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Abstract

Polynomial chaos expansions (PCE) have seen widespread use in the context of uncer-

tainty quantification. However, their application to structural reliability problems has been

hindered by the limited performance of PCE in the tails of the model response and due to

the lack of local metamodel error estimates. We propose a new method to provide local

metamodel error estimates based on bootstrap resampling and sparse PCE. An initial ex-

perimental design is iteratively updated based on the current estimation of the limit-state

surface in an active learning algorithm. The greedy algorithm uses the bootstrap-based local

error estimates for the polynomial chaos predictor to identify the best candidate set of points

to enrich the experimental design. We demonstrate the effectiveness of this approach on a

well-known analytical benchmark representing a series system, on a truss structure and on

a complex realistic frame structure problem.

Keywords: Polynomial Chaos Expansions, Adaptive Designs, Bootstrap, Structural Reliability,

Active Learning

1 Introduction

Structural reliability analysis aims at computing the probability of failure of a system with

respect to some performance criterion in the presence of uncertainty in its structural and

operating parameters. Such uncertainty can be modelled by a random vector X ∈ RM with

prescribed joint probability density function fX . The limit-state function g is defined over

the support of X such that {x : g(x) ≤ 0} defines the failure domain, while {x : g(x) > 0}
defines the safe domain. The limit state surface implicitly defined by g(x) = 0 lies at the

boundary between the two domains. The probability of failure of such a system can be

defined as (Melchers, 1999; Lemaire, 2009):

PF =

∫

{x:g(x)≤0}
fX(x)dx. (1)
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A straightforward approach to compute the integral in Eq. (1) is to use of Monte Carlo

Simulation (MCS). However, standard MCS approaches can often not be used in the presence

of complex and computationally expensive engineering models, because of the large number

of samples they require to estimate small probabilities (typically in the order of ∼ 10k+2 for

PF ≈ 10−k) with acceptable accuracy. Well-known methods based on local approximation

of the limit-state function close to the failure domain (such as FORM (Hasofer and Lind,

1974) and SORM (Rackwitz and Fiessler, 1978)) can be more efficient, yet they are usually

based on linearisation and tend to fail in real-case scenarios with highly non-linear structural

models.

In contrast, methods based on surrogate modelling have gradually gained momentum

in the last few years. Due to the nature of the problem of estimating low probabilities,

most recent methods combine active-learning-based greedy algorithms with Gaussian pro-

cess surrogate models (Kriging). Among the first works to propose this approach, the earli-

est applications in this context were the efficient global reliability analysis method (EGRA)

by Bichon et al. (2008, 2011), and the active-learning reliability (AK-MCS) method based

on Kriging by Echard et al. (2011). More recently, Kriging has been employed to devise

quasi-optimal importance densities in Dubourg et al. (2013); Dubourg and Sudret (2014).

Amongst other variations, polynomial-chaos-based Kriging has also been used as an alter-

native metamodelling technique (Schöbi et al., 2016) to overcome some of the limitations

of pure Kriging-based methods. Additional works on the topic of Kriging and structural

reliability can be found, including extensions of the original AK-MCS algorithm to more

advanced sampling techniques (Echard et al., 2013; Balesdent et al., 2013), system reliability

(Fauriat and Gayton, 2014) and for the exploration of multiple-failure regions (Cadini et al.,

2014).

Polynomial chaos expansions (PCE) (Ghanem and Spanos, 1991) are a well-established

tool in the context of uncertainty quantification, with applications in uncertainty propagation

(Xiu and Karniadakis, 2002), sensitivity analysis (Le Gratiet et al., 2017) and, to a lesser

degree, structural reliability (Sudret and Der Kiureghian, 2002). While often considered as

an efficient surrogate modelling technique due to their global convergence behaviour, PCEs

have been employed only seldom in reliability analysis (see, e.g. Notin et al. (2010)) due to

their lack of accuracy in the tails of the model response distribution, which are essential in

this field.

In addition, most active-learning approaches with surrogates require some form of local

error estimate to adaptively enrich a small set of model evaluations close to the limit state

surface. Kriging-based methods can rely on the Kriging variance for this task, but PCEs do

not provide a natural equivalent.

In this paper, we leverage on the properties of regression-based sparse-PCE (Blatman

and Sudret, 2011) to derive a local error estimator based on bootstrap resampling. We then
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use this estimator to construct an active-learning strategy that adaptively approximates the

limit-state function with PCE by minimizing a misclassification probability-based learning

function at every iteration. The method is then showcased on a standard benchmark func-

tions representing a series system and on a realistic structural frame engineering example.

2 Methodology

2.1 Polynomial Chaos Expansions

Consider a finite variance model Y =M(X) representing the response of some quantity of

interest (QoI) Y to the random input parameters X ∈ RM , modelled by a joint probability

distribution function (PDF) fX . Also consider the functional inner product defined by:

〈g, h〉 ≡
∫

x∈ΩX

g(x)h(x)fX(x)dx = E [g(X)h(X)] (2)

where ΩX represents the input domain. Under the assumption of independence of the input

variables, that is fX(x) =
M∏
i=1

fXi(xi), one can represent M(X) as the following generalised

polynomial chaos expansion (see, e.g. Ghanem and Spanos (1991); Xiu and Karniadakis

(2002)):

Y =M(X) =
∑

α∈NM

yαΨα(X), (3)

where the yα are real coefficients and α is a multi-index that identifies the degree of the

multivariate polynomial Ψα in each of the input variables Xi:

Ψα =
M∏

i=1

φ(i)
αi

(Xi). (4)

Here φ
(i)
αi is a polynomial of degree αi that belongs to the family of orthogonal polynomials

w.r.t. the marginal PDF fXi
. For more details on the construction of such polynomials

for both standard and arbitrary distributions, the reader is referred to Xiu and Karniadakis

(2002).

In the presence of a complex dependence structure between the input variables, it is always

possible to construct isoprobabilistic transforms (e.g. Rosenblatt or Nataf transforms, see

e.g. Lebrun and Dutfoy (2009)) to decorrelate the input variables prior to the expansion,

even in the case of complex dependence modelled by vine copulas (Torre et al., 2017). For

the sake of notational simplicity and without loss of generality, we will hereafter assume

independent input variables.

In practical applications, the series expansion in Eq. (3) is traditionally truncated based

on the maximal degree p of the expansion, thus yielding a set of basis elements identified

by the multi-indices α ∈ A :
M∑
i=1

αi ≤ p, with card(A) ≡ P =
(
M+p
p

)
, or using more ad-

vanced truncation schemes that favour sparsity, e.g. hyperbolic truncation (Blatman and

Sudret, 2010a). The corresponding expansion coefficients yα can then be calculated ef-

ficiently via least-square analysis based on an existing sample of the input random vector
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X =
{
x(1), · · · ,x(N)

}
, known as the experimental design (ED), and the corresponding model

responses Y =
{
y(1), · · · , y(N)

}
as follows:

yα = argmin
1

N

N∑

i=1

[
y(i) −

∑

α∈A
yαΨα(x(i))

]2

. (5)

When the number of unknown coefficients P is high (e.g. for high-dimensional inputs or

high-degree expansions), regression strategies that favour sparsity are needed to avoid over-

fitting in the presence of a limited-size experimental design and to make the analysis at all

feasible with a reasonable sample size N . Amongst them, least angle regression (LARS, Efron

et al. (2004)), based on a regularized version of Eq. (5), has proven to be very effective in

tackling realistic engineering problems even in relatively high dimensions (i.e. M ∼ 100). In

this paper, we adopt the full degree-adaptive, sparse PCE based on hybrid-LARS introduced

in Blatman and Sudret (2011)), as implemented in the UQLab Matlab software ((Marelli

and Sudret, 2014, 2017)).

2.2 Bootstrap-based local error estimation in PCE

2.2.1 Bootstrap in least-square regression

Adopting a least-square regression strategy to calculate the coefficients in Eq. (5) allows

one to use the bootstrap resampling method (Efron, 1982) to obtain information on the

variability in the estimated coefficients due to the finite size of the experimental design.

Suppose that a set of estimators θ is a function of a finite-size sample X =
{
x(1), · · · ,x(N)

}

drawn from the random vector X. Then the bootstrap method consists in drawing B new

sample sets
{
X (1), · · · ,X (B)

}
from the original X by resampling with substitution. This

is achieved by randomly assembling B−times N realizations x(i) ∈ X , possibly including

repeatedly the same realization multiple times within each sample. The set of estimated

quantities can then be re-calculated from each of the B samples, thus yielding a set of

estimators Θ =
{
θ(1), · · · , θ(B)

}
. This set of estimators can then be used to directly assess

the variability of θ due to the finite size of the experimental design X , at no additional costs,

e.g. by calculating statistics, or directly using each realization separately. Application of the

bootstrap method combined with PCE to provide confidence bounds in the estimated PF

in structural reliability applications can be found in e.g. Notin et al. (2010); Picheny et al.

(2010).

2.2.2 Bootstrap-PCE

We propose to use the bootstrap technique to provide local error estimates to the PCE

predictions. The rationale is the following: the PCE coefficients yα in Eq. (5) are esti-

mated from the experimental design X , therefore they can be resampled through bootstrap.

This can be achieved by first generating a set of bootstrap-resampled experimental designs
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Figure 1: Bootstrap-resampled trajectories (B = 100) of the simple 1D analytical function in

Eq. (7). The black line represents the true model, sampled at the 8 experimental design points x(i)

(green dots). The PCE surrogate is represented by the blue line, while the bootstrap trajectories

are given by the gray lines. The corresponding 95% empirical inter quantile-range is given by the

dashed blue lines.

{
X (b),Y(b), b = 1, · · · , B

}
. For each of the generated designs, one can calculate a correspond-

ing set of coefficients y
(b)
α , effectively resulting in a set of B different PCEs. Correspondingly,

the response of each PCE can be evaluated at a point x as follows:

Y
(b)
PC(x) =

∑

α∈A
y(b)
α Ψα(x), (6)

thus yielding a full response sample at each point
{
Y

(b)
PC(x), b = 1, · · · , B

}
. Therefore, em-

pirical quantiles can be employed to provide local error bounds on the PCE prediction at

each point, as well as to any derived quantity (e.g. PF or sensitivity indices, see e.g. Picheny

et al. (2010); Dubreuil et al. (2014)).

This bootstrap-resampling strategy in Eq. (6) yields in fact a family of B surrogate

models that can be interpreted as trajectories. Figure 1 showcases how such trajectories can

be directly employed to assess confidence bounds on point-wise predictions on a simple 1D

test function given by:

f(x) = x sin(x), x ∈ [0, 2π], (7)

where the single random variable is assumed to be uniformly distributed within the bounds

X ∼ U(0, 2π), and where B = 100 bootstrap samples have been used.

This process of bootstrap-based trajectory resampling to provide better estimates of

point-wise confidence bounds has been recently explored in the Gaussian process modelling

literature, see e.g., den Hertog et al. (2006); van Beers and Kleijnen (2008).
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We refer to this approach as to bootstrap-PCE, or bPCE in short.

2.2.3 Fast bPCE

Because the training of a PCE model with sparse least-square analysis may be time con-

suming, especially in high dimension and/or when an already large experimental design is

available (i.e. N ∼ 103), and because in this particular application we do not need very ac-

curate estimates on the bounds of the derived quantities, we adopt a fast bPCE approach. In

this approach, the sparse polynomial basis identified by the LARS algorithm during calibra-

tion is calculated only once from the available full experimental design X , and bootstrapping

is applied only to the final hybrid step, which consists in a classic ordinary least-square re-

gression on the sparse basis (Blatman and Sudret, 2011).

In the presence of a very expensive model, however (i.e. requiring several hours for a

single model run), we recommended to adopt full bootstrapping, including the estimation of

the sparse PCE basis for each of the B bootstrapped experimental designs X (1,··· ,B).

2.3 Active bPCE-based reliability analysis

In this section we present an adaptation of the Adaptive PC-Kriging MCS algorithm in Schöbi

et al. (2016) (based in turn on the original AK-MCS algorithm by Echard et al. (2011)), that

makes use of the bPCE just introduced. Consistently with Echard et al. (2011); Schöbi

et al. (2016), in the following we will refer to this algorithm as active bootstrap-polynomial-

chaos Monte-Carlo simulation (A-bPCE). We follow the original idea of adaptively building

a surrogate of the limit-state function starting from a small initial experimental design and

subsequently refining it to optimize the surrogate performance for structural reliability. The

ultimate goal of the adaptation is to retrieve an estimate of PF that is comparable to that

of a direct Monte Carlo simulation (MCS) using a large sample set with a much smaller

experimental design. The algorithm is summarized as follows:

0. Initialization:

(a) Generate an initial experimental design (e.g. through Latin hypercube sampling

or uniform sampling of a ball (Dubourg, 2011)) and calculate the corresponding

bPCE surrogate (see Section 2.3.1).

(b) Generate a large reference MCS sample XMCS =
{
x

(i)
MCS , i = 1, · · · , NMCS

}
of

size NMCS (e.g. NMCS = 106 � N). A discussion on the choice of a suitable

MCS sample is given in Section 2.3.2).

1. Calculate a set of MCS estimators of the probability of failure:
{
P̂

(b)
F , b = 1, · · · , B

}

with the current bPCE surrogate.

2. Evaluate one or more suitable convergence criteria on P̂
(1,··· ,B)
F (see Section 2.3.3). If

they are met, go to Step 5 (terminate the algorithm). Otherwise continue to the next
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step.

3. Evaluate a suitable learning function on the MCS sample XMCS (see Section 2.3.4).

Choose one or more additional x
(i)
MCS ∈ XMCS and add them to the ED (see Sec-

tion 2.3.5).

4. Update the bPCE surrogate on the new ED and return to Step 1

5. Algorithm termination: return the P̂F resulting from the PCE on the current ED, as

well as the error bounds derived e.g. from the extremes or the empirical quantiles of

the current P̂
(1,··· ,B)
F set.

A detailed description of each step of the algorithm is given in the following sections.

2.3.1 Initial experimental design

The initial experimental design is usually generated by space-filling sampling techniques of

the random vector X, such as Latin hypercube sampling (LHS) or pseudo-random sequences

(e.g. Sobol’ sequence). Alternative sampling techniques, such as the uniform sampling of a

ball, have also proven effective in the context of structural reliability when low probabilities

of failure are expected Dubourg (2011). Note that this initial set of model evaluations does

not need to be a subset of the reference sample XMCS used later to evaluate the PF estimates

during the iterations of the algorithm.

2.3.2 Inner MCS-based estimate of PF

While the estimation of the PF via MCS is trivial, as it simply entails counting the number

of samples that belong to the failure domain, some discussion about the number of samples

NMCS in this step is needed. Throughout this paper, we opted to choose a single MCS sample

XMCS large enough to ensure a relatively small CoV for the PF estimate at every iteration.

This is by no means a requirement of this algorithm, but it simplifies significantly the notation

(because XMCS becomes independent on the current iteration) and in some cases (as noted

in both Echard et al. (2011) and Schöbi et al. (2016)) it can result in stabler convergence,

due to the lowered MCS noise in the estimation of PF during each iteration. This technique

is known as common random numbers in the context of repeated reliability analysis .e.g.

in reliability-based design optimization (Taflanidis and Beck, 2008). It is entirely possible

to redraw the XMCS during every iteration, possibly each time with a different number of

samples NMCS .

The choice of NMCS = 106 ensures that the CoV estimated probabilities of failure in the

order of PF ≥ 10−3 is always smaller than 5%, which we found suitable in our application

examples. The choice of a single MCS sample drawn during the algorithm initialization also

allows us to use the application examples to focus more on the convergence of the active

learning part of A-bPCE, which is the focus of this paper.
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In more general applications, the order of magnitude of PF may be unknown. In this

case, it is recommended instead to set a target desired CoV for the estimation of PF at

each iteration (as proposed in the original AK-MCS algorithm in Echard et al. (2011)), and

gradually add samples to XMCS until it is reached.

2.3.3 Convergence criteria

The proposed convergence criterion of choice is directly inspired by Schöbi et al. (2016); Notin

et al. (2010) and it depends on the stability of the PF estimate at the current iteration. Let

us define:

P̂+
F = max

b=1,··· ,B

(
P̂

(b)
F

)

P̂−F = min
b=1,··· ,B

(
P̂

(b)
F

)
.

(8)

Convergence is achieved when the following condition is satisfied for at least two consecutive

iterations of the algorithm:

P̂+
F − P̂−F
P̂F

≤ εP̂F
, (9)

with 0.05 ≤ εP̂F
≤ 0.15 in typical usage scenarios.

2.3.4 Learning function

A learning function is a function that allows one to rank a set of candidate points based on

some utility criterion that depends on the desired application. In this case, we adopt the

same heuristic approach proposed in Schöbi et al. (2016), by focusing on the probability of

misclassification of the bPCE model on the candidate set given by XMCS .

Due to the availability of the bootstrap response samples Y(1,··· ,B)
MCS , it is straightforward

to define a measure of the misclassification probability UFBR (where the subscript FBR

stands for failed bootstrap replicates) at each point x
(i)
MCS ∈ XMCS as follows:

UFBR(x
(i)
MCS) =

∣∣∣∣∣
BS(x

(i)
MCS)−BF (x

(i)
MCS)

B

∣∣∣∣∣ (10)

where BS(x
(i)
MCS) and BF (x

(i)
MCS) are the number of safe (resp. failed) bPCE replicate pre-

dictions at point x
(i)
MCS (with BS(x

(i)
MCS) + BF (x

(i)
MCS) = B). When all the B replicates

consistently classify x
(i)
MCS in the safe or in the failure domain, UFBR = 1 (minimum misclas-

sification probability). In contrast, UFBR = 0 corresponds to the case when the replicates

are equally distributed between the two domains. In the latter case, 50% of the B bootstrap

PCEs predict that x
(i)
MCS is in the safe domain, while the other 50% predicts that x

(i)
MCS be-

longs to the failure domain. Therefore, maximum epistemic uncertainty on the classification

of a point x
(i)
MCS is attained when UFBR is minimum.
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2.3.5 Enrichment of the experimental design

The aim of the iterative algorithm described in Section 2.3 is to obtain a surrogate model

that minimizes the misclassification probability. As a consequence, the learning function in

Eq. (10) can be directly used to obtain a single-point enrichment criterion. The next best

candidate point for the ED x∗ ∈ XMCS is given by:

x∗ = argmin
x(i)∈XMCS

(
UFBR(x(i))

)
. (11)

Due to the global character of regression-based PCE, it can be beneficial to add mul-

tiple points in each iteration to sample several interesting regions of the parameter space

simultaneously. The criterion in Eq. (11) can be extended to include K distinct points si-

multaneously by following the approach in Schöbi et al. (2016). A limit state margin region is

first defined as the set of points such that UFBR < 1 (i.e. those point with non-zero misclas-

sification probability at the current iteration). Subsequently, k-means clustering techniques

(see, e.g., Zaki and Meira (2014)) can be used at each iteration to identify K disjoint regions{
X (1,··· ,K)
MCS

}
in the limit-state margin. Then, Eq. (11) can be directly applied to each of the

subregions to obtain K different enrichment points:

x∗k = argmin
x(i)∈X (k)

MCS

(
U

(k)
FBR(x

(i)
k )
)
, k = 1, · · · ,K (12)

where x∗k ∈ X
(k)
MCS is the k−th enrichment sample and U

(k)
FBR is the learning function evalu-

ated on the k−th region of the parameter space.

Note that this approach is also convenient when parallel computing facilities are available

and in the presence of computationally expensive objective functions, as the evaluation of

the K enrichment points can be carried out simultaneously.

3 Results on benchmark applications

All the algorithm development and the final calculations presented in this section were per-

formed with the polynomial chaos expansions and reliability analysis modules of the UQLab

software for uncertainty quantification (Marelli and Sudret, 2014, 2017; Marelli et al., 2017).

3.1 Series system

A common benchmark for reliability analysis functions is given by the four-branch function,

originally proposed in Waarts (2000), that represents a series system comprising four com-

ponents with different failure criteria. Although it is a simple analytical function, it shows

multiple failure regions and a composite limit-state surface. Its two-dimensional limit state
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a. Initial experimental design b. Final experimental design

Figure 2: Four branch function: limit state surface (black line) and experimental design before

(black circles) and after (red crosses) enrichment

function reads:

g(x) = min





3 + 0.1(x1 + x2)2 − x1+x2√
2

3 + 0.1(x1 + x2)2 + x1+x2√
2

(x1 − x2) + 6√
2

(x2 − x1) + 6√
2





(13)

where the two random input variables X1 ∼ N (0, 1) and X2 ∼ N (0, 1) are modelled as

independent standard normals. Failure occurs when g(x) ≤ 0.

Due to the multi-failure shape of the limit-state surface (represented as a solid black line

in Figure 2), classic methods like FORM/SORM and importance sampling tend to fail with

this benchmark problem. The reference failure probability of PF = 4.460 · 10−3 is obtained

through an extremely large MCS (NMCS = 108).

The initial experimental design for the A-bPCE algorithm was obtained with a space-

filling LHS sample consisting of Nini = 20 points drawn from the input distributions (black

dots in Figure 2). Three points at a time were added to the experimental design during the

enrichment phase of the algorithm. The number of replications for the A-bPCE algorithm is

set to B = 100. After extensive testing, the algorithm was found to be very weakly depen-

dent on the number of bootstrap replications, provided a minimum of B ≥ 20 was provided.

Indeed, the boostrap samples are used to identify areas of relatively large prediction vari-

ability, but an accurate estimate of such variability is never really needed by the algorithm.

Degree adaptive sparse PCE (with maximum degree in the range p ∈ [2, 10]) based on LARS

(Blatman and Sudret, 2011) was used to calibrate the PCE metamodel at each iteration. For

validation and comparison purposes, a similar analysis was performed on the same initial
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Figure 3: Convergence curves of the four-branch limit-state function. The reference PF and β are

given by dotted lines.

ED with the AK-MCS module of UQLab, with an anisotropic Matérn 5/2 ellipsoidal mul-

tivariate Kriging correlation function (Rasmussen and Williams, 2006; Marelli et al., 2017;

Lataniotis et al., 2017). The convergence criterion in Eq. (9) was set to εP̂F
= 0.05 for both

the AK-MCS and A-bPCE algorithms.

Convergence was achieved after 49 iterations, resulting in a total cost (including the initial

experimental design) of Ntot = 185 model evaluations. The experimental design points added

during the iterations are marked by red crosses on panel (b) of Figure 2. As expected, the

adaptive algorithm tends to enrich the experimental design close to the limit state surface as

it is adaptively learned during the iterations. A graphical representation of the convergence

of the algorithm is shown in Figure 3, where the estimated P̂F is plotted against the total

number of model evaluations Ntot. The shaded area represents the 95% confidence bounds

based on the empirical quantiles as estimated from the bootstrap sample.

The final results of the analysis are summarized in Table 1, where the generalised relia-

bility index β = −Φ−1(PF ) is also given for reference. For comparison, the reference MCS

probability as well as an estimate from AK-MCS are also given. The latter converged to a

comparably accurate estimate of PF , at the cost of a slightly higher number of model eval-

uations. Note that for engineering purposes, the algorithm could have been stopped earlier,

i.e. when a 5% accuracy on the generalized reliability index is attained. In this case, the

algorithm would have converged to a comparable result (β̂ = 2.56) with only 50 runs of

the model. The final sparse PCE model after enrichment contained a total of P = 12 basis

elements of degree up to p = 5.

3.2 Two-dimensional truss structure

To test the algorithm on a more realistic engineering benchmark, consider the two-dimensional

truss structure sketched in Figure 4. This structure has been previously analysed in several

works, see e.g. (Blatman and Sudret, 2011, 2010b; Schöbi et al., 2016). The truss comprises
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Table 1: Comparison of different reliability analysis methods for the four branch function

Algorithm P̂F [P̂−F , P̂
+
F ] β̂ [β̂−, β̂+] Ntot

MCS (ref.) 4.46× 10−3 - 2.62 - 108

AK-MCS 4.52× 10−3 [4.38, 4.65]× 10−3 2.61 [2.60, 2.62] 200

A-bPCE 4.62× 10−3 [4.5, 4.7]× 10−3 2.60 [2.59, 2.61] 167

Figure 4: Two-dimensional truss structure with uncertain parameters. Probability distributions of

the geometrical parameters {Ai, Ei} and of the loads {P1, · · · , P6} are given in Table 2

23 bars and 13 nodes, with deterministic geometry yet with uncertain material properties

and random loads. The components of the input random vector X = [A1,2, E1,2, P1,...,6]
T

include the cross-section and the Young’s modulus {A1, E1} of the horizontal bars, the cross-

section and the Young’s modulus {A2, E2} of the diagonal bars and the six random loads

{P1, · · · , P6}. They are considered mutually independent and their distributions are given

in Table 2. An in-house developed Matlab-based finite-element solver is used to calculate

the displacement at midspan u(X), counted positively downwards.

This structure operates in the nominal range as long as the midspan displacement is

smaller than a critical threshold τ = 12 cm, which can be cast as the following limit-state

function:

g(x) = τ − u(x) (14)

where g(x) ≤ 0 if the system is in a failure state.

Because the FEM computational model is relatively cheap to evaluate, we could run a

direct MCS-analysis with N = 106 samples to provide the reference PF = 1.52 · 10−3 for

Table 2: Two-dimensional truss structure: definition of the probabilistic model of the input variables

(Schöbi et al., 2016)

Variable Distribution Mean Standard Deviation

E1, E2 (Pa) Lognormal 2.1× 1011 2.1× 1010

A1 (m2) Lognormal 2.0× 10−3 2.0× 10−4

A2 (m2) Lognormal 1.0× 10−3 1.0× 10−4

P1, · · · , P6 (N) Gumbel 5.0× 104 7.5× 103
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Table 3: Comparison of the estimation of PF with several algorithms for the truss structure example.

Algorithm P̂F [P̂−F , P̂
+
F ] β̂ [β̂−, β̂+] Ntot

MCS (ref.) 1.52× 10−3 - 2.96 - 106

FORM 0.76× 10−3 - 3.17 - 160

SORM 1.63× 10−3 - 2.94 - 372

AK-MCS 1.52× 10−3 [1.44, 1.59]× 10−3 2.96 [2.90, 3.01] 300

A-bPCE 1.48× 10−3 [1.43, 1.54]× 10−3 2.97 [2.96, 2.98] 129

validation purposes. Additionally, standard FORM and SORM analyses were run to estimate

the non-linearity of the limit-state surface. FORM underestimated the failure probability

of a factor of almost 2 and a cost of NFORM = 160 model runs, while SORM achieved a

good accuracy at a cost of NSORM = 372 model runs, which suggests that the underlying

problem is non-linear. Neither of the two methods, however, provides confidence interval on

their estimates.

The A-bPCE algorithm was initialized with an experimental design consisting in a uni-

form sampling of a ball (for details, see e.g. Dubourg (2011)) of size Nini = 30, while the

sparse adaptive PCE was given a polynomial degree range 1 ≤ p ≤ 10, hyperbolic trunca-

tion with q-norm q = 0.75 (Blatman and Sudret, 2011) and maximum allowed interaction

r = 2 (Marelli and Sudret, 2017). The internal MCS sample size was NMCS = 106 and the

algorithm was set to add K = 3 new samples per iteration. The stopping criterion in Eq. (9)

was set to εP̂F
= 0.10. For comparison purposes, we also ran a standard AK-MCS analysis

with the same initial experimental design and convergence criterion. The covariance family

of choice for the underlying Kriging model was chosen as Gaussian.

Table 3 presents a comparison of the estimated P̂F with the aforementioned analyses.

Both AK-MCS and A-bPCE estimates of PF include the reference value within the confidence

bounds set by the convergence criterion. However, for this particular example and choice

of convergence criterion, A-bPCE achieved convergence significantly faster than AK-MCS,

with a total cost of 129 model evaluations, as compared to the 300 required by AK-MCS,

resulting in a final PCE of degree p = 3 with P = 43 basis elements.

Overall, A-bPCE provides a stable estimate of the failure probability and confidence

intervals at a cost that is lower than FORM for this example.

3.3 Top-floor displacement of a structural frame

Figure 5 shows a well known, high dimensional benchmark in structural reliability applica-

tions (Liu and Der Kiureghian, 1991; Blatman and Sudret, 2010a). It consists on a three-

span, five story frame structure that is subject to horizontal loads. Both the loads and the

properties of the elements of the frame (see Table 4) are uncertain. Of interest is the top-floor
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Figure 5: 20-dimensional structural frame in Section 3.3. The distributions of the input variables

are reported in Table 5

.

horizontal displacement at the top right corner u.

The uncertainties on the applied loads P1, ..., P3, the Young’s moduli E1 and E2, the mo-

ments of inertia I6, ..., I13 and the cross sections A14, ..., A21 are modelled by a 21-dimensional

joint random vector Z = {P1, ..., A21} with marginal distributions given in Table 5.

Additionally, a Gaussian copula (Lebrun and Dutfoy, 2009) is used to model dependence

between the variables. The elements of the Gaussian copula correlation matrix R are given

as:

• RE1,E2 = 0.9 – the two Young’s moduli are highly correlated;

• RAi,Ii = 0.95 – each element’s cross-sectional area is highly correlated to the corre-

sponding moment of inertia;

• RAi,Ij = RIi,Ij = RAi,Aj
= 0.13 – the correlation between the properties of different

elements is much lower;

• All the remaining elements of R are set to 0.

A critical displacement of τ = 5cm is identified as the maximum admissible threshold for

the displacement u, hence resulting in the limit-state function:

g(z) = τ − u(z) (15)

where u(z) is the displacement on the top right corner calculated with an in-house FEM code.

Due to the associated computational costs, the maximum available budget for the calculation
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Table 4: Frame structure: properties of the elements shown in Figure 5

Element Young’s modulus Moment of inertia Cross-sectional area

B1 E4 I10 A18

B2 E4 I11 A19

B3 E4 I12 A20

B4 E4 I13 A21

C1 E5 I6 A14

C2 E5 I7 A15

C3 E5 I8 A16

C4 E5 I9 A17

of a reference solution is in this case limited to NREF = 4 · 104. Therefore, the reference

solution is calculated with standard importance sampling (IS) (Melchers, 1999) instead of

direct MCS. In addition to Importance sampling, we also ran FORM and SORM. Due to the

non-linearity of the problem, FORM significantly underestimated PF , while SORM provided

an accurate estimate. However, due to the high dimensionality of the input space, the

associated cost in terms of model evaluation was relatively high, with NSORM = 1146 model

runs, since all the gradients of the limit-state function are computed using finite-differences.

The A-bPCE algorithm was initialized with an experimental design consisting of an LHS

sampling of the input random vector of size Nini = 40. Sparse PCE was carried out with

a q-norm truncation with q = 0.75 and maximum allowed interaction r = 2. Note that the

initialization is essentially the same as for the truss structure in the previous application.

The internal MCS sample size was NMCS = 106, with single point enrichment per iteration.

The stopping criterion in Eq. (9) was in this case set to εP̂F
= 0.15. For comparison purposes,

an AK-MCS analysis was also run on the same initial design, with similar settings and a

Gaussian covariance family.

A comparison of the results is gathered in Table 6. Due to the different estimation

method between the reference probability (importance sampling) and the active learning-

based methods (which rely on an inner MCS), no direct comparison of the results is possible

as in the previous cases. Indeed, even fixing the same random seeds would result in different

estimates due to the different methodologies. Therefore, confidence bounds are given for

all the three methods: 95% confidence bounds for IS (Melchers, 1999), and P±F for both

AK-MCS and A-bPCE. The three methods give comparable results, albeit with significant

differences in the convergence behaviour. In particular, both AK- and A-bPCE resulted

in a slight underestimation of the probability of failure w.r.t. the reference solution by IS,

which in turn is slightly overestimated with respect to the reference result quoted in the

literature (Blatman and Sudret, 2010a). However, AK-MCS did not converge in the allotted
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Table 5: Frame structure: definition of the probabilistic model of the input variables (Blatman and

Sudret, 2010a)

Variable Distribution Mean Standard Deviation

P1 (kN) Lognormal 133.454 40.04

P2 (kN) Lognormal 88.97 35.59

P3 (kN) Lognormal 71.175 28.47

E4 (kN/m2) Truncated Gaussian* 2.1738× 107 1.9152× 106

E5 (kN/m2) Truncated Gaussian* 2.3796× 107 1.9152× 106

I6 (m4) Truncated Gaussian* 8.1344× 10−3 1.0834× 10−3

I7 (m4) Truncated Gaussian* 1.1509× 10−2 1.2980× 10−3

I8 (m4) Truncated Gaussian* 2.1375× 10−2 2.5961× 10−3

I9 (m4) Truncated Gaussian* 2.5961× 10−2 3.0288× 10−3

I10 (m4) Truncated Gaussian* 1.0812× 10−2 2.5961× 10−3

I11 (m4) Truncated Gaussian* 1.4105× 10−2 3.4615× 10−3

I12 (m4) Truncated Gaussian* 2.3279× 10−2 5.6249× 10−3

I13 (m4) Truncated Gaussian* 2.5961× 10−2 6.4902× 10−3

A14 (m2) Truncated Gaussian* 3.1256× 10−1 5.5815× 10−2

A15 (m2) Truncated Gaussian* 3.7210× 10−1 7.4420× 10−2

A16 (m2) Truncated Gaussian* 5.0606× 10−1 9.3025× 10−2

A17 (m2) Truncated Gaussian* 5.5815× 10−1 1.1163× 10−1

A18 (m2) Truncated Gaussian* 2.5302× 10−1 9.3025× 10−2

A19 (m2) Truncated Gaussian* 2.9117× 10−1 1.0232× 10−1

A20 (m2) Truncated Gaussian* 3.7303× 10−1 1.2093× 10−1

A21 (m2) Truncated Gaussian* 4.1860× 10−1 1.9537× 10−1

* Truncated in the domain [0,+∞]. The quoted moments refer to the full, untruncated Gaussian

distributions.
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Table 6: Comparison of the estimation of PF with several algorithms for the top-floor displacement

of a structural frame example

Algorithm P̂F [P̂−
F , P̂

+
F ] β̂ [β̂−, β̂+] Ntot

IS (ref.) 1.54× 10−3 [1.51, 1.56]× 10−3 2.96 [2.95, 2.97] 40241

FORM 1.01× 10−3 - 3.09 − 241

SORM 1.52× 10−3 - 2.96 − 1146

AK-MCS 1.48× 10−3 [0.8, 4.96]× 10−3 2.97 [2.57, 3.12] 300

A-bPCE 1.49× 10−3 [1.42, 1.62]× 10−3 2.97 [2.94, 2.98] 235

maximum number of model evaluations, and its confidence bounds remained remarkably

large with respect to A-bPCE. A-bPCE converged instead at a total cost of approximately

200 model evaluations to the target εP̂F
, with a final sparse PCE of degree 2, counting

30 non-zero coefficients. For both active-learning-based methods, the reference solution lies

within the given confidence bounds. Moreover, the confidence bounds on the reliability index

β̂ show that the results are stable to within 2% of the calculated values.

Finally, it is interesting to mention that for this example the costs of FORM and A-bPCE

were comparable, but the latter provides a much less biased estimate, and includes confidence

bounds.

4 Conclusions and outlook

A novel approach to solving reliability problems with polynomial chaos expansions has been

proposed. The combination of the bootstrap method and sparse regression enabled us to

introduce local error estimation in the standard PCE predictor. In turn, this allows one to

construct active learning algorithms similar to AK-MCS to greedily enrich a relatively small

initial experimental design so as to efficiently estimate the probability of failure of complex

systems.

This approach has shown comparable performance w.r.t. to the well established AK-

MCS method on both a simple analytical benchmark function and in two high-dimensional

engineering applications of increasing complexity.

Extensions of this approach can be envisioned in two main directions:

• the simulation-based reliability analysis method can be extended beyond simple MCS

(e.g. by using importance sampling (Dubourg et al., 2013), line sampling (Pradlwarter

et al., 2007) or subset simulation (Dubourg et al., 2011)) to achieve better P̂F estimates

at each iteration, especially for very low probabilities of failure;

• remote parallel computing facilities may be used during the enrichment phase of the
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algorithms with expensive computational models when adding more than one point at

a time;

• the use of bootstrap to enable local error estimation in an active learning context can

be used also with different regression-based surrogate modelling techniques, including

e.g. low rank tensor approximations (Konakli and Sudret, 2016).

Additionally, the bPCE approach itself introduced in this work can be used also outside

of a pure reliability analysis context, as it provides an effective local error estimate for PCE.

It has been used, e.g. in the context of reliability-based design optimization in Moustapha

and Sudret (2017). Indeed the lack of this feature (as opposed to Kriging) has somewhat

hindered its usage in more advanced active-learning applications.
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