
HAL Id: hal-01902025
https://hal.science/hal-01902025

Submitted on 13 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncertainty Quantification and Global Sensitivity
Analysis for Economic Models

Daniel Harenberg, Stefano Marelli, Bruno Sudret, Viktor Winschel

To cite this version:
Daniel Harenberg, Stefano Marelli, Bruno Sudret, Viktor Winschel. Uncertainty Quantifica-
tion and Global Sensitivity Analysis for Economic Models. Quantitative Economics, 2017,
�10.2139/ssrn.2903994�. �hal-01902025�

https://hal.science/hal-01902025
https://hal.archives-ouvertes.fr


UNCERTAINTY QUANTIFICATION AND GLOBAL

SENSITIVITY ANALYSIS FOR ECONOMIC MODELS

D. Harenberg, S. Marelli, B. Sudret and V. Winschel

CHAIR OF RISK, SAFETY AND UNCERTAINTY QUANTIFICATION

STEFANO-FRANSCINI-PLATZ 5
CH-8093 ZÜRICH
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Abstract

We present a global sensitivity analysis that quantifies the impact of parameter

uncertainty on model outcomes. Specifically, we propose variance-decomposition-

based Sobol’ indices to establish an importance ranking of parameters and univariate

effects to determine the direction of their impact. We employ the state-of-the-art

approach of constructing a polynomial chaos expansion of the model, from which

Sobol’ indices and univariate effects are then obtained analytically, using only a

limited number of model evaluations. We apply this analysis to several quantities of

interest of a standard real-business-cycle model and compare it to traditional local

sensitivity analysis approaches. The results show that local sensitivity analysis can

be very misleading, whereas the proposed method accurately and efficiently ranks

all parameters according to importance, identifying interactions and nonlinearities.
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1 Introduction

The question whether quantitative results of an economic model are sensitive to specific

parameterization assumptions is important, not only for the credibility of a specific study

but also for the general advancement of a quantitative approach to economic analysis.

Since many studies have implications for policymakers, there is a strong case to be made

for structured sensitivity analyses to become an essential part of quantitative studies of

economic models. Moreover, a sensitivity analysis can go beyond simple robustness checks

and answer more detailed questions such as which parameters—and which interactions

between them—are driving the conclusions derived from an economic model. Such an

importance ranking informs the researcher on which parts to focus on when calibrating or

extending a model, or the policymaker on which parameters need further scrutiny.

The economic literature is well aware of the need for a structured sensitivity analysis

for quantitative models.1 However, with few exceptions, current practice involves a high

degree of subjective and somewhat arbitrary judgments. Typically, some parameters are

chosen and individually changed to a different value to assess the partial influence on the

results. Such “one-at-a-time” approaches tend to be unstructured and, more importantly,

suffer from the fact that they are only local, i.e., highly dependent on the chosen parameter

values. Moreover, they cannot account for possible interactions between parameters and

non-linear relationships that are often encountered in economic models.

The present paper proposes methods for global sensitivity analysis that overcome

the mentioned deficiencies of local approaches. Specifically, we employ Sobol’ indices

and univariate effects, which—in contrast to the local sensitivity analyses typically used

in economics—accurately identify nonlinearities and interactions in the mapping from

parameters to model outcomes. Such global methods have been developed in the last

decades in the engineering and applied mathematics fields as part of the more general

topic of uncertainty quantification.2 While local sensitivity analyses rely on comparisons of

model outcomes at few selected parameter values, global methods quantitatively formalize

the uncertainty surrounding parameter values and propagate it through the model to
1See Leamer (1985), Kydland (1992), Canova (1995), Hansen and Heckman (1996), among others, who

advocate a structured sensitivity analysis. Canova (1994) and Gregory and Smith (1995) propose global
sensitivity analysis as a means to partly answer to the statistical weaknesses of calibration.

2See, e.g., Sudret (2007) or Borgonovo and Plischke (2016) for an overview.
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evaluate the importance of each parameter, as well as interactions between parameters.

The methods we propose are easy to deploy because they are non-intrusive, meaning that

they treat the economic model as a black box and thus require no changes to existing

code. Also, they are implemented in various freely available software toolboxes.

Many global sensitivity analysis methods are described in the literature, characterized by

varying degrees of complexity, as well as underlying assumptions.3 For an in-depth unifying

view of most global sensitivity measures, the reader is directed to Borgonovo, Hazen, and

Plischke (2016). In this paper we are interested in the class of importance measures, as our

aim is that of providing a robust quantitative assessment of the importance of each of the

input parameters with respect to the model outcomes. Arguably one of the most widely

accepted importance measures in the engineering and applied mathematics communities

is variance decomposition, also known as analysis of variance (ANOVA). Based on the

functional model decomposition introduced in Sobol’ (1993), variance decomposition allows

one to compute total Sobol’ indices, which represent the fraction of the variance of the

outcome that is explained by each parameter. Total Sobol’ indices contain a parameter’s

direct impact as well as its impact due to interactions with other parameters. First-order

Sobol’ indices isolate the direct impact, while higher-order Sobol’ indices identify the

contributions due to the joint effects of groups of parameters at a time, thereby exposing

interactions in an economic model. As a result, we get a complete, global importance

ranking of all parameters and their interactions, which can be helpful for interpreting

model mechanics, as well as guiding model calibration and further model development.

A second sensitivity question of central economic interest is in which direction each

parameter affects the outcomes, not just locally but globally. We answer this with so-called

univariate effects, which display the slope of that relationship for each parameter over

its range, averaging over all other parameters. They help a researcher to find regions of

high and low sensitivity, and can be interpreted as a robust direction of change under

parameter uncertainty. Thus, they can be very useful for economic policy analysis.

The global approach we propose starts by representing the uncertainty about each

parameter by a (potentially bounded) probability distribution. This parameter uncertainty

is propagated through the economic model by repeated evaluation at randomly drawn
3See Iooss and Lemaître (2014) for a comprehensive review.
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parameter vectors. The required sampling from the parameter distributions could be

done by Monte Carlo simulation. However, due to the slow convergence properties of

Monte Carlo simulations, a very large number of draws would be required, in particular if

higher-order Sobol’ indices and univariate effects are to be estimated. We overcome this

problem by approximating the mapping from parameters to quantities of interest with

a so-called sparse polynomial chaos expansion. The Sobol’ indices and univariate effects

are then computed analytically from the coefficients of the polynomial with high accuracy

and at no additional cost (see Sudret (2008)).

We exemplify the approach for the canonical real-business-cycle (RBC) model with

capital adjustment costs. This model has been widely studied and is well understood.4

We consider several quantities of interest, i.e., endogenous outcomes, that are frequently

found in the traditional RBC literature. In the main part of the paper we focus on the

capital-output ratio, because it is often used as a calibration target, and the ratio of

the variance of log production in the model over its empirical counterpart. This second

variable, which we will refer to as the production variance ratio, has often been employed

to assess how much of the observed fluctuations can be explained by the model (see, e.g.,

Canova (1995) or Eichenbaum (1991)). Results for other quantities are then summarized

to show the broad applicability of global sensitivity analysis.

We find that the local sensitivity measures typically employed in economics can be

highly misleading. For example, the relative importance of variance and autocorrelation

of total factor productivity (TFP) shocks in determining the production variance ratio

flips depending on which parameter vectors are considered. Of course, we know that it is

the combination of both that drives the unconditional variance of TFP and production,

but this interaction cannot be picked up by a local measure where one parameter at

a time is changed individually. Another wide-spread local method is scenario analysis,

which—as we show—suffers from similar weaknesses. By contrast, the global Sobol’ indices

we compute establish an unambiguous ranking of autocorrelation and standard deviation

and accurately quantify the contribution of the interaction between the two parameters.

More generally, our global analysis shows that only few parameters and interactions matter

for each quantity of interest. Therefore, when calibrating or estimating such an RBC
4For example, Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006) use it to compare different

solution methods. Den Haan, Judd, and Juillard (2011) do the same for the multi-country extension.
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model, a researcher can focus on a small subset of the parameters.

The univariate effects uncover a non-linear relationship between autocorrelation and

the variance of production, with the impact becoming stronger the higher the value of

the autocorrelation parameter. Thus, the empirically much researched question of the

value of the autocorrelation of TFP shocks is of paramount importance for the results

of the RBC model. Another interesting nonlinearity is found for the depreciation rate,

whose impact on the capital-output ratio is decreasing and convex. This exemplifies the

importance of univariate effects for understanding model properties, but also for economic

policy analysis if the parameter under consideration is a policy variable, e.g., a tax rate.

In the economic literature, there are only few papers that perform a global sensitivity

analysis (GSA). An early example is Harrison and Vinod (1992) who assume distributions

over the elasticities of a static, deterministic general equilibrium model of the macroeconomy

to study robustness of their simulation results. A specific field where GSA has received a

bit more attention is the economics of climate change. Anderson et al. (2014) compute

various global sensitivity indices for the DICE model of Nordhaus (2008). Saltelli and

D’Hombres (2010) show that the sensitivity analysis of the Stern (2007) report is not

robust. In a highly complex model, Cai, Judd, and Lontzek (2015) perform an extensive

sensitivity analysis of the social cost of carbon using local methods on a wide range of

parameter vectors.

Canova (1994, 1995) proposes a global sensitivity analysis to put the macroeconomic

calibration approach on a statistically more rigorous footing. He analyzes the RBC model

and puts great effort into specifying the distributions over the parameters, for which

he uses existing studies. All of the above papers rely on Monte Carlo simulations and

therefore cannot (accurately) compute interactions or univariate effects.

Ratto (2008) employs first-order Sobol’ indices to study the influence of structural

parameters on reduced form estimation of linear or linearized DSGE models. More

recently, Scheidegger and Bilionis (2017) propose Gaussian process machine learning

to solve economic models with very high-dimensional state spaces. They show how

this framework lends itself naturally to uncertainty quantification. The main advantage

of polynomial chaos expansions as proposed in the present paper lies in the very fast

convergence rate of the estimation of Sobol’ indices of first and higher orders (Sudret
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(2008), Le Gratiet et al. (2016)). In addition, the presented methodology is non-intrusive,

thus requiring no changes to existing code.

The paper is structured as follows: in Section two, we introduce a general framework

for uncertainty quantification, followed by the theory and numerical techniques employed

in global sensitivity analysis. Section three first presents the economic model and then

the parameterization for the sensitivity analyses. In Section four, we present and discuss

results for local sensitivity analyses, and in Section five for our global sensitivity analysis.

Section six concludes.

2 Uncertainty quantification framework

2.1 Introduction

Uncertainty quantification aims at identifying the sources of uncertainty or lack of knowl-

edge that can affect parameters of a model and, subsequently, the predictions obtained

from this model. In this paper we call the computational model a mapping:

θ ∈ Dθ ⊂ RM 7→ y =M(θ) ∈ RQ. (1)

To simplify the presentation, we assume in this section Q = 1, i.e., we consider a scalar

quantity of interest (QoI) y. Due to uncertainties in the model parameters, the latter

are represented by a random vector Θ of prescribed joint probability density function

(PDF) fΘ defined over a probabilistic space {Ω, F , P}, where Ω is the space of outcomes,

F is the associated σ-algebra, and P is the probability measure associated with the

PDF fΘ. For instance, without any further information, the various input parameters

{Θi, i = 1, . . . ,M} may be considered as statistically independent, and be assigned

prescribed ranges.5

5The following derivations however hold whatever the PDF (e.g., Gaussian, Beta, etc.) of these input
parameters.
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Uncertainty propagation techniques aim at characterizing the statistical properties of

the (random) output of the model

Y =M(Θ), (2)

i.e., estimate its statistical moments (mean µY , variance σ2
Y ) or its probability den-

sity function fY . Sensitivity analysis aims at determining which input parameters

{Θi, i = 1, . . . ,M} (or combination thereof) contribute the most to the uncertainty

of the QoI. In particular, methods for global sensitivity analysis developed in the sequel

aim at apportioning the variance σ2
Y to each input parameter Θi, pairs (Θi,Θj), etc., in

order to determine those parameters whose uncertainty explain most of the QoI’s variance,

as well as to detect those whose uncertainty has no impact on the predictions.

Figure 1: Uncertainty quantification framework

Figure 1 summarizes the different concepts presented above (after Sudret (2007)):

• In Step A, the computational modelM is defined, which requires to identify input

parameters and output quantities of interest.

• In Step B, the uncertainty in the input parameters is described by a joint PDF that

best represents the available information. In the present case, bounds on the various

parameters will be selected based on literature review, see details in Section 3.3.

Alternatively, the PDF could result from a previous estimation of the economic

model.
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• In Step C, uncertainty propagation is carried out so as to analyze the moments

and distributions of the QoI, for instance by plotting histograms, or calculating

low-probability events.

• Finally, in Step C’, sensitivity analysis is carried out to rank the input parameters

according to their impact onto the prediction uncertainty, or to identify the direction

of change of that impact. The acquired knowledge can be used to focus a more

detailed analysis on a subset of the input variables (dimensionality reduction), hence

mitigating the computational costs associated with the curse of dimensionality.

The above procedure can be carried out using Monte Carlo simulation (MCS), which is a

standard technique to estimate statistical properties based on random number generation.

However, when dealing with computationally expensive models, the well-known slow

convergence rate of MCS methods hinders their application in many practical scenarios.

An alternative, much more efficient approach is given by spectral representations and, in

particular, polynomial chaos expansions.

2.2 Polynomial chaos expansions

Instead of being represented through samples as in Monte Carlo simulation, the model

output may be represented as a series expansion in an abstract space of random variables

(spectral representation). More specifically, assuming that Y has finite variance, it belongs

to the Hilbert space of second-order random variables and may be cast as follows (Soize

and Ghanem (2004)):

Y =
∞∑

j=0
bj Zj. (3)

In the above equation, {Zj}∞j=0 is a numerable set of random variables (which form a basis

of the Hilbert space), and {bj}∞j=0 are coefficients to be computed. The latter may be

interpreted as the coordinates of Y in this basis. In the sequel we focus on polynomial

chaos expansions (PCE), in which the basis terms {Zj}∞j=0 are multivariate orthonormal

polynomials w.r.t. the joint PDF of the input random vector Θ.6 Note that, while Eq. (3)

is exact, approximations are in practice obtained by truncating the series to a finite number

of terms.
6See, e.g., Ghanem and Spanos (2003) or Ghanem and Spanos (2003).
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We relegate the construction of the basis to Appendix B, because it is formally identical

to other orthonormal polynomials that are often used in economics, e.g., Chebyshev poly-

nomials.7 Let us stress, however, that a crucial difference is that, in the case of polynomial

chaos expansions, the weight functions are given by fΘ, so that the polynomials efficiently

capture the uncertainty in the model parameters. Once such a basis is constructed, and a

truncation scheme is selected (typically, the maximum total polynomial degree p, cf. Ap-

pendix B, or more sophisticated truncation schemes as in Blatman and Sudret (2010a)),

the spectral expansion in Eq. (3) becomes:

Y =
∑

α∈A
bα Ψα(Θ), (4)

where α = (α1, . . . , αM) is a multi-index that identifies the polynomial degree in each

input variable θi, Ψα is a multivariate orthogonal polynomial built by tensor product of

the underlying univariate polynomials of degree αi and A is the selected truncation set.

2.2.1 Computation of coefficients by least-squares

The literature on polynomial chaos expansions proposes many alternative approaches

to compute the expansion coefficients denoted by {bα, α ∈ A}. Even when limiting the

scope to so-called non-intrusive approaches, which rely upon repeated evaluations of the

modelM for selected realizations of the input vector, one can mention projection methods

(Le Maître, Knio, Najm, and Ghanem (2001)), sparse grids (Keese and Matthies (2003),

Ganapathysubramanian and Zabaras (2007)), stochastic collocation (Xiu and Hesthaven

(2005)) and least-square minimization (Berveiller, Sudret, and Lemaire (2006)). In this

paper we focus on the latter approach for several reasons. First, thanks to recent advances

in the field of compressive sensing (see, e.g., Chen, Donoho, and Saunders (1998), Efron

et al. (2004)), sparse regression-based PCE (Blatman and Sudret (2010a)) has become a

staple method in applied sciences due its efficiency when a limited computational budget

is available, even in high dimensional problems. Second, no dedicated sampling algorithm

is required to generate the pool of full model evaluations needed to calculate the PCE

coefficients (as opposed, e.g., to sparse-grid-based methods). As a matter of fact, sparse

PCE can be seen as a post-processing step of an existing MCS. Finally, this family of
7See Judd (1998).
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methods allows for some noise in the QoI, which is useful in economic applications and

which we discuss further in the context of the real-business-cycle model in Section 3.2.

Considering a truncation set A ⊂ NM , the series expansion in Eq. (4) is cast as the

sum of the truncated series and a residual ε

Y =M(Θ) =
∑

α∈A
bα Ψα(Θ) + ε. (5)

The least-square minimization approach consists of finding the set of coefficients B =

{bα, α ∈ A} which minimizes the mean square error E [ε2]. This set is computed at once

by solving:

B = arg min
b∈RcardA

E



(
M(Θ)−

∑

α∈A
bα Ψα(Θ)

)2

 . (6)

In practice one replaces the expectation operator in Eq. (6) by the empirical mean over a

sample set:

B̂ = arg min
b∈RcardA

1
N

N∑

i=1

(
M(θ(i))−

∑

α∈A
bα Ψα(θ(i))

)2

. (7)

In this expression, XED =
{
θ(i), i = 1, . . . , N

}
is a sample set of points called ex-

perimental design (ED) that is typically chosen so as to cover the input parameter

space DΘ. To solve the least-square minimization problem in Eq. (7), the computational

model M is first run for each point in the ED, and the results are stored in a vector

Y =
{
y(1) =M(θ(1)), . . . , y(n) =M(θ(N))

}T
. Then one calculates the information matrix

by evaluating the basis polynomials on each point in the ED:

A =
{

Aij
def= Ψj(θ(i)) , i = 1, . . . , N, j = 1, . . . , card A

}
. (8)

The solution of the least-square minimization problem finally reads

B̂ =
(
ATA

)−1
AT Y . (9)

The ED may be built from Monte Carlo simulation, Latin Hypercube Sampling (LHS, see

McKay, Beckman, and Conover (1979)) or quasi-random sequences (Niederreiter (1992)).

The size of the ED is of crucial importance for a robust analysis. Typical oversampling

rates (N/card A) = 2 to 3 are used in practice (Berveiller, Sudret, and Lemaire (2006)).

11



2.2.2 Error estimation and sparse PCE

As discussed above, the proper truncation set (e.g., the maximal degree of polynomials to

be included in the truncated series) depends on the problem under consideration. In order

to assess the accuracy of any truncated series, the generalization error E [ε2] in Eq. (6)

shall be estimated. This could be done using a validation set Xval = {θk, k = 1, . . . , nval}
as follows:

err(Xval) def= 1
nval

nval∑

k=1

(
M(θk)−

∑

α∈A
bα Ψα(θk)

)2

, (10)

where the validation points may be sampled by Monte Carlo simulation and where nval is

large enough, typically equal to 104 or 105. Such an estimator is, however, not affordable

in the general case since the very principle of constructing PC expansions is to limit the

number of runs of the original model M. Reusing the ED XED in the above equation

is not a viable option due to overfitting. Indeed, doing so, the so-called empirical error,

err(XED), would strongly underestimate the true error E [ε2].

A good compromise between accuracy and efficiency is obtained by using the leave-one-

out error estimator (Blatman and Sudret (2010a), Le Gratiet, Marelli, and Sudret (2016)).

The principle is the following: a PC expansionMPC\i is constructed using an experimental

design XED\θ(i) def=
{
θ(1), . . . ,θ(i−1), θ(i+1), . . . ,θ(N)

}
, and the error is computed on the

point that has been left apart:

∆i
def= M(θ(i))−MPC\i(θ(i)). (11)

Then the operation is repeated for i = 1, . . . , N excluding each point in turn. The

leave-one-out error is defined by:

errLOO
def= 1

N

N∑

i=1
∆2
i = 1

N

N∑

i=1

(
M(θ(i))−MPC\i(θ(i))

)2
(12)

and turns out to be, after basic algebra:

errLOO =
N∑

i=1

(
M(θ(i))−MPC(θ(i))

1− hi

)2

, (13)

where hi is the i-th diagonal term of matrix A(ATA)−1AT (matrix A is defined in Eq. (8))
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andMPC(·) is now the PC expansion built up at once from the full experimental design

XED. The error in Eq. (13) requires neither additional model evaluations nor additional

PCEs and can thus be computed at very low cost. As a conclusion, as soon as an

experimental design is available, the size of which is sufficiently large compared to the

number of unknown PCE coefficients, the latter can be computed from a mere least-square

minimization (Eq. (9)) and a very good and cheap error estimator is given by Eq. (13).

This error estimator allows for degree-adaptive PCE construction. To see how, define

the standard truncation scheme by AM,p =
{
α ∈ NM : |α| ≤ p

}
, see Appendix B for

details.8 For a given ED, different AM,p are tried out by varying the maximal polynomial

degree p, and the best expansion according to Eq. (13) is finally retained. Values of

errLOO ≤ 10−2 guarantee a sufficient accuracy in practice for moment- and sensitivity

analysis. We corroborate this for the real-business-cycle model in Sections 5.2 and 5.4.3.

When the number of input parameters is large (e.g., M ≥ 10), the standard truncation

set AM,p may easily contain thousands to even millions of basis elements. Due to the

necessity of oversampling (i.e., having N > card AM,p), the basic least-squares approach

detailed above may not be practically feasible anymore due to the associated computational

costs, especially in the presence of expensive-to-evaluate modern computational codes,

which may take hours to execute even on dedicated high-performance-computing hardware.

In the last few years, algorithms for deriving sparse expansions have been proposed: in

these approaches, instead of computing a possibly big set of coefficients the majority

of which are eventually close to zero, one searches directly for the non-zero coefficients.

Techniques such as compressive sensing (e.g., orthogonal matching pursuit (Pati et al.

(1993)) or least-angle regression (Efron et al. (2004))) have proven effective in selecting

only a few basis polynomials out of a large candidate basis set, and then compute the

associated coefficients (Blatman and Sudret (2011), Doostan and Owhadi (2011)). A

detailed description can be found in these publications and the literature therein. In the

real-business-cycle model of Section 3.1, degree-adaptive sparse PCE based on least-angle

regression (LAR) (see Blatman and Sudret (2011)) is used.
8In economics, this truncation scheme is also known as complete polynomials, cf. Judd (1998).
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2.2.3 Post-processing of PC expansions

As mentioned previously, the truncated PC expansion

Ŷ =MPC(Θ) =
∑

α∈A
b̂α Ψα(Θ) (14)

is a sample-free representation of the model output. It contains all the information about

the statistical properties of the random output Y = M(Θ). Due to the orthogonality

of the PC basis, mean and standard deviation of Ŷ may be computed directly from the

coefficients B̂ (see details in Le Gratiet, Marelli, and Sudret (2016)):

µ̂Y
def= E

[
Ŷ
]

= E
[∑

α∈A
b̂α Ψα(Θ)

]
= b̂0,

σ̂2
Y

def= Var
[
Ŷ
]

= E
[(
Ŷ − b̂0

)2
]

=
∑

α∈A
α 6=0

b̂2
α.

(15)

In other words, the mean and variance of the random response may be obtained by a

mere combination of the PCE coefficients once the latter have been computed. This

property, together with the close relation to Sobol’ indices and univariate effects presented

in detail in Section 2.3, significantly distinguish PCE from formally similar polynomial

approximation methods (as used, e.g., in Cai and Judd (2010)). Indeed, especially in

the context of moment- and sensitivity analysis, the polynomial expansion in Eq. (14) is

never used directly to approximate the full model. Rather, it is the coefficients themselves

that are directly used to give a fast-converging estimate of the statistics of the underlying

model.

From a functional point of view, however, the function θ 7→ MPC(θ) in Eq. (14) can

still be viewed as a surrogate of the original modelM, i.e., an analytical, easy-to-evaluate

function that gives a good approximation of the true model outputM(θ). The quality

of the approximation is not ensured pointwise uniformly, but in the mean-square sense,

as can be seen from the derivation of the PC coefficients (Eqs. (6)-(9)). Importantly, the

construction of PCE using the parameters’ input distributions ensures that the stochastic

properties of the uncertainty are retained, which is crucial for the GSA we propose in

this paper. One can take advantage of this feature to obtain accurate plots of the output

distribution, i.e., the PDF of the output random variable Y =M(Θ). For this purpose,
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a large Monte Carlo sample set X = {θ1, . . . ,θn} is drawn from the input distribution

fΘ, say n = 106. Then the surrogate modelMPC is run onto this sample set in no time.

The sample set of PCE outputs YPC =
{
MPC(θ1), . . . ,MPC(θn)

}
is then plotted as a

histogram, or using kernel density smoothing techniques (Wand and Jones (1995)).

2.3 Sensitivity analysis

2.3.1 Global sensitivity analysis

Global sensitivity analysis aims at quantifying which are the input parameters {Θi}Mi=1

or combinations thereof that best explain the variability of the quantity of interest

Y = M(Θ) (Saltelli, Chan, and Scott (2000), Saltelli (2008)). This variability being

described by the variance Var [Y ], the question reduces to apportioning the latter to

each input parameter {Θ1, . . . ,ΘM}, pairs (Θi, Θj), etc. For this purpose, variance

decomposition techniques (a.k.a. functional ANOVA) have gained interest since the mid

90’s. The Sobol’ decomposition (Sobol’ (1993)) states that any square integrable function

M with respect to a probability measure associated with a PDF fΘ(θ) = ∏M
i=1 fΘi(θi)

(independent components9) may be cast as:

M(θ) =M0 +
M∑

i=1
Mi(θi) +

∑

1≤i<j≤M
Mij(θi, θj) + · · ·+M12...M(θ), (16)

that is, as a sum of a constantM0, univariate functions {Mi(θi) , 1 ≤ i ≤M}, bivariate
functions {Mij(θi, θj) , 1 ≤ i < j ≤M}, etc. Using the set notation for indices

u def= {i1, . . . , is} ⊂ {1, . . . ,M} , (17)

the Sobol’ decomposition in Eq. (16) reads:

M(θ) =M0 +
∑

u⊂{1, ... ,M}
u6=∅

Mu(θu), (18)

9Extensions of functional ANOVA to the case of dependent random variables exist—see, e.g.,
Kucherenko, Tarantola, and Annoni (2012), Mara and Tarantola (2012), Caniou and Sudret (2013).
However, their interpretation is more complex due to the need to distinguish between contributions due
to interaction and to correlation. An important class of global sensitivity measures that do not rely on
the independence of the input parameters is that of moment-independent measures, first introduced by
Borgonovo (2007).

15



where θu is a subvector of θ which only contains the components that belong to the index

set u. It can be proven that the Sobol’ decomposition is unique when the orthogonality

between summands is required, namely:

E [Mu(θu)Mv(θv)] = 0 ∀ u, v ⊂ {1, . . . ,M} , u 6= v. (19)

Orthogonality with the constant termM0 implies in particular that E [Mu(θu)] = 0 ∀u ⊂
{1, . . . ,M}. The existence and uniqueness of Eq. (16) together with the orthogonality

property in Eq. (19) now allow one to decompose the variance D def= Var [M(Θ)] as follows:

D = Var




∑

u⊂{1, ... ,M}
u6=∅

Mu(Θu)


 =

∑

u⊂{1, ... ,M}
u6=∅

Var [Mu(Θu)] =
∑

u⊂{1, ... ,M}
u6=∅

Du (20)

where the partial variances are defined by:

Du
def= Var [Mu(Θu)] = E

[
M2

u(Θu)
]
. (21)

2.3.2 Sobol’ indices

The so-called Sobol’ indices Su are defined as the ratio of the partial variances Du to

the total variance D. Due to Eq. (20) they obviously sum up to 1. Hence each index is

interpreted as the share of variance that is explained by the group of parameters Θu. The

first-order indices correspond to single input variables, i.e., u = {i}:

Si = Di

D
= Var [Mi(Θi)]

Var [Y ] . (22)

The second-order indices (u = {i, j}) read:

Sij = Dij

D
= Var [Mij(Θi,Θj)]

Var [Y ] , (23)

etc. Note that the total Sobol’ index STi , which quantifies the total impact of a given

parameter Θi including all interactions with other parameters, may be computed by the
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sum of the Sobol’ indices of any order that involve Θi:

STi =
∑

i∈u
Su. (24)

Sobol’ indices allow for an in-depth analysis of the relative impact of the uncertainties

affecting the model predictions. The formulæ above are interpreted as follows:

• Factor setting: the total Sobol’ index STi indicates the share of the total variance

D explained by the input parameter θi, alone or in combination with any other

parameter(s). If this is negligible (in pratice, if STi < 1%), this means that parameter

θi could be set to a deterministic value without changing the distribution of the

quantity of interest.

• Screening: the first-order Sobol’ index Si indicates by what percentage the total

variance D would be reduced, should the parameter θi be perfectly known and set

to a fixed value. It allows to determine which parameter(s) shall be investigated in

priority, should one want to decrease the prediction variability.

Classically, Sobol’ indices are evaluated by Monte Carlo simulation. Detailed expressions

of the estimators of first-order and total indices can be found in Sobol’ (1993), Sobol’

(2001), Janon et al. (2014). In practice, two sample sets of the input vector Θ are used

for computing each first-order (resp. total) index. Typically nS = 103 to 104 samples are

needed for accuratey estimating each index, leading to a total cost of (M + 1) · nS. This
high computational cost is affordable when the considered modelM is analytical, or at

least very fast to evaluate. Fortunately, the technique of polynomial chaos expansions

presented above allows for a straightforward evaluation of Sobol’ indices.

2.3.3 PC expansion-based Sobol’ indices

Sobol’ indices are considered as the most versatile sensitivity measures for general compu-

tational models, since they do not rely on any assumption of linearity nor monotonicity of

the modelM (Saltelli (2008)). Their estimation by Monte Carlo simulation is, however,

computationally demanding, as mentioned above. A number of recent approaches has

been proposed to reduce the computational burden associated to their estimation, mostly
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based on recent developments of stochastic collocation techniques (Ma and Zabaras (2010),

Yang et al. (2012)). In this paper, we choose to follow the approach proposed by Sudret

(2008), where the Sobol’ indices are derived by directly post-processing the coefficients of

the PCE. When combined with their sparse-regression-based calculation, this approach

has been extensively shown to be computationally very efficient (see, e.g., Blatman and

Sudret (2010b), Deman et al. (2016)). Indeed, the Sobol’ decomposition (Eq. (16)) of a

truncated PC expansionMPC(θ) = ∑
α∈A

b̂α Ψα(θ) can be derived analytically, as shown

below.

For any subset of variables u = {i1, . . . , is} ⊂ {1, . . . ,M} let us define the set of

multivariate polynomials Ψα which depend only on u by

Au = {α ∈ A : αk 6= 0 if and only if k ∈ u} . (25)

One can observe that the Au’s form a partition of A since

⋃

u⊂{1, ... ,M}
Au = A. (26)

Thus a truncated PC expansion such as in Eq. (14) may be rewritten as follows by simple

reordering of the terms:

MPC(θ) = b0 +
∑

u⊂{1, ... ,M}
u6=∅

MPC
u (θu) (27)

where:

MPC
u (θu) def=

∑

α∈Au

bα Ψα(θ). (28)

Consequently, due to the orthogonality of the PC basis, the partial variance Du in Eq. (21)

reduces to:

Du = Var
[
MPC

u (Θu)
]

=
∑

α∈Au

b2
α, (29)

i.e., again, a mere sum of squares of selected coefficients. The Sobol’ indices Su can then

be computed by dividing the above results by the total variance (Eq. (15)). In other words,

from a given PC expansion, the Sobol’ indices of any order may be obtained by a mere

combination of the squares of the coefficients. As an illustration, the first-order PC-based
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Sobol’ indices read:

SPC
i =

∑

α∈Ai
b2
α/D Ai = {α ∈ A : αi > 0 , αj 6=i = 0} , (30)

whereas the total PC-based Sobol’ indices are:

ST,PC
i =

∑

α∈ATi

b2
α/D ATi = {α ∈ A : αi > 0} . (31)

As a conclusion, polynomial chaos expansions not only provide a surrogate model for a

possibly computationally expensive model as those used nowadays in economics, but also

yield at no cost the full set of sensitivity indices that are useful for a better understanding

of the single and joint effects of input parameters on quantities of interest.

2.3.4 Univariate effects

While Sobol’ indices provide quantitative insight on the importance of a parameter,

they do not include information about the direction in which it affects the quantities of

interest. Which parameters have an overall positive, which a negative relationship? Is

the relationship of the input parameter to the model outcome linear or non-linear? In

which regions of the parameter range is the sensitivity the largest? These questions can be

answered with univariate effects, originally introduced by Younes et al. (2013). Univariate

effects can be defined as the conditional expectation of a quantity of interest as a function

of a single parameter, where expectations are taken over all other parameters:

M(1)
i (θi) = E [M(Θ|Θi = θi)] . (32)

They can thus be interpreted as an average or robust relationship between an input

parameter and the quantity of interest. In the case of PCE models, univariate effects have

an analytical closed form that is closely related to the first-order Sobol’ decomposition in

Eq. (30) (Deman et al. (2016)):

M(1)
i (θi) = b0 +

∑

α∈Ai
bαΨα(θi), Ai = {α ∈ A : αi > 0, αi 6=j = 0} . (33)
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All the techniques described will be applied to the economic model of Section 3.1.

2.4 Relevance for structural estimation

Sobol’ indices and univariate effects can play a major role in structural estimation. The

identification of a parameter (or a set thereof) through structural estimation is only possible

if the corresponding total Sobol’ index is significant. A negligible total Sobol’ index means

that the QoI under scrutiny is not affected by the value of the underlying random variable.

Thus, additional empirical evidence on such QoI cannot constrain the parameter’s value.

On the other hand, while a large total Sobol’ index means that the paremeter affects

the QoI, it is possible that its effect is highly non-linear, hence leading to multiple local

maxima in the corresponding likelihood function. In other words, a significant total Sobol’

index is a necessary but not sufficient condition for the identifiability of a parameter in

structural estimation. Univariate effects can provide an effective tool to identify this

particular scenario.

The PCE-based approach presented here could be particularly useful as a pre-step

in structural estimation because of its efficiency and accuracy in identifying irrelevant

parameters. Showing this in an economic application would, in our view, be very interesting,

but is outside the scope of the present paper, so that we leave it for future research.

3 Economic model and parameterization

The presented tools for uncertainty quantification are generically applicable to any economic

model. To illustrate their use, we apply them to a canonical real-business-cycle (RBC)

model with capital adjustment costs, because this model has often been used as a test

bench for introducing new numerical methods, see for example Den Haan, Judd, and

Juillard (2011), Brumm and Scheidegger (2017), or Winschel and Kraetzig (2010).

In the subsection on the RBC model, we also define the QoIs for which we perform

uncertainty quantification. In the subsection on the parameterization we also include

parameter bounds, which are essential to the local and global sensitivity analyses later on.
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3.1 Real-business-cycle model and quantities of interest

We first summarize the standard RBC model before defining the quantities of interest.

The allocation problem is described by the dynamic optimization

max
{ct,lt,it}∞

t=0
E0

∞∑

t=0
βt

(cχt (1− lt)1−χ)1− 1
τ

(1− 1
τ
) . (34)

The objective function is a discounted sum of utilities of consumption ct and leisure

1− lt in each period, where β is the discount factor, τ is the intertemporal elasticity of

substitution (IES), and χ is the leisure share parameter in utility. The decision variables

are consumption ct, labor lt, and investment it. The aggregate resource constraint is

qt = ct + it + φ

2kt
(
it
kt
− δ

)2
, (35)

where qt denotes the quantity of produced goods, kt the capital stock, and δ the depreciation

rate of capital. Production qt can be used for consumption and investment, the latter being

subject to a convex adjustment cost. These investment adjustment costs are modeled

like in Den Haan, Judd, and Juillard (2011), with φ governing the size of the costs. The

production technology

qt = exp(zt)kαt l1−αt (36)

depends on productivity zt, capital kt, labor lt and the capital share α. The capital

transition and stochastic productivity processes are given by

kt+1 = it + (1− δ)kt, (37)

zt+1 = ρzt + et+1, (38)

where ρ is the autocorrelation coefficient of the productivity process with independent,

identically and normally distributed shocks et+1 ∼ N (0, σ).

Using the notation of the uncertainty quantification framework introduced above, we

have a parameter vector containing eight parameters,

θ = {β, τ, χ, α, δ, ρ, φ, σ}. (39)
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From an uncertainty quantification perspective, the parameter vector is the input to

the RBC model, which itself can be treated as a black box,M(θ).10 In this model, all

parameters are continuous, but for the GSA methods we propose it is no problem to have

discrete parameters, e.g., the number of countries, as an input.

Turning to the quantities of interest, let us first repeat that the basic RBC model was

chosen for illustrating the methodology, not because it features particularly insightful QoIs.

For most of the paper, we consider just two quantities of interest, y = {y1, y2} =M(θ),

to keep the exposition clear. The first QoI is the average capital-output ratio,

y1 = E
[
kt
qt

]
, (40)

which is often used as a calibration target, e.g., Kydland and Prescott (1982) or Cooley

and Prescott (1995). Our sensitivity analysis can help identify which parameters are most

relevant for calibrating it (and which are not), and—by looking at univariate effects—in

which regions of the parameter space the capital-output ratio is particularly sensitive.11

The second QoI is the ratio of the variance of log production in the model over its

empirical counterpart. This second variable, which we will refer to as the production

variance ratio, is frequently the quantity of interest in standard RBC models, where it is

used to assess how much of the observed fluctuations can be explained by the model (see,

e.g., Eichenbaum (1991), King and Rebelo (1999), or Canova (1995)). Denoting by σ̂2
q the

empirical variance of log production in the data, the variance ratio is

y2 = 1
σ̂2
q

Var [log(qt)] . (41)

We set σ̂2
q = 3.28, a standard value in the literature (see, e.g., King and Rebelo (1999)).

In Section 5.6 we discuss and present results for other quantities of interest.
10This is different from the literature that considers robust decision making under model uncertainty,

cf. our discussion in the concluding Section 6. Under that approach, the agent takes the parameter
uncertainty into account such that the optimization problem in Eq. (34) needs to be modified accordingly.

11Alternatively, one can first calibrate the model to match the capital-output ratio and then study how
sensitive the results are. This is relevant, since the empirical values found in the literature range from 2.5
to 4 and higher (cf., e.g., McGrattan and Prescott (2017)), which deliver different parameter values.
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3.2 Accuracy of model solution for global sensitivity analysis

The Sobol’ decomposition in Eq. (16) is exact when there is no error in the QoIs. Nonethe-

less, the methods we propose are robust to some numerical error in the evaluation of

the model for the following important reasons. First, as discussed in Section 2.2.1, we

compute the PCE by least-squares regression, which allows for small noise in the data.12

Second, Sobol’ indices and univariate effects are based on conditional expectations, see

Equations (22) and (32). As long as numerical error in the model evaluation is unbiased

and small relative to the variance of the QoIs, the error is integrated out and the results

of the GSA are unaffected.13 Third, for Sobol’ indices and univariate effects to be used as

a sensitivity measure, it is not necessary that their values be known exactly. For example,

it does not matter whether the total Sobol’ index of the capital share, α, is 0.83 or 0.84,

because small differences do not affect the interpretation in a sensitivity context. The

interpretation would rather be that, e.g., the variance of the QoI explained by α is "between

80 and 85 percent", and α is "clearly more important than" or "approximately of equal

importance as" another parameter.

Thus, while the canonical RBC model presented above can be solved easily at high

accuracy, our methods are well suited to more expensive models that are harder to evaluate.

For the reasons mentioned in the previous paragraph, it is not necessary to solve expensive

models at very high accuracy. On top of that, we employ a degree-adaptive, sparse PCE,

as explained in Section 2.2.2, meaning that a small number of model evaluations is often

sufficient. We discuss this further in Section 5.4.3, where we study the convergence of

Sobol’ indices with respect to the experimental design.

We solve the RBC model with global non-linear methods (Cai and Judd (2010))

using the generic toolbox of Miranda and Fackler (2002). Specifically, we use a time

iteration algorithm to solve the Euler equation for optimal choices. We employ Chebyshev

collocation with a polynomial of degree 11 (Judd (1992)). To compute our QoIs, the model

is simulated for 5000 periods, discarding the first 1000. This is sufficient for an accurate
12In addition, if the model cannot be solved to the desired accuracy at a given parameter vector, e.g.,

due to non-convergence for numerical reasons, the vector can simply be discarded from the experimental
design.

13If the error is large relative to the variance of the QoIs, or if it is biased, then the model results are
likely to be unreliable independently of sensitivity analysis.

23



and stable solution of the model.14 Relative Euler equation errors, evaluated along the

simulation path for all parameter vectors and reported in log10-scale, are in the range of

−5.0 to −6.2 for the average error and in the range of −3.0 to −4.1 for the maximum error.

This is in line with other studies (e.g., Aruoba, Fernández-Villaverde, and Rubio-Ramírez

(2006)).

To illustrate the robustness of the global sensitivity measures, we reduced the degree of

the Chebyshev polynomial to three. Average Euler errors increase markedly to a range of

[−2.3, −4.2] in log10-scale. While small changes in the Sobol’ indices and univariate effects

are observable, the results in terms of importance ranking, interactions, and direction of

change do not change at all.

3.3 Parametrization for sensitivity analysis

Generally, the parameter vector, θ, can be determined either by estimation or by calibration

of the model. Since we do not want to distract from the paper’s contribution, we will

simply parametrize the model by setting θ to values that are common in the literature.

However, it is important to note that the methods for uncertainty quantification and

global sensitivity analysis proposed in this paper are just as applicable and relevant when

the parameters are first calibrated or estimated.

Our baseline parameterization, θ0, closely follows Cooley and Prescott (1995), whose

values are considered standard in the literature. They are displayed in the second column

of Table 1. Since Cooley and Prescott (1995) do not have adjustment costs, we take the

value for φ from Juillard and Villemot (2011). As is typical in the RBC literature, the

values are for quarterly data.

The lower and upper bounds for each parameter, θi and θi, are set symmetrically

around each baseline value. In the context of sensitivity analysis, the bounds should be

chosen to represent values at the upper and the lower end of what most economists would

still find reasonable. For example, in an RBC model, a value for the capital share of

α = 0.9 is theoretically possible, but wouldn’t be considered plausible and is thus not

included in our range. The restriction that the bounds be symmetric around the mean
14Increasing the order of the polynomial to 15 and the number of simulation periods to 10 000 does not

affect our results at all.
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is not necessary, but facilitates the discussion of the local sensitivity analysis. It does,

however restrict the ranges that we can consider, for example for the discount factor β,

since β < 1 is also required. The bounds are displayed in the third and fourth column of

Table 1. We base them on Canova (1994), who performs an extensive literature review of

the parameter values of this RBC model.15

Table 1: Parameter values

Parameter Baseline, θ0
i Lower bound, θi Upper bound, θi

Discount factor, β 0.98 0.97 0.99
IES, τ 0.6 0.2 1
Leisure share in utility, χ 0.3 0.2 0.4
Capital share, α 0.35 0.2 0.5
Depreciation rate, δ 0.02 0.01 0.03
Capital adjustment cost, φ 0.5 0.00 1.00
Autocorrelation of TFP, ρ 0.95 0.92 0.98
Standard deviation of TFP, σ 0.007 0.005 0.009

The three values θ0
i , θi, and θi for each parameter are used in the local sensitivity

analysis in the next section. The global sensitivity analysis also uses them, but additionally

specifies a distribution over each parameter, cf. Section 5.1.

4 Local sensitivity analysis

This section presents two local sensitivity measures that are often encountered in quantita-

tive economic work, namely one-at-time finite differences and scenario analysis.16 Thereby,

we can compare them to the global sensitivity measures that are presented in Section 5.

Generally, local measures are intuitive and easy to implement, but suffer from three

important drawbacks. First, they are valid only locally at the chosen evaluation points

and may differ substantially for other, even close-by points. Second, they typically rely on

a linear approximation of the slope, so that non-linearities are not accounted for. And

third, they either do not capture interactions between the parameters, or if they do, they
15Canova (1994) considers log utility and therefore does not have bounds for the IES. Instead, we cover

the same range of the IES as Juillard and Villemot (2011).
16Elasticities are another local sensitivity measure, which is conceptually related to OAT analysis.
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cannot isolate them. Because of these important drawbacks, this section only presents the

methods without giving economic interpretation. The economic interpretation is instead

given in the section on the global sensitivity measures.

4.1 One-at-a-time finite differences

One of the most common sensitivity analyses in numerical economics consists of changing

a single parameter value, while keeping all others fixed, and reporting the change in the

quantity of interest. Often this is interpreted as a robustness check. When performed for

all parameters in turn, this procedure is known in the uncertainty quantification literature

as one-at-a-time (OAT) finite differences (e.g., Borgonovo and Plischke (2016)).

Since OAT is a local measure, we compute it for two different points. Specifically,

we first change one parameter at a time from its lower bound to its baseline value given

in Table 1, while keeping all other parameters fixed at their lower bound values. The

corresponding change in each QoI is:

OAT 1
i =M(θ∼i, θ

0
i )−M(θ), (42)

where θ∼i means that all parameters but i take their lower bound values. We then do the

same starting at the baseline values in Table 1 and changing one parameter at a time to

its upper bound, thereby keeping the same direction and size of change as in Eq. (42):

OAT 2
i =M(θ0

∼i, θi)−M(θ0). (43)

Figure 2 plots the values of OAT 1
i in red and OAT 2

i in blue. Turning first to average

capital-output ratio in the left-hand panel, we observe that only three of the eight

parameters have a non-zero impact. When looking at the first evaluation point, OAT 1
i ,

represented in red, it is clear that capital share, α, is the most important parameter,

followed by discount factor, β, and depreciation rate δ. However, when we move to the

second evaluation point, OAT 2
i , represented in blue, α and β are much more similar in

their impact, because the importance of β has increased whereas the effect of α remains

unchanged. The reason is that for β, nonlinearities, interactions, or both are at work,
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(a) Average capital-output ratio (b) Production variance ratio

Figure 2: One-at-a-time (OAT) sensitivity indices, showing the impact of changing a
single parameter while keeping all others fixed (cf. Eqs. (42) and (43)). Red bars represent
parameter changes from lower bound to baseline value, blue bars from baseline value to
upper bound, cf. Table 1.

whereas capital share, α, seems to have a linear impact on the average capital-output

ratio.

Turning to the production variance ratio in the right-hand panel, we similarly observe

that only three parameters matter. However, the set of parameters impacting this QoI

is quite different. By comparing the two evaluation points, OAT 1
i in red and OAT 2

i in

blue, we see clearly the main weakness of local analysis: not only does the impact of

autocorrelation, ρ, change dramatically between OAT 1 and OAT 2, but also the importance

ranking of ρ and σ is reversed. The reasons are, again, nonlinearities and interactions,

which cannot be identified or accounted for with the OAT sensitivity measure. Joint

variation of multiple parameters is known as scenario analysis, discussed next.

4.2 Scenario analysis

Scenario analysis is another very common form of sensitivity analysis in economics.17 In a

scenario, typically several parameter values are changed simultaneously to reflect some

change in the economic environment.18 This is intuitively appealing and allows for more
17See, e.g., Stern (2007).
18More generally, a scenario can be defined as a set of assumptions. As long as the assumptions can be

nested using a real-valued parameter, they can be analyzed with the tools discussed in this paper.
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Figure 3: Scenario analysis, each scenario representing a set of parameter values as
explained in the enumerated list in the main text.

complex parameter changes than the one-at-a-time finite differences of the previous section.

Thereby, scenario analysis is able to capture interactions between parameters, but it is not

straightforward to isolate the effect of such interactions.

We consider three scenarios based on the parameter values in Table 1. Due to the

simplicity of the canonical RBC model, the scenarios are not meant to capture a particularly

plausible economic environment, but rather to exemplify the approach. One drawback that

becomes apparent is the high level of discretion typically involved in choosing scenarios

and corresponding parameter values, which is due to the local nature of this sensitivity

measure. The scenarios are:

1. Scenario “Baseline”: all parameters take their baseline values.

2. Scenario “High risk and risk aversion”: σ, and ρ are at their upper bounds and τ is

at its lower bound, so that risk aversion 1
τ
is high. All other parameters are at their

baseline values.

3. Scenario “High capital utilization and frictions”: α, δ, and φ are at their upper

bounds, all other parameters are at their baseline values.

Figure 3 plots the three scenarios in a graph with the two quantities of interest, average

capital-output ratio and production variance ratio, on the axes. Therefore, we can compare

the scenarios and evaluate the impact of joint parameter changes on the two quantities of

28



interest. However, scenario analysis does not allow us to tell which parameter or which

interaction between parameters is important in each case.

For example, the “Baseline” scenario has the lowest level of both QoIs. The “High risk

and risk aversion” scenario has a much higher variance ratio, but we cannot say whether

this is mostly due to the increase in autocorrelation, ρ, or standard deviation, σ, of TFP

shocks. From the results in the previous section, it could be either, cf. Figure 2. One

solution would be to combine the scenario analysis with OAT finite differences to tease

out individual parameter effects and interactions, known as scenario decomposition or

generalized Tornado diagrams (see, e.g., Borgonovo (2010) and Borgonovo, Castaings, and

Tarantola (2011)). However, such Tornado diagrams are rarely encountered in economic

studies and are outside the scope of this paper, since they also suffer from the fact that

they are local and linear.

5 Global sensitivity analysis

In this section, we present the results of the global sensitivity analysis for the canonical

RBC model. In contrast to the local sensitivity measures of the previous section, the global

measures do not depend on a specific evaluation point. In addition, they fully capture

the non-linearity in the mapping from parameters to quantities of interest and allow us to

analyze interactions between parameters. All calculations in this section are performed

with UQLab©, an actively maintained Matlab© toolbox for uncertainty quantification

(Marelli and Sudret (2014, 2017)).19

5.1 Parameter distributions

As explained in Section 2, we need to specify a distribution that represents the uncertainty

about the value of each parameter. This is a crucial step in GSA, as the sensitivity results

depend on it, and should thus be done carefully. Methodologically, there is no limitation

on what distributions are allowed.20 This is determined by the research question and data
19The toolbox can be freely downloaded from www.uqlab.com.
20It is, for example, possible to use discrete distributions with mass points.
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availability. In our case, the research question is how sensitive outcomes are with respect

to the parameters, and there is only little data on parameter values of RBC models.

The most widely used approach to determine the most suited distributions to represent

the lack of knowledge of the specific value of a parameter in the absence of empirical data is

given by the principle of maximum entropy (Jaynes (1982)), commonly used to define prior

information in Bayesian analysis. The rationale behind this principle is that if only a set

of constraints is available regarding the value of an unknown variable—e.g., its maximum

and minimum bounds, its moments, or its sign—, the distribution that maximizes the

information entropy (a measure of the variability of a random variable) while respecting

the constraints should be used to represent its statistical uncertainty. Common examples

of such distributions for continuous variables include the uniform distribution when the

minimum and maximum values are known, the Gaussian distribution when the first two

moments are known, or the exponential distribution when the variable is strictly positive

but unbounded.

In our particular case, we have identified the available information on the parameters

of the RBC model as the minimum and maximum bounds on the admissible parameters

based on the work of Canova (1994), who derives “a least informative (Bayesian) density”

for each parameter of the RBC model using a comprehensive literature review. Since we

assume that the only knowledge we have are the bounds of each parameter, applying the

maximum entropy principle results in the choice of uniform distributions to represent our

lack of knowledge on the actual parameter values. Of course, the available information for

other economic models may not be the same, hence requiring different distributions to

parametrize the corresponding uncertainty. Since often data on parameter values may not

be available, the use of literature review, expert opinion, and "commonly used values" is

perfectly acceptable. In such circumstances, the uncertainty about a parameter value is

usually represented using a continuous distribution rather than point mass for discrete

values, unless the parameter is known to have a discrete nature. It should also be noted

that the maximum entropy distributions can be updated through Bayesian analysis in the

case empirical data were to become available. A uniform distribution is also adequate for

our research question, where we want to understand the model sensitivities over plausible

ranges of parameters. We do not—and for lack of data could not—ask what empirical
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parameter distributions would mean for the distribution of the quantities of interest.

Therefore, we assume that all parameters of our model are independently and uniformly

distributed with support given by the lower and upper bounds in Table 1.21

For this approach, it does not matter whether the values for the baseline parameter

vector, θ0, are taken from the literature or are calibrated to some empirical targets. If the

model was calibrated, we could proceed in the same fashion by specifying distributions and

performing our global sensitivity analysis. If, instead, a structural model was estimated

with data, then one could additionally use the marginal distributions of the parameter

estimates as the parameter distributions.

5.2 Polynomial chaos expansion of the economic model

We first demonstrate the convergence of the polynomial chaos expansion of the real-business-

cycle model, since the following GSA is based on it. Due to the computational cost of the

RBC model, a maximum computational budget of 500 model evaluations was available,

which allowed us to run both GSA and additional convergence analysis. We therefore

generated a set of nested experimental designs of increasing size NED = {50, 60, ..., 500}
using nested Latin Hypercube Sampling (Blatman and Sudret (2011)). For each set,

a sparse PCE was calculated based on least-angle-regression with an adaptive degree

selection in the range 3 ≤ p ≤ 20, cf. Section 2.2.2. The resulting set of PCEs was then

compared based on their leave-one-out error estimator calculated with Eq. (13).

The resulting convergence plot for each of the two QoIs is displayed in Figure 4. The

error for the average capital-output ratio drops very quickly, while the production variance

ratio converges at a slower rate. Based on the guidelines given in Le Gratiet, Marelli,

and Sudret (2016), a leave-one-out error errLOO ≤ 0.05 was deemed sufficient for the

purposes of first and total Sobol’ indices. Therefore a computational budget of N = 150

model evaluations was selected for all the subsequent analyses, unless explicitly specified.

As shown below, this budget suffices to achieve a very high accuracy of Sobol’ indices.

However, for more sophisticated economic models, a more realistic computational budget

may be in the order of 101−2. This is typically sufficient for GSA for the reasons discussed
21As mentioned in Footnote 9, assuming dependence between parameter distributions makes it difficult

to disentangle the effects of parameters.
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Figure 4: Convergence of the PCE leave-one-out error estimator (Eq. (13)) as a function
of the size of the experimental design for both QoIs.

in Sections 3.2 and 5.4.3.

5.3 Histograms of the quantities of interest

To see how the the parameter uncertainty propagates through the model, first consider the

resulting histograms of the two quantities of interest. To get the histograms, we evaluate

the surrogate model on a Monte Carlo sample of size one million. Such a large number of

evaluations would be prohibitively expensive for the RBC model. For smaller sample sizes,

the histograms of the surrogate and the original model are virtually identical.

Figure 5 displays the histograms of average capital-output ratio (left) and production

variance ratio (right). Both distributions have a notable dispersion and are right-skewed.

The values corresponding to the baseline, θ0, are indicated by vertical lines. For these

two QoIs, the baseline values are close to the respective modes of the distribution, but

that need not generally be the case. The left-hand figure shows that typical target values

for the capital-output ratio in [2.5, 3.5] can be achieved with many different parameter

combinations, whereas the more extreme value of 6 considered by McGrattan and Prescott

(2017), while still being in the range considered here, substantially limits the possible

parameter values. The right-hand figure is very similar to figure 5 in Canova (1994), who,

however, had only 1 000 Monte Carlo-based model evaluations, too few to perform a global

sensitivity analysis, as we do next.
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(a) Average capital-output ratio (b) Production variance ratio

Figure 5: Histograms of the QoIs, calculated by drawing a Monte Carlo sample of size
1 000 000 from the parameter distributions and evaluating each parameter vector with the
PCE surrogate of the RBC model. The straight line represents the value if the model is
evaluated at the baseline parameter values, cf. Table 1.

5.4 Sobol’ indices

5.4.1 Total and first-order Sobol’ indices

As described in Section 2.3.2, Sobol’ indices are an important tool to establish an importance

ranking of input parameters and their interactions. Total Sobol’ indices (Eq. (24)) represent

the fraction of the variance of a quantity of interest that is explained by the variability of

each input parameter, including non-linearities and interactions. Therefore, small total

indices are indicative of unimportant variables. First-order indices (Eq. (22)) instead

only account for the direct contribution of each parameter, including non-linearities but

excluding interactions terms. It is common to compare the two sets of indices to identify

the importance of interactions between input variables: if total and first-order indices are

very similar, the model is mostly additive (no interactions), otherwise interactions play an

important role. Figure 6 shows this comparison between total (in red) and first-order (in

blue) indices for both QoIs.

The left-hand panel displays the indices for the average capital-output ratio. The first

thing to notice is that only three of the eight parameters have an influence. The other

Sobol’ indices are zero, meaning that we can fix them to any value without influencing the

capital-output ratio. To some extent, this is surprising, because in a general equilibrium
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(a) Average capital-output ratio (b) Production variance ratio

Figure 6: Total Sobol’ indices, STi , in red and first-order Sobol’ indices, Si, in blue. The
total Sobol’ indices are larger by construction, as they include all interactions. Based on
N = 150 evaluations of the RBC model.

of a dynamic, stochastic economy with rational expectations, as considered here, all

parameters can, in principle, affect all endogenous outcomes. Due to the complexity of

such models, obtaining the insight that only few parameters matter is generally difficult.

Moreover, local analysis would not help, as any results are valid only locally. We can,

of course, derive the deterministic steady state of the RBC model, where is easy to see

that τ , χ, and φ drop out of the equations (and by definition of deterministic steady

state, ρ and σ play no role). But that this transfers to the stochastic economy is not

immediately clear. Turning to the three parameters with non-zero indices, we first observe

that they are of substantial (not just minor) importance. The capital share, α is clearly

the most important, indicating that most effort should go into that parameter when

calibrating the RBC model. Since estimates of the capital share depend a lot on data

quality, period considered, and the measure of capital (or labor) income employed, a global

sensitivity analysis should be an integral part of quantitative studies using a neoclassical

production function.22 Typically, when calibrating the RBC model, α is fixed to a value

taken from other studies. Given that α is so fixed, we see that the discount factor β and

the depreciation rate δ are equally important in determining the capital-output ratio.

The production variance ratio in the right-hand panel displays a similar pattern in
22For example, estimates of the capital share depend on whether nonfarm proprietors’ income or

intellectual property rights are included in the measure of capital. Also, the capital share has increased
over time, cf. Karabarbounis and Neiman (2014) or Elsby, Hobijn, and Şahin (2013).
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that again only three parameters are non-zero. Note, however, that the set of parameters

governing capital-output ratio and variance ratio is quite different. While it is not surprising

that autocorrelation, ρ, and standard deviation, σ, of TFP shocks are the most important

parameters for the variance of production, it is to some extent unexpected that no other

parameters play a role (α being the only other non-zero parameter, but unimportant

compared to ρ and σ). As argued above, in a rational expectations general equilibrium

of a dynamic economy, preference parameters could, in principle, have an impact on this

QoI. In addition, for such a variance-related QoI, it would be hard to derive insights by

resorting to a deterministic steady state. The conclusion we can draw from the figure is

that preferences and technology do not matter for determining one of the most relevant

quantities of interest of the early RBC literature—it is only the shock process that matters.

Thus, the assumption of log-utility found in many papers (e.g., Cooley and Prescott (1995))

is innocuous, at least when the variance ratio is the focus. Last, recall that in the local

OAT analysis of Section 4.1, the results on which parameter was more important—ρ or

σ—were ambiguous and depended on the evaluation point. There is no such ambiguity

here: over the intervals specified, ρ is more important. As there is substantial disagreement

in the literature on the empirical value of ρ, GSA should be performed.23

For all non-zero parameters, the total Sobol’ index in red and the first-order Sobol’

index in blue behave very similarly. The total index is larger by construction, as it contains

all interactions, whereas the blue bar represents the direct impact of each parameter

(excluding interactions). The difference represents the interactions of each parameter.

While non-negligible, the interactions are, overall, surprisingly small, given that this

is a general equilibrium model, where all parameters could potentially interact. Such

interactions are of substantial interest economically, since they help explain the model’s

mechanics, which often cannot be derived analytically. The figure therefore confirms the

inadequacy of OAT measures since they cannot take interactions into account. To see

which of any two parameter combinations interact, we next study second-order Sobol’

indices.
23Estimates of the stochastic process of TFP depend, for example, on how aggregate time series are

detrended, cf. Canova (1998).
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(a) Average capital-output ratio (b) Production variance ratio

Figure 7: Second-order Sobol’ indices, representing the importance of interactions between
any two parameters. Only the three largest are shown for each of the two quantities of
interest. Based on N = 250 evaluations of the RBC model.

5.4.2 Second-order Sobol’ indices

From an economic perspective, interactions between parameters are particularly interesting.

However, accurate computation of higher-order indices requires an experimental design

of bigger size. To estimate second-order indices, we choose—based on the convergence

shown in Figure 4—a sample size of N = 250, corresponding to errLOO ≈ 2 · 10−3 for the

production variance ratio.

The three second-order Sobol’ indices corresponding to the three parameters that had

non-zero total Sobol’ indices are displayed in Figure 7 for each of the two QoIs. Generally,

they are not large, but, as we show in the next section, they are estimated at very high

precision, meaning that we can confidently interpret them.

For average capital-output ratio, the strongest interaction turns out be between those

two parameters that, individually, had less of an impact, namely β and δ. The interaction

means that, for example, increasing the discount factor will directly increase the capital

output ratio (first-order Sobol’ index), but this effect is dampened due to depreciation. In

other words, the smaller δ, the larger the effect of β. While this interaction can also be

seen in the analytic solution for the deterministic steady state, it is not obvious from the

deterministic solution that this is the most important interaction, and what that means

for the stochastic economy. Another interesting point is that the indices Sβα and Sαδ are

of essentially the same magnitude. It is due to the fact that these two interactions offset
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each other that the local OAT for α does not change between evaluation points in Fig. 2a.

Turning to the production variance ratio we find that the interaction between autocor-

relation ρ and standard deviation σ is very important, which is not surprising as these two

parameters determine the unconditional variance of TFP and thus of production. That

both parameters interact with α is due to the standard modeling of the TFP shocks being

multiplicative to production technology, which in turn is determined mainly by α. The

result that Sαρ is much larger than Sασ reflects the corresponding finding for first-order

Sobol’ indices, namely that ρ is more important than σ.

Finally, recall that local OAT analysis cannot identify such interactions. The ambiguous

results it provided regarding the relative importance of ρ versus σ were in part due to

this deficiency, as these two parameters turn out to interact strongly. Since the economic

literature typically uses local sensitivity measures, there are nearly no studies that identify

interactions.24 The fast, accurate, and non-intrusive identification of parameter interactions

is an important advantage of the global methods we propose.

5.4.3 Convergence of Sobol’ indices

As discussed in Section 5.2, the main rationale for choosing a minimum experimental

size is to achieve a sufficiently low generalization error for the PCE. However, it is worth

giving further insight on the convergence behavior of the Sobol’ indices, as these are of

central interest and tend to converge very fast.25 Therefore, in this section we look at the

estimates of the Sobol’ indices as a function of the experimental design size.

The convergence study consists of estimating total, first-order, and second-order indices

for a set of increasingly larger experimental designs with a maximum of of N = 500. The

experimental designs are constructed as described in Section 5.2. Confidence bounds for

each index estimate are calculated as the 95% empirical inter-quantile ranges by means of

NB = 100 bootstrap replications of the underlying PCE coefficients. The main results are

reported in Figure 8 for the two largest first-order Sobol’ indices (left panel) and the two

largest second-order indices (right panel). Total Sobol’ indices are not shown because their

convergence behavior is essentially identical to that of their first-order counterparts. From
24One exception is Anderson, Borgonovo, Galeotti, and Roson (2014) who compute second-order Sobol’

indices for a subset of the parameters of the climate change model of Nordhaus.
25See also our discussion relating to the robustness of Sobol’ indices in Section 3.2.
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(a) First-order Sobol’ indices (b) Second-order Sobol’ indices

Figure 8: Convergence of estimates of first- and second-order Sobol’ indices. The left panel
shows the two largest non-zero first-order indices for each QoI. The right panel shows the
two largest second-order indices for each QoI. Error bounds are calculated by bootstrap
resampling of the PCE coefficients.

the convergence behavior in Figure 8 it is clear that estimators of first-order (and total)

indices converge already with as few as N = 120 model evaluations, whereas second-order

indices require approximately N = 220 model evaluations.

Therefore, the empirical error bounds of errLOO ≤ 5 · 10−2 for total and first-order

indices as well as errLOO ≤ 5 · 10−3 for second-order indices are appropriate. For more

expensive models, it is possible to adopt a greedy strategy by gradually enriching the

experimental design until the target errLOO for the desired analysis is reached.

In realistic scenarios with highly complex models, the available computational budget

can be much lower than the 500 model evaluations we could afford for this model. However,

the combination of sparse PCE and Sobol’ indices is widely regarded as one of the most

computationally effective tools available to perform global sensitivity analysis and can

often be performed with affordable experimental designs. This efficiency is largely due to

the effectiveness of sparse PCE, whose convergence is very fast globally, a crucial property

for the unbiased estimation of Sobol’ indices. Further considerations on convergence, even

for models that show a relatively poor point-wise convergence of the PCE surrogates, are

discussed in Le Gratiet, Marelli, and Sudret (2016). Recent applications with complex,

high dimensional and/or highly computationally expensive models can be found, e.g., in

Deman et al. (2016), Le Gratiet et al. (2016), Chiaramello et al. (2017).
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(a) Average capital-output ratio (b) Production variance ratio

Figure 9: Univariate effects, which are conditional expectation functions, showing the
direction in which a parameter impacts each quantity of interest. Because the mean effect
is included, the y-axis represents the expected value of the quantity of interest.

5.5 Univariate effects

As described in Section 2.3.4, univariate effects are conditional expectations functions

of a parameter that provide a robust magnitude and sign of the parameter’s impact on

the QoIs. The univariate effects for the eight input parameters are shown in Figure 9

for average capital-ouput ratio (left) and production variance ratio (right), respectively.

The mean effect is included in each, so that the y-axis directly shows the corresponding

value of the quantity of interest, cf. Eq. (32). For example, as β ranges from 0.97 to 0.99,

expected average capital-output ratio increases from approximately 2.2 to 4, where the

expectation is taken over all other parameters.

For capital-output ratio, the parameters which had a total Sobol’ index of zero accord-

ingly have univariate effects that are flat. The univariate effect for the discount rate β

is increasing and convex. The convexity reflects, of course, the exponential discounting
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in the agent’s objective. The impact of capital share α is very close to linear over the

whole range. This is because—even though α enters as an exponent in the production

function—the quantity of interest here is the ratio of capital over output, both of which

are affected similarly by α. Finally, the univariate effect of the depreciation rate δ is falling

and convex. The result that β and δ are nonlinear, while α is close to linear, corresponds to

the findings of the local OAT analysis of Section 4.1. However, we now get a much clearer

picture as to the exact shape of (non-)linearities over the respective ranges. Together with

the insights on interactions that we get from the second-order Sobol’ indices, we can only

now fully understand and interpret the results of the OAT analysis.

For the production variance ratio, shown in the right panel, we again observe that

parameters with first-order Sobol’ indices close to zero display univariate effects that

are zero or negligibly small, while those corresponding to higher indices (α, ρ, and σ)

display sizeable effects. Unsurprisingly, both ρ and σ display a positive slope, but the

univariate effect of σ on the variance ratio is close to linear while that of ρ is strongly

convex. Therefore, when setting ρ to a high value, e.g., to 0.975, it is much more important

to be careful and put effort in obtaining an accurate estimate than it is for low values.

Empirically, the discussion centers a lot around values approaching a unit root, which,

in light of our results, indeed is an important question when studying how much of the

business cycle a given model can explain.

All univariate effects of the RBC model turn out to be monotone in the ranges we

specified. Of course, non-monotonic behavior is possible and would be highly relevant for

calibrating a model. For example, a parameter could first have a negative impact on a

quantity of interest and, after crossing some threshold value, a positive impact. Identifying

and interpreting such relationships should typically be of substantial economic relevance.

As a point in case, an interesting application of univariate effects would be the study

of a policy reform, where the reform is governed by a real-valued parameter, say a tax

rate. If the quantity of interest is, for example, social welfare, then the univariate effect

can be interpreted as the robust impact of the tax rate on welfare, which often will be

non-monotonic and have local or global maxima.26 Finding such global optima that are
26As discussed in our concluding Section 6, robustness in our context refers to the sensitivity of the

model’s quantities of interest under parameter uncertainty. In particular, this is complementary to the
robust decision making under model uncertainty as studied, e.g., in Hansen and Sargent (2007).
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robust to parameter uncertainty should make policy recommendations stemming from

economic models more credible to policy makers.

5.6 Other quantities of interest

We have focused on two quantities of interest, average capital-output ratio and production

variance ratio, to explain the methodology of GSA. In Appendix A, we extend the

analysis to four more QoIs that are frequently found in the traditional RBC literature:

the variance ratio of log consumption, the correlation of consumption and output, the

variance of consumption growth, and the correlation of investment with output. Our aim

is to showcase how the methodology applies broadly, picks up the individually different

characteristics of the QoIs, and presents them in an easy to convey manner. It is important

to note that extending the analysis with more QoIs can be done at very small cost as long

as either the QoIs have already been calculated or—in the case of stochastic models like

our RBC model—the model simulations have been saved. In that case, there is no need to

create a new experimental design and run the model.

We find that there is substantial variation as to which parameters are important for

each QoI. One result worth highlighting is that the utility leisure share, χ, and the capital

adjustment costs, φ, do not impact any of the QoIs we studied. As mentioned previously,

these two parameters drop out in the steady state equation of the capital-output ratio,

but that this transfers to the stochastic economy and all other QoIs, for which analytical

solutions do not exist, is not obvious. One conclusion is that the functional specification

of adjustment costs, which is frequently used in the literature, cf. Den Haan, Judd, and

Juillard (2011), is not well suited for studying these QoIs. Depending on the research

question, it should be modified or extended.

Other QoIs that would be of economic interest and for which GSA may yield important

insights are, e.g., welfare, inequality, or bankruptcies. Such questions are, of course, not in

the scope of the canonical RBC model, which is used here to explain the methodology.
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6 Conclusion

This paper introduces Sobol’ indices and univariate effects as tools for global sensitivity

analysis (GSA) and uncertainty quantification in economics and shows how to accurately

compute them with a limited computational budget using polynomial chaos expansions. We

apply this methodology to the canonical real-business-cycle model with capital adjustment

costs and compare it to traditional local methods, such as one-at-a-time parameter

changes and scenario analyses. The comparison shows that the traditional local sensitivity

analysis can be misleading as it depends on the chosen evaluation points. Only the global

analysis captures non-linearities and identifies interactions, both of which are central

to economic models. For univariate effects, which are conditional expectation functions

of each parameter, it is worth emphasizing the economic significance for public policy

evaluation. For example, the policy parameter could be a tax rate and the quantity of

interest could be social welfare. Then the univariate effect could be interpreted as the

robust impact of the tax on welfare under parameter uncertainty.27

With respect to robust economic policy analysis, a related strand of the economic

literature has studied the impact of model uncertainty, where the decision maker cannot

assign probabilities to different, competing economic models because of fundamental,

irreducible uncertainty. In that strand of literature, non-Bayesian approaches to decision

making are used, such as min-max (e.g., Hansen and Sargent (2007)) or min-max regret (e.g.,

Brock et al. (2003), Brock et al. (2007)), yielding optimal policies that perform sufficiently

well under all—and, in particular, adverse—model specifications.28 The sensitivity analysis

we propose is complementary, as it can be applied to a min-max (regret) model in order

to understand the importance of the parameters that are not part of the fundamental

model uncertainty, for example the parameters in the decision maker’s utility function.

Combining model uncertainty and parameter uncertainty is an interesting undertaking

that we leave for future research.

While we parameterized the model with standard values from the literature to focus

on the sensitivity analysis, the methods we propose are equally well suited if the model is

calibrated to empirical targets or even structurally estimated. For a structurally estimated
27A nice example is the ongoing work of Gersbach, Liu, and Tischhauser (2018), who apply the methods

we propose to study robustness of forward guidance for monetary policy.
28An insightful study comparing different approaches is Cai and Sanstad (2016).
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model, one can use the moments of the parameter estimates to specify the distributions

needed for uncertainty quantification, or even the posterior marginal distributions (ob-

tained, e.g., through kernel density estimation). For a calibrated model, uncertainty

quantification puts the calibration procedure on a more rigorous statistical footing, as

argued by Eichenbaum (1991), Gregory and Smith (1995), and in particular Canova (1994,

1995).

There are several freely available toolboxes that implement GSA and uncertainty

quantification. The analysis in this paper is done with the Matlab© toolbox UQLab,

which is non-intrusive, i.e., it treats the model as a black box. Therefore, no changes have

to be made to an existing model solution code and the proposed methods can readily be

deployed. In addition, the methods in this paper are straight-forward to parallelize by

distributing the experimental design points.

For academic research, the insights offered by GSA can help economists understand

mechanisms and interactions in complex models and inform them as to where to direct

efforts, e.g., when extending the model or calibrating it. For policy-oriented work, a GSA

is crucial for assessing the plausibility and credibility of policy recommendations.

Appendix

A Other quantities of interest

In this section we present results for the quantities of interest discussed in Section 5.6.

These are the variance ratio of log consumption, y3 = 1
σ̂2
c
Var [log(ct)], the correlation of

consumption and output, y4 = corr(ct, qt), the variance of consumption growth, y5 =

var( ct+1
ct
− 1), and the correlation of investment with output, y6 = corr(it, qt).

Fig. 10 displays the total Sobol’ indices for all four QoIs. The Sobol’ indices for

consumption variance are, as expected, very similar to those of production variance. The

variance of consumption growth, by contrast, depends mostly on the standard deviation of

TFP shocks, σ, and only very little on the autocorrelation, ρ. Turning to the correlations

of consumption and investment with output, it is well known that the standard RBC

model has difficulty matching the data (cf. King and Rebelo (1999)). The Sobol’ indices
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Figure 10: Total Sobol’ indices for other QoIs.

show that, while both are influenced by the same set of parameters, the importance of the

parameters differs strongly. This knowledge can help to calibrate the model.

The corresponding univariate effects are displayed together in Fig. 11. When the

univariate effects for different QoIs are plotted together, it is common to scale them

by mean and variance, since otherwise some effects may be hard to see due to scaling

issues. This is different of how we represented the univariate effects in Section 5.5, but the

advantage here is that the direction of change can easily be compared. The information on

the importance of each parameter is given by the Sobol’ indices of the previous figure. For

example, Fig. 11 shows a positive impact of φ on three of the QoIs, but the corresponding

total Sobol’ indices are essentially zero, meaning that these univariate effects can be

ignored. On the other hand, the capital share α has non-zero Sobol’ indices for all QoIs,

and we see that its univariate effects have positive slope for the consumption variance ratio

and the correlation of investment with production, while having a negative impact on the

variance of consumption growth and the correlation of consumption with production. Also,

one can see that the impact is close to linear for some parameters and nonlinear for others.

B Polynomial basis

In this appendix we provide details on how to construct a polynomial basis in Section 2.2.

While this can also be found in, e.g., Judd (1998), we restate it here as the context is very

different, and because the construction is crucial to the PCE.
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Figure 11: Univariate effects

A suitable basis for Eq. (3) is given by orthonormal polynomials with respect to a

weight function that corresponds to the PDF of the input random variables. In the sequel

we assume that the input variables are statistically independent, so that the joint PDF

is the product of the M marginal distributions: fΘ(θ) = ∏M
i=1 fθi(θi), where fθi ’s are

the marginal distributions of each variable {θi, i = 1, . . . ,M} defined on DΘi . For each

variable Θi and any two functions φ1, φ2 : θ ∈ DΘi 7→ R, we define the functional inner

product by the following integral (provided it exists):

〈φ1, φ2〉i def= E [φ1(Θi)φ2(Θi)] =
∫

DΘi

φ1(θ)φ2(θ) fΘi(θ) dθ. (44)

where E [·] is the expectation operator. Using the above notation, classical algebra allows

one to build a family of orthogonal polynomials {P (i)
k , k ∈ N} satisfying

〈
P

(i)
j , P

(i)
k

〉
i

def= E
[
P

(i)
j (Θi)P (i)

k (Θi)
]

= a
(i)
j δjk, (45)

see, e.g., Abramowitz and Stegun (1970). In the above equation subscript k denotes the

degree of the polynomial P (i)
k , δjk is the Kronecker symbol equal to 1 when j = k and 0

otherwise and a(i)
j

def= ‖ P (i)
j ‖2

i =
〈
P

(i)
j , P

(i)
j

〉
i
corresponds to the squared norm of P (i)

j . For

standard distributions, the associated families of orthogonal polynomials are well-known.
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For instance, if Θi ∼ U(−1, 1) has a uniform distribution over [−1, 1], the resulting family

is that of the so-called Legendre polynomials (Xiu and Karniadakis (2002)). The obtained

polynomials may be normalized as follows:

ψ
(i)
j = P

(i)
j /

√
a

(i)
j i = 1, . . . , d, j ∈ N. (46)

From the sets of univariate orthonormal polynomials one can now build multivariate

orthonormal polynomials by tensor product. For this purpose, let us define the multi-indices

α ∈ NM , which are ordered lists of natural integers α = (α1, . . . , αM) , αi ∈ N. One can

associate a multivariate polynomial Ψα to any multi-index α by

Ψα(θ) def=
M∏

i=1
ψ(i)
αi

(θi), (47)

where the univariate polynomials
{
ψ

(i)
k , k ∈ N

}
are defined in Eq. (46). Due to Eq. (45)

and the above tensor product construction, the multivariate polynomials in the input

vector Θ are also orthonormal, i.e.,

E [Ψα(Θ) Ψβ(Θ)] def=
∫

DΘ
Ψα(θ)Ψβ(θ) fΘ(θ) dθ = δαβ ∀α,β ∈ NM , (48)

where δαβ is the Kronecker symbol which is equal to 1 if α = β and zero otherwise. With

this notation, it can be proven that the set of all multivariate polynomials in the input

random vector Θ forms a basis of the Hilbert space in which Y =M(Θ) is represented

(Soize and Ghanem (2004)):

Y =
∑

α∈NM
bα Ψα(Θ). (49)

The representation of the random response in Eq. (49) is exact when the infinite

series is considered. However, in practice, only a finite number of terms can be computed.

For this purpose a truncation scheme A has to be selected. Since the basis consists

of multivariate polynomials, it is natural to consider all the polynomials up to a given

maximum degree. Let us define the total degree of a multivariate polynomial Ψα by

|α| def= ∑M
i=1 αi. The standard truncation scheme consists in selecting all polynomials such

that the total degree |α| is smaller than or equal to a given p. The maximal polynomial

degree p may typically be equal to 3−10 in practical applications. Note that the cardinality
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of the truncation set AM,p =
{
α ∈ NM : |α| ≤ p

}
increases polynomially with M and p,

since card AM,p =
(
M + p

p

)
= (M + p)!

M ! p! . Thus the number of coefficients to be computed

increases dramatically when M is large, say M > 10. This complexity is referred to as the

curse of dimensionality. This issue is however solved satisfactorily using specific algorithms

to compute sparse PCE, which we discuss in Section 2.2.2.
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