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A RELAXATION SCHEME FOR TWO-PHASE MULTI-COMPONENT FLOWS

Michaël Baudin13, Frédéric Coquel2 and Quang-Huy Tran3

Abstract. Pursuing the program launched our previous works [Numer. Math. 99 (2005), 411–440]
and [SIAM J. Sci. Comput. 27 (2005), 914–936], we propose a relaxation scheme for the numerical
simulation of one-dimensional two-phase multi-component flows governed by a drift-flux model, the
main features of which are a large number of components and a high degree of nonlinearity in the
closure laws. In the explicit setting, the relaxation approach allows to ensure positivity for the densities
and the mass fractions. The relaxation method is worked out further so as to fit into a hybrid explicit-
implicit setting, where fast acoustic waves are treated implicitly to save computational time while slow
kinematic waves are treated explicitly in order to maintain accuracy on the transportation of materials.
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1. Introduction

As a sequel to [2,3], which were primarily concerned with the numerical simulation of a simplistic two-phase
flow drift-flux model [25, 28] via a relaxation method, this contribution is devoted to a more realistic model,
where several species —or components— may appear in each phase. Before elaborating on how the materials
of [1–3] can be adapted and enriched by new ingredients, we would like to set out the scope which this project
comes within, as well as the problems that await us.

In the transportation of oil and gas mixtures along a pipeline, it is capital to correctly model the mass
exchange between the two phases. This cannot be achieved with the gas-liquid model considered in [2,3], which
is also referred to as the non-compositional model and where mass balances are written for each phase. Instead,
we need a more physically relevant version, where mass balances are written for each specie and which is called
multi-component or compositional model.

Due heed must be paid to the number of components involved, since it now equates the number of continuity
equations in the model. Traditional techniques such as VFRoe schemes [17, 24] turn out not to be efficient in
terms computational cost, insofar as these require the numerical evaluation of the eigenvalues and the eigenvec-
tors of a large-sized matrix at each edge and at each time-step. The problem is worsened by the high degree
of nonlinearity exhibited by the algebraic closure laws. It is well-known [31] that the thermodynamics of a
multi-component mixture is far more complex than that of a non-compositional one. At a practical level, the
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pressure, the partial fractions and the slip velocity are usually the outputs of a lengthy and expensive process
consisting of nonlinear inversions and/or of look-up into tables.

In addition to the foregoing aspects, the novelty of which lies in the multi-component nature of the model,
we must keep in mind two issues that we already encountered in [2, 3]. The first issue is positivity. In [2],
we put forward an explicit relaxation scheme that enables one to guarantee that the total density and the
gas mass fraction remain positive from one time-step to another under an adequate tuning of the relaxation
parameters. This physically sound requirement meets the need for robustness of the method. For the multi-
component model, positivity means that the total density and the various component mass fractions should
remain positive.

The second issue we have to face is the design of a hybrid explicit-implicit time integration, the motivation
of which comes from the following observations. On one hand, we want to use large time-steps in order to bring
down the CPU cost to an acceptable level. This advocates the use of an implicit strategy. On the other hand,
in the context of the flow regimes considered, there co-exist two kinds of waves that are clearly separated by the
magnitude of their characteristic speeds: fast acoustic waves and slow kinematic waves. From the petroleum
engineer’s standpoint, however, only the kinematic ones are of interest since they represent mass transportation.
In order to maintain accuracy on the slow waves, we want these slow waves to be treated as if the scheme were
explicit. This seemingly paradoxical constraint gives rise to a hybrid time integration that is implicit with
respect to fast waves while remaining explicit with respect to slow waves. In [3], we paved the way toward
such a selectively implicit time integration, based on a reinterpretation of the explicit relaxation scheme as a
Roe method [29] and inspired from a paradigm by Faille and Heintzé [16]. Another attempt via the Arbitrary
Lagrange-Euler formalism was recently made in [13].

The present work aims at taking up the challenge of the multi-component case by extending the strategies
of [2, 3]. The path we suggest differs from the one sketched out in [4]. Nevertheless, it is powerful enough
to be valid for any slip law, unlike the latter. This new extension is made possible and tractable thanks to
the versatility of the relaxation philosophy [7, 10, 21, 22], from which we inherit valuable properties regarding
stability, accuracy and simplicity on the basis of a virtual freedom from the closure laws. The feasibility of
the extension also relies on a deepened and refreshed understanding of the methods formerly proposed for the
gas-liquid model.

This paper is outlined as follows. We start, in §2, by introducing the two-phase multi-component model.
The explicit framework of the relaxation scheme is presented in §3, where we focus on the ability to guarantee
positivity with the help of only two parameters. The lower-bounds for these parameters are derived in an
improved fashion, which is more incisive than in [2]. A thorough discussion on the relaxation parameters is
provided in the Appendix. In §4, we turn to the hybrid explicit-implicit scheme and shed new light on the
“correct” way to perform relaxation in an implicit context, as proposed by Chalons [9] and ourselves [3]. We
also revisit Roe’s form of the relaxation scheme via the Osher-Solomon interpretation [27]. Numerical results
are shown in §5 before we conclude.

2. Two-phase multi-component drift-flux model

Let K ≥ 2 be the number of components or species, indexed by k ∈ {1,2, . . . ,K}, each of which may appear
in the two phases gas g and liquid ℓ. Let ξk (resp. ηk) be mass fraction of component k in the gas (resp.
liquid) phase. We also refer to (ξk, ηk) ∈ [0,1]2 as partial fractions. Naturally, the partial fractions satisfy the
consistency relations

ξ1 + . . . + ξK = η1 + . . . + ηK = 1. (1)

Furthermore, it is assumed that each component k must be present in at least one phase, that is,

(ξk, ηk) ≠ (0,0). (2)
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2.1. Physical formulation

The isothermal model we consider consists of the K + 1 partial differential equations

∂t(ρgRgξk + ρℓRℓηk) + ∂x(ρgRgξkvg + ρℓRℓηkvℓ) = 0 (3a)

∂t(ρgRgvg + ρℓRℓvℓ) + ∂x(ρgRgv
2
g + ρℓRℓv

2
ℓ + p) = 0, (3b)

where the first K equations (3a) express the mass balances of the K components, and the last equation (3b)
express the total momentum balance of the mixture. The notation Rg (resp. Rℓ) stands for the volumetric
fraction of the gas (resp. liquid) phase, and we have

Rg +Rℓ = 1. (4)

The symbol ρg (resp. ρℓ) denotes the gas (resp. liquid) density, assumed to be given functions of the pressure
p. It is customary and convenient to define the apparent density of the kth component as

ρk = ρgRgξk + ρℓRℓηk. (5)

The PDE system (3) must be accompanied by two sets of algebraic closure laws. The first set is concerned
with thermodynamics and returns

p = p({ρk}1≤k≤K), ξh = ξh({ρk}1≤k≤K), ηh = ηh({ρk}1≤k≤K), (6)

for all h ∈ {1,2, . . . ,K}. The second set comprises a single function returning the slip —or drift— velocity

vg − vℓ = φ({ρk}1≤k≤K , ρgRgvg + ρℓRℓvℓ), (7)

that is, the difference between the gas velocity and the liquid velocity. Note that, for convenience, we have
changed the sign convention from φ = vℓ−vg in [2,3] to φ = vg −vℓ in this paper. Incidentally, the name drift-flux
model originates from the choice of a single momentum balance (3b) and from the subsequent necessity to resort
to the additional drift law (7) in order to close the system. The slip law encapsulates the knowledge of physicists
about flow regimes based on experimental data.

We shall not dwell on this first statement of the model, because it is in reality more helpful to work with an
alternative formulation that bears more resemblance to gas dynamics.

2.2. Mathematical formulation

We define the total density ρ, the gas mass fraction Y , the mass fraction ck of the kth-component and the
mass averaged velocity v by the equalities

(a) ρ=ρgRg + ρℓRℓ, (b) ρY =ρgRg,

(c) ρck =ρk, (d) ρv =ρgRgvg + ρℓRℓvℓ.
(8)

With some abuse of notation, the closure laws (6)–(7) read

p = p(ρ,{ρck}1≤k≤K−1), ξh = ξh(ρ,{ρck}1≤k≤K−1), ηh = ηh(ρ,{ρck}1≤k≤K−1), (9)

which accounts for the thermodynamics, with h ∈ {1,2, . . . ,K}, and
φ = φ(ρ, ρv,{ρck}1≤k≤K−1), (10)
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which accounts for the hydrodynamics. Consider the natural phase space

Ωu = {u = (ρ, ρv,{ρck}1≤k≤K−1) ∈ RK+1 (11)

∣ ρ > 0, v ∈ R, ck ≥ 0, c1 + . . . + cK−1 ≤ 1}.
We are now in a position to derive an equivalent system for (3).

Lemma 2.1. Weak solutions of (3) are equivalent to weak solution of the system

∂t(ρ) + ∂x(ρv) = 0 (12a)

∂t(ρv) + ∂x(ρv2 + P (u)) = 0 (12b)

∂t(ρck) + ∂x(ρckv+σk(u)) = 0, (12c)

defined for u ∈ Ωu, where the subscript k runs from 1 to K − 1 in (12c), and

(a) P (u) = p + ρY (1 − Y )φ2, (b) σk(u) = (ξk − ηk)σ, (c) σ = ρY (1 − Y )φ. (13)

Proof. For smooth solutions, the first equation (12a) results from adding the K continuity equations (3a)
together and from the equality

ρ = ρ1 + . . . + ρK , (14)

as well as (1) and (8d). By inverting the 2 × 2 linear system

Yvg + (1 − Y )vℓ = v, vg − vℓ = φ, (15)

we find
vg = v + (1 − Y )φ, vℓ = v − Yφ, (16)

and substituting in (3a)–(3b) yields (12b)–(12b).
The converse follows the same steps. For weak solutions, equivalence still holds because the only combination

we made is a mere sum or subtraction. �

From now on, the new system (12) is credited the abstract but concise form

∂tu + ∂xf(u) = 0. (17)

At this juncture, two difficulties arise. First, as pointed out in the Introduction, the closure laws (9)–(10) are
highly nonlinear and very costly. Put another way, the flux f(u) in (17) often does not have any closed-form
expression and is expensive. Second, because of nonlinearities, the hyperbolicity property cannot be ascertained
for system (17), i.e., we do not know beforehand whether the Jacobian matrix ∇uf(u) has real eigenvalues and
is R-diagonalizable for u ∈ Ωu, except for trivial instances such as when φ ≡ 0.

Numerical computations reveal, however, that hyperbolicity usually holds within the scope of our application.
Moreover, for the type of simulations under consideration, the increasingly ordered eigenvalues

µ1(u) < µ2(u) ≤ . . . ≤ µK(u) < µK+1(u) (18)

always satisfy µ1(u)µK+1(u) < 0 and

∣µ1(u)∣ ≈ ∣µK+1(u))∣≫ ∣µ2(u)∣ ≈ . . . ≈ ∣µK(u)∣. (19)

We label this phenomenon as the separation of velocity scales : the 2 extreme characteristic speeds µ1(u) and
µK+1(u) correspond to fast acoustic waves, while the K − 1 remaining ones are associated with slow kinematic
waves representing the actual transportation of the mixture.
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3. Explicit relaxation scheme

3.1. Relaxation model

As explained in [2], instead of relaxing every nonlinearity like Jin and Xin [21], we carry out a partial
relaxation procedure in the same vein as Jin and Slemrod [20] or Coquel and Perthame [14]. The advantage of
this approach is to minimize dissipation by concentrating on the “true” nonlinearities of the system.

In the same spirit as in [2], we define the relaxation state space ΩU as

ΩU = {U = (ρ, ρv, ρΠ, {ρck}1≤k≤K−1, {ρΣk}1≤k≤K−1) ∈ R2K+1 (20)

∣ ρ > 0, (v,Π) ∈ R2, Σk ∈ R, ck ≥ 0, c1 + . . . + cK−1 ≤ 1}.
For later use, let us introduce a few more notations. To every

G = (G1,G2,G3,{G}4→K+2,{G}K+3→2K+1) ∈ R2K+1, (21)

we associate its projected value ▾G = (G1,G2,{G}4→K+2) ∈ RK+1. (22)

Since the projection operator ▾ merely deletes the components pertaining to the relaxation variables, it can act
on any vector of R2K+1, including those which do not belong to ΩU. The subset

€ = {U ∈ ΩU ∣ Π = P (▾U) and Σk = σk(▾U), 1 ≤ k ≤K − 1} (23)

is called equilibrium manifold, and its elements are said to be at equilibrium.
In the opposite direction, we define

∧u = (ρ, ρv, ρP (u), {ρck}1≤k≤K−1, {ρσk(u)}1≤k≤K−1) ∈€ (24)

to be the equilibrium extension of u ∈ Ωu. The extension operator ∧ will be of great help at the end of §3 and
the beginning of §4.

Definition 3.1. For λ ≥ 0 and a > b > 0, the system

∂t(ρ)λ + ∂x(ρv)λ = 0 (25a)

∂t(ρv)λ + ∂x(ρv2 + Π)λ = 0 (25b)

∂t(ρΠ)λ + ∂x(ρΠv + a2v)λ = λρ[P (▾Uλ) −Πλ] (25c)

∂t(ρck)λ + ∂x(ρckv + Σk)λ = 0 (25d)

∂t(ρΣk)λ + ∂x(ρΣkv + b2ck)λ = λρ[σk(▾Uλ) −Σλ
k], (25e)

defined for U
λ
∈ ΩU, is said to be the relaxation model for the original model (12).

A few remarks are in order. To begin with, this relaxation system is obtained through the same procedure as
in [2]. We first switch to Lagrangian coordinates in order to highlight (P,{σk}) as the nonlinear cores to “get
rid of.” A relaxation model is then proposed, replacing the nonlinear functions (P,{σk}) by the new variables(Π,{Σk}) to which evolution equations are imposed. Reverting back to Eulerian coordinates, we wind up with
(25). Noteworthy is the fact that the latter is split into an acoustic block (25a)–(25c) acting as a “nucleus”
around which revolve K − 1 kinematic blocks (25d)–(25e). For λ = 0, the blocks are totally unrelated, at least
in Lagrangian coordinates, where they have been studied by several authors [6, 15]. For λ > 0, the blocks are
coupled through the stiff relaxation terms appearing in right-hand side.
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It is of paramount importance to mention that all the K−1 kinematic blocks are assigned the same relaxation
parameter b > 0. This fundamental choice is justified not only by our desire for simplicity, but also by our will to
be able to ensure positivity for the mass fractions in a predictive manner. Had we opted for a set of component-
dependent parameters {bk}, we would have been overwhelmed with troubles. On the side of “simplicity,” the
solution of the Riemann problem (see §3.3) would have been more painful to write down, because the ordering of
the eigenvalues v ± bkρ−1 is not known in advance. The scheme would have been more expensive and would not
have lent itself to a selectively implicit version. On the side of “positivity,” no analysis leading to an adequate
lower-bound for {bk} such as Theorem 3.3 would have been possible, because a preliminary consistency property
stated in Lemma 3.1 would have been violated.

The relaxation system (25) can be given the convenient abstract form

∂tU
λ + ∂xF(Uλ) = λS(Uλ), (26)

where F and S receive clear definitions. Let us recapitulate the classical properties that we will be using. From
now on, we set

τ = ρ−1 (27)

to be the specific volume of the mixture.

Proposition 3.1. The first-order system (25) is hyperbolic over ΩU, i.e., for all U ∈ ΩU, the Jacobian matrix∇F(U) has real eigenvalues and is R-diagonalizable. The increasingly arranged eigenvalues

v − aτ < v − bτ < v < v + bτ < v + aτ, (28)

where v±bτ is of multiplicity K−1, all correspond to linearly degenerate fields and are associated with the strong
Riemann invariants

Π − av, {Σk − bck}1≤k≤K−1, Π + a2τ, {Σk + bck}1≤k≤K−1, Π + av. (29)

The right eigenvectors for the eigenvalues (28) is given by the matrix

P(U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 1 0 . . . 0 1
v − aτ 0 . . . 0 v 0 . . . 0 v + aτ
Π + a2τ 0 . . . 0 Π 0 . . . 0 Π + a2τ

c1 1 . . . 0 c1 1 . . . 0 c1
. . . . . . . . . . . . . . . . . . . . . . . . . . .

cK−1 0 . . . 1 cK−1 0 . . . 1 cK−1
Σ1 −b . . . 0 Σ1 b . . . 0 Σ1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ΣK−1 0 . . . −b ΣK−1 0 . . . b ΣK−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

Proof. The calculations are easily adapted from [2, Lemma 3]. �

The two extreme fields v ± aτ represent fast acoustic waves, while the 2K − 1 remaining ones represent slow
kinematic waves. The separation of velocity scales is now reflected by a≫ b, which implies

∣v − aτ ∣ ≈ ∣v + aτ ∣≫ ∣v − bτ ∣ ≈ ∣v + bτ ∣. (31)

3.2. Linear asymptotic stability via a Whitham condition

Since no entropy pair is known for the system under consideration, our approach cannot enter the general
relaxation theory developed by Liu [22] and Chen et al. [12]. The only way for us to investigate the asymptotic
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stability of the relaxation system is the framework proposed by Whitham [32] which relies on the Chapman-
Enskog expansion in the limit λ→ +∞.

Let

v = (τ, v,{ck}1≤k≤K−1) ∈ R∗+ ×R × [0,1]K−1 (32)

be the Lagrangian variables associated to u. Abusing notations once again, we write P = P (v) and σk = σk(v)
whenever needed. Within this new set of unknowns, we define the partial derivatives Pτ , Pv, (σk)ch . . . the
argument of which may be viewed as either v or u depending on the context.

Theorem 3.1. At the first order approximation in λ−1, the projected value uλ
= ▾Uλ of the solution U

λ to the
relaxation system (25) satisfies the equivalent equation

∂tu
λ + ∂xf(uλ) = λ−1∂x{Da,b(uλ)∂xuλ} (33)

where the (K + 1) × (K + 1) matrix D(u) has the form

Da,b(u) = 1

ρ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0× a2 −A(v) × . . . ×× × b2 −B1(v) . . . ×
. . . . . . . . . . . . . . .× × × . . . b2 −BK−1(v)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

in which

A(v) = −Pτ + P 2
v + Pc1(σ1)v + . . . +PcK−1(σK−1)v (35a)

Bk(v) = Pck(σk)v + (σk)c1(σ1)ck + . . . + [(σk)ck]2 + . . . + (σk)cK−1(σK−1)ck (35b)

and the possibly non-zero entries denoted by × do not depend on (a, b).
Proof. The idea is to plug the Chapman-Enskog expansions

Πλ
= P (uλ)+λ−1Pλ

1 +O(λ−2) (36a)

Σλ
= σ(uλ) +λ−1Σλ

1 +O(λ−2) (36b)

into the relaxation system and to keep the first-order terms. Barring from the opposite sign convention for σ

and from the heaviness of the multi-component case, the calculations are similar to those of [2, Proposition
2]. �

Formally, as λ→ +∞, the original model (12) is recovered. As for linear stability, the widely and commonly
used practice consists in requiring that the matrix Da,b(u) be diffusive, i.e., its eigenvalues have positive real
parts. This is what we did in [2, Proposition 1, Lemma 4] to determine the admissible region for (a, b). Here,
such a task is out of reach, in view of the size of the matrix.

Instead of the eigenvalues, we are going to impose positivity to the diagonal entries of Da,b(u). This heuristic
simplification is strongly supported by our experience with the gas-liquid model, as summarized in [3, Appendix].
It is neither more nor less “rigorous” than the requirement that the eigenvalues of Da,b(u) have positive real
parts, which is in itself an approximation. We recall that the exact condition for L2 stability, obtained by
linearizing (33) in the neighborhood of any steady state solution u, is that all eigenvalues of the matrix

ıκ∇f(u) − λ−1κ2Da,b(u), κ ∈ R, ı2 = −1, (37)

should have negative real parts [23, 30].
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Definition 3.2. The pair (a, b) ∈ R2
+, with a > b > 0, is said to satisfy the diagonal Whitham condition if

a2 > −Pτ(u) + P 2
v (u) and b > max

1≤k≤K−1
∣(σk)ck ∣(u) (38)

for all u ∈ Ωu under consideration.

Obviously, the double inequality (38) is somewhat different from the positivity of the diagonal entries of
Da,b(u). It amounts to merely keeping the framed terms in (35). This choice is corroborated by three obser-
vations. First, a close inspection of the magnitudes of the summands in the right-hand side of (35) testifies to
the fact that —at least for the numerical data we are working with— the leading terms coincide indeed with
the framed ones.

Secondly, from a more theoretical point of view, the inequalities (38) could have been derived by the tradi-
tional procedure (requiring positivity for the eigenvalues of the allegedly diffusive matrix) with the additional
assumptions that P does not depend on the ck’s and the σk’s do not depend on (τ, v). The calculations are
similar to those of [3, Theorem 2.3, Theorem 2.4]. This corresponds to the situation in which the acoustic
block and the kinematic block are uncoupled from each other, whence the name of the condition. The last
observation pleading in favor of (38) is that the numerical simulations using (38) work fine, behave stably while
giving sharper results than those using the whole right-hand side of (35).

3.3. Riemann problem and positivity of intermediate states

As a prerequisite to the full numerical scheme in §3.4, the Riemann problem corresponding to the homo-
geneous (λ = 0) relaxation system needs to be solved. Besides the structure of the Riemann solution, we lay
emphasis on the sufficient conditions for various quantities of the intermediate states to be positive. This will,
in turn, be useful for the positivity of the updated variables.

Let UL ∈ ΩU and UR ∈ ΩU be the left and right states defining the initial data

U(t = 0, x) = UL 1{x<0} +UR 1{x>0}, (39)

where 1{.} is the characteristic function. We introduce

(a) v∗ =
vR + vL

2
− ΠR −ΠL

2a

(b) Π∗ =
ΠR +ΠL

2
−a vR − vL

2

(c) τ∗L =
vR − vL

2a
− ΠR −ΠL

2a2
+ τL

(d) τ∗R =
vR − vL

2a
+ ΠR −ΠL

2a2
+ τR

(40)

and

(a) c∗k =
(ck)R + (ck)L

2
− (Σk)R − (Σk)L

2b

(b) Σ∗k =
(Σk)R + (Σk)L

2
− b (ck)R − (ck)L

2

(41)

The above quantities are intended to appear in the formulae for the solution, as shown in the upcoming
Proposition. Note that, in (41), the subscript k runs from 1 to K − 1.
Proposition 3.2. If a > b > 0 and if a is large enough, e.g., in accordance with (47) of Theorem 3.2, then
the solution to the homogeneous relaxation system (25) with the initial data (39) is the self-similar function
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U(t, x) = U (x/t;UL,UR) made up of 6 constant states, given by

U (x/t;UL,UR) = UL 1{x
t
<µL} +U⊣L 1{µL<

x
t
<µ∗

L
} +UêL 1{µ∗

L
<x

t
<µ∗} (42)

+U⊩R 1{µ∗<x
t
<µ∗

R
} +U⊢R 1{µ∗

R
< x

t
<µR} +UR 1{x

t
>µR}

and defined for (t, x) ∈ R∗+ ×R, where the characteristic speeds are

vL − aτL < v∗ − bτ∗L < v∗ < v∗ + bτ∗R < vR + aτR∥ ∥ ∥ ∥ ∥
µL µ∗L µ∗ µ∗R µR

(43)

and the consecutively connected intermediate states are

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗L
ρ∗Lv

∗

ρ∗LΠ
∗

ρ∗L{ck}L
ρ∗L{Σk}L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗L
ρ∗Lv

∗

ρ∗LΠ
∗

ρ∗L{c∗k}
ρ∗L{Σ∗k}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗R
ρ∗Rv

∗

ρ∗RΠ
∗

ρ∗R{c∗k}
ρ∗R{Σ∗k}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗R
ρ∗Rv

∗

ρ∗RΠ
∗

ρ∗R{ck}R
ρ∗R{Σk}R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦∥ ∥ ∥ ∥
U
⊣
L U

ê
L U

⊩
R U

⊢
R

(44)

Proof. The proof makes use of the Riemann invariants (29) of Proposition 3.1 and follows along the same lines
as in [2, Proposition 3]. �

The Riemann problem can be solved in the most general case including configurations of eigenvalues other
than (43). But in view of the separation of velocity scales (31), only the ordering (43) is of interest to us.
However, in contrast with (28), the assumption a > b > 0 alone is not sufficient to secure (43).

Theorem 3.2. For a > b > 0, we have the ordering

vL − aτL < v∗ − bτ∗L < v∗ < v∗ + bτ∗R < vR + aτR (45)

if and only if the specific volumes of the intermediate states are positive, i.e.,

τ∗L > 0 and τ∗R > 0. (46)

A sufficient condition for the equivalent conditions (45) and (46) to hold is

a >
−(vR − vL) +√(vR − vL)2 + 8min(τL, τR)∣ΠR −ΠL∣

4min(τL, τR)
. (47)

Proof. Since the v ± aτ waves are linearly degenerate, we have

vL − aτL = v∗ − aτ∗L and vR + aτR = v∗ + aτ∗R. (48)

This can also be directly checked from (40). Therefore, the double inequality

vL − aτL < v∗ < vR + aτR (49)

is equivalent to the positivity property (46).
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Inserting the value of v∗ from (40a) into (49) yields two second-degree polynomial inequalities in a, namely,

℘L(a) = 2τLa2 + (vR − vL)a − (ΠR −ΠL) > 0, (50a)

℘R(a) = 2τRa2 + (vR − vL)a + (ΠR −ΠL) > 0. (50b)

For a > 0, we have ℘L(a) ≥ ℘(a) and ℘R(a) ≥ ℘(a) with the lower-bound

℘(a) = 2min(τL, τR)a2 + (vR − vL)a − ∣ΠR −ΠL∣. (51)

Hence, it suffices to ask for ℘(a) > 0. As a second-degree polynomial, ℘ is convex and has two roots of opposite
signs. The positive one is given by (47). �

In practice, and as will be seen in §3.4, the left and right states usually belong to the equilibrium manifold
€, so that ΠL = P (▾UL) and ΠR = P (▾UR). For short, we write PL and PR for the equilibrium values of ΠL

and ΠR. Imposing the lower-bound

a > a♯(uL,uR) =
−(vR − vL) +√(vR − vL)2 + 8min(τL, τR)∣PR −PL∣

4min(τL, τR)
, (52)

we may legitimately wonder about a possible logical connection between this lower-bound and the first part of
the diagonal Whitham condition (38), i.e.,

a >
√−Pτ +P 2

v . (53)

In other words, is (52) or (49) implied by some discrete version of (53)? As shown in the Appendix, the answer
is in the affirmative for a pure acoustic system, in which P does not depend on (v,{ck}).

We now shift attention to the intermediate fractions c∗k. As said earlier, the formulae (41a) are valid only for
1 ≤ k ≤K − 1. It is tempting to define the intermediate mass fraction for the Kth-component as

c∗K = 1 − (c∗1 + . . . + c∗K−1). (54)

The good news is that this definition is consistent with formula (41a) for the Riemann solution.

Lemma 3.1. If UL ∈ € and UR ∈ €, then the intermediate fraction c∗K defined by (54) is equal to the value
obtained by formally putting k =K in (41), that is,

c⋆K =
(cK)R + (cK)L

2
− (σK)R − (σK)L

2b
, (55)

where (σK)L = σK(▾UL) = (ΣK)L and (σK)R = σK(▾UR) = (ΣK)R.
Anticipating the proof, we underline that this miracle occurs solely when the same relaxation parameter b is

used for every component. As will be clarified in Theorem 3.3, the very possibility of guaranteeing c∗k ∈ [0,1] for
1 ≤ k ≤K relies on this essential property. This is a compelling argument in favor of a unique b for all components.

Proof. Since the left and right states are at equilibrium, we have Σk = σk for 1 ≤ k ≤ K − 1. If we sum the
equalities (41a) over 1 ≤ k ≤K − 1 and subtract the result to 1, we get

c⋆K =
(cK)R + (cK)L

2
− ςR − ςL

2b
, (56)

where
ς = −(σ1 + . . . + σK−1). (57)
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Now, from definition (13), it is readily verified that

σ1 + . . . + σK−1 + σK = 0 (58)

because of the consistency relations (1). As a consequence,

ς = σK (59)

at the left and right states, which proves the claim. �

We are now able to state a sufficient condition for the positivity of the intermediate mass fractions.

Theorem 3.3. If UL ∈€ and UR ∈€, then a sufficient condition to secure

c∗k ∈ [0,1], 1 ≤ k ≤K, (60)

is that
b ≥ b♯(uL,uR) =max{∣ρφ∣L, ∣ρφ∣R} . (61)

The reader’s attention is drawn to the fact that the right-hand side of (61) is exactly equal to that of [2, Eq.
(64)], notwithstanding a more complex model. As far as the proof is concerned, the version below is shorter
than in [2].

Proof. Since c∗1 + . . . + c∗K−1 + c∗K = 1, we are going to seek a sufficient condition to have

c∗k ≥ 0, for 1 ≤ k ≤K. (62)

From (41a) and (55), we infer that c∗k ≥ 0 is equivalent to

b ≥
(σk)R − (σk)L(ck)R + (ck)L (63)

if (ck)L > 0 or (ck)R > 0. The case (ck)L = (ck)R = 0 will be settled later on. By the triangle inequality, we
have

(σk)R − (σk)L(ck)R + (ck)L ≤
∣σk ∣R + ∣σk ∣L(ck)R + (ck)L (64a)

≤
∣Y (1 − Y )θk∣R + ∣Y (1 − Y )θk∣L(ck)R + (ck)L ×max{∣ρφ∣L, ∣ρφ∣R} (64b)

with
θk = ξk − ηk. (65)

Combining (8c), (5) and (8b), we obtain

ck = Yξk + (1 − Y )ηk. (66)

This equality can be cast under three different forms, namely,

ck = ηk + Y θk = ξk − (1 − Y )θk = γk +Zk ∣θk ∣ (67)

where the pair (γk, Zk) = (ηk, Y )1{θk≥0} + (ξk,1 − Y )1{θk<0} (68)



12 A RELAXATION SCHEME FOR TWO-PHASE MULTI-COMPONENT FLOWS

still belongs to [0,1]2. Therefore, dropping out the subscript k momentarily in ck, γk, Zk, θk so as to alleviate
the notations, we have

∣Y (1 − Y )θ∣R + ∣Y (1 − Y )θ∣L
cR + cL =

ZR(1 −ZR)∣θ∣R +ZL(1 −ZL)∣θ∣L
γR +ZR∣θ∣R + γL +ZL∣θ∣L (69a)

≤
ZR∣θ∣R +ZL∣θ∣L

γR +ZR∣θ∣R + γL +ZL∣θ∣L (69b)

≤ 1. (69c)

Resuming the bounding process (64), we end up with

(σk)R − (σk)L(ck)R + (ck)L ≤ max{∣ρφ∣L, ∣ρφ∣R} , (70)

from which b > b♯(uL,uR) clearly appears to be a sufficient condition for c∗k ≥ 0.
To settle the case (ck)L = (ck)R = 0, we invoke the identity (66) to have

ck = 0 ⇒ Yξk = (1 − Y )ηk = 0. (71)

But by virtue of assumption (2), ξk and ηk cannot vanish simultaneously. Thus, Y = 0 or 1 − Y = 0, and in any
case Y (1 − Y ) = 0. This implies (σk)L = (σk)R = 0, (72)

and by applying (41a) or (55), we arrive at the equality c∗k = 0. The proof is now completed. �

Again, the question naturally arises as to whether or not there is a link between condition (61) or the
positivity of c∗k and some discrete version of the second part of the diagonal Whitham condition (38), i.e.,

b ≥ ∣(σk)ck ∣. (73)

Again, as shown in the Appendix, the answer is in the affirmative for the pure scalar case, where σk depends
only on ck.

3.4. Numerical scheme and positivity of updated variables

The Godunov flux associated with the relaxation system is classically defined from the Riemann solution as

H(UL,UR) = F(U (x/t = 0+; UL,UR)). (74)

From now on, we make heavy use of the operators ▾ and ∧ previously defined in (22) and (24).

Definition 3.3. Let uL ∈ Ωu and uR ∈ Ωu be two states, and a > b > 0 be the relaxation parameters subject to

a > a♯(uL,uR) and b ≥ b♯(uL,uR) (75)

as in (52) and (61). The vector

h(uL,uR) = ▾H(∧uL,∧uR) (76)

is said to be the relaxation numerical flux for the original problem (12).

The domain is divided into cells of size ∆x. We look for an approximation un
i of u(xi, t

n) at the center xi of
cell i and at time tn. Let ∆t = tn+1 − tn be the time step. The first-order explicit relaxation numerical scheme
reads

un+1
i = un

i − ∆t

∆x
[h(un

i ,u
n
i+1) − h(un

i−1,u
n
i )], (77)
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where h(., .) is given by Definition 3.3. Note that (a, b) can be chosen locally: at each edge i + 1/2, there are
two relaxation parameters (ai+1/2, bi+1/2) exerting an influence on the numerical flux h(un

i ,u
n
i+1).

The overall scheme (76)–(77) can be thought of as the outcome of the following splitting procedure, by means
of which we initially described the relaxation method in [2].

(1) Set to equilibrium. Put λ = +∞ and build the equilibrium manifold Π = P (u) and Σ = Σ(u) by applying

the extension operator Un
i = ∧un

i ;
(2) Relax evolution. Put λ = 0 and solve the relaxation system ∂tU + ∂xF(U) = O by the first-order explicit

Godunov scheme

U
n+1
i = U

n
i − ∆t

∆x
[H(Un

i ,U
n
i+1) −H(Un

i−1,U
n
i )] (78)

from which deduce un+1
i = ▾Un+1

i by projection.

The benefit of the splitting interpretation is that it is valid at the continuous level. However, the conciseness of
the new formulation (76)–(77) turns out to be a judicious starting point for the design of the selectively implicit
scheme in §4. Before getting to this, let us examine the explicit scheme (77).

Theorem 3.4. Assume un
i ∈ Ωu for all i ∈ Z. If

● the parameters an
i+1/2 > b

n
i+1/2 > 0 are in agreement with (52) and (61), i.e.,

ani+1/2 > a
♯(un

i ,u
n
i+1) and bni+1/2 > b

♯(un
i ,u

n
i+1); (79)

● the time-step complies with the CFL condition

∆t

∆x
max

i
max{ ∣v∗ − aτ∗L∣ni+1/2, ∣v∗ + aτ∗R∣ni+1/2 } < 1

2
, (80)

then the first-order explicit relaxation scheme (77) satisfies

ρn+1i > 0 and (ck)n+1i ∈ [0,1], 1 ≤ k ≤K. (81)

Proof. By Theorem 3.2 and Theorem 3.3, we are sure that the intermediate states appearing in the Riemann
solution at each edge i + 1/2 satisfy

(τ∗L)i+1/2 > 0, (τ∗R)i+1/2 > 0, and (c∗k)i+1/2 ∈ [0,1], 1 ≤ k ≤K. (82)

The proof from this to (81) is similar to that of [2, Corollary 1]. In a nutshell, the positivity of ρn+1i stems from
the fact that, as a result of the Godunov scheme (78) for the relaxation system, it is equal to the average of
a piecewise-constant function at time n + 1, and each of the pieces returning a strictly positive value. As for(ck)n+1i , it is also equal to an average —albeit in the sense of a positive measure induced by the total density—
of a piecewise-constant function bounded by [0,1]. �

As explained in [3, §2.3.2], the relaxation parameters are in practice computed as

ani+1/2 > max{a♭(un
i ,u

n
i+1), a♯(un

i ,u
n
i+1) } (83a)

bni+1/2 ≥ max{ b♭(un
i ,u

n
i+1), b♯(un

i ,u
n
i+1) } (83b)

where the additional bounds

a♭(uL,uR) = max{√−Pτ(uL) + P 2
v (uL), √−Pτ (uR) + P 2

v (uR)} (84a)

b♭(uL,uR) = maxmax1≤k≤K−1 {∣(σk)ck(uL)∣, ∣(σk)ck(uR)∣} (84b)
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are intended to mimic the diagonal Whitham condition (38) at the discrete level. Numerical experiments
corroborate to the fact that the reinforced choice (83) is a good one. A discussion about possible connections
between the ♭ and ♯ bounds is supplied in the Appendix.

4. Hybrid explicit-implicit relaxation scheme

The design of a hybrid explicit-implicit time-integration in the context of relaxation methods is a delicate
matter which requires several ingredients. We start by making right away some general but crucial observations
about the fully and linearly implicit time integrations in such a context. Afterwards, we revisit the relaxation
numerical flux in order to give it a “differentiable” form via the Roe interpretation. Finally, we propose a
strategy for the selectively implicit time-integration.

4.1. Interplay between relaxation and implicit time integrations

Let us rewrite the first-order explicit scheme (76)–(77) as

un+1
i = un

i − ∆t

∆x
[▾H(∧un

i ,∧un
i+1) − ▾H(∧un

i−1,∧un
i )]. (85)

Most naturally, the fully implicit counterpart of (85) reads

un+1
i = un

i − ∆t

∆x
[▾H(∧un+1

i ,∧un+1
i+1 ) − ▾H(∧un+1

i−1 ,∧un+1
i )]. (86)

Introducing the enlarged variables

U
n+1
i = ∧un+1

i , U
n
i = ∧un

i , (87)

which are at equilibrium by construction of ∧, we can easily check that the implicit formulation (86) is equivalent
to

▾Un+1
i = ▾Un

i − ∆t

∆x
[▾H(Un+1

i ,Un+1
i+1 ) − ▾H(Un+1

i−1 ,U
n+1
i )] (88a)

U
n+1
i ∈ €. (88b)

The equilibrium condition (88b) compensates for the “loss” of information created by the projection operator▾. In order to express it algebraically, let

⊥U = (ρΠ,{ρΣk}1≤k≤K−1) ∈ R ×RK−1. (89)

The operator ⊥ is best seen as the map sending any vector of R
2K+1 to the components pertaining to the

relaxation variables deleted by the operator ▾. The Cartesian equations for the equilibrium manifold € are
abstractly condensed as

⊥U = £(▾U). (90)

Proposition 4.1. The fully implicit scheme (86) in the original variables u is equivalent to the system

▾Un+1
i = ▾{Un

i − ∆t

∆x
[H(Un+1

i ,Un+1
i+1 ) −H(Un+1

i−1 ,U
n+1
i )]} (91a)

⊥Un+1
i = £(▾Un+1

i ) (91b)

in the enlarged variables U.
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Proof. The first line (91a) results from (88a) and the linearity of the operator ▾. The second line (91b) is none
other than (88b). �

This is a most fundamental result, insofar as that it tells us the correct form for the implicit equations in the
relaxation variables U. The naive idea

U
n+1
i = U

n
i − ∆t

∆x
[H(Un+1

i ,Un+1
i+1 ) −H(Un+1

i−1 ,U
n+1
i )], (92)

even followed by some projection step, leads to an erroneous discretization and disastrous results, as evidenced
by Chalons [9,11] for steady-state solutions and by Baudin et al. [1,3] for transient solutions. A partial version
of the correct form (91) was suggested by the same authors under the name of implicit projection [3, §3.2.2]
and justified by convincing but sophisticated arguments based on the splitting procedure relax evolution–set to
equilibrium (see §3.4). To our knowledge, however, equation (86) has never been given a prominent role in the
derivation the proposed modifications.

In industrial applications, a handy and cheaper substitute for the full implicit scheme is the so-called linearly
implicit strategy. It consists in performing just one Newton iteration on the full implicit system. This amounts
to using the Taylor expansion

H(Un+1
i ,Un+1

i+1 ) ≈ H(Un
i ,U

n
i+1) + ∇LH(Un

i ,U
n
i+1) ⋅ δUi + ∇RH(Un

i ,U
n
i+1) ⋅ δUi+1 (93)

with the increments

δU = Un+1 −Un, (94)

provided of course that H is differentiable. In our case, the Godunov flux H(UL,UR) is notoriously not differ-
entiable, but we will find a way to circumvent this difficulty in §4.2. Therefore, assuming differentiability, we
denote by ∇LH and ∇RH the (K + 1) × (K + 1) matrices representing the partial derivatives of H with respect
to UL and UR. We introduce

Bi = −∆t

∆x
∇LH(Un

i ,U
n
i+1), Ci+1 =

∆t

∆x
∇RH(Un

i ,U
n
i+1) (95)

and

Ai = I2K+1 − Bi − Ci. (96)

We also define the Jacobian matrix

Λi = ∇£(un
i ), (97)

the “explicit” update

U
n"

i = U
n
i − ∆t

∆x
[H(Un

i ,U
n
i+1) −H(Un

i−1,U
n
i )], (98)

which is out of equilibrium, and un"

i = ▾Un"

i its projected value. The quotes are simply due to the fact that the
time-step ∆t at hand generally does not comply with the usual CFL condition for a “true” explicit scheme.

For any matrix M having 2K+1 rows, we obtain ▾M from M by extracting the rows corresponding to the indices
kept by the projector ▾. For any matrix M having 2K + 1 columns, we obtain M

▾ (resp. M
⊥) by selecting the

columns corresponding to the indices preserved by the projector ▾ (resp. ⊥). The following Proposition gives
the correct form for the linearly implicit scheme.
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Proposition 4.2. The linearly implicit scheme in the context of relaxation takes the form

⎡⎢⎢⎢⎢⎣
▾B▾i−1 ▾B⊥i−1
0 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
▾A▾i ▾A⊥i
−Λi IK

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
▾C▾i+1 ▾C⊥i+1
0 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
▾δUi−1

⊥δUi−1

⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣
▾δUi

⊥δUi

⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣
▾δUi+1

⊥δUi+1

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
▾(Un"

i −Un
i )

0

⎤⎥⎥⎥⎥⎦
(99)

in the enlarged increments δU. It is algebraically equivalent to the form

[▾B▾i−1 + ▾B⊥i−1Λi ▾A▾i + ▾A⊥iΛi ▾C▾i+1 + ▾C⊥i+1Λi]
⎡⎢⎢⎢⎢⎢⎣

δui−1

δui

δui+1

⎤⎥⎥⎥⎥⎥⎦
= [un"

i − un
i ] (100)

in the original increments δu. The latter can also be obtained by linearizing (86) directly.

Proof. Plug the approximate value H(Un+1
i ,Un+1

i ) of (93), as well as the linear approximation

⊥δUi = Λi ⋅ ▾δUi (101)

into the generic form (91). The calculations are similar to those in [3]. Eliminating the ⊥δU’s in (99) results in
(100). Finally, it it not difficult to verify that a direct linearization of (86) yields (100). �

In both formulations, we have to cope with a block-tridiagonal linear system. On the grounds of computa-
tional efficiency, it is recommended to implement (100), the size of which is almost twice as small —K +1 versus
2K + 1— as (99). Nevertheless, the matrices in the enlarged formulation (99) are necessary for the design of a
hybrid explicit-implicit time integration. Indeed, the matrices Ai, Bi and Ci will eventually be altered in §4.3.

4.2. Roe’s form of the relaxation flux

The Godunov flux H(UL,UR) defined in (74) is only Lipschitz continuous and not differentiable. Moreover,
the way it is expressed so far does not help us spot the non-smooth parts. Note that a Roe- or VFRoe-type
flux, which is of the form

H(UL,UR) = 1
2
[F(UL) + F(UR)] − 1

2
∣A (UL,UR)∣(UR −UL), (102)

would be easier to handle, because non-differentiability is concentrated in the absolute value of the matrix
A (UL,UR). In such a situation, the cure could be to resort to a partial linearization by freezing the non-
smooth parts, as advocated by Mulder and van Leer [26]. Concretely, we would decide that

∇LH(UL,UR) ∶= 1
2
[∇F(UL)+ ∣A (UL,UR)∣ ], (103a)

∇RH(UL,UR) ∶= 1
2
[∇F(UR)− ∣A (UL,UR)∣ ]. (103b)

This motivates our search for a Roe-type interpretation (102), the existence of which is ultimately a conse-
quence of the linear degeneracy of all fields in the relaxation model. The success of such an undertaking relies
on the following technical Lemma, which was taken for granted in [3], but which needs to be brought to light
for the sake of rigor.
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Lemma 4.1. If the parameter a fulfills condition (47), i.e.,

a >
−(vR − vL) +√(vR − vL)2 + 8min(τL, τR)∣ΠR −ΠL∣

4min(τL, τR) , (104)

then the (2K + 1) × (2K + 1) matrix

R(UL,UR) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 1 0 . . . 0 1
vL − aτL 0 . . . 0 v∗ 0 . . . 0 vR + aτR
ΠL + a2τL 0 . . . 0 Π∗ 0 . . . 0 ΠR + a2τR
(c1)L 1 . . . 0 c∗1 1 . . . 0 (c1)R
. . . . . . . . . . . . . . . . . . . . . . . . . . .

(cK−1)L 0 . . . 1 c∗K−1 0 . . . 1 (cK−1)R
(Σ1)L −b . . . 0 Σ∗1 b . . . 0 (Σ1)R
. . . . . . . . . . . . . . . . . . . . . . . . . . .

(ΣK−1)L 0 . . . −b Σ∗K−1 0 . . . b (ΣK−1)R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (105)

using the notations (40)–(41), is invertible.

Proof. Let {Rq}, 1 ≤ q ≤ 2K + 1, be the column vectors of R, and assume that there is a linear combination
such that ∑1≤q≤2K+1 αqRq = 0, with αq ∈ R. We claim that

(α1, αK+1, α2K+1) = (0,0,0), (106)

since otherwise, the 3 × 3 matrix ⎡⎢⎢⎢⎢⎢⎣

1 1 1
vL − aτL v∗ vR + aτR
ΠL + a2τL Π∗ ΠR + a2τR

⎤⎥⎥⎥⎥⎥⎦
, (107)

extracted from the first three rows of R, would have to be singular. By subtracting the middle column to the
other columns and by expanding with respect to the new first row, we find for the —supposedly equal to zero—
determinant of this 3 × 3 matrix

−2a[v∗ − (vL − aτL)][v∗ − (vR + aτR)]. (108)

By virtue of Theorem 3.2, however, this quantity is strictly positive if the parameter a meets condition (47).
In turn, the equality (106) implies α2 = αK+2 = 0 by examining rows 4 and K + 4, columns 2 and K + 2. We
proceed likewise until αK = α2K = 0. �

The invertibility of R allows us to state the following Theorem, the most remarkable feature of which is,
from a practical point of view, the fact that the matrix A can be computed by a closed formula.

Theorem 4.1. If a > b > 0 and if condition (47) is satisfied for all (UL,UR) under consideration, then there
exists a (2K + 1) × (2K + 1) matrix A (UL,UR) such that the Godunov flux (74) can be expressed as

H(UL,UR) = 1
2
[F(UL) + F(UR)] − 1

2
∣A (UL,UR)∣(UR −UL). (109)

This matrix can be given, for instance, by the formula

A (UL,UR) =R(UL,UR)D(UL,UR)R−1(UL,UR), (110)

in which the invertible matrix R(UL,UR) is defined by (105) of Lemma 4.1, and

D(UL,UR) = Diag(vL − aτL, v∗ − bτ∗L, . . . , v∗ − bτ∗L, v∗, v∗ + bτ∗R, . . . , v∗ + bτ∗R, vR + aτR) (111)
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using the notations (40)–(41). Formula (110) defines a Roe-type linearization for the relaxation system (25),
in the sense that

1. A (U,U) = ∇F(U);
2. A (UL,UR) is R-diagonalizable;
3. A (UL,UR)(UR −UL) = F(UR) − F(UL).

Proof. The proof is similar to [3, Proposition 3.2] regarding the claim that A is a Roe matrix. For the readers
interested in the details, the starting point of this part is the set of equalities below, which are the counterparts
of the jump relations in [3, Lemma 3.1]:

U
⊣
L −UL = [ρ∗L − ρL]R1 (112a)

U
ê
L −U⊣L = [ρ∗Lc∗1 − ρ∗L(c1)L]R2 + . . . + [ρ∗Lc∗K−1 − ρ∗L(cK−1)L]RK (112b)

U
⊩
R −UêL = [ρ∗R − ρ∗L]RK+1 (112c)

U
⊢
R −U⊩R = [ρ∗R(c1)R − ρ∗Rc∗1]RK+2 + . . . + [ρ∗R(cK−1)R − ρ∗Rc∗K−1]R2K (112d)

UR −U⊢R = [ρ∗R − ρR]R2K+1. (112e)

The vectors {Rq}, 1 ≤ q ≤ 2K + 1, are the columns of R. The intermediate states U⊣L, U
ê
L, U

⊩
L, U

⊢
L are those of

the Riemann solution in Proposition 3.2.
As for checking that this matrix gives rise to the flux equality (109), the steps are identical to those in [3,

Theorem 3.3]: the formalism by Harten et al. [19] is invoked in to express the flux at issue in two different ways,
the half-sum of which finally yields the desired result. In comparison with [3], the only difference lies in the
multiplicity of the eigenvalues v∗ − bτ∗L and v∗ + bτ∗R, but no serious complication arises in any part. �

For informative purpose, we wish to briefly report a second way to establish Theorem 4.1 via the Osher-
Solomon interpretation [27]. This theoretical tool not only makes the checking of (109) simpler, but also brings
new insight into the relaxation model.

Theorem 4.2. If a > b > 0 and if condition (47) is satisfied for all (UL,UR) under consideration, then there
exists a path Γ = Γ(UL,UR) ⊂ ΩU such that the Godunov flux (74) can be expressed as

H(UL,UR) = 1
2
[F(UL) + F(UR)] − 1

2 ∫
Γ(UL,UR)

∣∇F(U)∣dU. (113)

This path, which is made up of 2K + 1 straight line portions

Γ = Γ1 ∪ (Γ2 ∪ . . . ∪ ΓK) ∪ ΓK+1 ∪ (ΓK+2 ∪ . . . ∪ Γ2K) ∪ Γ2K+1, (114)

each Γq being directed by the eigenvector Rq of the matrix R defined in (105), connects the intermediate states
of the Riemann solution in accordance with the diagram

UL
Γ1ÐÐÐÐ→ U

⊣
L

Γ2∪...∪ΓKÐÐÐÐÐÐÐÐ→ U
ê
L

ΓK+1ÐÐÐÐ→ U
⊩
R

ΓK+2∪...∪Γ2KÐÐÐÐÐÐÐÐ→ U
⊢
R

Γ2K+1ÐÐÐÐ→ UR.

Proof. Except for the claim that every Γq is a straight line portion, the existence of such a path follows from
the linear degeneracy of all fields. The Γq’s are none other than the integral curves, along which the tangent
vector is parallel to the right eigenvector, i.e.,

dU

dζ
(ζ) = Rq(U(ζ)) (115)

for some parametrization ζ ↦ U(ζ) of Γq. Again, the multiplicity of the eigenvalues v ± bτ is hardly a source
of annoyance. This is exemplified by the the jump from U

⊣
L to U

ê
L, which is not a pure contact discontinuity
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because v∗ − aτ∗L is not a “simple” eigenvalue, but which can be decomposed into K − 1 elementary “simple”
jumps.

It comes as an amazing feature of the relaxation model (25) that along each portion Γq, the right eigenvector
Rq(U(ζ)) is constant, which implies that Γq is a straight line portion! Indeed, inspection of the matrix of
eigenvectors (30) reveals that only columns 1, K + 1 and 2K + 1 may have non-constant entries. Using the
strong Riemann invariants (29), it can be verified that the components of R1 are constant across the 1-contact
discontinuity. We remind that a strong Riemann invariant for a given field is a weak Riemann invariants for all
other fields. The same line of reasoning applies to the two other eigenvectors. �

For short, let {νq}, 1 ≤ q ≤ 2K + 1 be the diagonal entries of D(UL,UR) defined in (111). As before, Rq is
the qth column of the matrix R(UL,UR) given in (105). On one hand, by invariance of the qth-eigenvalue field
and qth-eigenvector field along Γq, we have

∫
Γq

∣∇H(U)∣dU = ∣νq ∣(ζq+1 − ζq)Rq, (116)

assuming that the segment Γq corresponds to the interval [ζq, ζq+1] within the parametrization ζ ↦ U(ζ) for
the path Γ. Summing these equalities over q yields

∫
Γ
∣∇H(U)∣dU = ∣ν1∣(ζ2 − ζ1)R1 + . . . + ∣ν2K+1∣(ζ2K+2 − ζ2K+1)R2K+1

=R∣D ∣ (ζ2 − ζ1, . . . , ζ2K+2 − ζ2K+1)T (117)

On the other hand, from the plain equality

UR −UL = ∫
Γ1

dU + . . . + ∫
Γ2K+1

dU = (ζ2 − ζ1)R1 + . . . + (ζ2K+2 − ζ2K+1)R2K+1 (118)

and from the invertibility of R proven in Lemma 4.1, we infer that

(ζ2 − ζ1, . . . , ζ2K+2 − ζ2K+1)T =R
−1(UR −UL). (119)

Therefore, combining (117) and (119), we end up with

∫
Γ
∣∇H(U)∣dU =R∣D ∣R−1(UR −UL) = ∣RDR

−1∣(UR −UL). (120)

This alternative proof of (109) relies on the property that the integral curves are straight lines. Had the

eigenvector Rq(U(ζ)) not been invariant along Γq, we would have had to replace R by R̂, the matrix whose
columns are

R̂q =
1

ζq+1 − ζq ∫
ζq+1

ζq

Rq(U(ζ))dU, (121)

in equations (117)–(119). Thus the Roe matrix would have been R̂DR̂−1. However, the invertibility of R̂ is
unclear.

4.3. From implicit to selectively implicit

After solving the non-differentiability problem for H(UL,UR), we go back to the Taylor expansions (93). In
order to become explicit with respect to kinematic waves, our modus operandi is to prevent the first-order terms

∇LH(Un
i ,U

n
i+1) ⋅ δUi +∇RH(Un

i ,U
n
i+1) ⋅ δUi+1 (122)
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from capturing any contribution due to slow waves. As initiated by Faille and Heintzé [16] and explained
in [3, §3.2], we replace the approximations (103) by

∇LH(UL,UR) ≈ 1
2
[ ∇̃F(UL)+ ∣Ã (UL,UR)∣ ] (123a)

∇RH(UL,UR) ≈ 1
2
[ ∇̃F(UR)− ∣Ã (UL,UR)∣ ], (123b)

where ̃ stands for the acoustic part operator, defined as follows. Let M be a (2K + 1) × (2K + 1) matrix
representing any of the matrices ∇F or A , and of course supposed to be R-diagonalizable. From the diagonalized
form

M = RDiag(ν1, ν2, . . . , νK , νK+1, νK+2, . . . ν2K , ν2K+1)R−1, (124)

we set

M̃ = RDiag(ν1,0, . . . ,0,0,0, . . . 0, ν2K+1)R−1. (125)

We have to be aware of the dependence of the basis of eigenvectors R on the matrix M . This is why this
selectively implicit procedure is best seen as a heuristic, although it is exact for linear hyperbolic systems and
works fine in nonlinear cases. Anyhow, it allows us to work with a time-step subject to the CFL condition

∆t

∆x
max
i∈Z

max{∣v∗ − bτ∗L∣ni+1/2, ∣v∗ + bτ∗R∣ni+1/2} < 1

2
(126)

based on the slow characteristic speeds v ± bτ , thus saving CPU time and maintaining accuracy on kinematic
waves. To get a good compromise between a large time-step and an acceptable amount of smearing for the
acoustic part of the solution, it is advised to take into account the additional safety limitation

∆t

∆x
max
i∈Z

max{∣vL − aτL∣ni+1/2, ∣vR + aτR∣ni+1/2} < 20 (127)

based on fast characteristic speeds v ± aτ .

5. Numerical results

We carry out two numerical simulations corresponding to K = 2 components, endowed with an idealized but
physically meaningful pressure law p = p(ρ, ρc1). This thermodynamic law assumes a homogenized response of
the two phase densities

ρℓ(p) = ρ0ℓ + p − p0
a2
ℓ

and ρg(p) = p

a2g
(128)

with respect to the pressure p, but introduces the notion of dew and bubble curves in the (ρ, ρc1)-plane. We
refer the reader to [8, 31] for details. In the test cases, we set

p0 =10
5 Pa, ρ0ℓ =997.10 kg/m

3
,

ag =330 m/s, aℓ =500 m/s.
(129)

The simulations are Riemann problems over a sufficiently long domain, discretized by the uniform space
meshing ∆x = 0.5 m. The discontinuity in the initial data is located at x = 50 m. Actually, we use a second-
order versions of the first-order schemes presented in §3 and §4. The enhancement procedures are the same as
in [3, §2.4 & §2.5].
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5.1. Fast shock with zero-slip law

In the first test case, we consider the zero-slip law φ ≡ 0, which implies that the gas and liquid phases move at
the same velocity. The reason why we start by taking such a simplified hydrodynamic law is that we first want
to see whether or not the above two-phase two-component thermodynamic law, which is far more sophisticated
than that used in [3], is well-supported by the schemes. Another reason is that for φ ≡ 0, the original system
(12) is known to be hyperbolic, and an exact solution to the Riemann problem associated with (12) is available
for comparison.

The initial data

⎛⎜⎝
ρ

c1
v

⎞⎟⎠
L

=

⎛⎜⎝
0.999 × 105

0.98
89.569

⎞⎟⎠ and
⎛⎜⎝
ρ

c1
v

⎞⎟⎠
R

=

⎛⎜⎝
0.9 × 105
0.98

55.076

⎞⎟⎠ (130)

are tailored so that this exact solution is a pure acoustic shock propagating at 400 m/s. Here and contrarily
to the common practice mentioned in the Introduction, we take a close look at the acoustic wave in order to
assess the amount of dissipation. Figure 1 compares the pressure computed by the schemes of this paper to
their VFRoe counterparts of the TACITE code [28]. In the explicit setting, relaxation is less diffusive than
VFRoe. In the hybrid explicit-implicit setting, relaxation is more diffusive than VFRoe. From this and other
numerical runs, the general observation is that the hybrid explicit-implicit version of the relaxation scheme
captures acoustic waves with a little more dissipation than VFRoe.
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Figure 1. Explicit (left) and hybrid explicit-implicit (right) schemes for experiment 1

5.2. Slow transportation with Zuber-Finlday’s law

We now switch to the more realistic slip law

φ(u) = −0.2 v + 0.35
√
gD

1 + 0.2κ(u) , and κ(u) = 1 − Y (u)
ρ/ρL(p(u)) − 1 , (131)

where g = 9.81 m/s2 is the gravity constant and D = 0.144 m is the diameter of the pipeline. The hydrodynamic
relation (131) is known as the Zuber-Findlay law [33], and reflects the intermittent flow of medium-sized gas
bubbles in a vertical duct.

This is a difficult experiment, insofar as the initial data

⎛⎜⎝
ρ

c1
v

⎞⎟⎠
L

=

⎛⎜⎝
0.91827
0.8163265
−10

⎞⎟⎠ and
⎛⎜⎝
ρ

c1
v

⎞⎟⎠
R

=

⎛⎜⎝
997.1

0.0816327
−10

⎞⎟⎠ (132)
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are adjusted so that we cover the whole two-phase domain from YL = 0 to YR = 1. Our goal is to put the schemes
through the test of robustness at the boundaries of the admissible domain for thermodynamics. Both versions
(explicit and selectively implicit) of the VFRoe method in the TACITE code failed this test and stopped after
producing a negative mass fraction c1.

We do not know the exact solution to the Riemann problem equipped with this combination of closure laws.
But on the basis of the analysis by Benzoni-Gavage [5] for the Zuber-Findlay law paired with a much simpler
pressure law, and considering that vL = vR and pL ≈ pR ≈ 10

5 Pa, we can legitimately anticipate the “exact”
solution as a slow shock propagating at a speed around -10 m/s. This guess is in good a agreement with the
curves in Fig. 2, where we display the density and the gas mass fraction.
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Figure 2. Density (left) and the gas mass fraction (right) for experiment 2

6. Conclusion

Once again, relaxation has proved to be a valuable tool in the design of an effective method for the simulation
of two-phase flows governed by a drift-flux model. The explicit and the hybrid explicit-implicit versions bring a
very satisfactory answer to the difficulties due to the multi-component nature of the mixture, namely: a higher
degree of nonlinearity in the closure laws and an impressive increase in the number of unknowns to be updated.
In trying to deploy the same strategies as in [2,3], we have gained further insight into the theoretical foundations
of the relaxation method. We hope these findings could be useful to other researches in the area.
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Appendix A. Whitham-like conditions and positivity principles at the

discrete level

This Appendix aims at carefully examining the connection between various requirements on the relaxation
parameters and their effects at the discrete level for two basic models. It seems to us that the results gathered
here in a unifying view are not as widely known as they deserve.

A.1. Scalar conservation law

Let us approximate the scalar hyperbolic equation

∂tY + ∂mσ(Y ) = 0, (133)
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with σ ∈ C
1([0,1];R), by the Jin-Xin relaxation system [21]

∂tY
λ + ∂mΣλ

=0 (134a)

∂tΣ
λ + b2∂mY λ

=λ[σ(Y λ) −Σλ] (134b)

for λ > 0 and b > 0. By the Chapman-Enskog analysis, it is shown that the asymptotic equilibrium equation for
(134) in the limit λ→ +∞ is

∂tY
λ + ∂mσ(Y λ) = λ−1∂m{[b2 − σ2

Y (Y λ)]∂mY λ}, (135)

so that a sufficient condition for linear stability is the Whitham condition

b > ∣σY (Y )∣ (136)

at the continuous level.
Let YL ∈ [0,1] and YR ∈ [0,1]. The solution to the Riemann problem of the homogeneous system (134)

corresponding to the initial data

[Y
Σ
] (t = 0,m) = [ YL

σ(YL)] 1{m<0} + [ YR

σ(YR)] 1{m>0} (137)

is the self-similar function

[Y
Σ
] (m

t
) = [YL

σL
] 1{m

t
<−b} + [Y ∗Σ∗] 1{−b<m

t
<b} + [YR

σR
] 1{m

t
>b}, (138)

where

(a) Y ∗ =
YR + YL

2
− σR − σL

2b

(b) Σ∗ =
σR + σL

2
− bYR − YL

2

(139)

with the shorthand notations σL = σ(YL) and σR = σ(YR). In imitation of (136), we consider

b♮(YL, YR) = ∣σR − σL

YR − YL

∣ , (140)

which is well-defined for YL = YR.

Theorem A.1. Y ∗ ∈ ⌊YL, YR⌉ if and only if b ≥ b♮(YL, YR).
Proof. From (139a), it is straightforward to check that

(Y ∗ − YL)(Y ∗ − YR) = (σR − σL)2
b2

− (YR − YL)2. (141)

Therefore, the left-hand side is negative if and only if b > b♮(YL, YR). �

Hence, for a scalar conservation law, the discrete version b > b♮(YL, YR) of the continuous Whitham condition
b > ∣σY ∣ yields a min-max principle on the intermediate state Y ∗ of the Riemann problem when the left and right
data are at equilibrium. This min-max principle on the intermediate state in turn gives rise to the min-max
principle on the updated value at the cell-centers. Indeed, if we use the first-order explicit scheme

Y n+1
j = Y n

j − ∆t

∆m
[Σ∗(Y n

j , Y n
j+1) −Σ∗(Y n

j−1, Y
n
j )], (142)
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then by an averaging argument, we can show that

Y n+1
j ∈ ⌊Y n

j−1, Y
n
j , Y n

j+1⌉ (143)

as soon as

bi−1/2 > b
♮(Y n

i−1, Y
n
i ), bi+1/2 > b

♮(Y n
i , Y n

i+1), ∆t

∆m
max{bi−1/2, bi+1/2} < 1

2
. (144)

In practice, the habit is to define

b♭(YL, YR) =max{∣σY (YL)∣, ∣σY (YR)∣}. (145)

If σ is a convex or concave function over the interval ⌊YL, YR⌉, then b♭ ≥ b♮ and we are justified in choosing b

larger than b♭(YL, YR).
Theorem A.2. For flux functions of the form σ(Y ) = Y (1−Y )φ(Y ), a sufficient condition to secure Y ∗ ∈ [0,1]
is that

b ≥ b♯(YL, YR) =max{∣φ(YL)∣, ∣φ(YR)∣}. (146)

Proof. By formally setting ρ = 1, the proof follows the same lines as —and is even easier than— Theorem
3.3. �

Plainly, Y ∗ ∈ ⌊YL, YR⌉⇒ Y ∗ ∈ [0,1]. Put another way, for a pure scalar conservation law, we do not have to
worry about b ≥ b♯. The Whitham-like condition b ≥ b♮ is the one and only condition to be taken care of. By
the way, it is likely that b♮ ≥ b♯.

Things change, however, when instead of σ(Y ) we have σ(τ, Y, v), as is formally the case of (12c) in Lagrangian
coordinates. In such a situation, b♮ may no longer be finite for YL = YR, and even if it is, there is no longer any
clear inequality between b♮ and b♭. The advantage of b♭ over b♮ is that it remains well-defined, using the partial
derivative with respect to Y . This is why we heuristically have to look for b ≥max{b♯, b♭}, as indicated in (83b).

A.2. Euler’s isentropic model

Let us approximate the p-system [18]

∂tτ−∂mv =0 (147a)

∂tv+∂mp(τ)=0, (147b)

where the pressure law is assumed to satisfy

pτ < 0 and pττ > 0, (148)

by the relaxation system

∂tτ
λ − ∂mvλ =0 (149a)

∂tv
λ + ∂mΠλ

=0 (149b)

∂tΠ
λ+a2∂mΠλ

=λ[p(τλ) −Πλ] (149c)

for λ > 0 and a > 0. By the Chapman-Enskog analysis, it is shown that the asymptotic equilibrium equation for
(149) in the limit λ→ +∞ is

∂tτ
λ−∂mvλ =0 (150a)

∂tv
λ+∂mp(τλ)=λ−1∂m{[a2 + pτ(τλ)]∂mv}, (150b)
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so that a sufficient condition for linear stability is the Whitham condition

a >
√−pτ(τ) (151)

at the continuous level.
Introduce w = (τ, v) and let wL ∈ R

∗
+ × R and wR ∈ R

∗
+ × R. The solution to the Riemann problem of the

homogeneous system (149) corresponding to the initial data

[w
Π
](t = 0,m) = [ wL

p(τL)] 1{m<0} + [ wR

p(τR)] 1{m>0} (152)

is the self-similar function

[w
Π
] (m

t
) = [wL

pL
] 1{m

t
<−a} + [(τ∗L, v∗)Π∗

] 1{−a<m
t
<0} + [(τ∗R, v∗)Π∗

] 1{0<m
t
<a} + [wR

pR
] 1{m

t
>a}, (153)

where

(a) v∗ =
vR + vL

2
− pR − pL

2a

(b) Π∗ =
pR + pL

2
−avR − vL

2

(c) τ∗L =
vR − vL

2a
− pR − pL

2a2
+ τL

(d) τ∗R =
vR − vL

2a
+ pR − pL

2a2
+ τR

(154)

with the shorthand notations pL = p(τL) and pR = p(τR). In imitation of (151), we consider

a♮(τL, τR) = (−pR − pL
τR − τL )

1/2

(155)

which is well-defined for τL = τR.

Proposition A.1. (τ∗R − τ∗L)(τR − τL) ≥ 0 if and only if a ≥ a♮(τL, τR).
Proof. This equivalence is a direct consequence of (154c)–(154c). �

Hence, for the p-system, the discrete version a > a♮(τL, τR) of the continuous Whitham condition a >
√−pτ

allows the initial ordering of the specific volumes to be carried over to the intermediate states.
What we want to investigate above all is the positivity of the intermediate volumes τ∗L, τ

∗
R and the extent to

which this positivity could be implied by a Whitham-like condition. Let us recall a preliminary result which we
already encountered in Theorem 3.2.

Proposition A.2. The intermediate specific volumes τ∗L, τ
∗
R are positive if and only if we have the ordering

vL − aτL < v∗ < vR + aτR (156)

for the characteristic speeds of the Eulerian version of (149).

Proof. See Theorem 3.2 or directly check using (154). �

The main result we wish to put forward is the following.

Theorem A.3.

(1) If vR ≥ vL, then for all a ≥ a♮(τL, τR) we have τ∗L > 0 and τ∗R > 0.
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(2) If vR < vL but ∣vR − vL∣ < a♮(τL, τR)(τR + τL), (157)

then the choice a = a♮(τL, τR) ensures τ∗L > 0 and τ∗R > 0. Condition (157) holds in particular for a
subsonic regime where

∣vL∣ < a♮(τL, τR)τL and ∣vR∣ < a♮(τL, τR)τR. (158)

If, in addition to (157), the ratio in the densities does not exceed 3, i.e.,

max{τL, τR} ≤ 3min{τL, τR}, (159)

then for all a ≥ a♮(τL, τR) we have τ∗L > 0 and τ∗R > 0.

Proof. It is convenient to use the notations

JΨK = ΨR −ΨL and Ψ =
ΨR +ΨL

2
(160)

for any quantity Ψ. Plugging the expression (154a) for v∗ into (156) yields two quadratic inequations

℘L(a) = 2τLa2 + JvKa − JpK > 0, (161a)

℘R(a) = 2τRa2 + JvKa + JpK > 0. (161b)

On putting a = a♮(τL, τR) = (−JpK/JτK)1/2, we obtain

℘L(a♮) = ℘R(a♮) = a♮( JvK + 2a♮τ). (162)

Case 1. If JvK ≥ 0, then a = a♮ is a suitable choice because ℘L(a♮) = ℘R(a♮) > 0. Furthermore, both functions ℘L
and ℘R are increasing with respect to a ∈ R∗+. Consequently, every a > a♮ also satisfies (161).

Case 2. If JvK < 0 but within the smallness constraint (157), we still have ℘L(a♮) = ℘R(a♮) > 0, and a = a♮

remains a suitable choice. To deduce (157) from the subsonic hypothesis (158), we add up the inequalities

vR + a♮τR > 0 and − vL + a♮τL > 0. (163)

The delicate point with JvK < 0 is that since ℘L and ℘R are not increasing with respect to a ∈ R∗+, it may happen
that as a→ +∞, the quantities ℘L(a) and/or ℘R(a) becomes negative for a while before turning positive again.

To fix ideas, assume JτK ≤ 0. Then, JpK ≥ 0. The polynomial ℘L has two real roots of opposite signs. Between
the roots, it takes negative values. Therefore, a♮ must be larger than the positive root. As a consequence,
℘L(a) > 0 for all a > a♮. As far as ℘R is concerned, it may have two positive roots or may no real roots,

according to the sign of the discriminant JvK
2 − 8τRJpK. If there is no real roots, the conclusion is ℘R(a) > 0 for

all a > a♮. If there are two real roots, their half-sum −JvK/4τL is also the critical point of ℘R, where a minimum
occurs. Assume that

a♮ < − JvK

4τL
. (164)

This implies
4τLa

♮ + JvK < 0 < JvK + 2τa♮, (165)

from which it follows that 4τL < 2τ , whence 3τR < τL. This contradicts (159), and establishes that a lies on the
right branch

a♮ > − JvK

4τL
(166)

of the parabola. The other case JτK ≥ 0 is similar. �
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If the ratio condition (159) is violated, counter-examples can be found so as to invalidate the statement about
positivity. We see that the Whitham condition a > a♮ still has strong connections with the positivity of the
intermediate densities, even though it is not geared as neatly as in the scalar model. Like the scalar equation,
an averaging argument shows that the positivity of the intermediate specific volumes at each edge implies that
of the specific volume at the center of the cells, if we use the first-order explicit scheme

τn+1j = τnj − ∆t

∆m
[v∗(wn

j ,w
n
j+1) − v∗(wn

j−1,w
n
j )] (167)

under the CFL condition ∆t
∆m

max{ai−1/2, ai+1/2} < 1
2
. A direct control of positivity is possible via another

lower-bound for a.

Theorem A.4. A sufficient condition to secure τ∗L > 0 and τ∗R > 0 is that

a > a♯(wL,wR) = −(vR − vL) +
√(vR − vL)2 + 8min(τL, τR)∣pR − pL∣

4min(τL, τR) . (168)

Proof. See Theorem 3.2. �

For JvK ≥ 0 or JvK < 0 subject to (157)–(159), we actually do not to worry about a > a♯. The one and only
condition to be taken care of is a > a♮. Since p is convex, we can even work with the stronger requirement a > a♭,
where

a♭(τL, τR) =max{√−pτ(τL),√−pτ (τR)}. (169)

Things change, however, when instead of p(τ) we have P (τ, Y, v), as is formally the case of (12a)–(12b) in
Lagrangian coordinates. In such a situation, a♮ may no longer be finite for τL = τR, and even if it is, there is
no longer any clear inequality between a♮ and a♭. The advantage of a♭ over a♮ is that it remains well-defined,
using the partial derivative with respect to τ . This is why we heuristically have to look for a ≥ max{a♯, a♭}, as
indicated in (83a).


