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Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantification (UQ) deals with the estimation of statistics of the system response, given a computational model of the system and a probabilistic model of its inputs. In engineering applications it is common to assume that the inputs are mutually independent or coupled by a Gaussian or elliptical dependence structure (copula).

In this paper we overcome such limitations by modelling the dependence structure of multivariate inputs as vine copulas. Vine copulas are models of multivariate dependence built from simpler pair-copulas. The vine representation is flexible enough to capture complex dependencies. This paper formalises the framework needed to build vine copula models of multivariate inputs and to combine them with virtually any UQ method. The framework allows for a fully automated, data-driven inference of the probabilistic input model on available input data.

The procedure is exemplified on two finite element models of truss structures, both subject to inputs with non-Gaussian dependence structures. For each case, we analyse the moments of the model response (using polynomial chaos expansions), and perform a structural reliability analysis to calculate the probability of failure of the system (using the first order reliability method and importance sampling). Reference solutions are obtained by Monte Carlo simulation. The results show that, while the Gaussian assumption yields biased statistics, the vine copula representation achieves significantly more precise estimates, even when its structure needs to be fully inferred from a limited amount of observations.

Introduction

Uncertainty Quantification (UQ) estimates statistics of the response of a system subject to stochastic inputs. The system is usually described by a deterministic computational model M (e.g., a finite element code). The input consists of M possibly coupled parameters, modelled by a random vector X with joint cumulative distribution function (CDF) F X and probability density (PDF) f X . The computational model transforms X into an uncertain output Y = M(X), which here we take to be a univariate random variable. The extension to multivariate outputs is straightforward.

Of interest in UQ problems are various statistics of Y , such as its CDF F Y , its moments, the probability of extreme events (i.e., of small or large quantiles), the sensitivity of Y to the different components X i of X, and others. Because M is typically a complex model which is not known explicitly, analytical solutions are in general not available. The model behavior can only be known point-wise in correspondence with inputs x (j) sampled from F X , where it produces responses y (j) = M(x (j) ) (non-intrusive, or black-box approach). The classical and most general strategy to solve this class of problems is by Monte Carlo simulation (MCS).

MCS draws the x (j) as i.i.d samples from F X , which requires the sample size n to be large enough to cover the input probability space sufficiently well. When M is computationally expensive and the available computational budget is limited to a few dozens to hundreds of runs, alternative approximation techniques are used instead of MCS. Examples include the first and second order reliability methods (FORM [START_REF] Hasofer | Exact and invariant second moment code format[END_REF], SORM [START_REF] Fiessler | Quadratic limit states in structural reliability[END_REF]), importance sampling (IS, [START_REF] Melchers | Structural reliability analysis and prediction[END_REF]) and subset simulation [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF] in reliability analysis for the estimation of small failure probabilities (see also [START_REF] Ditlevsen | Structural reliability methods[END_REF]; [START_REF] Lemaire | Structural reliability[END_REF]), and polynomial chaos expansions (PCE, [START_REF] Li | Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration[END_REF]), Kriging [START_REF] Matheron | Kriging or polynomial interpolation procedures[END_REF], and other metamodelling techniques for the estimation of the moments.

Since M is a deterministic code, all uncertainty in Y is due to the uncertainty in X.

Therefore, regardless of the approach (MCS or others) chosen to estimate the statistics of Y of interest, a suitable model of F X is critical to obtain accurate estimates. Historically, the components X i of X are assumed to be mutually independent, or to have the dependence structure of a multivariate elliptical distribution (Lebrun and Dutfoy, 2009a). Among the latter, Gaussian distributions are often employed because they are simple to model and to fit to data, since they only require the computation of pairwise correlation coefficients. In addition, some advanced UQ techniques take advantage of (or require) mutually independent inputs. These include FORM, SORM, IS, some types of subset simulation (e.g., [START_REF] Papaioannou | MCMC algorithms for subset simulation[END_REF]), PCE. The most general transformation to map the input vector X onto a vector Z with independent components, the Rosenblatt transform [START_REF] Rosenblatt | Remarks on a multivariate transformation[END_REF], requires the computation of conditional PDFs, which are hardly known in practical applications. However, when F X has a Gaussian dependence structure, this map is known and is equivalent of the input dependencies (Section 4). In Sections 5-6 we apply the methodology to two truss models. We show that modelling non-Gaussian input dependencies with the Gaussian copula yields wrong estimates of the failure probability and of the response moments. The problem cannot be amended by using different UQ methods, since it is inherent to the wrong representation of the input uncertainty. Reliable estimates are obtained instead by using a suitable vine representation of the input, also when the vine is purely inferred from available data. The method's advantages and current limitations are discussed in Section 7.

Copulas and vine copulas

Multivariate inputs in UQ problems are generally modelled as random vectors. The statistical properties of an M -dimensional random vector X are fully described by its joint CDF F X (x) = P(X 1 ≤ x 1 , . . . , X M ≤ x M ).

The joint CDF defines both the marginal CDF of each component X i of X, i.e., F i (x i ) = F Xi (x i ) = P(X i ≤ x i ), i = 1, . . . , M , and the dependence properties of the variables. As such, prescribed parametric families of joint CDFs dictate specific parametric forms for the marginal and joint properties of the random variables. More flexible models should be compatible with inference techniques, to be applicable when only a finite number of realisations of the input X is available. They should also optimally provide the isoprobabilistic map that decouples their random variables, such to be usable in combination with UQ techniques that assume mutually independent inputs. This section introduces vine copula models and illustrates how they meet the requirements listed above.

Copulas and Sklar's theorem

An M -copula is defined as an M -variate joint CDF C : [0, 1] M → [0, 1] with standard uniform marginals, that is, such that C(1, . . . , 1, u i , 1, . . . , 1) = u i ∀u i ∈ [0, 1], ∀i = 1, . . . , M.

Sklar's theorem [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF] allows one to express joint CDFs in terms of their marginal distributions and a copula.

Theorem (Sklar). For any M -variate CDF F X with marginals F 1 , . . . , F M , an M -copula C X exists, such that for all x ∈ R M F X (x) = C X (F 1 (x 1 ), . . . , F M (x M )).

(1)

Besides, C X is unique on Ran(F 1 ) × . . . × Ran(F M ), where Ran is the range operator. In particular, C X is unique on [0, 1] M if all F i are continuous, and it is given by

C X (u) = F X (F -1 1 (u 1 ), . . . , F -1 M (u M )), u ∈ [0, 1] M . (2) 
Conversely, for any M -copula C and any set of M univariate CDFs F i with domain D i , i = 1, . . . , M , the function F : D 1 × . . . × D M → [0, 1] defined by F (x 1 , . . . , x M ) := C(F 1 (x 1 ), . . . , F M (x M )) ( 3)

is an M -variate CDF with marginals F 1 , . . . , F M .

The representation (1) guarantees that any joint CDF can be expressed in terms of its marginals and a copula. In the following we work with joint CDFs F X having continuous marginals F i .

Copulas of known families of joint CDFs can be derived from ( 2). Finally, one can use (3)

to build a multivariate CDF F by separately specifying and combining M univariate CDFs F i and a copula C. The univariate CDFs describe the marginal behaviour, while the copula describes the dependence properties. Sklar's theorem thus allows one to split the problem of modelling the joint behaviour of the components of X into two separate problems. One first models the marginals F i , then transforms the original components X i into uniform random

variables U i = F i (X i ), leading to the transformation T (U ) : X → U = (F 1 (X 1 ), . . . , F M (X M )) T . (4) 
The joint CDF of U = (U 1 , . . . , U M ) T is the associated copula.

Sklar's theorem can be re-stated in terms of probability densities. If X admits PDF

f X (x) := ∂ M F X (x) ∂x 1 . . . ∂x M and copula density c X (u) := ∂ M C X (u) ∂u 1 . . . ∂u M
, then the following relation holds:

f X (x) = c X (F 1 (x 1 ), . . . , F M (x M )) • M i=1 f i (x i ).
(5)

Copula-based measures of dependence

Since copulas fully describe multivariate dependencies, it is natural to introduce dependence measures based on the copula only, and not on the marginals. Several such measures, also known as measures of concordance, exist. An example is Spearman's correlation coefficient, defined for a random pair (X 1 , X 2 ) as

ρ S (X 1 , X 2 ) := ρ P (F 1 (X 1 ), F 2 (X 2 )),
where ρ P is the classical Pearson correlation coefficient. Another example is Kendall's tau

τ K (X 1 , X 2 ) := P((X 1 -X1 )(X 2 -X2 ) > 0) -P((X 1 -X1 )(X 2 -X2 ) < 0), where ( X1 , X2 ) is an independent copy of (X 1 , X 2 ). If the copula of (X 1 , X 2 ) is C, then ρ S (X 1 , X 2 ) = 12 [0,1] 2 C(u, v)dudv -3 = 3 -12 [0,1] 2 u ∂C(u, v) ∂u , (6) 
and

τ K (X 1 , X 2 ) = 4 [0,1] 2 C(u, v)dC(u, v) -1 = 1 -4 [0,1] 2 ∂C(u, v) ∂u ∂C(u, v) ∂v dudv, (7) 
where the RHS in both equations is well defined if the copula partial derivatives exist and are not degenerate at the borders (Joe, 2015).

One can show that τ K = 0 and ρ

S = 0 if (X 1 , X 2 ) are independent, that τ K = 1 ⇔ ρ S = 1 ⇔ X 1 = α(X 2
) for some strictly increasing α(•), and that τ

K = -1 ⇔ ρ S = 1 ⇔ X 2 = β(X 1
) for some strictly decreasing β(•) [START_REF] Embrechts | Correlation and dependence in risk management: Properties and pitfalls[END_REF]. Other copula based measures of pairwise concordance exist [START_REF] Scarsini | On measures of concordance[END_REF], as well as multivariate extensions [START_REF] Taylor | Multivariate measures of concordance[END_REF]. A discussion of such measures is beyond the scope of this paper.

Asymptotic tail dependence (hereinafter, simply tail dependence) of a random pair (X 1 , X 2 )

is another example of dependence property that is completely described by the copula and not by the marginals. The joint distribution of (X 1 , X 2 ) is said to be upper tail dependent if the probability that one of the two variables takes values in its upper tail (i.e., high quantiles), given that the other has taken values in its upper tail, does not decay to zero. Lower tail dependence is defined analogously for low quantiles. Tail dependence thus allows for simultaneous extremes, and is for instance used to model systemic risks. Formally, (X 1 , X 2 ) with marginals F 1 and F 2 are upper tail dependent if lim

u↑1 - P(X 1 > F -1 1 (u)|X 2 > F -1 2 (u)) = λ u > 0, (8) 
and are lower tail dependent if lim

u↓0 + P(X 1 < F -1 1 (u)|X 2 < F -1 2 (u)) = λ l > 0, (9) 
given that these limits exist; λ u and λ l are called the upper and lower tail dependence coefficients, and can be expressed in terms of the copula C of (X 1 , X 2 ) by

λ u = lim u↑1 - 1 -2u + C(u, u) 1 -u , λ l = lim u↓0 + C(u, u) u . ( 10 
)

Copula examples

Here we provide three families of copulas that will be used in Section 5 and Section 6 to model different dependence structures among input loads on a truss model. A list of classical families of copulas and their properties can be found in [START_REF] Nelsen | An introduction to copulas[END_REF]; Joe (2015). A summary of 19 families of bivariate copulas used for inference in this study and of their dependence properties is provided in Tables 1112.

The independence copula

C (Π) (u) = M i=1 u i (11)
describes the case of mutual independence among the random variables. For M = 2, C (Π) has Spearman's rho ρ

(Π) S = 0, Kendall's tau τ (Π) K
= 0, and tail dependence coefficients

λ (Π) u = λ (Π) l = 0.
A Gaussian random vector X with correlation matrix R = (ρ ij ) M i,j=1 and marginals

F i ∼ N (µ i , σ 2 i ), i = 1, . . . , M , has copula C (N ) (u) = 1 √ det R exp       - 1 2      Φ -1 (u 1 ) . . . Φ -1 (u M )      T • R -1 -I •      Φ -1 (u 1 ) . . . Φ -1 (u M )            , ( 12 
)
where Φ is the univariate standard normal CDF and I is the identity matrix of rank M .

C (N ) is called Gaussian copula or normal copula. One can prove that, if M ≥ 3 variables are coupled by a Gaussian copula with correlation matrix R, any pairs (X i , X j ) are coupled by a Gaussian pair copula with correlation matrix A pair copula that contemplates upper tail dependence is the bivariate Gumbel-Hougaard (or Gumbel, for brevity) copula

1 ρij ρij 1 . If so, their Spearman's rho is ρ (N ) S = 6 π arcsin( ρij 2 ), their Kendall's tau is τ (N ) K = 2 π arcsin(ρ ij ),
C (GH) (u, v) = exp -(-log u) θ + (-log v) θ 1/θ , θ ∈ [1, +∞). ( 13 
)
In particular, if θ = 1 then

C (GH) (u, v) = uv (the independence copula). C (GH) has Kendall's tau τ (GH) K = (θ -1)/θ and upper tail dependence coefficient λ (GH) u = 2-2 1/θ , which increases from 0 to 1 as θ increases from 1 to +∞. Finally, λ (GH) l = 0.

Vine copulas

When the input dimension M grows, defining a suitable M -copula which properly describes the pairwise and higher-order dependencies among the input variables becomes increasingly difficult. Multivariate extensions of several families of pair-copulas exist, but they rarely fit real data well. [START_REF] Bedford | Vines -a new graphical model for dependent random variables[END_REF] proved that, instead, one may construct any M -copula by a product of simpler 2-copulas. Some are unconditional copulas among pairs of random variables, others are conditioned on the values taken by other variables. Here we briefly introduce this construction, known as pair copula or vine copula construction, and recall some important features. For details, we refer to the cited literature (see also Klüpperberg and Czado (date)). A recent review with a focus on financial applications can be found in [START_REF] Aas | Pair-copula constructions for financial applications: A review[END_REF].

Let u i be the vector obtained from the vector u by removing its i-th component, i.e.,

u i = (u 1 , . . . , u i-1 , u i+1 , . . . , u M ) T .
Similarly, let u {i,j} be the vector obtained by removing the i-th and j-th component, and so on. For a general subset A ⊂ {1, . . . , M }, u A is defined analogously. Also, F A|A and f A|A indicate the joint CDF and PDF of the random vector X A conditioned on X A ; A = {i 1 , . . . , i k } and A = {j 1 , . . . , j l } form a partition of {1, . . . , M }, that is, A ∪ A = {1, . . . , M } and A ∩ A = ∅. Using (5), f A|A can be expressed as

f A|A (x A |x A ) =c A|A (F j1|A (x j1 |x A ), F j2|A (x j2 |x A ), . . . , F j l |A (x j l |x A ))× × j∈A f j|A (x j |x A ), (14) 
where c A|A is an l-copula density -that of the conditional random variables (X j1|A , X j2|A , . . . , X j l |A ) T

-and f j|A is the conditional PDF of X j given X A , j ∈ A. Following [START_REF] Joe | Families of m-variate distributions with given margins and m(m -1)/2 bivariate dependence parameters[END_REF], the univariate conditional distributions F j|A can be further expressed in terms of any conditional pair copula C ji|A\{i} between X j|A\{i} and X i|A\{i} , i ∈ A:

F j|A (x j |x A ) = ∂C ji|A\{i} (u j , u i ) ∂u i (F j|A\{i} (xj |x A\{i} ), F i|A\{i} (xi|x A\{i} )) . ( 15 
)
An analogous relation readily follows for conditional densities:

f j|A (x j |x A ) = ∂F j|A (x j |x A ) ∂x j =c ji|A\{i} (F j|A\{i} (x j |x A\{i} ), F i|A\{i} (x i |x A\{i} ))× × f j|A\{i} (x j |x A\{i} ). ( 16 
)
Substituting iteratively ( 15)-( 16) into ( 14), [START_REF] Bedford | Vines -a new graphical model for dependent random variables[END_REF] expressed f X as a product of pair copula densities multiplied by i f i . Recalling (5), it readily follows that the associated joint copula density c can be factorised into pair copula densities. Copulas expressed in this format are called vine copulas.

The factorisation is not unique: the pair copulas involved in the construction depend on the variables chosen in the conditioning equations ( 15)-( 16) at each iteration. To organise them, [START_REF] Bedford | Vines -a new graphical model for dependent random variables[END_REF] introduced a graphical model called the regular vine (Rvine). An R-vine among M random variables is represented by a graph consisting of M -1 trees T 1 , T 2 , . . . , T M -1 , where each tree T i consists of a set N i of nodes and a set E i of edges e = (j, k) between nodes j and k. The trees T i satisfy the following three conditions:

1. Tree T 1 has nodes N 1 = {1, . . ., M} and M -1 edges E 1 2. for i = 2, . . . , M -1, the nodes of T i are the edges of T i-1 :

N i = E i-1
3. Two edges in tree T i can be joined as nodes of tree T i+1 by an edge only if they share a common node in T i (proximity condition)

To build an R-vine with nodes N = {N 1 , . . . , N M -1 } and edges E = {E 1 , . . . , E M -1 }, one defines for each edge e linking nodes j = j(e) and k = k(e) in tree T i , the sets I(e) and D(e)

as follows:

• If e ∈ E 1 (edge of tree T 1 ), then I(e) = {j, k} and D(e) = ∅, I(e) contains always two indices j e and k e , while D(e) contains i -1 indices for e ∈ E i . One then associates each edge e with the conditional pair copula C je,ke|D(e) between X je and X ke 

• If e ∈ E i , i ≥ 2,
Two special classes of R-vines are the drawable vine (D-vine, [START_REF] Kurowicka | Distribution-free continuous Bayesian belief nets[END_REF]) and the canonical vine (C-vine, [START_REF] Aas | Pair-copula constructions of multiple dependence[END_REF]). Denoting F (x i ) = u i and

F i|A (x i |x A ) = u i|A , i /
∈ A, a C-vine density is given by the expression

c(u) = M -1 j=1 M -j i=1
c j,j+i|{1,...,j-1} (u j|{1,...,j-1} , u j+i|{1,...,j-1} ),

while a D-vine density is expressed as

c(u) = M -1 j=1 M -j i=1 c i,i+j|{i+1,...,i+j-1} (u i|{i+1,...,i+j-1} , u i+j|{i+1,...,i+j-1} ). ( 19 
)
The graphs associated to a 5-dimensional C-vine and to a 5-dimensional D-vine are shown in Figure 1. Note that this simplified illustration differs from the standard one introduced in [START_REF] Aas | Pair-copula constructions of multiple dependence[END_REF] and commonly used in the literature.

Vine inference in practice

Building a vine copula model that properly describes the dependencies among the inputs involves the following steps:

1. selecting the structure of the vine (for C-and D-vines: selecting the order of the nodes);

2. modelling each pair copula in the vine by a suitable parametric family (based on expert knowledge, when available, or learning from data);

3. assigning the copula parameters (from prior knowledge, or by fitting to data).

Steps 1-2 solve the representation problem, by providing a parametric model of the input dependencies.

Step 3 uniquely determines the copula to be assigned to the inputs. We restrict our attention to the case where expert knowledge is not available and the vine has to be learned entirely from available data. [START_REF] Aas | Pair-copula constructions of multiple dependence[END_REF] provided algorithms to compute the likelihood of a C-or D-vine model given a sample {x (1) , . . . , x(n) } of observations. Joe (2015) presented a likelihood estimation algorithm for general R-vines. These algorithms enable, for a given parametric model (that is, once the vine structure and comprising pair copula families have been selected), parameter estimation (step 3) based on maximum likelihood.

The estimation could then in principle be iterated across all possible structures (step 1) and pair copula families (step 2) to find the most likely model describing the observed dependence properties. The number of possibilities to loop across, however, is extremely large: an M -copula density admits 2 ( M -2 2 )-1 M ! different R-vine factorisations (Morales-Nápoles, 2011), M ! of which are C-or D-vines. This approach is thus computationally demanding in the presence of even a moderate number of inputs. In the case studies examined in this work we take a different approach, originally proposed by [START_REF] Aas | Pair-copula constructions of multiple dependence[END_REF] and commonly preferred in applications, and first solve step 1 separately. The optimal vine structure is found heuristically by ordering the variables X i such that pairs (X i , X j ) with the strongest dependence are captured first, i.e., fall in the first trees of the vine. The Kendall's tau τ K;ij defined in ( 7) is taken as the measure of dependence. For a C-vine, this means selecting the central node in tree T 1 as the variable X i1 that maximises j =i1 τ K;i1j , then the node of tree T 2 as the variable X i2 which maximises j / ∈{i1,i2} τ K;i2j , and so on. For a D-vine, this means ordering the variables X i1 , X i2 , . . . , X i M in the first tree so as to maximise M -1 k=1 τ K;i k i k+1 , which we solve as an open travelling salesman problem (OTSP) [START_REF] Applegate | The Traveling Salesman Problem: A Computational Study[END_REF]). An open source Matlab implementation of a genetic algorithm to solve the OTSP is provided in [START_REF] Kirk | Traveling salesman problem -genetic algorithm[END_REF]. An algorithm to find the optimal structure for R-vines has been proposed in [START_REF] Dißmann | Selecting and estimating regular vine copulae and application to financial returns[END_REF].

Once the vine structure has been selected, steps 2 and 3 are solved together by an iterative procedure. For each pair copula composing the vine, and for each parametric families allowed for that copula, the parameters of the family are fitted to the available data based on maximum likelihood (other approaches, such as Bayesian estimation, may be followed [START_REF] Gruber | Sequential Bayesian model selection of regular vine copulas[END_REF]). The parametric family which best fits the data is then chosen as the family that minimizes the Akaike information criterion (AIC)

AIC = -2 log L + 2k,
where k is the number of parameters of the pair copula and log L is its log-likelihood. The AIC penalises models with a larger number of parameters (which typically yield higher likelihood and would otherwise be preferred), thus preventing overfitting. Alternatives to the AIC have been proposed, for instance the Bayesian information criterion (BIC) and the copula information criterion (CIC; [START_REF] Grønneberg | The copula information criteria[END_REF]). Also, one may alternatively opt for various goodness of fit tests [START_REF] Schepsmeier | Efficient information based goodness-of-fit tests for vine copula models with fixed margins[END_REF][START_REF] Fermanian | An overview of the goodness-of-fit test problem for copulas[END_REF]. We did not consider these different approaches here. For a comparison of some of them, see [START_REF] Manner | Estimation and model selection of copulas with an application to exchange rates[END_REF].

Optionally, once each pair copula has been separately selected by this iterative approach (sequential fitting), the selected pair-copula families are retained and the parameters of the vine are globally fitted to the data. This step, however, may be computationally very demanding if M is large.

To facilitate inference we rely on the commonly used simplifying assumption that the pair copulas C j(e),k(e)|D(e) in ( 17) only depend on the variables with indices in D(e) through the arguments F i(e)|D(e) and F j(e)|D(e) [START_REF] Czado | Pair-Copula Constructions of Multivariate Copulas[END_REF]. While being exact only in particular cases, this assumption is usually not severe [START_REF] Haff | On the simplified pair-copula constructionsimply useful or too simplistic?[END_REF]. In [START_REF] Stöber | Simplified pair copula constructions -limitations and extensions[END_REF] construction techniques for non-simplified vine copulas were proposed.

Table 11 shows the list of the 19 simplified pair copula families used for vine copula construction in this study, and implemented in the VineCopulaMatlab package by [START_REF] Kurz | Vine copulas with matlab[END_REF]. A summary of their properties is reported in Table 12. In addition to these copulas, their rotated versions were also considered. A rotation by 180 • transforms a copula into its survival version. A rotation by 90 • or 270 • implements negative dependencies. Including the rotated copulas, 62 families were considered in total for inference. independent inputs.

Compositional models for dependent inputs

Consider a generic UQ method that works in a probability space where input parameters are independent and have marginal distributions G i . Assume that the input X to the model M has a joint CDF F X for which an invertible isoprobabilistic transform T : X → Z is known, and that T -1 : Z → X is also known. Then, the system response Y = M(X) can be expressed as a function of Z by

Y = (M • T -1 )(Z). ( 20 
)
The compositional model M • T -1 can be seen as a black box model which combines the known map T -1 with the original computational model M. The UQ method of choice can then be applied on the input Z and the model M • T -1 : the statistics of the output of

M • T -1 in response to Z are identical to the statistics of the output of M in response to X.
Given F X and M, determining the compositional model requires then to determine T -1 , which depends on F X . However, a general closed form expression for T -1 is in most cases unknown, even when F X is known. This problem is associated exclusively to the copula C X of X, and not to its marginals F i . Indeed, X can be mapped by the transformation

T (U )
defined in (4) onto U ∼ U ([0, 1] M ), whose joint CDF is C X . Thus, one can always write

T = T (U ) • T (Π) , (21) 
where T (U ) -which depends on the marginals only -is known for a given F X , while T (Π) :

U → Z is to be determined.

Isoprobabilistic transforms and copulas

The most general isoprobabilistic transform T , valid for any continuous F X , is the Rosenblatt transform [START_REF] Rosenblatt | Remarks on a multivariate transformation[END_REF], which reads

T (R) 1 : X → W , where                    W 1 = F 1 (X 1 ) W 2 = F 2|1 (X 2 |X 1 ) . . . W M = F M |1,...,M -1 (X M |X 1 , . . . , X M -1 ) . ( 22 
)
Following ( 21), and as first noted in Lebrun and Dutfoy (2009a), one can rewrite

T (R) 1 = T (Π, R) 1 • T (U )
, where

T (Π, R) 1 : U → W , with W i = C i|1,...,i-1 (U i |U 1 , . . . , U i-1 ). ( 23 
)
Here, C i|1,...,i-1 are conditional copulas of X (and therefore of U ), obtained from C X by differentiation. The problem of obtaining an isoprobabilistic transform of X is thus reduced to the problem of computing derivatives of C X .

The variables W i are mutually independent and marginally uniformly distributed in [0, 1].

To assign W i any other marginal distribution Ψ i , one can define the generalised Rosenblatt transform as a map

T (R) = T (R) 2 • T (R) 1 = T (R) 2 • T (Π, R) 1 • T (U )
, where ) maps X onto a random vector Z with same marginals but independent components.

T (R) 2 : W → Z, with Z i = Ψ -1 i (W i ). ( 24 
) When Ψ i = F i for all i, i.e., T (R) 2 ≡ T (U ) -1 , T (R
Each continuous joint CDF F X defines multiple transforms of the type ( 23), one per permutation of the indices {1, . . . , M }. However, these transforms involve conditional probabilities which are not generally available in closed form. A notable exception is the multivariate Gaussian distribution, where independence can be obtained by diagonalisation of the correlation matrix (e.g., by Choleski decomposition). The Rosenblatt transform in this case (and in this case only, see Lebrun and Dutfoy (2009a)) is equivalent to the Nataf transform [START_REF] Nataf | Détermination des distributions dont les marges sont données[END_REF], which is commonly used in engineering applications.

A generalized Nataf transform for elliptical copulas was proposed in Lebrun and Dutfoy (2009b). The generalization enables the mapping of random vectors with elliptical copulas into their standard spherical representative, having uncorrelated (but not mutually independent, except for the Gaussian case) components with elliptical, unit variance marginal distributions. Adopting the generalized Nataf transform instead of the Rosenblatt transform for inputs with non-elliptical copulas, of for inputs with elliptical copulas when a transformation to independent components is needed, may cause non-negligible errors on the estimates computed by UQ methods. transforms for general R-vines was proposed in [START_REF] Schepsmeier | Efficient information based goodness-of-fit tests for vine copula models with fixed margins[END_REF]. These algorithms can be trivially implemented so as to process n samples in parallel.

Rosenblatt transform and resampling for R-vines

In addition, (T (R) ) -1 allows to sample from the vine model by transforming independent points uniformly distributed in [0, 1] M . Space filling samples in the probability space can be obtained analogously (e.g., by Sobol sequences or Latin Hypercube sampling, [START_REF] Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF]). Given in particular a vine model of the input dependencies (obtained, e.g., from expert knowledge or by inference from available data), the inverse Rosenblatt transform enables resampling from this model.

UQ for mutually dependent inputs

After recalling convergence properties of MC estimates, we summarise here three established UQ methods used in the numerical experiments carried out in Sections 5 and 6: PCE, FORM, and IS. Several other methods exist to solve the same problems, and we do not advocate for the ones considered here over others. Importantly, the framework demonstrated for these three methods extend to basically any UQ technique designed for problems with a finite number of coupled inputs.

PCE is a spectral method that expresses the system response as a polynomial of the input variables. It is used to estimate moments of the response, to compute sensitivity indices, or to perform resampling efficiently. FORM is a reliability analysis method designed to approximate small failure probabilities P f numerically. IS is a stochastic sampling method that combines FORM with MC to obtain more robust estimates of P f . When the computational budget is limited and only few runs of the computational model can be afforded, these methods provide significantly better estimates of their target statistics than MCS with the same number of observations. However, these methods strongly rely on an accurate representation of the input dependencies. Besides, some of them strongly benefit from the possibility of mapping the input random vector onto a vector with independent components.

Here we describe how to combine these methods with the vine representation of the input CDF illustrated in Section 2. The flexibility of R-vine models expands the applicability of these methods drastically.

Convergence of MC estimates

MC (or sample) estimates of a statistic η = η(Y ) are obtained as functions ηn = ηn (Y ) of n i.i.d realisations {ŷ (j) } n j=1 of Y . Three statistics considered in the applications in Sections 5-6 are the mean µ(Y ) of Y , its standard deviation σ(Y ), and failure probabilities of the type If ηn (Y ) is an unbiased estimator of η(Y ) and η(Y ) = 0, the reliability of ηn (Y ) can be quantified by its coefficient of variation (CoV), given by is proportional to 1/ √ n and thus decays to 0 as n increases, however at a slow pace. The

P f ;y * (Y ) = P(Y ≥ y * ),
CoV(η n (Y )) = σ(η n (Y )) µ(η n (Y )) = σ(η n (Y )) η(Y ) . η(•): µ(Y ) = R yf Y (y)dy σ(Y ) = R (y -µ(Y )) 2 f Y (y)dy P f ;y * (Y ) = {Y ≥y * } f Y (y)dy ηn (•): μn (Y ) = 1 n j ŷ(j) σn (Y ) = 1 n -1 j ŷ(j) -μn (Y ) 2 Pf;y * (Y ) = 1 n j 1 {ŷ (j) >y * } CoV(η n ): σ(Y ) µ(Y ) 1 √ n ≈ 1 √ 2n 1 -P f nP f
expression for CoV(σ n (Y )) is obtained from the fact that σ(σ Y ) = σ(Y )/ 2N + O(N 2 ) if
Y is normally distributed (see [START_REF] Romanovsky | On the moments of the standard deviation and of the correlation coefficient in samples from normal[END_REF]).

Polynomial Chaos Expansion

PCE is a spectral method that represents a model M of finite variance as a linear sum of orthogonal polynomials [START_REF] Ghanem | Stochastic Finite Elements : A Spectral Approach[END_REF]Xiu and Karniadakis, 2002). As such, the parameters of the resulting representation have a statistical interpretation. For instance, the first two moments of the PCE model are encoded in the coefficients of the obtained polynomial. The model is also computationally cheap to evaluate, enabling an efficient evaluation of other global statistics of Y (higher order moments, the PDF, etc.) that would otherwise require an excessive number of runs of M.

Building a PCE representation of the output is relatively simple, as recalled below, for independent inputs. For this reason, if X has non mutually independent components, it is convenient to first map it onto such a vector Z by an isoprobabilistic transform. Modelling the copula C X of X as an R-vine provides the Rosenblatt transform ( 23)-( 24) needed to this end.

Given an isoprobabilistic transform

T such that Z = T (X), it follows that Y = (M • T -1 )(Z) = M (Z).
In the following, Y is assumed to have finite variance. The PCE of

Y = M (Z) is defined as Y = α∈N M y α Ψ α (Z), ( 25 
)
where the Ψ α are multivariate polynomials orthonormal with respect to f Z , i.e.,

D Z Ψ α (z)Ψ β (z)f Z (z)dz = δ αβ .
Here, δ αβ is the Kroenecker delta symbol.

Since Z has independent components, each Ψ α can be obtained as a tensor product of

M univariate polynomials φ (i)
αi (x i ) orthonormal with respect to the marginals g i of Z i :

Ψ α (z) = M i=1 φ (i) αi (z i ).
The polynomial basis is guaranteed to exist if the marginals distributions all have finite moments of any order. A unique representation exists if additionally the marginals are uniquely represented by the sequence of their moments. For details, as well as for sufficient conditions that guarantee uniqueness, see [START_REF] Ernst | On the convergence of generalized polynomial chaos expansions[END_REF]. For instance, the φ

(i) αi are Hermite polynomials if Z i is standard normal, i.e., if g i (z) = ϕ(z) = exp(-z 2 /2)/ √ 2π.
In the applications illustrated in Section 5 we work with this choice, although other choices may be favoured in different applications. An investigation of optimal choices for the marginal distributions of Z is an open question that will be investigated in a future study. Classical families of polynomials are described in Xiu and Karniadakis (2002).

The sum in ( 25) comprises an infinite number of terms. For practical purposes, it is truncated to a finite sum [START_REF] Marelli | UQLab user manual -Polynomial chaos expansions[END_REF]. Given a truncation scheme and the corresponding set A of multi-indices, the coefficients y α in

Y P C (Z) = α∈ A y α Ψ α (Z) (26) 
are evaluated on a set {(ẑ (j) = T -1 (x (j) ), ŷ(j) } n j=1 of observations (the experimental design). Many strategies exist to accomplish this task, such as projection methods based on Gaussian [START_REF] Le Maître | A stochastic projection method for fluid flow -I. Basic formulation[END_REF] or sparse quadrature [START_REF] Keese | Numerical methods and smolyak quadrature for nonlinear stochastic partial differential equations[END_REF]Xiu, 2010), least-squares minimisation [START_REF] Berveiller | Stochastic finite elements: a non intrusive approach by regression[END_REF], and different adaptive sparse methods [START_REF] Doostan | A non-adapted sparse approximation of PDEs with stochastic inputs[END_REF][START_REF] Jakeman | Enhancing 1 -minimization estimates of polynomial chaos expansions using basis selection[END_REF], hybridised into a single methodology by [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on Least Angle Regression[END_REF]. The latter is particularly suitable when M is large, because it achieves a sparse basis out of a very large initial set of possible polynomials, and is therefore the method of choice in this study.

Once a PCE metamodel (26) of the compositional model M is built, the first two moments of the response are encoded in the coefficients of the expansions. Indeed, due to orthonormality of the polynomial basis,

µ(Y P C ) = y 0 , σ 2 (Y P C ) = α∈A\{0} y 2 α . (27) 
Higher-order moments, as well as other statistics, can be efficiently estimated by simulation.

First order reliability method

Let Y = M(X) be the uncertain, scalar output of the computational model M in response to an uncertain M -variate input X with joint CDF F X , joint PDF f X and domain D X .

Suppose that the system fails if Y ≥ y * , where y * is a critical threshold. The failure condition is usually rewritten as g(x) ≤ 0, with g(x) = y * -M(x).

Reliability analysis concerns the evaluation of the failure probability P f = P(g(X) ≤ 0), i.e., of the probability mass over the failure domain D f = {ω : g(X(ω)) ≤ 0}. D f is typically known only implicitly, preventing a direct estimation of P f .

Using the indicator function

1 D f (x) =      1 if g(x) ≤ 0 0 if g(x) > 0
, P f can be expressed as

P f = D X 1 D f (x)f X (x)dx = µ(1 D f (X)), ( 28 
)
where µ(•) is the mean operator with respect to f X .

If X is multivariate normal with independent components, FORM [START_REF] Hasofer | Exact and invariant second moment code format[END_REF][START_REF] Hohenbichler | First-order concepts in system reliability[END_REF] approximates D f with an hyperplane tangent to the limit-state surface {ω : g(X(ω)) = 0} in its point closest to the origin (the design point x * ).

The rationale is that the standard normal density is a fast decaying function of the norm of its argument, so that -assuming the uniqueness of the design point -the probability mass of D f concentrates around x * (see also Der [START_REF] Der Kiureghian | Structural reliability under incomplete probability information[END_REF]).

If X is not multivariate normal, but has a normal copula, the Nataf transform (which is equivalent to the Rosenblatt transform in the Gaussian case, see Lebrun and Dutfoy (2009a) and Section 3.3) is used map X into a standard normal random vector Z = T (X), and FORM can then be used to search for the design point z * in the standard normal space.

If X has a more general elliptical copula, the generalized Nataf transform can be employed to map X into a vector Z whose components are uncorrelated (but not independent) and have elliptical marginals with unit variance (Lebrun and Dutfoy, 2009b). In this case, the probability density of Z is again a rapidly decreasing function of the norm of its argument, and FORM can be used analogously to the standard normal case.

If X has a non-elliptical copula, employing the generalized Nataf transform would yield biased estimates of the failure probability. One has to resort to different isoprobabilistic transformations, the most general being the Rosenblatt transform, to map X into a standard normal (or into a spherical elliptical) random vector Z = T (X), thus reconducting the problem to one of the two cases above. To treat this more general case, we express F X in terms of its marginals F i and of its copula C X as in ( 1), and we model C X as an R-vine (see Section 2.4). The Rosenblatt transform of the latter is available (see Section 3.3), allowing

X to be mapped onto the standard normal space, where the classical version of FORM can be used.

Importance sampling

In the context of reliability analysis, IS is used to combine the convergence speed of FORM with the robustness of MC sampling. For a general, non-standard-normal input vector X admitting Rosenblatt transform Z = T (N ) (X), ( 28) can be recast as

P f = R M 1 D f T -1 (z) ϕ M (z) ψ(z) ψ(z)dz = µ ψ 1 D f T -1 (Z) ϕ M (Z) ψ(Z) , (29) 
where ϕ M (•) is the M-variate standard normal density, ψ(•) is a suitable M-variate density (the importance density) and µ ψ is the mean operator with respect to ψ. [START_REF] Melchers | Structural reliability analysis and prediction[END_REF] recommends to assign ψ as the standard normal density centered at the design point found by FORM:

ψ(z) = ϕ M (z -z * ).
Given a sample {ẑ (1) , . . . , ẑ(n) } of ψ(Z), the IS estimator of P f is the sample estimator

Pf;IS = 1 N exp(||z * || 2 /2) n j=1 1 D f T -1 (ẑ (j) ) exp(-ẑ (j) • z * ),
which has variance drops below a desired level.

σ 2 ( Pf;IS ) ≈ 1 n(n -1) n j=1 1 D f T -1 (ẑ (j) ) ϕ M (ẑ (j) ) ϕ M (ẑ (j) -z * ) -Pf;IS

Results on a horizontal truss model

We first demonstrated the analysis workflow developed above on a horizontal truss model.

Estimates based on advanced and computationally efficient UQ techniques were compared to reference MCS estimates. Earlier work on vine representations combined with MCS can be found in [START_REF] Wang | System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations? Reliability Engineering & System Safety[END_REF], limited to reliability analysis.

The analysis was run in Matlab (The Mathworks Inc., 2016). Specifically, the vine copula inference was performed using the open source package VineCopulaMatlab [START_REF] Kurz | Vine copulas with matlab[END_REF].

We enriched this toolbox with functionalities for the computation of the Rosenblatt and inverse Rosenblatt transforms of C-and D-vines, and for the calculation of the optimal D-vine structure on data, implemented as an open travelling salesman problem [START_REF] Applegate | The Traveling Salesman Problem: A Computational Study[END_REF]. The UQ analyses were performed with the free Matlab-based software UQLab [START_REF] Marelli | UQLab: A framework for uncertainty quantification in Matlab[END_REF].

Computational model

The horizontal truss model, already used in [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on Least Angle Regression[END_REF], comprises 23 bars connected at 6 upper nodes, as shown in Figure 2. The structure is 24 meters long and 2 meters high. Six random loads P 1 , P 2 , . . . , P 6 were applied onto the structure, one on each upper node. As a result, the structure exhibited a downward vertical displacement at each node. The largest displacement ∆ was always at the center. Excess displacement leads to failure.

Probabilistic input model

We considered the case of uncertain loads P i , causing uncertainty in the output response ∆. The bar properties of the truss, differently from [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on Least Angle Regression[END_REF], were kept constant. The loads X = (P 1 , P 2 , . . . , P 6 ) were modelled by assigning separately their marginals F i and their copula C X . We fixed the marginals to univariate Gumbel CDFs with mean µ = 5 × 10 4 N and standard deviation σ = 0.15µ = 7.5 × 10 3 N:

F i (x; α, β) = e -e -(x-α)/β , x ∈ R, i = 1, 2, . . . , 6, (30) 
where β = √ 6σ/π, α = µγβ, and γ ≈ 0.5772 is the Euler-Mascharoni constant.

We then investigated how different copulas affect the statistics of the truss response. First, we employed the independence copula C (Π) defined by ( 11), which implies independence among the loads.

Loads on a truss structure may be expected to be positively correlated: higher loads on one node increase the chance to have higher loads on other nodes (e.g. due to snow or traffic jam on a bridge). To account for this, we selected next a 6-dimensional Gaussian copula C (N ) (12). We assigned the copula parameters ρ 1j , j = 2, . . . , 6, such that the Spearman's correlation coefficients (6) would be ρ S;1j = 0.135, resulting in ρ 1j = 0.141 (and Kendall's tau τ K;1j 0.0904). Besides, we set ρ S;ij|1 = 0 for each i = j, i, j = 1, so that all loads other than P 1 would be conditionally independent given P 1 .

Beside being positively correlated, in a realistic scenario loads are likely to be upper tail dependent: an extremely large load on one node increases the chance to have large loads elsewhere (e.g., when due to a heavy snowfall or to a traffic jam). Therefore, we last investigated a scenario with tail dependent loads (see Section 2.2). We modelled upper tail dependence by means of a C-vine C (V) . We selected P 1 as the first node of C (V) , and we set the pair copulas in the first tree to bivariate Gumbel-Hougaard copulas C

(GH) 1j

(13) between P 1 and P j , j = 2, . . . , 5. We took the parameter θ 1j = 1.1, j = 2, . . . , 6, yielding Spearman's correlation coefficients ρ S;1j = 0.135 as for the Gaussian copula. This choice resulted in τ K;1j = 0.0909 (close to the value determined by the Gaussian copula) but also determined an upper tail dependence coefficient λ u;1,j = 0.122 between P 1 and P j . We further set the other pair copulas of the vine, i.e., all conditional pair copulas, to the independence copula, ensuring conditional independence of (P i , P j ) given P 1 for each i, j = 1. The resulting vine

C (V) had density c (V) (u 1 , . . . , u 6 ) = 6 j=2 c (GH) 1j (u 1 , u j ). ( 31 
)
Note that other vine structures could have been used to model tail dependent loads: for instance, a D-vine whose first tree couples the loads on neighbouring nodes of the truss.

Expert knowledge and available input data may provide guidance in this selection process.

We finally investigated the viability of the vine representation when the vine itself is not known and has to be fully inferred from data. To this end, we sampled m = 300 realisations from C (V) and learned from them the vine structure, its pair copula families and their parameters, as detailed in Section 2.5. The pair copulas were chosen among the parametric families listed in Table 11 and their rotated versions defined by ( 33). The inferred pair copulas comprising Ĉ(V) are summarised in Table 2, along with their Kendall's tau and upper tail dependence coefficients. In real applications, the input observations needed for the inference procedure may be obtained by monitoring of the loads themselves, or may be estimated from available data (e.g., weather or traffic conditions), and do not require any model evaluation. The resulting C-vine Ĉ(V) had a different structure, only two of the five pair copulas in the first tree were of the Gumbel-Hougaard family, and one of the conditional copulas in the second tree was not the independence copula. All other pair copulas were correctly found to be independence copulas. Despite the differences from the true vine C (V) , using Ĉ(V) provided very good quality estimates of the statistics of the truss deflection, as shown below.

Analysis of the moments for different load couplings

For each probabilistic model of the loads, we analysed the mean µ(∆) and standard deviation σ(∆) of the resulting system response by MCS and by PCE.

The MC estimates were computed as sample estimates on { δi = M(x i )} 10 7 i=1 , where {x i } 10 7 i=1 was a set of i.i.d input realisations. The vertical deflections δ i were computationally affordable to compute due to the simplicity of the model. The results are summarised in Table 3, together with the CoV of the estimates (see Table 1).

While µ(∆) was virtually identical across the input model, σ(∆) exhibited non-negligible changes. For instance, it increased by almost 10% from the independence to the vine copula.

As a consequence, if C (V) were the true copula among the loads, an MC estimate of σ(∆) V) . The pair copulas found to be independence copulas are not shown. The last two columns indicate the Kendall's tau and the upper tail dependence coefficient of each pair copula.

C (Π) C (N ) C (V) Ĉ(V) μMC (∆) (cm): μ(Π) MC = 7.78 μ(N ) MC = 7.78 μ(V) MC = 7.78 μ( V) MC = 7.78 CoV(μ MC (∆)) (×10 -5 ): 2.1 2.3 2.4 2.4 σMC (∆) (cm): σ(Π) MC = 0.528 σ(N ) MC = 0.566 σ(V) MC = 0.581 σ( V) MC = 0.593 CoV(σ MC (∆)) (×10 -4 ): 2.2 2.2 2.2 2.2
Table 3: Moments of horizontal truss deflection for different load couplings. MC estimates μMC (∆) and σMC (∆) for different copulas of the loads, based on 10 7 samples, and their CoV. Reference solutions in bold.

based on the independence assumption would be biased. Conversely, fitting a Gaussian copula or a C-vine to data yielded more accurate estimates.

MC estimates converge slowly (see Section 4.1) and therefore need to be computed on large samples. Figure 3 shows by solid lines the errors on MC estimates drawn for the four different copulas on 10, 100, . . . , 10 5 samples. The reference solutions were the MC estimates μ(V) MC , σ(V) MC obtained through 10 7 samples under C (V) . The errors of estimates μ, σ were defined as

E (µ) rel = μ μ(V) MC -1 , E (σ) rel = σ σ(V) MC -1 . ( 32 
)
Note that, due to the CoV of the reference solutions, reported in Table 3, the errors shown in Figure 3 are reliable only down to approximately 10 -4 for the means and 10 -3 for the standard deviations.

We further estimated for each copula the error on µ(∆) and σ(∆) yielded by PCE, 

Relative

Error and by PCE (dashed lines), for loads coupled by C (Π) (yellow), C (N ) (red), C (V) (blue) and Ĉ(V) (green). Reference solution: MC estimate obtained on 10 7 samples with copula C (V) .

7 " C & + MC C N + MC C V + MC ĈV + MC C & + PCE C N + PCE C V + PCE ĈV + PCE
which is known to converge faster than MCS (see Section 4.2). We increased the size of the experimental design from 10 to 1000 sample points. The errors on the PCE estimates are shown in Figure 3 by dashed lines (again, reliable only down to the above mentioned precision). Notably, for the same number n of samples the PCE error is significantly smaller than the MCS error, demonstrating that the vine representation is fully compatible with PCE metamodelling.

Reliability analysis for different load couplings

The truss model was set to fail if the deflection ∆ reached or exceeded the critical threshold δ * = 11 cm. Reliability analysis was performed to evaluate the failure probability

P f = P(∆ ≥ δ * ) = 1 -F ∆ (δ * ).
For each probabilistic input model (i.e. for each copula C X , combined with the marginals in ( 30)), we first obtained reference solutions by MCS. Using the n = 10 7 i.i.d. realisations

{ δi = M(x i )} 10 7 i=1 obtained for the analysis of the moments, we estimated P f as the fraction of observed deflections δi larger than 11 cm. Then, we drew estimates by FORM, applied on the compositional model resulting from decoupling the loads via Rosenblatt transformation (see Sections 3 and 4.3). The results are summarised in Table 4.

The failure probability estimated by MCS with the independence copula C (Π) was P (Π) f = (1.5 ± 0.1) × 10 -5 . The FORM estimate was P (Π) f ;FORM = 0.37 × 10 -5, obtained by 219 runs of the computational model. Figure 4B shows, in yellow, the empirical survival function of ∆ obtained under C (Π) , for values of δ ranging from 6 cm to 12 cm. The vertical dashed line marks the critical threshold δ * , whereas the square indicates the FORM estimate of P f .

The MC estimate of P f under the Gaussian copula C (N ) was P (N ) f ;MC = (3.4 ± 0.2) × 10 -5

Method:

MCS FORM

Copula:

C (Π) C (N ) C (V) Ĉ(V) C (Π) C (N ) C (V) Ĉ(V)
Pf (×10 1), and number of runs of the computational model needed to obtain the solution.

(Figure 4, orange line: empirical survival function of ∆ under C (N ) ). Compared to the independent case, the failure probability increased by a factor of over 2, as a result of the positive correlations among the loads. The FORM estimate was P (N ) f ;FORM = 1.0 × 10 -5 , obtained again by 219 runs.

The MC estimate of P f under the C-vine C (V) was P (V) f ;MC = (5.04±0.07)×10 -4 (Figure 4, blue line: empirical survival function of ∆ under C (V) ). This value was over 33 times larger than the case of independent loads and 14 times larger than the Gaussian case, despite the marginal distributions of the loads being identical across all cases, and the Spearman's correlation coefficients being identical between C (V) and C (N ) . The FORM estimate using C (V) was P (V) f ;FORM = 4.88 × 10 -4 , obtained by only 108 runs. Finally, the MC estimate of P f assuming Ĉ(V) was P ( V) f ;MC = 3.30 × 10 -4 , about 35% smaller than the reference solution P (V) f ;MC (Figure 4, green line: empirical survival function of ∆ under Ĉ(V) ). The FORM estimate, obtained with 128 runs of the computational model, was P ( V) f ;FORM = 2.94 × 10 -4 (42% smaller than P (V) f ;MC ). In light of these results, in a scenario where the true dependence among the loads is described by (31), assuming independence or a Gaussian copula would cause a severe underestimation of the failure probability of the system, even when relying on a large MCS strategy. Properly capturing the dependencies (in particular, the tail dependencies) among the inputs is thus more critical towards getting accurate estimates of P f than using more precise estimation algorithms (FORM combined with C (V) outperforms MCS on 10 7 samples combined with C (N ) ). Furthermore, the error on P f remains small when the vine is entirely inferred from available input data, because the tail dependencies are properly captured (see Table 2). This demonstrates the viability of the vine copula modelling framework in reliability analysis for purely data driven inference.

The results above show that the failure probability is heavily misestimated when inputs coupled by a C-vine with tail dependencies are modelled by a Gaussian copula. A natural / (cm) question that arises is the following: is the opposite also true? In other words, how well can the C-vine family capture input dependencies described by a Gaussian copula? To answer this question, we performed additional simulations with C (N ) as the true input copula (having associated failure probability P (N ) f ;MC = (3.4 ± 0.2) × 10 -5 ). We sampled 300 observations from C (N ) , and inferred a C-vine from those. The pair copula families were selected as before by AIC among the parametric families listed in Table 11 and their rotated version, and their parameters were fitted by maximum likelihood. The resulting estimate of P f was (2.2 ± 0.2) × 10 -5 , only 35% smaller than the reference value. This demonstrates that the C-vine family is an effective dependence model also in the presence of simple Gaussian dependencies. In conclusion, this class of models covers a larger range of dependence scenarios than Gaussian (or elliptical) copulas, enabling UQ also in cases where the classical use of the Nataf transform would lead to wrong estimates.

10 -6 10 -4 10 -2 1 - F " (/) / * C & + MC C N + MC C V + MC ĈV + MC C & + FORM C N + FORM C V + FORM ĈV + FORM

Results on a dome truss model under asymmetric loads

We further considered a more complex model of a three-dimensional 120-bar dome truss. The model was used to demonstrate the applicability of our novel copula-based UQ framework on a more realistic case study than the one previously analysed. Due to the computational complexity of this model (∼ 15 seconds/run), large MCS was not affordable. N ) . The pair copulas found to be independence copulas are not shown.

The last two columns indicate the Kendall's tau and the upper tail dependence coefficient of each pair copula.

Computational model

The dome structure, illustrated in Figure 5A from the top and in Figure 5B from the front, consists of 120 bars connected to a total of 49 nodes. Nodes 1 to 37 (grey dots) are unsupported and therefore, when subject to vertical loading, exhibit a displacement from the original position in possibly all directions. The spatial dimensions of the structure are reported in panel B.

The computational model was implemented in the finite element software Abaqus [START_REF] Smith | ABAQUS/Standard User's Manual[END_REF]. This structure was previously analysed in [START_REF] Kaveh | Particle swarm optimizer, and colony strategy and harmony search scheme hybridized for optimization of truss structures[END_REF] to obtain optimal sizing variables so as to minimise the total structural weight. The authors distinguished 7 groups of bars, and optimised the cross-sections of each group to minimise the total structural weight of the structure under 4 different types of stress and displacement constraints.

We considered in particular their case 2, where stress and displacement constraints (±5 mm) in the x-and y-directions were enforced. In [START_REF] Kaveh | Particle swarm optimizer, and colony strategy and harmony search scheme hybridized for optimization of truss structures[END_REF] it was further assumed that each unsupported node is subject to vertical loading, taken as 60 kN at node 1, 30 kN at nodes 2-14, and 10 kN at nodes 15 -37. Under these conditions, the optimal cross sections reported in Table 6 were obtained, yielding a total structural weight of 89, 35 kN.

Probabilistic input model

Here we were interested in analysing the displacement of the nodes, considered as a risk factor potentially leading to failure.

First, we assigned uncertainty to the bar cross-sections. We modelled the 7 previously identified groups by independent log-normal random variables with mean given by the values in Table 6 and CoV σ/µ = 0.03. We assigned the bars in each of the 7 groups identical cross- [START_REF] Kaveh | Particle swarm optimizer, and colony strategy and harmony search scheme hybridized for optimization of truss structures[END_REF].

1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
sections.

We further assigned uncertainty to the loads applied on each node. We modelled a scenario where loads are distributed asymmetrically over the structure. A preliminary analysis showed that asymmetric loads yielded higher maximum vertical displacement compared to symmetric loads. We divided the 37 central nodes into 9 groups, named A to I, corresponding to different sectors of the surface of the dome. Sector A contains solely node 1, sector B contains nodes 2, 3 and 4, and so on, as shown in Figure 5 and in the upper two rows of Table 7. We considered the nodes in each group to be subject to the same load, and modelled the loads on the 9 groups by a 9-dimensional random vector with prescribed marginals and copula. The marginals were taken to be Gumbel distributions (30), whose moments, shown in the bottom two rows of Table 7, were determined as follows. We assigned to each sector a Gumbel-distributed load, having mean 1 kN/m 2 for the top and north-east sectors A,B,F, 0.5 kN/m 2 for the north-west and south-east sectors C, E, G and I, and 0.25 kN/m 2 for the south-west sectors D and H. The different mean values could model, for instance, snow falling on the dome from the north-east direction. The average external weight on each node (third-last row of the table) was obtained by multiplication with the total area of the node's sector (fourth row) and by division with the number of nodes in that sector. The CoV of each distribution was set to 0.2. Finally, deterministic service loads similar to those suggested by [START_REF] Kaveh | Particle swarm optimizer, and colony strategy and harmony search scheme hybridized for optimization of truss structures[END_REF] were added: 60 kN on node 1, 30 kN on nodes 2-13, 10 kN on nodes 14 -37.

We coupled the 9 loads by three different copulas: the independence copula C (Π) (11), the Gaussian copula C (N ) (12), and a 9-dimensional C-vine C (V) (31). The C-vine consisted of Gumbel-Hougaard pair-copulas (13), each with parameter θ = 5, between sector A and sectors B, . . . , I for the first tree, and independence conditional pair-copulas for the other trees. This choice assigns the loads between nodes in sector A and any other loads a Kendall's correlation coefficient τ K = 0.8 and an upper tail dependence coefficient λ u = 0.85. Thus, such that its correlation matrix would match the correlation coefficients determined by the C-Vine.

C V assigns
We further inferred a C-vine Ĉ(V) from 300 samples obtained from C (V) . The resulting vine Ĉ(V) , whose comprising pair copulas are listed in Table 8, had the same structure as ) , Gumbel-Hougaard copulas C AB , C AC , . . . , C AH , and Tawn-2 copula C AI . The Tawn-2 copula is a generalization of the Gumbel copula with right-skewed asymmetry in relation to the main diagonal. It is obtained from the three-parameters Tawn copula [START_REF] Tawn | Bivariate extreme value theory: Models and estimation[END_REF] by setting one of its two asymmetry parameters to 1 (see Tables 1112, row 17). All conditional copulas of Ĉ(V) , finally, were correctly found to be independence copulas.

C (V

Model response to the uncertain input

The output of the model in response to a single instance of the input is a list of displacements in the x-, y-and z-directions, one per node, as well as the tension (or compression) of each bar. We restricted our attention to displacements only, which, if excessive (11 mm in any direction), lead to failure of the structure.

We first performed a preliminary Monte-Carlo analysis based on 1000 simulations of the input (with loads coupled by C V ) and corresponding output displacements. V) . The pair copulas found to be independence copulas are not shown. The last two columns indicate the Kendall's tau and the upper tail dependence coefficient of each pair copula.

For all simulations and all nodes, the vertical displacement always exceeded in absolute value the displacement in the x-and y-directions. This was expected, considering that the average bar's cross-sections were optimised to minimise the latter two. Besides, the absolute vertical displacement was always maximal at node 2, except for 17 out of 1000 simulations where the maximal absolute displacement was observed at node 3, but was never critical (that is, was always < 11 mm). Thus, we reduced the model's response to the vertical displacement ∆ of node 2: ∆ = M(X), X = (A 1 , . . . , A 7 , L A , . . . , L I ).

Analysis of the moments

For each copula mentioned above, we evaluated the mean µ(∆) and the standard deviation σ(∆) of the deflection ∆ at node 2 both by MCS and by PCE. The estimates were based on samples of size n increasing from 10 to 1000. Due to the generally faster convergence of PCE with respect to MCS for small sample sizes, the PCE estimates built on 1000 samples were taken as reference values for each of the four copula models (see Table 9). The values obtained indicate that the independence, Gaussian and vine copulas yielded for ∆ similar means but different standard deviations.

Taken in particular C (V) to be the true copula among the loads, and the corresponding PCE estimates μ(V) PCE and σ(V) PCE based on 1000 points to be the reference solutions, we computed the relative error of all other estimates. The errors, defined analogously to (32), are shown in Figure 6. From these results, three main conclusions can be drawn. First, if and Ĉ(V) (green). Reference solutions: PCE estimates μ(V) , σ(V) obtained on 1000 samples with copula C (V) .

C (V) 29 C (Π) C (N ) C (V) Ĉ(V) μPCE (∆) (mm): μ(Π) PCE = -7.193 μ(N ) PCE = -7.183 μ(V) PCE = -7.182 μ( V) PCE = -7.182 σPCE (∆) (mm): σ(Π) PCE = 1.164 σ(N ) PCE = 0.588 σ(V) PCE = 0.552 σ( V) PCE = 0.560
C & + MC C N + MC C V + MC ĈV + MC C & + PCE C N + PCE C V + PCE ĈV + PCE
was the true copula among the loads, neither C (Π) nor C (N ) would offer adequate alternative representations, since the associated standard deviations differ significantly (by 111% and 6.5%, respectively) from their reference value. Second, by employing the inferred vine Ĉ(V) in combination with MCS (green solid line) it is possible to approximate the moments with higher precision than by the Gaussian (red) or independence (yellow) copulas. Finally, PCE combines well with the vine representation (dashed lines), yielding the smallest errors. It is worth noting, however, that using a proper copula model (a vine instead of a Gaussian or independence copula) is more important to obtain accurate estimates (particularly for σ(∆))

than using a more advanced UQ method (PCE instead of MC).

Reliability analysis

The dome structure was further set to fail if the displacement ∆ was equal to or lower than the critical threshold δ * = -11 mm. We performed reliability analysis to estimate the failure (red), C (V) (blue) and Ĉ(V) (green). The vertical dashed line represents the critical threshold δ * .

* C & + MC C N + MC C V + MC ĈV + MC C & + FORM C N + FORM C V + FORM ĈV + FORM C & + IS C N + IS C V + IS ĈV + IS
The squares and triangles on it indicate the FORM and IS estimates of the failure probability, respectively, obtained for each copula model.

probability

P f = P(∆ ≤ δ * ) = F ∆ (δ * ) of excessive downward vertical displacement.
We performed 5000 simulations by MCS for each copula of the input model, keeping the marginals identical across the models. Figure 7 shows the CDFs resulting from copulas C (V) (blue), Ĉ(V) (green), C (N ) (red), and C (Π) (yellow), evaluated for probabilities down to 10 -3 .

The MC estimate of P f under C (Π) was P (Π) f ;MC = (6.8±1.2)×10 -3 . For copulas C (N ) , C (V) and Ĉ(V) no simulations led to values of ∆ below δ * . We then resorted to FORM to evaluate P f for each copula, obtaining the estimates P (Π) f ;FORM = 8.0 × 10 -3 , P (N ) f ;FORM = 2.50 × 10 -4 , P (V) f ;FORM = 2.53 × 10 -5 , and P ( V) f ;FORM = 2.54 × 10 -5 . Since MC estimates were not available or not reliable here in light of the small sample being available, we further performed IS to improve the FORM estimates and to get confidence intervals (see Section 4.4). We increased the IS sample size in steps of 100, until the CoV of the estimate was lower than 10%.

We obtained the estimates P (Π) f ;IS = (7.13 ± 0.70) × 10 -3 , P (N ) f ;IS = (2.47 ± 0.24) × 10 -4 , P (V)

f ;IS = (3.13 ± 0.29) × 10 -5 , and P ( V) f ;IS = (3.27 ± 0.30) × 10 -5 . The results, summarized in Table 10, show that the failure probability of the structure decreases by an order of magnitude from C (Π) to C (N ) , and by another order of magnitude from C (N ) to C (V) and Ĉ(V) . Highly asymmetric loads (as due to C (Π) and, to a minor extent, to C (N ) ) may create a deformation mechanism in the structure that favours large displacements of the most heavily loaded nodes (here, node 2). In contrast, the more symmetric loading determined by the C-vine results in a more evenly distributed load path that ultimately leads to a safer structure. For loads actually coupled by C (V) , assuming Method:

MCS FORM IS

Copula:

C (Π) C (N ) C (V) Ĉ(V) C (Π) C (N ) C (V) Ĉ(V) C (Π) C (N ) C (V) Ĉ(V)
Pf (×10 the independence or Gaussian copulas thus leads to highly overestimating P f . Conversely, building the vine by purely data-driven inference recovers the reference solution P (V) f ;IS with high precision. Again, the input model used for the analysis is more important to get an accurate estimate than the particular UQ method (FORM or IS) employed.

Discussion

We proposed a general framework that enables uncertainty quantification (UQ) for problems where the input parameters of the system exhibit complex, non-Gaussian, non-elliptical dependencies (copulas). The joint CDF of input parameters is expressed in terms of marginals and a copula, which are modelled separately. The copula is further modelled as a vine copula, i.e., a product of simpler 2-copulas. This specification eases its construction, in high dimension, and offers a simple interpretation of the dependence model. A wide range of different dependence structures can be modelled using this approach.

Our framework focuses in particular on regular (R-) vines, for which algorithms exist to compute the likelihood on available data, thus enabling parameter fitting and data driven inference. In addition, R-vines offer algorithms to compute the associated Rosenblatt transform and its inverse on data, used to map the original input random vector into a vector with independent components and back. Thus, UQ techniques that benefit from input independence can be applied to any inputs coupled by R-vines. In this work we restricted our attention to inputs with continuous marginals, which cover a large class of engineering problems. Extensions of R-vines to discrete (e.g., categorical and count) data have been recently proposed [START_REF] Panagiotelis | Pair copula constructions for multivariate discrete data[END_REF][START_REF] Panagiotelis | Model selection for discrete regular vine copulas[END_REF].

The methodology was first demonstrated on a simple horizontal truss model, for which Monte Carlo solutions were computationally affordable, and then replicated on a more complex truss model of a dome. Both structures deflected in response to loads on different nodes. Changing the copula among the loads from the independence to a Gaussian to a tail-dependent C-vine copula changed the statistics of the deflection, in particular its variance and upper quantiles. Taken the vine copula as the true dependence structure among the loads, the independence and Gaussian assumptions thus led to biased estimates of these statistics. The failure probability of the two systems, in particular, was mis-estimated by one to two orders of magnitude. This was true regardless of the particular UQ method used for the estimation. Using instead a vine copula model of the input dependencies and fitting the model to relatively few input observations yielded far better estimates.

These results demonstrate that using a proper dependence model for the inputs can be more critical to get high-accuracy estimates of the output statistics than employing a superior UQ algorithm. Our framework encompasses both aspects, allowing highly flexible probabilistic models of the input to be combined with virtually any UQ technique designed to solve problems characterized by (finitely many) coupled inputs. Also, we demonstrated that a suitable vine representation can be properly inferred on data also in the presence of simple Gaussian dependencies. Thus, this class of dependence models effectively covers a broader range of problems than the Nataf transform (also in its generalized form by Lebrun and Dutfoy (2009b)) does.

Selecting a vine that properly represents the dependencies of multivariate inputs may be challenging. We discussed and employed existing methods to perform fully automated inference on available data. When the dimension of the input is large or the parametric families of pair copulas considered for the vine construction are many, this approach may become computationally prohibitive. A-priori information on the input statistics may be used to ease the selection, for instance by Bayesian methods [START_REF] Gruber | Sequential Bayesian model selection of regular vine copulas[END_REF]. The problem of selecting suitable vines, however, remains open in very high dimension (say, > 50) or on very large samples. Also, computing the Rosenblatt and inverse Rosenblatt transforms in these cases may be computationally demanding or lead to numerical instability. Separating the inputs into mutually independent subgroups, by expert knowledge or by statistical testing, and inferring a (vine) copula for each separately, may reduce this problem significantly. Additionally, vine inference on samples of large size can become computationally demanding.

Estimation techniques based on parallel computing have been recently proposed to solve this issue [START_REF] Wei | Parallel computing for copula parameter estimation with big data: A simulation study[END_REF]. Additional work is foreseen to address these challenges. Xiu, D. (2010). Numerical methods for stochastic computations -A spectral method approach.

Princeton University press. Xiu, D. and G. Karniadakis (2002). The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2), 619-644. A Some families of pair copulas and their properties [START_REF] Kurz | Vine copulas with matlab[END_REF] used here for vine inference. Each pair copula in the inferred vines was chosen among these families and their rotated versions defined by (33), by selecting the family yielding the lowest AIC. The rotations of a pair-copula distribution C are defined, here and in most references, by

C (90) (u, v) = v -C(1 -u, v), C (180) (u, v) = u + v -1 + C(1 -u, 1 -v), (33) 
C (270) (u, v) = u -C(u, 1 -v).
(Note that C (90) and C (270) are obtained by flipping the copula density c around the horizontal and vertical axis, respectively; some references provide the formulas for actual rotations: 270) (u, v) = u -C(1v, u)). Including the rotated copulas, 62 families were considered in total for inference in our study.

C (90) (u, v) = v -C(v, 1 -u), C ( 
The analytical expressions for the Kendall's tau and for the coefficients λ l , λ u of lower and upper tail dependence of the non-rotated families, when available, are reported in Table 12.

We derived ourselves a few of these expressions, as indicated in the table, since we could not find them in the existing literature (see notes (a) and (c) in the table's caption). Note also that λ l and λ u switch when a copula density is rotated by 180 

  Therefore, multivariate Gaussian copulas assign negligible probabilities to joint extremes.

  then D(e) = D(j) ∪ D(k) ∪ (I(j) ∩ I(k)) and I(e) = (I(j) ∪ I(k))\D(e).

Figure 1 :

 1 Figure 1: Graphical representation of C-and D-vines. The pair copulas in each tree of a 5-dimensional C-vine (left; conditioning variables are shown in grey) and of a 5-dimensional D-vine (right; conditioning variables are those between the connected nodes).

  [START_REF] Aas | Pair-copula constructions of multiple dependence[END_REF] provided algorithms to compute the Rosenblatt transform (23) and its inverse when C X is a given C-or D-vine. Given the pair-copulas C ij in the first tree of the vine, the algorithms first compute their derivatives C i|j . Higher-order derivatives C i|ijk , C i|ijkh , . . . are obtained from the lower-order ones and their inverses by iteration. The derivatives of continuous pair copulas are available analytically in few cases (see, e.g.,[START_REF] Schepsmeier | Derivatives and Fisher information of bivariate copulas[END_REF]) and numerically otherwise. Since these functions are monotone increasing distributions, their inverses are numerically cheap to compute by rootfinding, when not available analytically. An algorithm for the computation of the Rosenblatt and inverse Rosenblatt

2

  and CoV( Pf;IS ) ≈ σ( Pf;IS )/ Pf;IS . Since the latter is given in terms of Pf;IS , it is unknown until Pf;IS is computed. One can progressively increase the sample size n until CoV( Pf;IS )

Figure 2 :

 2 Figure 2: Scheme of the horizontal truss model. Modified from Blatman and Sudret (2011).

Figure 3 :

 3 Figure 3: Estimates of the deflection moments. Estimates of the errors on µ(∆) (left panel) and on σ(∆) (right panel) obtained using an increasing number of samples by MCS (solid lines)

Figure 4 :

 4 Figure 4: Reliability analysis of the truss structure. Solid lines: MC estimate of the survival function P(∆ > δ) for loads coupled by the independence copula C (Π) (yellow), the Gaussian copula C (N ) (red), the C-vine with known parameters C (V) (blue, mostly overlapping with green), and the C-vine with fitted parameters Ĉ(V) (green). The vertical dashed line marks the critical threshold δ * . Squares: estimates of P f obtained by FORM.

  Pair copulas of inferred C-vine for horizontal truss, under Gaussian assumption. Pair copulas of the C-vine model for the loads on the horizontal truss model, obtained from 300 samples of C (

Figure 5 :

 5 Figure 5: Dome structure and average response to loads. A) Truss model, consisting of 37 central nodes (grey dots, 1-37), 12 support nodes (black squares, 37-49) and 120 bars connecting them, divided into 7 groups. B) Profile of the dome with spatial dimensions. C) Sectors of the dome surface and nodes in each sector. The color of each sector represents the total average load weighing on each node in the sector (left color bar). The color of each node marks the average vertical displacement of that node in response to the loading, calculated over 1000 Monte Carlo simulations.

  Figure 5C shows in two different color codes the average weights on the nodes in each sector (left color bar) and the resulting average vertical displacement of each node (right color bar). Negative displacement indicates that the node moved downwards. Some nodes exhibited positive displacements, i.e., uplifting.

Figure 6 :

 6 Figure 6: Errors on moments of dome's deflection ∆. Estimates of the errors on µ(∆) (left panel) and on σ(∆) (right panel) obtained using an increasing number of samples by MCS (solid lines) and by PCE (dashed lines), for loads coupled by C (Π) (yellow), C (N ) (red), C (V) (blue)

Figure 7 :

 7 Figure 7: Dome failure probability. The solid lines show the MC estimates of the response CDF F ∆ (δ) = P(∆ ≤ δ) (for values down to 10 -3 ) under loads coupled by C (Π) (yellow), C (N )

  Zentner, I. (2017). A general framework for the estimation of analytical fragility functions based on multivariate probability distributions. Structural Safety 64, 54-61.

  

  where y * is a critical threshold (see Table1, first row). Their sample estimators are the sample mean μn (Y ), the corrected sample standard deviation σn (Y ), and the sample survival function evaluated at y * , Pf;y * ,n (Y ). Their analytical expression is given in Table1, second row.

Table 1 :

 1 Some MC sample estimates and their CoV. The first row of the table defines the mean, standard deviation, and failure probability of the random variable Y . The second row shows their sample estimators, and the bottom row the CoV of such estimators (exact for σn (Y ) only if Y is normally distributed).

It is common in engineering applications to accept estimates whose CoV is not larger than 0.1 (10%). The CoV of all statistics in Table

1

, third row (approximate for σn (Y ))

Table 2 :

 2 Pair copulas of inferred C-vine for loads on horizontal truss. Pair copulas of the C-vine model Ĉ(V) for the loads on the horizontal truss model, obtained from 300 samples of C

			Parameter values	τ K	λ u
	C 13	Clayton, rotated 180 θ = 0.1806	0.0828 0.0215
	C 12	Tawn-2	θ 1 = 1.439, θ 2 = 0.3406	0.1522 0.1975
	C 16	Gumbel	θ = 1.103	0.0934 0.1254
	C 14	Tawn, rotated 180	θ 1 = 7.506, θ 2 = 0.05197, θ 3 = 0.2982	0.0454 0
	C 15	Clayton, rotated 180 θ = 0.3794	0.1595 0.1609
	C 35|1	Tawn	θ 1 = 11.05, θ 2 = 0.1338, θ 3 = 0.1178	0.0658 0.1151

Table 4 :

 4 Estimates of the truss failure probability. Estimates of P f obtained with different copulas and methods (for MCS with standard deviation of the estimator; reference solution in bold), CoV of the MC estimate (see Table

	-4 ): 0.15 ± 0.01 0.34 ± 0.02 5.04 ± 0.07 3.30 ± 0.06 CoV( Pf ) (%): 8.2 5.4 1.4 2.3	0.037 0.10 4.88 2.94 ----
	# runs:	10 7	10 7	10 7	10 7	219	219	108	128

Table 6 :

 6 Dome's structural parameters and loads. Cross-section of each group of bars that minimises the total structural weight under stress and x-, y-displacement constraints, resulting structural weight, and additional loads on each node. Values provided by

			Optimal cross-sectional areas (cm 2 )			Weight (kN)	Loads (kN)
	Group:	1	2	3	4	5	6	7	89.35	Node: 1 2-13 14-37
	Area: 24.38 21.79 26.61 17.64 10.38 22.79 16.38		Load: 60	30	10

Table 7 :

 7 a strong positive correlation to the loads and a high probability of having joint extremes if one of the loads takes values in its upper tail. The Gaussian copula was taken Load statistics on each dome sector. For each node sector from A to I: nodes in the sector, structural load L fix per node , average external load L ext per node, moments of the total load L tot .

	Sector	A	B	C	D	E	F	G	H	I
	Nodes	1	2-4	5-7	8-10 11-13 14-19 20-25 26-31 32-37
	L fix /Node (kN)	60		30 each			10 each	
	Sector's Area (m 2 ) 37.84		257.00 each			496.38 each	
	Area/Node (m 2 ) 37.84		86.33 each			82.73 each	
	L ext /m 2 (kN)	1	1	0.5	0.25	0.5	1	0.5	0.25	0.5
	µ(L ext /Node) (kN) 37.84 21.58 10.79 5.40 10.79 20.68 10.34	5.17	10.34
	µ(L tot /Node) (kN) 97.84 51.58 40.79 35.40 40.79 30.68 20.34 15.17 20.34
	σ(L tot /Node) (kN) 7.57	4.32	2.16	1.08	2.16	4.14	2.07	1.03	2.07

Table 8 :

 8 Pair copulas of inferred C-vine for loads on dome structure. Pair copulas of the C-vine model Ĉ(V) for the loads on the dome structure, obtained from 300 samples of C

	Copula Family	Parameter values	τ K	λ u
	C AB	Gumbel θ = 5.093	0.8037 0.8542
	C AC	Gumbel θ = 4.836	0.7932 0.8459
	C AD	Gumbel θ = 5.151	0.8059 0.8560
	C AE	Gumbel θ = 4.775	0.7906 0.8438
	C AF	Gumbel θ = 4.631	0.7841 0.8385
	C AG	Gumbel θ = 5.018	0.8007 0.8519
	C AH	Gumbel θ = 4.712	0.7878 0.8415
	C AI	Tawn-2 θ 1 = 5.257, θ 2 = 0.967 0.7875 0.8445

Table 9 :

 9 Moments of dome's deflection for different load couplings. PCE estimates of

	µ(∆) and σ(∆) for different copulas among the loads, based on 1000 observations. Reference
	solutions in bold.				
					7 "		
		10 -1					
		10 -2					
	Error	10 -3					
	Relative	10 -4					
		10 -5					
		10 10 -6	25	50	100	250	500	1000
				Nr. of Simulations		

Table 10 :

 10 Estimates of the dome failure probability. Estimates of P f obtained with different copulas and methods (reference solution in bold), CoV of the MC and IS estimates, and number of runs needed for the estimation.

	-5 ): 680 ± 120 CoV( Pf ) (%): 17.6	--	--	--	800 -	25 -	2.53 2.56 --	713 ± 70 24.7 ± 2.4 3.13 ± 0.29 3.27 ± 0.30 9.9 9.9 9.3 9.3
	tot. # runs:	5000	5000 5000 5000	182	349	276	181	482	749	876	781

  Table 11 lists the 19 parametric families of pair copulas implemented in the VineCopulaMatlab toolbox

  • and becomes its survival version. This allows copulas with lower tail dependence to be used to model upper tail dependence, and vice versa, by 180 • rotation. Copulas rotated by 90 • and 270 • model negative dependence.

Vine representations for UQ methods assuming independent inputsSome advanced UQ techniques require or benefit from inputs X with independent components. For instance, PCE (

Section 4.2) exploits independence to build a basis of polynomials orthonormal with respect to F X by tensor product. This in turn simplifies the construction of a metamodel that expresses Y as a polynomial of the inputs. FORM and SORM (Section 4.3), as well as other reliability methods, take advantage of the probability measure of the standard normal space to approximate low probability mass regions. When the components of X are mutually dependent but independence is needed, it is therefore custom to transform X into a vector Z with independent components. The transformation T that performs this mapping thus changes the copula C X of X into the independence copula C(Π) defined in (11). When T also makes F Z rotationally invariant, it is called an isoprobabilistic transform. This section discusses existing isoprobabilistic transformations, relates them to copula theory, and highlights the existence of algorithms for their computation when C X is expressed as an R-vine. By doing so, we demonstrate that vine copulas provide effective models of complex input dependencies also in combination with UQ approaches designed for
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Table 11: Distributions of bivariate copula families used for inference of vine copulas.

The copula IDs are reported as assigned in the VineCopulaMatlab toolbox used here [START_REF] Kurz | Vine copulas with matlab[END_REF]. (a) Φ is the univariate standard normal distribution, and Φ 2;θ is the bivariate normal distribution with zero means, unit variance and correlation parameter θ. (b) t ν is the univariate t distribution with ν degrees of freedom, and t ν,θ is the bivariate t distribution with ν degrees of freedom and correlation parameter θ.

ID Name 

Table 12: Some properties of the considered pair copulas. Kendall's tau, tail dependence coefficients, subfamilies of pair copulas that obtain for specific parameter values. (a) We derived the analytical expression of τ K for the asymmetric and iterated FGM copulas using the RHS of ( 7). (b) is the digamma function. (c) We derived the analytical expression of the tail dependence coefficients by using (10), by noting that A(w) = 1 + 1 2 (θ θ 1 2 + θ θ 1 3 ) 1/θ 1 -(θ 2 + θ 3 ) when u = v and, for λ u , by calculating the limit through first order Taylor expansion. (d) t ν is the univariate t distribution with ν degrees of freedom.