn
implies that G is totally disconnected.

So @ is an infinite compact abelian metrizable totally disconnected group. By the second
part of [54, Remark page 68], there exists a sequence (H,,)n>0 of closed subgroups of G such
that

1. each H,, is open,
2. Hn—i—l ; Hna
3. N2, Ha = {0}, Hy = G.

Then the sets A,, = H,\ H,+1 enjoy the Littlewood-Paley equivalence (7.9) according to Propo-
sition 7.10. With ¢ = >°°  (1g,, , — 1, ), as in the proof of Proposition 7.11, we see that
M, is a bounded Fourier multiplier on L?(G), 1 < p < 0.

It remains to show that M, is strongly non regular. Invoking [5, Theorem 3.1 and Remark
3.2], it suffices to show that ¢ is not equal almost everywhere to a continuous function.

So assume that : G — C is a continuous function with 1 = ¢ almost everywhere. We
will show a contradiction, which will end the proof. Since the H, are closed and open by 1
above, H,_1\H, is open. As it is also non-empty by 2, it must be of positive Haar measure.
Therefore, there exists x,, € H,_1\H, with

0 n even

Y(xn) = d(zn) = {1 nodd

Consider now the sequence y, = xa,-1. By compactness, there exists a subsequence of y,
which converges against some £ € G. Since y, belongs to Ha,_1, by 2, y,, belongs to Hop_1
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for all m > n. As Hoy,_1 is closed, £ belongs to Ha,—1, so to (o, Hopn—1 = (oo Hn, = {0}.
Therefore, a subsequence of y,, converges to 0.

In the same manner, one shows that a subsequence of xs, converges to 0. However, 1
applied to these two subsequences is constant to 1 and to 0 respectively, so does not converge.
Hence 1 cannot be continuous.

Now use Proposition 7.10 in a similar fashion to the compact case to deduce that My is
completely bounded on L?(G). The proof is complete. [ ]

Recall the following structure theorem for locally compact abelian groups, see e.g. [78,
Theorem 24.30] and [126, Theorem 4.2.31].

Theorem 7.13 Any locally compact abelian group is isomorphic to a product R™ x Go where
n > 0 is an integer and Gq is a locally compact abelian group containing a compact subgroup K
such that Go/K is discrete.

With the help of the above theorem, we can now prove the following.

Theorem 7.14 Let G be an infinite locally compact abelian group. Suppose 1 < p < co. Then
there exists a strongly non reqular Fourier multiplier on LP(G) which is completely bounded,
hence by Subsection 7.1, CB-strongly non decomposable.

Proof : We use the above structure Theorem 7.13 to decompose G and we distinguish three
cases.

If n > 1 then G has a closed subgroup H isomorphic to R and we consider the Hilbert
transform on L?(H) which is strongly non regular by [5, Example 3.3]. Since the Schatten class
SP has UMD, the Hilbert transform is bounded on LP(H, SP) and hence completely bounded
on LP(H) according to Proposition 2.2. Now appeal to the isometry (7.2) and Proposition
7.7 to extend the Hilbert transform to a strongly non regular and completely bounded Fourier
multiplier on L?(G).

If n = 0 then G = Gy. Suppose first that the compact subgroup K is infinite. Using
Proposition 7.11, there exists a completely bounded Fourier multiplier which is strongly non
regular. Again, using the isometry (7.2) and Proposition 7.7, we obtain a strongly non regular
and completely bounded Fourier multiplier on LP(G).

If n = 0 and if the compact subgroup K is finite, then it is itself discrete (since it is
Hausdorff) and thus G = Gy is discrete and infinite. Now, use Proposition 7.12 to find a
strongly non regular completely bounded Fourier multiplier on L?(G). ]

7.3 Strongly non regular completely bounded convolutors on non-
abelian groups

Theorem 7.15 Let G be a unimodular amenable locally compact group which contains an in-
finite abelian subgroup. Suppose 1 < p < oo. There exists a strongly non regular completely
bounded convolution operator T: LP(G) — LP(G).

Proof : Suppose that G contains an infinite abelian group H. Note that the closure H of H is
a closed abelian infinite subgroup of GG. By Theorem 7.14, there exists a strongly non regular

completely bounded Fourier multiplier on L?(H). Since G is amenable and unimodular, we
conclude by using Proposition 7.7 . [ |

Corollary 7.16 Let G be an infinite compact group. Suppose 1 < p < oo. There exists a
strongly non regular completely bounded convolution operator T': LP(G) — LP(G).
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Proof : Note that G is amenable and unimodular. By [154, Theorem 2], the infinite compact
group G contains an infinite abelian subgroup. Hence, we can use Theorem 7.15. [ ]

A group G is a locally finite group if each finitely generated subgroup is finite, see [128, page
422]. Recall that a locally finite group is amenable.

Corollary 7.17 Let G be an infinite unimodular locally finite locally compact group. Suppose
1 < p < oo. There exists a strongly non regular completely bounded convolution operator
T: LP(G) — LP(G).

Proof : By [128, Theorem 14.3.7], such a group has an infinite abelian subgroup. ]

Corollary 7.18 Let G be a nilpotent locally compact group which contains an infinite abelian
subgroup. Suppose 1 < p < co. There exists a strongly non regular completely bounded convo-
lution operator T: LP(G) — LP(G).

Proof : Such a group is unimodular and amenable. [ |

Corollary 7.19 Let G be an amenable discrete group which contains an infinite abelian sub-
group. Suppose 1 < p < co. There exists a strongly non reqular completely bounded convolution
operator T': LP(G) — LP(G).

Proof : Such a group is unimodular. [ |

7.4 CB-strongly non decomposable Schur multipliers

We start with a result which gives a manageable condition which is necessary for that a com-
pletely bounded Schur multiplier belong to the closure of the space of decomposable operators.

Proposition 7.20 Suppose 1 < p < oo. If the Schur multiplier My: ST — ST is completely
CB(S7)

bounded and belongs to the closure Dec(SY) of the space Dec(SY) with respect to the

—
completely bounded norm then M, belongs to the closure MP " of the space IMG° in the
Banach space €35 ;.

Proof : Let R: S7 — S7 be a decomposable operator. By Proposition 3.12, we can write
R = Ry — Ry + i(R3 — R4) where each R; is a completely positive map on S7. Using the
projection Pr: CB(S?) — M2 of Corollary 4.4, we obtain

Pi(R) = Pr(Ry — Ry +i(Rs — Ry)) = P(Ry) — Pr(R2) +i(Pr(Rs) — Pr(Ry)).

By Proposition 3.12, we conclude that the Schur multiplier Py(R) is decomposable. By Proposi-
tion 4.10, we infer that P;(R) is bounded on S¢°, i.e. belongs to M3°. According to Proposition

4.10, it also belongs to SJI?O’Cb with same norm. Now, using the contractivity of P;, we have

My — R| > || Pr(My | Pr(My) — Py

- R>ch,s;’asf = (R)chvs?ﬁs?
2 || My = Pr(R) g5, 55 > distegs, (Mo, M)

cb,AS'?*)Sf,j
= || — PI(R)HCb,Sf—>5§
Hence, we deduce that

distep(sr) (Mg, Dec(S7)) = distgs | (Mg, IM7°).
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It is folklore that if M4: B(¢?) — B(¢?) is a bounded Schur multiplier and the limits

lim lim a;; = s and lim lim a;; =1
Z*)OO]A)OO ]A)OO 1—00

exist then s =t, see [112, Ex 8.15 page 118] This property turns out to be also true for Schur

multipliers belonging to the closure MM> o,

Proposition 7.21 Let M4 € DS If the limits

lim lim a;; =s and lim lim a;; =t
i—00 j—00 J—00 i—00

exist then s = t.

Proof : Let ¢ > 0 and let [b;;] be a matrix corresponding to a bounded Schur multiplier

B(¢?) — B(£?), such that |b;; — a;;| < € for any i,j € N. By the description [112,
Corollary 8.8] of bounded Schur multipliers B(¢?) — B(¢?), there exist a Hilbert space H, some
bounded sequences (z;) and (y;) of elements of H such that b;; = (z;,y,) for any i,j € N. By
the weak compactness of closed bounded subsets of H, there exist subsequences i and j; and
x,y € H such that weak-limy, x;, = z and weak-lim; y;, = y. Thus, we have

kEI—iI-loo b; 2% kgr_{loo<xik7yjl> = <1‘, yjl>
and finally
llginoo kEI}Lloo bikjl - llgglm(x’ yjl> - <III, y> ’

By the same reasoning, we also have lim lim b;,; = (z,y). Now, we infer that
k—+oo l—+oco

lim b;,; — lim a; ;
'Lk]l k—)+00 k]l

< e and thus ‘ lim lim b;,; —t| <e.
k—+o0

=400 k—+o0

Similarly, we have

lim lim b;, 5 —s| <e.
k—+4ocol—+o0
We infer that |s — t| < 2e. Letting € go to zero yields the proposition. ]
Recall [110, Section 6] that the triangular truncation 7 : S? — SP and the discrete noncom-
mutative Hilbert transform #H: SP — SP are completely bounded Schur multipliers defined by
T([a”]) = [5i<jaij] and that H([az]]) = [—15i<jaij + i51'>jaij] for any [aij] € SP where 12 =—1.
The fact that 7 and H are completely bounded on S? can be found in [110, Section 6].

From the last two propositions, we deduce the following result.

Corollary 7.22 The triangular truncation T: SP — SP and the discrete noncommutative
Hilbert transform H: SP — SP are CB-strongly non decomposable.
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7.5 CB-strongly non decomposable Fourier multipliers
We start with a transference result.

Proposition 7.23 Let G and H be two discrete groups such that H is a subgroup of G. If
p: H — C is a complex function, we denote by ¢: G — C the extension of ¢ on G which
is zero off H. Suppose 1 < p < oo. If ¢ induces a CB-strongly non decomposable Fourier
multiplier My: LP(VN(H)) — LP(VN(H)) then ¢ induces a CB-strongly non decomposable
Fourier multiplier M: LP(VN(G)) — LP(VN(G)).

Proof : Let E be the trace preserving conditional expectation from VN(G) onto VN(H)
and J be the canonical inclusion of VN(H) into VN(G). The map JM,E is completely
bounded on LP(VN(G)) and is clearly equal to the Fourier multiplier My induced by P.

CB(L?(VN(G))) .
Suppose that M belongs to Dec(LP(VN(G))) . Let ¢ > 0. Then there exist
some completely positive maps Ry, Ra, R3, R4: LP(VN(G)) — LP(VN(G)) and a completely
bounded map R: L?(VN(G)) — LP(VN(G)) of completely bounded norm less than ¢ such that
M;«z Ry — Ry +i(R3 — Ry) + R. For any h € H, we have

TG (M;()\}J()\h)*) = @(h)TG (/\h(/\h)*) = (P(h)

Hence, using the map Py given by Corollary 4.6, we obtain

M, = Py (M) = Py (Ry — R2 +i(Rs — R4) + R)
= Py(R1) — Py(Rs) +1(Pu(Rs) — Pu(Rs)) + Pu(R).
Moreover, by the contractivity of Py, the Fourier multiplier Py (R): LP(VN(H)) — LP(VN(H))
is completely bounded of completely bounded norm less than . Furthermore, each Fourier

multiplier Py (R;): LP(VN(H)) — LP(VN(H)) is completely positive. It follows that M, is
e-close to Dec(LP(VN(H))) in the Banach space CB(LP(VN(H))). So letting ¢ — 0 yields that

M,, € Dec(Lr(VN(H))) VNI

. This is the desired contradiction. |

Corollary 7.24 Let G be a discrete group which contains an infinite abelian subgroup. Suppose
1 < p < oo. There exists a CB-strongly non decomposable Fourier multiplier on LP(VN(QG)).

Proof : It suffices to use Proposition 7.23, Theorem 7.14 and Remark 7.3. [ ]

For example, consider 1 < p < oo, n € N and the free group G = F,, of n generators.
Then there exists a CB-strongly non decomposable Fourier multiplier on LP(VN(F,,)). The
next criterion allows us to give concrete examples in Proposition 7.28 and Proposition 7.29.

Proposition 7.25 Let G be a unimodular locally compact group. Suppose 1 < p < 0.

1. Let p: G — C be a complex function inducing a completely bounded Fourier multi-
plier on LP(VN(G)). Suppose that there exists a bounded, complete positivity preserv-
ing mapping P%: CB(LP(VN(Q))) — MP>(G), such that PL(M,) = M,. If M, €

DecLr(VN@G)) YN en v, e ey @

2. Assume that the limits lim ¢(s") and lim ¢(s™") exist for some s € G and that M,
n—+o00 n—-+o0o

L= (G

belongs to the closure M>-<b(G) ) for some measurable ¢: G — C. Then

lim @(s") = lim @(s7™").

n—4oo n——+oo
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Proof : 1. Let R: LP(VN(G)) — LP(VN(G)) be a decomposable operator. By Proposition
3.12, we can write
R=R; — Ry +i(Rs — Ry)

where each R; is a completely positive map on L?(VN(G)). Using the mapping PZ from the
statement of the proposition, we obtain

PL(R) = PY(Ry — Ry + i(R3 — Ry)) = PE(R1) — PL(R) +i(PL(R3) — PE(R4)).

Using Proposition 6.11, we see that the Fourier multiplier P%(R) is decomposable on VN(G)
and in particular completely bounded by Proposition 3.30. Now, using the boundedness of P2,
and Lemma 6.5, we obtain

HPg‘H ||M¢ - R||cb,Lp(VN(G))—>LP(VN(G)) 2 |
= HPS(M@) — Pg

| PE(M, — R)ch,LP(VN(G))—>LP(VN(G))

(R)ch,LP(VN(G))—>LP(VN(G)) = HMW - Pg

Z ||Ms0 - Pg(R)HL2(VN(G)HL2(VN(G)) > distre~(q) (Msm WOGO’Cb)-

(R) ||cb,LP(VN(G))—>LP(VN(G))

Hence, we deduce that

[P& | distenwnviian) (Mg, Dec(LP(VN(G)))) > distre () (M, M)

e
2. Suppose that M, belongs to M><P(G) . Let e > 0 and M, € M><P(G) with
lo =9l < e. According to [138, page 2|, there exist a Hilbert space H and two maps
P.Q: G5 H with [Pl = sup,cq [P, 1Ql.. = supiee Q)] < oo such that
Y(rt=t) = (P(r),Q(t)),, for any r,t € G. The sequences (P(s"))i>0 and (Q(s’));>0 are bounded
in H and thus admit weak* convergent subsequences (P(s*)) and (Q(s’!)) to some elements
hy and hsy of H. Thus, for any I, we have

lim (s 7) = lim (P(s),Q(s")) = (h1, Q(s7)),

k—+o00 k—+o00
which implies

lim lim ¢(s* ) = lim (hy,Q(s"")) = (h1, ha).

=400 k—+o00 l—+o0

We obtain similarly that limg_, o im0 (5% 791) = (hy, hs). But by |l¢ — Pl < €, we
deduce that

lim @(si’“_ﬁ)— lim w(si"‘_j’)

k—+oco k—+oco

<e and thus | lim ¢(s") — lim lim (s 7)| <e.

n—-+4o0o =400 k—+o0

Similarly, we have

li -ny _ li Tk —Ji
(7 = I v ()

<e.

Hence the limit lim,, 1 o, ¢(s™) is 2e-close to lim, 1 ©(s™"). We deduce 2. by letting e — 0.
| ]

Theorem 7.26 Let G be a second countable amenable locally compact group and H be a normal
open (and then also closed) subgroup of G (so G/H is discrete). Let m: G — G/H be the
canonical map and ¢: G/H — C be a continuous bounded complex function. Suppose 1 < p <
0o. If the complex function p o m: G — C induces a CB-strongly non decomposable Fourier
multiplier Mor: LP(VN(G)) — LP(VN(G)) then ¢ induces a CB-strongly non decomposable
Fourier multiplier M,: L?(VN(G/H)) — L?(VN(G/H)).
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Proof : Note that the Fourier multiplier M, is completely bounded by Theorem 6.14. Suppose

that M, belongs to Dec(LP(VN(G/H))) BESVNIGIIOD p o ¢ > 0. Then, by Proposition 3.12,
there exist some completely positive maps Ry, Rz, R3, R4: LP(VN(G/H)) — LP(VN(G/H)) and
a completely bounded map R: LP(VN(G/H)) — LP?(VN(G/H)) of completely bounded norm
less than € such that M, = Ry — Ry +i(Rs — R4) + R.

Corollary 4.6 yields the existence of some complex functions @1, @2, @3, 4 and ¥ such that
M, =M, —M,, +i(M,, — M,,)+ M, such that the Fourier multipliers M,,, are completely
positive on L?(VN(G/H)) and My is again of completely bounded norm less than e. Since
G/H is discrete, the functions 1, ¢1, 2, 3, @4 are continuous. Then by Theorem 6.14 it fol-
lows that M, or: LP(VN(G)) — LP(VN(G)) is completely positive and the Fourier multiplier
Myor: LP(VN(G)) — LP(VN(Q)) is completely bounded of completely bounded norm less than
€. Since

Mgporr = Mgplm-r - MLPQOTF + i(M<p307'r - M<p4o7r) + M’l,/}Oﬂ'
it follows that Mo is e-close to Dec(L?(VN(G))) in the Banach space CB(L?(VN(QG))), so

CB(L? (VN(G
that letting ¢ — 0 yields that My, € Dec(LP(VN(G))) LHONOD  This is the desired
contradiction.

Riesz transforms. An affine representation (#, «,b) of a discrete group G is an orthogonal
representation «: G — O(H) over a real Hilbert space H together with a mapping b: G — H

satisfying the cocycle condition b(st) = as(b(t)) + b(s) [113, Definition 10.6], see also [141]. In
this situation, by [113, Theorem 10.10] the function s — ||b(s)\|3{ is conditionally of negative
type, vanishes at the identity e and is symmetric. By [90, page 532], for any normalized vector
h € H, we can consider the Riesz transform Rj; = Mg whose symbol ¢: G — R is defined by
<b(8)7 h>7—l
(7.10) o(s) = —H—+=
[[6(5)[l

if b(s) # 0 and ¢(s) = 0 otherwise. We will use the subgroup Gy = {s € G : b(s) =0} of G.

Lemma 7.27 Let G be a discrete group equipped with an affine representation (H,a,b). Sup-
pose 1 < p < oo. The symbol ¢ from (7.10) induces a completely bounded operator Ry =
My: LP(VN(GQ)) — LP(VN(G)).

Proof : Tt is essentially shown in [90] that R), is completely bounded on the subspace L (VN(G)) &f
Ran(Idpr(vn(a)) — Mig,) of LP(VN(G)). Indeed, consider some orthonormal basis (e;) of H
with e; = h and some independent Rademacher variables 1,5, ... on some probability space
Q. For any x € S (LE(VN(G))), using the inequalities [90, Theorem Al and Remark 1.8] for

p € [2,00), we have

|(Idgr ® Rh)(x)||s£n(Lp(VN(G))) s

> e @ (dgs, ® Re,)(x)

LP(Qo,57, (LP (VN(G))))

~ H ((Idsﬁ ® Rei)x) HRCP(Sf’n(LP(VN(G)))) S |\9C||S£’;,(LP(VN(G))) )

Thus Ry, is completely bounded on LE(VN(G)) for p € [2,0).
Since G is discrete, the indicator function 1g, is continuous. Let G/Gy denote the discrete
space of left cosets of Gy and consider the quasi-left regular representation ng,: G — B(€2G /Go)
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given by mg,(8)0tg, = dstq,- For any s € G, we can write 1g,(s) = (7, (5)0G,,da,). Con-
sequently the indicator function 1¢, is a continuous positive definite function. According to
Proposition 6.11, this function induces a completely positive Fourier multiplier on L?(VN(G)).
We deduce that Idpsv~(e)) — Mg, is completely bounded on LP(VN(G)). If s € G satisfies
@(s) # 0, then s does not belong to Gy, so ¢ = ¢- (1 — 1g,). Hence we can write

Ry, = Ry (Idpe(vn(a)) — Miya,) = My.(1-14,)-
We conclude that Ry, is completely bounded on LP(VN(G)) for p € [2,00), and by duality and

selfadjointness (note that ¢ is real-valued) also for p € (1,2]. [ |

Let H be a real Hilbert space and fix some non-zero vectors hy, ..., h, in H (or a sequence
if n = oco). We introduce the affine representation (H,«,b) of the free group F,, defined by
as = Idy for all s € G and

b(gfj gfjvv) =jihy, +-- -+ JNhin, J1,..,INEZ
where g¢1,..., g, stand for the generators of F,,.

Proposition 7.28 Let G =F,, the free group on n generators. Suppose 1 < p < oco. The above
Riesz transform Ry, associated with a family (h;) where h = hy is normalized, is a CB-strongly
non decomposable selfadjoint Fourier multiplier on LP(VN(F,,)).

Proof : We have shown in Lemma 7.27 that R}, is completely bounded on LP(VN(F,)). On
the other hand, for any m € Z\{0}, we have

S(gT) = (b(g1"); h1)n _ (mhi,hi)y — sign(m) (h1, h1)u

[16(g7") [l l[mhally (171l

So we have lim, 4o ¢(g7") = ||h1ll3 # — [|h1llyy = limp— 400 #(g; ™). Using Proposition 7.25
(applicable, since G = F, is discrete), we conclude that R}, is CB-strongly non decomposable.
|

= sign(m) [ 3, -

Free Hilbert transform. A different class of linear operators which are CB-strongly non
decomposable on LP(VN(F,)) is given in [108]. Namely, let G = F, be the free group with a
countable sequence of generators gi,gs,.... For n € N, let Lt: L2(VN(F.,)) — L2(VN(F,.))
be the orthogonal projection such that

LEN) = As s starts with the letter g!
P10 otherwise )

Let further e, &, € {—1,1} for any n € N. Following [105], we define the free Hilbert transform
associated with e = (¢£) as H. =Y _yer L + ¢, L, . Clearly, since the ranges of the L are
mutually orthogonal, H, is bounded on L?(VN(F,)). The far reaching generalization in [103,

Section 4] is that H. induces a completely bounded map on LP(VN(F,)) for any 1 < p < co.

Proposition 7.29 Let 1 < p < oo and € as above. If € is not identically constant 1 or —1,
then H. is CB-strongly non decomposable on LP(VN(F,)).

Proof : Clearly, H. = My, is a Fourier multiplier with symbol ¢.(s) depending only on the
first letter of s. This implies that ¢.(s") = ¢(s) for n € N. According to Proposition 7.25, it
suffices now to find some s € Fo, such that ¢.(s) # ¢-(s7!). Take n,m € Nand a,b € {£} such
that € # e’ . whose existence is guaranteed by H. # +ldpr(vN(F.))- Take further s = g;gr g
for some k € N\{n,m}. Then ¢.(s) = &2 # b = ¢.(s71). [ |
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7.6 CB-strongly non decomposable operators on approximately finite-
dimen. algebras

We start with a transference result.

Proposition 7.30 Let M be a von Neumann algebra and N be a sub von Neumann algebra
equipped with a faithful normal semifinite trace such that the inclusion N C M is trace pre-
serving. Suppose 1 < p < oo. We denote by E: LP(M) — LP(N) the canonical conditional
expectation and J: LP(N) — LP(M) the canonical embedding map. Then

1. The map
Z: CB(LP(N)) — CB(L?(M))
T — JTE

is an isometry and the map

Q: CB(LP(M)) — CB(LP(N))
S — ESJ

s a contraction. Both maps preserve the complete positivity and satisfy the equality QT =
Ides e (vy)-

2. We have Q(Dec(LP(M))) = Dec(LP(N)) and Z(Dec(L?(N))) C Dec(LP(M)). Moreover,
the above maps induce an isometry I: Dec(LP(N)) — Dec(L?(M)) and a contraction
Q: Dec(LP(M)) — Dec(LP(N)).

3. For any completely bounded operator T: LP(N) — LP(N), we have
distcp e (v)) (T, Dec(LP(N))) = distop e (ay) (Z(T), Dec(LP(M))).

In particular, T is CB-strongly non decomposable if and only if Z(T') is CB-strongly non
decomposable.

Proof : 1. Recall that EJ = Idp»(n). We have QI(T) = Q(JTE) = EJTEJ = T. Now, it
is obvious that Q is a contraction and that Z is an isometry. Since E and J are completely
positive, the maps Q and Z preserve the complete positivity.

2. Let T: LP(N) — LP(N) be a decomposable operator. Since E and J are contrac-
tively decomposable, we deduce by composition that Z(T) is decomposable. Hence we have
Z(Dec(LP(N))) C Dec(LP(M)). Similarly, we have the inclusion Q(Dec(L?(M))) C Dec(LP(N)).
Moreover, we have

Dec(L?(N)) = QZ(Dec(L?(N))) € Q(Dec(LP(M))).

We conclude that Q(Dec(LP(M))) = Dec(LP(N)). Other statements are obvious.
3. Let T: LP(N) — LP(N) be a completely bounded operator. Using the isometric map Z
and the inclusion Z(Dec(L?(N))) C Dec(LP(M)) we see that

diStCB(Lp(N)) (T, Dec(Lp(N))) = diStCB(Lp(M)) (Z(T),I(DGC(LP(N)))
> diStCB(LP(M)) (I(T), Dec(Lp(M))) .

Now, consider a sequence (T),) of decomposable operators acting on L? (M) with

||I(T) — Tanb,U“(M)—)LP(M) m diStCB(Lp(]\/j)) (I(T), DCC(LP(M))).
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By part 2, the operator Q(T;,): LP(N) — LP(N) is decomposable. Moreover, we have

distep e (v)) (T Dec(LP(N)) < | = Q(T0o) e 1o (v)— 10 ()
= HQ(I(T) - Tn)Hcth(N)_)Lp(N) < ”I(T) - Tn||cb,LP(M)—>LP(M) ’

Letting n go to infinity, we obtain that

distcp(re(v)) (T, Dec(LP(N))) < distepre(an) (Z(T), Dec(LP (M))).

We will use the following elementary lemma.

Lemma 7.31 Suppose 1 < p < oo. For any matriz A € M,,, we have
1
[Mallgeo 500 <17 [|Mallgr_,gp

Proof : Let B € S2°. We denote by s1(B), ..., sy(B) the singular values of B. We have

- g P 1 1
[Blls» = (Zsi(B)p> < (n sup si(B)p> =nr - sup s;(B)=mnr- HB“Sgo

i—1 1<i<n
We deduce that
1
[Ma(B)llsee < IMa(B)llgz < 1Mallgz_sp 1Bllge <n? [[Mallgp_, e | Bll g -

Proposition 7.32 Let R be the hyperfinite factor of type 111 equipped with a normal finite faith-
ful trace. Let 1 < p < co. There exists a CB-strongly non decomposable operator T': LP(R) —
LP(R).

Proof : Let G be the discrete group of permutations of the integers that leave fixed all but
a finite set of integers (the set may vary with the permutation). By [96, page 902], the von
Neumann algebra VN(G) is #-isomorphic to the hyperfinite factor R of type II;. Moreover, by
[96, page 902], the group G is locally finite. By [128, Theorem 14.3.7], it has an infinite abelian
subgroup. Now, it suffices to use Corollary 7.24. [ ]

We introduce the sub von Neumann algebra Ko, = @,>1M,, of B(£? ®2 £?) equipped with
its canonical trace and its noncommutative LP-space K? = @Z>1S£ . We denote by J: K, —

B({? ®3 £2) the canonical inclusion and E: B(¢? ®5 ¢?) — K, the canonical trace preserving
faithful normal conditional expectation.

Proposition 7.33 Let 1 < p < oo, p # 2. There exists a CB-strongly non decomposable
operator T': KP — KP.

Proof : If n =2™ by [52, page 53], there exists a positive constant C' and matrices D,, € M,,
such that Cn? < [Mp,, |lgee 50 and || Mp,[|gr_,er < nl2=5! for n large enough. Since the

argument of [52] of the latter inequality is based on interpolation and duality, we have the better

estimate
11 |

IMp, ||y, spsp < nl# 751,
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Still working with n = 2™, we consider the matrix

By Proposition 3.4, we can suppose p > 2. For n large enough, we have

1

l_l|

n‘2 P

1

[Ma, Mp

n

1
Sp—Sy = IMp, || g0y 500 = cn?

S50 — 890 nlé_ﬁ

Moreover, we have the estimate

N
—_

[ Ma, ch,sg—w,’; =

n cb,S? 5P

Now, we introduce the well-defined completely bounded linear operator

®: KPP — K?
(Bn) — (0,M4,(B2),0,My,(B4),0,0,0, Ma,(Bs),0,...)

Using the map Z of Proposition 7.30, we note that the map Z(®) = JOE: SP({? ®9 (%) —
SP(0? @9 ¢?) is a completely bounded Schur multiplier M4 on SP(¢? ®9 £?). Now, we will use
the following lemma.

Lemma 7.34 There exists € > 0 small enough such that if a completely bounded Schur mul-
tiplier Mp: SP(0? @4 (?) — SP((? @4 (?) satisfies |Mp — Mallop,sr(20502)— 50 (20502) S € then
Mg is not decomposable.

Proof : If n = 2™, let B, the n x n-submatrix of the matrix B occupying the same place as
A, in A. The triangular inequality and Lemma 7.31 give

”MBnHS;;oHSZO Z HMAnHSZ"*)SZO - ||MB71 - MAn”SZoHsgc
1

1
> [[Ma, —nv||Mp, — Ma,

S0 —85° cb,SE—SE -

We take 0 < ¢ < ¢. Suppose ||Mp — MA||Cb,Sp(g2®2€2)_>Sp(€2®2£2) < e. In particular, for any
integer n, we have |Mp, — Ma, ||, v g» < €. If nis large enough we obtain

1 1 1
>cne —enre = (c—e)np — +o00.
Spe—=Sye = ( ) n——+oo

Mg,

Hence the matrix B does not induces a bounded Schur multiplier Mp on B(¢? @5 ¢%). By
Theorem 4.10, we conclude that Mpg is not decomposable. |

Now, suppose that there exists a decomposable operator T': SP(£? @9 (?) — SP(£? @9 (?)
such that [T — Mall oy, sr(2@502)— 50 (20502) < €. We can write

T=T —Ty+i(Ts — Ty)

where each T is a completely positive map acting on SP(¢? ®, ¢?). Using the projection P
of Theorem 4.2, we obtain P(T) = P(1T1) — P(Tz) + i(P(TI3) — P(T4)). Since each P(T}) is
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completely positive, we conclude that the Schur multiplier P(T): SP(¢? @9 ¢?) — SP({? @4 (?)
is decomposable. Note also that

||P(T) — MA||Cb’Sp(€2®2€2)_)Sp(£2®2€2) = HP(T — MA)||Cb,s’p(z2®2€2)_>5’p(€2®2£2)

ST = Malley, 50020502y 57 (220502) < E-

This is impossible by Lemma 7.34. Hence the map M4 = Z(®) is CB-strongly non decompos-
able. By the point 3 of Proposition 7.30, we conclude that ® is CB-strongly non decomposable.
|

Theorem 7.35 Let M be an infinite dimensional approximately finite-dimensional von Neu-
mann algebra equipped with a faithful normal semifinite trace. Let 1 < p < oo, p # 2. There
exists a CB-strongly non decomposable operator T': LP(M) — LP(M).

Proof : By the classification given by [71, Theorem 5.1] (see also [124, Theorem 10.1] and [142]),
the operator space LP(M) is completely isomorphic to precisely one of the following thirteen
operator spaces:

o LP([0,1]), SP, KP, KP@LP([0,1]), SPaLP(]o,1]), LP([0,1], KP),

sraLr([0,1], K?), LP([0,1],87), LP(R), SPe&LP(R), LP([0,1],SP)&LP(R), LP(R,SP).

A careful examination of the proofs of [71, pages 59-60] and [142, pages 143-145] shows that we
can replace “completely isomorphic” by “completely order and completely isomorphic”.

By [5, Examples 3.4 and 3.9], the Hilbert transforms ¢, — ¢ and LP(T) — LP(T) are
strongly non regular. Since the Schatten space SP is UMD, by Proposition 2.2, these operators

are also completely bounded (use [18, Theorem 2.8] for the discrete case). Using Proposition
7.30, Proposition 7.33, Proposition 7.32 and Corollary 7.22, it is not difficult to conclude using
a reasoning by cases. [ ]

Corollary 7.36 Suppose 1 < p < oo, p # 2. Let M be an infinite dimensional approzimately
finite-dimensional von Neumann algebra equipped with a faithful normal semifinite trace. The
following properties are equivalent

1. p=1.
2. CB(L?(M)) = Dec(LP(M)).

3. CB(LP(M)) = Dec(r(30)) "M,

Proof : Implications 1. = 2. = 3. are obvious. Theorem 7.35 says that the contraposition of
3. = 1. is true. |

For the case p = oo, the situation is well-known for every von Neumann algebra. Indeed, by
[65, page 171], if M is a von Neumann algebra then we have the equality CB(M) = Dec(M)
if and only if M is approximately finite-dimensional. Moreover, Haagerup showed that the
following properties are equivalent.

1. M is approximately finite-dimensional.

2. For every C*-algebra A and every completely bounded map T': A — M we have
1T gee = 1Tl er,-
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3. For every integer n > 1 and for every linear map T': £;° — M we have ||T'|| .. = [|T]|.p-

dec

4. There exists a positive constant C' > 1, such that for every integer n > 1 and every linear
map T: £5° — M we have ||T|| ;.. < C||T|.p-

dec

Now, we show that these equivalences do not admit extensions to the case 1 < p < oo. It
suffices to use the following proposition and the completely positive and completely isometric
inclusion ¢2 C ¢P.

Proposition 7.37 Suppose 1 < p < oo. There exists an integer n large enough and a (com-
pletely bounded) linear map T': €, — {5 such that we have |T|q, o o < [Tl gecpn en - More
precisely, there does not exist a positive constant C' > 1 satisfying for every integer n > 1 and

every linear map T': &, — €5, the inequality ||| goe v _or < C Tl oty 00 _r -

Proof : By Theorem 7.14, there exists a strongly non regular Fourier multiplier M,,: L?(T) —
LP(T) which is completely bounded. We can suppose ||M,|, < 1. Now, we approximate M,
using the method of the proof [10, Proposition 3.8] (and [7, proof of Theorem 3.5]). We deduce
the existence of Fourier multipliers C,, on LP(Z/nZ) = (* with [|Cy, ||, < 1 and arbitrary
large ||C, when n goes to the infinity. We can apply this method since ||T| .. = |7l ep =

n Hreg reg

supy |7 ® 1dx |10, x) 10 (0, x)- u

8 Property (P) and decomposable Fourier multipliers

In this section, we give a proof of Proposition 8.2 which is our characterization of selfadjoint
contractively decomposable Fourier multipliers. Subsection 8.3 describes new Fourier multipliers
which satisfy the noncommutative Matsaev inequality, relying on Theorem 8.5 which gives the
new result of factorizability.

8.1 A characterization of selfadjoint contractively decomposable mul-
tipliers

Let M be a von Neumann algebra and T: M — M be a weak* continuous operator. Recall
the following definition from [98, Definition 3]. We say that T satisfies (P) if there exist linear
;}O 5;] : Ma(M) — Ma(M) is completely
positive, completely contractive, weak* continuous and selfadjoint™. In this case, v; and vy are
completely positive, weak™ continuous and selfadjoint. An operator T satisfying (P) is neces-
sarily contractively decomposable, weak* continuous and selfadjoint. The converse statement
is false by [98, Example 2] in general.

We start to show that the converse is true for Fourier multipliers on discrete groups. If
My: VN(G,0) — VN(G,0) is a bounded multiplier on a discrete group G equipped with a
T-valued 2-cocycle o, it is not difficult to check that (My)° = M$ and that My is selfadjoint in

the sense of Subsection 2.6 if and only if its symbol ¢: G — C is a real valued function. Finally,
it is straightforward to prove that the preadjoint (My).: L' (VN(G,0)) — LY (VN(G, o)) of M,
identifies to M 2

maps vy, vg: M — M such that the linear map [

74. The assumption selfadjoint is equivalent to the selfadjointness of vi, v and T'.
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Lemma 8.1 Let G be a discrete group equipped with a T-valued 2-cocycle o. Suppose that
U1, P2, ¥3,04: G — C are some complex valued functions inducing some bounded Fourier mul-
tipliers My, , My, , My, and My, on VN(G, o). If the operator

Tr= [%Zi %zj : Mo (VN(G, 0)) — M2(VN(G, 7))

is completely contractive then it induces a completely contractive operator Ty on the space
SI(LY(VN(G,0))). Finally the Banach adjoint (T1)*: Ma(VN(G, o)) — Ma(VN(G, o)) iden-

M; M;

; 1 2
tifies to [Mw Mv,z? .

3 4

Proof : According to the point 5 of Theorem 4.2, we have
17Nl e vt (v (60— Ma (VN (Gao)) = T Mleb s (v (G)) —Ma (VN (GY)

and similarly, [|Tq, 5101 (vn(@0)) 2@ vn@.e) = [T e, spwrvniey)—sivniey) Provided
that one of these terms is finite. So if we prove the first statement of the lemma for the
trivial cocycle o = 1, then it follows for a general T-valued 2-cocycle 0. We thus sup-
pose now that ¢ = 1 is trivial. Consider the #-anti-automorphism x: VN(G) — VN(G),
Mwl Mﬂ’? — Mﬁ;l M¢;2:|
Mw?» M¢4:| (IdM2 ¥ K) |:vas M’ﬁ4
where ;(s) = ;(s™!). Since the map x: VN(G) — VN(G)° is a complete isometry, we

M. M

conclude that the linear map [ wa M%] : Mo (VN(G)) — My(VN(G)) is completely con-
» W»

tractive. Moreover, by Lemma 6.31, eacﬁ symbol ; induces a bounded Fourier multiplier

My, : LY(VN(G)) — LY(VN(G)). Consequently, [%’“ %W} induces a bounded operator
3 P4

on S3(LY(VN(G))). Furthermore, by Proposition 3.3 and Lemma 6.4, we see that the Ba-
nach adjoint of the operator {%M %1/’2] : SHILYVN(G))) — S3(LY(VN(G))) identifies to
P P

3 4

As = Ag—1. An easy computation gives (Idy, ® k) [

the complete contraction

(Mwl)* (sz)* _ MV1 Mvz .
[(Mws)* (Mw)*] = {Mi Mﬂ : Mo (VN(G)) — Ma(VN(G)).

We conclude that the operator {%ﬂn %wz} : S3HLYVN(Q))) — SHLY(VN(Q))) is completely
3 (oA
contractive. Finally, the last statement of the lemma for a general T-valued 2-cocycle o follows

from
TG,o ((Mw)*()\o,s)Aa,t) =TG,0 (Aa,sMw(/\U,t)) = 7/}(t)TG,a' ()\a,s>\a,t)
= ¢(t)0(5a t)(ss,t*1 = ¢(3_1)U(3a S_l)és,t*1

and
TG,o (M,L;()\U,s>)\0',t) = ’(Z}(S)TGJ ()\075)\0,75) = ¢(5_1)0(3a 8_1)58,15*1'

Proposition 8.2 Let G be a discrete group equipped with a T-valued 2-cocycle o. Let ¢p: G — C
be a complex valued function. The following assertions are equivalent.
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1. The complex function ¢ induces a selfadjoint contractively decomposable Fourier multiplier
My: VN(G,0) = VN(G, o) on the twisted group von Neumann algebra VN(G, o).

2. The function ¢ induces a Fourier multiplier My: VN(G,0) = VN(G, o) with (P).

3. There exist some real valued functions p1,p2: G — R such that

FZ\Z j‘fﬂ My (VN(G, 0)) — Ma(VN(G, o))

is unital, completely positive, weak* continuous and selfadjoint.

Proof : The statements 3. = 2. and 2. = 1. are obvious. We show 1. = 3. The multiplier
My is selfadjoint thus we have ¢ = ¢ and finally (M,)° = Ma = Md;. Since the operator M

is contractively decomposable there exist linear maps vy, ve: VN(G,0) — VN(G, o) such that
M

Z\Ujd; vj] : Ma(VN(G,0)) — M2(VN(G, 0)) is completely positive and completely

contractive. By using the same reasoning as the one in the proof of Proposition 3.4, we can

suppose that this map is in addition weak* continuous. Since G is discrete, we can apply the

projection PY 5, o ¢ CBy+ (M2(VN(G, 0))) — im?i:;?(G, o) from Theorem 4.2. We obtain that

the map [

P ([ 2]) = [Eln) PN [ i 1,
121G \ | My v PEe(My)  Pge(v2) My P& (v2)
We deduce that there exist some complex functions 11,1: G — C such that the map T et
{Mwl M,
My My,
and weak* continuous. By Lemma 8.1, the operator T induces a completely positive and
completely contractive operator T3 : Si(LY(VN(G,0))) — S3(LY(VN(G,0))). The operator
(Th)*: Ma(VN(G,0)) — My(VN(G,o0)) is also completely contractive and completely posi-
M, M (5} B {Mwl M J)}

} : M2(VN(G, 0)) = M2(VN(G, 0)) is completely positive, completely contractive

tive by Lemma 2.7. Again by Lemma 8.1, we have (T1)* = { k4

My My, My Mg
where we used [14, Proposition C.4.2] and the fact that ¢ and 1); are definite positive since

My, : VN(G,0) = VN(G, 0) and My, : VN(G,0) — VN(G, o) are completely positive.
Consider the transpose map’® n: My — M5, A — "A, which is an algebra isomorphism,
hence a complete isometry and a completely positive map (see also Lemma 2.6). An easy com-

ion gi 1d Mo My Id ~ M Mol We conclude th
putation gives (n® Idyn(g,0)) M, Mo (n®@ldyng,e)) = M, M| e conclude that
. def [M7— My . .
the linear map R = M;” M| My (VN(G, o)) = My(VN(G, 0)) is completely contractive
¢ 2

and completely positive.

M M
Now, (T + R): Ma(VN(G, 0)) = Ma(VN(G, 0)) is a matrix block multiplier L\;’ﬁ' Mj}
1) 4
which is completely positive, completely contractive and selfadjoint with Mgy in the corner.
Note that My, and My, are completely positive. So 93(e) = My, (1) = [|[My,]| < 1 and

similarly for 14. Hence the linear maps w1 = My, + 7a,o(-)(1 — ¥3(e))lyn(c,s) and wy =

75. Here M3P ientifies to the algebra Mz with the multiplication reversed.
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My, +7¢,6(-)(1 —4(e))lyn(G,) are completely positive, selfadjoint and weak™* continuous. We
have

w1 (AUxS) = (M¢3 + TG7U(')<1 - 7wb?)(e))1VN(cr,a'))()\U,s)
= My,(Aos) + 76,0 (Ao,s) (1 — ¥3(e))lvn(a,o)
Ys(s) ifs#e

= wS(S)AJ,s + 68,8(1 - ¢3(e))1VN(G,U) = )\cr,s .
1 ifs=e

and similarly for wy. We deduce that these maps are selfadjoint unital Fourier multipliers M,

and M,,. Now, the map ® = B{fc} Aj\fd)} : Ma(VN(G,0)) — M2(VN(G,0)) is obviously
@ P2

unital, selfadjoint and weak* continuous. Moreover
o — {Mwl Mﬂ _ [ng M¢:|+|:TG,O'(')(]‘ = ¥3(e))lvn(G,0) 0

Mg My, Mg My, 0 76,0 () (1 = Ya(e))lyn(a,o)
It is easy to conclude that ® is completely positive. [ ]
Remark 8.3 Let G be an amenable discrete group. By [41, Corollary 1.8], a contractive
Fourier multiplier M,: VN(G) — VN(G) is completely contractive and finally contractively
decomposable by [65, Theorem 2.1] since VN(G) is approximately finite-dimensional.

8.2 Factorizability of some matrix block multipliers

Second quantization. We denote by Sym(n) the symmetric group of order n. If o is a
permutation of Sym(n) we denote by |o| the number card {(i,j) : 1 <i<j<n,o(i)>0o(j)}
of inversions of .

Let H be a complex Hilbert space. The antisymmetric (or fermionic) Fock space over H is
Fo1(H) =CQ® (D,,5, H*¥") where Q is a unit vector called the vacuum and where the scalar

product on H®» is given, after dividing out the null space, by
(h1® @b, k1 ® - @ k) g = Z (—1)“"<h17kg(1)>y e Py o ) V-
o€Sym(n)
The creation operator c(e) for e € H is given by c(e): F_1(H) = F_1(H), 1 @ --- ® hy, —
e®h; ®- -+ @ h,. We have c(e)? = 0. Moreover, they satisfy the g-commutation relation
(8.1) c(f)ele) + cle)e(f)" = (frepuldr_, -
We denote by w(e): F_1(H) — F_1(H) the selfadjoint operator c(e) +c(e)*. If e € H has norm
1, then (8.1) says that the operator w(e) satisfies
(82) W(€)2 = Id]—',l(H)

Let H be a real Hilbert space with complexification Hgc. We let H = Hc. The fermion von
Neumann algebra I'_1 (H) is the von Neumann algebra generated by the operators w(e) where
e € H. It is a finite von Neumann algebra with the trace 7 defined by 7(x) = (Q,2Q)r_, (%)
where z € I'_;(H).

Let H and K be real Hilbert spaces and T: H — K be a contraction with complexification
Tc: H = He — Kc = K. We define the following linear map

}—71(T)2 .7:71(7'[) — .Ffl(’C)
hi®---®h, — Tchi1®- - -QTIchy,.
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Then there exists a unique map I'_1(T"): I'_1(H) — I'_1(K) such that for every x € T'_1 (H) we
have (I'_1(T)(z))Q = F_1(T)(«f?). This map is normal, unital, completely positive and trace
preserving. If T: H — K is a surjective isometry, I'_1(T) is a #-isomorphism from I'_;(H)

onto I'_1 (K)).
Finally for any e, f € H, we have the covariance formula
(8.3) T(we)w(f)) = (e, Hlu-

Kernels of positive type. Let X be a topological space. A (real) kernel of positive type on
X [14, Definition C.1.1] is a continuous function ®: X x X — C (into R) such that, for any
integer n € N, any elements z1,...,z, € X and any (real) complex numbers ci,...,c,, the
following inequality holds:

n
Z cka®(xy, 1) = 0.
k=1

In this case, we have ®(x,y) = ®(y,x) for any z,y € X by [14, Proposition C.1.2]. If ® is such
a kernel, by [16, page 82] and [14, Theorem C.1.4], then there exists a (real) Hilbert space H
and a continuous mapping e: X — H with the following properties:

1. &(z,y) = <emey>H for any x,y € X,

2. the linear span of {e, : * € X} is dense in H.

Factorizable maps. Let M be a von Neumann equipped with a faithful normal finite trace
Ta- A Tp-Markov map T': M — M is called factorizable™ [3], [69], [91], [127] if there exists a
von Neumann algebra N equipped with a faithful normal finite trace 7y, and *-monomorphisms
Jo: M — N and J;: M — N such that Jy is (rar, 7v)-Markov and Jy is (7ar, 73 )-Markov,
satisfying moreover T' = Jj o J;. We say that T: M — M is QWEP-factorizable [9] if N has
additionally QWEP.

Twisted crossed products. In order to prove our results we need the notion of crossed
product. Let H be a Hilbert space and M be a sub-von Neumann algbra of B(H). We
consider a discrete group G equipped with a T-valued 2-cocycle 0. Let ao: G — Aut(M) be
a representation of G on M. The twisted crossed product von Neumann algebra M X, o G
[144, Definition 2.1] (see also [155] for a unitary transform of this definition) is generated by
the operators 7, (z) and A, s acting on ¢%,(H) where x € M and s € G, defined by

(15 (2)6)(s) = a1 (x)é(s), v €M, E€lg(H), s€G.
Aos&)(t) =a(t™ 1, s)E(s™M),  E€ly(H), s,teG.
We have the following relations of commutation [144, Proposition 2.2]:
(8.4) To (as(x)))\g)s = Ao,sTo(Z), and Agshsi = 0(,t) A5 st reM, s, ted.

We can identify M and VN(G, o) as subalgebras of M %, G.

Suppose that 7 is a G-invariant normal semi-finite faithful trace on M. If E is the normal
conditional expectation from M x,, G onto M then 7, = 7 o E defines a normal semifinite
faithful trace on M X, o G, see [155, Proposition 8.16]. For any x € M and any s € G, we have

(8.5) Tx ($>\o,s> = 0s,eaT(T).

76. The definition given here is slightly different but equivalent by [69, Remark 1.4 (a)].
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Moreover, Ty is finite if and only if 7 is finite. Finally we will use the notation M x, G =
M X1« G.
The following proposition generalizes a part of [411, Proposition 4.2].

Proposition 8.4 Suppose that I is a finite set. Let G be a discrete group equipped with a T-
valued 2-cocycle 0. Let (¢i5)i jer be a family of complex functions on G. Let ¥: M;(VN(G,0)) —
M;(VN(G, o)) be a normal completely positive map such that W([Ao,s,,]) = [@ij(sij)A Ué”] for
any family (sij)ijer of elements of G. Then the map ®: I x G x I x G — C, (i,s,4,5) —

goij(sfls’) is a kernel of positive type, that is: for any integer n € N, any elements iy, ..., i, € I,
any si,...,8, € G and any complex numbers c1,. .., cy, the following inequality holds:
n
> ertieii, (si 'si) = 0.
k=1
Proof : Consider iy,...,i, € I and s1,...,s, € G and some complex numbers c1,...,cp € C.

Let & be a unit vector of L2(VN(G, ¢)). For any integer 1 < k < n, we let & g ck)\a Sk{ Then
using (4.3) several times, we have

n

n
_ -1 _
> ekt (s 's1) Z Pirir (55 s1)erti(€, €) = Z Piri (55 's1) (€, @)

k=1 k=1
- Z iy (Sk_;lsl)<>\0',5k€k3AU,SL£l Z Piriy Sk 5l gka()\d,sk)*Ao‘,sl&>
k=1 k=1
Z Lpzku k Sl (skvsk- )<£k, o5 Jsl£l>
k,l=1
Z (szzl k Sl (skvsk ) (Slzlvsl)<£kv>\g,slzlsl£l>
k,l=1
= Z O—(Sk’slz ) (Sk )8 )<§k’ ‘szll( 075;151)§l>
k,l=1
= Z U(Sk7sk‘ )<€k7 LPLkll( (81317Sl))\o'75;13l)£l>
k,l=1
= Z U(Sk,Sk )<€k7 Pig i ()\073;9 0,81 El = Z §k7 Pigi; /\o,sk)*)\a7sl)£l>
k,l=1 k,l=1

where the brackets denote scalar products in the Hilbert space L?(VN(G, o)). Now, we consider
the vector n = (m1,¢)1eq1,n],te1 € L2 ((F(L*(VN(G, 0)))), where each 1;; belongs to L*(VN(G, 7)),
defined by

Mt = 04,3, &1
We consider Idyy, ® ¥ = [M,,, ], tetingrter Mpn]xr(VN(G,0)) = Mp oy (VN(G, 0)) and

the matrix

C= [(A‘Tvsk)*/\avsl]k,le[[l,n]],r,tel < M[[lxn]lxl(VN(G’ 7))
Note that C is positive (a matrix [a]a;];; of M, (A) is positive [112, page 34] and we use [19,
Lemma 1.3.6]) and that

(Idut, © W)(C) = [ Mo, (Aosi) Do) |

def [b ]
= Ok,lrt)k el 0], rtel-
k,le[1,n],rtel " €ltn].rte
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We have

0 < (1, (Idw, ® ¥)(C)n >42 (2(2,))

<(77k r)ke[l,n],rel, [bk L,r t]k le[1,n],r, teI(nl t)le[[l nJ, t€I>g2 (2(L2(VN(G,0))))

= < Nk,r ke[[l n],rels (Zzbkzmm t) >
=1 tel kel,n],rel 2 ([2(L2(VN(G7G—))))
= Z Z Tk, rabklrtnlt Z Z <77k ) <p,t ask)*)\o,sz)m,t>
kl=1rtel kl=1rtel
= Z Z <5T,ik€kaMtprt (()\O',Sk)*AG,Sl)(;t,ilgl>
kl=1rtel
= Z Z 6r,ik5t,il <£k7 Mgan ((Ao,sk)*)\a,sl)fl>
kl=1rtel
= Z <€kaMap7;kil (()\U,Sk)*AO‘,Sl)§Z>'
k=1
where the brackets denote scalar products in the Hilbert space L2(VN(G, )). [ |

The following result generalizes the results of [127].

Theorem 8.5 Let G be a discrete group equipped with a T-valued 2-cocycle o on G and I
be a finite set. Let (pi;)ijer be a family of real valued functions on G such that @;i(e) = 1
for any i € I. If the (selfadjoint unital trace preserving’’) map [My,,]: M;(VN(G,0)) —
M;(VN(G, o)) is completely positive then [M,, ] is factorizable on a von Neumann algebra of
the form My (F,l(H) Xo.a G) where « is an action of G on the von Neumann algebra T'_1(H)
for some Hilbert space H.

Proof : By Proposition 8.4, the map ®: I x G x I x G = R, (i,s,],8) = ¢;;(s71s') is a real
kernel of positive type. Hence for any i, j € I and any s, s’ € G we have ¢;;(s™1s') = ¢;;(s'"s)
in particular

(8.6) 0ij(8) = @ji(s™).

Moreover, there exists a real Hilbert space H and a map e: I x G — H, (i,s) — e; s such that
the linear span of {e; s : i € I,s € G} is dense in H and such that for any ¢,7 € I and any
5,8 €@

(i, s,j,8') = <ei757ej75/>H, ie. ¢ii(s7ts) = <ei’5,ej’5/>H.

In particular, we have

(8.7) ©i;(s) = <ei,e;ej,s>H and ||ei7s||i1 = <ei7s,ei,s>H = Vi (5*15) = ;(e) = 1.

Note that for any family of real numbers (a;)ierteq with only finitely many non-zero terms,

77. Hence (Tr @7, )-Markovian.
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we have

2
— —_— _ —_ —14/
E ai i st|| = g E it (Ci sty €jstr )y = E E ;@50 pi (1)

i€l teG H i,jel t,t'eG i,jeIl t,t'eG
2
= E E ai,taj,t’<ei,t,ej,t/>H = E A5 1€ ¢
i,j€l t,'€G i€l teG H

Hence, we can define the following surjective isometric operator 0,: H — H, e;; — e; st
Consequently, we obtain a group action 6 of G on the Hilbert space H. In order to simplify the
notations in the sequel of the proof, in the von Neumann algebra I'_; (H), we use the notation
w;,s instead of w(e; s). For any s € G, we define the trace preserving s-automorphism

F,l(H> —)F,l(H)

Wit — W; st

a(s) =T_1(0s): {

The group homomorphism a: G — Aut(I'_;(H)) allows us to define the twisted crossed product
von Neumann algebra I'_1(H) Xy, G. We identify I'_;(H) and VN(G, o) as subalgebras of
I'_1(H) Xg,o G. We can write the first relations of commutation (8.4) as

(88) )\a,swi,t = wi,st)\a,s

We denote by 7 the faithful finite normal trace on T'_;(H). Recall that, for any s € G, the map
a(s) is trace preserving. Thus, the trace 7 is a-invariant. We equip I'_1(H) X, o G with the
induced canonical finite trace 7. Now, we introduce the von Neumann algebra

(8.9) M =M;(T_y(H) %00 G).

equipped with its canonical trace Tr ®7, and we consider the element d = Zz‘e 1€ @ w; e of
M. By (8.7) and (8.2), it is easy to see’® that d> = 1p;. We let J;: M;(VN(G,0)) — M the

canonical unital *-monomorphism and we define the unital *-monomorphism

Jo: M;(VN(G,0)) — M
erl @ Aot — d(er @ Aop)d = er; @ W Ao tWie

It is not difficult to check that the maps Jy and J; are trace preserving, hence markovian. Now,
for any ¢, j,k,l € I and any s,t € G we have

(Tr @75 ) (J1(eij @ Ao,s)Jo(ert @ Aot)) = (Tr @7x) (€5 ® Aoys) (k1 @ Wi e Ao, wie) )
= (Tr @7x) (€ijent @ Ao, swh,eAaiwie) = Tr (€55€51)Tx (Ao, sWh e Ao, twie )
= 01031 T (Wk s Ao, sWi,tAet) by (8.8)
= 0;k0i1 T (Wk,sWi,stAg,sA0t) Dy (8.8)
= 010410 (8,t) To(Wh,sWi,stAe,st) = Ojk0it0e,5t0(5, 1) T(wk swist) by (8.5)
= 0;k0i10e,5t0(5,t)(€p,s, €1,5t) by (8.3)

78. We have

d? = Z (eii ® wie)(ejj @wje) = Z (eii ®"Ji2,e) = Z (eii ® 1r_1(H)xa,aG) =1m.

VIS el el
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= 610i10,5t0(8,1) 011 (t) = 010004 1-10(5,1) pji(s™h)

= 6jk0ibs -10(s,1) pij(s) Dy (8.6)

= i;(s) Tr (eijekl)TG,U ()\073)\(,,,5) = i, (s)(Tr ®TG,U)(€U6M ® )\a,s)\o,t)

= 05 (s)(Tr ®76,0) ((€ij ® Ao s)(ert @ Aot)) = (Tt @7,0) (([Mpy;](eij @ Aas)) (ert @ Aoyt)).-

Hence, for any x,y € My(VN(G, o)), we deduce that

(Tr ®TG,U)(([M%]($))ZJ) = (Tr ®Tx)(J1($)Jo(y)) = (Tr ®TG,U)(J5J1($)Q)-

We conclude that [M,, ] = J3j o Ji, i.e. that the map [M,, ;] is factorizable. [ |

ij

8.3 Application to the noncommutative Matsaev inequality

In this section, we give an application of Theorem 8.5. Other applications will be given in
subsequent publications. If 1 < p < oo we denote by S: P — (P the right shift operator defined
by S(ag,a,as,...) = (0,a9,a1,a2,...). If 1 < p < oo, p # 2, the validity of the following
inequality

(8.10) | P(T | P(

)HLP(M)—>LP(M) < | S)ch,él’—wi’

is open within the class of all contractions T': L? (M) — LP(M) on a noncommutative LP-space
LP(M) and all complex polynomials P. We refer to the papers [7], [6] and [115] for more
information on this problem. The following result allows us to generalize [7, Corollary 4.5 and
Corollary 4.7].

Theorem 8.6 Let G be a discrete group and o be a T-valued 2-cocycle on G such that for
any real Hilbert space H, any action « from G onto T'_1(H) the crossed product T'_1(H) X,
G has QWEP. Let ¢: G — R be a real function which induces a (selfadjoint) contractively
decomposable Fourier multiplier M,: VN(G,0) — VN(G, o). Suppose 1 < p < co. Then, the
induced completely contractive Fourier multiplier M : LP (VN(G,0)) — LP(VN(G, 0)) satisfies
the noncommutative Matsaev inequality (8.10). More precisely, for any complex polynomial P,

we have
HP(MSP)|{cb,LP(VN(G’,U))—>LP(VN(G’,U)) S HP(S)ch,ep—wp'

Proof : Using (4.8), we can suppose that o = 1. Using Proposition 8.2, we see that there exist

Fourier multipliers My, , My, : VN(G) — VN(G) such that the map

M"/’l M<P .
| Me(vN(G)  MavN(G)
is unital completely positive selfadjoint and weak* continuous. Note that by Lemma 8.1
and interpolation, the above map induces a (completely contractive) well-defined map on
SP(LP(VN(QG))). For any complex polynomial P, we obtain
P(My,) P(M,)
HP(MS")ch,LP(VN(G))HLP(VN(G)) S H [p(M;) P(My,)

[l (5 a])

cb, 83 (L (VN(G))) =S5 (LP (VN(G)))

cb, 83 (LP (VN(G)))— 83 (L (VN(G)))
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= Ml/ﬁl M<P
By Theorem 8.5, the operator [Mg M,
Using [69, Theorem 4.4], we deduce that this operator is dilatable on a von Neumann algebra and
it is left to the reader to check that this von Neumann algebra is QWEP. Finally, it is not difficult
to deduce that the operator Idg ) ® H\{}/g ]\]\4490 ] : B(f?)@M2(VN(Q)) — B(£?)@M2(VN(Q))

® P2

is also dilatable on a QWEP von Neumann algebra. We conclude by using [7, Corollary 2.6 and
(1.5)] that

Mo Mya] ) e 5300 (NG SELP(VN(@)))
M, M

=P (1d p®{ V1 *”D
H ( s Mw sz

The proof is complete. n

} : M2 (VN(Q)) — M3(VN(Q)) is QWEP-factorizable.

2

< ||P(
SP(SY(LP(VN(G))))—SP(SY(Lr(VN(Q))))

S) ||cb,erqzr
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