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ON THE BILINEAR CONTROL OF THE GROSS-PITAEVSKII EQUATION

THOMAS CHAMBRION AND LAURENT THOMANN

ABSTRACT. In this paper we study the bilinear-control problem for the linear and non-linear
Schrodinger equation with harmonic potential. By the means of different examples, we show how
space-time smoothing effects (Strichartz estimates, Kato smoothing effect) enjoyed by the linear
flow, can help to prove obstructions to controllability.

1. INTRODUCTION AND RESULTS

1.1. Imtroduction. In this paper, for d > 1, we consider the bi-linear control problem for the
quantum harmonic oscillator

{z’aw + Hy = ut)K(z)p — o[>,  (t,z) e R x R,

(0, ) = o (), (1.1)

where
2 N~ O
H:—A—Hxl :Z(—W—Fx])
j=1 J

is the harmonic oscillator, K : R — R is a given potential and where the control u belongs to
L] .(R;R) for some > 1. In the sequel, we will either study the case ¢ = 0 and we will refer to
this equation as the bi-linear Schrodinger equation, or the case o = 1 (respectively o = —1) which
corresponds to the non-linear Schrodinger equation with a cubic defocusing (respectively focusing)
non-linearity. We call the linear operator 1) — K1) the control operator, while the (possibly non-

linear) map ¢ — iH1 + io || is usually called the drift.

The controllability question, crucial for applications, amounts to find which solutions ¢ of (I.1I)
can be obtained with a suitable choice of u. For a given source 1, the attainable set from g
with controls in L] (R;R) is the set of ¢y for which there exist a time 7" > 0 and a control u
in L"([0,T];R) such that the solution ¢ of (LI at time 7" satisfies ¥(T’,-) = ¢¢(-). A system is
controllable in a given space X if the attainable set from any point of X contains X.

A celebrated result [I, Theorem 3.6] (see also [21] for the case of the Schrodinger equation)
states that for bi-linear equations posed in a Banach space with linear drift and bounded control
operator, the attainable set (from any source) with Lj .(R,R) controls, 7 > 1, is contained in a
countable union of compact sets. In an infinite dimensional Banach space, a countable union of
compact sets is meager in Baire sense. Hence, this result represents a deep topological obstruction
to controllability of bi-linear control systems. Notice that this negative result does not prohibit
controllability in smaller spaces, endowed with stronger norms, where the control operator is not
continuous anymore.

In [I0], using energy estimates, we have proved obstructions to controllability for non-linear wave
equations with Llloc controls and bounded control operators. Here using more refined inequalities,
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2 THOMAS CHAMBRION AND LAURENT THOMANN

as the Kato smoothing effect and Strichartz estimates, we are able to tackle the case of the (non-
linear) Schrodinger equation involving possibly non-linear drifts and unbounded control operators.

Concerning the study of the well-posedness of Schrodinger equations with potentials, we refer
to 1T, 7, B,

For (local) exact controllability results for NLS on a finite length interval we refer to [2, 4] [3].
For both the case of the bi-linear and non-linear Schriodinger equations, to get positive exact
controllability results, the main difficulty is the choice of the ambient space. This space has to be
chosen such that the equation is well-posed and the control operator is not bounded. In [2, 4l [3]
the fact that the control operator is not continuous is a consequence that the Schrodinger equation
is studied on a finite length interval with well chosen boundary conditions. Here instead, we study
the equation on R% and therefore take advantage of dispersive effects.

For approximate controllability results for the bi-linear Schrédinger equation see [9 [15].

On the other hand, in the particular case K(x) = z (which does not fall in the scope of our
analysis), with an explicit change of variable, one can show that the atteignable set is a finite
dimensional manifold [16]. Notice that this result also holds for the non-linear equation, see [13].

We refer to the introduction of [4] for more references on control problems and concerning results
on the optimal control problem of the non-linear Schrodinger equation, see [12].

For an overview of results concerning the control of (I.T]), see [13]. For an overview of controlla-
bility results of bi-linear control systems, we refer to [14].

In the sequel, we will need the harmonic Sobolev spaces, in other words, the Sobolev spaces
based on the domain of the harmonic oscillator. For s > 0, p > 1 we define

Wer = WP (RY) = {f € IP(RY), H/*f € IP(RY)},
He =1 (RY) = W2,

The natural norms are denoted by || f|yvs» and up to equivalence of norms (see e.g. [22, Lemma 2.4]),
for 1 < p < +00, we have

1 Iwew = 12 flle = 1(=A)2 f 2o + [(2)° f 1o, (1.2)
with the notation (z) = (1 + |z|?)'/2.
1.2. A smoothing property for the bi-linear equation. Consider the equation
10 + Hip = u(t) K (x), (t,z) € R x RY,
{w(o, z) = vo(z) € HM(RY),

in any dimension d > 1 and regularity k& > 0. Assume that K € W"°°(R%). Then for all integer
k > 0, the control operator

(1.3)

HFRY) — HFRY)
Y — Ky,

is continuous (see (ZIT) for the proof), and therefore the general result of Ball-Marsden-Slemrod [T,
Theorem 3.6] applies to (L3). This result shows that, for fixed initial condition g € H*(R?), the

atteignable set of (L3
U U ok

teR uelj (R),
r>1

(1.4)

is a countable union of compact subsets of H"*(R?).
Our next results (Theorem [[I] and Corollary [[L2) give a more precise description of the at-
teignable set of (L3]), under the assumption u € L? (R).

loc



ON THE BILINEAR CONTROL OF THE GROSS-PITAEVSKII EQUATION 3

Theorem 1.1. Let d > 1 and k > 0 be an even integer. Let u € L2 (R) and K € WFL2(RY).
Let g € HF(RY), then the equation [(L3) admits a unique global solution 1 € C(R; H*(R?)).

Moreover for all o < 1/2, there exists a > 0 such that
P(t) — ey € C*(RyHM7(RY)), (1.5)
and for all T > 0,
[4p(t) — e bollea (r rppe+orayy < C(T,k, [Wollan ays 1ull 2 (-m)- (1.6)
The proof of (LGl relies on the Kato smoothing effect for the linear Schrodinger equation. It
can be stated like this: for all ¢ < 1/2 there exists C' > 0 such that for all ¢ € L?(R%)
1
I e
We refer to [19, Théoréme 15] for the proof of (LT). This inequality shows that the solution of the
linear Schrodinger flow enjoys a gain of 1/2 derivative locally in space.

H%eitH(pHLz([—%r,%r}de) < Cllgll 2 (ray- (1.7)

It is likely that the statement of Theorem [II] holds for any k& € N, but at the price of more
technicalities, therefore we only gave the proof for k € 2N, which allows to work with differential
operators instead of pseudo-differential operators.

The result also holds for perturbations of H, namely, when H is replaced with H + W, where W
is in the Schwartz class S(R% R). In the argument one has to replace uK with uK — W.

The smoothing property stated in Theorem [[1] leads to the following obstruction to controlla-
bility of equation (L3)).

Corollary 1.2. Under the assumptions of Theorem [I1}, for all o0 < 1/2, T > 0, and K > 0, the

set
U {0(t) — ™y}
te|-T,T)
lull o2 (-7 <K
is a compact of HF7(R9).
As a consequence, the set

U U {2@®) -}

teR wel? (R)
is a countable union of compact subsets of HF+7(R9).

1.3. Strichartz estimates and obstructions to the controllability of the non-linear equa-
tion. The Strichartz estimates are crucial tools in the study of the well-posedness of non-linear
Schrédinger equation at low regularity. Let us recall them: a couple (q,7) € [2,+00]? is called
admissible if

2 d d
and if one defines
Xpe= () LTI RY), (18)

(g,r) admissible

then for all T > 0 there exists C7 > 0 so that for all 1y € H*(R%) we have
€™ el xs < Crlltolls ma), (1.9)
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We will also need the inhomogeneous version of Strichartz: for all 7" > 0, there exists Cr > 0 so
that for all admissible couple (¢, r) and function F' € L7 ([T, T]; W*" (R%)),

t
I /0 IR, < OrlFl e @y (1.10)

where ¢’ and 7’ are the Holder conjugate of ¢ and r. We refer to [19] for a proof.

1.3.1. The Schrédinger equation in dimension d = 1. To begin with, we consider the bi-linear
Schrédinger equation

$(0,2) = yo(x) € H(R), (1.11)

where K € H*(R), for some s > 0. Then we are able to prove
Theorem 1.3. (i) Let K € L*(R), u € L? (R), and 1o € L*(R). There exists a unique global

loc

solution to equation (LI in the class
¥ € C(R; L*(R)) N Lj,. (R; L*(R)).

loc

{z'atw + Hyp = u(t)K ()9, (t,z) € R x R,

This solution satisfies
()l L2®) = 1Yol 2wy, VYVt ER,
and for all T >0
101 4 (17 poe ®)) < C (T ol 2wy lull L2 —7.17)) - (1.12)
Moreover, the atteignable set
U U vl

teR weL? (R)

is a countable union of compact subsets of L*(R).

(ii) More generally, let s > 0, K € H*(R), u € L? (R) and vy € H*(R). Then there exists a

loc
unique global solution to equation (LI in the class
¥ € C(RyHA(R)) N L, (R; W= (R)).

This solution satisfies

()|l L2y = 1Yol L2y, VtER,
and for all'T > 0

191l oo (1175 ®)) + Wl L2 (w00 )y < C (T Nhollags my» ull 2 —1,77)) -

Moreover, the atteignable set and the atteignable set
U U {0}
teR wel? (R)
is a countable union of compact subsets of H*(R).
This result shows that it is not the continuity of the control operator
H(R) — H(R)
Y — K,

which matters to get non-controllability results (since the map (II3]) is not continuous in general
for a given K € H*(R) when 0 < s < 1/2). In the proof, we will crucially use the space-time

(1.13)
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Strichartz estimates to control K1) (by showing that Ky € L2 . (R; ’HS(R)) when ¢y € H*(R) and
K € H*(R)) and to prove the compactness result.
Notice that for s > 1/2, the result of Theorem is a direct consequence of [Il, Theorem 3.6],

because in this case, the map (L.I3]) is continuous (see the discussion at the beginning of Section [[.2]).

The previous approach also holds for the non-linear problem. Namely, consider the cubic equation

i) + HY = uw(t)K () — ol[*,  (t,7) € R xR,
¥(0,2) = ¢o(z) € H*(R),

where 0 = £1 and K € H*(R) for some s > 0. Then we have

(1.14)

Theorem 1.4. Let s > 0, K € H*(R), u € L? (R) and ¢y € H*(R). Then there exists a unique
global solution to equation (LI4) in the class

¥ € C(RyHA(R)) N L, (R; WH™(R)).

loc
This solution satisfies
()l L2®) = 1Yol 2wy, VtER,
and for all'T > 0

9| oo (e 20 ®)) + 10Nl L= 10 ()) < C (T bollas ys Null L2 —r,1))) - (1.15)

Moreover, the atteignable set
U U {0}
teR wel? (R)
is a countable union of compact subsets of H*(R).

This result is relevant in the sense that it shows that the non-linear term does not help to control
the equation.

All the results of this section also hold for perturbations of H, namely, when H is replaced with
H +W, where W is in the Schwartz class S(R%; R). The term W1 can be treated as a perturbation
of the non-linear term.

1.3.2. The non-linear Schrédinger equation in dimension d = 3. In order to get similar results to
Theorem [[.4]in higher dimension, one needs to impose more regularity on the initial condition and
more regularity on the potential. This in turn will allow us to consider a larger set of controls,
namely u € U,~1 L] (R) instead of u € L7 .(R), as assumed in Theorem 41

loc

In this paragraph, we fix d = 3 and we study the defocusing non-linear problem
0+ Hp = u(®K (o) — [y, (t,2) eRx R,
(0, z) = Po(x) € HL(R®).

To begin with, thanks to (L9) and (LI0) we are able to state a global well-posedness result
adapted to our control problem.

(1.16)

Proposition 1.5. Let u € L] (R).

(i) Let K € WH(R3). For ¢y € HY(R3) the equation (LIG) admits a unique global solution
Y € C(R; HY(R3)). This defines a global flow ¥(t) = ®(t)(¢)g)-
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(1i) Moreover, this solution 1 satisfies the bound

T
[l oo (1900 (R3Y) < Cl1%0ll302 3y ) (1 + /T |u(s)lds), (1.17)

for some C = C(||volly1(ws)). Furthermore, the following bound holds true

T
mewmmwwm»SC@JWWMWp/TW@Wﬂ- (1.18)

(iii) Let k > 1 be an integer and assume that K € WF2(R3). Then for ¢y € HF(R?) the
equation (LI6) admits a unique global solution v € C(R; H¥(R®)) which satisfies the bounds

T
11l oo (= 17:200 (m3)) < C(T K, ||¢0||Hk(R3)7/T lu(s)|ds), (1.19)
and

T
HWHWMWWWWSCUW%MWW/TMW@) (1.20)

The proof relies on a fixed point argument in Strichartz spaces which are well-adapted to control
the non-linear term in (LI6]). Notice that from (LI8]), we deduce that, for almost all ¢ € R,

Y(t) € WHE(R?). (1.21)

This is a smoothing effect for the solution, but can not be interpreted as an obstruction to con-
trollability of the equation (L.IG)), since the set of times such that (L2I]) holds true depends on the
control u.

We now state our result concerning the lack of controllability of (16l

Theorem 1.6. Let K € Wh°(R3) and 1y € H'(R3). Denote by 1 the solution of equation (LIG)
defined in Proposition [1.A. Then the attainable set

U U {0}

teR weL] (R),
r>1

is a countable union of compact subsets of H'(R?).

We are able to prove similar results in dimensions d = 1 and d = 2, but we do not detail them,
since the proofs are similar. The same result also holds for the bi-linear Schrodinger equation,
but it is not relevant to state it here, since it is a direct application of [I, Theorem 3.6] (see the
discussion at the beginning of Section [L.2)).

Again, the results of this section also hold for perturbations of H, namely, when H is replaced
with H + W, where W is in the Schwartz class S(R%;R). The term Wt can be treated as a
perturbation of the non-linear term, and the corresponding energy functional is still coercive, which
is needed in our argument.

Remark 1.7. Let k > 1 be an integer. As a consequence of Proposition (7i7) we may similarly
prove that for K € Wk>(R?) and vy € H*(R?), the attainable set

U U {0}

teR weL] (R),
r>1

is a countable union of compact subsets of H*(R?).
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Remark 1.8. Tt is worth noticing that the different results developed in this paper (excepted Corol-
lary [[.2)) also hold for the Schrodinger equation, in the case where H is replaced with A = Z;l:l Q,%j,
in other words for equations of the form

iOph + A = u(t) K (z)p + o|v|*ep. (1.22)

In the argument, it is enough to observe that the inequalities (L), (T3) and (II0) hold true for
the operator A (instead of H) and the usual Sobolev spaces H*(R%), W*P(R?) (instead of H*(R?),
WeP(R?)). In this setting, the conclusion of Corollary is that the atteignable set is meagre
in the sense of Baire (the compactness is lost because the embedding H*?(R%) ¢ H*'(R?) is not
compact, s1 < s32).

One should be able to adapt the approach developed in [I3, Section 2.2] (in particular [13]
Lemma 1]) to the equation ([.22)). However, the argument of [I3] Section 2.2] does not apply
to ([LIG]), because it heavily relies on the space translation invariance of the problem.

1.4. Notations. In this paper ¢,C' > 0 denote constants the value of which may change from line
to line. These constants will always be universal, or uniformly bounded. For z € R? we write
(z) = (1 + |x|?)"/2. We will sometimes use the notations L. = LP([0,T]) and L} X = LP([0,T]; X)
for T' > 0.

2. PROOF OF THE RESULTS CONCERNING THE BI-LINEAR EQUATION AND THE KATO
SMOOTHING EFFECT
2.1. Proof of Theorem 1.1l

To begin with, we observe that it is enough to work with non-negative times, by reversibility of
the Schrodinger equation. Therefore in the sequel we assume ¢ > 0.

Local existence: We consider the map

¢
B0 = i~ [ u(e)e N (Ky)ds, (21)
0
and we will show that it is a contraction in the space
Birr = {|[¢lLepr < R},

with R > 0 and T > 0 to be fixed. From the fact that e® is unitary in H* and thanks to the
Leibniz rule we deduce that

1@ (%) () |34

IN

t
Iy I O]

IN

ol + el | ) . 2:2)
Therefore we have

190 e < ol + < [ " b)) I e 9
We now choose R = 2||¢g||y» and we fix " > 0 such that chT\u(s)\ds < HKH;\}MO/2 As a

consequence, ® maps By, 7 g into itself. With similar estimates we can show that ® is a contraction
in By, 1 r, namely

T
[@(1) — @(¥2) [ pgerr < C(/O [u(s)lds) | K llyproo 1 — P2l pgene-
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Global existence: Assume that 7% > 0 is the maximal time of existence of the problem (L3)).

From the bound (22]), with ®(¢)) = ¢» we deduce

t
(Ol < o+ el |l 166) e
Therefore, by the Gronwall lemma, we get that for all ¢ < T

[9()[lx < [0 €1 koo Jo lus)lds

The previous bound combined with the local existence theory implies that 7™ = 400. There exists

a unique global solution ¢ € C(R; H*(R?)) to (L3).

Proof of the smoothing effect: In order to prove (L)), we use the Kato smoothing effect (7).

Let v be the solution to (I3) and set ¢ (t) = 1(t) — e 1)y. Then 11 solves

P(t) = —z'/ u(s)e! I (K g )ds —z’/ u(s)e I (K (s))ds.

0 0
Therefore

N

lorllignerr < MUK ol g pese + luknl oy pmso

IN

el 2 1™ o | 2 ggver + Null 2 ]| 2 g0

e We write k = 25 with j > 1. Firstly we show that
HKeitHT)[)(]||L%’}_[2j+a < Cr
using the Leibniz rule.

IKe ollypree = | HI (K o)l lyee

IN

J1,j2,j3€N?
71|+ 72]+173=27
731727
where ¢ stands for derivatives in = of order |¢|. Each term in the sum is bounded by
271 2 Ko7 (" i) e < [|27* 2 K7 (e ) |31
< Kyl 11514100 |90 [l g3 +1

< K Thweiencel[dboll 2
thus o o

a0 K 6% (Mo | g g0 < CTY2.
To control the contribution of the second term in ([2.5]), we write

1K H? (o) e = || ™ (HP%o) e

We use the commutator estimate [I8, Lemma 18] to get the bound
|LE2, K1 (H0) | < Clltolless.
By the smoothing effect (L7,
||KHJ/2€itH(Hj¢O)||L§FL2 <Cr,

hence by 27, (Z8) and (Z9)
1K H (") 2 340 < Cr.

C Y 2R K (¢ )l + K H (€ o) e,

< H[HU/QvK]eitH(HWO)HLz + |KHO 2 (Hy) | 2.
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Hence, from (2.6]) and (2I0) we deduce ([24)). In the case k = j = 0, the estimate (2.4)) is deduced
from (27)-2I0).

e We now show that |]K¢1|]L2T7_lk+g < CT1/2H¢1HL%OHHU. By the fractional Leibniz rule (AJ]),
we have, for all p > 2

1K1 [l3gro < CIK ] Lo (|91 ll3g40 + ClLK lyyiron |91 L, (2.11)

with ¢ = 2p/(p — 2). For p > 2 large enough (hence ¢ > 2 small enough), by the Sobolev
inequalities, |[¢1]/za < C||¢1|lgr+o which controls the first term in ([2I1). To treat the second, we
claim that || K ||yyk+op < C||K|[ypr+1,00, for p > 2 large enough. Actually, we observe that the decay
|K| < C(z)~"! implies that K € L"(R?) for r > 2 large enough. Then one uses the interpolation
inequality

K oo oty < DRI e g 1K gy 00 < 1,

with s = k + 1, 6 such that (1 —0)s =k + o and r = Op.
As a conclusion, with (Z3]) we infer

191/l zgeprse < Or + CT1/2HU”L2TH"‘/’lHL%Oka,

which implies, for 7" > 0 small enough and which only depends on w and K, that || || Lgthte <
2CT. We are able to iterate this argument to obtain that

Y1 € C(R; HFPO(RY)), (2.12)
with the bound
191l gepeeve < C(TS K, [[P0llgns [lull2.)- (2.13)
Notice that the previous estimate implies
o1 € L ([T, T); HA o (RY)). (2.14)
Let us now show that for all T' > 0, 0y € L%Hk_z, which in turn will imply that
or € L2([~T,T); HF2(RY)). (2.15)
From the equation (L3]), we get for all =T'<¢ < T

10 () lgn—2 < ([0 ()[lggr + [w(O K yrro0 190 |35 5
thus
1008123 s < CTY2{0 s + [l 1K Iy [l o (2.16)

hence the result.
By the interpolation Lemma[A.4]in the appendix, applied to (ZI4]) and (Z.I3]), there exist a > 0
and x > 0 such that

Y1 € C¥([-T, T); HFo " (RY)). (2.17)
Finally we interpolate ([2I2) and (2I7), and thus, for all ¢/ < o, there exists o/ > 0 such that
Y1 € C“,([—T, T); HE+' (R%)). The bound (L6) follows from ZI3), (2I6), by the interpolation

argument.
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2.2. Proof of Corollary Fix ¢y € H¥(RY). Let (u,)n>1 be such that unllz2, < K and

consider 1, the solution of (L3) associated to u,, and let (tn)p>1 C [-T,T]. Set V,(t,) =
Y (tn) — eypg. Up to a subsequence, we can assume that t,, — ¢ for some ¢ € [T, T]. Let
o < o’ < 1/2, then by (LG,

||\I'nHC§g7.[k+a’ < C.
By the compact embedding C*([-T, T];’H’”"/(Rd)) C C([-T,T); HF o (R?)), there exists ¥ €
C([-T,T); H*+7(RY)) such that W,, — ¥. Next
”\I/n(tn) - \I/(t)HHkH < ”\I/n(tn) - \I"(tn)”HHf’ + H\I’(tn) - \I/(t)HHkH

< sup ([ Un(7) = W(T) [lggrre A [ (En) — W(E) |20+
Te|-T,T)|

The first term in the previous line tends to 0 since ¥,, — W, and the second as well, since ¥ €

C([-T,T); HFo(RY)).

Remark 2.1. A similar approach can be developed for the Klein-Gordon equation (even in the
non-linear case)

O*p — A +map = u(t)B(x)y — >, (t,z) € R x M,
¥(0,.) = g € HY(M), (2.18)
p(0,.) =y € L*(M),

where M is a boundaryless compact manifold of dimension 1 or 2, with m > 0 and where the
potential B is assumed to be regular enough. Actually, the mild solution to (2I8]) reads

600 = Sult + 00 + | "Sut — ) (u(s) Bla)bls) — v(s)) ds

where
B _ sin(tvV—A+m)
So(t) = cos(tvV—A+m) and Si(t) = A

In this context, the smoothing is realised by the gain of derivative induced by S;. For non-
controllability results for (ZI8]), we refer to [10, Section 3.

3. THE SCHRODINGER EQUATION IN DIMENSION d = 1

We prove Theorem [[.3] and Theorem [[.4] at the same time, namely we consider the equation

{z’aw + Hyp = u(t)K(2)¢ —olp*y,  (t,z) ER xR, 51)

7;[)(0733) = 1[)0(33) € HS(R)v
with o =0or o =1.
Local existence: Let 19 € H*(R). We consider the map
t t
B0 =My i [ u(r) I ()it ia [ (o)
0

0

and we will show that it is a contraction in some Banach space. By a usual interpolation argument,
one can prove that the Strichartz norm in X7 can be defined by [/ x; = [[¢[|Lows + Hq/;HLleWS,OO

(see (L)), and we define the space

Bsr,r = {II¥llxs < R},
with R > 0 and 7" > 0 to be fixed.
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By the Strichartz estimates (9] and (LI0) we get

T T
el < el +e [ NloPoluds+e [ ollo]dr
< cllvollse + el WPl 1y + el 1] 31
e By the generalised Leibniz rule (A,
1Pl < eltplzoe il
thus by Holder
\\!¢\2¢|!L1THS < CHl/JH%zTLooHW\L?HS < CT1/2H1/1H2L4TLOOWHX;- (3.2)
Since [[¢]| 1 oo < 1] x5 < R, we get H\wlszLlTHS < cT'V2R3.
e Let us now prove that there exists k > 0 such that
Kl 2200 < T K |lpgs 190 x5 (3.3)

In the case s = 0 we simply write ||K1[)||L2TL2 < ||K||Lz||¢||L2TLoo < T1/2||K||L2||1/)||X%. Assume now

s> 0. By (A.J),

Kl < el Kllgs [l oo + el K Lo [[¢]lys.a
for all 2 < p,q < oo such that 1/p + 1/q = 1/2. Then, by Sobolev, if p > 2 is small enough,
|K||zr < ¢|K|#s. Finally using that ||¢||L2TW5,Q < cl[¢]|x;., we obtain (B.3)).

Putting the previous estimates together we have
19 () ]lxz < clltollaes + T2 R + T |[ull 3 1K [l90s R.

We now choose R = 2¢||¢g||s. Then for T' > 0 small enough, ® maps B, 7 g into itself. With
similar estimates we can show that ® is a contraction in B, 7 r, namely

[® (1) — ®(2)]|xs < [cTV2R*+ T |lull g2 1K 2] 101 — 2l x5
As a conclusion there exists a unique fixed point to ®, which is a local solution to (B.II).

Proof of the bound ([LIH]) for s = 0: Before we turn to the proof of the global existence, we prove
this particular case of (ILIH]). Assume that one can solve [B1]) on [0,7%), and let T' < T*. Clearly,
1)z = 1Yol 2 for all 0 <t <T. Let 0 <ty < T and ¢ > 0 such that ¢ty + 3 < T. We have for
all0 <t <§

to+t

Y(t +to) = ep(to) +i/tt0+t ei(tOH_T)H(lwlzlb)dT—iff/t u(r)e I () dr,
which implies, by the Strichartz Zstimates (L9) and (TIO) 0

Wl e toraszey < elllgere + elllZee 29l Lass (o o aszoey + I 219l ge r2llull Lass (g 001
S C||¢||L;°L2 + 652/3||¢||%%°L2||71Z)||L4([t0,t0+5};L°0) + cT1/4||K||L2||¢||L;°L2||U||L2T
clltbollz2 + 82 (1eol|72 10| L (to.to-selioey + T HIK | 2 [0 ol 2.

We pick 6 = §(T) > 0 such that c6% 3||4ol|3, = 1/2, thus the previous estimate gives

A

IN

1912 to,to+aizoey < 2¢lldoll2 (X + [lullz2)-

We write this estimate for tg = 0,6,...,j6 with j € N such that jé < T < (j + 1)6. We sum up
and we obtain

[l 24 oo < C(T, 1%0llz2, [Jull £2.)- (3.4)



12 THOMAS CHAMBRION AND LAURENT THOMANN

Global existence: Thanks to (3.2]) and ([3.4]), the time of existence given in the local theory only
depends on |[|¢p]|z2 and ||ul| L2, thus the local argument can be iterated. As a conclusion, the

problem (B is globally well-posed and one has the bound

9 Loo (e my20s ®)) + 10Nl La e 1m0 )y < C (T bollags ys Null 2 —r1))) -

The compactness argument: Let u, — u weakly in L?([0,7];R). Notice in particular that
||un||L% < C(T) for some C(T) > 0. We have

w0 =g — i [ u@ I (pr o [ (ugar

0 0

and
t t
Y (t) = ey — i / U (7Y H (K, (7)) dr + io / e (|, e, )dr.
0 0
We set z, = ¢ — 1), then z, satisfies

Zn = £(¢7 ¢n) + N(T,Z), T;Z)n)7 (3'5)
with

L) = =i [ (ulr) = (D) K G)dr i [ () (K 5 = )

and
t

t
N (@, ) = io / e D ((4h — 4p) (9 + P )P) dT + 0 / e EDH (( — P )02 dr.

0 0

Let us prove that z, — 0 in L*>([0,T]; H*(R)). To begin with, we state an analogous result to [I,
Lemma 3.7].

Lemma 3.1. Denote by

en = H /Ot (tn(7) — u(T))ei<t—T>H(K¢(T))dTH .

L¥Hs(R)
Then ¢, — 0, when n — +o0.
Proof. We proceed by contradiction. Assume that there exists e > 0, a subsequence of u,, (still

denoted by u,) and a sequence t,, — ¢ € [0, 7] such that

| /Otn (1n(r) = u(P) = (1 )| (3.6)

Up to a subsequence, we can assume that for all n > 1, ¢, <t or ¢, > {. We only consider the first
case, since the second is similar. By the Minkowski inequality and the unitarity of e™#

> €.
H(R)

H /Ot” (un(7) — u(r)) (etn7H — ei(t_T)H)(KT/’(T))dTHHS(R) =

dr
Hs (R)

< /Otn |un(7') - u(T)‘H (ei(t"_T)H - ei(t_T)H)(K¢(T))‘

dr.
H*(R)

= /tn |un(7) — u(T)‘H(eit"H - eitH)(KTZ)(T))‘
0
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Then by Cauchy-Schwarz

<
HR)

(eith o ez’tH) (K¢(T))‘

" (unr) = () (60 — D) (7))
I

=Y

L2 oM (R)’
Now, using (LI5]), observe that
IE Pl 22,205 ) < 1 ll20s ) 11| L2 5,00y < 0 (3.7)
Hence Lemma B2l below (with d = 1 and ¢ = 2) applies to conclude, with the previous lines, that
tn . .
| / (1n(7) = u(r) (X7 — DI (Rp(r)yar]| 0, (3.8)
0 He(R)

when n — +oc.
iTH

By the Minkowski inequality, the unitarity of e and the Holder inequality

. / fn(7) — ()| | K ()

< |lun — uIILi/;[tM ||K7;Z)HL‘:1F7-LS(R)

dr

H /t: (un(T) — u(T))ei(t—T)H(K¢(T))dT‘

He(R)

o (3.9)
<t =t lun — ull 2 [ K lags ) 191 L3 wys.oo (m)

where we used that [[¢[| 74 yys.co ) < 0o by (LIH). Then, the term (B.3) tends to 0. We combine
this with ([B.8]) to deduce

H /Ot" (un (1) — u(r)) et =D H (K (r))dr — /Ot (un(7) = U(T))ei(t_T)H(Kw(T))dTHHS(R) 0

(3.10)
t

Let us now prove that / (un —u(T))e W=DH (Ky(r))dr — 0in H*(R), to reach a contradiction
0

with (3.6). We set v(r) = )H(Kz/J(T)) Then by @), v € L*([0,T); H*(R)). We expand v on

a Hilbertian basis (h)r>0 of L?(R) (the Hermite functions for instance),

+oo
x) = Zak(T)hk x
k=0

+o0
so that we have ||v(7,-)||3; = Z(Qk + 1)%ag (1) %
k=0
Then, there exists M > 0 large enough such that the function g(7,z) = Zg/[:o ak(T)hg(x) satisfies
[0 = gll 20,115 (r)) < €/(4p) where p = sup,,>q [[un — ul| 2 -

We have
t M t
/0 (un(7) — u(r))g(r)dr = kZ:O i /0 (un(7) — u(r)) ax(7)dr,
thus
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by the weak convergence of (u,,). Finally, for n large enough,

| [ ) —uotonte] < Sl =l +] [ ) —utratrrn]
57

<
which together with ([B.6) and (BI0]) gives the contradiction. O
We state a convergence result (slightly more general than what we need here)

Lemma 3.2. Letd > 1,2 < q< oo and s > 0. Assume that F € L4([0,T]; H*(RY)) and t,, — t.
Then, when n — +00,

5 (R) Hs(R)

H (emH - eitH)F(T T — 0.

| —

Proof. By unitarity of ¢/, we can assume that ¢ = 0. Then, up to replacing F by H*2F, it is

enough to prove the result for s = 0. We expand F' on the Hilbertian basis (hy)g>0 of L?*(R%) given

by the Hermite functions: F(7,x) Z ag(T . Thus

T 400
1F1% oy = / (Zm )"t < . (3.11)
We can write
zthF Zak Z(2k+1 tnh ( )’

which gives
“+oo
(e = 1) P ) By = - [ 1P ()P,
k=

and we conclude with the Lebesgue convergence theorem thanks to the bound
H(eith_l)F(Tax)HLZ(Rd < <Z’ak > GLq([O,T]),

by @.1I). O
By Lemma

t t
N, ) Ol < /0 16 — ) (6 + V) Bllpeocrydr + /0 1@ — B2l gy dr

t
< C/O znllags @) (1911305 Rymvs oo @) + 190130 @y AT (3:12)
To simplify the exposition, we write Y*(R) = H*(R) N W*>°(R) in the next lines. Thus, by (3.3,
(BI2), and the inhomogeneous Strichartz estimate (LI0) (with ¢ and r to be fixed later), for all
0<t<T
t
Hzn(t)”HS(R) <€+ CHunKZnHLg’WS,T-/(R) + C/O Hzn”HS(R)(Hw”%ﬁ(R) + H%”%zs(ug))df
Then by Gronwall, for all 0 < ¢ < T and (LI3)

lzn(@)llns®) < (en + cHunKznHLq,W“,(R))ecfé (12,5 gy 130y ) a7
t

Ci(T) (en + cHunKzn

A

| Lo o ) (3.13)
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Now we claim that
|15 20 [y gy < el sy 12 s . (3.14)

if r is large enough.
If s = 0 we choose r = 0o and we clearly have HKz"HLl(R) < 1K 2@y 1znll 2 ()

If s > 0, by (A we have
15 2|y gy < el E s ) 2l Lar) + cllznllzes @) | Kl Laqwy,

with ¢ > 2 such that 1/2+41/q = 1/r". Now, if r < oo is large enough, then ¢ > 2 is close to 2, and
by Sobolev | [|za() < cll K o) and [lzallzage) < cllznlre-(ey. hence BII).

We come back to ([B.I3]) and by (B.14]) we get

¢ ’ q 1/q
len @)y < T (en 4 1K oy ([ Tan DI fon (D) ")

for some 1 < ¢’ < 2. Then there exists C3(T") > 0 such that

t
2 ()15 gy < o) (€l + 1K o) /0 (I 12 (7)1 gy )
and by the Gronwall lemma we get, for all 0 <¢ < T

||zn(t)||Hs(R) < 03(T)€neCS(T)|IK||§18(R) I3 lun ()| dr
which in turn implies

’ T f
”Zn”Li}OHS(R) < Cg(T)EneCB(T)”Kllg-LS(R) Jo lun (M| dr < C4(T)

€n,

and this latter term tends to 0, which concludes the proof.

4. THE NON-LINEAR SCHRODINGER EQUATION IN DIMENSION d = 3

4.1. Proof of Proposition We first prove (i).
Local existence: We consider the map

DY) (t) = ey +1i / t e = (|| 2p)ds — i / t u(s)e' I (Kap)ds, (4.1)
0 0

and we will show that it is a contraction in some Banach space. Namely, we define the Strichartz
norm [|¢|x2 = [l Lgewr + [[¥ll 2 y16 and the space

Br.r = {|[¢lx: < R},

with R > 0 and 7" > 0 to be fixed.
By the Strichartz estimates (L9), (II0) and the Leibniz rule

A

T ) T
l2@)lxs < cllvolla +e /0 61201 ls + /0 ()| 70| el

IA

T
clolles + €l era 1913 1+ [ W e N e (42

We now show that there exists > 0 such that [[¢[|3,, . < T%[¢[|7. Let 0 < e < 1/2, then the
T

couple (ge,re) = (1;_126, -2 is admissible and by Sobolev |||z < C||¢||yyrre. Then by the Holder
inequality,

1613 1 < T 160350y re < T 615y
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for some x > 0. Thus
T
1900y < elinlo + TR+ eR( [ u)]ds) [

We now choose R = 4c||1gllg2. Then we fix T} = ¢;R™%/* with ¢; > 0 small enough such

that cT11/2R2 < 1/4 and we fix T > 0 such that chT2 lu(s)|ds < HKH;\}IMO/ZL Therefore, for

T = min(71,T3), ® maps Brp into itself. With similar estimates we can show that ® is a
contraction in Br g, namely

T
J@ (1) — Dn)xy, < [T7R? + ¢ /O () [d8) |||y 6 — 2l

Energy bound: We define
B = [ @+ WP+ 50l de = [ (96 + o6 + 0P + 5 vl da.

R3 R3

Then, using that 9yt = —i(H + |¢|?9) + iu(t) K (z)), we get
E'(t) = 2%Re /RS O (v + Hp + |y|*y) dz

= —2u(t)3m/ Ky Hypdx

R3

= 2u(t)Im [ VK - Vida.
R3

Now we use the assumption VK € L®(R3) to get
E'(t) < Clu®)[[|¢ll 2|Vl 2 < Clu(®)l|[voll 2 EY2(1),

which, by integration, implies

E(t) < (EY2(0) + 20|l /0 fu(s)|ds)*. (4.3)

Notice that thanks to the Sobolev inequality, [|¥)|| 13y < O]l (rs), therefore E(0) < C([[vollp1 (rs))-

Global existence: Assume that one can solve (LIG) on [0,7). By (@.3)), there is a time T} > 0
such that c¢(T})"(R*)? < 1/4 with R* = 4cH1/JHL%o*H1. Then we fix T > 0 with

*
oy I3

c</T:f_J;; \u(s)\ds)HKHWLOO < 1/4.

As a consequence, with the arguments of the local theory step, we are able to solve the equa-
tion (LI6]), with an initial condition at ¢t = T* — min(7},75)/2, on the time interval [T* —
min (75, 75) /2, T* + min(77,73)/2]. This shows that the maximal solution is global in time.

Proof of (ii): Let 0 < 7 < T and 0 > 0 such that 7+ < T. By the Gagliardo-Nirenberg and
Sobolev inequalities on R?,

1 1 1 1
1Yl < ClIYlZsll¥llpns < ClYlZa Y e;
then by the Hoélder inequality

191132 sy < CO2 110N oo [l 2 (r,r+81m1.6)- (4.4)
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We have for all 0 < ¢t <§

T+t T+t

Bt +7) = () i / T (|2 ds — i / u(s) T (R s,

T

which implies, using the same arguments as in ([@2]), that

11 L2 (frrt51w108) <

T+9
< C”¢HL§SH1 + CHTZJHL%OHlHw”%z([‘rﬂ'—l—(ﬂ;lﬁo) + CHKHWL“’ H”‘/’HL%W (/ \u(s)\ds)
T
< c|[Yf|pgerr + 651/2H,l/}Hi%O’HlH,l/}”Lz([T,T-I—é];Wl’G) + cllYllzsern /0 |u(s)]ds,

where we used ([£4)). We pick § = §(T") > 0 such that 051/2H¢Hioow = %, thus the previous
T
estimate gives

T
[l saney < 20l + [ u(olds) (45)
We write this estimate for 7 = 0,9, ..., 50 with j € N such that jo <T < (j+1)d. We sum up and
combine with (ILI7), which gives

T
[l < Ol | u(s)lds).

which in turn implies (LI8]), thanks to (4.0).

Proof of (iii): Let k > 1, and let 1y € H¥(R3) and K € W*>(R3). Local existence in this
case is proven as in the case k = 1, thanks to a fixed point argument using the Strichartz norms
19l xx = 19l gere + ¥l z2wre. The globalisation part is obtained as previously, since the local

time of existence only depends on the energy norm and on wu.
Let us check the bound (ILI9). Let 7' > 0. Since ¢ is a fixed point in ([@I]), we get for all t < T

[[9() |4

IN

cllolla + ¢ /0 [ ds + ¢ /0 [u(s)I[| K95 ds

IN

cl[tollpn + C/o ([0 + (1K o) 126(5) s ds,

where in the previous line we used the Moser estimate ([A.2)) to bound the non-linear term. There-
fore, by the Gronwall lemma, we get

1)l

IN

clollpeC I (R Hus) )as

A

T
< C(lIvollp ||¢||L§Loo,/0 u(s)|ds). (4.6)
By Sobolev, from (II8]) we deduce
T
191 2 (jo,17: 200 &) < CNUll L2 (0,1 8m3y) < C(T, WOHHM/O lu(s)|ds),

which in turn, by (46), implies (II9]).
The estimate (L.20) can be obtained with similar arguments as for the special case k = 1. We
do not write the details.
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4.2. Proof of Theorem We adopt the strategy of Ball-Marsden-Slemrod [I] combined with
some non-linear estimates. Let u, — u weakly in L'([0, T]; R) and fix L > 0 such that fOT lun(s)|ds <
L, fOT |u(s)|ds < L. By definition of ¢ we have

P(t) = eapy — i / t u(s)e M (Kap)ds + i / t = (|| 2p)ds,
0 0

and we define 1),

t t
P (t) = eHopg — i / U () (K, )ds + i / e = H (o, 24y, ) ds.
0 0
Let us prove that || — wnHL%og_Ll — 0. Set z, = ¢ — 1, then z, satisfies

with
LY, ) = —z'/o (u(s) — un(s))ei(t_s)H(Kw)ds — i/o Up (s)e’ =) (K (¥ —1y))ds

and

t t
N @, hy) = —i /0 e () — ) (W + 0y )b)ds — i / e () — )2 ds.

0

Since K € W*°(R3), the map 1) — K1 is continuous from H!(R3) to H!(R?) and [I, Lemma 3.7
applies. Thus, when n — +o00

t
"= —u, =) H ( op)a — 0.
‘ tes[%%}u/o (u(s) = un(s))e (K9)ds|y g

By Lemma [A.3]

t t
N, ) )31 msy < /0 (1 = 1n) (® + )32 r3yds + /0 (@ = )t |l (myds

IN

t
| el (1918 + 19l .
Therefore

t t
zn (O]l @3y < €n+C [ un(s)l2n(s) 20 @yds + C | N2n(s) 0 @) (1150 + [¥nlliye) (s)ds,

0 0
and by Gronwall

t
Il < enexp (C [ fun(s)lds + oy + Ol Eaypna):

Finally, by (II8),
2nllLeoagr < enC (T [0l L),

which implies the result.
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APPENDIX A. SOME SOBOLEV ESTIMATES

In this section we gather some useful estimates in Sobolev spaces. To begin with, we have the
following generalised Leibniz rule

Lemma A.1. Let s > 0, then the following estimates hold
1S gllwsa < Clifllzallgllyysag + Cllglza 1, sq (A1)

with 1 < g < o0, 1 <q1, @2 <00 and 1 < ¢}, ¢ < oo so that
1 1 1 1 1
+ +

¢ @ & @ &b
For the proof with the usual Sobolev spaces, we refer to [20, Proposition 1.1, p. 105]. The result

in our context follows by using ([[2]). Observe that in this result we must have ¢}, ¢5 < oo and
q # 1,00 which induces some technicalities in this paper.

A particular case of the previous inequality is the Moser estimate

1£gll2e < CUIfILoellgllaee + lglizee 1 F Il )- (A.2)

The following lemma will be useful

Lemma A.2. Let s > 0. There ezists ¢ > 0 such that for all ¢ € H*(R), x1 € H*(R) N WH>*(R)
and x2 € H*(R) N W**(R)

loxaxallas®y < cllellas @) lIxallzs @nwsee ®) X2l @)nwsoe ®)-

Proof. The case s = 0 is directly obtained by writing [[¢x1X2llz2®) < cll@llz2@) X1l Lo ®) X2 Lo (R) -
Now we assume that s > 0. By (AJ]) we have

lexixallmsm) < cllellas®lxixallLem + clellr@lIxixallwsa)

for all 2 < p,q < oo such that 1/p + 1/¢ = 1/2. Then, by Sobolev, if p > 2 is small enough,
lellze < cll@llns. Next, by (AI) again,

IXaxzlwsam) < clxallia @lxzll oo g + clxellza @llxil,yoq g
with 1/¢1 + 1/¢} = 1/q. We are able to conclude by observing that

HXHL‘II(R)7 HXHWS,«;;(R) < HXHHS(R) + ”X”Ws»oo(R) = HXHHS(R)OWS»OO(R)-

In the same spirit we state the following result
Lemma A.3. There exists ¢ > 0 such that for all ¢ € H'(R?), x1 € WHO(R3) and o € WHO(R3)

||90X1X2||H1(R3) < CH‘:DH?-H(RS)||X1HWLS(RS)||X2||W1)5(R3)-
Proof. From the Leibniz rule and Holder we deduce that

lexixalla me) < IxixeVellremsy + lexiVxellrzmsy + lexaVxall 2 ms) + 1{z)oxaxall L2 gs)
< Ixillz=lixallze (IVellrz + z)ell2) + llellzs (Ixallzs IV xallzs + Ixallzs [ Vxallzs)-

Then by Sobolev, |[x|lze®s) < Clixlwismsy and [[¢|[zs@s) < Cll@ll3 rs), which allows to con-
clude. O

We recall the following interpolation lemma taken from [7, Lemma 3.3].
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Lemma A.4. Let T > 0 and p € [1,4+00]. Let —00 < 09 < 01 < +0o0 and assume that ¢ €
Lp([—T, T; 7—[“1) and Op) € Lp([—T, T; 7—[”). Then for alle > o1/p—0o2/p, 1 € LOO([—T, T];’H"l_g)
and

1-1 1
el zgemen— < Cll 708 191

Moreover, there exists n > 0 and 0 € [0,1] so that for all ty,ts € [-T,T]

—0
[9(t1) = P(t2)llpgor—2e < Clts — tz!"llelL;m Hl/}l!iv%,pm-
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