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ON THE BILINEAR CONTROL OF THE GROSS-PITAEVSKII EQUATION

THOMAS CHAMBRION AND LAURENT THOMANN

ABSTRACT. In this paper we study the bilinear-control problem for the linear and non-linear
Schrodinger equation with harmonic potential. By the means of different examples, we show how
space-time smoothing effects (Strichartz estimates, Kato smoothing effect) enjoyed by the linear
flow, can help to prove obstructions to controllability.

1. INTRODUCTION AND RESULTS

1.1. Imtroduction. In this paper, for d > 1, we consider the bi-linear control problem for the
quantum harmonic oscillator

{z’aw + Hy = ut)K(z)p — o[>,  (t,z) e R x R,

(0, ) = o (), (1.1)

where
2 N~ O
H:—A—Hxl :Z(—W—Fx])
j=1 J

is the harmonic oscillator, K : R — R is a given real valued potential and where the control u
belongs to Lj .(R;R) for some r > 1. In the sequel, we will either study the case o = 0 and we will
refer to this equation as the bi-linear Schrédinger equation, or the case o = 1 (respectively o = —1)
which corresponds to the non-linear Schrodinger equation with a cubic defocusing (respectively
focusing) non-linearity. We call the linear operator ¢ — K1 the control operator, while the (possibly

non-linear) map ¢ — iHv + ic|t|?1 is usually called the drift.

For a given source vy, the attainable set from 1)y with controls in Lj .(R;R) is the set of 4, for
which there exist a time 7" > 0 and a control u in L"([0,T]; R) such that the solution ¢ of (L)) at
time 7' satisfies (T, ) = 1¥¢(-). A system is controllable in a given space X if the attainable set
from any point of X contains X.

A celebrated result [I, Theorem 3.6] (see also [29] for the case of the Schrédinger equation
and [§] for a generalization to the case of L' controls) states that for bi-linear equations posed in a
Banach space with linear drift and bounded control operator, the attainable set (from any source)
with L] (R,R) controls, » > 1, is contained in a countable union of compact sets. In an infinite
dimensional Banach space, a countable union of compact sets is meager in Baire sense. Hence,
this result represents a deep topological obstruction to controllability of bi-linear control systems.
Notice that this negative result does not prohibit controllability in smaller spaces, endowed with
stronger norms, where the control operator is not continuous anymore.

Energy estimates have provided various obstructions to controllability of conservative equations
via a bilinear term, see [7] for bilinear Schréodinger with possibly unbounded control operators
and [I2] for non-linear wave equations with Llloc controls and bounded control operators.
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Concerning the study of the well-posedness of Schrodinger equations with potentials, we refer
to [15], 21}, [10].

For (local) exact controllability results for NLS on a finite length interval we refer to [2] [ [4] [6].
For both the case of the bi-linear and non-linear Schriodinger equations, to get positive exact
controllability results, the main difficulty is the choice of the ambient space. This space has to be
chosen such that the equation is well-posed and the control operator is not bounded. In [2, 5] [4]
the fact that the control operator is not continuous is a consequence that the Schrodinger equation
is studied on a finite length interval with well chosen boundary conditions. Here instead, we study
the equation on R? and therefore take advantage of dispersive effects.

For approximate controllability results for the bi-linear Schrodinger equation see [111 [19].

On the other hand, in the particular case K(z) = z (which does not fall in the scope of our
analysis), with an explicit change of variable, one can show that the attainable set is a finite
dimensional manifold [20]. Notice that this result also holds for the non-linear equation, see [17,
Section 2.3]. In [22], the authors obtained non-controllability results for the bi-linear Schrodinger
equation on domains.

In this note, we concentrate on control terms taking the form w(¢) K (), where K is a potential
given once for all, and ¢ — w(t) takes real values. The extension of the results we give here to
control terms with the more general form (¢, x)1, see for instance [25], is beyond the scope of this
work.

We refer to [26] for negative controllability results for non-linear Schrodinger equations with
additive controls. Another approach, based on Kolmogorov e-entropy, has been used in [27] to
obtain comparable non-controllability results for the Euler equation with an additive forcing term.

We refer to the introduction of [5] for more references on control problems and concerning results
on the optimal control problem of the non-linear Schrédinger equation, see [16] and [13], [14].

For an overview of results concerning the control of ([I.Tl), see [17]. For an overview of controlla-
bility results of bi-linear control systems, we refer to [18].

In the sequel, we will need the harmonic Sobolev spaces, in other words, the Sobolev spaces
based on the domain of the harmonic oscillator. For s > 0, p > 1 we define

Wer = W (RY) = {f € IP(RY), H*/*f € LP(RY)},
WS — /HS(Rd) _ WS’2-

The natural norms are denoted by || f||yvs» and up to equivalence of norms (see e.g. [30, Lemma 2.4]),
for 1 < p < 400, we have

1 Iwes = 12 flle = 1(=2)2 f 2o + (2)° fl1 1o, (1.2)
with the notation (z) = (1 + |z|?)'/2.

1.2. A smoothing property for the bi-linear equation. Consider the equation
10 + Hp = u(t) K (2)¢, (t,z) € R x RY,
¥(0,2) = to() € HE(RY),

in any dimension d > 1 and regularity k& > 0. Assume that K € W">°(R?%). Then for all integer
k > 0, the control operator

(1.3)

HE(RY) — HF(RY)
v o Ky,

is continuous (see ([Z.12]) for the proof), and therefore the general result of Ball-Marsden-Slemrod [T,
Theorem 3.6] applies to (L3). This result shows that, for fixed initial condition g € H¥(R?), the

(1.4)
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attainable set of ([.3])

U U {0}

teR uelj (R),
r>1

is a countable union of compact subsets of H*(R?).
Our next results (Theorem [[LTland Corollary [[.2)) give a more precise description of the attainable
set of (I3)), under the assumption u € L? (R).

Theorem 1.1. Letd > 1 and k > 0 be an even integer. Letu € L? (R;R) and K € WFTLo(R? R).

loc

Let g € HF(RY), then the equation (L3) admits a unique global solution 1 € C(R; H*(R?)).
Moreover for all 5 < 1/2, there exists o > 0 such that
U(t) — eMapy € C(RyHMP(R)), (1.5)
and for all T > 0,
[9(t) — €™ ollca(rmy2m6(ray < C(T,k, Yo llagemay, lull 2(17))- (1.6)

The proof of (L) relies on the Kato smoothing effect for the linear Schrodinger equation. It
can be stated like this: for all 8 < 1/2 there exists C' > 0 such that for all ¢ € L?(R%)

1 B
H—le € tH(’0HL2([—27r,27r}><Rd) < Cllel 2y (1.7)

(z)2
We refer to [23] Théoréme 15| for the proof of (7). This inequality shows that the solution of the
linear Schrodinger flow enjoys a gain of 1/2 derivative locally in space.

It is likely that the statement of Theorem [I.1] holds for any & € N, but at the price of more
technicalities, therefore in this paper we only consider the case k € 2N, which allows to work with
differential operators instead of pseudo-differential operators.

The result also holds for perturbations of H, namely, when H is replaced with H + W, where W
is in the Schwartz class S(R% R). In the argument one has to replace uK with ul — W.

The smoothing property stated in Theorem [[T] leads to the following obstruction to controlla-
bility of equation (L3]).

Corollary 1.2. Under the assumptions of Theorem [I1), for all 5 < 1/2, T > 0, and M > 0, the

set
U {i(t) — ey}

te[-T,T)
lull 22 (7772 <M

is a compact of HFP(RY). As a consequence, the set
U U {#@) -}
teR wel? (R)

is a countable union of compact subsets of HFP(RY).

Remark 1.3. With similar techniques, we can handle the Klein-Gordon equation (even in the non-
linear case)
Oft — Ay +mip = u(t)Bx)y — ¢, (L) ERX M,
$(0,.) = ¢ € H' (M), (1.8)
8(0,.) = 1 € LA (M),
where M is a boundaryless compact manifold of dimension 1 or 2, with m > 0 and where the
potential B is assumed to be regular enough. In this case, the result of [I] applies, but one can
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additionally prove a gain of regularity, similar to Theorem [[LTl Actually, the mild solution to (LS])
reads

B(t) = Solt)o + S1(t)r + /O S1(t — 5) (uls) B(x)t(s) — ¥3(s))ds

where

So(t) = cos(tvV—A+m) and Si(t) = sinfj%m).

In this context, the smoothing is realised by the gain of derivative induced by S;. For non-
controllability results for (L)), with L' controls, we refer to [I2, Section 3]. Finally, notice that

Beauchard [3] has proven a positive controllability result for the 1D bilinear wave equation with
Neumann boundary conditions (this corresponds to potential with a jump after symmetrization).

1.3. Strichartz estimates and obstructions to the controllability of the non-linear equa-
tion. The Strichartz estimates are crucial tools in the study of the well-posedness of non-linear
Schrédinger equation at low regularity. Let us recall them: a couple (q,7) € [2,+00]? is called

admissible if

2 d d

Then, if (¢,r) is an admissible couple, for all T > 0 there exists C7 > 0 so that for all 1)y € H*(R?)
we have

™ aholl La (o mpwer ey < Crllollags (e, (1.9)
We will also need the inhomogeneous version of the Strichartz inequalities: for all T > 0, there exists
Cr > 050 that for any admissible couples (g1, 71) and (ga, r2) and function F' € L% ([T, T]; W*"2(R%)),

t
i(t—7)H
H/(] e ( ) F(T)dTHLfH([—T7T]7W5’7'1(]Rd)) S CTHFHLQé([_T7T}’st"“é(Rd))7 (110)

where ¢} and 7 are the Holder conjugates of g2 and ro. We refer to [24, Proposition 10] for a proof.

1.3.1. The linear and non-linear Schrédinger equation in dimension d = 1. To begin with, we
consider the bi-linear Schrodinger equation

10y + Hp = u(t) K ()1, (t,x) e R xR, (111)
$(0,2) = to(x) € H*(R), '

where K € H*(R;R), for some s > 0. Then we are able to prove
Theorem 1.4. (i) Let K € L*(R;R), u € L? (R;R), and 1o € L*(R;C). There exists a unique

loc
global solution to equation (LII)) in the class
¥ € C(R; L*(R)) N Lj,. (R; L*(R)).

loc

This solution satisfies

V@)l 2®) = IYollewy, VEER,
and for all T >0

191 a1,y ®)) < C (T Mol p2rys lull L2 —r,17)) - (1.12)
Moreover, the attainable set
U U {o}

t€R ueL2 (R;R)

is a countable union of compact subsets of L*(R).
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(ii) More generally, let s > 0, K € H*(R;R), u € L? (R;R) and vg € H*(R;C). Then there

loc
exists a unique global solution to equation (LII)) in the class
¥ € C(R; H5(R)) N L, (R; W ®(R)).

This solution satisfies

1Y)l 2@y = lYoll2@®), VYtER,
and for all'T > 0

191l oo (1175 ®)) + 10l L2 (1 100 ) < C (T Nbollas mys ull 2 —1.77)) -

Moreover, the attainable set and the attainable set
U U {vw}
t€R weL? (R;R)
is a countable union of compact subsets of H*(R).

This result shows that there are more obstacles than the continuity of the control operator
H(R) — H(R)

Y — K,
for controllability (since the map ([LI3)) is not continuous in general for a given K € H*(R) when
0 < s <1/2). In the proof, we will crucially use the space-time Strichartz estimates to control K1)

(by showing that K¢ € L} (R;H*(R)) when vy € H*(R) and K € H*(R)) and to prove the
compactness result.

(1.13)

Notice that for s > 1/2, the result of Theorem [[4]is a direct consequence of [I, Theorem 3.6], be-
cause in this case, the map (LI3]) is continuous (see the discussion at the beginning of Section [[2]).
Similarly, when K € W% (R), then one has the strong result of Theorem [Tl The result of The-
orem [[4] is relevant when the potential has limited regularity, namely K € H*(R), 0 < s < 1/2.

The previous approach also holds for the non-linear problem. Namely, consider the cubic equation
0 + Hyp = u(t) K (x)y — ol¢[*p,  (t,2) ER xR,
{w(o,@ — o) € H'(R),
where 0 = £1 and K € H*(R) for some s > 0. Then we have
Theorem 1.5. Let s > 0, K € H*(R;R), u € L2 (R;R) and g € H*(R;C). Then there exists a

loc
unique global solution to equation (LI4) in the class

P € C(RyHP(R)) N L, (R; W™ (R)).

loc

(1.14)

This solution satisfies
1Y)l 2y = lYoll2®), VYt ER,
and for all T > 0

9]l oo (1175 ®)) + 10l L2 (1 100 ) < C (T Nhollas my» ull 2 —1.77)) - (1.15)

Moreover, the attainable set

U U {o)

t€R uel2 (R;R)

is a countable union of compact subsets of H*(R).
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This result is relevant in the sense that it shows that the non-linear term does not help to control
the equation.

All the results of this section also hold for perturbations of H, namely, when H is replaced with
H+W, where W is in the Schwartz class S(R% R). The term W1 can be treated as a perturbation
of the non-linear term.

1.3.2. The non-linear Schrédinger equation in dimension d = 3. In order to get similar results to
Theorem in higher dimension, one needs to impose more regularity on the initial condition and
more regularity on the potential. This in turn will allow us to consider a larger set of controls,
namely u € Uy~ L] (R) instead of u € L7, .(R), as assumed in Theorem

loc

In this paragraph, we fix d = 3 and we study the defocusing non-linear problem
0 + Hip = u(t)K(2)y — [0y, (to) ERx R,
$(0,2) = o(z) € H'(R®).

To begin with, thanks to (LI) and ([LI0) we are able to state a global well-posedness result
adapted to our control problem.

(1.16)

Proposition 1.6. Let u € L], (R;R).
(i) Let K € Wh*°(R3;R). For ¢y € H'(R3) the equation (LI6) admits a unique global solution
Y € C(R;HY(R3)). This defines a global flow (t) = ®“(t)(v).
(i1) Moreover, this solution 1 satisfies the bound
91| oo (=170 (3)) < C 10l wsy) (1 + lull L1 =7 11:m))5 (1.17)
for some C' = C(|[tbo || (r3))- Furthermore, the following bound holds true

191 21 rpwrssy) < C (T 1Yol sy, lull oy —rmr)) - (1.18)
(iii) Let k > 1 be an integer and assume that K € WF™(R3R). Then for ¢y € HF(R3) the
equation (LIB) admits a unique global solution v € C(R; H¥(IR®)) which satisfies the bounds
[0l oo (= mipen 3y < C(T5 K, (1900 e sy, 1wl L (—1m:m))s (1.19)
and
191l L2 (- mwro®sy) < C (T 1bollae@eys lull Lo ormm)) - (1.20)

The proof relies on a fixed point argument in Strichartz spaces which are well-adapted to control
the non-linear term in (LI6]). Notice that from (I8]), we deduce that, for almost all ¢ € R,

Y(t) € WHE(R?). (1.21)

This is a smoothing effect for the solution, but can not be interpreted as an obstruction to con-
trollability of the equation (LIG)), since the set of times such that (IL2I) holds true depends on the
control wu.

We now state our result concerning the lack of controllability of (II6I)

Theorem 1.7. Let K € WY°(R%R) and g € HY(R3). Denote by 1 the solution of equa-
tion (LIG) defined in Proposition [L.@. Then the attainable set

U U {0}

teR well (R;R),

loc

r>1

is a countable union of compact subsets of H'(R3).
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We are able to prove similar results in dimensions d = 1 and d = 2, but we do not detail them,
since the proofs are similar. The same result also holds for the bi-linear Schrodinger equation,
but it is not relevant to state it here, since it is a direct application of [I, Theorem 3.6] (see the
discussion at the beginning of Section [[.2)).

Again, the results of this section also hold for perturbations of H, namely, when H is replaced
with H + W, where W is in the Schwartz class S(R% R). The term Wt can be treated as a
perturbation of the non-linear term, and the corresponding energy functional is still coercive, which
is needed in our argument.

Remark 1.8. Let k > 1 be an integer. As a consequence of Proposition (7i7) we may similarly
prove that for K € Wk>(R?) and vy € H*(R?), the attainable set

U U {0}

teR weL], (R),
r>1

is a countable union of compact subsets of H*(R?).

Remark 1.9. Tt is worth noticing that the different results developed in this paper (excepted Corol-
lary [[.2)) also hold for the Schrodinger equation, in the case where H is replaced with A = Z;l:l Q,%j,
in other words for equations of the form

10 + A = u(t) K (2) + o], (1.22)

In the argument, it is enough to observe that the inequalities (7)), (I9]) and (LI0) hold true for
the operator A (instead of H) and the usual Sobolev spaces H*(R%), W*P(R?) (instead of H*(R?),
W*P(R?)). In this setting, the conclusion of Corollary [ is that the attainable set is meagre in the
sense of Baire (the compactness is lost because the embedding H*?(R%) c H*'(R?) is not compact,
S1 < 82).

One should be able to adapt the approach developed in [I7, Section 2.2] (in particular [I7,
Lemma 1]) to the equation ([L22)). However, the argument of [I7, Section 2.2] does not apply
to ([ILIG]), because it heavily relies on the space translation invariance of the problem.

1.4. Notations. In this paper ¢,C' > 0 denote constants the value of which may change from line

to line. These constants will always be universal, or uniformly bounded. For z € R? we write
(z) = (1 + |z]?)1/2. We will sometimes use the notations L. = LP([0,T]) and L} X = LP([0,T]; X)
for T' > 0.

2. PROOF OF THE RESULTS CONCERNING THE BI-LINEAR EQUATION AND THE KATO
SMOOTHING EFFECT
2.1. Proof of Theorem [I.11

To begin with, we observe that it is enough to work with non-negative times, by reversibility of
the Schrodinger equation. Therefore in the sequel we assume ¢t > 0.

Local existence: We consider the map

¢
B)(0) = M~ [ u(e)e N (Ky)ds, (21)
0
and we will show that it is a contraction in the space

Bir.r = {1l Leopr < R},
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with R > 0 and T > 0 to be fixed. From the fact that e® is unitary in H* and thanks to the
Leibniz rule we deduce that

12Ol < ol + /0 () | K(5) | s

A

IN

bollsge + | K] lypee /O u(3)[46(5)] g0l (2.2)

Therefore we have

T
12D Lgomr < NItbollaen +C(/0 [u(s)|ds) | K [lyyr.oe [[]] L34

We now choose R = 2|¢)p||y» and we fix " > 0 such that chT\u(s)\ds < HKH;\}MO/2 As a
consequence, ® maps By, 1 g into itself. With similar estimates we can show that ® is a contraction
in By, 1 r, namely

T
[®(n) — DW)llpzern < e /0 () ) LK oo 1461 — ] e

1
< §||¢1 - ¢2||L;°Hk

Global existence: Assume that 7% > 0 is the maximal time of existence of the problem (L3)).
From the bound (22)), with ®(¢)) = ¢ we deduce

t
l(®) s < Iollpos + el K e /O ([ )]0l
Therefore, by the Gronwall lemma, we get that for all ¢ < T*

1)l < [[dbo lggr eI oo Jo lu(s)lds

The previous bound combined with the local existence theory implies that 7™ = 400. There exists
a unique global solution ¢ € C(R; H*(R?)) to (L3).

Proof of the smoothing effect: In order to prove ([LH]), we use the Kato smoothing effect (LT).
Let v be the solution to (I3)) and set ¢ (t) = 1 (t) — e 1)y. Then 11 solves

Vi (t) = —i /0 w(s)e I (K eisH g s — / () (K (5))ds.

0
Therefore

IN

(| uk et Hapg L aeers + luK || L1 ggees

el 2 VB e ol 2 ggmvs + lullza I W 3 31 (2.3)

Ry P——

IN

o We write k = 25 with j > 1. Firstly we show that
1K™ 4ol 12 255 < Cr (2.4)
using the Leibniz rule:

1K e 4o |25+

|H7 (K€" 1o) [l340
< C > 271072 K 873 (" ajo) || 45 (2.5)
j1,42,j3€N?
1] +|72]+73]=27
|73l#25
+ K e qpol3gs + 1K H? (e 4p) 1340
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where 9¢ stands for derivatives in 2 of order |¢|. Each term in the sum is bounded by
2702 Ko7 (e o) lggs - < [la? K07 ("M o) 341
<Kyl 1aat+ 1,00 (|90 || 435 +1
< 1K hweieroo [0l 22

thus
27072 K% (e 4bo) | 30 < T2, (2.6)
Similarly, we have || K e’ |l38 < [|K|yyree 403, thus
| | 2 g0 < CTV2, (2.7)
To control the contribution of the last term in (2.5]), we write
IEH? (o) lggs = |[EKe™ (H4o) s
<[P K (H o) || o+ [BCHPREM (HIo) |2 (28)
We use the commutator estimate [23, Lemma 18] to get the bound
[HP2, K™ (H )| 12 < Cltbollpees- (2.9)
By the smoothing effect (L),
1K HP2M T (HI4o) | 2 2 < Oy (2.10)
hence by (Z8)), (Z9) and (ZI0)
1B H? (e 4o) || 2 345 < Cr- (2.11)

Hence, from (Z0), (Z7), and ZII) we deduce (Z4). In the case k = j = 0, the estimate (2] is
deduced from (2:3)—2I1).

e We now show that ||K1/)1||L2THk+g < CT1/2||1[)1||L%<>HH5. By the fractional Leibniz rule (A1),
we have, for all p > 2

1K 1llggers < CIK]Loo [91llgg4s + L wirs |91 Lo, (2.12)

with ¢ = 2p/(p — 2). For p > 2 large enough (hence ¢ > 2 small enough), by the Sobolev
inequalities, ||¢1]|re < C||t1]|3gr+s which controls the first term in (ZI2]). To treat the second, we
claim that || K||yyx+6.0 < C|K|[ypr+1,00, for p > 2 large enough. Actually, we observe that the decay
|K| < C(z)~%! implies that K € L"(R?) for r > 2 large enough. Then one uses the interpolation
inequality
—0
1K Iyytrmones oty < K1 g 1 [ gy 00 <1,
with s = k + 1, 0 such that (1 —60)s =k + 8 and r = Op.
As a conclusion, with (23] we infer
[tz rgess < O+ CTY2ljull g ol e s

which implies, for 7" > 0 small enough and which only depends on w and K, that || || LygHk+s <
2CT. We are able to iterate this argument to obtain that

Y1 € C(R; HFHA(RY)), (2.13)
with the bound
[l pgergrs < C(T K, [Yollgn, l[ull L2.)- (2.14)
Notice that the previous estimate implies

Y1 € L2([-T, T); HFP(RY)). (2.15)
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Let us now show that for all T' > 0, 0y € L%Hk_z, which in turn will imply that
o1 € L2([-T,T); HF2(RY)). (2.16)
From the equation (L3]), we get for all = T'<¢<T

[0 () lggn—2 < ([0 ()[lggr + [w(O K yrsre0 190 (E) 1355
thus
1008l 23 s < CTY2{0 s + [l 1K Iy [l o (2.17)

hence the result.
By the interpolation Lemma[A.4]in the appendix, applied to ([ZI3]) and (Z.I4]), there exist o > 0
and x > 0 such that

Y1 € CO([—T, T); HF P (RY)). (2.18)
Finally we interpolate ([2I3) and (ZI8]), and thus, for all 5/ < 3, there exists @ > 0 such that
Y1 € C"/([—T, T];Hk‘wl(Rd)). The bound (L) follows from (2.14]), (2I7), by the interpolation

argument.

2.2. Proof of Corollary Fix 19 € HF(RY). Let (un)n>1 be such that [unllr2 < K and
consider 1, the solution of (L3]) associated to uy, and let (t,),>1 C [-T,T]. Set W, (t,) =
Un(tn) — enyhg. Up to a subsequence, we can assume that t,, — ¢ for some ¢ € [T, T]. Let

S < ' < 1/2, then by (L),

||\I'nHC%Hk+B’ <C.
By the compact embedding C®([~T,T]; H* % (RY)) C C([-T,T); HF+P(R?)), there exists ¥ €
C([—T, T; ’Hk+ﬁ(]Rd)) such that ¥,, — ¥, up to a subsequence. Next
[Wn(tn) = C(@)llprre < [[Wnltn) = Cltn)llggers + [[W(tn) — W (E)[l3gers

< sup [ Wn(7) = W(T)[lggrrs A [0 (En) — W(E) |20+
Te|-T,T|

The first term in the previous line tends to 0 since ¥, — ¥, and the second as well, since ¥ &
C([-T,T); HFF(RY)).
3. THE SCHRODINGER EQUATION IN DIMENSION d = 1
We prove Theorem [[L4] and Theorem at the same time, namely we consider the equation
{z'at¢ + HY =ut)K () — olpy, () e R xR, 51)
¥(0,z) = ¥o(z) € H*(R),

with o =0or o =1.

Local existence: Let 1y € H*(R). We consider the map

() (t) = ey —i / t w(r)e' I (Ky)dr + io / t e (jy2y)dr,
0 0

and we will show that it is a contraction in some Banach space. Let us define the Strichartz
space X7, by the norm ||v)[xs = [[¥llLgons + 1]l 14 ys.0, and define the space

Bsr,r = {II¥llx; < R},
with R > 0 and 7" > 0 to be fixed.
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By the Strichartz estimates (9] and (LI0) we get

T T
le@lxs < clldollas +c /0 620, s + ¢ /0 ()| K|

< ol + el Pl g + cllulliz K9 3
e By the generalised Leibniz rule (A,
[IERA

s dr

s < Wl Eoo 19 l3es,

thus by the Holder inequality
\\!¢\2¢|\L1THS < CHl/JHszTLooHW\L%oHS < CTl/zH?/JllsztTLooHinx;- (3.2)

Since (|9 g1 < [9llx; < R, we get [[[020f] 15, < cT'/?R3.
e Let us now prove that there exists k > 0 such that

1KY 230 < T K s |91 x5 (3-3)

In the case s = 0 we simply write || K9]l 2 < K]l ]l 2 e < TY2IK 2]t o Assume now

s> 0. By (A,

Kl < el K s [9]l 2o + cll K| ze[[llys.a
for all 2 < p,q < oo such that 1/p + 1/q = 1/2. Then, by Sobolev, if p > 2 is small enough,
[Kllzr < c|[K|[3s. Finally using that [|¢]| ;2 yys.a < ¢l[t)]|xs., we obtain [3.3).

Putting the previous estimates together we have
1 (¥)||xs < clltbollaes + TR + I |ull g2 1K ([0 B.

We now choose R = 2¢||[¢g||s. Then for T' > 0 small enough, ® maps B, 7 g into itself. With
similar estimates we can show that ® is a contraction in B, 7 r, namely

(1) — (2)|xs < [cTV?R* + T |lull g2 1K 2] 11 — 2l x5
As a conclusion there exists a unique fixed point to ®, which is a local solution to (B.II).

Proof of the bound ([LIH]) for s = 0: Before we turn to the proof of the global existence, we prove
this particular case of (LIH]). The case ¥y = 0 is trivial, therefore in the sequel we assume 1)y Z 0.
Assume that one can solve (B.]) on [0,7%), and let 7" < T*. Clearly, ||[¢(¢)||z2 = ||[¢ol|z2 for all
0<t<T.Let 0<tyg<T and é > 0 such that tg+ 6 <T. We have for all 0 <t < §

, to+t to+t ,
W(t +to) = eMap(to) +i / = H (141 29)dr — i / u(r)e o t=TH (K dr,
to to
which implies, by the Strichartz estimates (L9) and (I0)
[l La(ito torarzoey < cll¥llreorz + CH"L/1”2L39L2|WHL4/3([tO,tO+5};Lm) + cl| K|z ¥l oo 21wl Lars (2,10 +4))
cll¥llzge e + 052/3\\1/1”2@%2 19 £ (to 0 8120y + €T K || 2 191l £ge 2 llull 2
clltollz + 8 [0l 72 1] s o, to+ols200) + T HIEK | L2 llvoll L2 llull .z,

We pick § = §(T") > 0 such that c<52/3||¢0||%2 = 1/2 (using here that 1y # 0), thus the previous
estimate gives

IN

IN

111 24 2o, to+6); L) < 2¢l[tbollp2 (1 + [lullz2)-
We write this estimate for tg = 0,6,...,j6 with j € N such that jé < T < (j + 1)6. We sum up
and we obtain

19l La e < C(T, [0l 22, llull22)- (3.4)
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Global existence: Thanks to (3.2]) and ([3.4]), the time of existence given in the local theory only
depends on |[|¢p]|z2 and ||ul| L2, thus the local argument can be iterated. As a conclusion, the

problem (B is globally well-posed and one has the bound
9 Loo (e my20s ®)) + 10Nl La e 1000 )y < C (T bollags ys Null L2 —r17)) -

The compactness argument: Let u, — u weakly in L?([0,7];R). Notice in particular that
||un||L% < C(T) for some C(T) > 0. We have

b(t) = ey — i / u(r)e I (k) dr + i / =T (4 2y,
0

0
and

Un(t) = eHapo — i / un(7)e" D (K, (7)) dr + o / T (g P )
0 0
We set z, = ¢ — 1y, then z, satisfies
with
LY, y) = —i / (w(r) = un()) e (Kp)dr — i / un (1) (K (§ = y) ) dT
0 0

and

t t
N (i) = i / S (4 — ) + o)) dr + i /O U (5 Trye2)dr.

0
Let us prove that z, — 0 in L([0,T]; H*(R)). To begin with, we state an analogous result to [I,
Lemma 3.7].

Lemma 3.1. Denote by

en = H /Ot (tn(7) — u(T))ei<t—T>H(K¢(T))dTH .

LT H(R)
Then ¢, — 0, when n — +oo, which completes the proof.

Proof. We proceed by contradiction. Assume that there exists € > 0, a subsequence of w,, (still
denoted by u,) and a sequence t,, — t € [0,T] such that

tn '
| /0 (un(r) — u(T))eﬂtn—ﬂH(Kw(T))dTHHS(R) = (3.6)
Let us decompose
tn
| [ wntr) = umye - acomar | < ob+ 82488,
0 He(R)

with .
51— /n § B i(tn—T)H _ i(t=T)H\ ([ d ’
e TR ZGRONC L .

5= | /t t (un () = u(r) X (Kp(7)

H3(R)

8= | [t - ) v

and we will show that each of the previous terms tends to 0. This will give a contradiction to (3.6]).
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Up to a subsequence, we can assume that for all n > 1, ¢, <t or ¢, > . We only consider the
first case, since the second is similar. By the Minkowski inequality and the unitarity of e!™#

o < /0 [un(7) = w()]|| (6D = HDH (K| ar

He(R)

tn
— /0 ‘un(T) — u(7)| H (eit”H — eitH)(Kw(T))‘ HS(R)dT.
Then by Cauchy-Schwarz
1 _ itnH _ _itH
R e .

Now, using (LI5]), observe that
IE Pl 22 205 ) < 1K 205 ) 11| L2, ys.00 (my < 00 (3.7)
Hence Lemma below (with d =1 and ¢ = 2) applies to conclude, with the previous lines, that

5L — 0 when n — +oo.

By the Minkowski inequality, the unitarity of e/™# and the Holder inequality

t
2 < /t [ () = w(m)|[[ K| ey 7
< ”un_u”Li/e?’[tn’t]”KwuL‘q{HS(R)
<[t = tal " lun = ull 21 K s @) 191 L300 vy

where we used that H¢||L4Tws,oo(R) < oo by (LIH). Then, 62 — 0 when n — +oc.

Let us now prove that 62 — 0 when n — 4-00. We set v(7) = /"D (K4)(7)). Then by 1),
v e L*([0,T); H*(R)). We expand v on a Hilbertian basis (hx)g>0 of L*(R) (the Hermite functions
for instance),

+oo
v(r, o) =Y op(r)hy(),
k=0

+o0o
so that we have [|v(7,-) |3 = Z(Zk‘ + 1) | (7)]?.
k=0
Let n > 0, then there exists M > 0 large enough such that the function g(7, z) = 224:0 a(T)hg ()
satisfies [[v — gl 2(jo,7),0:(r)) < 1/(4p) Where p = sup,,> [[un —ul|z2.
We have

t M t
/0 (un<7>—u<7>)g<7>d7=k§j:0hk /O (tn(7) — (7)) ax(7)dr,

thus

/t (un(T) - u(T))ozk(T)ah"2 — 0,
0

M
2 s
e = 22k 1)
k=0

| [ (ualr) = ()t

by the weak convergence of (u,). Finally, from the previous line, we deduce that for n large enough,

52 = H /Ot (un(T) — U(T))’U(T)dT‘ < %Hun — uHLQT + H /Ot (un(T) — U(T))g(T)dT‘
1.
In other words, §5 — 0 when n — —+o0. 2 O

5 (R) Hs(R)

IN
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We state a convergence result (slightly more general than what we need here)

Lemma 3.2. Letd > 1,2 < q< oo and s > 0. Assume that F € L4([0,T]; H*(RY)) and t,, — t.
Then, when n — +00,

H (eit"H — eitH)F(T T — 0.

Mea_, ey

Proof. By unitarity of ¢/, we can assume that t = 0. Then, up to replacing F by H*/2F, it is

enough to prove the result for s = 0. We expand F' on the Hilbertian basis (hx)g>0 of L?*(R%) given

by the Hermite functions: F'(7,x) Z ag(T . Thus

T  +oo
||F||Lq L2(RY) = / (Z |k (T > dr < 0. (3.8)

We can write

zthF Z ay, Z(2k+1 tnh ( )
which gives
+o0o
I 1))y = 3 4 A
k=0

and we conclude with the Lebesgue convergence theorem thanks to the bound
. 1/2
(= 1) F(r,2) | o gy < 2 (Zm )" e 0.,

by (B.3). O
By Lemma [A.2]

t t
NG ) Bl @y < /0 16 — )4+ ) B ey + /0 1@ — )2 ey

t
< C/O znllaes @) (1911305 ymmvs.e @) + 19nllFes @pmws.comy)dr- (3:9)
To simplify the exposition, we write Y*(R) = H*(R) N W*>°(R) in the next lines. Thus, by (3.3,

B9), and the inhomogeneous Strichartz estimate (LI0) (with ¢ and r to be fixed later), for all
0<t<T

t
Hzn(t)”HS(R) <€+ CHunKZnHLg’WS,T-/(R) + C/O Hzn”HS(R)(Hw”%ﬁ(R) + H%”%zs(ug))df

Then by the Gronwall lemma, for all 0 < ¢ <7 and (L5

lzn(@)lnsm) < (en + CHU"KZHHL«Z’WS,N(R))GCIS (IR 12,5 gy Hn 130y )
< CUT)(en + cl|unEzal| oy ) (3.10)
Now we claim that
15 2y gy < €l s () 2l ), (3.11)

if r is large enough.
If s = 0 we choose r = co and we clearly have HKZ"HLl(R) <K |2y 120l 22 (w)
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If s > 0, by (AI) we have
HKZnHWS,T-/(R) < || K llggs ) 12nll o) + ellzn s @) 1K | Law),

with ¢ > 2 such that 1/241/¢ = 1/r'. Now, if r < oo is large enough, then ¢ > 2 is close to 2, and
by the Sobolev inequality [ K|[rag) < c[|K|l:r) and ||zl Lar) < cllznll3r), hence B.1I).

We come back to ([B.I0) and by BII) we get

¢ ’ q 1/q
o @)y < D) (en 4 1K oy ([ Tan DI fon (D) )

for some 1 < ¢’ < 2. Then there exists C3(T") > 0 such that

t
o) iy < CoT) (e 4 1K ey [ o) ()
and by the Gronwall lemma we get, for all 0 < ¢ <T

! t /
which in turn implies

’ T ,
1zl Lgome®) < O3 (T)eneC* DM s @ Jo [unOITd 0 (pye

and this latter term tends to 0, which concludes the proof.

We now prove the last statement of Theorem [[5] (the proof of Theorem [[.4]is similar). For fixed

Yo € H*(R) we set
Krn = U U {v(®)}.

[t|I<T ||“||L2(07T) <M

Let 9(tj,u;) C Kr . By the reflexivity of L?(0,T), up to a subsequence, t; — ¢ and uj; — u
weakly in L?([0,T];R). Then by the previous proof, ¥(t;,u;) — ¥(t,u) in H*(R). As a result
K is compact in H*(R) and finally we can write

U U {v(t)} = U U K,

teR wel? (R;R) TeN MeN
as a union of compact sets.
4. THE NON-LINEAR SCHRODINGER EQUATION IN DIMENSION d = 3
4.1. Proof of Proposition We first prove (i).

Local existence: We consider the map

DY) (t) = ey +1i / t e = (|| 2p)ds — i / t u(s)e' I (Kap)ds, (4.1)
0 0

and we will show that it is a contraction in some Banach space. Namely, we define the Strichartz
norm [|¢|x2 = [l Lgewr + [[¥ll 2 y16 and the space

Br.r = {|[¢lx: < R},

with R > 0 and 7" > 0 to be fixed.
By the Strichartz estimates (L9), (ILI0) and the Leibniz rule

A

1P ()|l x1 cllvo |y +C/THW’21/JH ds+c/T ]u(s)]HKwH ds
XT — H 0 ’Hl 0 'Hl

IN

T
cllvboll +CHwHL%°H1”¢H%?FL°° +C(/O \u(s)\ds)HKHWlmeHL?Hl. (4.2)
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We now show that there exists x > 0 such that H¢||%2 [oo S T%||4||%. Let 0 < € < 1/2, then the
T
4 3

couple (ge,7e) = (77905 7=¢) is admissible and by the Sobolev inequality 1| < C|[¢)|lyy1.r.. Then
by the Holder inequality,

10172 oo < T [ M1 gepprre < T [19001%s

for some x > 0. Thus
T
1900y < elinlo + TR+ eR( [ u)]ds) [y

We now choose R = 4c|[¢hg|lz1. Then we fix T) = ¢;R™%/* with ¢; > 0 small enough such

that CT11/2R2 < 1/4 and we fix T5 > 0 such that chT2 lu(s)|ds < HKH;VllooM Therefore, for
T = min(7y,T5), ® maps By g into itself. With similar estimates we can show that ¢ is a
contraction in Br g, namely

T
| @ (1) — D(n)lxy, < [TFR? + ¢ /O () [d5) |7y 26— 2]l ..

Energy bound: We define
_ 1 1
E(t) =/ (WHY + [$f* + S[vl")de =/ (VO + |2l + [0 + S0 da.
R3 R3
Then, using that 9yt = —i(H + |1|%9) + iu(t) K (z)), we get

E'(t) = 2%Re /RS O (v + HY + |¢|*y) dz
= —2u(t)3m/]R3 Ky Hypdx
= 2u(t)Jm 3EVK - Vipda.
Now we use the assumption VK € L®(R?) to gft
E'(t) < Clu(®)|[[¢] 2 IVel| 2 < Clu(@)lllvoll .2 BY(2),

which, by integration, implies

E(t) < (EY2(0) + 20|l 2 /0 fu(s)|ds)*. (4.3)

Notice that thanks to the Sobolev inequality, ||| 13y < O]l (rs), therefore E(0) < C([[vollp1 (rs))-

Global existence: Assume that one can solve (LIG) on [0,7). By (@.3)), there is a time T} > 0
such that c¢(T})"(R*)? < 1/4 with R* = 46“1/1”[/39*}[1. Then we fix T > 0 with
v T3

c</Tf_+Tj \u(s)\ds) HKHWLOO < 1/4.

As a consequence, with the arguments of the local theory step, we are able to solve the equa-
tion (LI6]), with an initial condition at ¢ = T* — min(7},75)/2, on the time interval [T* —
min (77, 75) /2, T* + min(77,73)/2]. This shows that the maximal solution is global in time.

Proof of (ii): Let 0 < 7 < T and 6 > 0 such that 7+ § < T. By the Gagliardo-Nirenberg and
Sobolev inequalities on R3,

1 1 1 1
[¥llzee < CllYlzsll¥llyre < Cllbllza e
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then by the Holder inequality

19112 (7 rsag:20) < CO2 M1l oorar 19| 2((r,r 1.0 (4.4)
We have for all 0 <t <§

Y(t+ 1) = etayp(r) —i—z'/

T

T+t T+t

ei(7—+t—s)H(‘¢’2¢)d8 i / u(s)ei(ﬂ'—i-t—s)H([(w)ds7
which implies, using the same arguments as in (£2]), that
11 22 (fr 451108y <

T4+6
< C”W‘L;?Hl + CH"L/JHL%H1H"L/’”2L2([r,r+6];L°°) + CHKHWL“’ H”‘/’HL%W ([r \u(s)\ds)

T
2
< cl[¥llgern + 051/2H"L/JHL%OHlH"L/JHL2([T,T+6];WL6) + cl[¢]| pgerpn /0 [u(s)lds,

where we used (£4). We pick § = §(T") > 0 such that cél/sz/JHiooHI = %, thus the previous
T
estimate gives

T
\wmﬂhﬂﬂMmqszwwmgw0w14rMQuﬁ. (4.5)

We write this estimate for 7 = 0,9, ..., 50 with j € N such that jo <T < (j+1)6. We sum up and
combine with (IL.I7), which gives

T
[l < Ol [ u(s)lds).

which in turn implies (ILI8]), thanks to (4.6l).

Proof of (iii): Let k > 1, and let ¢y € H*(R3) and K € WF(R?). Local existence in this
case is proven as in the case k = 1, thanks to a fixed point argument using the Strichartz norms
1% Xk = 190l Lgeer + 1]l 2 yrs- The globalisation part is obtained as previously, since the local

time of existence only depends on the energy norm and on wu.
Let us check the bound (LI9). Let 7' > 0. Since 1) is a fixed point in (Z1]), we get for all ¢ <T

A

[o(@)llan < CH%HHkJrC/O !1\¢!2¢Hmd3+0/0 [u()|[| K]y ds

IN

CWMm+§AGW@ﬁm+M$Wﬂmewﬂmm&

where in the previous line we used the Moser estimate (A.2]) to bound the non-linear term. There-
fore, by the Gronwall lemma, we get

[[9()[lp¢x C [t ()2 00 +lu(s)] ) ds

IN

cl[tholyre
T
< C(Ilwollm,llwlleTLoo,/O |u(s)|ds). (4.6)

By the Sobolev inequality, from (LIR)) we deduce

A

T
191l L2 (0,110 w3y < ClIYl L2, 1w 6@ey) < C (T, H%HHM/O lu(s)|ds),

which in turn, by (46), implies (II9]).
The estimate (L.20) can be obtained with similar arguments as for the special case k = 1. We
do not write the details.
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4.2. Proof of Theorem [I.71 We adopt the strategy of Ball-Marsden-Slemrod [I] combined with
some non-linear estimates. Let u, — u weakly in L'([0, T]; R) and fix L > 0 such that fOT lun(s)|ds <
L, fOT |u(s)|ds < L. By definition of ¢ we have

w(t) _ eitHwo —3 /t U(S)ei(t_S)H(KT/J)dS _’_Z/t e“t—S)H(‘w’Zw)dS,
0 0

and we define 1,

t

t
P (t) = eHopg — i / U () (K, )ds + i / e = (o, 24y, ) ds.
0 0
Let us prove that || — wnHL%og_Ll — 0. Set z, = ¢ — 1, then z, satisfies

Zn = ﬁ(wﬂbn) +N(¢7wn)
with

t t

(u(s) — un(s))ei(t_s)H(Kw)ds — z/ Up (s)e’ =) (K (¥ —1y))ds

0

£l ) =i [

0

and

t t
.Mwmm=>4éeW*W«w—mmw+mmmw—i/eWﬂW«E—EMﬁw&

0

Since K € W1°(R?), the map v — K1) is continuous from H!(R3) to H!'(R?) and [I, Lemma 3.7]
applies. Thus, when n — 400

t
- —u, i(t—s)H Ku)d — 0.
‘ tes[lég“} H /0 (U(S) u (8))6 (K4) SHHI(R3)

By Lemma [A.3]
t o t o o
N, ) Bl sy < AHW—¢MW+¢MMmeB+AHW—¢H%MMWWS

t
< AH%WMWMWWWVHWN%MW&

Therefore

t t
120 (8) 301 3y < 6n+0/0 Iun(S)IHzn(S)HwRS)dS+C/O 12 (8) 11 ) (19156 + 19l y1.6) (5)ds,

and by the Gronwall lemma
t
Il < enexo (C [ fun(s)lds + oy + Ol By

Finally, by (II8),
znllLeoagr < nC (T [0l L),

which implies the result.

The end of the proof of Theorem [ 7] relies on the same arguments as in Theorem [[.4]
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APPENDIX A. SOME SOBOLEV ESTIMATES

In this section we gather some useful estimates in Sobolev spaces. To begin with, we have the
following generalised Leibniz rule

Lemma A.1. Let d > 1 and s > 0, then the following estimates hold
17 gllweaqasy < CUFllzo @ylgll o oy + Cllolzoncaal s gy (A1)

with 1 < g < o0, 1 <q1, @2 <00 and 1 < ¢}, ¢4 < oo so that
1 1 1 1 1
+ +

¢ @ & @ &b

For the proof with the usual Sobolev spaces, we refer to [28, Proposition 1.1, p. 105]. The result
in our context follows by using ([[2]). Observe that in this result we must have ¢}, ¢5 < oo and
q # 1,00 which induces some technicalities in this paper.

A particular case of the previous inequality is the Moser estimate: for d > 1 and k € N

Hng?-Lk(Rd) < C(||f||Loo(Rd)||9||Hk(Rd) + ||9||Lw(Rd)||f||Hk(Rd))- (A.2)

The following lemma will be useful

Lemma A.2. Let s > 0. There ezists ¢ > 0 such that for all ¢ € H*(R), x1 € H*(R) N WH*(R)
and x2 € H*(R) N W*(R)

loxaxallas )y < cllellas ®)lxallzes @nwsee @) lIx2ll2s ®@)nwsoe &) -

Proof. The case s = 0 is directly obtained by writing [[¢x1X2llz2®) < cll@llz2@) X1l Lo ®) X2 Lo (R) -
Now we assume that s > 0. By (Al we have

lexixallmsw) < cllellas mlxixalle @ + clellr @ lIxixallwsa)

for all 2 < p,q < oo such that 1/p+1/q = 1/2. Then, by the Sobolev inequalities, if p > 2 is small
enough, |¢||zr < cll||ns- Next, by (AJ) again,

IXaxzlwsam) < clxallia @lxzll oo g + clxellza @llxil,yoq g):
with 1/¢1 + 1/¢} = 1/q. We are able to conclude by observing that

HXHL‘II(R)7 HXHWS,«;;(R) < HXHHS(R) + ”X”Ws»oo(R) = HXHHS(R)OWS»OO(R)-

In the same spirit we state the following result
Lemma A.3. There exists ¢ > 0 such that for all ¢ € H'(R?), x1 € WYO(R3) and o € WHO(R3)
||90X1X2||H1(R3) < CH‘:DH?-H(RS)||X1HWLS(RS)||X2||W1)5(R3)-
Proof. From the Leibniz rule and the Holder inequality we deduce that
lexixalla me) < IxixeVellremsy + lexiVxallrz@sy + lexaVxall 2 @ws) + [1{z)oxaxall L2 gs)

< xullzelixallize (IVellz2 + {2)ellz2) + el (Ixullzs [ Vxallzs + lxallzsl[Vxillzs)-

Then by the Sobolev inequalities, ||x||z~®s) < Cllx|lwiems) and [¢|lzems)y < Cll¢llyr(rs), which
allows to conclude. O

We recall the following interpolation lemma taken from [9, Lemma 3.3].
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Lemma A.4. Let T > 0 and p € [1,4+00]. Let —00 < 09 < 01 < +0o0 and assume that ¢ €

Lp([—T, T; 7—[“1) and Op) € Lp([—T, T; 7—[”). Then for alle > o1/p—0o2/p, 1 € LOO([—T, T];’H"l_g)
and

1-1/ 1/

1l gopos— < Cll N o gy, ||¢||W§,pqr[02-

Moreover, there ezists n > 0 and 0 € [0, 1] so that for all t1,te € [T, T]

-0 0
[9(t1) = (E2)llaer-2e < Cltr = ol I[Pl 5y [Ny 154
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