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Abstract: Jointly optimizing maintenance and missions schedule for a vehicle has become a
priority to improve the profitability for commercial heavy vehicles. Many research works are
interested in optimizing either the preventive maintenance planning or the production planning
but few researches are focused on scheduling both activities for a system which deteriorates
over time. A static approach has previously been developed to jointly schedule missions and
maintenance operations while considering the vehicle deterioration to minimize the maintenance
costs. However, once the schedule is determined, no update is considered during its completion.
This contribution presents a dynamic method to answer the joint scheduling problem based
on the failure opportunities and the collected deterioration information. A comparison between
the static and the dynamic approaches is drawn to evaluate the possible maintenance cost gain
brought by the on-line information availability.

Keywords: stochastic deterioration process, reliability, genetic algorithm, dynamic scheduling,
joint missions planning and maintenance scheduling

1. INTRODUCTION

1.1 Context and motivations for the work

The transport solutions offered by the Volvo group do not
only consider the industrial vehicle in itself but also all the
services offer to improve the solution quality. Among all
the proposed services, the aftermarket services are, in a
general way, a priority for the Volvo group customers.

The customers can subscribe to a maintenance contract
for the vehicle. It handles the maintenance planning to
improve the vehicle availability and keep its performances
at a specified level. This planning is based on the vehicle
configuration and the usage conditions specified by the
purchaser. When it only relies on the information provided
by the customer at the purchase date, the maintenance
planning is static. The maintenance intervals and the
maintenance actions to do at each planned stop are de-
fined. If data can be collected to detect a usage change, the
maintenance intervals are updated. The planning is then
adaptive but not dynamic in the sense that the vehicle
health state is never considered. The maintenance time,
the immobilization time and the unplanned stops number
have also been reduced thanks to preventive maintenance
models. Research works have also been led to improve the
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maintenance scheduling by considering the components
deterioration (Bouvard et al., 2011) or by insuring the
vehicle availability on a fixed time period (Lesobre, 2015).
But, they schedule the maintenance operations indepen-
dently from the missions the vehicle has to do.

The interest in considering a joint schedule for missions
and maintenance operations is that the customer’s opera-
tional constraints are considered and its profitability can
be maximized by minimizing the maintenance costs. The
maintenance operations are scheduled without impacting
the operational availability and the missions proceedings.
By considering the available monitoring data regarding
the vehicle health state, the schedule can be updated and
adapted to the real vehicle usage.

1.2 Background and state of the art

Some research works investigate the issue of jointly
scheduling maintenance operations and production. They
are mainly related to industrial machines and production
workshops and consider simple maintenance policies that
do not use available dynamic information.

Several criteria are considered to optimize the mainte-
nance performance. An integrated optimization strategy
to schedule maintenance and production to minimize the
manufacturing system cost for a single-unit system has
been proposed (Li et al., 2010). An improvement factor



estimates the imperfect preventive maintenance opera-
tions effectiveness. However, the model only considers the
steady-state availability without taking into account more
complex constraints like the failure risk. An approach to
optimize the flowshop and preventive maintenance plan-
ning has been developed (Feng et al., 2016). It minimizes
the cost generated by the jobs tardiness and maintenance
operations. In this model, unavailability constraint and
imperfect maintenance are considered so that maintenance
can occur only if the machine is idle. A multi-objective
optimization method is also applied on uniform paral-
lel machines to minimize the maintenance cost rate and
makespan (Da et al., 2016). Each machine has different
deteriorating properties modelled by Weibull parameters,
different operational costs and the job processing time
depends on the machine age.

The dual problem of production and maintenance plan-
ning can be handled with linear programming model to
minimize the total production cost (Yalaoui et al., 2014).
The production system deterioration reduces the line ca-
pacities. A preventive maintenance operation is performed
at each cycle beginning to restore it. For each cycle, the
maintenance cost is evaluated based on the preventive
maintenance cost and the failure rate to estimate the
corrective maintenance associated cost. An exact method
is adopted for small size problems but heuristic methods
are necessary for larger size problems.

Some joint scheduling strategies are sequential. A strategy
in two stages is developed in flowshop workshops (Ben-
bouzid et al., 2003). The first stage consists in scheduling
the production tasks using heuristic methods. Then, the
periodic maintenance operations are integrated by consid-
ering the production tasks execution order as a constraint.
The maintenance period is chosen to reach a compromise
between the maintenance cost and the machine availability
loss risk. Preventive maintenance and production schedul-
ing decisions can be jointly considered for a machine to
minimize the total expected weighted completion time to
do all the jobs (Cassady and Kutanoglu, 2005). An age
based preventive maintenance strategy is chosen to period-
ically restore the system to an ”as good as new” condition.
If a failure occurs, a minimal repair is performed. In the
case of small size problems, the model enumerates all the
feasible job sequences. Then, for each sequence, all the
feasible preventive maintenance decisions sets are tested to
find the one minimizing the objective function. For greater
size problems, a heuristic method is applied. In a first step,
the job sequence minimizing the weighted short processing
time (WSPT) is identified. Then, the preventive mainte-
nance decisions minimizing the total expected weighted
completion time for the WSPT job sequence are identified.

The deterioration affects directly the system health state.
Each job can be defined by a duration and a fixed dete-
rioration value (Ladj et al., 2016). As each job deteriora-
tion is strictly known and no accidental failure can occur
during the schedule horizon, the deterioration model is
deterministic. A failure threshold triggers the maintenance
interventions and a meta-heuristic algorithm is applied to
schedule maintenance and production to optimize the total
maintenance costs. The deterioration can also be modelled
by a stochastic process (Robert et al., 2018). In this case,
each mission has a different impact on the deterioration

evolution. A method based on a genetic algorithm is de-
veloped to schedule missions and maintenance operations
to minimize the total maintenance cost that depends on
the preventive maintenance costs and the missions failure
probabilities to estimate the cost associated with correc-
tive maintenance.

1.3 Chosen approach and contribution

The previous contributions reported in section 1.2 tackle
the issue of joint scheduling as a static problem. However,
with the communication technologies deployed by the in-
dustry (telematic tools,...), monitoring systems can gather
real-time data regarding the systems deterioration.

In this work, a dynamic approach is proposed to schedule
missions and maintenance while considering the real-time
deterioration information. The failure occurrences and the
deterioration information enable to adapt to the current
failure and deterioration behaviour and to update the
initial schedule to minimize the total maintenance costs.

The first step consists in defining the vehicle deterioration
evolution model, the different missions effect on this model
and in characterizing the maintenance strategy. Then, the
static and dynamic approaches to schedule missions and
maintenance are explained. A numerical experiment is
led to compare the two approaches and a performance
evaluation is drawn.

2. PROBLEM STATEMENT

A vehicle deteriorating over time has a mission set to
complete. Its deterioration varies with the mission severity
and operating conditions.

The objective is to define the vehicle activity schedule by
grouping the missions into blocks separated by preventive
maintenance operations. These operations aim at restoring
the vehicle health state to an ”a good as new” state.

The schedule optimization is based on the maintenance
costs. The missions, grouped by blocks, and the mainte-
nance operations are arranged so that the maintenance
costs are minimum. The vehicle activity is then maximized
between two maintenance operations while considering the
missions failure risks. The maintenance cost criterion takes
into account two elements:

‚ The preventive maintenance cost C0 as preventive
maintenance operations are planned at each mission
blocks end.

‚ The corrective maintenance cost Cf linked to a failure
during a mission block.

A static scheduling method (Robert et al., 2018) is used
to define the initial schedule. Then, as the schedule is
applied, failures can occur and deterioration information
can be collected thanks to the monitoring system. These
events represent opportunities to update the schedule and
to further minimize the maintenance costs by modifying
the initial planning to adapt to the deterioration behaviour
(Fig.1.). When a failure occurs, the schedule is immedi-
ately modified. However, the on-going mission is still the
first scheduled one. When an information on the deteriora-
tion is received, rescheduling is not automatic: it depends



Fig. 1. Framework for the dynamic scheduling principle

on the vehicle health situation, its impact on the actual
planning and the maintenance cost gain generated by a
new schedule.

To tackle this issue, an integrated approach to jointly
schedule the missions and the preventive maintenance
operations is developed and presented in the next section.

3. PROPOSED APPROACH FOR JOINT
SCHEDULING

This section explains the vehicle deterioration and mainte-
nance model considered to study the joint scheduling prob-
lem. Then, the static and dynamic scheduling approaches
are presented.

3.1 Vehicle deterioration and maintenance cost

Health deterioration model

The vehicle is considered as a single unit system, i.e.
characterized by a single global health indicator. It is
assumed that a monitoring system is capable of providing
health state information at each mission end. To charac-
terize the deterioration evolution, a deterioration model is
then necessary. The challenge lies in the way to integrate
the information retrieved by the monitoring system to
improve the decision-making process regarding the vehicle
schedule. In this paper, the deterioration is considered as
a stochastic phenomenon rather than a deterministic one
(Ladj et al., 2016).

Two classes of stochastic deterioration models are defined
in the literature (Deloux, 2008; Lesobre, 2015): the dis-
crete deterioration models and the continuous deteriora-
tion models. The first class refers to a deterioration caused
by shocks. Each shock increases the deterioration level
and the deterioration evolution appearance is similar to
stairs. On the contrary, the second class is more relevant
to model phenomena like fatigue, gradual erosion, mechan-
ical components gradual wear and so on. The continuous
deterioration models are more suitable to represent observ-
able phenomena on several industrial systems (Lesobre,
2015) as most components are mechanical and subject
to gradual wear. It is then relevant to model the global
health indicator using a continuous deterioration model.
As an example, the Gamma process was chosen to model
the deterioration evolution in the following parts. It is

well suited to model the deterioration evolution because
as its increments are increasing, the vehicle health state
can only improve through an external intervention, i.e a
maintenance operation.

The vehicle deterioration evolution is modelled by a sta-
tionary Gamma process Xptq, t ą 0 whose shape and
scale parameters are respectively α and β (Van Noortwijk,
2009). By modelling the industrial vehicle this way, the
failure occurs due to a deterioration excess. The failure oc-
curs when the cumulated deterioration Xptq has exceeded
the failure threshold L. In this case, the failure distribution
function is given by Eq.(1) (Lesobre, 2015).

F ptq “ P pT ď tq “
Γpαt, Lβq

Γpαtq
(1)

Γpαt, Lβq “
ş8

Lβ
uαt´1e´udu and Γp.q is the Gamma

function. The failure probability for a mission lasting tm
is equal to F ptmq.

Operational environment

The vehicle evolves in a varying environment. Indeed, it
is supposed to complete missions that may have different
durations and different severities. The deterioration pro-
cess is impacted by these variations that are captured in
the model by a change in the Gamma process parameters.
Each mission is then characterized by its duration tm
and the shape and scale parameters αm and βm for the
deterioration process when the vehicle is completing the
mission.

However, a mission to mission deterioration model is diffi-
cult to use as missions are grouped into blocks separated
by maintenance operations. The operational environment
can then change from mission to mission inside the same
block. In this context, as maintenance operations are di-
rectly related to the vehicle health state at the end of the
blocks, it is necessary to model the deterioration evolution
in each block. An equivalent deterioration process ap-
proximation (Pierrat and D’Aubigny, 2004; Lesobre, 2015;
Robert et al., 2018) can be given by a Gamma process
whose parameters are based on the missions deterioration
parameters and their durations. The equivalent Gamma
process average value and variance are respectively the
weighted means of the Gamma processes average values
and variances associated to the missions in the block. The
weighting coefficients are the ratio between the missions
durations and the block duration.

Maintenance cost criterion

To make a decision regarding the best schedule, a criterion
for the schedule π is defined (Robert et al., 2018):

Costpπq “
Nb
ÿ

k“1

pC0 ` CfPf pkqq (2)

with Nb the number of mission blocks in the schedule and
Pf pkq the failure probability for the block k.

It takes into account the deterioration evolution.

As there are several missions in a block, the failure
probability in a block can be computed based on the
stochastic deterioration evolution in the block.



Finding the best schedule then corresponds to a balance
between filling the blocks and the blocks number. It also
depends on the ratio between C0 and Cf . The next part
introduces two strategies to jointly and optimally schedule
the missions and the maintenance activities using the
deterioration model.

3.2 Joint mission and maintenance scheduling

Both static and dynamic methods are integrated strategies
because the preventive maintenance operations and the
missions are simultaneously scheduled.

Static scheduling

A static method to schedule both the missions and preven-
tive maintenance operations has been developed (Robert
et al., 2018). This method uses a genetic algorithm to
obtain a schedule minimizing a maintenance cost based
criterion. The genetic algorithm functions are adapted
from the ones used for a deterministic deterioration (Ladj
et al., 2016).

The schedule is composed of blocks separated by main-
tenance actions and a similar deterioration model as the
one explained in the section 3.1 is considered. However,
no deterioration or on-line information are used to update
this schedule. To try to compensate this limit, the defined
criterion does not only considered the probability to have
one failure by block but also the probabilities to have
multiple failures. The maintenance cost criterion for the
static strategy is defined (Robert et al., 2018):

Csppπq “
Nb
ÿ

k“1

ˆ

C0 ` Cf

Npkq
ÿ

i“1

Pf pk, iq
˙

(3)

with Nb the blocks number in the schedule, Npkq the
maximum number of considered failures for block k and
Pf pk, iq the probability to exceed the failure threshold for
the ith time in the block k, i.e. after pi´1q renewals in the
block. It is assumed that Npkq is incremented as long as
the nth failure probability is greater than 1%.

A maximum failure probability Pmax is defined to condi-
tion the blocks filling. If the probability to have one failure
Pf pk, 1q in the block k exceeds this limit, the block is not
feasible because too risky. The genetic algorithm is steered
in the right direction while reducing its computation time.

The static scheduling problem can then be formulated as:

min
π

Csppπq

s.t. @k P v1;Nbw, Pf pk, 1q ď Pmax
@k P v1;Nbw, Pf pk,Npkqq ď 0.01

(4)

As for every meta-heuristic method, the obtained solution
can be sub-optimal. On 200 scenarii of n “ 6 missions, only
0.4% of the schedules towards which the genetic algorithm
converges are not the optimal solution obtained by an
exact method testing every possible missions arrangement.
For the same scenarii with n “ 6 missions, the computa-
tion time reduction is about 16% when compared with the
exact method.

Static planning is only a first step to jointly schedule both
maintenance and missions but it does not consider all the
possible available monitoring data.

Dynamic scheduling: considering on-line information

The dynamic scheduling problem is defined as follows:

min
π

Costpπq

s.t. @k P v1;Nbw, Pf pkq ď Pmax
(5)

Dynamic scheduling implies a schedule update when in-
formation related to the deterioration or a failure are
available. The initial planning is obtained by using the
static method with the criterion defined in Eq.(2). During
its implementation, different events can trigger a possible
update:

‚ A failure occurs during a mission (case 1). A correc-
tive maintenance operation, incurring a cost Cf , is
necessary. A rescheduling is applied on the remaining
missions, assuming that the first mission to plan is
the undone part of the unfinished on-going mission.
An adaptation of the genetic algorithm is performed
to consider this condition.

‚ A deterioration information is available at the mission
end. It is then possible to update the schedule. Ac-
cording to the mission position in the block, different
decisions can be made:

˝ The mission is at the end of a block (case 2).
A preventive maintenance is then planned just
after. A new planning is computed based on the
deterioration information and the remaining mis-
sions. If the maintenance cost difference between
the new and current schedules, based on the re-
maining missions, is greater than the reschedul-
ing limit condition ∆Cmin, the new schedule is
adopted. In this process, the preventive mainte-
nance that was supposed to occur can be delayed.
But if ∆Cmin is not exceeded, the current plan-
ning is kept.

˝ The mission is located in a block. The first ques-
tion to answer is whether the vehicle is able to
finish the block knowing the current deterioration
level. Two situations come out:

§ The block can be completed (case 3). The
test explained just above regarding the pos-
sible maintenance cost gain with a new plan-
ning is applied.

§ The probability to have a failure in the
block is greater than the maximum failure
probability Pmax (case 4). The remaining
missions are rescheduled.

The rescheduling resolution method is also based on a
genetic algorithm. Note that the criterion used for schedul-
ing or rescheduling only considers the probability to have
one failure in each block (Eq.(2)) which is justified by the
rescheduling after each failure.

4. NUMERICAL EXPERIMENTS: PERFORMANCE
EVALUATION AND ANALYSIS

This section illustrates the dynamic scheduling behaviour
and compares the scheduling results with the ones for the
static scheduling method. For the examples, the mission
sets are composed of n “ 6 missions but experiments have
also been lead on sets with high mission number (n “ 20).



4.1 Synthesis of the simulated data

Different parameters have to be defined to simulate both
methods behaviours.

‚ The preventive maintenance cost: C0 “ 1000e.
‚ The corrective maintenance cost: Cf “ 3000e.
‚ The maximum failure probability: Pmax “ 10%.
‚ The failure threshold: L “ 100%.

Two datasets of n “ 6 missions are generated (Tables 1 &
2) to represent two scenarii. Each mission is characterized
by its duration, the parameters associated with the dete-
rioration process (shape and scale parameters αm, βm).

For each set, the scale parameters are identical for each
mission. The second set (Table 2) is based on the same
missions as the first one. For each mission, the expected
value E is the same but the deterioration variance V is
increased. Increased variance means a higher variability
between the deterioration trajectories of the same dete-
rioration process (Fig. 2.). It enables to see the variance
variation impact on the optimal schedule.
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Fig. 2. Deterioration trajectories for two Gamma processes
with the same E but different V

Table 1. Dataset no1

Missions Durations (h) αm βm Failure probabilities

1 21 0.13 0.1 0.002

2 21 0.18 0.1 0.009

3 8 0.4 0.1 0.004

4 8 0.33 0.1 0.002

5 2 1.33 0.1 0.002

6 3 1.32 0.1 0.01

Table 2. Dataset no2

Missions Durations (h) αm βm Failure probabilities

1 21 0.07 0.05 0.02

2 21 0.09 0.05 0.04

3 8 0.2 0.05 0.02

4 8 0.16 0.05 0.01

5 2 0.66 0.05 0.01

6 3 0.66 0.05 0.04

4.2 Comparison between the static and dynamic scheduling
methods

Analysis of the maintenance costs for each dataset

A comparison between the maintenance costs generated
by the dynamic and static schedules is drawn to study the
possible cost gains. For each scenario, 1000 simulations
are generated to study the maintenance cost convergence
for each method. In this section, the rescheduling limit
condition ∆Cmin is fixed at C0{2. It is only used in the
cases 2 and 3 explained in part 3.2.2.
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Fig. 3. Maintenance cost convergence for the scenarii no1
and no2: dynamic versus static

The static schedule for the scenario no1 is πs1 “

tp2q p3, 4q p1, 5q p6qu. For most simulations in the static
case, the initial schedule is πs1. The only difference can
come from blocks permutations. Even if the criteria for the
static and dynamic cases are different, the initial dynamic
schedule remains πs1. For the scenario no2, the static and
initial dynamic schedules are πs2 “ tp5, 4q p6q p1q p3q p2qu.

Figure 3 shows that a dynamic schedule enables to make
maintenance cost savings with respect to a static one.
In the scenario no1 and no2, the savings respectively
represent 15.4% and 25.1% of the maintenance costs.

When the mission variances increase, the savings are
higher. Indeed, in case of high variances, the monitoring
information carry more information on the consider item
behaviour with respect to the average fleet behaviour.
A dynamic maintenance decision based on these richer
information will be all the more relevant.

Rescheduling limit condition effect on maintenance costs

The maintenance costs are influenced by the rescheduling
limit condition. The maintenance costs evolution is studied
for the scenario no1 when the condition ∆Cmin varies and
compared with the static schedule maintenance cost.

Figure 4 presents the maintenance costs for the static and
the dynamic methods with rescheduling limit condition
values varying between 2C0 and C0{256. Globally, the
costs decrease just as ∆Cmin decreases until the reschedul-
ing becomes almost automatic after each mission. When
∆Cmin ě C0, the maintenance costs are quite similar for
both methods. The dynamic method is then equivalent
to the static one. A sharp drop occurs when ∆Cmin



reaches C0{2 and is followed by a softer decrease. For
∆Cmin belonging to JC0{16, C0{256K, the maintenance
costs variations are small enough to assume that there is
a maintenance cost stabilization.
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Fig. 4. Maintenance costs variations according to ∆Cmin
(dynamic versus static)

Table 3. Costs gain: dynamic vs static

∆Cmin (e) Cost gain (%) ∆Cmin (e) Cost gain (%)

C0 1.1 C0{8 18.6

C0{2 15.4 C0{16 20.2

C0{4 16.1 C0{32 20.0

The main cost gains (Table 3) show that encouraging
rescheduling more often enables to minimize the mainte-
nance costs. However, this study does not consider the
rescheduling cost. By taking it into consideration, an opti-
mal value of ∆Cmin could identify a balance between the
rescheduling costs and gains. With this optimal value, the
final maintenance cost gain could be compared with the
cost to retrieve the monitoring information.

5. CONCLUSION AND PERSPECTIVES

A dynamic method is proposed to schedule both missions
and preventive maintenance operations for a vehicle using
failures and deterioration information as opportunities to
update the initial schedule. Then, the static and dynamic
methods are compared to evaluate the possible mainte-
nance costs gain when using on-line information. Thanks
to numerical examples, two conclusions can be drawn. In-
tegrating monitoring information on the deterioration help
reducing the maintenance costs and these monitoring data
become essential when the deterioration model uncertainty
increases. The rescheduling limit condition ∆Cmin also
plays its part on the maintenance costs. With high values,
static and dynamic schedules give the same maintenance
costs results while with smaller values, rescheduling en-
ables to reduce the maintenance costs.

The results presented in this article are promising and
enable to identify some improvement axes. Further inves-
tigation on the on-line information usage, especially the
part regarding the rescheduling cost to identify the optimal
∆Cmin value and the comparison between the final gain
and the cost to retrieve the on-line information, are to

be led. The dynamic approach can also be enhanced by
considering adding new missions to the list during the
scheduling completion. Finally, extending this approach to
schedule the vehicle fleet activities would be interesting.
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