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Abstract 
In order to provide a serious alternative to chemical batteries for the energy supply of isolated sensors, 
bistable generators have been enthusiastically highlighted in recent years for their ability to harvest 
vibration energy on a wider frequency range compared to linear generators. Nevertheless, these 
bistable harvesters are generally characterized through a frequency sweep which does not reveal all 
the steady-state behaviors they can reach and therefore their full energy harvesting potential. Among 
such behaviors, subharmonic motions are hidden by this classical characterization and therefore had 
not received a lot of attention. This study proposes an original complete analytical analysis of 
subharmonic orbits for energy harvesting to predict their contribution to the global bandwidth of 
bistable generators. In addition, a new criterion, referred as stability robustness, is introduced to 
estimate the sensitivity of those behaviors to disturbances of different levels, allowing to finely and 
accurately estimate suitable behaviors for energy harvesting purposes in realistic conditions 
(behaviors easy to reach and maintain in time). Experimental results conducted with a buckled beams 
based electromagnetic generator confirm the pertinence of this criterion showing good agreement 
with the analytical predictions. Subharmonic behaviors finally appears, both theoretically and 
experimentally, to be of significant interest, as exploiting them leads to a 180 % increase of the global 
operating frequency range of the considered bistable energy harvester, for which more than 100 µW 
are generated on a 70 Hz bandwidth at 0.5 g. 
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1. Introduction 
 
The race for energy harvesting in recent years is undoubtedly linked to the multiplication of stand-
alone, left behind, wireless devices asking for more energetic autonomy that cannot be brought by 
primary batteries. More particularly, vibration have been highlighted as an interesting 
indoor/confined environment energy through the introduction of a wide variety of inertial harvesters 
composed of a spring-mass system coupled with electromagnetic or piezoelectric transducers [1]. 
Easy to implement on the vibration source, those harvesters can improve the wireless device 
compactness (no need to store and embed their entire lifetime energy) and reduce the maintenance 
costs (no need to replace empty batteries). The frequency bandwidth however remains one of the 
main limiting factors of inertial energy harvesters and their adaptability to non-constant or random 
vibrations is still a challenging issue. 
 
Linear harvesters are indeed used to amplify ambient vibrations matching their natural frequency as 
studied by Williams et al. [2] but their performance dramatically drops in the close neighborhood of 
this particular frequency. Erturk et al. [3] first reported that nonlinear bistable harvesters show 
promising results with enhanced frequency bandwidth compared to linear harvesters [4]-[8]. 
Moreover, it is interesting to note that the classical method to determine the behaviors of bistable 
harvesters as a function of the ambient frequency does not reveal the entire richness of their spectra. 
Classical frequency sweep characterization may indeed miss behaviors as it only consists in smoothly 
and slowly increasing or decreasing the excitation frequency and recording the associated behaviors. 
As the nonlinear aspect of bistable harvesters allows different behaviors to coexist at the same 
frequency, those frequency-sweep behaviors may not be the only existing ones on the full frequency 
range. Hidden behaviors may then be used to magnify even more the already extended frequency 
bandwidth of bistable harvesters.  
 
Among them, subharmonic behaviors have already been noticed in mechanical studies [9]-[12], but 
without any true exploitation. Arietta et al. [13] and Syta et al. [14] investigated the energy harvested 
on some subharmonic behaviors but did not evaluate their influence on the global frequency 
bandwidth of the harvester. However, the authors have already shown, in a purely experimental study, 
that the use of these behaviors could triple the useful frequency range of the bistable energy harvesters 
[15]. 
 
To confirm the observations made in the previous experimental study, this article first focuses on the 
analytical investigation of these original subharmonic behaviors, by analytically evaluating their 
contribution to the bandwidth enhancement of bistable harvesters. To deepen the analytical analysis, 
a novel stability criterion referred as stability robustness is introduced to estimate the sensitivity of 
those behaviors to disturbances of different levels. For high stability robustness, the behaviors will 
be considered suitable for energy harvesting purposes because they are easy to reach and maintain 
over time thanks to their low sensitivity to disturbances.  
 
Some considerations on the robustness of behaviors of bistable oscillators have been already 
introduced by Lansbury et al. [16] who analyzed numerically the size of the basin of attraction of 
these behaviors (i.e., they analyzed the size of the area linked to the behavior under consideration on 
the numerical diagram showing the steady-state behavior reached depending on the initial conditions 
of the mass). The bigger the basin of attraction of the behavior, the easier it is to reach, and the more 
robust it is. Later, Harne et al. [17] also developed a robustness criterion for the most common 
behavior (first harmonic behavior) of bistable harvesters by simulating the effect of adding white 
noise on a sinusoidal excitation and checking if the behavior under consideration was maintained. In 
this paper, the approach proposed is still different: the stability robustness criterion is defined by the 



minimum amount of kinetic energy needed to destabilize the behavior. This minimum amount of 
kinetic energy is determined analytically following a mathematical method developed in the 
framework of differential equations known as bootstrap method [18], [19]. Moreover, the novel 
stability robustness criterion proposed here is calculated analytically contrary to criteria proposed by 
Lansbury et al. or Harne et al. and therefore requires a lower computing time, while, thanks to its 
semi-analytical formulation, would permit some optimization considerations. 
 
The stability robustness is calculated for both first harmonic and subharmonic behaviors. While many 
works assessed the stability robustness by underestimating the mechanical quality factor, 
experimental results confirm that taking into account this stability robustness criteria is mandatory to 
predict the harmonic and subharmonic behaviors of a realistic bistable harvester. 
 
 
2. Problem statement 
 

2.1. Mathematical model 
 
Fig. 1 presents a common bistable oscillator configuration (other configurations can be found in the 
literature). The frame is submitted to the ambient vibration and the mass position is defined with 
respect to this frame.  
 

 
Figure 1: Principle and lumped model of a common bistable oscillator. 

 
The vibration energy harvester considered in this study is a bistable harvester composed of a generic 
bistable oscillator coupled with an electromagnetic transducer whose coil is linked to a load resistance 
for energy harvesting purposes. The electromagnetic transducer converts the kinetic energy of the 
mass into electrical energy which then dissipates in the load resistance by Joule’s effect. The study 
focuses on this dissipated energy which represents the total energy converted by the bistable 
harvester. The mathematical model used to describe the bistable harvester is a Duffing-type 
mechanical equation coupled with the electromagnetic equation: 
 
 
 
 



 

 

 (1) 

 
With 𝑀	the mobile mass, 𝑥 its relative position with respect to the frame and ±𝑥% its relative stable 
position. 𝜔% is the natural angular frequency and 𝑄 the mechanical quality factor of the equivalent 
linear oscillator obtained when the mass oscillates near one of the stable positions (𝑥 = ±𝑥% + ∆𝑥 
with ∆𝑥 ≪ |𝑥%|) as defined by Liu et al. [20]. 𝜔 and	𝐴 are angular frequency and the ambient 
acceleration. 𝛽 is the electromagnetic transducer equivalent force factor as defined by Arroyo et al. 
[21] and 𝑟0 and 𝐿% are the coil internal resistance and inductance, respectively. 𝑅 is the load resistance 
connected to the coil and I the current circulating through it. The values of the parameters used in this 
paper for simulation and analytic resolution correspond to the prototype presented in the experimental 
part and are listed in Table 1. 
 
Table 1. Parameter values of the bistable harvester prototype corresponding to the experimental prototype and used for 
numerical and analytical analysis. 

Parameter Symbol Value Unit 
Stable positions ±  ± 0.29 mm 

Inertial mass  30 g 
Natural angular frequency  229 rad.s-1 

Mechanical quality factor  113 - 
Ambient acceleration magnitude  5 m.s-² 
Ambient acceleration angular frequency  20-200 Hz 
Electromagnetic force factor  0.5 N.A-1 

Coil internal resistance   18  
Coil inductance  5 mH 

Load resistance  18  
 
The coil impedance is	3𝑟04 + (𝜔𝐿%)4. For the frequency band under consideration (20-200 Hz), the 
term (𝜔𝐿%)4 is much lower compared to the term	𝑟04 (respectively 39	Ω4 and 324	Ω4 at 200 Hz). The 
coil impedance is therefore considered as purely resistive and the inductance term in Equation (1) is 
neglected. The bistable harvester is then governed by the following single equation: 
 

 

 

 
(2) 

 
The effect of the electromagnetic transducer is then equivalent to an additional damping as already 
suggested in previous studies [22]. The energy provided by the electromagnetic transducer is 
equivalent to the energy dissipated through this additional damping.  
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2.2. Numerical examples of subharmonic behaviors 
 
Bistable harvesters, contrary to linear ones, can reach different steady-state behaviors (or orbits) 
depending on their initial conditions (mass position and mass velocity) for the same ambient 
vibration. Numerical resolutions of Equation (2) with different mass initial conditions yield the 
examples of the different orbits shown in Fig. 2. The phase portrait is introduced for each orbit with 
its respective Poincaré map (black dots) and its time signal.  
 
The mass oscillating around one stable position (𝑥% or	−𝑥%), as shown in Fig. 2(a), corresponds to 
low orbits (intra-well behavior). The mass oscillating from a stable position to the other (i.e. regularly 
crossing the x=0 position), as shown in Fig. 2(b), corresponds to high orbits (inter-well behavior). 
More particularly, the harmonic 1 orbit is reached when the mass oscillates at the same frequency as 
the excitation as detailed in Fig. 2(a) (harmonic 1 low orbit) and Fig. 2(b) (harmonic 1 high orbit). 
These harmonic 1 orbits are well known as they naturally appear using frequency sweep 
characterization. Indeed, those orbits have the particularity to be the only possible behaviors of the 
bistable generator on certain frequency ranges and thus, are automatically reached during a frequency 
sweep. On the opposite, the subharmonic orbits shown in Fig. 2(c) to 2(f) do not naturally appear 
during a frequency sweep and need a jump phenomenon to be reached. This can be done, for instance, 
through a change in the mass initial conditions. Subharmonic n orbit is reached when the mass moves 
n times slower than the excitation. In Fig. 2, only high orbits are presented for subharmonic behaviors 
despite the existence of low orbits, as low orbits are not of interest for energy harvesting due to their 
low amplitudes and associated energies.  
 
 

 
Figure 2: Numerical examples of different behaviors (or orbits) of bistable harvesters including subharmonic orbits for which 
the displacement frequency is lower than the excitation frequency (n times lower for subharmonic n). For each orbit, a phase 
portrait with its Poincaré map (black dots) as well as a time signal is presented. 
 

 

 

 

 



3. Analytical analysis 
 
Subharmonic high orbits, appearing on certain frequency ranges, could be therefore exploited to 
widen the frequency bandwidth of bistable harvesters and thus magnify the principal asset of 
nonlinear vibrational energy harvesters. This section presents the analytical investigation of the 
different steady-state behaviors of bistable harvesters governed by Equation (2) to evaluate the 
frequency bandwidth of bistable harvesters including subharmonic orbits. This analytical 
investigation leads to the bistable generator spectrum containing all its possible steady-state behaviors 
as a function of the ambient vibration frequency. For the sake of easier readability, vectors are 
underlined once and matrices underlined twice. 
 

3.1. Steady-state behaviors 
 
The followings present the global methodology to analytically solve Equation (2) with the Harmonic 
Balance method for the purpose of describing the harmonic and subharmonic behaviors. First, several 
assumptions have to be made for obtaining Equation (2) solutions: (1) the bistable harvester is in 
steady-state motion; (2) the response is approached by a truncated Fourier series of order N; (3) the 
behavior under consideration is the subharmonic 𝑛 orbit. With	𝜔 the excitation pulsation, the response 
is hence composed by a constant term and a preponderant pulsation 𝜔 𝑛⁄  followed by its harmonics 
𝑘𝜔/𝑛 with 𝑘 varying from 2 to N. The general response of Equation (2) is then assumed as: 
 

  (3) 

 
The constant term 𝑎% corresponds to the mean displacement. If 𝑎% is close to zero, the solution is a 
high orbit. If 𝑎% is close to 𝑥% or	−𝑥% (stable positions), the solution is a low orbit. The system is in a 
steady-state motion, hence, the 2𝑁 + 1 unknowns (𝑎%, 𝑎B, 𝑏B), 𝑘	 ∈ 	 ⟦1,𝑁⟧ are constant. Substituting 
Equation (3) into Equation (2) leads to an equation composed by a sum of sinuses and cosines of 
different frequencies: 
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(4) 

 
In Equation (4), 𝑏% = 0 is added to simplify the global expression. The terms composing Equation 
(4) correspond to the different forces acting at different frequencies on the mass and the equation 
describes how they equilibrate. In the truncated response form described in Equation (3), the terms 
with a pulsation higher than 𝑁𝜔/𝑛 are considered as negligible. Similarly, in Equation (4), the force 
terms with a pulsation higher than 𝑁𝜔/𝑛 are also considered as negligible leaving 2𝑁 + 1	terms: a 
constant term, 𝑁 sinus terms and 𝑁 cosine terms. The Harmonic Balance method is then applied to 
these 2𝑁 + 1	force terms so that they are all equated to zero one by one leading to a solvable nonlinear 
system made of 2𝑁 + 1	equations and 2𝑁 + 1	unknowns. For a given set of bistable harvester’s 
parameters (𝑀, 𝑥%,𝜔%, 𝑄, 𝛽, 𝑟0, 𝑅) and for a given ambient vibration	𝐴cos	(𝜔𝑡), this system may 
present more than one solution due to its nonlinearity. Each solution represents a possible steady-
state behavior (or orbit) for the bistable harvester. The 𝑚MN solution (or the 𝑚MN behavior or the 𝑚MN 
orbit) can then be represented by a	2𝑁 + 1	cells array noted as: 
 

  (5) 

 
𝑥OP is the temporal signal of the 𝑚MN steady-state behavior of the bistable harvester for the ambient 
vibration 𝐴cos	(𝜔𝑡). This procedure, performed for different ambient vibration frequencies	𝜔, leads 
to the bistable harvester spectrum containing all the different steady-state behaviors 𝑥OP as a function 
of the ambient vibration frequency. 
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3.2. Disturbances stability analysis 
 
Subsection III.1 established the possible analytical solutions for the steady-state behaviors of the 
bistable harvester. However, the proposed method does not permit evaluating their stability. Hence, 
a stability analysis with a small perturbation method is performed on all the possible steady-state 
behaviors	𝑥QP	. For this purpose, the response is considered to be composed of 2 different terms: the 
steady-state behavior under study	𝑥QP	and a transient term 𝑧 reflecting the disturbance, considered 
small in magnitude compared to	𝑥QP. 
 

  (6) 

 
The steady-state behaviors	𝑥QP is stable if 𝑧 tends toward zero with time. Equation (6) introduced in 
Equation (2) and linearized for small 𝑧	leads to the disturbance state-space equations of motion:  
 

 (7) 

 
where 𝑀(𝑡) ∈ 𝑀4,4(ℝ) is T-periodic with 𝑇 = 𝑛/𝜔. The resolvent matrix 𝑅(𝑡, 𝑡%) ∈ 𝑀4,4(ℝ) of 
Equation (7) is introduced. It gives the relationship between the disturbance at t0 (initial conditions) 
and the disturbance at t following: 
 
  

 (8) 

 
With	𝑅(𝑡, 𝑡%) ∈ 𝑀4,4(ℝ). This resolvent matrix can be numerically calculated for all t. Indeed, a 
numerical integration of Equation (7) from 𝑡% to 𝑡 for 2 initial conditions corresponding to the 2 
vectors of the standard basis of ℝ4 leads to 2 vectors which completely define the resolvent matrix: 
  

 (9) 

 
𝑀(𝑡) ∈ 𝑀4,4(ℝ) is T-periodic so the Floquet Theory [23] can be applied. Hence, it is possible to 
define a constant matrix 𝐵 ∈ 𝑀4,4(ℝ) and a 2T-periodic matrix 𝑄(𝑡, 𝑡%) ∈ 𝑀4,4(ℝ) such that: 
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The 2 complex eigenvalues of	𝐵 are noted	(𝜆W, 𝜆4). Assuming	𝐵 is invertible, a constant and 
invertible matrix 𝑃 ∈ 𝑀4,4(ℂ) can be defined such that: 
 
 

 (11) 

 
As 𝑄(𝑡, 𝑡%) is 2T-periodic and 𝑃 is constant, then the stability condition of the steady-state behavior 

𝑥QP is directly linked to the eigenvalues of	𝐵 namely	(𝜆W, 𝜆4): 
 
  (12) 

 
Moreover, 𝐵 is directly linked to the resolvent matrix after a 2T integration:  
 
  (13) 

 
with 𝑅(2𝑇, 0) calculable following Equation (9). The 2 complex eigenvalues of 𝑅(2𝑇, 0) are noted 
(𝛽W, 𝛽4) and verify: 
 
  

 (14) 

 
The condition of stability of	𝑥QP previously related to	(𝜆W, 𝜆4) as stated in Equation (12) can hence be 
defined with the eigenvalues of 𝑅(2𝑇, 0) namely	(𝛽W, 𝛽4): 
 
  

 
 

(15) 

 
In conclusion, the stability of a steady-state behavior	𝑥QP is determined by the eigenvalues of the 
resolvent matrix evaluated at (𝑡 = 2𝑇, 𝑡% = 0) thanks to a numerical integration of Equation (7) from 
0 to 2𝑇 for 2 initial conditions corresponding to the 2 vectors of the standard basis of	ℝ4.  
 

3.3. Stability, analytical results 
 
Figure 3 introduces the bistable harvester spectra obtained with the Harmonic Balance method and 
the stability analysis described previously for the parameter values listed in Table 1. The Fourier 
series responses are truncated to	𝑁 = 6 (the energy associated to the higher harmonics being 
negligible compared to the lower ones). Figure 3(a) details the mass displacement amplitude with 
respect to the support for the different steady-state orbits as a function of the ambient vibration 
frequency. Figure 3(b) details the phase of the excitation displacement when the position of the mass 
reaches a maximum. Figure 3(c) shows the average harvested power only on the stable orbits through 
the resistance R; the latter being chosen to match the transducer internal resistance to maximized 
energy transfer. The expressions used to calculate the data in those figures are detailed in Appendix 
A.   
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Figure 3: Bistable harvester analytical spectra for an excitation amplitude of 5 m.s-²: (a) orbits’ amplitude, (b) phase of the 
excitation displacement when the position of the mass reaches a maximum and (c) average power harvested for stable orbits. 
 
Six different behaviors are visible in Figure 3(a): one low orbit (motion amplitude inferior to	𝑥%) and 
five high orbits (motion amplitudes superior to	𝑥%). As low orbits are not interesting for vibration 
energy harvesting compared to high orbits, only the harmonic 1 low orbit is depicted as reference. 
The high orbit list is also non-exhaustive. Considering that subharmonic high orbit amplitude globally 
decreases with its order (subharmonic n+1 amplitude is smaller than subharmonic n amplitude), the 
subharmonic high orbits with low orders are more interesting for energy harvesting. For this reason, 
Figure 3 does not present subharmonic orbits higher than order 5.  
 
From these analytical results, it is interesting to note that the spectrum of the bistable harvester is 
much richer compared to the spectrum obtained with a frequency sweep characterization. Indeed, the 
frequency sweep method, too smooth to allow orbit changes, only highlights the behaviors existing 
alone on certain frequency ranges. Figure 3(a) confirms that the orbits presenting this particularity 
are the most studied orbits, i.e., harmonic 1 high orbit and harmonic 1 low orbit. All of the 
subharmonics orbits are always coexisting with one of these common orbits on their whole frequency 
range and thus are not caught with a frequency sweep characterization.  
 
The phase of the excitation displacement when the position of the mass reaches a maximum presented 
in Figure 3(b) also suggests an interesting characteristic of bistable oscillators. Indeed, for odd high 



orbits, it decreases monotonously with ambient vibration frequency until -𝜋/2 which corresponds to 
the orbit cutting frequency. For even high orbits, it also decreases monotonously with ambient 
vibration frequency until -𝜋/4 which corresponds to the orbit cutting frequency. This particularity has 
been first reported for the harmonic 1 orbit by Harne et al. [24] and is here extended to subharmonic 
behaviors. An analogy can be made with linear oscillators which also present a decreasing phase until 
-𝜋/2, wich corresponds to the resonance peak. However, in the case of linear oscillators, the phase 
then keeps on decreasing and tends toward -𝜋 without any discontinuity (i.e., without cutting 
frequency). This aspect of bistable oscillators is helpful for experimental characterization as it may 
confirm or not if the theoretical high orbits cutting frequency has been effectively reached during the 
experiments.  
 
Finally, it can be seen in Figure 3(a) that subharmonic 3 frequency range is not entirely included in 
harmonic 1 high orbit’s one. Thus, this behavior is a good candidate to enhance the global frequency 
bandwidth of the bistable harvester. However, when considering orbit stability only, the average 
harvested power on subharmonic 3 behavior (with a maximum of 416 µW) is relatively small 
compared to harmonic 1 behavior (with a maximum of 1.61 mW).  
 
 
4. A novel criterion: the stability robustness 
 
Previous results indicates that exploiting subharmonic behaviors may not be so interesting since the 
harvestable power on harmonic 1 orbit is theoretically much larger than subharmonics one, and the 
bandwidth enhancement offered by subharmonic 3 is rather limited (15 Hz extension). However, 
experiments show that the stable high orbits are not all equivalent, being more or less easy to reach 
and maintain. The orbit stability criteria defined in the previous section is calculated for a small 
disturbance inducing infinitesimal variation	around the steady-state response. But, among stable high 
orbits, when the disturbance is increased, some remain stable and others become unstable, which 
actually induces a drop to harmonic 1 low orbit. In particular, the maximal power point of the 
harmonic 1 response cannot be practically reached. In order to take into account this phenomenon, a 
new criterion is analytically introduced and presented, namely the stability robustness. It indicates 
the sensitivity of stable high orbits to disturbances of different levels. Hence, for low stability 
robustness, the high orbit will no longer be considered as suitable for energy harvesting because of 
the difficulty to reach and maintain over time. In this section, the stability robustness is calculated for 
all the steady-state high orbits	𝑥QP defined as stable with the small disturbances criterion defined in 
the previous section.  
 
The idea of the stability robustness analysis is to disturb the stable high orbit with a certain amount 
of energy (added or removed to the system). Then, the minimum of this energy needed to destabilize 
the high orbit determine its robustness. The greater this energy, the more robust the orbit. The energy 
used to disturb the steady-state high orbit is a kinetic energy defined by a speed Λ added to the speed 
of the mass at	𝑡 = 𝑡% (Λ	can be positive or negative). Similarly to the previous section, the response 
is decomposed into 2 signals: the steady-state high orbits	𝑥QP and a transient term 𝑧 reflecting the 
disturbance. The speed added to the speed of the mass is then represented by the initial conditions of 
the disturbance signal z:   
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If |ΛP]^| is the minimum speed leading to instability, the stability robustness is defined as the 
corresponding kinetic energy normalized by the mean energy brought by the excitation to the mass 
per period of excitation: 
 

 (17) 

 
with T the period of the subharmonic n behavior	𝑥QP under study. The followings present the method 
leading to the determination of	|ΛP]^| which is based on a mathematical method known as bootstrap 
method [18], [19]. In the same way as in the previous section, Equation (6) is introduced in Equation 
(2) but 𝑧	 is not anymore considered as small compared to	𝑥QP so that linearization cannot be 
considered. Then, the disturbance state-space equation of motion becomes:  
 

 (18) 

 
Note that the evolution of the disturbance z is linked to 𝑥QP through the matrix	𝑀. Thus, for all t, the 
disturbance state can be written as follow: 
 

 (19) 

 
with	𝑅(𝑡, 𝑡%) defined by Equation (8) and Equation (10). As the steady-state high orbits	𝑥QP studied 
here are stable with the small disturbances criterion, hence the two complex eigenvalues (𝜆W, 𝜆4) of	𝐵 
have positive real parts as stated in Equation (12). The variable	𝜆 is introduced as the minimum 
of	(𝜆W, 𝜆4) real parts: 
 

 (20) 
 
A reductio ad absurdum is conducted to determine	ΛP]^  considering the following hypothesis H:  
 

 (21) 

 
H true implies H2 true which implies that the disturbance tends toward infinity with time meaning 
that the steady-state behavior is unstable for	Λ. The negation of H is:  
 

 (22) 
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H3 is always wrong for	𝜏 = 𝑡%. Hence H wrong implies H4 true which implies in turn that the 
disturbance tends toward zero with time hence meaning that the steady-state behavior is stable for	Λ. 
In the following, H is assumed as true. From the disturbance continuity, it can be deducted that: 
 

 (23) 
 
On another hand, all the components of the resolvent matrix 𝑅(𝑡, 𝑡%) can be upper bounded 
independently of time as:  
 

 (24) 

 
Hence, for a given	𝑡%, each component of the matrix 𝑒a(MbMc)𝑅(𝑡, 𝑡%) admits a maximum which occurs 
for	𝑡𝜖[𝑡%; 𝑡% + 2𝑇]. Using the periodic propriety of the resolvent matrix 𝑅(𝑡 + 𝑇, 𝑡% + 𝑇) = 𝑅(𝑡, 𝑡%) 
seen in Equation (8) then each component of the matrix 𝑒a(MbMc)𝑅(𝑡, 𝑡%) admits a maximum which 
occurs for	𝑡𝜖[𝑡%; 𝑡% + 2𝑇] with	𝑡%𝜖[0; 𝑇]. Such a consideration leads to: 
 

 
(25) 

 
𝐶 ∈ 𝑀4,4(ℂ) is a constant matrix independent from t and t0 and can be calculated from Equation (9). 
Equation (19) evaluated at	𝜏 yields: 
 

 (26) 

 
In this equation, only the component (1,2) of the resolvent matrix appears. The left side of this 
equation is replaced by Equation (23). For its right side, the component (1,2) of the resolvent matrix 
is upper bounded using Equation (25) and the perturbation 𝑧 is upper bounded using Equation (21) 
leading to: 
  

0( )( ) tz e l tt d - -=

1 0
0 0

2 0

1 0
0

2 0

Im( )( )
1( ) ( )

0 0 0 ( )

Im( )( )
1( )

0 0 ( )

2T periodic
decreasing with time or periodic 

0
( , ) ( , ) ( , )

0

0
( , ) ( , )

0

i t t
t t B t t

t t

i t t
t t

t t

e
R t t Q t t e e Q t t P P

e

e
e R t t Q t t P P

e

l
l

l l

l
l

l l

- -
-- - - -

- -

- -
--

- -

é ù
= = ê ú

ë û
é ù

Û = ê ú
ë û!"#

!$$$$$"$$$$ #$

! [ ]
[ ]

0 0

0 0

0

2 ( ) ( )
0 0, , , 2

with 0,

,

( , ) 1,2 , ( , ) ( , )max t t t t
i j i jt t t T

t T

i j

i j R t t e R t t e

C

l l- - -

Î +
Î

é ù é ù" Î £ë û ë û

é ùë û

"####$####%

0

2
2 30 0

0 2 21,2 1,2
0 0

23( ) ( , ) ( , ) (s) (s) (s)k
s

t

z R t R s x z z ds
x x

t w w
t t t

æ ö
é ù é ù= L + - -ç ÷ë û ë û

è ø
ò



 (27) 

 
Where the exact expression of Ψ is given in appendix B. Thus: 
 

 (28) 

 
𝑓(𝛿, Λ) is a 3 order polynomial in 𝛿 admitting a single minimum for 𝛿 > 0 referred as 𝛿% defined as: 
 

 (29) 

 
If	𝑓(𝛿%, Λ) is positive then Equation (28) is verified for all 𝛿 so the hypothesis H is true meaning the 
steady-state behavior is unstable. If	𝑓(𝛿%, Λ) is negative then Equation (28) is not verified for all 𝛿 so 
the hypothesis H is wrong meaning the steady-state behavior is stable. Thus, the boundary between 
stability and instability for the steady-state high orbit	𝑥QP is reached for the speed disturbance 
ΛP]^		respecting	𝑓(𝛿%, ΛP]^) = 0. Hence the stability robustness criterion is defined as: 
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(30) 

 
ΛP]^	  is the minimum speed disturbance inducing instability of the stable high orbit under 
consideration, Eexcitation is the mean energy brought by the excitation to the mass per period of 
excitation and, T is the period of the subharmonic n behavior 𝑥QP under study. The stable high orbits 
with a low stability robustness become unstable and drop to harmonic 1 low orbit for low energetic 
disturbances and thus are harder to reach and maintain over time. This criterion, which quantify the 
robustness of the stability for bistable harvesters is therefore useful to evaluate if the high orbits 
defined as stable with the common small disturbances criterion are easy to reach and maintain leading 
to their energy harvesting suitability.   
 
Figure 4(c) introduces the stability robustness calculated for the stable high orbits exposed in the 
previous section. Those orbits are recalled in Figure 4(a) with the amplitude spectrum and in Figure 
4(b) with the phase of the excitation displacement when the position of the mass reaches a maximum. 

 
Figure 4: Bistable harvester analytical spectra showing stable high orbits for an excitation amplitude of 5 m/s² including the 
new criterion of stability robustness indicating their sensitivity to disturbances: (a) amplitude, (b) phase of the excitation 
displacement when the position of the mass reaches a maximum and (c) stability robustness. 
The stability robustness presented confirms the experimental observations: the stable high orbits are 
not all equally sensitive to disturbances. It can be seen that even subharmonic behaviors are far less 
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robust than odd subharmonic ones. Hence, reaching and maintaining even subharmonic behaviors 
over time will be more complicated than odd subharmonic behaviors, which make them less 
interesting for energy harvesting purpose. In the same way, the stability robustness of odd 
subharmonic behaviors is not constant on their whole frequency range. Globally, the robustness 
decreases as the working point approach the cutting frequency (for a phase of the excitation 
displacement equal to -𝜋/2 when the position of the mass reaches a maximum). Harne et al. [17] also 
reported a similar shape for the robustness of harmonic 1 high orbit with a different approach to 
calculate the robustness (adding more or less excitation noise to the orbit). The total frequency ranges 
found for odd subharmonic stable orbits might therefore not be robust enough for energy harvesting. 
More importantly, it can be seen that harmonic 1 is much less robust than other considered odd 
harmonics on a wide frequency band, especially in region where it magnitude is high. Therefore, the 
associated maximum power will not be easily reached (and may actually not be reached at all in real 
applications). This result also highlights the actual interest of subharmonic behavior (especially 
subharmonic 3). 
 
From the stability criterion, a threshold can then be defined for the stable high orbits’ robustness to 
only keep the behaviors robust enough for energy harvesting on a long time period. 
 
 
5. Experimental analysis 
 
The previous developments and analyses pointed out the importance of stability robustness for 
evaluating the true energy harvesting capabilities of nonlinear bistable harvesters, as well as the 
impact of this criterion on the actual interest of subharmonic behaviors. In order to validate these 
findings, the present section proposes to experimentally evaluate the performance of an 
electromagnetic bistable harvester. 
 

5.1. Experimental setup and identification 
 
Figure 5 shows the experimental setup. The bistable oscillator prototype is made of a brass mass and 
2 steel thin beams. The brass mass, itself composed by 3 brass cubes, holds the steel beams in parallel. 
Those beams are then linked to 2 aluminum supports, situated on both side ends. One support is 
embedded to the main frame and one is able to translate in the beam direction. A micrometer screw 
linked to the main frame allows to push this translating supports and to buckle the beams thus creating 
bistability. The translating support is then fixed during experiment. For symmetry reasons, 2 magnets 
have been placed on each side of the mass. One of them, coupled to a coil connected to a resistance, 
enables energy conversion. For optimized energy conversion, the resistance value has been set to be 
equal to the coil internal resistance (impedance matching). For a given excitation acceleration and 
frequency, an orbit jump phenomenon can also be obtained thanks to this electromagnetic transducer, 
through the creation of a force pulse on the bistable oscillator’s mass by applying a voltage pulse on 
the coil. The dimensions of all the elements are presented in Table 2. The buckling coefficient of the 
bistable oscillator is defined by the ratio between the stable position	𝑥% and the beams length. The 
chosen value of this coefficient in this experimental analysis is quite low (~1%) in order to allow high 
orbits for acceleration accessible during the experiment (here 5 m.s-2) and representing typical 
application conditions. This low buckling coefficient also confirms the validity of the Duffing-type 
mechanical equation to predict the bistable oscillator behaviors.  
  



Table 2. Bistable generator prototype dimensions. 
Element Value Unit 

Inertial mass  
(3 brass cubes and 2 magnets) 30 g 

Brass cube dimensions (each) 10x10x10 mm3 
Steel beam dimensions (each) 28x10x0.1 mm3 
Buckling distance reduction 1.5 µm 
Mass stable position ± 0.29 mm 
Coil internal resistance  18 Ω 

 
The bistable harvester prototype is attached to an electrodynamic shaker driven through a feedback 
loop implemented in a real time controller (DSPace) to impose a constant amplitude sinusoidal 
acceleration excitation. A differential laser vibrometer measures the relative displacement of the mass 
with respect to the frame. The following process is then applied to explore the bistable harvester’s 
spectra: (1) the excitation amplitude acceleration is set-up for the entire experience; (2) an excitation 
frequency is chosen; (3) rectangular voltage pulses of 5 ms of different amplitudes (10 to 50 V) and 
with various phases are sent to the coil possibly creating orbit jump phenomena; (4) once the orbit 
under study is reached, the excitation frequency is changed (up or down) slowly and smoothly (the 
acceleration and its derivatives are kept continuous when changing the frequency) to prevent another 
orbit jump phenomena; a change in the behavior during this step means that the studied orbit does not 
exist at this new frequency, or that the behavior is not robust enough to be maintained over time; (5) 
if the bistable harvester behavior is kept after the frequency change, the average harvested power is 
calculated from the voltage measured at the terminals of the resistance connected to the coil (𝑃 =
𝑉mPQ4 𝑅⁄ ).  
 
The parameters of the bistable harvester mathematical model summarized in Equation (2) are 
measured for this prototype. Particularly, for small displacements around an equilibrium position, 
Equation (2) becomes: 
 

 

 

 (31) 

 
Hence, under such conditions and as reported by Liu et al. [20], the bistable harvester behaves like a 
linear harvester around its stable positions. In this particular condition, 𝜔% is the natural frequency of 
the system which can be determined by measuring its response to a small sharp shock. 2 parameters 
remain to be determined: the quality factor and the stability robustness threshold under which orbits 
will be considered as non-suitable for energy harvesting. The identification of those 2 parameters 
need 2 measurements. The quality factor mostly influences the phase of the excitation displacement 
when the position of the mass reaches a maximum. The stability robustness threshold mostly 
influence the frequency range limits of the behaviors (acting on the observable cutting frequency). 
The upper limit of the frequency range of subharmonic 3 behavior has been chosen to identify those 
2 parameters. The quality factor has been set to match the phase of the excitation displacement when 
the position of the mass reaches a maximum for this particular behavior. Similarly, the stability 
robustness threshold has been set to match the frequency limit of this subharmonic. All the parameters 
of the bistable prototype are summarized in Table 1. 
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Figure 5: Bistable harvester prototype and experimental setup 

 
5.2. Results and discussion 

 
Experimental results are depicted in Figure 6 and compared to the analytical model predictions for 
stable high orbits. Figure 6(a)-(b)-(c) respectively represent their amplitude, phase of the excitation 
displacement when the position of the mass reaches a maximum and stability robustness. For the 
analytical curves of those figures, a separation is made between orbits robust enough and not robust 
enough for energy harvesting based on the stability robustness analysis. Analytical high orbits which 
have a stability robustness under the threshold are considered as non-suitable because of their high 
sensitivity to external disturbances. Those orbits are thus difficult to reach and maintain over time. 
Figure 6(d) presents the average harvested power corresponding to the stable high orbits which are 
robust enough for energy harvesting purpose. 
 
3 different high orbits have been considered, reached and could be maintained over time during the 
experience: harmonic 1, subharmonic 3, and subharmonic 5 orbits. The frequency ranges found for 
these orbits are respectively 20-60 Hz, 65-165 Hz and 91-130 Hz. The phase of the excitation 
displacement when the position of the mass reaches a maximum decreases with the frequency to 
respectively -𝜋/25, -𝜋/4 and -𝜋/4 at the experimental cutting frequency.  

 



 
Figure 6: Bistable harvester experimental and analytical spectra showing stable high orbits for an excitation amplitude of 5 
m/s² including the new criterion of stability robustness indicating their sensitivity to disturbances: (a) amplitude, (b) phase of 
the excitation displacement when the position of the mass reaches a maximum, (c) stability robustness and (d) average harvested 
power. 
 
Experimental results and analytical predictions are in good agreement, which confirms the pertinence 
of the Duffing-type model and the pertinence of the novel criterion of stability robustness introduced 
in this article. The proposed stability robustness evaluation can indeed be used to evaluate the 
performance of bistable energy harvesters, while a more classical stability analysis may lead to an 
overestimation of the working ranges and amplitudes. Indeed, the experimental measurements of the 
phase of the excitation displacement when the position of the mass reaches a maximum show that the 
theoretical cutting frequency predicted by the classical stability analysis (happening at -𝜋/2) is not 
reached. The harmonic 1, subharmonic 3 and subharmonic 5 orbits’ frequency ranges respectively 
end at 60 Hz, 165 Hz and 130 Hz for phases of -𝜋/25, -𝜋/4 and -𝜋/4. Hence, this observation confirms 
that the common small disturbances stability study is not sufficient to analytically describe the 
bistable harvester, while experimental and analytical results agreement is obtained once the new 
notion of stability robustness is included in the analysis. The stability robustness is even more critical 



for harmonic 1, as the limit of the high orbits yields an absolute phase that is much smaller than p/2, 
which could be explained by the large displacement obtained when using this behavior. 
 
The even subharmonic orbits are confirmed to be not robust enough to be reached and maintained 
over time (those orbits have not been found experimentally) and are then logically considered as non-
suitable for energy harvesting. Subharmonic 5 orbit presents low average harvested power (maximum 
of 30 µW at 130 Hz) compared to harmonic 1 and subharmonic 3 orbits and does not involve any 
benefit on the bandwidth in the considered example. 
 
A few more particular remarks can then be done that confirm preliminary conclusions drawn from 
the theoretical analysis. First, it can be noted that the harmonic 1 behavior is less interesting than what 
a classic small disturbances stability study suggests. Its total frequency range is here almost divided 
by 3 (20-160 Hz with the classical stability analysis and 20-70 Hz with the stability robustness 
analysis). On the opposite, the subharmonic 3 behavior is more robust than harmonic 1 behavior and 
its frequency range is less affected (60-190 Hz with the classical stability analysis and 60-160 Hz 
with the stability robustness analysis). Moreover, the maximum average power harvested on those 
behaviors are close to each other (412 µW for harmonic 1 orbit and 269 µW for subharmonic 3 orbit).  
 
The efficiency of the prototype have been calculated as the ratio between the ratio between the mean 
harvested power and the mean power given by the source to the mass. It has been found constant and 
equal to 10 % on the whole frequency range of both harmonic 1 behavior and subharmonic 3 behavior. 
Even if this efficiency is under the optimum of 50 % [2], it shows again the pertinence of subharmonic 
3 behavior which presents the same efficiency as the harmonic 1 behavior. 
 
Those experimental and analytical results confirm the observations made in the authors’ experimental 
article [15]: the subharmonic 3 behavior is an interesting support to harmonic 1 behavior to enhance 
the global operating frequency bandwidth of the bistable harvester for vibrational energy harvesting. 
Hence, under the experimental conditions, the bistable prototype can harvest more than 100 µW on a 
70 Hz frequency band with the combination of these 2 orbits compared to a 25 Hz frequency band 
with the sole harmonic 1 orbit, corresponding to a 180 % increase of the useful frequency range. 
 
 
6. Conclusion 
 
A complete analytical analysis has been done for bistable harvesters to predict the different possible 
steady-state behaviors as a function of the ambient frequency. A particular attention has been put on 
subharmonic behaviors for which the mass moves n time slower than the excitation (with n a natural 
number) and their ability to support the common harmonic 1 behavior for further enhancing the 
broadband energy harvesting ability. After applying classical analytical method such as Harmonic 
Balance method and small disturbances stability analysis, a new criterion has been introduced, namely 
the stability robustness. Indeed, the stable orbits are not all equivalent being more or less easy to reach 
and maintain over time. Thus, to include this aspect, the stability robustness indicates the stable orbits 
sensitivity to disturbances of higher levels. For low stability robustness, the orbits will no longer be 
considered as suitable for energy harvesting because too sensitive to disturbances for being maintain 
in time. Finally, an experimental analysis has been conducted to validate the theoretical assumptions.  
 
The experimental results confirm the pertinence of the stability robustness criterion showing good 
agreement with the analytical predictions. The experimental and predicted behaviors’ frequency 
ranges of the bistable harvester match only once the stability robustness is added to the small 
disturbances stability analysis. Then, subharmonic 3 behavior appears to be of significant interest for 



enhancing the global operating frequency range of bistable energy harvesters. It has been found that 
the bistable prototype harvests more than 100 µW on a 70 Hz frequency band with the combination 
of harmonic 1 and subharmonic 3 orbits compared to a 25 Hz frequency band with the sole harmonic 
1 orbit, leading to a 180 % increase in the effective bandwidth. 
 
This study having established the analytical analysis of the subharmonic behaviors and their stability 
robustness in realistic conditions for energy harvesting, future work should focus on the effect of the 
bistable generator parameters (especially	𝑀, 𝑥%,𝜔%, 𝑅) on those subharmonic behaviors for 
optimization purposes. Moreover, as some of those behaviors coexist with low orbits which are not 
interesting for energy harvesting, future work should also focus on techniques to ensure that they will 
be automatically reached whenever it is possible.     
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