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We introduce the Gaussian process (GP) modelling module developed within the UQLab software framework. The novel design of the GP-module aims at providing seamless integration of GP modelling into any uncertainty quantification workflow, as well as a standalone surrogate modelling tool. We first briefly present the key mathematical tools at the basis of GP modelling (a.k.a. Kriging), as well as the associated theoretical and computational framework. We then provide an extensive overview of the available features of the software and demonstrate its flexibility and user-friendliness. Finally, we showcase the usage and the performance of the software on several applications borrowed from different fields of engineering. These include a basic surrogate of a well-known analytical benchmark function, a hierarchical Kriging example applied to wind turbine aero-servo-elastic simulations and a more complex geotechnical example that requires a non-stationary, user-defined correlation function. The GP-module, like the rest of the scientific code that is shipped with UQLab, is open source (BSD license).

Introduction

Uncertainty quantification (UQ) through computer simulation is an interdisciplinary field that has seen a rapid growth in the last decades. Broadly speaking, it aims at i) identifying and quantifying the uncertainty in the input parameters of numerical models of physical systems, and ii) quantitatively assessing its effect on the model responses. Such a general formulation comprises a number of applications, including structural reliability [START_REF] Lemaire | Structural reliability[END_REF], sensitivity analysis (Saltelli et al. 2000), reliability-based design optimisation (Tsompanakis et al. 2008) and Bayesian techniques for calibration and validation of computer models [START_REF] Dashti | The bayesian approach to inverse problems[END_REF].

1 Due to the high cost of repeatedly evaluating complex computational models, analyses with classical sampling techniques such as Monte Carlo simulation are often intractable. In this context, meta-modelling techniques (also known as surrogate modelling) allow one to develop fast-to-evaluate surrogate models from a limited collection of runs of the original computational model, referred to as the experimental design [START_REF] Wiley | Sensitivity analysis[END_REF][START_REF] Fang | Design and modeling for computer experiments[END_REF][START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF]. Popular surrogate modelling techniques include Kriging [START_REF] Sacks | Design and analysis of computer experiments[END_REF], polynomial chaos expansions [START_REF] Ghanem | Stochastic finite elements -A spectral approach[END_REF][START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF] and support vector regression [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF].

Kriging is a surrogate modelling technique first conceived by [START_REF] Krige | A statistical approach to some basic mine valuation problems on the witwatersrand[END_REF] in the field of geostatistics and later introduced for the design and analysis of computer experiments by [START_REF] Sacks | Design and analysis of computer experiments[END_REF] and [START_REF] Welch | Screening, predicting, and computer experiments[END_REF]. The potential applications of Kriging in the context of civil and mechanical engineering, range from basic uncertainty propagation to reliability and sensitivity analysis [START_REF] Marrel | An efficient methodology for modeling complex computer codes with gaussian processes[END_REF][START_REF] Gaspar | Assessment of the efficiency of kriging surrogate models for structural reliability analysis[END_REF][START_REF] Iooss | A review on global sensitivity analysis methods[END_REF][START_REF] Gratiet | Metamodel-based sensitivity analysis: polynomial chaos expansions and Gaussian processes[END_REF][START_REF] Moustapha | Comparative study of Kriging and support vector regression for structural engineering applications[END_REF]. Beyond approximating the output of a computational model, Kriging surrogates also provide local estimates of their accuracy (via the variance of the Kriging predictor). This enables adaptive schemes e.g. in the context of reliability analysis [START_REF] Echard | AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[END_REF][START_REF] Dubourg | Metamodel-based importance sampling for reliability sensitivity analysis[END_REF] or surrogate model-based design optimisation [START_REF] Simpson | Kriging models for global approximation in simulation-based multidisciplinary design optimization[END_REF][START_REF] Moustapha | Quantilebased optimization under uncertainties using adaptive kriging surrogate models[END_REF]. The local error estimates of a Kriging surrogate have also led to improved Bayesian calibration of computer models (see e.g. [START_REF] Bachoc | Calibration and improved prediction of computer models by universal Kriging[END_REF]).

Although in its standard form Kriging is a stochastic interpolation method, certain extensions have been proposed for dealing with noisy observations. Such extensions have been of particular interest to the machine learning community and they are commonly referred to as Gaussian process regression [START_REF] Rasmussen | Gaussian processes for machine learning, Adaptive computation and machine learning[END_REF].

A number of dedicated toolboxes are readily available for calculating Kriging surrogate models. Of interest to this review is general purpose software not targeted to specific Kriging applications, because they are typically limited to two or three dimensional problems (see e.g. gslib [START_REF] Deutsch | Geostatistical software library and user's guide[END_REF]). Within the R community one of the most comprehensive and well-established Kriging packages is arguably DiceKriging, developed by the DICE consortium [START_REF] Roustant | DiceKriging, DiceOptim : Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization[END_REF]. This set of packages provides Kriging meta-modelling as part of a framework for adaptive experimental designs and Kriging-based optimisation based on the packages DiceDesign and DiceOptim [START_REF] Dupuy | DiceDesign and DiceEval: Two R packages for design and analysis of computer experiments[END_REF][START_REF] Picheny | DiceOptim: Kriging-Based Optimization for Computer Experiments[END_REF]. scikit-learn provides a python-based, machine-learning-oriented implementation of Gaussian processes for regression and classification [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. Alternatively, PyKriging [START_REF] Paulson | pyKriging: A Python Kriging Toolkit[END_REF] offers a Kriging toolbox in python that offers basic functionality with focus on user-friendliness. Gpy (GPy 2012) offers a Gaussian process framework with focus on regression and classification problems. Within the Matlab programming language the first Kriging toolbox with widespread use was DACE [START_REF] Lophaven | Aspects of the Matlab toolbox DACE[END_REF]. DACE was later extended to ooDACE [START_REF] Couckuyt | ooDACE Toolbox: A Flexible Object-Oriented Kriging Implementation[END_REF], an object-oriented Kriging implementation with a richer feature set.

Small Toolbox for Kriging [START_REF] Bect | STK: a Small (Matlab/Octave) Toolbox for Kriging[END_REF]) offers an alternative Kriging implementation that is mainly focused on providing a set of functions for Kriging surrogate modelling and design of experiments. GPML [START_REF] Rasmussen | Gaussian Processes for Machine Learning (GPML) Toolbox[END_REF] offers a library of functions that are directed towards Gaussian processes for regression and classification in a machine learning context. Finally, recent versions of Matlab (starting from R2015b) provide a rapidly growing Gaussian process library for regression and classification.

Due to the variety of potential applications of Kriging, different toolboxes tend to be focused on a specific user niche. There is limited availability of general purpose Kriging toolboxes that allow for seamless integration within various UQ workflows ranging from e.g. basic uncertainty propagation to reliability analysis and surrogatemodel-based optimisation. To this end, the Kriging toolbox presented here was developed as a module of the general purpose UQ framework, UQLab (Marelli & Sudret (2014), www.uqlab.com). In addition, although most of the aforementioned toolboxes offer a significant set of configuration options, the support for fully customisable Kriging is often limited or not easily accessible, which can be a drawback in a research environment. Finally, the user experience may vary from user-friendly to complex (especially to access the most advanced features), often requiring a significant degree of programming knowledge. This might be rather inconvenient for applied scientists and practitioners with limited programming knowledge. Following these premises, this paper introduces the UQLab Gaussian process modelling tool (GP-module) focusing on its unique embedding into a complex uncertainty quantification environment, its user-friendliness and customisability.

The paper is structured as follows: in Section 2 a theoretical introduction to Kriging is given to highlight its main building blocks. In Section 3 the key-features of the GP-module are presented. Finally, a set of application examples is used to showcase in detail the usage of the software in Section 4, followed by a summary and a road map of the upcoming developments in Section 5.

Kriging theory

Kriging basics

Any metamodeling approach, such as Kriging, aims at approximating the response of a computational model given a finite set of observations. In this context, consider a system whose behaviour is represented by a computational model M which maps the M -dimensional input parameter space D x to the 1-dimensional output space, i.e. M : x ∈ D x ⊂ R M → y ∈ R where x = {x 1 , . . . , x M } . The Gaussian process mean in each case is denoted by a black line.

Kriging is a meta-modelling technique which assumes that the true model response is a realisation of a Gaussian process described by the following equation [START_REF] Wiley | Sensitivity analysis[END_REF]:

M K (x) = β f (x) + σ 2 Z(x, ω) (1) 
where β f (x) is the mean value of the Gaussian process, also called trend, σ 2

is the Gaussian process variance and Z(x, ω) is a zero-mean, unit-variance Gaussian process. This process is fully characterised by the auto-correlation function between two sample points R(x, x ; θ). The hyperparameters θ associated with the correlation function R(•; θ) are typically unknown and need to be estimated from the available observations.

Having specified the trend and the correlation function parameters it is possible to obtain an arbitrary number of realisations of the so-called prior Gaussian process (see Figure 1 left). In the context of metamodelling the goal is to calculate a prediction M K (x) for a new point x, given an experimental design X = x (1) , . . . , x (N ) of size N and the corresponding (noise-free) model responses y = {y (1) = M(x (1) ), . . . , y (N ) = M(x (N ) )} . A Kriging metamodel (a.k.a. Kriging predictor) provides such predictions based on the properties of the so-called posterior Gaussian process conditioned on the available data (see Figure 1 right). The Kriging prediction on x corresponds to a random variate

Y (x) ∼ N µ Y (x), σ Y (x) ,
therefore the approximation of the computational model that is obtained is essen-tially an infinite family of such models. Each of these models is a realisation (or sample) of the posterior Gaussian process. In practice the mean response is used (see Eq. ( 6)) as the Kriging surrogate, while its variance (see Eq. ( 7)) is often interpreted as a measure of the local error of the prediction. The equations for calculating the mean and variance of a universal Kriging predictor are given next.

The Gaussian assumption states that the vector formed by the true model responses, y and the prediction, Y (x), has a joint Gaussian distribution defined by:

Y (x) y ∼ N N +1 f (x)β F β , σ 2 1 r (x) r(x) R ( 2 
)
where F is the information matrix of generic terms:

F ij = f j (x (i) ) , i = 1, . . . , N, j = 1, . . . , P, (3) 
r(x) is the vector of cross-correlations between the prediction point x and each one of the observations whose terms read:

r i (x) = R(x, x (i) ; θ), i = 1, . . . , N. (4) 
R is the correlation matrix given by:

R ij = R(x (i) , x (j) ; θ), i, j = 1, . . . , N. (5) 
The mean and variance of the Gaussian random variate Y (x) (a.k.a. mean and variance of the Kriging predictor) can be calculated based on the best linear unbiased predictor properties [START_REF] Wiley | Sensitivity analysis[END_REF]:

µ Y (x) = f (x) β + r(x) R -1 (y -F β) , (6) 
σ 2 Y (x) = σ 2 1 -r (x)R -1 r(x) + u (x)(F R -1 F ) -1 u(x) (7) 
where:

β = F R -1 F -1 F R -1 y (8)
is the generalised least-squares estimate of the underlying regression problem and

u(x) = F R -1 r(x) -f (x). ( 9 
)
Once µ Y (x)v and σ 2 Y (x) are available, confidence bounds on predictions can be derived by observing that:

P Y (x) ≤ t = Φ t -µ Y (x) σ Y (x) , (10) 
where Φ(•) denotes the Gaussian cumulative distribution function. Based on Eq. ( 10) the confidence intervals on the predictor can be calculated by:

Y (x) ∈ µ Y (x) -Φ -1 1 - α 2 σ Y (x) , µ Y (x) + Φ -1 1 - α 2 σ Y (x) (11) 
and can be interpreted as the interval within which the Kriging prediction falls with probability 1α.

The equations that were derived for the best linear unbiased Kriging predictor assumed that the covariance function σ 2 R(•; θ) is known. In practice however, the family and other properties of the correlation function need to be selected a priori.

The hyperparameters θ, the regression coefficients β and the variance σ 2 need to be estimated based on the available experimental design. This involves solving an optimisation problem that is further discussed in Section 2.4. 

Trend

The trend refers to the mean of the Gaussian process, i.e. the β f (x) term in Eq. ( 1). Using a non-zero trend is optional but it is often preferred in practice (see e.g. [START_REF] Rasmussen | Gaussian processes for machine learning, Adaptive computation and machine learning[END_REF], [START_REF] Schöbi | Polynomial-chaos-based Kriging[END_REF]). Note that the mean of the Kriging predictor in Eq. ( 6) is not confined to be zero when the trend is zero.

In the literature, it is customary to distinguish between Kriging metamodels depending on the type of trend they use [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF][START_REF] Wiley | Sensitivity analysis[END_REF][START_REF] Rasmussen | Gaussian processes for machine learning, Adaptive computation and machine learning[END_REF]. The most general and flexible formulation is universal Kriging, which assumes that the trend is composed of a sum of P arbitrary functions f k (x),

i.e.

β f (x) = P k=1 β k f k (x). ( 12 
)
Some of the most commonly used trends for universal Kriging are given for reference in Table 1. Simple Kriging assumes that the trend has a known constant value, i.e. P = 1, f 1 (x) = 1 and β 1 is known. In Ordinary Kriging the trend has a constant but unknown value, i.e. P = 1, f 1 (x) = 1 and β 1 is unknown.

Trend Formula constant (ordinary Kriging)

β 0 linear β 0 + M i=1 β i x i quadratic β 0 + M i=1 β i x i + Σ M i=1 Σ M j=1 β ij x i x j
Table 1: Formulas of the most commonly used Kriging trends.

Correlation function

The correlation function (also called kernel in the literature, or covariance function if it includes the Gaussian process variance σ 2 ) is a crucial ingredient for a Kriging metamodel, since it contains the assumptions about the function that is being approximated. An arbitrary function of (x, x ) is in general not a valid correlation function. In order to be admissible, it has to be chosen in the set of positive definite kernels. However, checking for positive definiteness of a kernel can be a challenging task. Therefore it is usually the case in practice to select families of kernels known to be positive definite and to estimate their parameters based on the available experimental design and model responses (see Section 2.4). A usual assumption is to consider kernels that depend only on the quantity h = xx which are called stationary. A list of stationary kernels commonly used in the literature can be found in Table 2. Different correlation families result in different levels of smoothness for the associated Gaussian processes, as depicted in Figure 2 [START_REF] Rasmussen | Gaussian processes for machine learning, Adaptive computation and machine learning[END_REF].

Name Formula Linear R(h; θ) = max 0, 1

-|h| θ Exponential R(h; θ) = exp -|h| θ Matérn 3/2 R(h; θ) = 1 + √ 3|h| θ exp - √ 3|h| θ Matérn 5/2 R(h; θ) = 1 + √ 5|h| θ + 5h 2 3θ 2 exp - √ 5|h| θ Gaussian (squared exponential) R(h; θ) = exp -M i=1 h θ 2
Table 2: List of available correlation families.

In case of multidimensional inputs (M > 1) it is common practice to obtain admissible kernels as functions of one-dimensional correlation families as the ones in Table 2. Two standard approaches in the literature are the separable correlation type [START_REF] Sacks | Design and analysis of computer experiments[END_REF]):

R(x, x ; θ) = M i=1 R(x i , x i , θ i ) (13)
and the ellipsoidal type [START_REF] Rasmussen | Gaussian processes for machine learning, Adaptive computation and machine learning[END_REF]:

R(x, x ; θ) = R(h) , h = M i=1 x i -x i θ i 2 . ( 14 
)
Although typically θ ∈ R M this is not necessarily true in the general case, since the number of components of θ that correspond to each input dimension may vary. In the current stage, it is assumed however that one element of θ is used per dimension for notational clarity.

In certain scenarios (e.g. based on prior knowledge), isotropic correlation functions can be used for multidimensional inputs. In that case the same correlation function parameters θ are used for each input dimension in Eq. ( 13) and Eq. ( 14).

Estimating the hyperparameters

In most practical applications of Kriging surrogate modelling, the hyperparameters θ are estimated given an experimental design X and model responses y. Maximum likelihood and cross-validation are the most commonly used methods for doing so and further discussed next.

The maximum likelihood approach aims at finding the set of parameters β, θ, σ 2 such that the likelihood of the observations y = {M(x 1 ), . . . , M(x N )} is maximal. Since y follows a multivariate Gaussian distribution, the likelihood function reads:

L(y | β, σ 2 , θ) = det(R) -1/2 (2πσ 2 ) N/2 exp - 1 2σ 2 (y -F β) R -1 (y -F β) . ( 15 
)
For any given value of θ, the maximisation of the likelihood w.r.t. β and σ 2 is a convex quadratic programming problem. Consequently, it admits closed form generalized least-squares estimates of β and σ 2 (for proof and more details see e.g.

Santner et al. (2003))

:

β = β(θ) = F R -1 F -1 F R -1 y , (16) 
σ 2 = σ 2 (θ) = 1 N (y -F β) R -1 (y -F β) . ( 17 
)
The value of the hyperparameters θ is calculated by solving the optimisation problem:

θ = arg min D θ -log L(y | β, σ 2 , θ) . ( 18 
)
Based on Eqs ( 15) -( 17) the optimisation problem in Eq. ( 18) can be written as follows:

θ = arg min D θ 1 2 log(det(R)) + N 2 log(2πσ 2 ) + N 2 . ( 19 
)
The cross-validation method (also known as K-fold cross-validation) is based instead on partitioning the whole set of observations S def = {X , y} into K mutually exclusive and collectively exhaustive subsets {S k , k = 1, . . . , K} such that

S i ∩ S j = ∅ , ∀(i, j) ∈ {1, . . . , K} 2 and K k=1 S k = S. (20) 
The k-th set of cross-validated predictions is obtained by calculating the Kriging predictor using all the subsets but the k-th one and evaluating its predictions on that specific k-th fold that was left apart. The leave-one-out cross-validation procedure corresponds to the special case that the number of classes is equal to the number of observations (K = N ).

In the latter case the objective function is [START_REF] Wiley | Sensitivity analysis[END_REF][START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyperparameters of Gaussian processes with model misspecifications[END_REF]):

θ = arg min D θ K i=1 M(x (i) ) -µ Y ,(-i) (x (i) ) 2 (21) 
where µ Y ,(-i) (x (i) ) is the mean Kriging predictor that was calculated using S \

x (i) , y (i) evaluated at point x (i) . Notice that for the case of leave-one-out crossvalidation, i is an index but in the general case i is a vector of indices. Calculating the objective function in Eq. ( 21) requires the calculation of K Kriging surrogates.

The computational requirements for performing this operation can be significantly reduced as shown in [START_REF] Dubrule | Cross validation of Kriging in a unique neighborhood[END_REF].

The estimate of σ 2 is calculated using the following equation [START_REF] Cressie | Statistics for Spatial Data[END_REF][START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyperparameters of Gaussian processes with model misspecifications[END_REF]:

σ 2 = σ 2 (θ) = 1 K K i=1 M(x (i) ) -µ Y ,(-i) (x (i) ) 2 σ 2 Y ,(-i) (x (i) ) (22)
where σ 2 Y ,(-i) (x (i) ) denotes the variance of a Kriging predictor that was calculated using S \ x (i) , y (i) , evaluated at point x (i) . When i is a set of indices, the division and the squared operations in Eq. ( 22) are performed element-wise.

Numerically solving the optimisation problems described in Eq. ( 19) (maximum likelihood case) or Eq. ( 21) (cross-validation case) relies on either local (e.g. gradient-based) or global (e.g. evolutionary) algorithms. On the one hand, local methods tend to converge faster and require fewer objective function evaluations than their global counterparts. On the other hand, the existence of flat regions and multiple local minima, especially for larger input dimension, can lead gradient methods to poor performance when compared to global methods. It is common practice to combine both strategies sequentially to improve global optimisation results with a final local search (which is also known as hybrid methods).

It can be often the case in engineering applications that different components of the input variable x take values that differ by orders of magnitude. In such cases, potential numerical instabilities can be avoided by scaling X → U, e.g. as follows:

u (i) j = x (i) j -E [X j ] Var [X j ] , i = 1, . . . , N , j = 1, . . . , M (23) 
where

u (i) j (resp. x (i) j
) refer to the i-th sample of the j-th component of U (resp. of X ) and E [X j ] and Var [X j ] refer to the empirical mean and variance of the j-th component of X .

3 The UQLab Gaussian process modelling module

The UQLab project

UQLab is a software framework developed by the Chair of Risk, Safety and Uncertainty Quantification at ETH Zürich [START_REF] Marelli | UQLab: A framework for uncertainty quantification in Matlab[END_REF]. The goal of this project is to provide an uncertainty quantification tool that is accessible also to a non-highly-IT trained scientific audience. Due to the broadness of the UQ scope, a correspondingly general theoretical framework is required. The theoretical backbone of the UQLab software lies in the global uncertainty framework developed by [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF], De Rocquigny et al. (2008), sketched in Figure 3a. According to this framework, the solution of any UQ problem can generally be decomposed into the following steps:

Step A Define the physical model and the quantities of interest for the analysis.

It is a deterministic representation of an arbitrarily complex physical model, e.g. a finite element model in civil and mechanical engineering.

In this category also lie metamodels, such as Kriging, since once they are calculated they can be used as surrogates of the underlying "true" model.

Step B Identify and quantify the sources of uncertainty in the parameters of the system that serve as input for Step A. They are represented by a set of random variables and their joint probability density function (PDF).

Step C Propagate the uncertainties identified in Step B through the computational model in Step A to characterise the uncertainty in the model response. This type of analyses include moments analysis, full PDF characterisation, rare events estimation, sensitivity analysis, etc.

Step C' Optionally, exploit the by-products of the analysis in Step C to update the sources of uncertainty, e.g. by performing model reduction based on sensitivity analysis.

These components introduce a clear semantic distinction between the elements involved in any UQ problem: model, input and analysis. This theoretical framework provides the ideal foundation for the development of the information flow model in a multi-purpose UQ software.

At the core of UQLab lies a modular infrastructure that closely follows the semantics previously described, graphically represented in Figure 3b. The three steps identified in Figure 3a are directly mapped to core modules in Figure 3b: model corresponds to Step A (physical modelling, metamodeling), input to Step B (sources of uncertainty) and analysis to Step C (uncertainty analysis). Within the UQLab framework, a module refers to some particular functionality, e.g. the GP-module provides Kriging surrogate modelling. Each module extends the functionalities of one of the core modules. It can be either self-contained or capitalise on other modules for extended functionalities.

The real "actors" of a UQ problem are contained in the objects connected to each of the core modules. A typical example of such objects would be an input object that generates samples distributed according to arbitrary PDFs, a model object that runs a complex FEM simulation, or an analysis object that performs reliability analysis. The platform allows one to define an arbitrary number of objects and select the desired ones at various stages of the solution of a complex UQ problem. 

The GP-module

Kriging is one of the metamodelling modules available in UQLab [START_REF] Lataniotis | UQLab user manual -kriging (gaussian process modelling)[END_REF]). Following the semantics described in the previous section, it is attached to the model core module. Although the GP-module itself can be used by other modules, e.g. an analysis module performing reliability analysis combining Kriging and Monte Carlo Simulation (AK-MCS) [START_REF] Echard | AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[END_REF], Marelli et al. 2017), the focus of this work is on the capabilities of the GP-module itself.

An overview of the available features of the GP-module is given in Table 3. The GP-module incorporates the four ingredients identified in Section 2.1:

• Trends: Universal Kriging trends are fully supported, including simple, ordinary, or polynomial of arbitrary degree. In addition, custom basis functions f (x) or a completely custom trend function may be specified

• Correlation functions: Standard correlation families from the literature are readily available as well as the possibility of creating user-defined ones. For multi-dimensional inputs ellipsoidal and separable correlation functions can be used, allowing also for isotropic ones. Fully user-specified correlation functions are also supported

• Estimation methods: Maximum likelihood (Eq. ( 19)) and cross-validation (Eq. ( 21)) methods can be used for estimating the hyper-parameters

• Optimisation methods: Matlab's built-in local and global optimisation methods are offered, namely BFGS and genetic algorithm as well as genetic algorithm with BFGS refinement (hybrid).

In addition, various scaling operations are allowed for avoiding numerical instabilities during the hyperparameters estimation. Such operations may vary from simple zero-mean scaling to more advanced ones such as isoprobabilistic transformations by interfacing with other UQLab modules. The first line clarifies the type of UQLab object that is being requested. Following the general UQ Framework in Figure 3a a model object of type 'Metamodel' is created. The next line specifies the type of metamodel, followed by the manual specification of the experimental design. Finally the UQLab command uq_createModel is used in order to create a model object using the configuration options in KOptions.

The resulting Kriging metamodel object myKriging contains all the required information to compute the mean and variance of the Kriging predictor on new test points (X). This can be done using the following command:

[meanY, varY] = uq_evalModel(myKriging, X);

where meanY corresponds to the mean and varY to the variance of the Kriging predictor on the test points (see Eqs. ( 6), ( 7)).

Once the metamodel is created, a report of the main properties of the Kriging surrogate model can be printed on screen by: uq_print(myKriging); %--------------Kriging metamodel --------------% 

-----------------------------------------------%
It can be observed that the default values for the trend, correlation function, estimation and optimisation method have been assigned (see Table 3). A visual representation of the metamodel can be obtained by: uq_display(myKriging);

Note that the uq_display command can only be used for quickly visualising Kriging surrogates when the inputs are one-or two-dimensional. The figure produced by uq_display is shown in Figure 4. 4 Application examples

Basic example

The goal of this introductory example is to calculate a Kriging surrogate of a wellknown surrogate modelling benchmark, the Branin-Hoo function. This function has been traditionally used as a benchmark for global optimisation methods (see e.g.

Jones et al. (1998)).

A slightly modified version is considered this work, that was first proposed as a surrogate modelling benchmark by [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF] due to its representative shape with respect to engineering applications. It is an analytical function given by:

M(x) = a x 2 -bx 2 1 + cx 1 -r 2 2 + s (1 -t) cos(x 1 ) + s , x ∈ R 2 . ( 24 
)
Some standard values of the parameters are used, namely a = 1, b = 5.1(4π 2 ), c = 5/π, r = 6, s = 10 and t = 1/(8π). The function is evaluated on the square

x 1 ∈ [-5, 10], x 2 ∈ [0, 15].
By taking advantage of the input and model modules of UQLab, the experimental design and model responses that will be used for calculating the surrogate A Kriging surrogate model using the XED, YED variables can be created as follows:

Two types of simulators are available for estimating the maximal bending moment given the wind conditions. A low-fidelity simulator can generate estimates of the output with minimal computation time at the cost of lower accuracy. On the other hand a high-fidelity simulator can more accurately predict the maximal bending moment at a significantly higher computational cost. In this example a total of 300 low-fidelity and 15 high-fidelity simulations are available. First a Kriging surrogate is computed on the low-fidelity dataset that is contained in variables XED_LF, YED_LF as follows: 

Kriging with custom correlation function

This example illustrates how the correlation function customisation capabilities of the GP-module can be used to apply Kriging in a non-standard setting.

Consider the discontinuous subsurface model given in Figure 7, which may represent the distribution of some soil property (e.g. porosity) in the presence of a fault. The true model consists in two realisations of two distinct random processes on the two regions A 1 and A 2 at the left and right of the fault, respectively: A Kriging surrogate model will be calculated using the following correlation function:

verse problem. The GP-module is freely available to the academic community since the first beta release of UQLab in July 2015.

The current version of the GP-module only allows for computing Kriging models on noisy data by explicitly providing the noise level via the nugget effect. The general case where the noise level is unknown and needs to be estimated (a.k.a.

Gaussian process regression) is currently under development and will be addressed in an upcoming release. In addition, the current version of the GP-module relies on additional Matlab toolboxes for performing the hyperparameter optimisation.

This may be a limiting factor to some users.

In addition to the modules currently exploiting its functionality (Polynomial Chaos-Kriging and Reliability analysis [START_REF] Marelli | UQLab user manual -Structural Reliability[END_REF], Schöbi et al. 2017)), new

UQLab modules that interface with the GP-module are currently under active development. The upcoming random fields module will offer several random field types (conditional and unconditional) together with advanced sampling methodologies and will be interfaced with the GP-module to offer trajectory resampling capabilities. Similarly, the upcoming Reliability-Based Design Optimisation (RBDO) module uses the surrogate modelling capabilities of the GP-module for solving RBDO problems as described in [START_REF] Moustapha | Quantilebased optimization under uncertainties using adaptive kriging surrogate models[END_REF].

A Kriging with custom correlation function:

implementation details

The aim of this section is to provide some additional implementation details on the application example in Section 4.3, in terms of the Matlab code involved.

The correlation function described in Eq. ( 27) can be translated to the following 

Figure 1 :

 1 Figure 1: Realisations of a prior (left) and posterior Gaussian process (right).

Figure 2 :

 2 Figure 2: Realisations of Gaussian processes, characterised by various correlation families and the same length-scale (θ) value.

UQLab

  first became freely available to the academic community on July 2015 as a beta version. On April 2017 the version 1.0 of UQLab was released. Starting from version 1.0 all the scientific code of the software is open-source (BSD license). By May 2018 around 1300 users have already registered and used it.

  (a) The theoretical UQ framework based on which any UQ problem can be described. (b) The modular structure of the UQLab framework. An arbitrary number of objects (Input, Model, Analysis) can be connected at any stage of the UQ problem.

Figure 3 :

 3 Figure 3: An abstract illustration of the UQLab architecture (b) based on the theoretical UQ framework in (a) by Sudret (2007).

  Following the general design principle of UQLab concerning user-friendliness, all the possible configuration options have default values pre-assigned to allow basic usage of the module with very few lines of code (see Section 4.1). A Matlab structure variable is used to specify a Kriging configuration, called KOptions in the following sections. To showcase the minimal working code for obtaining a Kriging surrogate a simple application is considered. The experimental design consists of 8 random samples in the [0, 15] interval and it is contained in the variable XED. The "true" model is M(x) = x sin(x) and the corresponding model responses are stored in the variable YED. The minimal code required for obtaining a Kriging surrogate, given XED and YED is the following: KOptions.Type = 'Metamodel'; KOptions.MetaType = 'Kriging'; KOptions.ExpDesign.X = XED; KOptions.ExpDesign.Y = YED; myKriging = uq_createModel(KOptions);

Figure 4 :

 4 Figure 4: The output of uq display of a Kriging model object having a one-dimensional input.

Figure 5 :

 5 Figure 5: From left to right: the Branin-Hoo function (true model) followed by the mean and standard deviation of the Kriging predictor. The experimental design is illustrated by red dots.

Figure 6 :

 6 Figure 6: Comparison of true model output (from high fidelity simulations) versus various Kriging surrogates on a validation set of size 150.

Figure 7 :

 7 Figure 7: Graphical visualisation of the subsurface model. The unknowns (length scales of each random field and the fault angle) are denoted by red colour.

  Matlab function: function R = my_eval_R( x1,x2,theta,parameters ) xc = 0.6; % the x-location of the crack on the surface yc = 1 ; % the y-location of the crack on the surface length_scales_1 angles of each sample of x1 angles_x1 = acos( (xc -x1(:,1))./sqrt((x1(:,1) -xc).^2 + ... (x1(:,2) -yc).^2 ) );

  

  The resulting best linear unbiased predictors are called empirical in Santner et al. (2003) because they typically result from empirical choice of various Kriging parameters that are further discussed in Sections 2.2 -2.4.

Table 4 :

 4 Listing of the true and estimated correlation function parameters, θ, for the Kriging surrogate of the subsurface model.

	Parameter	θ 11	θ 12	θ 21	θ 22	α
	True value	0.600 0.250 0.900 0.350 1.309
	Estimated value	0.310 0.271 0.310 0.374 1.342
	Relative error (%) 48.3 8.2	65.6 6.9	2.5
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All the required ingredients for obtaining a Kriging surrogate are assigned default values unless specified by the user (see Section 3.2). The surrogate that is obtained can be visually inspected by issuing the command: uq_display(myKriging);

The result of the uq_display command is shown in Figure 5. The Kriging surrogate myKriging can be used like any other model (e.g. myModel) to calculate its response given a new sample of the input X using the uq_evalModel function.

For example, the mean predictor, meanY, of 100 samples generated by Monte Carlo sampling can be computed as follows: X = uq_getSample(100); meanY = uq_evalModel(myKriging, X); More information can be extracted from the Kriging predictor using a slightly different syntax. The following code:

[meanY, varY, covY] = uq_evalModel(myKriging, X); allows to retrieve the 100 × 1 Kriging mean meanY, the 100 × 1 Kriging variance varY and the 100 × 100 full covariance matrix of the surrogate model responses covY.

Hierarchical Kriging

To further illustrate the flexibility that can be achieved with the use of arbitrary trend functions, a hierarchical Kriging application is showcased. Hierarchical Kriging [START_REF] Han | Alternative cokriging method for variable-fidelity surrogate modeling[END_REF]) is one Kriging extension aiming to fuse information from experimental designs related to different physical models of different fidelity. This is achieved by first calculating a Kriging surrogate using the low-fidelity observations and then using it as the trend of the high-fidelity surrogate. This approach can be extended to more fidelity levels in a similar fashion. A set of observations and model responses is used that originates from aero-servo-elastic simulations of a wind-turbine as presented in [START_REF] Abdallah | Fusing simulation results from multifidelity aeroservo-elastic simulators -application to extreme loads on wind turbines[END_REF]. Given a set of input parameters related to the wind flow, the output of interest is the maximal bending moment at the blade root of a wind turbine. where meanY_LF, meanY_HF and meanY_Hier correspond to the low-fidelity, highfidelity and hierarchical Kriging predictors respectively.

In Figure 6 a comparison of the true model output YVAL_HF versus the mean Kriging predictors is made. In each case the Root Mean Square Error (RMSE) is reported for quantifying the predictive performance of the surrogate:

where Y denotes the true model outputs (in this case YVAL_HF), µ Y the Kriging predictor mean (in this case variables meanY_LF, meanY_HF and meanY_Hier for each surrogate, respectively) and N the number of samples in the validation set.

In this example, by taking advantage of the low-cost, low-fidelity observations, the hierarchical Kriging predictor achieves a 68% decrease of the RMSE on the

where θ = {θ 1 , θ 2 , α}. There is a smooth dependence on x 1 , x 2 within each region, but no correlation between points that belong to different regions. The boundary between the two regions is fully defined by the crack angle, α, which is unknown and the fault location that is assumed to be known ({x 1 , x 2 } = {0.6, 1}).

The goal here is to use Kriging to interpolate the measurements taken at borehole locations A,B and C and estimate the 5 unknown parameters θ = {θ 1 , θ 2 , α}.

The correlation function of each region is the same, both in the true model and the Kriging surrogate, i.e. it is assumed to be known. In particular, the correlation function is separable Matérn 3/2 (see Eq. ( 13) and Table 2). The maximum-likelihood method is selected for estimating θ. Due to the complexity of the underlying optimisation problem a hybrid genetic algorithm with a relatively large population size and maximum number of generations is selected.

A Matlab implementation of the correlation function in Eq. ( 27) is given in Moreover, custom correlation functions are allowed to have an arbitrary number of hyperparameters. The only requirement is that the optimisation bounds (or initial value, depending on the optimisation method that is used) must have the same length as the number of the hyperparameters.

Summary and Outlook

In this paper the GP-module of the UQLab software framework was presented.

This UQLab module enables practitioners from various disciplines to get started with Kriging metamodelling with minimal effort as was illustrated in the introductory application in Section 4.1. However, it is also possible to access more advanced customisation, e.g. for research purposes. This was showcased in Section 4.2 where a hierarchical Kriging metamodel was developed and in Section 4.3 where a relatively complex, non-stationary correlation function was used to solve a geostatistical in-