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How are vibrational excitations and thermal conductivity related to elastic

heterogeneities in disordered solids?
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In crystals, molecules thermally vibrate around the periodic lattice sites. Vibrational motions are
well understood in terms of phonons, which carry heat and control heat transport. The situation is
notably different in disordered solids, where vibrational excitations are not phonons and can be even
localized. Recent numerical work has established the concept of elastic heterogeneity: Disordered
solids show inhomogeneous local mechanical response. Clearly, the heterogeneous nature of elastic
properties strongly influences vibrational and thermal properties, and it is expected to be the origin
of anomalous features, including boson peak, vibrational localization, and temperature dependence
of thermal conductivity. These are all crucial long-standing problems in material physics, which
we address in the present work. We have considered a toy model able to stabilize different states
of matter, by introducing an increasing amount of size disorder. The phase diagram generated by
Molecular Dynamics simulation encompasses the perfect crystalline state with spatially homogeneous
elastic moduli distribution, multiple defective phases with increasing moduli heterogeneities, and
eventually a series of amorphous states. We have established clear correlations among heterogeneous
local mechanical response, vibrational states, and thermal conductivity. We provide evidence that
elastic heterogeneity controls both vibrational and thermal properties, and is a key concept to
understand the anomalous puzzling features of disordered solids.

PACS numbers: 63.50.-x, 65.60.+a, 62.25.-g
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I. INTRODUCTION

In crystalline materials, molecules are located at the
periodic lattice sites, and their vibrational motions are
well understood in terms of quantized plane waves, the
phonons1,2. At low frequencies (ω), vibrations are de-
scribed as acoustic plane waves, whose vibrational den-
sity of states (vDOS) conforms to the Debye model,
gD(ω) ∝ ω2, which agrees with experimental results for
crystals1,2. In contrast, disordered solids feature vibra-
tional properties anomalous compared to those of the
corresponding crystals. (Here, disordered solids include
not only topologically amorphous materials as structural
glasses3, but also disordered crystals4,5, which show pe-
riodic lattice structures but in the presence of disordered
inter-particle potentials, like colloidal crystals with size
disorder.) Among these anomalies, the origin of an excess
in the low-ω spectrum of the excitations, the boson peak
(BP)6,7, is still an open issue. More precisely, g(ω) shows
an excess over the Debye prediction for the correspond-
ing crystal value, around a frequency ω = ΩBP ∼ 1 THz.
At ΩBP, vibrational excitations can even be localized8,9,
and in general cannot be described as plane waves.

Interestingly, acoustic-like excitations have been ob-
served in disordered solids by experimental techniques,
including light10, and (inelastic) X-rays11 and Neutrons12

scattering. Numerical methods like Molecular Dynamics
(MD) simulations13 have also provided clear evidences
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in this direction. In the case of crystals, acoustic exci-
tations are exact normal modes of the system, and an
acoustic plane wave excites one normal mode only. In
contrast, an acoustic-like vibrational excitation in disor-
dered solids is a superposition of several different normal
modes, with different vibrational frequencies14,15. Such
the mode attenuates rather rapidly15 compared to vibra-
tions in crystals. It has been reported that the Ioffe-Regel
frequency, ΩIR, which corresponds to an upper bound
for the frequency of propagation of true plane waves16,
is located around the BP frequency, ΩIR ∼ ΩBP17–19.
More interestingly, strong scattering and breakdown of
the Debye-continuum approximation have been observed
around the same frequency20. Connections between the
BP and anomalous acoustic excitations are not obvious,
but the above observations indicate that they must be
strongly correlated.

Anomalies in vibrational properties obviously reflect
on thermal behaviour3, including heat capacity and ther-
mal conductivity at low temperature, T . The low-T heat
capacity, C(T ), can be directly obtained from the g(ω)
in the harmonic approximation1,2 (see Eq. (27)). From
the Debye prediction, gD(ω), one obtains CD(T ) ∝ T 3,
which captures well the low-T heat capacity of crystals1,2.
In contrast, disordered solids show values higher than the
Debye prediction, which directly originates from the ex-
cess vibrational modes in the BP frequency range3,21,22.

Thermal conductivity, κ, is also very different in crys-
tals and disordered solids. In crystals, phonons carry
heat and play the most important role in thermal conduc-
tion1,2. Therefore, although it is in principle necessary
to correctly take into account phonon-phonon interac-
tions at non-zero temperatures (anharmonic effects), one
can very precisely analyse thermal conductivity in terms
of the Boltzmann transport equation for phonons23–26.
In disordered solids, the nature of heat carriers is still
matter of debate, but acoustic-like modes are naturally
expected to play an important role. In this case, a strong
damping of acoustic-like excitations with ω > ΩBP ∼ ΩIR

leads to an important reduction of κ3,21,27,28. Remark-
ably, disordered solids generally show similar tempera-
ture dependence of thermal conductivity, irrespective to
the details of their chemical structure. More precisely,
κ increases as κ ∼ T 2 at low-T , and exhibits a plateau
around T ∼ 10 K3,21,27,28. A theoretical calculation for
κ of disordered solids has been proposed, where heat cur-
rents are carried by non-propagating, delocalized, normal
modes, called diffusons29. This theory is able to repro-
duce the T -dependence of thermal conductivity in the
glass phase30.

Clarifying the above issues is tantamount with seeking
an answer to the question: What is the origin of vibra-
tional and thermal anomalies in disordered solids? This
issue has been targeted by several theoretical develop-
ments. These include, among others, the soft-potential
model31, the Mode Coupling Theory32, crossover from
minima-dominated to saddle-point-dominated phases33,
vibrational instability of quasi-localized modes34, trans-

formation of van Hove singularities35,36, piling-up of
acoustic states close to the boundary of the pseudo-
Brillouin zone37,38, weak connectivities of particles due
to the vicinity of the jamming transition point39,40.

In addition, the concept of elastic heterogeneity has
been proposed41: Disordered solids exhibit spatial het-
erogeneities of elastic moduli. This is a specific fea-
ture, absent in ordered crystals where the mechanical
response to perturbations is homogeneous at all length
scales42,43. Recent simulation works44–47 have addressed
a direct measure of local elastic moduli, and have well
established this concept. (Note that local measurements
of elastic properties can be quite easily implemented in
numerical simulations47, whereas analogous experimen-
tal measurements are rather difficult42.) The study of
Ref.45 showed that local moduli spatially fluctuate at
mesoscopic length-scales, ξeh ∼ 10 to 15σ, with σ the
typical atomic diameter. Also, Refs.48,49 showed that
the spatial heterogeneities in elastic properties generate
non-affine deformations, which add to the affine contri-
butions and are of comparable magnitude50. During the
non-affine deformations, particles have been shown to un-
dergo correlated displacements, with a mesoscopic corre-
lation length, ξna ∼ 20 to 30σ50,51, which is of the same
order of magnitude as ξeh.

It is natural to expect that elastic heterogeneities must
contribute in turning phonons to more complex vibra-
tional excitations, therefore scattering acoustic plane-
waves and reducing thermal conductivity. Remarkably,
it was reported that the wavelength Λ of acoustic waves
corresponding to ΩBP, is close to the mesoscopic length-
scale ξna

51,52, i.e., Λ ∼ ξna ∼ ξeh. The breakdown of
continuum elasticity50,53 and Debye-approximation54 for
acoustic plane-waves, and the onset of the strong scatter-
ing regime55 have been also found to take place at simi-
lar length-scales as ξeh and ξna. Also, strong correlations
between local moduli and vibrational modes have been
detected: Localization of vibrational excitations tends to
appear in soft regions, characterized by elastic constants
significantly lower than the macroscopic values56,57. A
theoretical approach based on the concept of spatially
fluctuating elastic moduli58–61 has been able to repro-
duce both the BP feature and the T -dependence of ther-
mal conductivity. All this work therefore supports the
hypothesis that elastic heterogeneities control both vi-
brational and thermal anomalies.

In recent works62,63 we have addressed this point, by
systematically modulating the extent of the heteroge-
neous elastic response. We have provided evidence of
direct correlations with vibrational states features and
thermal conductivity, determined by completely indepen-
dent calculations without any adjustable parameter. Our
approach was based on Molecular Dynamics (MD) simu-
lations of a toy model, which allowed us to generate states
of matter ranging from the perfect crystal state to defec-
tive crystal phases, and eventually, amorphous states, by
introducing an increasing amount of disorder in particles
size. Next, we: i) characterized the changes of elastic
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moduli heterogeneities in the different phases; ii) inde-
pendently studied the consequent modifications of vibra-
tional excitations, both in terms of eigenvalues and eigen-
vectors of the Hessian matrix and spectroscopic parame-
ters extracted from dynamical structure factors; and iii)
monitored the associated changes in the T -dependence of
thermal conductivity.
Here, we present significantly more extended data sets,

explore in details the nature of vibrational excitations
and their correlation with different local elastic constants
in various regions of the spectrum, clarify the effect of
anharmonic couplings, and offer a general perspective on
our work. The paper is organized as follows. In Sec-
tion II, we describe our numerical model, and give de-
tails about the method used to measure the local elas-
tic constants. In Section III, we present a discussion
of our results on elastic heterogeneities. We also at-
tempt to correlate heterogeneities of local moduli to those
present in more familiar local structural quantities. In
Sections IV and V, we present the results on vibrational
states (vDOS, participation ratios, life-times) and ther-
mal conductivity, respectively, and detail the correlations
between the elastic heterogeneities on one side, and vi-
brational states and thermal conductivity, on the other.
Finally, in Section VI, we summarize our results and draw
general conclusions on our work.

II. NUMERICAL METHODS

A. Model and simulations details

Soft spheres. We have considered a soft-sphere
model64 in a (3D) cubic box of linear size L, with pe-
riodic boundary conditions in all directions. Particles i
and j interact through a soft-sphere potential,

vij = ǫ

(

σij

rij

)12

, (1)

where σij = (σi + σj)/2, σi and σj are the diameters
of the particles, and rij is the mutual distance. The
potential vij is cut-off and shifted to zero at rijc = 2.5σij .
Our reference state is the one-component perfect face-
centred-cubic (FCC) crystal, where the particle diameter
and mass are σ and m for all particles. Throughout this
study, we use σ, ǫ/kB (kB is the Boltzmann constant),
and τ = (mσ2/ǫ)1/2 as units of length, temperature, and
time, respectively, i.e., we set σ = ǫ = τ = 1.
We have fixed the number density ρ̂ = N/V = N/L3 =

1.015 (N is number of particles, and V is the system
volume), and the length of the unit cell of the FCC
crystal is a = 1.58. Most of the simulations were per-
formed with N = 4000 particles, in boxes of linear size
L = 10a = 15.8. Larger systems, with L ranging from
L = 12a (N = 6912) to 30a (N = 108000), were also
used for the calculations of the vibrational states (see
Sec. IV). The FCC crystal was equilibrated at temper-
ature T = 10−2 in the (NV T ) ensemble, by using a
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FIG. 1. (a) Mean-squared displacement
〈

∆r2
〉

and (b) Q6,

versus the disorder parameter λ, at T = 10−2. The system
is initialized in the perfect FCC-crystal state λ = 1, where
〈

∆r2
〉

≃ 0 and Q6 ≃ 0.57. Next, λ is decreased from 1 to
0.7 in the fully developed amorphous state, as discussed in
the text. Data for two independent instances of the size dis-
order are shown by open circles and triangles. Both samples
undergo the amorphisation transition at λ = λ∗ ≃ 0.81, indi-
cated by the vertical line. We also show in (b) by closed circles
data for Q6 obtained by following the reverse path, increasing
λ from 0.7 to 1. In this case, Q6 shows no significant changes
for λ = λ∗, keeping the value pertaining to the amorphous
state. This hysteresis effect is discussed in the text.

Berendsen thermostat65. Although we set the number
density ρ̂ and the temperature T independently, the ther-
modynamic state of the present system depends on a
single parameter, Γ = ρ̂/T 1/4, due to the scaling prop-
erties of inverse-power-law potentials64. Γ = 3.21 in the
present case. For a one component soft-sphere system,
melting and glass transition temperatures are Tm ≃ 0.6
(Γm ≃ 1.15) and Tg ≃ 0.2 (Γg ≃ 1.5), respectively64. All
simulations have been performed by using the MD code
LAMMPS66,67.
Size disorder. Starting from the reference perfect

crystal state, we introduce disorder in particle size, as
described in Ref.68. We randomly select N/2 particles
which are assigned to species 1 with size σ1, the re-
maining pertaining to species 2 (σ2), therefore design-
ing an initial equimolar binary mixture. In an approx-
imate one-component description, an effective diame-
ter can be defined as σ3

eff =
∑

α,β=1,2 xαxβσ
3
αβ , where

σαβ = (σα + σβ)/2 and xα = xβ = 0.5 are the respec-
tive molarities64. The coupling parameter Γ is therefore
replaced by Γeff = (ρ̂/T 1/4)σ3

eff. Next, σ1 is gradually re-
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duced below the initial value σ = 1, while σ2 is increased
above 1, by keeping constant both the effective diameter
σeff ≡ 1 and the coupling parameter Γeff ≡ 3.21. The
extent of the disorder is therefore encoded in the disor-
der parameter, λ = σ1/σ2 ≤ 1, which directly provides
the values of σ1 and σ2. We started with the ideal crystal
case, λ = 1, and gradually decreased λ by a series of small
steps, ∆λ = 10−4, encompassing the range λ ∈ [0.7 : 1].
The system was re-equilibrated at T = 10−2 after each
step before production runs. We note that the total vol-
ume fraction φ varies only mildly (φ = 53 to 56%) during
the entire process (see Fig. 4(b)).

The amorphisation transition. As the disorder
parameter λ is decreased, therefore introducing an in-
creasing size disorder, the system undergoes a structural
transition into an amorphous state at λ = λ∗, as first ob-
served in Ref.68. Note that, although Ref.68 considered
a 2D system, the result is very similar for our 3D case.
We determined the transition point λ∗ ≃ 0.81 by mon-
itoring both the mean-squared displacement

〈

∆r2
〉

=

(1/N)
∑N

j=1(
〈

rj
〉

− rj0)
2 and the bond order parameter

Q6
69,70. Here, 〈〉 denotes the time average (ensemble av-

erage), rj is the instantaneous position of particle j, and

rj0 is the reference FCC lattice site.

In Fig. 1 we show the λ-dependence of
〈

∆r2
〉

and Q6,
by open symbols. For the perfect crystal, λ = 1, we
have

〈

∆r2
〉

= 0 and Q6 ≃ 0.57. As λ decreases, both
quantities show discontinuous jumps at the transition
point, λ∗. We have additionally monitored the order

parameter 〈|ρG|〉 =
〈∣

∣

∣
(1/N)

∑N
j=1 exp(iG · rj)

∣

∣

∣

〉

, with

G = (2π/a, 2π/a,−2π/a), which also shows a disconti-
nuity at λ∗62. The value of λ∗ does not depend on the
initial repartition of the two species on the lattice, as we
demonstrate in Fig. 1 where we show analogous results
for two independent instances of the disorder.

For λ∗ ≤ λ ≤ 1, particles are localized very close to
the initial lattice sites, notwithstanding the presence of
size disorder. The system is therefore in a chemically-
disordered crystalline state4,5, characterized by well-
defined Bragg peaks. In contrast, for 0.7 ≤ λ < λ∗, the
system cannot keep the lattice structure any longer, and
falls in an amorphous arrested state, with complete loss
of translational invariance. As discussed in Ref.68, the
transition is first-order-like. Indeed, the first derivative of
the free energy with respect to λ, ∂F/∂λ, exhibits a dis-
continuous change at λ∗68, which is a behaviour typical
of a genuine first-order phase transition. The parameter
λ, however, is not a true thermodynamic variable, and
therefore the transition cannot be strictly considered as
such in a genuine thermodynamic sense (see Ref.68 for
details).

Hysteresis. It is interesting to reversely increase λ,
searching for hysteresis effects. We show our result in
Fig. 1(b) (filled symbols). Interestingly, Q6 shows no sig-
nificant changes in the entire λ-range. This means that,
at the investigated low T , the system is trapped in the
amorphous state and cannot overcome the energy barrier

leading to the crystalline minimum, at least on our sim-
ulation time scale. Indeed, we have also confirmed that
at T = 10−1, the system partially recovers the lattice
structure, at λ ≃ 0.95, but still cannot return to the per-
fect crystal state. This is at variance with Ref.68, where
a reinitialization to the perfect lattice structure upon in-
creasing λ was observed. This difference can be explained
by observing that in the 2D case for small system with
N = 10868, the energy barrier separating the amorphous
and crystalline states can be expected to be much smaller
than that of the present 3D case with N = 4000. Our
results are also consistent with those of Refs.71,72, where
a larger 2D system with N = 1000 was studied varying
both T and λ, and poly-crystalline domains separated by
amorphous boundaries were reported.

B. Measuring the local elastic moduli

Disordered solids, including glasses and complex crys-
tals, exhibit inhomogeneous and scale-dependent spatial
distributions of local elastic moduli. These can be mea-
sured following different methods44–47. In the present
study, we employ the equilibrium fluctuation formulae,
which can be used to calculate both global73–77 and lo-
cal44,47,78 moduli. In Ref.47, we referred to this method
as the fully-local approach, which we summarize below.
The local modulus tensor. The local elastic re-

sponse at a coarse-graining length scale w can be deter-
mined by partitioning the simulation box into 203 cu-
bic domains, identified by the index m, of linear size
w = 2a = 3.16. A domain has a volume w3 = 8a3,
which is 8 times that of the unit cell of the FCC crystal,
and includes about 30 particles. The local modulus ten-
sor Cm

αβγδ (α, β, γ, δ = x, y, z) is defined as the derivative

of the local stress σm
αβ with respect to the local (linear)

strain ǫmγδ, and can be expressed as:

Cm
αβγδ = Cm

Bαβγδ + Cm
Kαβγδ + Cm

Cαβγδ − Cm
Nαβγδ

= Cm
Aαβγδ − Cm

Nαβγδ.
(2)

Here Cm
Bαβγδ is the Born term, Cm

Kαβγδ the kinetic contri-

bution, Cm
Cαβγδ the pressure correction79, and −Cm

Nαβγδ

the non-affine term. (Note that the Born term Cm
Bαβγδ is

the second derivative of the energy density with respect
to the Green-Lagrange strain tensor76,78. Therefore, if
we define the modulus by using the linear strain tensor,
the stress correction term Cm

Cαβγδ is necessary as long as

the stress tensor has finite valued components79.)
The quantity Cm

Aαβγδ = Cm
Bαβγδ + Cm

Kαβγδ + Cm
Cαβγδ

corresponds to the response of a system which deforms
affinely at all scales77. In contrast, −Cm

Nαβγδ is a nega-
tive correction which accounts for the non-affinity of the
deformation at small scales. Crystalline systems exhibit
small values of −Cm

Nαβγδ, whereas this contribution be-
comes comparable in magnitude to Cm

Aαβγδ in disordered

systems50.
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(a) Bulk (b) Pure shear (c) Simple shear

FIG. 2. Schematic illustration of (a) bulk, (b) pure shear,
and (c) simple shear deformations. Bulk (Km), pure shear
(Gm

p ), and simple shear (Gm
s ) local moduli corresponding to

these deformations can be determined as discussed in the text.

The terms in Eq. (2) are evaluated as:

Cm
Bαβγδ =

1

w3

〈

∑

i<j

(

∂2vij

∂rij
2 −

1

rij
∂vij

∂rij

)

×
rijα rijβ rijγ rijδ

rij2
qij

rij

〉

,

Cm
Kαβγδ = 2 〈ρ̂m〉T (δαγδβδ + δαδδβγ),

Cm
Cαβγδ = −

1

2

[

2
〈

σm
αβ

〉

δγδ −
〈

σm
αγ

〉

δβδ − 〈σm
αδ〉 δβγ

−
〈

σm
βγ

〉

δαδ −
〈

σm
βδ

〉

δαγ
]

,

Cm
Nαβγδ =

V

T

[〈

σm
αβσγδ

〉

−
〈

σm
αβ

〉

〈σγδ〉
]

.

(3)

Here, Nm is the number of particles contained in the do-
main m (dubbed m hereafter), ρ̂m = Nm/w3 is the local
number density in m, rijα is the vector joining particles i
and j, and rij is their distance. The quantity qij repre-
sents the fraction of the line segment rijα which is located
inside m. As a consequence, if rijα is located outside m,
qij = 0, and qij/rij determines the contribution of each
pairwise interaction to the Born term Cm

Bαβγδ. Note that
in principle one needs to add an impulsive correction to
Cm

Bαβγδ due to the truncation of the potential at the cut-

off80. Also we have to be careful of cut-off nonlinearities
on the non-affine term Cm

Nαβγδ
81. In the present case,

however, we have confirmed that those correction and
effect are always negligible.
Local, σm

αβ , and global, σαβ , stresses are calculated as:

σm
αβ = −ρ̂mTδαβ +

1

w3

∑

i<j

∂vij

∂rij
rijα rijβ
rij

qij

rij
,

σαβ =
1

V

∑

m

w3σm
αβ ,

= −ρ̂T δαβ +
1

V

∑

i<j

∂vij

∂rij
rijα rijβ
rij

.

(4)

By using the system configurations generated by MD
simulation, we can therefore directly calculate all com-
ponents of Cm

αβγδ in m from Eqs. (2)-(4).

Local bulk and shear moduli. We have considered
the bulk modulus, Km, and the five shear moduli Gm

l
(l = 1, 2, · · · , 5), defined as47:

Km = (Cm
xxxx + Cm

yyyy + Cm
zzzz + Cm

xxyy + Cm
yyxx

+ Cm
xxzz + Cm

zzxx + Cm
yyzz + Cm

zzyy)/9,

Gm
1 = (Cm

xxxx + Cm
yyyy − Cm

xxyy − Cm
yyxx)/4,

Gm
2 = (Cm

xxxx + Cm
yyyy + 4Cm

zzzz + Cm
xxyy + Cm

yyxx

− 2Cm
xxzz − 2Cm

zzxx − 2Cm
yyzz − 2Cm

zzyy)/12,

Gm
3 = Cm

xyxy,

Gm
4 = Cm

xzxz,

Gm
5 = Cm

yzyz.

(5)

The moduli Gm
1 and Gm

2 correspond to pure shear defor-
mations (plane and tri-axial strain deformations), while
Gm

3 , Gm
4 , and Gm

5 are related to simple shear deforma-
tions. We give a schematic illustration of these deforma-
tions in Fig. 2. Note that the moduli defined in Eq. (5)
are not eigenvalues of the modulus tensor, which is an al-
ternative possibility45,82. In that case, however, the cor-
responding deformations, which are determined by the
associated eigenvectors, are not fixed and depend on m.

Distributions of the local moduli. From the data
calculated via Eq. (5), we have built the probability dis-
tribution functions, P (Cm), by repetitively sampling the
203 values of Cm = Km, Gm

1 , Gm
2 , . . . , Gm

5 . We have
confirmed that P (Cm) are Gaussian distributions44–47 in
all cases. Although Gm

1 6= Gm
2 and Gm

3 6= Gm
4 6= Gm

5

in each m, we found P (Gm
1 ) = P (Gm

2 ) and P (Gm
3 ) =

P (Gm
4 ) = P (Gm

5 ). Thus, in the following, we identify
with Gm

p the pure shear moduli Gm
1 and Gm

2 , and with
Gm

s the simple shear moduli Gm
3 , Gm

4 , and Gm
5 . (Note

that P (Gm
p ) and P (Gm

s ) are different in cubic crystals,
whereas they coincide in isotropic glasses.)

For better clarifying a few points of our discussion, we
also separately calculated from Eq. (2) the affine (Cm

A =
Km

A , Gm
pA, G

m
sA) and non-affine (Cm

N = Km
N , Gm

pN , Gm
sN )

components of the moduli, together with the resulting
P (Cm

A ) and P (Cm
N ). Finally we note that although rela-

tively small systems (N = 4000, L = 10a) were used for
these calculations, we verified that system size effects are
negligible (see also Fig. 8 in Ref.47).

III. ELASTIC HETEROGENEITIES

A. Disorder dependence

We have first investigated to which extent the elastic
heterogeneities can be controlled by the size disorder, λ.
From the distribution functions P (Cm), we extracted the
average values C = K,Gp, Gs, and standard deviations
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FIG. 3. λ-dependence of the macroscopic (average) values of (a) bulk K, (b) pure shear Gp, and (c) simple shear Gs moduli,
together with the corresponding standard deviations, (d) δK, (e) δGp, and (f) δGs. Circles, squares, and triangles indicate the
values of the total modulus Cm, the affine term Cm

A , and the non-affine term Cm
N , respectively. The vertical lines indicate the

transition point λ∗, where Gp vanishes and δGp ≃ 5. We show with filled circles the data obtained by increasing λ from 0.7 to
1 (only total values are shown). In this case, the local moduli distributions are insensitive to the size disorder λ and show no
significant variations in both average values and standard deviations.

δC = δK, δGp, δGs, as:

C =

∫

CmP (Cm)dCm,

δC =

√

∫

(Cm − C)2P (Cm)dCm.

(6)

C coincides with the macroscopic modulus, while δC
measures the extent of the modulus heterogeneity47, i.e.,
larger values of δC correspond to larger heterogeneities.
We also calculated CA(N) and δCA(N) for the affine and
non-affine components separately, from the distributions
P (Cm

A(N)).

The macroscopic moduli. In Figs. 3(a)-(c), we show
by open symbols the λ-dependence of K, Gp, and Gs,
respectively, decreasing λ (increasing the disorder) from
λ = 1 (perfect crystal) to 0.7 (amorphous state). The
bulk modulus K assumes the highest value, the pure-
shear modulus Gp the lowest. In the lattice structures
Gp < Gs, due to the affine terms GpA < GsA, whereas
Gp ≃ Gs in the isotropic amorphous states with λ ≤ 0.78.
In the following we will therefore refer to Gm

p and Gm
s as

the low and the high shear moduli, respectively.
Also, we note that the present soft-sphere model,

which exhibits in the supercooled liquid state a strongly
non-Arrhenius behaviour of the structural relaxation
time83,84 and shear viscosity85, is classified as a fragile
glass86. According to Ref.87, fragile glasses show rela-
tively high Poisson ratios, ν = (3K − 2G)/2(3K + G),
compared to strong glasses. For our system, we obtain

a high value, ν ≃ 0.43 for λ ≤ 0.78, which is consis-
tent with the findings of Ref.87. Also, fragile glasses are
characterized by high atomic packing density and incom-
pressibility88. Indeed, in the amorphous state, our sys-
tem shows a high value of the bulk modulus compared to
the shear modulus, K ≃ 40 ≫ G = Gp = Gs ≃ 7.

The elastic instability. In general, in systems with
inverse-power-law interactions the non-affine component
of the bulk modulus is KN = 0, and therefore K = KA,
as well demonstrated in Fig. 3(a). The situation is totally
different for the shear moduli, Gp and Gs, that we show
in Figs. 3(b) and (c). For λ = 1 (perfect crystal), the
non-affine components are negligible, GpN ≃ GsN ≃ 0.
However, as size disorder is introduced by decreasing λ,
the non-affine components, GpN and GsN , progressively
increase. At the transition point λ∗, GpN eventually
reaches the affine component GpA, and the total Gp van-
ishes. This observation indicates that the transition at
λ∗ can be described as an elastic instability controlled by
the low modulus Gp. This instability drives the struc-
tural transition, leading to steep changes of the affine
terms of the shear moduli, GpA and GsA, while the bulk
modulus KA stays almost unchanged. For λ < λ∗, the
system rapidly becomes isotropic, as manifested by the
convergence Gp ≃ Gs. A similar instability of the shear
modulus was also observed in BCC → FCC transitions
of alkali metals89.

Spatial heterogeneities of local moduli. The
λ-dependence of the standard deviations, δC =
δK, δGp, δGs, is shown in Figs. 3(d), (e), and (f) (open
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FIG. 4. λ-dependence of the macroscopic (average) values of (a) pressure p, pure shear stress σp, simple shear stress σs;
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point λ∗. Note that the density is kept constant ρ = 1.015 at all values of λ, while the volume fraction mildly varies in the
range of φ = 53 to 56%.

symbols). For λ = 1 (perfect crystal), δC ≃ 0 implies
P (Cm) ≈ δ(Cm − C) (δ(x) is the Kronecker’s delta
function), i.e., the modulus is spatially homogeneous.
In contrast, in the amorphous states, δK ≃ 1.5 and
δGp ≃ δGs ≃ 2, implying the existence of heterogeneities
in the moduli distributions. As λ decreases from λ = 1,
the heterogeneities, δK, δGp, and δGs, undergo signif-
icant changes. First, as λ decreases from 1 to 0.9, δK
and δGs increase monotonically, mainly due to the affine
terms, δKA and δGsA. On the other hand, the variation
of δGp is less pronounced, as it is already dominated by
the heterogeneity in the non-affine term, δGpN . Next, as
λ approaches the transition point λ∗, the value of δGp in-
creases dramatically, driven by the non-affine term δGpN .
At the transition λ∗, the distribution of Gm

p becomes ex-
tremely heterogeneous, with a vanishing average value
Gp ≃ 0, and a large standard deviation δGp ≃ 5. Even-
tually, in the isotropic amorphous states below the tran-
sition λ∗, δGp and δGs rapidly converge to similar values
δGp ≃ δGs ≃ 2.

In Fig. 3, we also show (filled circles) our results in
the case where we reversely increase λ from 0.7 to 1 (see
Fig. 1(b)). In this case, the system keeps its initial amor-
phous state, and the distributions of local elastic moduli
undergo no significant changes in average values, C =
K,Gp, Gs, and standard deviations, δC = δK, δGp, δGs.
This result indicates that controlling the moduli distri-
butions by varying size disorder is rather difficult in the
amorphous states.

B. Correlation of structural quantities and elastic

heterogeneities

Disordered solids exhibit spatial heterogeneities not
only in local elastic moduli, but also in other local quan-
tities, such as local density, stress, or structural order.
It is therefore interesting to try to elucidate correlations
among these observables, in order to highlight the possi-
ble structural origin of elastic heterogeneities. Indeed, we
may intuitively expect that values of local elastic moduli
higher than the macroscopic average could be associated
with denser, more close-packed regions, lower moduli to
softer regions. Similarly, we could expect to observe dis-
tinct values of local elastic moduli for locally ordered
structures and locally more disordered regions.

The values of the local pressure pm, and the pure σm
p

and simple σm
s shear stresses for each m, were calculated

from the stress tensor σm
αβ of Eq. (4), as47:

pm = (σm
xx + σm

yy + σm
zz)/3,

σm
p = (σm

xx − σm
yy)/2, (σm

xx + σm
yy − 2σm

zz)/4,

σm
s = σm

xy, σm
xz, σm

yz .

(7)

The mass density ρm, volume fraction φm, and orienta-
tional, Qm

6 , and centro-symmetry, CSm, order parame-
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lines indicate the transition point λ∗. A detailed discussion of these data is included in the main text.

ters were obtained from

ρm =
1

w3

∑

i∈m

1 =
Nm

w3
= ρ̂m,

φm =
1

w3

∑

i∈m

π

6
(σi)3,

Qm
6 =

1

Nm

∑

i∈m

qi6,

CSm =
1

Nm

∑

i∈m

csi.

(8)

Here, qi6 and csi are the values pertaining to particle i
(see for details, Refs.69,70 for qi6, and Ref.90 for csi). The
FCC crystal is characterized by qi6 ≃ 0.57 and csi ≃ 0,
whereas lower values of qi6 and higher values of csi are
expected for amorphous phases. Similarly to local mod-
uli considered in the previous Section, we calculated the
average (macroscopic) value and the standard deviation
for all local quantities defined above.
The local structure. Our results as a function of λ

are shown in Fig. 4. At λ = 1, all standard deviations
assume vanishing values, i.e., the local quantities are
homogeneously distributed in space. Since for inverse-
power-law potentials pm ∼ Km, the pressure pm shows
the same heterogeneity as the bulk modulus Km, i.e.,
δp/p ≃ δK/K. The heterogeneities of the shear stresses,
δσp and δσs, show a λ-dependence similar to that of δp,
with an average σp ≃ σs ≃ 0.
In our simulations the macroscopic number density ρ̂

and mass density ρ = ρ̂ are kept constant, and the vol-
ume fraction φ mildly varies in the range of φ = 53 to
56%. Locally, however, ρm and φm fluctuate, even in the

disordered crystalline states. Indeed, in these cases, the
particles are still tethered to the crystal lattice nodes, as
manifested by very small values of

〈

∆r2
〉

in Fig. 1(a),
but they slightly deviate from the exact lattice sites po-
sitions, leading to non-zero values for δρ and δφ.
Also, for λ > 0.86 the local order parameters, Qm

6

and CSm, show values corresponding to those of the fcc
crystalline structures, Q6 ≃ 0.57 and CS ≃ 0, together
with δQ6 ≃ 0 and δCS ≃ 0. In contrast, as λ ap-
proaches λ∗ from above, Qm

6 and CSm start to fluctuate,
with the respective variances strongly increasing around
λ∗. Eventually, just below the amorphisation transition,
these fluctuations keep significantly enhanced values, in-
dicating the coexistence of lattice- and amorphous-like lo-
cal environments71,72. In the fully developed amorphous
states, λ ≤ 0.78, δQ6 and δCS converge to finite values.
Correlations. In order to quantify the degree of cor-

relation between the local moduli Cm and the above local
structural observables Xm, we have calculated the corre-
lation parameters,

ΨCmXm =

∣

∣

∣

∣

〈(

Cm − C

δC

)(

Xm −X

δX

)〉

m

∣

∣

∣

∣

, (9)

where 〈〉m is the average over all cubic domains m. If
the variables Cm and Xm are perfectly correlated, we
expect ΨCmXm = 1, while ΨCmXm = 0 for the perfectly
uncorrelated case.91 The λ-dependence of the ΨCmXm is
shown in Fig 5, for the total moduli, Cm = Km, Gm

p , Gm
s

((a), (b), (c)), and the affine contributions alone, Cm
A =

Km
A , Gm

pA, G
m
sA ((d), (e), (f)).

Since Km ≃ Km
A ∼ pm in this case, trivially ΨKmpm ≃

ΨKm

A
pm ≃ 1, as shown in Figs. 5(a) and (d). φm can

also be considered a good predictor for the bulk modulus
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at all λ’s, whereas the correlation with the density ρm

tends to decrease in the amorphous states, λ ≤ 0.78. In
contrast, the shear moduli, Gm

p and Gm
s , only show small

correlations with local quantities, as shown in Figs. 5(b)
and (c). The affine terms, Gm

pA and Gm
sA, are relatively

correlated with pm and φm (Figs. 5(e), (f)), as it is the
bulk modulus Km

A ≃ Km. Those correlations are there-
fore lost due to the effect of the non-affine terms, Gm

pN

and Gm
sN .

Two additional observations are in order. First, cor-
relations with the order parameters Qm

6 and CSm, are
enhanced around λ∗. This effect can be explained by
recalling that ordered and amorphous structures, which
show respectively lower (higher) and higher (lower) val-
ues of shear modulus Gm

p (Gm
s ), coexist locally. In the

amorphous states (λ ≤ 0.78), in contrast, very small cor-
relations only are found with Qm

6 and CSm. Second, it
is worth to note that the two affine terms, Gm

pA and Gm
sA,

should feature very similar correlations in the isotropic
amorphous structures. We have found, however, that
they show different values of ΨCm

A
Xm , even in the deeply

amorphous state λ = 0.7. This result seems to indi-
cate that some anisotropies still survive, as a memory of
the initial perfect crystal structure. Although the distri-
bution of the two affine shear moduli are very similar,
P (Gm

pA) ≃ P (Gm
sA) for λ ≤ 0.78, weak anisotropies can

therefore still be detected from correlations with local
quantities, even in cases where the moduli distributions
are indistinguishable.
Open issues. To summarize, pm and φm show clear

correlations with the bulk modulus Km, i.e., we indeed
measured higher values of bulk modulus in denser and
closely packed regions. Slight deviations of the particles
positions from the perfect lattice sites induce the het-
erogeneities of δp and δφ, which are the origin of the
heterogeneity δK developing for 0.9 ≤ λ ≤ 1. The origin
of the high shear modulus heterogeneity δGs can also be
partially associated with the fluctuations of pm and φm

in the disordered crystalline states. This is not the case,
however, for the amorphous states. Also, we have not
found any clear correlation for the shear moduli, Gm

p and
Gm

s , probably due to some subtle effect caused by the im-
portant non-affine components. The local structural ori-
gin of the shear moduli heterogeneities is therefore still
an open issue44,92, as it is the origin of the diverging be-
haviour of δGp as λ approaches λ∗.

IV. VIBRATIONAL EXCITATIONS

A. Density of states and participation ratios

In this Section we characterize the system vibrational
states in terms of the vibrational density of states,
and participation ratios and life-times of the vibrational
modes. In particular, we quantify the modifications due
to the modulation of the local mechanical response above
and below the amorphisation transition. We also in-
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amorphisation transition point λ ≃ λ∗.

vestigate the behaviour of sound-like excitations. We
show that variations with λ of the vibrational observables
closely mirror the changes in the elastic heterogeneities,
allowing one to establish clear correlations with different
moduli for different regions of the spectrum.
Normal-modes analysis. For each value of λ, we

performed a standard normal modes analysis, diagonal-
izing the Hessian matrix calculated at the local minima
of the potential energy landscape (the inherent struc-
tures)1,2,15. We have obtained the eigenvalues, ω2

k, and

the corresponding eigenvectors, ejk, where j = 1, . . . , N
and k = 1, . . . , 3(N − 1) are the atomic and eigenmode
indexes, respectively. From the histogram of the ωk we
have calculated the vDOS as

g(ω) =
1

3(N − 1)

3(N−1)
∑

k=1

δ(ω − ωk). (10)

From the eigenvectors, ejk, we have calculated the partic-
ipation ratios,

Pk =
1

N





N
∑

j=1

(ejk · e
j
k)

2





−1

, (11)

which quantify the extent of localization of the vibra-
tional mode k8,9. As a reference, Pk = 2/3 for an ideal
standing plane wave, and Pk ≃ 1/N for an ideal local-
ized mode involving one particle only. For these calcula-
tions we have generated additional systems with L rang-
ing from L = 10a (N = 4000) to 30a (N = 108000), in
order to adequately sample the lower frequency region of
the spectrum62. We show the λ-dependence of g(ω) in
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Fig. 6, and the data for the participation ratios Pk in
Fig. 7. In Fig. 7 we also plot the averaged values 〈Pk〉
(solid lines) calculated by smoothing the data in bins of
width ∆ω = 0.015.
Density of states. In the g(ω) of the perfect crystal

(λ = 1) we can identify the longitudinal branch, cen-
tered around ω = 14.5, and the transverse branch for
ω ∈ [7 : 9.5], as expected. In addition, at low frequencies
g(ω) ∝ ω2 (inset of Fig. 6), which is consistent with the
prediction of the Debye model. As λ decreases, the above
well identified phonon branches continuously loose their
identity. In particular, as λ decreases from 1 to 0.9, the
high-ω longitudinal branch, is progressively suppressed,
and a certain fraction of vibrational modes pertaining to
the same branch become even localized, with low values
of Pk, as shown in Fig. 7(d) for λ = 0.9. This behaviour
of g(ω) and Pk have been shown to correlate with the me-
chanical heterogeneities associated with the bulk δK and
the high shear δGs moduli62. These quantities therefore
certainly play an important role in modifying the high-ω
modes, which transform from true (delocalized) phonons
to more complex excitations, even localized.
Next, as λ approaches λ∗, where the low shear modu-

lus Gm
p fluctuates significantly around the average value

Gp ≃ 0, the low frequency modes are increasingly popu-

lated, as indicated by the enhancement at low-ω of the re-
duced vDOS, g̃(ω) = g(ω)/ω2, shown in Fig. 8(a). Inter-
estingly, the largest value of g̃(ω) is reached at the lowest
accessible frequency, possibly at ω → 0 as λ → λ∗. Ex-
actly at λ∗, we observe g(ω) ∼ ω3/2 (see inset of Fig. 6),
a strongly non-Debye-like behaviour. Eventually, below
the transition point λ∗, the reduced vDOS feature the
expected BP, with ΩBP ≃ 1, already observed in glasses
(see, among many others, Refs.18,20). In addition, as
λ approaches λ∗, vibrational localization occurs in the
low-ω region, as can be seen in Fig. 7(f),(g) for λ = 0.82
and 0.81 (λ∗). These results are clearly correlated with
the behaviour of the low modulus δGp, which therefore
seems to be the relevant observable, responsible for the
modification of the low-ω part of the spectrum62.

A closer look at the Debye model. To better
quantify the excess of vibrational modes over the De-
bye model, we consider ĝ(ω) = g(ω)/gD(ω) (Fig. 8(b)),
where the vDOS is scaled to the Debye-model predic-
tion, gD(ω) = ω2(3/ω3

D)
1,2,18,20. The Debye frequency

ωD and, therefore, the Debye level 3/ω3
D can be calcu-

lated directly from the macroscopic moduli K, Gp, and
Gs. For mechanically isotropic cases with G = Gp = Gs,

like in glasses, ωD = [18ρ̂π2/(1/c3L + 2/c3T )]
1/3, where
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cL =
√

(K + 4G/3)/ρ and cT =
√

G/ρ are the longitu-
dinal and transverse sound velocities, respectively. For
the anisotropic case with Gp 6= Gs, like in cubic crystals,
more complicated calculations are necessary for ωD. In
this case we need to solve the Christoffel elastic equa-
tions93,94. In Fig. 9 we show the λ-dependence of ωD

(left axis) and 3/ω3
D (right axis). As λ approaches λ∗

from above, ωD decreases (and, consequently, 3/ω3
D is

enhanced), following the decrease of the low shear mod-
ulus Gp. Below λ∗, fast converge is observed toward the
values in the fully developed amorphous state, ωD ≃ 11
and 3/ω3

D ≃ 0.002.

The calculated values for ĝ(ω) are shown in Fig. 8(b)
versus ω/ωD. For λ ≥ 0.86, ĝ(ω) ≡ 1 at low frequen-
cies, i.e., the Debye prediction holds, whereas an excess
appears in ĝ(ω) for λ < 0.86. Previous studies have
demonstrated that the ĝ(ω) plotted as a function of the
rescaled frequency (ω/ΩBP) collapse onto a single master
curve upon increasing pressure18,95 or temperature96. In
such situations, in fact, the variations of the BP can be
described by a modification of the macroscopic moduli,
corresponding to a global elastic transformation. In con-
trast, in the present case, the peak value of ĝ(ω) (the bo-
son peak intensity) as well as the overall shape vary with
λ, thus preventing any data collapse. This observation
is similar to the results of Ref.97, where the peak value
of ĝ(ω) actually increases under increasing pressure. As
already mentioned in Refs.18,95,97, this implies that mod-
ifications of macroscopic moduli only (global transforma-
tions) are not sufficient to fully account for the presence
of the BP, and confirms that spatial distributions of local
moduli (local transformations) must be considered.

More on the boson peak. A recent study98 has re-
ported that the polarization nature of the BP depends
on the value of the Poisson ratio, ν, the negative ratio
of transverse to longitudinal strain (see above). In par-
ticular, in fragile glasses characterized by relatively high
values ν > 0.25, the BP has mostly a transverse ori-
gin18,20,99, while in strong glasses, where ν < 0.2, it is

of both longitudinal and transverse natures17,54,100. In
this latter case, the bulk modulus features values rela-
tively close to those of the shear modulus, and therefore
both are found to affect the low-ω modes, consequently
determining the nature of the BP. In our fragile system,
for λ < λ∗, bulk and shear moduli are well separated
(K ≃ 40 ≫ G = Gp = Gs ≃ 7 at λ ≤ 0.78), and the
shear modulus only can be related to the low-ω excita-
tions in the BP region, consistently with Ref.98.
Based on the results of Fig. 8(b), we can address this

point more precisely. At λ = 0.815 and 0.81 (λ∗), where
Gp ≪ Gs and δGp (≃ 3.5 to 5) is quite large, the peak
values of ĝ(ω) are close to those at λ ≤ 0.78 with Gp ≃ Gs

and δGp ≃ δGs ≃ 2 (note that δGp + δGs ≃ 4). This
observation indicates that, for λ > λ∗ where the two
shear moduli are separated, only the low shear modulus
heterogeneity δGp contributes to the excess low-ω exci-
tations. In contrast, both (degenerate) moduli hetero-
geneities, δGp and δGs, equally contribute below λ∗. We
thus conclude that the lowest moduli heterogeneities are
related to the BP in the entire λ-range, which can be
general for disordered materials.

B. Life-times of the vibrational excitations

We now focus on the life-times of the normal modes,
which are finite even in the perfect crystal phase λ = 1,
due to the anharmonic couplings. These finite tempera-
ture effects combine, for λ < 1, with modifications due
to additional non-linearities, coming from the introduc-
tion of defects. We also clarify how these modifications
impact the dynamical evolution of the sound-like excita-
tions propagating in the system.
The life-times of normal modes. We can quantify

the finite life-times of the normal modes as the relax-
ation time of the auto-correlation function CEk

(t) of the
associated vibrational energy23,24:

CEk
(t) =

〈δEk(t)δEk(0)〉

〈δE2
k(0)〉

, (12)

where δEk(t) = Ek(t)− 〈Ek(t)〉, and Ek(t) is the energy
of the vibrational mode k,

Ek(t) = EP
k (t) + EK

k (t)

=
ω2
k

2
S†
k(t)Sk(t) +

1

2
Ṡ†
k(t)Ṡk(t),

(13)

with † denoting complex conjugation, and

Sk(t) =

N
∑

j=1

ejk · (r
j(t)− rjI),

Ṡk(t) =
N
∑

j=1

ejk · v
j(t).

(14)

Here, ejk is the eigenvector corresponding to the eigenfre-
quency ωk, r

j(t) and vj(t) are the instantaneous position
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FIG. 10. Auto-correlation function of the mode energy fluc-
tuations, CEk

(t), for (a) λ = 1, with ωk = 4.93 and τk = 34.6
and (b) λ = 0.7, with ωk = 3.27 and τk = 32.4. Correla-
tion functions for total δEk(t), potential δE

P
k (t), and kinetic

δEK
k (t) energies are shown. Total energy (CEk

(t)) shows an
exponential decay with a relaxation time τk/2, where τk is the
life-time of mode k. Potential (CEP

k

(t)) and kinetic (CEK

k

(t))

energies exhibit a dumped oscillating decay of frequency 2ωk,
where ωk is the mode frequency.

and velocity of particle j at time t, and rjI is the posi-
tion of particle j in the corresponding inherent structure.
For the perfect crystal (λ = 1), the positions of atoms
in the inherent structure coincide with the lattice sites,
rjI ≡ rj0. In Eq. (13), EP

k (t) and EK
k (t) correspond to

potential and kinetic energy of the mode k, respectively.
Note that 〈Ek(t)〉 = 2

〈

EP
k (t)

〉

= 2
〈

EK
k (t)

〉

= T , for the

equipartition of energy1,2.
In Fig. 10 we show the temporal evolution of the en-

ergy correlation function, CEk
(t), for Ek(t), E

P
k (t), and

EK
k (t), at the indicated values of λ. Both potential and

kinetic energies show a damped oscillating behaviour of
frequency 2ωk, whereas the total energy exhibits a simple
exponential decay23,24. The life-time τk of mode k can
be extracted as (twice) the relaxation time23,24,101,

τk = 2

∫ ∞

0

dt CEk
(t), (15)

or, equivalently,

CEk
(t = τk/2) =

1

e
. (16)

Life-times of acoustic-like excitations. Additional
information comes from the life-times of acoustic-like

modes23,24, that we have studied in detail in the three
propagation directions (100), (110), and (111)63. These
are defined in analogy with Eqs. (13) and (14) for normal

modes, where we replace ejk by23,24

ejXq = N−1/2 exp(−iq · rjI)pX . (17)

Here, the k-index is replaced by Xq, where X =
L, T (T1, T2), for longitudinal and transverse modes re-
spectively, q is the wave-vector, and pX is the corre-
sponding polarization vector1,2. The considered q and
pX are schematically illustrated in Fig. 11. The life-times
can be therefore calculated from the auto-correlation
function of the energy δEXq(t), from relations analogous
to Eqs. (15) and (16). Note that, since the acoustic waves
are not genuine normal modes in the disordered states,
the energy equipartition does not hold and 〈EXq(t)〉 6= T .
Normal modes versus acoustic-like excitations.

In the left panel of Fig. 12, we show our data sets for τk
(normal modes) and τXq (acoustic-like excitations) as a
function of the corresponding frequencies, ωk and ωXq.
For the perfect crystal at λ = 1 (Fig. 12(a)), acoustic
plane waves and exact normal modes coincide, implying
τXq ≃ τk. Note that, as expected, data are scattered,
as wave propagations are different in the three directions
considered, contrary to the isotropic disordered case at
λ = 0.7 (Fig. 12(i)).
As λ decreases from 1 to 0.7, the life-times of the acous-

tic waves decrease overall of about two orders of magni-
tudes at any frequency, whereas normal modes show a
much smaller reduction. This effect is made even more
clear in the right panel of Fig. 12, where the same data
are averaged in bins of width ∆ω = 1, irrespective to
their longitudinal or transverse nature. Note that, for
λ ≤ 0.86, at the higher frequencies the τXq are of the
order of the Einstein period, τE ∼ O(10−1), which is the
minimum typical time-scale of thermal vibrations for the
present soft-core system102,103.
Additional insight on how mild variations with fre-

quency of τk can induce very important modifications in
τXq comes from Fig. 13. Here we plot parametrically, for
each normal mode k, the life-times τk versus the corre-
sponding participation ratios Pk. Interestingly, although
at each λ modes with larger Pk tend to show higher val-
ues of τk (as one could expect), the overall correlation is

pL pT

pT

q

(100)

pL

pT1

pT2

q

(110)

pL

pT

pT

q

(111)

FIG. 11. Schematic illustration of the considered acoustic
plane waves in the three directions (100), (110), and (111).
The wave-vector q, and the longitudinal and transverse (X =
L, T ) polarization vectors pX are also shown1,2.



13

10-1

100

101

102

103

(a) λ=1.0

Normal
L (100)
L (110)
L (111)
T (100)

T1 (110)
T2 (110)
T (111)

(b) λ=0.98 (c) λ=0.94

10-1

100

101

102

(d) λ=0.90 (e) λ=0.86 (f) λ=0.82

10-1

100

101

102

 0  5  10  15  20

(g) λ=0.81

 0  5  10  15  20

(h) λ=0.8

 0  5  10  15  20  25

(i) λ=0.7

ωk, ωXqωk, ωXqωk, ωXq

τ k
,
τ X

q
τ k
,
τ X

q
τ k
,
τ X

q

10-1

100

101

102

103

10-1

100

101

102

 0  5  10  15  20  25

λ=1.0
λ=0.98
λ=0.94

λ=0.9
λ=0.86
λ=0.84
λ=0.82
λ=0.81

λ=0.8
λ=0.78

ωk, ωXq

〈τ
X

q
〉

〈τ
k
〉

(j) Normal modes

(k) Acoustic-like modes

FIG. 12. Left panel: Life-times of the normal modes τk, and of the acoustic-like waves τXq, plotted as functions of ωk and ωXq,
respectively, at the indicated values of λ. Here we consider the longitudinal (L) and transverse (T ) acoustic waves propagating
in the (100), (110), and (111) directions (see Fig. 11). Specifications of the different data sets are shown in the key. The
vertical lines indicate ω = 5 for reference. In the perfect crystalline state λ = 1, τk ≃ τXq, while in defective and disordered
states, life-times of acoustic-like modes strongly deviate from those pertaining to normal modes. For λ ≤ 0.86, the τXq at
high frequencies are of the order of the minimum time scale set by the Einstein period τE. This is the typical time scale of
the thermal motion of particles, and was estimated as τE ≃ 10−1 for the present soft-sphere system102,103. Right panel: The
averaged life-times of the normal vibrational modes 〈τk〉 (j), and of acoustic plane waves 〈τXq〉 (k), versus the frequency ωk

and ωXq, respectively, at the indicated values of λ. These data are the same as those shown in the left panels, averaged in bins
of width ∆ω = 1, and over all considered propagation directions and polarizations. A comprehensive discussion of these data
is included in the main text.

weak and normal modes with very similar τk show widely
varying values of Pk. This observation seems to indicate
that moduli heterogeneities impact the spatial structure
of the normal modes56,57,62 rather than simply reducing
their life-times. Since acoustic plane waves are superpo-
sitions of different normal modes14,15, we conclude that
these modifications are the main reason for the impor-
tant frequency attenuation of the acoustic-like excitations
(Fig. 12(k)).

Life-times at high and low frequencies. The data
of Fig. 12(k) suggest an additional observation. As λ
decreases from 1 to 0.9, the reduction of the life-times
of the acoustic waves at fixed frequency is important
at high frequencies, ωXq > 5, but relatively mild for
ωXq < 5. In contrast, as λ approaches λ∗, the effect is
reversed and the low frequency modes (ωXq < 5) show
a larger variation. These results seem again to indicate
that the high and low moduli heterogeneities control high
and low frequency vibrational states, respectively. Also,
we emphasize that the high moduli heterogeneities, δK
and δGs, impact a large fraction of normal modes in
the broad frequency range ω > 5. Indeed, the integral
∫

ω>5 g(ω) dω ≃ 0.95 at λ = 1, and ≃ 0.9 at λ ≤ 0.8,

indicating that 90 to 95 % of the total number of nor-
mal modes is included in this frequency range. In con-
trast, the low modulus heterogeneity δGp, only influences
a small fraction of the spectrum with ω < 5, including
only 5 to 10 % of the total number of normal modes.

(Note that the ΩBP is comprised in this region.)

Life-times are controlled by the heterogeneities.
In Ref.63, we analyzed in details the attenuation rates
ΓXq ∼ τ−1

Xq restricted to the (lowest) transverse branch

of the low-frequency acoustic excitations (ωXq < 5), ex-
tracted from the line-broadening of the transverse dy-
namical structure factors. We also clarified their rela-
tion with the lowest shear modulus heterogeneities. In-
triguingly, we found an exponential behaviour, ΓXq ∼
exp(δG/gτ l), with gτ l ≃ 0.5, δG = δGp for λ ≥ λ∗, and
δG = δGp + δGs for λ < λ∗. We now additionally in-
vestigate this point, based on the present new data sets.

Assuming that 〈τXq〉 (Fig. 12(k)) represents the typi-
cal life-time of the acoustic-like excitation of frequency
ω, we have determined at each λ three (frequency-
independent) life-times, τac, τ

h
ac, and τ lac, averaged over

the entire spectrum and, separately, in the high (ω > 5)
and low (ω < 5) frequency regions. These averages ob-
viously involve the number of sound waves comprised in
those spectrum regions. If we assume that this number
does not change with λ, it is directly provided by the
vDOS of the perfect crystal at λ = 1 (gλ=1(ω)), where
the acoustic-like excitations are the normal modes. We
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FIG. 13. Parametric plot of the life-times τk and the par-
ticipation ratios Pk for normal modes at the indicated values
of λ. The solid lines represent the averaged values 〈τk〉 cal-
culated by smoothing the data in bins of width ∆Pk = 0.02.
Although modes with larger Pk indeed tend to show larger
τk, in particular in the more ordered phases, the overall cor-
relations are quite weak.

can, therefore, write

τac =

∫

〈τXq〉 gλ=1(ω) dω,

τh(l)ac =

∫

ω>(<)5
〈τXq〉 gλ=1(ω) dω

∫

ω>(<)5
gλ=1(ω) dω

.

(18)

In Fig. 14(a) we plot τac as a function of the extent of the
elastic heterogeneities, δK+δGp+δGs, together with an
exponential fit of the form (solid line),

τac ∼ exp

(

−
δK + δGp + δGs

gτ

)

. (19)

This is similar to what we considered for the low-
frequency transverse acoustic waves attenuations in
Ref.63 where, however, only the shear contribution was
included in the argument of the exponential. Also note
that the adjusted value gτ ≃ 0.4 must be compared to
gτ l ≃ 0.5 found in Ref.63. Since 95 % of the acoustic
modes are included in the high-ω region, it also results
τhac ≃ τac (see Fig 14(a)). In contrast, τ lac is not controlled
by the total elastic heterogeneities, δK + δGp + δGs, but
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FIG. 14. (a) The life-times τac, τ
h
ac, τ

l
ac of the acoustic waves,

averaged over the entire, high (ω > 5) and low (ω < 5) fre-
quency ranges, respectively, as detailed in the text. In the
main panel, the data of τac and τh

ac are plotted as functions of
the extent of the elastic heterogeneities, δK + δGp + δGs, for
λ ≥ λ∗ (open symbols) and λ < λ∗ (closed symbols). The line
is an exponential fit τac ≃ τh

ac ∼ exp[−(δK + δGp + δGs)/gτ ],
with gτ ≃ 0.4. In the inset, we plot τ l

ac as a function of
δG = δGp for λ ≥ λ∗ (open symbols) and δG = δGp + δGs

for λ < λ∗ (closed symbols). The solid line is a fit of the
form τ l

ac ∼ exp[−δG/gτ l ] with gτ l ≃ 0.5. (b) The ther-
mal conductivity κ shown as a function of the extent of
the elastic heterogeneity, together with an exponential fit
κ ∼ exp[−(δK + δGp + δGs)/gκ], with gκ ≃ gτ ≃ 0.4.
Note that in the highly disordered states with large values of
δK + δGp + δGs, both τac and κ reach the minimum allowed
values, where the life-time τac ∼ O(10−1) is the Einstein pe-
riod102,103, and the mean-free-path of the acoustic waves is of
the order of the particles diameter.

rather by the lowest one δG only (δG = δGp for λ ≥ λ∗

and δG = δGp + δGs for λ < λ∗). Indeed, in the inset
of Fig. 14(a) we show τ lac versus δG, together with a fit
of the form τ lac ∼ exp(−δG/gτ l) with gτ l ≃ 0.5, which is
fully consistent with our previous observation63.
In summary, based on the above results we propose

the following scenario. By decreasing λ, as the ex-
tent of the elastic heterogeneities grows, τac (≃ τhac) de-
creases monotonically and eventually reaches the mini-
mum possible value, corresponding to the Einstein pe-
riod, τac ∼ O(10−1)102,103. Although the low shear mod-
ulus δGp obviously exerts some influence, δK and δGs

turn out to be the main cause for changes in the life-
time of the acoustic excitations, influencing a predomi-
nant fraction of the vibrational modes with ω > 5. In
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contrast, low-frequency acoustic excitations with ω < 5,
result to be only influenced by the lowest modulus het-
erogeneities (δGp or δGp+ δGs for the crystal and amor-
phous case, respectively)63. The above results therefore
provide us with a direct correlation between acoustic-like
excitations and elastic heterogeneity63 in the entire fre-
quency range of the vibrational excitations.

V. THERMAL CONDUCTIVITY

A. Disorder dependence

In this Section we explore the impact of the above stud-
ied elastic heterogeneities and vibrational excitations on
the thermal conductivity, κ. κ can be calculated by non-
equilibrium simulation methods, where one applies to the
system a temperature gradient or a heat current, and
measures the induced heat current104 or temperature gra-
dient105,106, respectively. These methods, however, have
been demonstrated to be prone to important system size
effects, especially in the case of crystals where heat car-
riers (phonons) have long mean-free-paths107.
The Green-Kubo thermal conductivity. Being

aware of these limitations, in the present study we em-
ployed the equilibrium method, based on the Green-Kubo
(GK) formula,

κ =
1

3V T 2

∫ ∞

0

〈J(t) · J(0)〉 dt, (20)

where J(t) is the heat current vector. This formula-
tion has been shown to provide accurate determinations
of κ in the cases of both crystals108,109 and amorphous
solids110. Also, a recent study111 reported detailed re-
sults based on the Einstein relation, which is equivalent
to the GK method, while the studies of Refs.23,24,26 con-
firmed that it produces values for κ in crystals which
are consistent with those determined from the Boltz-
mann equation. In addition, Ref.109 presented evidences
that κ is correctly calculated by using relatively small
systems without important system size effects, even for
crystals. In the present study, we have compared the
values obtained from N = 4000 and 32000 (larger sys-
tem size), and confirmed that both values coincide well
with each other. From this observation, we concluded
that N = 4000 is large enough to exclude the system size
effects on our GK calculations of κ. (See also the dis-
cussion about system size effects for the GK method in
Ref.24.)
Modulating κ by controlling λ. In Fig. 15(a), we

show (open circles) the λ-dependence of κ, at T = 10−2.
As λ decreases from 1 to 0.7 (open circles), κ is reduced
by almost two orders of magnitude, similarly to the im-
portant reduction of the life-times of the acoustic-like
plane waves in Fig. 12. Indeed, the behaviour of κ is fully
consistent with that of the life-time τac of the acoustic
waves shown in Fig. 14(a) (compare Figs. 14(a) and (b)).
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FIG. 15. (a) λ-dependence of the thermal conductivity at
T = 10−2 (open circles). We also show (filled circles) the
data for the case where λ is increased from 0.7 to 1 which
show no significant variations with λ. (The system keeps the
amorphous state in this case, see Fig. 1.) (b) T -dependences
at the indicated values of λ. The vertical lines indicate the
transition point λ∗ in (a), and the temperature T = 10−2 in
(b). For the perfect crystal (λ = 1), κ decreases with T as
κ ∼ T−1, due to the anharmonic effects. As λ decreases, the
value of κ decreases and saturates to a λ-independent value for
λ ≤ 0.86. Note that κ also becomes very mildly dependent
on T in the same λ-range. We also show the values of the
simple model of Eq. (21) by squares in (a) and lines in (b),
which capture the overall variation of the simulation results,
as detailed in the text. We recall that the melting temperature
is Tm ≃ 0.6, the glass transition temperature is Tg ≃ 0.2, and
observe that in the liquid state, Eq. (21) is certainly not valid.
Indeed, for T > Tm our simulation data for κ converge to a
value independent of λ24, which cannot be accounted for by
the model.

The acoustic-like plane waves, rather than the normal
modes, therefore play the essential role in heat conduc-
tion, for all phases.

The above evidence has two implications. First, κ
reaches the minimum allowed value already at λ ≃ 0.86,
where the life-time τac of the acoustic wave is of the order
of the Einstein period and the mean-free-path is of the or-
der of the particle diameter, as noted before. Second, due
to τac ≃ τhac (Fig. 14(a)), we can conclude that the large
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number of high frequency modes (ωXq > 5) determine κ,
while those in the narrow low-frequency range (ωXq < 5)
have a more limited effect. Also, in Fig. 15(a) we show
(closed circles) additional data for the case where λ is re-
versely increased from 0.7 to 1 (see Fig. 1). In this case,
there are no significant changes by the size disorder λ
observed in κ. This is clearly correlated to the analogous
behaviour of the elastic heterogeneities, as shown by the
closed circles in Fig. 3.

The kinetic theory for κ. We can better character-
ize the thermal behaviour of the system by expressing κ
in terms of the simple kinetic theory expression1,2:

κ =
1

3
ρ̂Cvℓ =

1

3
ρ̂Cv2τ. (21)

Here, C is the specific heat per particle, and v, ℓ, and
τ = ℓ/v are the average sound speed, mean-free-path,
and life-time of the heat carriers (acoustic waves), re-
spectively. Note that for our classical system the specific
heat is constant, C = 3, and the disorder (i.e., the elastic
heterogeneities) influences mainly ℓ and τ . We can rea-
sonably assume for τ the values of τac of Fig. 14(a) and,
for simplicity, we also consider a constant sound speed
determined as v = (3κ/ρ̂Cτac)

1/2 ≃ 2.67 at λ = 1. We
note that this value is comparable to the Debye speed of
sound, vD = ωD/kD (kD = (6π2ρ̂)1/3 is the Debye wave-
number, ωD are the Debye frequencies of Fig. 9), that
assumes values in the range of vD ≃ 2 to 3.5, depending
on λ.

In Fig. 15(a) we compare the simulation data with the
model of Eq. (21) (open squares), and conclude that the
two data sets are in good agreement. The slight devi-
ations for λ < 0.82 very likely derive from the over-
simplification of imposing a λ-independent value of v.
The simplified models seem to capture, however, the es-
sential features of the simulation data.

κ is controlled by the heterogeneity. This agree-
ment indirectly supports the conclusion that elastic het-
erogeneities significantly modify both the life-times of
sound waves and the thermal conductivity. More specif-
ically, the high modulus heterogeneities, δK and δGs,
influence the large fraction of acoustic waves (ωXq > 5),
causing the steep decrease of κ for λ > λ∗, while for
λ ≃ λ∗ the low shear modulus heterogeneity δGp also
comes into play, affecting, however, only the narrow low-
frequency regime (ωXq < 5), inducing a very small ad-
ditional variation of κ. This conclusion is evident from
the representation of our data shown in Fig. 14(b), where
we plot κ versus the extent of the elastic heterogeneities,
δK+ δGp+ δGs. This curve seems to follow an exponen-
tial relation, κ ∼ exp[−(δK + δGp + δGs)/gκ], similar to
Eq. (19) for τac, with an identical value of the parameter
gκ ≃ gτ ≃ 0.4.
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FIG. 16. (a) T -dependence of the anharmonic term, 1/τanh
(Eq.(23)) at λ = 1, and (b) λ-dependence of the disorder term,
1/τdis (Eq.(24)) at the indicated values of T . The vertical
line indicates the melting temperature Tm ≃ 0.6 at λ = 1
in (a), and the transition point λ∗ in (b). In (b) we also
plot (closed black circles) the values extracted from the life-
times τac shown in Fig. 14(a) by using Eq.(25). We can see
that 1/τdis does not depend on temperature for T ≤ 10−1,
and there is a good agreement with the values extracted from
τac. This observation supports the validity of the additive
decomposition of the attenuation of Eq. (22).

B. Temperature dependence

We now analyse the interplay of disorder and tempera-
ture in determining the thermal properties of the model.
Our temperature data at the indicated values of λ are
shown in Fig. 15(b) by symbols. We first observe that
data at all values of λ are superimposed for T > Tm,
due to the fact that in the liquid state size heterogeneity
plays very little role in transport properties. Next, in
the crystal reference state λ = 1, we expect a vanishing
effect ascribed to disorder and a non-trivial behaviour en-
tirely associated with the effect of anharmonicities. This
is indeed well demonstrated by the data, where at low
temperatures κ ∼ T−1, as expected. As λ decreases,
in contrast, the effect of the locally heterogeneous elas-
tic response becomes increasingly important, and gener-
ates a more complex reduction of κ at all temperatures,
which does not follow the simple anharmonic prediction.
Eventually, κ undergoes very mild variations with T for
λ ≤ 0.86, indicating that disorder dominates over anhar-
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monic couplings, reducing κ to a T and λ independent
minimum value in the amorphous states.
Separating disorder and anharmonicities. The

above peculiar T and λ dependences can be described
in terms of an obvious generalization of Eq. (21), with
constant C = 3 and v = 2.67, but τ = τ(T, λ). We
now assume that the attenuation rate (the inverse of the
life-time) can be decomposed into two terms, as:

1

τ(T, λ)
=

1

τanh(T )
+

1

τdis(λ)
. (22)

Here, 1/τanh(T ) encodes the purely anharmonic attenu-
ation, whereas 1/τdis(λ) describes that originating from
the presence of the elastic heterogeneities. We can eval-
uate the anharmonic attenuation by using the value of κ
for the pure crystal (λ = 1),

1

τanh(T )
=

ρ̂Cv2

3κ(T, λ = 1)
∼ T. (23)

The corresponding data are shown in Fig. 16(a), with
1/τanh(T ) increasing with T at low-T and saturating
to a constant value around the melting temperature
Tm ≃ 0.6. As a consequence, we can extract the disorder-
related term from

1

τdis(λ)
=

ρ̂Cv2

3κ(T, λ)
−

1

τanh(T )

=
ρ̂Cv2

3

[

1

κ(T, λ)
−

1

κ(T, λ = 1)

]

.

(24)

The effect of disorder. If the additive decomposi-
tion of Eq. (22) is valid, the right-hand side of Eq. (24)
should be independent of T . This is confirmed by the
data of Fig. 16(b), where we plot 1/τdis(λ) at the indi-
cated values of T . These data superimpose at all temper-
atures, thus corroborating our hypothesis. In the same
figure, we also plot (closed circles) an alternative deter-
mination of 1/τdis, based on the calculated values of τac
(Fig. 14(a)):

1

τdis(λ)
=

1

τac(T = 10−2, λ)
−

1

τac(T = 10−2, λ = 1)
,

(25)
where the right hand side is calculated for T = 10−2.
The two sets of data (Eqs. (24) and (25)) are in very
good agreement for λ > λ∗, while they show some dis-
crepancies below λ∗. This can, again, be ascribed to the
over-simplified hypothesis of a constant value for v. The
overall similarities are however striking, confirming the
strict correlation existing between the behaviour of the
acoustic-like modes and heat transport.
Modelling simulation data. In Fig. 15(b), we now

compare the simulation data with a model (lines) based
on Eqs. (21) and (22), where the values of τanh(T ) and
τdis(λ) are given by Eqs. (23) and (25), respectively. The
model is overall capable to capture the main features of
both the T - and λ-dependences of κ. We have shown that
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FIG. 17. Temperature dependence of (a) CQM/T 3 and (b)
κQM at the indicated values of λ. The specific heat CQM

(Eq. (27)) is calculated from the g(ω) data of Fig. 6. The
thermal conductivity κQM is obtained by applying Eq. (28)
to the MD data of Fig. 15(b). For those calculations, we have
used physical Argon units, σ = 3.405 Å, ǫ/kB = 125.2 K, and
τ = 2.11 ps. In the figures, the temperature, specific heat,
and thermal conductivity are measured in units of K, kB ,
and Wm−1K−1, respectively. For λ ≤ 0.86, κQM increases as
κreal ∝ T γ with γ = 1.8 ≃ 2, and a plateau value is observed
around T ∼ 20 K. The excess peak in CQM/T 3, however, is
found in the lower temperature region T ≤ 1 K. A discussion
of this point is included in the text.

1/τanh(T ) increases with T , while 1/τdis(λ) is enhanced
as λ decreases. The competition between these two terms
finally controls the overall behaviour of κ. Here we recall
the melting temperature, Tm ≃ 0.6, and the glass transi-
tion temperature, Tg ≃ 0.2. In the liquid state, Eq. (21)
is certainly not valid. Indeed, for T > Tm our simulation
data for κ converge to a value independent of λ24, which
cannot be accounted for by the model.

C. Quantum corrections

We now discuss the modifications to our calculations
of thermal conductivity when we consider effective quan-
tum corrections. Indeed, in classical systems including



18

those studied here, vibrational modes of any energy are
populated with the same statistical weight, conforming to
a flat probability distribution. This is, however, in con-
trast with the principles of quantum mechanics, where a
vibrational mode of frequency ω is excited according to
the Bose-Einstein distribution1,2,

f(ω, T ) =
1

exp(β~ω)− 1
. (26)

Here, β = 1/kBT , and ~ = h/2π with h the Plank con-
stant. The peculiar form of Eq. (26) has the important
implication that the lower frequency modes are more ex-
cited than those pertaining to the upper part of the spec-
trum, modifying both the specific heat and thermal con-
ductivity in the low-T regime. As a consequence, the (per
particle) specific heat C, which based on the equiparti-
tion theorem is a T -independent constant C = 3 [kB] for
classical systems, depends on T in the quantum formu-
lation.
Quantum-like specific heat from classical data.

By using the vibrational density of states of Fig. 6, we can
approximately embed the effect of quantum correction in
our calculations, and determine the quantum-like value
of C(T ) as1,2:

CQM(T ) = 3

∫

~ω
∂f(ω, T )

∂T
g(ω)dω

= 3kB

∫

(β~ω)2 exp(β~ω)

(exp(β~ω)− 1)2
g(ω)dω.

(27)

The Debye model gD(ω) = (3/ω3
D)ω2 ∼ ω2 implies a

specific heat CD(T ) = (12π4kB/5)(T/TD)
3 ∼ T 3, with

TD = ~ωD/kB the Debye temperature. We can un-
derline the variation of CQM(T ) compared to the De-
bye prediction by plotting CQM(T )/T 3 against T in
Fig. 17(a). Here we have used physical Argon units,
σ = 3.405 Å, ǫ/kB = 125.2 K, and τ = 2.11 ps.
From these data we clearly see that the excess values
in g(ω)/ω2 (Fig. 8(a)) are directly mirrored on the non-
monotonic T -dependence of CQM(T )/T 3, one of the main
features of glasses3,21,22. In the crystal state, λ = 1, the
Debye prediction holds and CQM(T )/T 3 is therefore T -
independent. In contrast, as λ tends to λ∗, we observe
the appearance of clear maxima of increasing intensity
at decreasing values of T . For λ < λ∗, an opposite be-
haviour is observed, with a rapid convergence to the final
stable value in the amorphous states.
Quantum-like κ. This non-trivial temperature de-

pendence of the specific heat CQM(T ) must be followed
by significant modifications in the T -dependence of the
thermal conductivity. By keeping in Eq. (21) the classi-
cal values for v and τ , but replacing C by CQM(T ), we
can map the classical values κ(TMD) to the quantum-like
values κQM(T ) as24,108,110

κQM(T ) =

[

CQM(T )

C

]

κ(TMD). (28)

Here, TMD is the classical heat bath temperature, deter-
mined from the particles kinetic energy in the MD simu-
lation, which we can map onto an appropriate quantum-
like value, by equating the total vibrational energy of the
classical and quantum systems, as

kBTMD =

∫

~ω

[

1

2
+ f(ω, T )

]

g(ω)dω. (29)

Here, the first term of the right-hand side is the zero-
point energy which we excluded from our calculations,
following previous works24,62,108,110. (See Ref.24 for fur-
ther details on this point.)
Reproducing the experimental κ(T ). We show

the temperature dependence of κQM(T ) in Fig. 17(b).
For λ = 1, the computed values are similar to those
determined experimentally for solid Argon112, confirm-
ing the validity of our approach. Note, however, that
the T−1 dependence shown by our data does not cross-
over to the predicted T 3 behaviour at very low temper-
atures. This regime is indeed expected in perfect crys-
tals21,27,28,112, where the mean-free-path of heat carriers
cannot grow indefinitely and must eventually be limited
by the finite-size of the material sample113. This discrep-
ancy can be rationalized by noticing that, using periodic
boundary conditions, we consider a system which is vir-
tually of infinite extent in all directions. In these con-
ditions, as T decreases the mean-free-path can increase
indefinitely, determining the observed non-bounded be-
haviour of κQM(T ).
Interestingly, however, introducing a very limited

amount of disorder (λ = 0.98) is sufficient to trigger an
inversion of the monotonicity at T ≃ 10 K, with the
appearance of a well-defined maximum. Eventually, for
λ ≤ 0.86, we approximately recover the T -dependence
typical of glasses, κ ∼ T γ , with γ = 1.8 ≃ 2, followed
by a plateau value appearing around T ≃ 20 K. It is
worth to emphasize that this glass-like behaviour is al-
ready acquired above the amorphisation transition, in the
defective crystalline states. This observation is consistent
with the experimental work of Refs.27,28, which reported
a glass-like T -dependence of thermal conductivity for
disordered crystals of mixed alkali halides and cyanides
[(KBr)1−x(KCN)x, (NaCl)1−x(NaCN)x] and fluorite
structure crystals [Zr1−xYxO2−x/2, Ba1−xLaxF2+x], con-
cluding that disorder can produce a glass-like thermal
conductivity even in positionally ordered crystals. We
remark, however, that in the former case, beside size or
mass disorder, librations of CN molecules are also ex-
pected to strongly couple to acoustic excitations, con-
tributing to strong scattering and reduction of thermal
conductivity114. Similarly, vacancies or interstitials can
play a role similar to that as disorder in fluorite structure
crystals. Different mechanisms can, therefore, contribute
to achieve glass-like κ similar as that observed here.
The Boson peak and κ(T ). An observation is in

order at this point. Although the values of κQM(T )
are consistent with earlier experimental results21,27,28,112,
one should note that the above method to include effec-
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tive quantum corrections does not allow to precisely im-
plement the Bose-Einstein distribution, as discussed in
Ref.115. The considered quantum correction is in fact
global, in the sense that it is based on the simple ex-
pression of Eq. (21), where a single effective excitation
represents the average effect of all heat carriers. In order
to properly deal with the Bose-Einstein distribution, it
is necessary to consider the mode-by-mode expression,

κ =
1

3V

∑

k

Ckv
2
kτk =

1

3V

∑

k

~ωk
∂f(ωk, T )

∂T
v2kτk, (30)

where Ck, ωk, vk, and τk refer to the single mode k115. In
this expression the Bose-Einstein distribution is explic-
itly included into the specific heat Ck, which makes the
contribution of lower frequency modes to κ higher. This
point is not taken into account in our calculations, with
the following important consequence.
In Fig. 17(b) we show that κQM becomes λ-

independent for λ ≤ 0.86, similarly to the classical κ
shown in Fig. 15(b). This implies that both formula-
tions are controlled by the high frequency modes (ω > 5)
only, without any important contributions arising from
the low-frequency excitations (ω < 5), including those
pertaining to the BP. Indeed, Figs. 17(a) and (b) indi-
cate that the BP temperature, where CQM/T 3 has a max-
imum, and the temperature where the plateau manifests
in κQM, do not coincide. One should therefore conclude
that these two features are not related one to the other.
This conclusion, however, partially originates from the
classical nature of the system, and might be modified by
a correct calculation of κQM based on Eq. (30). In this
case, one should observe non-negligible overall variation
of κQM in the amorphous states close to the transition λ∗,
influenced by the low-frequency vibrational excitations.
More on quantum corrections. One crucial prob-

lem in applying the mode-based correction of Eq. (30)
to disorder solids is, however, that the heat carriers
(acoustic-like modes) are inconsistent with the actual
normal modes of vibration. To overcome this difficulty,
Allen and Feldman (AF)29,30 have proposed the alterna-
tive formulation

κ(T ) =
1

V

∑

k

CkDk =
1

V

∑

k

~ωk
∂f(ωk, T )

∂T
Dk. (31)

Here the actual normal modes k carry heat with a dif-
fusivity Dk, formulated on the basis of a GK formalism.
This method has been successfully applied to the calcu-
lation of κ in jammed solids116,117. More recently, mo-
tivated by the AF work, a method has been developed
in Ref.118 for a direct calculation of the modal contribu-
tions to thermal conductivity, by combining the GK for-
mula and normal mode analysis. Finally, an alternative
possibility has been proposed recently, based on quasi-
quantum MD simulations employing quantum thermal
baths119–121. In Refs.119,120, a good reproduction of the
temperature dependence of the specific heat CQM(T ) has

been demonstrated, without any corrections. Unfortu-
nately, a proper calculation of thermal conductivity is
still problematic and poses severe issues121.

VI. CONCLUSIONS AND REMARKS

We have investigated the interplay among local het-
erogeneous mechanical response, vibrational excitations,
and heat transport, for a numerical model able to inter-
polate continuously from the perfect crystal, through in-
creasingly defective crystalline systems, to plainly amor-
phous phases. By substantially improving the data sets
investigated in our previous works62,63, we have provided
a general discussion in a unique framework, unifying in
a single picture large part of the possible solid states of
matter. In particular, by generating extremely extended
ensembles of system configurations, we have: i) deter-
mined the extent of the elastic constants heterogeneities
(bulk and shear moduli), and investigated possible cor-
relations with more immediate structural features; ii)
characterized in details the elementary vibrational ex-
citations in terms of eigenvalues and eigenvectors of the
Hessian matrix together with the associated life-times;
iii) investigated the more involved acoustic-like excita-
tions, as those detected in inelastic X-rays scattering ex-
periments, for instance; iv) determined temperature and
disorder dependence of thermal conductivity, with an in-
depth discussion of the limitations imposed by plainly
classical calculations. Take-home messages of our work
include:
1. Spatial fluctuations in local elastic moduli mod-

ify the overall structure of the vibrational modes, trans-
forming plane waves into more complex vibrational exci-
tations, rather than simply reducing their life-times. A
substantial fraction of normal modes is also transformed
in localized excitations. The above important modifi-
cations lead to a large reduction of the life-times of the
acoustic-like excitations, which are superpositions of sev-
eral different normal modes with different frequencies.
2. The heterogeneity of the higher-valued moduli im-

pact the high frequency vibrational modes, whereas the
low-ω excitations are primarily modified by the hetero-
geneity associated to the lower-valued moduli. More pre-
cisely, the low-ω vibrational excess, identifying the boson
peak in the glassy phases, is determined by the pure shear
modulus δGp for λ > λ∗, and by the two degenerate shear
moduli, δGp ≃ δGs, in the amorphous states.
3. The acoustic plane waves play an essential role

in heat conduction even in disordered solids, the ther-
mal conductivity being related to their life-time, κ ∼ τ .
The temperature, T , and disorder, λ, dependences of κ
are well described by a simple model based on Eqs. (21)
and (22). This successfully reproduces the interplay be-
tween anharmonic couplings and the effect of disorder
due to the presence of the elastic heterogeneities.
4. The thermal conductivity κ is determined by the

high-ω modes (ω > 5), which cover most part (90 to
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95 %) of the vibrational spectrum and are mainly con-
trolled by the high moduli heterogeneities, δK and δGs.
κ is, in contrast, almost insensitive to the remaining small
fraction (5 to 10 %) of low-ω modes (ω < 5) and, there-
fore, to the low modulus heterogeneity, δGp. As an im-
portant consequence, we conclude that in the glass the
thermal conductivity and the BP follow distinct mecha-
nisms and are not correlated features. This result is exact
for the classical systems investigated here, where all the
vibrational modes are equally excited. For more realis-
tic cases, however, we must take into account the Bose-
Einstein statistics correctly, and more involved quantum
calculations are required.

Theories based on elastic heterogeneity. We now
discuss a few implications of this work. Our results
support the validity of the heterogeneous elasticity the-
ory58–61, where elastic heterogeneities control both the
BP and the glass thermal conductivity. A recent simula-
tion study122,123 has tested these theoretical predictions
by studying Lennard Jones glasses at different tempera-
tures. It could be interesting to apply the theory in the
case of the present system, where elastic heterogeneities
can be tuned extensively. Also, in Fig. 14, we have shown
an exponential relation, connecting the extent of the elas-
tic heterogeneities both to the life-times of the acoustic-
like excitations and to the thermal conductivity. In our
previous work63 we also discovered a similar relation for
the low-frequency transverse acoustic-like modes in the
BP range. These findings deserve a more precise expla-
nation, and should trigger additional theoretical devel-
opment in the future.

The microscopic origin of heterogeneity. In this
work we have also scrutinized possible correlations be-
tween local elastic moduli and local structural quantities
(including stress, density, or nature of the local order),
to clarify the microscopic origin of the elastic heterogene-
ity. We have found that the bulk modulus heterogeneity
(δK) is related to the spatial fluctuations of volume frac-
tion (δφ) and pressure (δp). This implies that denser and
more diluted system show lower and higher compressibil-
ity, respectively. On the other hand, we have not been
able to highlight any effective predictor for the shear
moduli heterogeneities (δGp, δGs). Indeed, we found
some degree of correlation of the affine components with
δφ and δp. These correlations, however, are erased by
the development of the non-affine components. Identi-
fying local quantities which are precursors of the local
shear moduli heterogeneities is still an open issue44,92.

Relevance for ultra-stable glasses. The experi-
mental work of Ref.124 has demonstrated that glasses pre-
pared by vapour deposition show extreme stability, which
corresponds to equilibrium states of ordinary glasses af-
ter an aging process on time scales of thousands of years.
For this reason these materials are dubbed as ultra-stable
glasses124,125. In Ref.125, a numerical simulation study of
ultra-stable glasses was reported, showing that the BP is
reduced compared to the ordinary glasses. Differences in
the local structure were also detected in the two cases.

Additional work is needed to quantify in details the lo-
cal elastic response in ultra-stable glasses, and highlight
possible differences compared to the ordinary case.

Relevance for jammed systems. The BP126,127,
acoustic-like excitations (Ioffe-Regel limit)128, glass-like
T -dependence of κ116,117, and elastic heterogeneities129

have been also studied in a-thermal jammed systems. As
the packing fraction φ tends to the transition point, φc, a
BP progressively develops with the frequency ΩBP van-
ishing126,127 (as also observed in experiments130), and
the transverse Ioffe-Regel frequency decreases towards
zero128. Those results imply the existence of a diverging
length scale127,128, accompanying both features. Inter-
estingly, Refs.116,117 have reported some degree of corre-
lation between the BP and the T -dependence of κ. Also,
a recent work129 reported that the spatial fluctuations of
shear modulus diverge with vanishing global shear mod-
ulus as φ goes to φc, which can be related to the growing
BP and vanishing transverse Ioffe-Regel frequency.

In addition, in Refs.39,40,131,132 a theoretical picture
has been developed where the BP and glass-like ther-
mal conductivity originate from the weak connectivities
of particles (isostatic feature), due to the vicinity of the
jamming transition point. We believe that a connection
must exist between the elastic heterogeneities investi-
gated here and those weak connectivities. Addressing
directly this issue is an important open direction for fu-
ture work.

Unified understanding of ordered and disor-
dered solids. We have focused on a toy model able
to generate states of matter ranging from the perfect
crystal, through defective crystal phases, to fully devel-
oped amorphous structures, by tuning a well designed
form of particles size disorder. This choice partly follows
an increasingly used methodological attitude, where data
from disordered systems are systematically compared to
those coming from the corresponding well-known crys-
talline counterparts. This approach has been employed,
for instance, in the case of a-thermal jammed system in
a previous work133, where the effect of structural modifi-
cations on the distribution of contact forces was system-
atically studied. Other recent works134–137 have followed
this direction, providing a deeper understanding of im-
portant properties of materials in their crystalline and
amorphous forms. Finally, in Ref.38 the vDOS and the
specific heat of various glassy and crystalline polymorphs
of SiO2 were systematically compared. We believe that
trying to connect completely ordered to disordered struc-
tures, highlighting the important variations continuously,
is a fruitful line of action.

Lower-than-amorphous limit of thermal con-
ductivity. As a final remark, modern technologies, such
as thermal management in electronic devices or thermo-
electric energy conversion, employ materials with very
low thermal conductivity138–140. We have demonstrated
that size disorder can indeed reduce κ towards the glass
value62. Similar conclusions have been drawn in experi-
mental works27,28, where the disorder was controlled by
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tuning the chemical composition of the material. In these
cases, κ is found to reach a minimum value in well-
developed amorphous states, where the life-times of the
heat carriers are of the order of the time scale of ther-
mal vibrations and their mean-free-paths approach the
particles sizes.

It has been shown, however, that one can reduce the
thermal conductivity even below the amorphous limit, by
an appropriate design at the nano-scale of ordered sys-
tems140,141. This possibility is a crucial opportunity142,
which would allow to devise (meta-)materials which are
excellent thermal insulators while preserving good elec-
tronic properties, as needed in many applications138–140.
Remarkably, recent experiments143–145 have measured
ultra-low values of κ, suggested to be smaller than the
amorphous limit. These results have been confirmed by
recent simulation works146,147 demonstrating ultra-low κ

in wisely designed super-lattice nano-structures.
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