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We introduce a new method for performing ultrafast imaging and tracking of surface plasmon
wave packets that propagate on metal films. We demonstrate the efficiency of leakage radiation
microscopy implemented in the time domain for measuring both group and phase velocities of
near-field pulses with a high level of precision. The versatility of our far-field imaging method is
particularly appealing in the context of ultrafast near-field optics.

Among the different surface plasmon imaging tech-
niques, leakage radiation (LR) microscopy is a powerful
method for imaging surface plasmon (SP) modes propa-
gating on metal-dielectric interfaces [1–5]. This imaging
method has been implemented in a great variety of situa-
tions in SP optics, ranging from surface plasmon circuitry
[6–9] to near-field weak measurements [10], both at the
classical and quantum levels [11]. Recently, this tech-
nique has been combined with interference microscopy,
providing not only the amplitude but also the phase of
the leakage signal [12].

In this Article, we operate LR microscopy in the time-
domain and demonstrate its efficiency for performing ul-
trafast imaging of propagating SP wave packets at the
diffraction limit. While our scheme leads to the simul-
taneous measurement of both the group and the phase
velocities of the SP wave packet, it also provides a unique
method to resolve higher-order dispersive effects associ-
ated with the plasmonic signal, such as plasmonic group
velocity dispersion effects. The simplicity of our all-
optical method, that does not involve any raster-scanned
local probe nor non-linear detection processes, presents a
clear advantage with respect to the sophistication of re-
cently proposed near-field pulse tracking techniques (such
as phase-sensitive time-resolved photon scanning tunnel-
ing microscopy [13, 14], time-resolved two-photon pho-
toemission electron microscopy [15–17] or pulse-tracking
via far-field SP scattering interference imaging [18]).

Our experimental scheme, described in details in Fig.
1, consists in inserting an LR microscope within a Mach-
Zehnder interferometer at the input of which a transform-
limited laser pulse is evenly split into two beams. In one
arm, the beam resonantly launches an SP wave packet on
a thin metal film using an (x, y) square hole array (shown
in Fig. 2 (a)) properly designed and milled through the
film. This beam is linearly polarized in the x direction
of the array, corresponding to the propagation direction
of the SP wave packet. A high numerical aperture (NA)
oil-immersion objective collects the plasmonic LR signal
as a pulse EL that propagates along the arm of the in-
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terferometer. This EL pulse is then combined with the
reference pulse ER coming from the other arm of the in-
terferometer that can be time-delayed with respect to EL
using a motorized optical delay line. The ER pulse is lin-
early polarized in the same direction as EL so that both
pulses can interfere at the output of the interferometer.
When the two pulses overlap in time and space, an inter-
ferogram is formed in the image plane of the collection
objective. The central point of our scheme, sketched in
Fig. 1 (b), consists in monitoring interferograms as a
function of the delay time between the two pulses. As we
show below, this allows one to track SP wave packet prop-
agation since successive interferograms record the evolu-
tion of the phase of the LR signal emitted by the SP at
different positions along the metal film.

An imaged interferogram is displayed in Fig. 3 (a)
for a given time-delay τ between EL and ER. While
the SP wave packet launched by the array is clearly ob-
served, interference fringes are also seen away from the
array (see image cross-cut in Fig. 3 (b)) exactly where
the two EL and ER pulses overlap. We emphasize that
while the time-delay τ controls the time overlap between
the pulses at the output of the interferometer, a spatial
overlap between the moving pulse EL and the reference
pulse ER must simultaneously be ensured at all times.
This is done by expanding optically ER with a telescope,
as drawn in Fig. 1 (b). Moreover, this L1,L2 telescope
gives the possibility to adjust the radii of curvature of
both beams at the recombination plane, thus prevent-
ing any curvature phase mismatch from degrading the
interferogram, as discussed further down. In such con-
ditions, the time evolution of successive interferograms
can be easily monitored, as shown in Fig. 4 for inter-
ferograms separated from each other by a ∆τ = 30 fs
time delay. These interferograms have been obtained by
cross-cutting the original real-space images (as done in
Fig. 3 (b)) after they have been post-filtered from the
non-oscillatory time-averaged leakage contribution |EL|2
and from the direct transmission through the array.

In order to describe the optical response of our sys-
tem and to understand how the properties of the SP
wave packet can be extracted from such interferograms,
we model the plasmonic signal in the most simple way
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with the spatial evolution of an one-dimensional SP mode
P(x) = eiκ|x|e−Γ|x|/2, propagating on the metal film from
both sides of the launching array, with a propagation
constant κ = Re[kSP] given by the real part of the SP
wave vector kSP at the air-Au interface and an inverse
decay length Γ = 2 × Im[kSP] determined on the SP
loss. Such a 1D model nicely fits the spatial evolution
of our experimental SP signals whose in-plane diffraction
is strongly reduced by using a defocused excitation beam
on the launching array [20].

Both propagation constant κ and inverse decay length
Γ are directly determined respectively from the position
and width of the reflectivity resonance calculated in Fig.
2 (b) with the finite thickness of the metal film accounted
for. Of course, the leakage signal L(x) decoupled in
the far field by the collection objective is the convolu-
tion between the SP field P(x) and the point spread
function of the collection objective accounting for its fi-
nite NA [19]. But choosing a sufficiently high NA with
NA · k0 > Re[kSP], the whole SP field can be imaged and
we can therefore take L(x) ∼ P(x).

Within this framework, the interferograms can be di-
rectly evaluated considering an initial Gaussian pulse
E0[ω] = exp [−(ω − ω0)2/4σ2

0 ], with a carrier frequency
ω0 corresponding to the laser central wavelength λ0 =
800 nm and a transform-limited pulse width σ0 · τ0 =√

2 ln 2. The reference (R) and leakage (L) pulses can be
written as

ER(z, ω) ∝ E0[ω]eik0z

EL(x, z, ω) ∝ E0[ω]P(x)eik0z,
(1)

where the free propagation in each arm of the interfer-
ometer is accounted for by the phase ik0z.

Because the response time of the CMOS detector is
much longer than the pulse duration τ0, the interference
pattern recorded at the output of the interferometer is
in fact time-averaged over a whole train of pulses, all of
which are assumed to be identical. From the Wiener-
Khintchine theorem, the interferogram can then be di-
rectly evaluated from the cross-correlation of the two
(L,R) signals as

I(x, τ) ∝
∞∫
−∞

dω
(
e−iωτEL(x, z, ω)E∗R(z, ω) + c.c.

)
(2)

where c.c. stands for complex conjugation.
By expanding up to first-order the SP phase about its

value at the pulse carrier frequency as κ(ω) ∼ κ(ω0) +
(∂κ/∂ω)ω0 · (ω − ω0), the interferogram is calculated as

I(x, τ) ∝ e−Γ
2 |x|e−σ

2
0(τ−τg)2

cos [κ(ω0) · |x|+ ω0τ ] . (3)

As seen in this expression, the phase eiκ|x| added by the
plasmonic contribution actually corresponds to a spatial-
heterodyne interference between the two pulses.

Within the plasmonic decay length, I(x, τ) is there-
fore characterized by a Gaussian envelope evolving with
a group delay time τg = (∂κ/∂ω)ω0

· |x|, corresponding

FIG. 1. (a) Schematics of the LR interferometer. The fs
pulsed laser beam (λ0 = 800 nm, pulse duration τ0 = 120
fs) generated by a Ti:Sapphire oscillator (1 kHz) is split into
two arms using a non-polarizing beam splitter (BS). One arm
is sent through a leakage radiation microscope made of an
illumination objective (O1, magnification 20× and numerical
aperture NA = 0.45) that excites an SP wave packet on a thin
70 nm metal (Au) film sputtered on a glass substrate. The LR
signal is collected with a high numerical aperture collection
objective (O2, magnification 100×, NA = 1.3). The second
arm (reference arm) is optically delayed (time-resolution of
10 fs for a total range of 80 ps) and recombined with the
leakage signal. The L1,L2 telescope is crucial in order to
ensure proper beam overlap and in order to match the curva-
tures between the two beams, as explained in the main text.
After the recombination on the second beam splitter (BS),
the interferogram is imaged using a sequence of lenses (per-
forming both real and Fourier space imaging) on a CMOS
camera. The linear polarization between the two beams is
controlled by a series of polarizers and half-wave plates on
each arm of the interferometer represented by the LP polar-
ization stage. (b) Detailed view of the LR microscope with
the SP field shown leaking through the metal film in the glass
substrate with an angle α fixed by the SP wave vector kSP as
sinα = Re[kSP]/(ngk0), with ng the refractive index of glass
and k0 the vacuum wave number. The recombination optics
detailed after the back focal plane (BFP) of the objective O2

shows the delay ∆τ induced by the SP mode propagating over
∆x on the metal film. The bottom dotted horizontal line cor-
responds to the image plane of the objective where successive
interferograms are imaged, as in Fig.4.

to an SP pulse propagating on the film with a group ve-
locity vg(ω0) = (∂ω/∂κ)ω0

. The interferogram is also
characterized by a carrier signal with a spatial carrier
frequency κ(ω0) that corresponds to the fringes observed
experimentally in Fig. 4. The SP phase velocity is di-
rectly derived from this carrier signal as vφ = ω0/κ(ω0).

Around the pulse carrier frequency ω0, the SP disper-
sion relation associated with the resonance profile of the
reflectivity in Fig. 2 (b) gives the expected SP propaga-
tion constant κ(ω0)disp. = 8.025 µm−1 and group veloc-
ity vg(ω0)disp. = 2.934 · 108 m · s−1. Using these values,
the interferogram I(x, τ) is calculated and drawn in the
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FIG. 2. (a) Scanning Electron Microscope image of the
launching hole array. The array, milled through a thin Au
film, is a square array of period p = 790 nm and hole diame-
ter d = 100 nm. The superimposed dashed circle corresponds
to the typical spot size of the excitation beam when defocused
on the array. (b) Color-coded reflectivity calculated with a
T-matrix method for a thin (70 nm) Au metal slab as a func-
tion of the light angular frequency ω and the in-plane light
wave vector k. The evolution of the reflection minimum in
the (k, ω) plane draws the dispersion relation kSP(ω) for an
SP mode propagating at the air-metal interface. The hori-
zontal dashed line is positioned at the carrier frequency ω0

and the tilted white line represents the light cone ω = ck
in air. Theoretical values for the SP propagation constant
κ(ω0)disp. (indicated by the continuous vertical black line),
SP loss Γ and group velocity (∂κ/∂ω)disp.ω0

are extracted from
this dispersion relation.

FIG. 3. (a) LR image recorded on the CMOS camera at
the output of the interferometer for a time-delay τ = 230fs
(see Fig. 1). While the light transmitted directly through
the launching array saturates the left-hand side of the image
frame, interference fringes are clearly observed away from the
array within the time-averaged SP intensity distribution |EL|2
(image scale in µm). (b) Intensity cross-cut performed from
the middle of the array.

(τ, x) space-time diagram of Fig. 5(a), considering the
initial E0[ω] pulse for the SP excitation beam. The time
evolution of I(x, τ) is also shown in Fig. 5(b) as cross-
sections taken at three successive time delays ∆τ = 30
fs.

FIG. 4. Sequence of experimental time-resolved interfero-
grams obtained by post-filtering (see main text) cross-cut im-
ages similar to Fig. 3 (b) for time delays τ = 200, 230, 260 fs.
These experimental interferograms are compared to the model
ones given by Eq. (2). The fitted space-time evolutions of the
pulse envelope are displayed as dashed curves -see main text
for the fitting parameters.

In evaluating Eq. (3), we have neglected any source
of group velocity dispersion (GVD) that could affect
I(x, τ). It is clear that as pulsed signals, L and R beams
both experience GVD while propagating through the se-
ries of the optical elements of the interferometer. For
interferograms of co-propagating pulses recorded in an
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image plane at a fixed position along the z-axis, GVD
is not expected to have any influence apart from some
pulse broadening and fixed phase offset on the interfer-
ence carrier signal. But the situation is different in our
spatial-heterodyne setup. The coupling of the excitation
beam into an SP wave packet is a coherent process and
implies that the GVD of the excitation beam is trans-
ferred to the SP beam which thereby becomes chirped,
independently of the actual dispersive characteristics of
the SP itself. In our experiment however, considering our
rather long pulse width and the weakly dispersive optics
involved in the setup, this GVD effect can be safely ne-
glected [21].

We have also neglected the effect on I(x, τ) of plas-
monic GVD itself. This is fully justified given the prac-
tically linear (κ, ω) relation around the pulse carrier fre-
quency ω0 calculated from the reflectivity profile of Fig.
2 (b). Nevertheless, we emphasize that it is straightfor-
ward to account for such a second-order dispersion effect
with our scheme, providing the capacity to probe not
only the linear evolution of the dispersion relation of the
SP wave packet but also its local curvature (see [22]).

We now compare the measured interferograms dis-
played in Fig. 4 to the calculated ones plotted in Fig. 5.
Using a simple fitting procedure, this comparison allows
the measurement of the experimental values for the group
and phase velocities of the SP wave packet. Starting with
a transform-limited pulse width σ0, the SP damping rate
Γ = 0.024 µm−1 and the SP group velocity vdisp.g , and
taking A0 as a fixed amplitude of the interferogram, an
initial fit is done on the first interferogram that sets the
initial (x0, τ0) space-time coordinates. From these co-
ordinates, the next ∆τ = 30 fs interferogram is fit with
the group velocity as the sole free parameter, keeping the
σ0,Γ, A0 parameters as initially fixed. The results of the
fits for each interferogram are shown as dashed envelopes
in Fig. 3. Eventually and as it should, vg turns out to
be fitted with a constant value through the whole fitting
sequence over the successive time delays displayed in Fig.
3. As expected, this fitted value vg = 2.901 · 108 m · s−1

is very close to the calculated one vdisp.g .

The phase velocity can also be extracted by measuring
the periodicity of the interference fringes in the experi-
mental interferograms zoomed-in in Fig. 6. A Fourier
transform of the image cross-section (inset in Fig. 6)
allows the determination of the associated spatial fre-
quency which should, according to Eq. (3), be asso-
ciated with the propagation constant κ(ω0) of the SP
wave packet at the central frequency ω0 of the pulse.
At this stage, matching the L and R beam curvatures
is particularly critical since any phase mismatch com-
ing from differences in beam curvatures would prohibit
the interferences in I(x, τ) from being properly resolved.
When this is done by adjusting carefully the L1,L2 tele-
scope described in Fig. 1 (b), the spatial frequency is
measured with a high precision. The obtained value of
κ(ω0) ∼ 8.02 µm−1, corresponding to a phase velocity
of vφ ∼ (2.94± 0.01) · 108 m · s−1, is very close to the

FIG. 5. (a) Calculated interferogram I(x, τ) using the val-
ues of the group and phase velocities extracted from the dis-
persion relation of Fig. 4. The SP damping rate is taken
from the Lorentzian modeling of the LR Fourier space with
Γ = 0.024 µm−1. (b) Cross-sections along the positive x axis
for the three successive delay times chosen as in Fig. 3.

one calculated from the dispersion relation at ω0. This
is clearly seen in Fig. 6 from the almost-perfect overlap
between the experimental fringes and the carrier signal

calculated from Eq. (3) using vdisp.φ = ω0/κ(ω0)disp. =

2.936 ·108 m ·s−1. These remarkable agreements both for
the group and the phase velocities all confirm the ability
of our setup to work as a high-resolution tracking method
for resolving SP wave packets on the fs time-scale.

To summarize, we have presented a new method in-
volving LR microscopy that performs ultrafast imaging
of SP pulses. Spatially heterodyning the leakage signal
with a time-delayed reference pulse allows one to image
the SP pulse propagation directly, with fs resolution and
to determine the properties of the SP wave packet, in
particular its group and phase velocities. The remark-
able agreement between the observed interferograms and
our modeling clearly demonstrates the potential of this
all-optical scheme as a new tool in the field of SP op-
tics. While the spatial resolution of the LR microscope
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FIG. 6. Zoomed-in experimental interference fringes as ob-
served in Fig. 3 superimposed on the carrier signal calculated
from Eq. (3) using the fitting procedure described in the text.
The inset displays the Fourier transforms of both the inter-
ference and the carrier signal. The two transforms overlap at
the expected value of the SP propagation constant κdisp.(ω0).

is limited with respect to SNOM-based techniques, the
unique level of control available on an LR microscope
providing access to SP dynamics both in real and Fourier
spaces with full polarization control, is particularly ap-
pealing. This possibility to combine time-resolved plas-
monic imaging/tracking with polarization control (both
in preparation and analysis sequences) opens very inter-
esting perspectives, most obviously in the context of ul-
trafast signal processing in plasmonic media [23, 24].
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