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We present a computer simulation study of glassy and crystalline states using the standard
Lennard-Jones interaction potential that is truncated at a finite cut-off distance, as is typical of
many computer simulations. We demonstrate that the discontinuity at the cut-off distance in the
first derivative of the potential (corresponding to the interparticle force) leads to the appearance
of cut-off nonlinearities. These cut-off nonlinearities persist into the very-low-temperature regime
thereby affecting low-temperature thermal vibrations, which leads to a breakdown of the harmonic
approximation for many eigen modes, particularly for low-frequency vibrational modes. Further-
more, while expansion nonlinearities which are due to higher order terms in the Taylor expansion
of the interaction potential that are usually ignored at low temperatures and show up as the tem-
perature increases, cut-off nonlinearities can become most significant at the lowest temperatures.
Anharmonic effects readily show up in the elastic moduli which not only depend on the eigen frequen-
cies, but are crucially sensitive to the eigen vectors of the normal modes. Whereas, those observables
that rely mainly on static structural information or just the eigen frequencies, such as the vibra-
tional density of states, total potential energy, and specific heat, show negligible dependence on the
presence of the cut-off. Similar aspects of nonlinear behavior have recently been reported in model
granular materials, where the constituent particles interact through, finite-range, purely-repulsive,
potentials. These nonlinearities have been ascribed to the nature of the sudden cut-off at contact in
the force-law, thus we demonstrate that cut-off nonlinearities emerge as a general feature of ordered
and disordered solid state systems interacting through truncated potentials.

PACS numbers: 02.70.-c, 63.50.-x, 63.20.-e, 62.25.-g

I. INTRODUCTION

Let us consider a Hamiltonian system, composed of
N point particles, in a 3-dimensional solid (crystalline
or glassy) state. We assume that the potential energy,
Φ = Φ({~ri}), of the system is a function only of the
positions of the particles, {~r1, ~r2, ..., ~rN}. When the am-
plitude of vibrational motions of the particles is small
enough, the harmonic approximation provides a suitable
description of the system [1], where the equations of mo-
tion are linearized

mi
d2~ui

dt2
= −

N
∑

j=1

(

∂2Φ

∂~ri∂~rj

)0

· ~uj (i = 1, 2, ..., N). (1)

Here, mi is the mass of particle i, ~ui(t) = ~ri(t)−~r0i is the
displacement of particle i from the potential minimum
state “0” where Φ = Φ0 = Φ({~ri = ~r0i }), and ()0 denotes
the value at the minimum. The solution of Eq. (1) can
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be written as the superposition of 3(N − 1) eigen modes
(3 zero-frequency translational modes are removed)

~ui(t) =

3N−3
∑

k=1

Ak
0 exp(jω

kt)~eki (i = 1, 2, ..., N), (2)

where Ak
0 is the amplitude of mode k, and j is the imagi-

nary unit. ωk and ~ek = [~ek1 , ~e
k
2 , ..., ~e

k
N ] are respectively the

eigen frequency and the eigen vector of mode k, with ~eki
the polarization vector of particle i, which are obtained
by solving the eigenvalue problem of the 3N×3N dynam-

ical matrix, or Hessian,
(

∂2Φ/∂~ri∂~rj
)0

[1]. For thermal
systems, e.g. crystals and glasses, in the low tempera-
ture regime such that thermal motions of the particles
are constrained within their local energy minima, the
harmonic approximation successfully describes both vi-
brational properties of the systems, and other thermody-
namic observables, e.g. the specific heat and elastic con-
stants. The success of this picture relies on the notion
that particle vibrations are analogous to a ball-spring
model whereby interacting particles remain in ‘contact’
in the sense that particles always feel the interactions of
their neighbors.
In contrast, recent studies of purely-repulsive, short-

range interaction potentials as model systems of partic-
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ulate matter have revealed a strong nonlinear or anhar-
monic feature in their vibrational modes [2–7]. This non-
linear behavior has been ascribed to the nature of the
sudden cut-off at contact in the force-law between non-
cohesive granular particles. Indeed, given the one-sided
nature of such potentials and the fact that their second
derivatives are non-analytic at the contact distance [8],
once a contact altering event (opening or closing) occurs,
the harmonic approximation, Eq. (1), cannot capture this
energy variation, and nonlinearities emerge [2–7]. We
denote these aspects of the interaction law as “cut-off
nonlinearities” and emphasize that these are quite dis-
tinct from the usual “expansion nonlinearities” which
arise from higher order terms in the Taylor expansion
of the potential energy, Φ = Φ({~ri}), around the energy
minimum [5, 9].
In the present contribution, we show that cut-off non-

linearities are not specific to granular matter, but appear
as a general feature in any solid state system in which
the interaction is cut off at a finite distance, as is com-
mon practice in computer simulations. While enforcing
the truncation of quasi-long-ranged interaction poten-
tials, e.g., attractive Lennard-Jones potentials, is largely
a numerical issue to improve computational efficiency,
from a mathematical perspective the appearance of cut-
off nonlinearities that results from this truncation share
the same mechanism with those in particulate, jammed
systems. Therefore, it seems pertinent to ask whether
such cut-off nonlinearities actually affect structural and
mechanical properties of solid state systems. We will
show that, although simple structural properties are not
influenced by these nonlinearities, they become appar-
ent in normal modes analyses. In particular, such cut-off
nonlinearities can strongly affect mechanical properties
that depend explicitly on the vibrational modes, specif-
ically, the eigen vectors and thence the particle polar-
ization vectors. Oddly, this effect can be enhanced by
lowering the temperature.
We study the Lennard-Jones (LJ) pair potential

φLJ(r) (our results for the LJ potential can be extended
to more practical potentials, and should be quite general)

φLJ (r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

,

φ′
LJ (r) = −24ǫ

r

[

2
(σ

r

)12

−
(σ

r

)6
]

,

(3)

where ′ denotes the derivative with respect to distance
r. The values of ǫ and σ characterize the energy and
length scales of the interaction, respectively. The stan-
dard protocol in numerical simulations is to truncate the
potential at some cut-off distance r = rc [10]

φTLJ(r) = φLJ (r)H(rc − r),

φ′
TLJ(r) = φ′

LJ (r)H(rc − r)− φLJ (r)δ(r − rc),
(4)

where H(x) is the Heaviside function (H(x) = 1 for
x ≥ 0, H(x) = 0 otherwise), and δ(x) is the impul-
sive function. This truncation leads to a discontinuity

at r = rc in the potential φTLJ(r), and also an impulsive
term, ∼ δ(r − rc), in its first derivative φ′

TLJ (r), i.e. the
interparticle force. To prevent the discontinuity in the
potential and impulsive force, it is standard practice to
use the “shifted potential” φSP (r) [10, 11];

φSP (r) = [φLJ(r) − φLJ(rc)]H(rc − r),

φ′
SP (r) = φ′

LJ(r)H(rc − r).
(5)

The function φSP (r) is now continuous at r = rc and
has no impulsive term in its first derivative, but still has
discontinuities at r = rc in its derivatives, including the
force term. To smooth the potential further, e.g. make
the first derivate continuous, we can employ the “shifted-
force” potential φSF (r) [10, 12];

φSF (r) = [φLJ (r)− φLJ (rc)− (r − rc)φ
′
LJ (rc)]H(rc − r),

φ′
SF (r) = [φ′

LJ (r)− φ′
LJ (rc)]H(rc − r).

(6)
We can also smooth arbitrarily high nth-order (n ≥ 2)
derivatives by adding terms, ∼ (r − rc)

n, in the same
way as in φSF (r). Another option is to interpolate the
potential around the cut-off distance r = rc by using
polynomials (see e.g. Ref. [13]).
If the second derivative of the truncated potential

is non-analytic at r = rc, as it is the case for all of
φTLJ(r), φSP (r), φSF (r), and if some pairs of particles
pass through r = rc, the dynamical matrix and Eq. (1)
cannot capture the energy change due to this event, and
as a result, cut-off nonlinearities emerge. In the following,
we will show that the cut-off discontinuity in the inter-
particle force (the first derivative of the potential) en-
hances the cut-off nonlinearities, and has non-negligible
effects on the low-temperature thermal vibrations, even
though the discontinuity is small. Specifically, when we
use the shifted-potential φSP (r), where the interparticle
force is discontinuous at r = rc, the harmonic approxi-
mation breaks down even at very low temperatures for
many vibrational eigen modes, particularly those that lie
at lower frequencies. However, when the shifted-force
potential φSF (r) is employed to make the interparticle
force continuous, then the cut-off nonlinearities are sig-
nificantly suppressed, and the harmonic approximation
becomes applicable again. We also study the effects of
cut-off nonlinearities on several structural and thermo-
dynamic observables. In particular, we will show that
the cut-off nonlinearities have a negligible effect on those
properties that do not depend on the details of the eigen
vectors of the normal mode decomposition. These in-
clude the radial distribution function (RDF), vibrational
density of states (vDOS), total potential energy, and spe-
cific heat. Whereas, mechanical properties such as the
elastic constants, which depend crucially on particle po-
larization vectors, are much more strongly affected.
The paper is organized as follows. In Sec. II we de-

scribe in detail the numerical systems studied. Section III
contains a comprehensive presentation of our results. We
first discuss the results of the static structure and vibra-
tional states in the harmonic limit T = 0 in Sec. III A. We
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Potential Force at r = rc System Φ0/N

1. φSP (r) with rc = 2.5 Discontinuous Glass1 −6.85281

Crystal1 −7.36841

2. φSF (r) with rc = 2.5 Continuous Glass2 −6.07778

Crystal2 −6.60853

3. φSP (r) with rc = 3.0 Discontinuous Glass3 −7.29178

Crystal3 −7.81922

TABLE I. The potentials and the systems investigated in this
work. We consider three types of truncated LJ potentials,
1, 2, and 3, and two types of configurations, glass and face
centered cubic (FCC) crystal, therefore a total of 6 = 3 × 2
systems, which are listed in the table. We also present the
value of the minimum potential energy per particle, Φ0/N ,
for each system. The detailed descriptions of the potentials
and the systems are found in the main text. See also Fig. 1.

next study the effect of cut-off nonlinearities on thermal
vibrations at finite temperatures T > 0 in Sec. III B, and
their effects on several physical quantities in Sec. III C.
We summarize our results in Sec IV, and give our con-
clusion in Sec. V.

II. SYSTEMS DESCRIPTION

A. Lennard-Jones potentials

We consider three types of truncated LJ potentials, as
listed in Table I and plotted in Fig. 1. Previous numer-
ical works usually made the potential φ(r) continuous
(shifted) at the cut-off distance r = rc [10–12, 14–16], in
order to avoid the impulsive force, ∼ δ(r − rc). Then,
each work optionally took care of discontinuities in the
derivatives of the potential. Even if the potential φ(r)
was not made continuous (not shifted) at r = rc, the
impulsive force was usually ignored, although the inter-
particle force and φ′(r) become inconsistent in this case.
Therefore, the shifted potential φSP (r) (see Eq. (5)) is
considered to be the most practical to implement and is
regarded as the standard potential to use in simulation
studies [10–12, 14–16]. Our focus in this study is then
the discontinuity in the first derivative of the interac-
tion potential (interparticle force), which in turn has a
non-negligible effect on the low-temperature vibrational
motions of particles.
Potential 1: As the first potential “1” we use the

shifted potential, φSP (r), with rc = 2.5. This potential
has a discontinuity in its first derivative at r = rc =
2.5. The value of the cut-off distance, rc = 2.5, has
been employed in many previous simulation works [10–
12]. Note that the value of original potential φLJ(r) at
rc = 2.5 is 1.6% of the energy scale ǫ. Our previous
simulations of LJ glasses also used this potential 1 (with
rc = 2.5) to study acoustic excitations [17] and spatial
distributions of local elastic moduli [18].
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FIG. 1. (a) Lennard-Jones potential φ(r) and (b) its first
derivative φ′(r). In the present study, we use three types of
truncated potentials; 1: φSP (r) with rc = 2.5, 2: φSF (r) with
rc = 2.5, and 3: φSP (r) with rc = 3.0, as listed in Table I
(see also Eqs. (5) for φSP (r) and (6) for φSF (r)). The red
solid, green dashed, and blue dotted lines show the potentials
1, 2, and 3, respectively. The insets show close-ups around
the cut-off distance r = rc.

Potential 2: In order to consider the continuous in-
terparticle force, we use, as the second potential “2”, the
shifted-force potential, φSF (r), with the same cut-off dis-
tance rc = 2.5 (see Eq. (6)).
Potential 3: For our third potential “3”, we consider

a longer cut-off distance rc = 3.0 in the shifted potential
φSP (r). The interparticle force has a discontinuity at
r = rc, but it is reduced by the longer rc = 3.0, compared
to that of potential 1 with rc = 2.5, as we can visually
recognize in the inset of Fig. 1(b).
By comparing the results from those three potentials,

we study the impact of the discontinuity in the inter-
particle force at r = rc, on cut-off nonlinearities and
finite-temperature thermal vibrations.

B. Systems preparation

For each LJ potential described above, we prepared
two types of configurations, an amorphous glass and
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a face centered cubic (FCC) crystal, under periodic
boundary conditions in the x, y, and z directions. The
system is mono-disperse, composed of N = 4, 000 identi-
cal particles with mass m, diameter σ, and interparticle
potential energy ǫ. Throughout this paper, we present
the values of quantities in units of σ (length), ǫ (energy),
and m (mass). The temperature T and frequency ω are
expressed in units of ǫ/kB (kB is Boltzmann’s constant)
and τ−1 = (mσ2/ǫ)−1/2, respectively. We fixed the num-
ber density at ρ̂ = N/V = 1.015, where the system length
is L = V 1/3 = 15.8, and the lattice constant of the FCC
crystal is a = L/10 = 1.58. The melting temperature Tm

and the glass transition temperature Tg of this mono-
disperse system have been reported as Tm ≃ 1.0 and
Tg ≃ 0.4 [19].

We first considered potential 1, to prepare “glass 1”
and “crystal 1” at a temperature T = 10−3, well below
both Tg and Tm. For the preparation of glass 1, we equili-
brated the system at T = 2.0 in the normal liquid phase,
and quenched it down to T = 10−3 with an extremely
fast rate dT/dt = 4 × 102, followed by an equilibration
run at T = 10−3, as described in Ref. [17]. After prepar-
ing the glass and crystal with potential 1, we switched
the potential from 1 to 2 and 3, and equilibrated the
systems again at the same temperature T = 10−3. For
the glassy cases, we relaxed the systems for sufficiently
long times to eliminate any aging effects in these three
cases. We note that all systems remain very close to the
same energy minimum during the entire trajectory. After
the systems were equilibrated at T = 10−3, we quenched
them using the steepest descent method, from T = 10−3

to 0, i.e. into the nearest energy minimum 0 (inherent
structure).

The values of the minimum potential energy per parti-
cle, Φ0/N , presented in Table I, are different for the three
potentials, with a difference of about 15% between the
potentials 2 and 3, for both glass and crystal. Since dif-
ferent cut-offs give different Hamiltonians, system prop-
erties generally depend on the cut-off nature. In fact,
as it has been reported in Refs. [14–16], thermodynamic
properties, including the melting point Tm (and possibly
the glass transition point Tg), strongly depend on the
cut-off treatment. However, as we will see in the RDF
g(r) of Fig. 2 in Sec. III A 1, the three truncated poten-
tials produced practically identical configurations (glass
or crystal). This allows us to focus entirely on the role
of the cut-off nonlinearities in the same static structures.
Note that we switched to potentials 2 and 3 only after
the system was prepared with potential 1; the potentials
2 and 3 were not used from the initial stage where we
generated liquid configuration at T = 2.0. The reason
why we employed this particular preparation procedure
was to minimize any possible differences in the configu-
rations from which we started to compute observables.

Finally, each system was heated from the energy min-
imum state (T = 0). We study the low temperature
regime, ranging from T = 10−4 to 10−2 for glasses,
and from T = 10−4 to 10−1 for crystals. This tem-
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FIG. 2. The RDF g(r) in the energy minimum state (T = 0)
for (a) glasses and (b) crystals. The values for three types of
truncated potentials, 1 (red solid line), 2 (green dashed line),
and 3 (blue dotted line), are presented. The inset to (b) is a
close-up around r = 2.5.

perature range is well below (one order of magnitude
lower than) the glass transition Tg ≃ 0.4 and the melting
Tm ≃ 1.0 temperatures. At each T , we carried out an
equilibration followed by a production run, using NV T
molecular-dynamics (MD) simulation. Here, we set the
time step to δt = 10−2 for T < 10−3, and δt = 5× 10−3

for T ≥ 10−3. During the simulations, we observed no
particle rearrangements, indicating that particles vibrate
around the same energy minimum state at all studied
temperatures, i.e. each system remains in its original
inherent structure. All MD simulations were performed
using LAMMPS [20, 21].

III. RESULTS

A. Static structure and vibrational states in the

harmonic limit, T = 0

Before studying thermal vibrations at finite tempera-
tures T > 0, we first look at the static structure and the
vibrational states in the energy minimum state T = 0
(the harmonic limit). We will see that the three trun-
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cated LJ potentials produce practically identical static
structures and vibrational states at T = 0.

1. Static structure

Figure 2 presents the RDF, g(r), in the energy mini-
mum state 0 (T = 0). As in Fig. 2(a), the three poten-
tials show no differences in g(r) for the glasses. In the
crystals, we observe slight differences between potential
1 and the other potentials 2, 3, as highlighted in the inset
of Fig. 2(b). While crystals 2 and 3 have a single peak
around each lattice distance, double peaks are apparent
in crystal 1. In the FCC lattice structure with lattice
constant a = 1.58, all the particles have their nearest
neighbors located at a distance r =

(√
10/2

)

× a ≃ 2.5.
In this situation, if the interparticle force has a discon-
tinuity at r = rc = 2.5, particles cannot be stabilized
at the exact lattice positions, rather they are slightly
displaced due to the discontinuous force, leading to the
double peaks in g(r) for crystal 1. This effect also exists
in glasses 1 and 3, i.e. some pairs of particles located
at the cut-off distance r = rc are not stabilized precisely
at r = rc. However, this feature is not noticeable in
the glass due to the smoothing effect of the amorphous
structure.

Although the locations of particles in crystal 1 do not
lie precisely at the lattice positions, they are approxi-
mately located at these lattice points, with deviations
of only 1%, hence they show the same FCC structure
as crystals 2, 3. Therefore, we conclude that the three
truncated potentials produce essentially identical static
structures in the harmonic limit T = 0.

2. Vibrational states

As we explained in Eqs. (1) and (2), harmonic vi-
brational motions of particles are completely described
in terms of the 3N − 3 eigen frequencies ωk and eigen
vectors ~ek = [~ek1 , ~e

k
2 , ..., ~e

k
N ] (k = 1, 2, ..., 3N − 3) [1].

We diagonalized the Hessian (3N × 3N dynamical ma-
trix), (∂2Φ/∂~ri∂~rj)

0, to obtain the eigen values λk and
eigen vectors ~ek. The eigen frequencies are given as

ωk =
√
λk, and the eigen vectors are normalized such

that ~ek · ~el = ∑N
i=1(~e

k
i · ~eli) = δkl, where δkl is the Kro-

necker delta function. Note that if the system is stable
in the energy minimum state 0, all the eigen values λk

are positive, and the eigen frequencies ωk are real num-
bers. In this study, we used the ARPACK software [26]
to realize the diagonalization of the 3N × 3N matrix.

Figure 3 shows the vDOS, d(ω), obtained from 3N − 3
values of ωk;

d(ω) =
1

3(N − 1)

3N−3
∑

k=1

δ(ω − ωk). (7)
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FIG. 3. The vDOS, d(ω) and d̃(ω), for (a) glasses and (b) crys-
tals. The symbols represent the vDOS d(ω) obtained from the
dynamical matrix (see Eq. (7)), for potentials, 1 (red circle),
2 (green square), and 3 (blue triangle). The lines show the

Fourier transform, d̃(ω), of the velocity auto-correlation func-
tion, d(t), at T = 10−3 (see Eq. (21)), for potentials, 1 (red
solid line), 2 (green dashed line), and 3 (blue dotted line).
The black solid line is the Debye prediction, which is calcu-
lated from the elastic moduli of potential 2. Note that the
Debye prediction is almost unchanged for different potentials.

In Fig. 4, we plot the participation ratio, PRk, for each
mode k, as a function of ωk;

PRk =
1

N

[

N
∑

i=1

(~eki · ~eki )2
]−1

, (8)

which measures the extent of vibrational localization in
mode k [22–25]. The vDOS d(ω) shows the typical shapes
for glasses and crystals. Crystals: (i) at intermediate-
high frequencies d(ω) has two branches, corresponding
to transverse and longitudinal acoustic phonons, and (ii)
at low frequency, Debye scaling, d(ω) ∼ ω2, is observed
(black solid line in Fig. 3(b)) [1, 27]. Glasses: (i) smooth
variations and broadened distributions are observed, and
(ii) the low frequency portion of d(ω) shows an enhance-
ment of modes over the Debye prediction [17, 27, 28].
In addition, from PRk, we recognize localization of the
low and high ωk modes in the glasses, which are a
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FIG. 4. Participation ratio PRk versus eigen frequency ωk

for (a) glasses and (b) crystals. The values for the three po-
tentials, 1 (red circle), 2 (green square), and 3 (blue triangle),
are presented.

characteristic feature of various amorphous [22, 23] and
jammed [24, 25] matters, whereas all the modes in the
crystals are extended phonon modes.

In Figs. 3 and 4, there does not appear to be any no-
ticeable differences among the three potentials. This is
further validated by the results shown in Fig. 11 (see
lines) and related discussion. Therefore, the three trun-
cated potentials produce practically identical vibrational
states in the harmonic limit T = 0. We note, however,
that small detailed differences are observed in d(ω) and
PRk; for instance, glass 2 with continuous interparticle
force contains a number of lower frequency modes than
those in glass 1 (and 3) with the discontinuous force (the
lowest eigen frequency of ωk = 0.79 in glass 2 is lower
than that of ωk = 1.13 in glass 1). These small differ-
ences are picked up by the (non-affine) elastic moduli
which shows differences between the three potentials, as
indicated in Fig. 15 (see lines).

We close this section on the T = 0 properties with
a brief discussion of the low frequency quasi-localized
modes in glassy configurations, which will be useful in the
next section (Sec. III B 1). We have studied the spatial
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FIG. 5. The spatial correlation function Ck(rij) of eigen vec-
tor ~eki (~ri) for several different eigen modes in glass 1. Note
that the mode with ωk = 1.13 and PRk = 0.11 is a low fre-
quency quasi-localized mode, while the one with ωk = 30.0
and PRk = 0.08 is a high frequency localized mode [22–25].

correlation function Ck(rij) of the eigen vectors ~eki (~ri)
for each mode k;

Ck(rij) =
〈

~eki (~ri) · ~ekj (~rj)
〉

〈ij〉
, (9)

where ~eki (~ri) is a function of the position ~ri, rij = |~ri−~rj |,
and 〈〉〈ij〉 denotes the average over all the pairs of parti-

cles 〈ij〉. Figure 5 presents Ck(rij) for several different
eigen modes k in glass 1. It is observed that the lowest
ωk = 1.13 mode has the low value of PRk = 0.11, but
its Ck(rij) shows a longer spatial correlation compared
to other modes with higher values of PRk. Note that
the negative correlation comes from the transverse na-
ture of this mode. In the localized modes with low PRk,
vibrational motions of particles are confined to a few
small regions. Therefore one may expect that the spa-
tial correlation between vibrational motions of particles
is rather short within those confined regions. However,
Fig. 5 confirms that the lowest ωk = 1.13 mode actually
shows an extended character with the long spatial corre-
lation. Thus, the low ωk mode is “quasi-localized” [22–
25], which is distinct from “true” localization without any
extended nature, observed in the high frequency modes.
In Fig. 5, the high frequency localized mode (ωk = 30.0
and PRk = 0.08) shows only a short spatial correlation,
i.e. Ck(rij) decays within rij ∼ 1 (order of the parti-
cle diameter). Similar observations have been found in
athermal jammed solids [24, 25].

B. Cut-off nonlinearities in thermal vibrations at

finite temperature T > 0

We now turn our attention to thermal vibrations at
finite temperatures T > 0. We focus on each eigen mode
k and monitor vibrational motions of particles along the
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mode k. Specifically, we measured the vibrational ampli-
tude, Ak(t), and the energy landscape, ∆Φ(Ak), for each
mode k, which will be presented in this section. When
a pair of particles passes through the cut-off distance
r = rc, the cut-off nonlinearities affect the vibrational
motions of particles. We will show that the discontinuity
in the interparticle force at r = rc enhances the cut-off
nonlinearities, which causes a breakdown of the harmonic
approximation for many eigen modes k. More precisely,
the number of particles pairs that are involved in mode
k and experience the force discontinuity determines the
strength of the cut-off nonlinearities.

1. Vibrational amplitude along eigen mode k

We have extracted the vibrational amplitude, Ak(t),
along the eigen mode k from an MD trajectory in the
(NVT)-ensemble, {~r1(t), ~r2(t), ..., ~rN (t)}, at each temper-
ature T ;

Ak(t) =

N
∑

i=1

~ui(t) · ~eki (k = 1, 2, ..., 3N − 3), (10)

where ~ui(t) = ~ri(t) − ~r0i is the displacement of particle i
from its energy minimum position ~r0i . We note that the
MD trajectory is then described as the superposition of
3N − 3 eigen modes k with the amplitude Ak(t);

~ui(t) =

3N−3
∑

k=1

Ak(t)~eki (i = 1, 2, ..., N). (11)

In thermal systems at finite T > 0, the eigen modes al-
ways exchange energy with each other, due to genuine
expansion nonlinearities of the potential (and through
the thermal bath as well) [1, 29–31]. We remark that the
expansion nonlinearities should be very small in our tem-
perature range, but they still play a role in thermal equi-
libration of the system. This fact is reflected in the obser-
vation that all the amplitudes, Ak(t) (k = 1, 2, ..., 3N−3),
are a function of time t. As a consequence, the life-times
of the modes, which can be measured by the mode energy
correlation function [29–31], are finite, although they be-
come very large at low T . This mode mixing is a generic
feature for T > 0 systems, and is active even at very
low T , as in the present case. Particularly, in crystals, it
is known as phonon-phonon interaction and plays a cen-
tral role in thermal conduction [1, 29–31]. In contrast, if
Eqs. (1) and (2) hold, the modes can not interact. Thus
the amplitudes Ak(t) of modes are all constant, not de-
pending on t, and the lifetimes of modes are infinite. Note
that in Eq. (2) Ak(t) = Ak

0 exp(jω
kt), and |Ak(t)| ≡ Ak

0

is constant. Therefore, the strict definition of harmonic
motions, Eqs. (1) and (2), is never realized for systems
at finite T > 0.
Although strict harmonic vibrations are not realized in

thermal systems, the law of equipartition of energy gives
a harmonic condition for the amplitude Ak(t) of mode k,

as follows. In the harmonic approximation, the poten-
tial energy of the system, ∆Φ(t) = Φ(t) − Φ0, measured
from the minimum value Φ0 is formulated in terms of the
dynamical matrix, (∂2Φ/∂~ri∂~rj)

0 [1, 29–31];

∆Φ(t) =
1

2

N
∑

i=1

N
∑

j=1

~ui(t) ·
(

∂2Φ

∂~ri∂~rj

)0

· ~uj(t),

=

3N−3
∑

k=1





Ak(t)
2

2

N
∑

i=1

N
∑

j=1

~eki ·
(

∂2Φ

∂~ri∂~rj

)0

· ~ekj



 ,

=

3N−3
∑

k=1

[

Ak(t)ωk
]2

2
=

3N−3
∑

k=1

Ek
P (t),

(12)

where Ek
P (t) =

[

Ak(t)ωk
]2

/2 is the potential energy of
eigen mode k [29–31]. In the harmonic description, the
total potential energy ∆Φ is therefore the sum of Ek

P
over all modes k. When the system is in thermodynamic
equilibrium at a temperature T , energy equipartition [10]
implies that a potential energy T/2 is distributed equally
among eigen modes, so that

〈

Ek
P (t)

〉

=
1

2
T ⇐⇒

〈

Ak(t)
2
〉

=
T

(ωk)
2
, (13)

where, again, 〈〉 denotes the NV T ensemble average
(time average over the MD trajectory). Therefore, the
harmonic value of the amplitude is given as

Āk
harm :=

√

〈

Ak
harm(t)

2
〉

=

√
T

ωk
, (14)

where we explicitly denote the harmonic value by the
subscript “harm”. Thus, we can identify harmonic vi-
brations for mode k, through the relation Āk/Āk

harm = 1,
where

Āk

Āk
harm

:=

√

〈

Ak(t)
2
〉

√

〈

Ak
harm(t)

2
〉

=

√

〈

Ak(t)
2
〉

√
T/ωk

, (15)

and deviations from the harmonic condition indicate the
presence of anharmonicities. It is important to remark
that at low temperatures, the expansion nonlinearities
are very weak (even if they are still strong enough to
induce mode interactions, as we mentioned above), and
do not affect the harmonic approximation of the potential
energy. Therefore, if for mode k, Āk/Āk

harm 6= 1, this
implies that the mode is deformed primarily by the cut-
off nonlinearities.
Figure 6 shows the ratio of the calculated amplitude

and the harmonic expectation (solid line), Āk/Āk
harm,

versus the eigen frequency ωk at the indicated values of T ,
for all investigated cases (glass and crystal). For poten-
tial 1, many eigen modes k show larger amplitudes than
the harmonic expectation, i.e. anharmonic vibrations. In
glass 1, the low ωk modes are anharmonic even at very
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/Ā

k h
a
rm

ωk ωk ωk

(d) (e) (f)

FIG. 6. Amplitude Āk versus eigen frequency ωk: (a) glass 1, (b) glass 2, (c) glass 3, (d) crystal 1, (e) crystal 2, and (f) crystal

3. The value of Āk is normalized by the harmonic expectation, Āk
harm =

√
T/ωk, such that harmonic behavior of mode k

corresponds to Āk/Āk
harm = 1 (Eq. (15)), which is indicated by the horizontal solid line. The inset to (d) shows the large values

of the amplitude in crystal 1. Different symbols represent three temperatures as indicated in the key of the middle panel.

low T = 10−4, whereas at higher frequencies, ωk & 5, the
modes become harmonic. On the other hand, in crystal
1, many modes over the entire range of ωk show large
anharmonic effects. Remarkably, those anharmonic vi-
brations are completely suppressed in potential 2, where
all the modes are consistent with the harmonic expecta-
tion value, in both glass 2 and crystal 2. We emphasize
that cut-off nonlinearities should exist in both potentials
1 and 2, since the second derivatives of the potentials are
both non-analytic at r = rc. What we have demonstrated
here is that cut-off nonlinearities are most pronounced in
the case of a discontinuity in the interparticle force at
r = rc, which indeed makes a visible impact on the ther-
mal vibrations. As we will see below, the strength of
cut-off nonlinearities in each mode k is then determined
by the number of pairs of particles that are involved in
the mode k and experience the force discontinuity.

Comparing glass 1 and crystal 1: Crystal 1 shows
much larger anharmonic amplitudes in many of the nor-
mal modes. As we mentioned in Fig. 2(b) of the RDF
g(r) (Sec. III A 1), all the particles in crystal 1 have
their nearest neighbors located around the cut-off dis-
tance r = rc = 2.5 (which coincides with the exact

lattice position), and in addition, the eigen modes are
phonons, i.e. collective, extended modes. In this situa-
tion, many modes have a large number of pairs of par-
ticles which experience the discontinuous force causing
large cut-off nonlinearities. On the other hand, in glass
1, fewer particles have such neighbors located precisely
at r = rc = 2.5 because of the amorphous structure. Fur-
thermore, the eigen modes are less extended than regular
phonons, exhibiting quasi-localized features, resulting in
much smaller cut-off nonlinearities.

Comparing glasses 1 and 3: We observe smaller
anharmonic amplitudes in glass 3 than those in glass 1.
In glass 3, although even more pairs of particles, located
around rc = 3.0, are found than those at rc = 2.5 in glass
1, the discontinuity in the interparticle force is smaller by
the longer cut-off distance rc = 3.0 (see Fig. 1(b)), which
leads to the smaller cut-off nonlinearities.

Comparing crystals 1 and 3: In crystal 3, all the
modes show values around the harmonic expectation, i.e.
the large anharmonic amplitudes observed in crystal 1
completely disappear. The discontinuity at r = rc = 3.0
in potential 3 is not located at the lattice points (see g(r)
in Fig. 2(b)), therefore no pairs of particles experience
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FIG. 7. Mean square displacement of particles,
〈

∆~r2(t)
〉

(Eq. (16)), is plotted as a function of time t, for (a) glass
1, (b) crystal 1, and (c) crystal 2. The value of

〈

∆~r2(t)
〉

is
normalized by the temperature T . Different lines represent
three temperatures as indicated in the key. In the harmonic
regime values of

〈

∆~r2(t)
〉

/T for different T collapse onto a
single curve.

the discontinuity at low T s, and no cut-off nonlinearities
appear in crystal 3.

Low-ωk modes in glasses 1 and 3: One noticeable
observation in glasses 1 and 3 is that anharmonicities are
found only in the low ωk . 5 region, with lower ωk modes
showing larger anharmonic amplitudes, Āk/Āk

harm > 1.
This result is explained by the fact that the lower ωk

modes involves more particles which experience the force

discontinuity to cause cut-off nonlinearities. As we dis-
cussed in Fig. 5 of Ck(rij) (Sec. III A 2), the low ωk mode
is actually quasi-localized [22–25], i.e. although it is lo-
calized, it exhibits an extended character with long spa-
tial correlation. Therefore, the larger cut-off nonlineari-
ties at the lower ωk reflect the extended character of the
low ωk mode.
Effect of temperature in crystal 1: Whereas

at lower temperatures particle displacements are small
enough that interacting pair separations remain close
to the initial distance, at higher temperatures thermal
vibrations increase in amplitude causing pairs of parti-
cles, initially located near the cut-off distance r = rc,
to pass through rc less often - particle separations reside
inside or outside the cut-off distance - thereby reducing
the effect of the cut-off nonlinearities. This is clearly
observed in crystal 1, i.e. as T increases, anharmonic
amplitudes are strongly suppressed toward the harmonic
value, Āk/Āk

harm = 1. Here we note that expansion non-
linearities are expected to be enhanced by larger vibra-
tional amplitude at higher T , however we cannot resolve
these effects at the values of T explored here. We also
remark that cut-off nonlinearities have an effect that is
opposite to the temperature of the expansion nonlinear-
ities; increasing temperature leads to a suppression of
cut-off nonlinearities, while expansion nonlinearities are
expected to grow with temperature.
Effect of temperature in glasses 1 and 3: The an-

harmonicities in glasses 1 and 3 are quite insensitive to
temperature. Given the fact that systems 1 and 3 share
the same type of discontinuity in the force, one might ex-
pect that the glassy systems should exhibit similar tem-
perature effects as crystal 1, i.e. suppressed anharmonic-
ities with increasing temperature. However, due to their
amorphous structures, larger thermal vibrations also in-
volve more pairs of particles that experience the force dis-
continuity, and actually lead to an increase in the anhar-
monic effects. These two effects - increasing temperature
and a growing number of anharmonic vibrating particle
pairs - appear to cancel, and as a result the anharmonic-
ities in glasses 1 and 3 are less sensitive to temperature
than might be expected.
Finally, in Fig. 7 we plot the mean-squared-

displacement (MSD) of the particles,

〈

∆~r2(t)
〉

=
1

N

N
∑

i=1

〈

(~ri(t)− ~ri(0))
2
〉

. (16)

In the harmonic limit,
〈

∆~r2(t)
〉

∝ T . To highlight any
deviations due to anharmonic behavior, we therefore plot
the data normalized by T . We find excellent data collapse
for both glass 1 (Fig. 7(a)) and crystal 2 (Fig. 7(c)). In
glass 1, despite the fact that many low-frequency modes
are anharmonic, these anharmonicities are, in a sense,
hidden since all the 3N−3 modes are mixed in

〈

∆~r2(t)
〉

.
On the other hand, we see clear anharmonic effect in
〈

∆~r2(t)
〉

for crystal 1 at the lowest T = 10−3 (Fig. 7(b));
〈

∆~r2(t)
〉

shows an increase of one order of magnitude
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FIG. 8. The potential energy landscape, ∆Φ(Ak, Ao), along
(a) low ωk = 1.13 and (b) high ωk = 8.79 modes in glass
1, and (c) low ωk = 0.79 mode in glass 2. We stati-
cally displace the particles from their minimum positions, as

~ri = ~r0i + Ak~eki + Ao

(

∑3N−3

l=1,l 6=k
~eli/ω

l
)

(i = 1, 2, ..., N). Then

we measure the variation of the potential energy from the min-
imum value, ∆Φ = Φ − Φ0, as a function of the amplitudes,
Ak, Ao. If the mode k is harmonic, ∆Φ shows a parabolic
shape, ∆Φ = (Akωk)2/2, independent of Ao, which is indi-
cated by the black solid line.

that occurs around t ≃ 3. This time-scale coincides with
the frequency of the lowest-lying mode, ωk ≃ 2π/t ≃
2, indicating that the increase in

〈

∆~r2(t)
〉

is driven by

large anharmonic contributions coming from the low-ωk

modes.
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FIG. 9. The potential energy landscape, ∆Φ(Ak, Ao), along
(a) low ωk = 2.19 and (b) high ωk = 8.91 modes in crystal 1,
and (c) low ωk = 2.12 mode in crystal 2. See also the caption
of Fig. 8.

2. Potential energy landscape along eigen mode k

In this section, we will interpret the above observation
of strongly anharmonic vibrations (Fig. 6) in terms of the
local geometry of the energy landscape, i.e. variations in
the potential energy compared to the parabolic, harmonic
limit. In order to explore the energy landscape close to
the minimum, we statically displace the particles ~ri from
the energy minimum position ~r0i along mode k,

~ri(A
k) = ~r0i +Ak~eki (i = 1, 2, ..., N). (17)
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~ri(A
k) is therefore a function of the amplitude Ak of

mode k, and we vary Ak continuously from Ak = 0.
In addition, to probe interactions between modes k and
l 6= k, we can statically “excite” both modes and follow
the displacements of particles that we can now express
as

~ri(A
k, Ao) = ~r0i +Ak~eki +Ao





3N−3
∑

l=1,l 6=k

~eli
ωl



 . (18)

The value of Ao determines the extent of the excitations
of modes l 6= k, and ~ri(A

k, Ao) is then a function of both
Ak and Ao. Here it is worth to note that if modes l
are harmonic in the T > 0 equilibrium state, their time-
averaged amplitudes are Al =

√
T/ωl as in Eq. (14), thus

the value of Ao provides a measure of the square root of
the temperature, Ao =

√
T . The potential energy devi-

ation, ∆Φ = Φ− Φ0, measured relative to the minimum
value Φ0 (presented in Table I), is then obtained as a
function of the two amplitudes, Ak, Ao;

∆Φ(Ak, Ao) =
∑

〈i,j〉

φ(rij(A
k, Ao))− Φ0, (19)

where rij(A
k, Ao) = |~ri(Ak, Ao)−~rj(A

k, Ao)|, and
∑

〈i,j〉

is the summation over all the pairs of particles 〈i, j〉.
As in Eq. (12), the potential energy landscape along

the mode k is formulated in the harmonic approximation
as [1, 29–31];

∆Φ =
1

2

N
∑

i=1

N
∑

j=1

~ui(A
k, Ao) ·

(

∂2Φ

∂~ri∂~rj

)0

· ~uj(A
k, Ao),

=
Ak2

2

N
∑

i=1

N
∑

j=1

~eki ·
(

∂2Φ

∂~ri∂~rj

)0

· ~ekj =

(

Akωk
)2

2
,

(20)
where ~ui(A

k, Ao) = ~ri(A
k, Ao) − ~r0i . Thus, if mode k is

harmonic, (i) its energy landscape has a parabolic shape
as a function of Ak, and (ii) it is independent of Ao,
i.e. it is independent of the other modes l 6= k. We
plot ∆Φ(Ak, Ao) for glasses in Fig. 8, and for crystals in
Fig. 9, where the harmonic behavior, ∆Φ = (Akωk)2/2,
is indicated by the black solid line.
Energy landscapes in glasses: Figure 8 shows the

energy landscapes along, (a) low ωk = 1.13 and (b) high
ωk = 8.79 modes in glass 1. The energy landscape of
the low ωk = 1.13 mode clearly deviates from a parabola
shape. In addition, it is affected by the other vibrational
modes l 6= k, depending on the value of Ao. We have con-
firmed that the low ωk = 1.13 mode is affected only by
those low-lying modes with, ωk . 5 i.e. mode couplings
occur only between the lowest ωk . 5 modes. In fact,
the high ωk = 8.79 mode maintains a parabolic shape re-
gardless of the other mode excitations with Ao 6= 0. On
the other hand, in glass 2, as seen in Fig. 8(c), even the
low ωk = 0.79 mode exhibits a harmonic energy land-
scape, independent of Ao. These observations in glasses

are consistent with the results of vibrational amplitudes
reported in Fig. 6(a)-(c). The discontinuity in the inter-
particle force in glass 1 (and also 3) deforms the energy
landscape from a parabolic shape, and induces mode cou-
plings.

Energy landscapes in crystals: In Fig. 9, we plot
the energy landscapes for crystals. In crystal 1, the en-
ergy landscape along the low ωk = 2.19 mode is rather
flat and also sensitive to the other mode excitations l 6= k,
resulting in strongly anharmonic behavior. The high
ωk = 8.91 mode shows a parabola shape for Ao = 0, but
it is affected by the other mode excitations with Ao 6= 0.
On the other hand, in crystal 2 (and also 3), all the
modes become harmonic with a parabolic energy land-
scape. This result is also consistent with the observation
in Fig. 6(d)-(f).

One remarkable observation in crystal 1 is that the
mode coupling due to cut-off nonlinearities are found
even between low and high ωk modes. This is not the
case in glasses 1 and 3, where mode couplings occur only
between the low ωk modes. The interaction between the
modes k and l emerges when those two modes share pairs
of particles which experience the force discontinuity at
r = rc. In crystal 1, if two modes k, l have the same
polarization and propagating direction, they share such
pairs of particles, regardless of their frequencies, ωk and
ωl. On the contrary, in glasses 1 and 3, high ωk modes
are not extended, consisting of short spatial correlations
(see Fig. 5), and therefore such modes are less likely to
share particles that experience the force discontinuity.
Whereas, it is more likely for the low ωk modes, which
are extended in character, to have some overlap in their
particle vibrations that experience the force discontinu-
ity.

In conclusion to this section, potential 2 (continuous
interparticle force) exhibits no visible anharmonicities in
the vibrational amplitudes as well as in the energy land-
scapes along the modes. In contrast, there are clear
signatures of anharmonic vibrational properties for po-
tentials 1 and 3 (discontinuous interparticle forces). We
emphasize again that for potential 2, although the in-
terparticle force is continuous at r = rc, cut-off non-
linearities are induced by a second derivative which is
non-analytic in r = rc. Hence, our results demonstrate
that it is primarily the discontinuity in the interparti-
cle force that enhances the cut-off nonlinearities, deforms
the energy landscapes of many modes away from the ex-
pected parabola shape, causing leaks in the energy from
one mode to other modes, and as a result, induces de-
tectable anharmonic effects. The number of particles
pairs that experience the force discontinuity determines
the strength of the cut-off nonlinearities for each mode
k; more pairs of particles pass through the cut-off point
r = rc, stronger anharmonic effects appear.
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FIG. 10. The RDF g(r) for (a) glass 1 and (b) crystal 1 at
zero, T = 0, and finite, T > 0, temperatures. The inset to
(b) is a close-up around r = rc = 2.5. The data at T = 0 are
same as those presented in Fig. 2.

C. Effects of cut-off nonlinearities on physical

quantities

In this Section we study the effects of cut-off non-
linearities on several physical quantities, including the
RDF, effective vDOS (Fourier transform of the velocity
auto-correlation function), total potential energy, specific
heat, and elastic constants. We will see that anharmonic
effects manifest more evidently in quantities which in-
clude more detailed information on vibrational states.

1. Radial distribution function (static structure)

In Fig. 10, we compare the g(r) at T > 0 with that
at T = 0, for potential 1 (glass 1 and crystal 1). As the
temperature increases, particles execute larger thermal
vibrations, and the peaks in g(r) decrease in height and
broaden. This temperature effect is clearly observed in
the crystal case (Fig. 10(b)). There is also a decrease
of the first peak in glass 1, although this change is quite
small compared to the former case (Fig. 10(a)). Figure 10
demonstrates that as T tends to zero, g(r) smoothly con-
verges to that at T = 0; g(r) at T = 10−4 coincides well
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FIG. 11. The first moments, ω1 and ω̃1, of the vDOS, d(ω)

and d̃(ω), for (a) glasses and (b) crystals. We plot the tem-
perature T > 0 dependence of ω̃1, by the symbols, and ω1,
i.e. the values in the harmonic limit T = 0, by the lines.

with that at T = 0. In crystal 1, we observe the single
peak around each lattice position at higher T ≥ 10−2,
while this peak splits into two peaks at lower temper-
ature, T ≤ 10−3 (see inset). These twin peaks are not

related to the cut-off nonlinearities, but they simply orig-
inate from the instability due to the force discontinuity at
r = rc, as discussed in Fig. 2(b) and Sec. III A 1. There-
fore, cut-off nonlinearities (see Figs. 6 to 9) have no effects
on g(r). We draw a similar conclusion for potentials 2
and 3.

2. Vibrational density of states

Next we look at the effective vDOS, d̃(ω), obtained
as the Fourier transform, of the velocity auto-correlation
function d(t) at T > 0;

d(t) =
1

(3N − 3)T

N
∑

i=1

〈~vi(t) · ~vi(0)〉 ,

d̃(ω) =

∫ ∞

0

d(t) exp(jωt)dt,

(21)
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where ~vi(t) is the velocity of particle i. For T → 0, d̃(ω)
is expected to converge to the harmonic vDOS, d(ω), ob-
tained from the dynamical matrix, Eq. (7) [28]. This is
tested in Figs. 3 and 11. Figure 3 compares d(ω) (sym-

bols) and d̃(ω) at T = 10−3 (lines), for the three investi-
gated potentials. In addition, in Fig. 11, we compare the
first moments, ω1 (lines) and ω̃1 (symbols), for d(ω) and

d̃(ω), respectively [5];

ω1 =

∫ ∞

0

ωd(ω)dω, ω̃1 =

∫ ∞

0

ωd̃(ω)dω. (22)

In Fig. 11(b), we see small differences between d(ω) and

d̃(ω) for crystal 1; the value ω̃1 at finite T > 0 is slightly
lower than ω1 at T = 0. This is caused by the anhar-
monicities observed in Figs. 6(d) and 9(a),(b). Although
crystal 1 shows large cut-off nonlinearities for many eigen
modes, they have only a small effect on the vDOS, shift-
ing the mode frequencies to slightly lower values. Except
for these small differences in crystal 1, Figs. 3 and 11
demonstrate good agreement between d(ω) and d̃(ω) over
the temperature regime studied. Therefore, we conclude
that the vDOS and the actual values of the mode fre-
quencies ωk are insensitive to the cut-off nonlinearities.

3. Potential energy and specific heat

We next study the total potential energy deviation
〈∆Φ〉 (measured from the minimum value Φ0) and the
specific heat CV , which are calculated as an ensemble
average over the (NV T ) MD trajectories as

〈∆Φ〉 =
〈

∑

<i,j>

φ(rij)

〉

− Φ0,

CV =

〈

(E − 〈E〉)2
〉

T 2
=

〈

δE2
〉

T 2
,

(23)

where E = K+Φ (K =
∑N

i=1 ~v
2
i /2 is the kinetic energy)

is the total energy of the system, and the δE = E − 〈E〉
are the associated fluctuations.
In Figs. 12 and 13 we show the T -dependences of 〈∆Φ〉

and CV , respectively. Equipartition of energy directly
provides the harmonic values for 〈∆Φ〉 = (3N − 3)T/2 ≃
(3/2)NT and CV = 3N − 3 ≃ 3N , which are indicated
by horizontal solid lines in the figures. We clearly see
that 〈∆Φ〉 and CV coincide with these values in the in-
vestigated T -range, for all the glasses and crystals, which
is not surprising. Indeed, the potential energy (and the
specific heat) is related to the eigen frequencies ωk in the
harmonic limit (Eq. (12)), and the values of ωk and g(ω)
are not affected by cut-off anharmonicities as shown in
Figs. 3 and 11.
It is, however, still surprising that crystal 1 retains

strongly harmonic character in the values of 〈∆Φ〉 and
CV , despite strong anharmonic effects which largely de-
form the energy landscapes of the vibrational modes
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FIG. 12. The temperature, T , dependence of the scaled po-
tential energy, 〈∆Φ〉 /NT , for (a) glasses and (b) crystals.
〈∆Φ〉 is the total potential energy measured from the mini-
mum value Φ0 (see Eq. (23)). If thermal vibrations are har-
monic, 〈∆Φ〉 /NT = 3/2 - shown as the horizontal solid line.

as shown in Figs. 9(a) and (b). To further elucidate
this point, we calculated the potential energy by using
“parabolic” and “no-coupling” formulations;

∆Φparabolic(t) =
3N−3
∑

k=1

[

ωkAk(t)
]2

2
,

∆Φno-coupling(t) =

3N−3
∑

k=1

∆Φ(Ak(t), Ao ≡ 0),

(24)

where the value of Ak(t) is the amplitude of mode k de-
fined in Eq. (10), and ∆Φ(Ak, Ao) is the energy land-
scape defined in Eq. (19). We recall that, as shown in
Figs. 8 and 9 (Sec. III B 2), cut-off nonlinearities (i) de-
form the energy landscape from a parabolic shape and (ii)
induce couplings between the modes. ∆Φparabolic disre-
gards both effects, while ∆Φno-coupling includes (i) but
not (ii).
In Fig. 14, we compare the time dependencies of

those two quantities (∆Φparabola(t) and ∆Φno-coupling(t))
with that of the true value evaluated directly from the
MD trajectory ∆Φ(t). We see that ∆Φparabola(t) and
∆Φno-coupling(t) coincide well with the true ∆Φ(t) in glass
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FIG. 13. The temperature, T , dependence of the specific
heat per particle, CV /N (see Eq. (23)), for (a) glasses and
(b) crystals. If thermal vibrations are harmonic, CV /N = 3 -
shown as the horizontal solid line.

1 (Fig. 14(a)). In glass 1, even ∆Φparabola(t) works well to
catch the instantaneous value of ∆Φ(t), because anhar-
monic vibrations appear only in the low ωk . 5 regime,
and their effects are averaged out by the summation over
all the modes (k = 1 to 3N − 3).
On the other hand, in crystal 1, the parabolic for-

mulation ∆Φparabola(t) completely misses the true value
∆Φ(t) (Fig. 14(b)). This is obviously due to the large
anharmonic amplitudes, Ak(t). The no-coupling formu-
lation ∆Φno-coupling(t), in contrast, behaves much bet-
ter, since it takes into account the flattening of the
energy landscapes due to large vibrational amplitudes,
but it still deviates from the true value ∆Φ(t). Thus,
both the flattening of the energy landscapes and the
mode-couplings contribute to the total potential energy
∆Φ(t). As a final observation, as demonstrated by the
MD trajectory value in Fig. 14(b) (red solid line), ∆Φ(t)
fluctuates around the harmonic value (3/2)NT . Al-
though the dynamics projected on the eigen modes de-
fined at zero temperature does not follow the equipar-
tition of energy, these low temperatures are enough
to actually smooth out the energy landscape and re-
sult in an effectively harmonic behavior for the en-
ergy, in the spirit of the self-consistent phonon the-
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FIG. 14. Time dependence of the potential energy per par-
ticle, ∆Φ(t)/N , for (a) glass 1, (b) crystal 1, and (c) crystal
2, at T = 10−3. Comparison between the true value from
the MD trajectory (red solid line), parabola value ∆Φparabola

(green dashed line), and no-coupling value ∆Φno-coupling (blue
dotted line) (see Eq. (24)). Data are plotted every time in-
terval ∆t = 10. The horizontal black solid line indicates the
harmonic value, ∆Φ/N = (3/2)T = 1.5× 10−3.

ory [32]. Finally, as can be expected, crystal 2 shows
good agreement between the three time histories of
∆Φ(t),∆Φparabola(t),∆Φno-coupling(t) (Fig. 14(c)).
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FIG. 15. Dependence of non-affine moduli MNm (Eq. (A3)) on temperature; (a) glass 1, (b) glass 2, (c) glass 3, (d) crystal 1,
(e) crystal 2, and (f) crystal 3. We plot the average (global) value MN and the standard deviation δMN of the distribution
function P (MNm) (see Eq. (A2)). Values for the bulk KN (red circle), pure shear GN

p (green square), and simple shear GN
s

(blue triangle) moduli are presented. In glasses (a)-(c), the values for the two shear moduli, GN
p and GN

s , coincide with each

other, which is denoted by GN (green square). The lines indicate values in the harmonic approximation, T = 0 (Eq. (A4)).
Details of the calculations of elastic moduli are given in Appendix A.

4. Global and local elastic moduli

As we have demonstrated above, effects of the cut-
off nonlinearities are not particularly noticeable on the

RDF, vDOS, total potential energy, and specific heat. In
contrast, we show here that the elastic constants are rel-
atively sensitive to cut-off nonlinearities. We computed
the elastic moduli at finite T > 0, and at T = 0 in
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the harmonic approximation, by using the methods de-
scribed in Appendix A. In the present study, we focus
on the non-affine components, MNm = KNm, GNm

p , and

GNm
s of the bulk, pure shear, and simple shear moduli,

respectively, since anharmonic vibrations are directly re-
flected in these non-affine components. Here m indicates
coarse-grained cubic domains of size much smaller than
the simulation box size, as detailed in Appendix A. The
affine components, MAm = KAm, GAm

p , GAm
s , are deter-

mined rather by static structural properties, which are
insensitive to anharmonicities as seen in g(r) of Fig. 10.
We have indeed confirmed that the affine components are
not influenced by cut-off nonlinearities.

In Figure 15 we present the average (global) value
MN and the fluctuations (standard deviation) δMN of
the probability distributions P (MNm) (see Eq. (A2)),
as functions of T , for each considered glass and crystal.
δMN is a measure of the elastic heterogeneity. In the
glasses (Fig. 15(a)-(c)), both values of MN and δMN are
insensitive to T variations over the temperature regime
studied. Glass 1 clearly shows a disagreement between
the finite T > 0 value and the harmonic value (T = 0),
whereas good agreement is observed in glass 2. The dis-
agreement in glass 1 is caused by the cut-off nonlinear-
ities, which are enhanced by the discontinuous force at
r = rc. We note that the difference between the T > 0
and T = 0 values shows up more clearly in the shear mod-
ulus GN , δGN than the bulk modulus KN , δKN , since
the shear modulus expresses a larger non-affine compo-
nent [33, 34]. In addition, δMN shows larger discrepan-
cies than the global MN , indicating that local quantities
are more sensitive to anharmonicities than global values.
The cut-off nonlinearities cause the T > 0 value of δMN

to increase away from the T = 0 value, i.e. the moduli
distributions become more heterogeneous. Indeed, in dis-
ordered amorphous structures, particles feel the force dis-
continuity at r = rc randomly in space. Cut-off nonlin-
earities therefore induce spatially heterogeneous effects.

Glass 3 also shows disagreement between the T = 0
and T > 0 values ofMN , δMN , albeit a smaller difference
than that for glass 1. In glass 3, cut-off nonlinearities are
smaller, and have a smaller effect on the elastic moduli.
In both glasses 1 and 3, the disagreement persists down
to the lowest temperature, T = 10−4, which is three or-
ders of magnitude lower than Tg ≃ 0.4. This observation
therefore poses a caveat on the value T = 10−4, which
is sometimes considered as a temperature where the har-
monic limit is recovered. As we have shown above, this
peculiar behavior is due to the fact that cut-off nonlinear-
ities persist to the very-low-T regime, contrary to usual
expansion nonlinearities which vanish at small tempera-
tures.

Turning to the crystals (Fig. 15(d)-(f)), we realize that
the cut-off nonlinearities produce completely unexpected
and anomalously large values of the elastic moduli in
crystal 1. At low-T , the mechanical response of crys-
tals is described only in terms of the affine modulus [35].
Additionally, the ordered lattice structure of a uniform

crystal should lead to a spatially distribution in the elas-
tic moduli that is homogeneous. As a result, we expect
that not only should the (total) non-affine modulus van-
ish, MN = 0, but so should the corresponding fluctu-
ations, δMN = 0, i.e. spatially, all the local values of
non-affine moduli, MNm ≡ 0. In fact, this is indeed
true for crystals 2 and 3, as demonstrated in Fig. 15(e)
and (f). Note that the increase of MN at T = 10−1 is
caused by expansion nonlinearities due to large thermal
vibrations. However, crystal 1 clearly shows large devi-
ations in MN > 0 and δMN > 0 compared to the zero
expected value. For the case of the shear moduli fluctu-
ations, we note that although the values are small, δGN

p

and δGN
s assume finite values even at T = 0. This comes

from the fact that particles are slightly displaced from
the exact lattice positions due to the force discontinuity
at r = rc = 2.5, i.e. crystal 1 is slightly inhomogeneous,
as demonstrated by the g(r) of Fig. 2(b).
We underline here an interesting observation in the

case of crystal 1; the bulk KN and pure shear GN
p mod-

uli are strongly affected by the cut-off nonlinearities,
whereas the simple shear modulus GN

s is much less sensi-
tive. This result indicates that the simple shear phonon
modes, i.e. transverse phonons in the direction [1, 0, 0],
tend to avoid the force discontinuity at r = rc and are
less affected by the cut-off nonlinearities, compared to
phonons propagating in other directions.
To sum up this section, anharmonicities due to cut-off

nonlinearities cause relatively large effects on the elastic
moduli. In the glassy states, systematic deviations up to
10-20% persist in the moduli and their fluctuations over
the entire temperature range. While, for the crystals,
anharmonic effects can cause significant deviations even
at the lowest temperatures. None of these anharmonic
effects are evident in the RDF, vDOS, potential energy,
and specific heat. These facts point to the conclusion
that the strength of the anharmonic effects on a physical
quantity seems to be determined by the total amount of
detailed information regarding vibrational excitations it
includes. Indeed, the vDOS, potential energy, specific
heat, only involve functions of the eigen frequencies ωk

and are only mildly sensitive to the cut-off nonlinearities.
In contrast, as it is evident in the harmonic equation,
Eq. (A4), the non-affine moduli are described in terms
of both the eigen frequencies ωk and eigen vectors ~ek,
i.e. they include a complete information on the structure
of the vibrational modes. Also note that eigen vectors
are more strongly affected by the nonlinearities than the
eigen frequencies [7].

IV. SUMMARY

In the present paper, we have studied the effects of
cut-off nonlinearities induced by the interaction potential
cut-off on low-temperature thermal vibrations in glasses
and crystals. It is common practice in computer simu-
lations to truncate the (long-range) interaction potential
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at some cut-off distance r = rc. Here, we have focused
on three specific parameterizations of the traditional LJ
potential, as listed in Table I and Fig. 1; (i) potential
1: shifted potential φSP (r) with rc = 2.5, discontinu-
ous 1st and 2nd derivatives, (ii) potential 2: shifted-force
potential φSF (r) with rc = 2.5, discontinuous 2nd deriva-
tive, and (iii) potential 3: shifted potential φSP (r) with
rc = 3.0, discontinuous 1st and 2nd derivatives. While
these three truncated potentials do not show any notice-
able differences in the static structure (Fig. 2) and vi-
brational states (Figs. 3 and 4) in the (harmonic) limit
T = 0, differences become apparent in thermal vibra-
tions at finite temperatures T > 0 (Figs. 6 to 9), which
originate from the cut-off nonlinearities. The truncation
causes the potential to be non-analytic at the cut-off, and
the harmonic equations of motions, Eq. (1), do not ac-
count for this singularity. Thus, when some pairs of par-
ticles pass through rc, the harmonic description breaks
down, leading to anharmonicities in physical observables.
The cut-off nonlinearities are distinct from the usual ex-
pansion nonlinearities, which become more prominent at
higher temperatures, that come from neglecting higher
order terms in the Taylor expansion of the potential.

We have demonstrated that it is primarily the discon-
tinuity in the interparticle force (the first derivative of
the potential) at r = rc that enhances the cut-off non-
linearities. The force discontinuity deforms the potential
energy landscapes of many eigen modes away from the
harmonic parabolic shape, as shown in Figs. 8 and 9. In
addition, when normal modes share the same pairs of par-
ticles experiencing the force discontinuity, they exchange
or leak energy, leading to further deformation of their en-
ergy landscapes due to the modes coupling. These effects
can be quantified in terms of the vibrational amplitudes
shown in Fig. 6. For crystal 1, where the force discon-
tinuity is located at rc = 2.5, which also corresponds to
the nearest-neighbor spacing, the implication of this are
particularly magnified precisely because the distribution
of particle separations is a delta function at rc itself. As
a result, most, if not all, particle pairs participating in
normal mode vibrations experience the force discontinu-
ity at the same time, leading to the observed enhanced
anharmonic effects. On the contrary, even though cut-off
nonlinearities also exist in glass 2 and crystal 2, where the
force is continuous at rc, anharmonic effects were largely
suppressed and barely detectable in the vibrational am-
plitudes and energy landscape features.

We also studied the effects of cut-off nonlineari-
ties on several physical quantities, including the RDF,
vDOS, potential energy, specific heat, and elastic mod-
uli (Figs. 10 to 15). We showed that the RDF, vDOS,
potential energy, and specific heat are resilient to cut-off
effects, whereas the elastic moduli are rather sensitive to
the anharmonic nature of the normal modes. Indeed, the
non-affine components of the elastic moduli, computed
within the harmonic approximation (T = 0), are deter-
mined by both the eigen frequencies ωk and crucially
the eigen vectors ~ek (see Eq. (A4)), i.e. they include

 0.8

 1

 1.2

 1.4

 1.6

100 101

rc=2.5
rc=3.0
rc=4.0
rc=5.0

Ā
k
/Ā
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FIG. 16. Amplitude Āk versus eigen frequency ωk for the
shifted potential φSP (r) with different cut-off distances, rc =
2.5, 3.0, 4.0, and 5.0. The configuration is glass, and the
temperature is T = 10−3. Note that rc = 2.5 and 3.0 corre-
spond to glasses 1 and 3, respectively. See also the caption of
Fig. 6.

complete information on the structure of the vibrational
excitations. Therefore, it is understandable that anhar-
monic effects have a relatively large impact on the elastic
moduli. Particularly, the large anharmonic vibrations in
crystal 1 results in unphysical trends in the elastic mod-
uli. In contrast, the vDOS, potential energy, and specific
heat, which include only the eigen frequency information
in the harmonic limit, are insensitive to anharmonicities.
In contrast to expansion nonlinearities, cut-off non-

linearities persist in the very-low-temperature regime,
T = 10−4 ≪ Tg, Tm. This is especially the case for
crystal 1, where we have found that cut-off nonlinearities
actually become more prominent with decreasing temper-
ature. As a result, the elastic moduli of glasses 1, 3 and
crystal 1 do not coincide with the harmonic values even
at T = 10−4, where we normally expect the harmonic
description to be valid. Even though thermal displace-
ments are very small, ∆r ∼

√
T , pairs of particles with

r = rc feel the force discontinuity, causing the anhar-
monicities. This counter-intuitive behavior of the cut-off
nonlinearities is obviously at odds with our understand-
ing of expansion nonlinearities, which vanish in the low
temperature limit.

V. CONCLUSIONS

We conclude with a few observations. The factor ul-
timately determining the strength of the cut-off non-
linearities is the number of interacting particles that ex-
perience the cut-off discontinuity or, more specifically,
the number of inter-particles distances close to the cut-
off distance. This in turn depends on the physics of the
system under study. For the case of the (traditional)
12-6 LJ potential explored here, we found strong dis-
crepancies for crystal 1 because of the commensurability
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between the cut-off distance and the choice of the lat-
tice environment (that was tuned according to the den-
sity). The anharmonicities arise because particles fall out
of contact with one another during thermal vibrations.
Thus, from an interaction point of view the potential ap-
pears to behave one-sided for particle pairs separated by
the cut-off distance. This situation is similar to models
of granular materials and jammed particulate packings,
where particles interact through one-sided, finite-range
(contact/cut-off), potentials [2–7].

Also, for studies at low temperature, in or close to the
harmonic regime, one has to be extremely careful with
the implementation of the potential truncation. A cut-off
distance rc = 2.5σ is often employed in computer simu-
lations involving LJ-type potentials [10–12]. However, as
we have seen in the present work, this value may not be
suitable to study low-temperature vibrational properties
for particular systems, as it can result in inconsistencies
between the harmonic value T = 0 and the low temper-
ature values. Though we remark here that in the case
of the soft-sphere potential, φSC(r) = ǫ(σ/r)12, which is
popular repulsive potential employed in many numerical
works [10, 36], the cut-off discontinuity is significantly
smaller than for the 12-6 LJ potential. In this case, the
value of φSC(r) at rc = 2.5 is 1.7 × 10−3% of ǫ, which
is much smaller than that of the LJ potential, 1.6% of
ǫ. In our previous works [27, 37], we employed rc = 2.5
in φSC(r), which was large enough to study both elas-
tic constants and sound and thermal transport, without
any visible cut-off nonlinearities. Here, we have observed
that physical quantities that depend only on the struc-
tural arrangement of the particles and/or just the eigen
frequencies, such as the RDF, vDOS, potential energy,
specific heat, are not appreciably sensitive to the cut-off
effects. However, cut-off nonlinearities may be apparent
in others quantities that depend explicitly on the eigen
vectors, or particle polarization vectors of the individ-
ual particles, such as mechanical properties, for example
the elastic moduli. Thus, the apparent validity of the
harmonic regime can depend on which observable is con-
sidered [6, 7]. Low frequency modes are more influenced
by the cut-off nonlinearities, so that thermal transport
properties are also likely to be affected in a significant
manner.

Ideally, we would like to simulate a LJ system with-
out any cut-off of the potential, or one with a long cut-
off distance. Indeed, the cut-off nonlinearities can be
suppressed by employing longer cut-offs, thereby reduc-
ing the discontinuity at r = rc. In Fig. 16 we plot
the vibrational amplitudes Āk at the indicated values
of rc = 2.5, 3.0, 4.0, and 5.0, for the glass configura-
tion at temperature T = 10−3. From these data, we see
that the values of rc = 4.0 or 5.0 can be sufficient to
suppress the anharmonic effects in the present LJ sys-
tem. However, we have shown that it is the discontinuity
in the first derivative of the potential that has a domi-
nant influence. In addition, we have also confirmed that
the vibrational modes are practically identical in the case

T K KA KN Gp GA
p GN

p Gs GA
s GN

s

Glass2 0 60.7 61.2 0.5 14.0 35.7 21.7 14.0 35.7 21.7

10−3 60.7 61.2 0.5 13.9 35.7 21.8 13.9 35.7 21.8

Crystal2 0 43.4 43.4 0.0 14.4 14.4 0.0 38.1 38.1 0.0

10−3 43.7 43.7 0.0 14.7 14.7 0.0 38.2 38.2 0.0

TABLE II. The average (global) elastic moduli, K, Gp, and
Gs, of glass 2 and crystal 2. The temperature is T = 0 and
10−3. We also present values of the affine and non-affine mod-
uli. Note that for glass 2, Gp = Gs.

of long cut-offs (rc = 4.0, 5.0) and shifted-force potential,
i.e. force-shifting procedure practically does not alter the
vibrational modes. Therefore, it is recommended that the
interparticle force (the first-derivative of the potential) be
made continuous at r = rc, as proposed in Refs. [12, 13],
to avoid unwanted anharmonic effects without increasing
the computational costs by using a large cut off distance.
On the other side, for those potentials that are in-

trinsically truncated (e.g. soft elastic particles), sys-
tems are likely to exhibit nonlinearities [2–7] that can
strongly influence mechanical properties in athermal or
low-temperature states. Thence, it is particularly im-
portant for such systems, that efforts, which extrapo-
late transport and mechanical properties into the ther-
mal regime purely from structural data or the static har-
monic formulation, should be treated with caution. For
instance, predicting material properties such as modes of
failure could potentially lead to unexpected catastrophic
effects when such results be employed in the design of
critical devices.
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Appendix A: Measuring finite temperature T > 0
and zero temperature T = 0 elastic moduli

We computed the elastic moduli at finite temperatures
T > 0 as well as at zero temperature T = 0 (the harmonic
limit), the results of which are presented in Sec. III C 4.
In order to measure the elastic moduli, we did not apply
any explicit deformation, but rather we employed the for-
mulation developed from the linear response theory. For
calculation of the finite T > 0 moduli, we used the equi-
librium fluctuation formulae [38–41], which we referred
to as “fully local approach” in our previous study [18].
For calculation of the zero T = 0 moduli, we extended
the formulation for the global moduli, which has been
established and used in previous works [42–44], to the
local moduli. In our recent work [45], we have employed
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this extended formulation to study local elastic moduli
distributions in T = 0 athermal jammed solids.
The present 3-dimensional system was subdivided into

a grid 40 × 40 × 40 cubic domains of linear size w =
3.16 (coarse graining length). For each cubic domain
m (m = 1, 2, ..., 64000), we measured the local modulus
tensor, Cm

αβγδ (α, β, γ, δ = x, y, z), which is defined as the
derivative of the local stress tensor with respect to the
linear strain tensor [18]. The value of Cm

αβγδ is composed

of four terms; the Born term CBm
αβγδ, the kinetic term

CKm
αβγδ, the stress correction term CCm

αβγδ, and the non-

affine term CNm
αβγδ;

Cm
αβγδ = CBm

αβγδ + CKm
αβγδ + CCm

αβγδ − CNm
αβγδ,

= CAm
αβγδ − CNm

αβγδ.
(A1)

The summation of the first three terms, i.e. CAm
αβγδ =

CBm
αβγδ + CKm

αβγδ + CCm
αβγδ, is the “affine” modulus [27,

37, 41]. Here we note that the Born term CBm
αβγδ is de-

fined as the second derivative of the energy density with
respect to the Green-Lagrangian strain tensor [38, 42].
Therefore, if we define the modulus by using the linear
strain tensor, the stress correction term CCm

αβγδ is nec-
essary as long as the stress tensor has finite values in
its components [46]. The affine modulus describes the
elastic response, when particles follow the applied affine
strain field and are displaced affinely at all scales. On
the other hand, the forth term, CNm

αβγδ, is referred to as
the “non-affine” modulus, which contributes negatively
to the overall modulus, and comes from “additional” par-
ticle displacements at the microscopic scale that deviate
from the applied affine field [33, 34]. Finally, from the
modulus tensor Cm

αβγδ, we calculated the bulk modulus
Km, pure shear modulus Gm

p , and simple shear modulus
Gm

s in the same way as in Refs. [18, 27, 37].
After measuring the local elastic moduli in each little

cube m (m = 1, 2, ..., 64000), we collected data to obtain
probability distribution functions P (Mm) for the mod-
uli, Mm = Km, Gm

p , Gm
s . From P (Mm), we calculated

the average (global) value M and the standard deviation
(fluctuations) δM ;

M =

∫

MmP (Mm)dMm,

δM =

√

∫

(Mm −M)2P (Mm)dMm.

(A2)

Two shear moduli distributions, P (Gm
p ) and P (Gm

s ),
coincide with each other in the isotropic systems like

glasses, so we represent Gm for the shear moduli in
glasses, i.e. P (Gm) ≡ P (Gm

p ) ≡ P (Gm
s ). For ref-

erence, Table II presents values of the global moduli,
M = K,Gp, Gs, for glass 2 and crystal 2 at zero tem-
perature, T = 0, and a finite temperature, T = 10−3.

In the present study, our major focus is on non-affine
contributionsCNm

αβγδ, since anharmonic effects are directly
reflected in CNm

αβγδ, while affine components CAm
αβγδ are

mainly determined by static structural properties and are
therefore rather insensitive to anharmonicities. At finite
T > 0, CNm

αβγδ is measured in terms of a local and global

stress correlation function [38–41];

CNm
αβγδ =

V

T

[〈

σm
αβσγδ

〉

−
〈

σm
αβ

〉

〈σγδ〉
]

,

=
V

T

〈

δσm
αβδσγδ

〉

,

(A3)

where σαβ and σm
αβ are the global and local stress tensors,

respectively (see Ref. [18] for a detailed formulation), and

δσαβ = σαβ − 〈σαβ〉 and δσm
αβ = σm

αβ −
〈

σm
αβ

〉

are the

corresponding fluctuations. 〈〉 denotes the NV T ensem-
ble average, which coincides with the average over the
MD trajectory when the dynamics is ergodic [10]. Since
the function of CNm

αβγδ contains three- and four-point cor-

relations [11, 41], we therefore need a long simulation
trajectory for good numerical convergence of the ensem-
ble average [18]. To that end, we performed production
runs for 2× 107 to 4× 107 simulation steps at each tem-
perature T , and the averaging was performed over 104

to 2 × 104 configurations separated by 2 × 103 steps for
glasses, and over 105 to 2× 105 configurations separated
by 2× 102 steps for crystals.

In the T = 0, harmonic limit, the non-affine term
CNm

αβγδ is formulated in terms of the eigen frequency ωk

and the eigen vector ~ek [42–44];

CNm
αβγδ =

3N−3
∑

k=1

V

ωk2

(

N
∑

i=1

~eki ·
∂σm

αβ

∂~ri

)





N
∑

j=1

~ekj ·
∂σγδ

∂~rj



 ,

=
3N−3
∑

k=1

V

ωk2
δσmk

αβ δσk
γδ,

(A4)

where δσk
αβ =

∑N
i=1 ~e

k
i · ∂σαβ/∂~ri and δσmk

αβ =
∑N

i=1 ~e
k
i ·

∂σm
αβ/∂~ri are the fluctuations of the global and local

stress tensors, induced by the eigen mode k. We note
that Eq. (A4) is obtained by taking the limit of T → 0
in the finite T > 0 formulation, Eq. (A3) [42].
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