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Wearables and Social Signal Processing for Smarter Public 
Presentations 

ALAEDDINE MIHOUB, Orange Labs, Meylan, France 
GREGOIRE LEFEBVRE, Orange Labs, Meylan, France 

Social Signal Processing1 techniques have given the opportunity to analyze in-depth human behavior in social face-to-face 
interactions. With recent advancements, it is henceforth possible to use these techniques to augment social interactions, 
especially human behavior in oral presentations. The goal of this study is to train a computational model able to provide a 
relevant feedback to a public speaker concerning his coverbal communication. Hence, the role of this model is to augment 
the social intelligence of the orator and then the relevance of his/her presentation. To this end, we present an original 
interaction setting in which the speaker is equipped with only wearable devices. Several coverbal modalities have been 
extracted and automatically annotated namely speech volume, intonation, speech rate, eye gaze, hand gestures and body 
movements. In this paper, which is an extension of our previous article published in IUI’17, we compare our Dynamic 
Bayesian Network design to classical J48/MLP/SVM classifiers; propose a subjective evaluation of presenter skills with a 
discussion in regards to our automatic evaluation; and we add a complementary study about using DBScan versus K-
means algorithm in the design process of our Dynamic Bayesian Network.  

CCS Concepts: • Human-centered computing → Human computer interaction (HCI) → HCI theory, concepts and 
models 
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1 INTRODUCTION 
Oral communication is considered one of the most valued interpersonal skills in variety of domains [37], such 
as education, business and politics [30]. This task of public speaking stresses many people and was featured in 
many surveys as their number one fear, even higher than death [50]. Fortunately, as stated in the literature of 
clinical psychology [11], this skill is not only a bestowed gift to minority of charismatic individuals but rather 
a skill that can be learned and improved. Nevertheless, being an efficient communicator requires a lot of 
practice and training notably with experts and professional coaches. It requires to continually modulate both 
verbal and coverbal cues, and to perceive, interpret and react to audience displays and signals. The nonverbal 
communication in particular is acknowledged to play a significant role in social interactions [3, 28]. According 
to [2, 16] at least 65 percent of the information in conversations, are conveyed via nonverbal behaviors. 
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Moreover, studies on conversational behavior have confirmed that these coverbal cues – such as body posture, 
hand gestures, facial expressions, eye gaze, speech energy, intonation and speech rate – are strongly involved 
in maintaining social attention and social glue [31]. Thus, mastering coverbal behavior in public speech is a 
key success for being a brilliant communicator that is what we call the social intelligence [1].  
 

Social intelligence, as explained by Vinciarelli et al. [49], is one facet of our cognitive capabilities that guide us 
to interact harmoniously with others in different situations and contexts. In this paper we present a specific 
social face-to-face interaction carefully designed to model the social intelligence of a speaker in an oral 
presentation scenario. We present an original setting using only wearable devices in order to study the 
subtleties of human behavior in public speech. Our main challenge is to train a behavioral assessment model 
able to interpret the presenter nonverbal performances, estimate the cognitive state of the presenter and then 
predict an appropriate feedback. The feedback is aimed to enhance the awareness about coverbal attitude and 
thus the social intelligence of the speaker. In this work, the feedback modeling is solved in a data-driven way 
through a Dynamic Bayesian Network whose graphical structure describes the complex relationship between 
the cognitive state of the presenter, his multimodal performance scores and the adequate feedback. The long-
term goal of our research is to implement our behavioral evaluation model on wearable devices and test in 
real-time the relevance of our modeling and the social acceptability of the setting. More generally, this 
research can be enlarged to many other domains besides public speaking such as job interviews, customer 
services and sales, communication for health-care professionals, helping people with social difficulties, etc. 
 
Note that this article is an extension to our previous article published in [37]. In this paper, we complete that 
study with 3 main contributions, which are: a comparative study between our DBN design and classical 
J48/MLP/SVM classifiers; a subjective evaluation of presenter skills with a discussion in regards to our 
automatic evaluation; and a complementary study about using DBScan versus K-means algorithm in the DBN 
design process. The paper is organized as follows: the next section reviews the state of the art of feedback 
systems and models. In Section 3, we introduce our feedback generation model. In Section 4, experiments are 
conducted to show the relevance of our approach, both from an intelligent system perspective and from a 
user-centric study. Results are exposed and discussed in Section 5 and finally Section 6 summarizes our 
contributions.  

2 RELATED WORKS 
This research is part of the automatic analysis of human behavior in social interactions [13]. Automatic 
conversation analysis tries to infer from raw signal information about social actions, social emotions, social 
relations and social attitudes [49]. Depending on the application domain, several computational models have 
been proposed to cope with these issues. For instance, Mihoub et al. [35] presented a behavioral model 
designed to endow social robots with social skills enabling them to engage relevant interactions with human 
interlocutors. The model was based on Hidden Markov Models and was able to analyze human-partner 
behavior and generate adequate coverbal behavior particularly eye gaze fixations. Nihei et al. [41] established 
classification models that estimate influential statements in group discussions using prosodic features, head 
motion and eye gaze information. Group discussions are used in some countries for job recruitment processes. 
Expert recruiters observe the social behavior of all candidates and select only the good discussion performers. 
Through their modeling, Nihei et al. aimed to elaborate automatic skill evaluation through automatic scene 
analysis. They showed that persons who make influential statements frequently present better facilitation 
ability in discussions. To enhance group collaboration, Kim et al. [27] introduced the Meeting Mediator (MM), 
a real-time system that detects social interactions in meetings and provide feedback on the interaction 
dynamics. The exchanged social signals - based essentially on speech features and body movements - were 
captured by Sociometric portable badges and visualized on mobile phones of the interacting interlocutors. 
They showed that the system was able - in a brainstorming scenario - to ameliorate interactivity level and to 
reduce behavioral differences between non-dominant and dominant people. 
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Besides promoting social dynamics in-group meetings, one major application of social augmenting is to 
enhance social behavior in public speak. In this context, three configurations are identified in the literature: (1) 
Behavior assessment in training sessions, i.e. the feedback is provided before a real presentation situation. (2) 
Feedback provided online, i.e. during a real presentation situation. (3) Feedback provided offline, i.e. after a 
real presentation situation.  
 
The presentation trainer [43] is a recent example of systems within the first configuration. It is a multimodal 
tool designed to track the user’s body and voice (body posture, gestures, volume, pauses, etc.) using a 
microphone and a Kinect®. The feedback is transmitted through a visual graphical interface and a connected 
wristband (haptic information). Two types of feedback (corrective and interruptive) were provided using a 
rule-based model. For the latter type, the system considers the user’s mistake as severe and interrupts the 
speaking. To reduce the cognitive load of the presenter only one feedback is instructed at a time and the 
system was demonstrated to have significant effect on users’ learning. MACH (My Automated Conversation 
coacH) [21, 22] is another well-known system in the literature. Through a virtual agent the system simulates a 
job interview with human participants. At end of a session, a summary is provided concerning many aspects 
of the nonverbal communication such as total pause duration, speaking rate, weak language (filler words such 
as “basically” and “umm”), pitch variation, smiles, head gestures, loudness, etc. In the same context, Chollet et 
al. [5] explored an interactive virtual audience paradigm to create a forgiving and engaging environment for 
public speak training. The virtual audience was projected on a life-size screen and was animated by a wizard 
of oz strategy. The system was able to give direct visual feedback on the screen but also implicit feedback via 
the nonverbal behavior of the animated characters. For instance, a character could exhibit a forward or a 
backward posture depending on speaker’s performances. The system was shown to have positive effect on 
learners’ audiovisual behavior. 
 
The second type of systems proposed in the literature, are those delivering online feedback during real 
presentations. Knowing that human attention is a limited source [44] and that human brain is not adept for 
multitasking [41, 45], the challenge is to convey a relevant feedback in a convenient format and with an 
optimal frequency, so that speakers are not distracted from their task. For instance, Rhema [47] is an 
intelligent user interface for wearable Google® glasses, developed to help presenters modulate speech volume 
and speech rate during their talk. The paper shows that optimal feedback should be one instruction at a time 
and in single words format (e.g. louder, faster, etc.). One limitation of this work is the lack of multimodality in 
the behavior assessment. Logue [7] is another system designed to deliver in-situ real-time feedbacks about the 
nonverbal behavior of a speaker, especially about speech rate, body energy and openness. The social sensing 
is performed by a microphone, a Kinect® placed in front of the speaker and wearable Vuzix® glasses which 
were used also for feedback rendering. The feedback generation was provided by a rule-based model and a set 
of manually fixed thresholds. With two user studies, the authors showed that Logue system was perceived to 
be helpful, and that it has got significant impact on users’ performances.  
The multi-sensor self-quantification framework [12] is a feedback system belonging to the third 
aforementioned configuration. It generates an offline report about many aspects of the oral presentation such 
as speaking rate, liveliness, body movement, gestures, speaker attention, audience engagement, etc. It utilizes 
a whole motion capture system composed of two static cameras, one Kinect®, and three wearable Google® 
glasses (one for the user and two for public). The feedback model was based on Support Vector Machine 
models trained with annotated multimodal data. The ground truth was collected using manual annotation of 
videos segmented in multiple 10-second clips. The user study showed that the analytic report generated after 
each presentation received positive opinions from the experiment participants.  
 
Compared to literature, our research paradigm is to offer the final user the advantages of the three 
configurations. In fact, in our study we claim the following contributions: 
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• An original social sensing setting, not based on classic motion capture systems but only on wearable devices 
that are easily portable and susceptible to be shortly available for general public. 
• At this state, our system offers training and practice possibilities as well as detailed offline reports on 
behavioral performances. It is intended to integrate real-time feedbacks in the near future. 
• Behavior evaluation is performed to be as exhaustive as possible in order to deal with almost coverbal 
modalities (speech features, hand/body motions and eye gaze). 
• Contrary to existing feedback models (rule-based, classic classifier, wizard of oz, etc.), we propose an 
evaluation model based on a probabilistic graphical model (DBN) that is more appropriate – thanks to its 
internal characteristics - for modeling temporal complexity of human behavior dynamics. 

3 FEEDBACK MODELING  
As introduced, we propose to solve the feedback modeling in a data-driven way through a Dynamic Bayesian 
Network whose graphical structure describes the complex relationship between the cognitive state of the 
presenter, his multimodal performance scores and the adequate feedback. We remind that the main challenge 
of our model is to coach social intelligence to public speakers. Before exposing our DBN modeling for 
behavior assessment and feedback generation, we start in the next paragraph with a brief review on DBNs. 

3.1 Dynamic Bayesian Networks 
Bayesian Networks (BNs) [40] belong to the family of Probabilistic Graphical Models (PGMs) [29]. PGMs have 
married in a same formalism graph theory and probability theory in order to provide intuitive and effective 
tools to represent a joint probability distribution over a set of random variables [26]. Formally, a Bayesian 
Network (BN) is a directed acyclic graph whose nodes are random variables and whose edges represent 
conditional dependencies between these variables. An edge linking a parent node X to a child node Y 
semantically means that node X exerts direct (or causal) influence over node Y. Dynamic Bayesian Networks 
(DBNs) [39] have extended static Bayesian Networks (BNs) by modeling the temporal evolution of the 
variables. Beyond intuitive graphical representation and uncertainty dealing, they efficiently model complex 
temporal relationships between variables. Since we consider processes that are only Markovian (i.e. variables 
at slice t are only dependent on t-1 slice variables) and stationary (i.e. conditional probability distributions do 
not change over time), a DBN can be sufficiently depicted by a 2-timeslice structure called 2-timeslice 
Bayesian Network (2-TBN) (see an example in Fig. 1) [14]. Due to their multiple characteristics, DBNs have 
been used successfully in many domains; in particular, they represent an attractive and a powerful formalism 
for modeling dynamics of human behavior in social interactions [23, 36]. 

3.2 DBN-based models 
3.2.1 Cognitive state. In this work, we propose to estimate the cognitive state (CS) of the presenter to our 
modeling in order to get better prediction of feedbacks. In fact, additional to annotated variables described in 
Section 4, we introduced a novel variable (CS) that tries to model the cognitive state of the speaker. Cognitive 
states condition perception-action loops of the human behavior: they reflect cognitive processes that 
coordinate modalities of human behavior but also contextualize the interaction by considering its 
circumstances and its evolution. Examples of CS could be “informing”, “nodding”, “listening”, “turn taking”, 
etc. Notice that one single CS could also sequence many sensory-motor states together. Similar concepts have 
been proposed in the literature of multimodal behavior modeling [23, 32, 35]. In our application, we used data 
mining techniques to explore the cognitive states of the presenter because an exhaustive state list cannot be 
determined a priori. Actually, we used many clustering algorithms to infer these states from both multimodal 
scores and feedbacks. The multimodal scores here represent the evaluations of the different modalities of the 
speaker’s behavior. In other words, each score is an assessment of the speaker’s performance according to one 
modality (such as volume, intonation, speech rate, gaze, gesture energy and body energy). Indeed, associating 
scores and feedbacks this way, allows the estimated states to better contextualize interaction phases. 
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3.2.2 Proposed Model. Based on Dynamic Bayesian Networks (DBNs), our model uses machine learning 
techniques to intrinsically associate CS and input multimodal performance scores to the final annotated 
feedbacks. The main objective is to retrieve annotated feedbacks and to prove usefulness of this model for 
future online coaching system. List of used variables, as well as their respective cardinalities were as follows 
(see more details in Sections 4.5 and 4.6): 

• CS: cognitive state of the presenter, 27 states, 
• V: Volume, 3 levels (low, good, high), 
• I: Intonation, 3 classes (monotone, medium, lively), 
• S: Speech rate, 3 levels (low, good, high), 
• G: Gaze fixations, 3 classes (improvable, medium, good), 
• H: Hand gesture energy, 3 levels (low, good, excessive), 
• B: Body energy, 3 levels (low, good, excessive), 
• F: Feedback, 9 types (volume+, liveliness+, speech_rate+, speech_rate-, public+ (gaze), gesture+, 

body+, none, good). 
 
Our proposed model is illustrated in Fig. 1. The internal structure of our DBN was designed to efficiently 
model causal relationships between different nodes. This causality graph presents interesting properties: 

• The cognitive state of the speaker influences his multimodal behavior (blue arrows). 
• The appropriate feedback is a direct consequence of multimodal scores of nonverbal behavior (green 

arrows). 
• The appropriate feedback is also directly influenced by the mental state of the speaker (red arrows). 
• The network reflects the temporal correlation between cognitive states since a CS at a certain time is 

influenced by the previous state of the speaker (grey arrows). 
• The network reproduces an important instruction that was given to annotators concerning feedback; 

this instruction has incited annotators to diversify feedbacks by considering feedback history (cf. 
Section 4.6). Looking to the structure, we can easily identify temporal dependence between feedbacks 
(black arrows). 

 

 

Fig. 1. Our proposed DBN model (2-TBN model). Variables with white background are observable while grey ones 
represent variables to predict. 

To demonstrate the efficiency of the proposed causality network, we compare in Section 5 our principal model 
with a second baseline DBN whose structure does not consider the CS of the presenter (cf. Fig. 2). 
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Fig. 2. Baseline model: DBN structure without cognitive state (CS) modeling. 

4 EXPERIMENT DESIGN 

4.1 Scenario 

The objective behind our proposed experiment is to collect multimodal behaviors of many speakers in an oral 
presentation scenario (cf. Fig. 4). The presenters were asked to give a “pitch” presentation for 5 minutes. Each 
presentation was composed of 5 slides in which each slide corresponds to one of the following items: 
presenter education, professional experiences, technical/interpersonal skills, current projects, and future 
projects. In our experiment, this pitch scenario was particularly chosen since it highly motivates participants 
to be at the top of their performances compared to other presentation topics. 

4.2 Protocol 
11 presenters (7 male and 4 female) were recruited to participate in our experiment. Our study was limited to 
French native speakers in order to have homogeneous behavioral patterns and a standard annotation protocol. 
Participants’ ages ranged from 22 to 48 years old with an average of 34. They had different functions: interns, 
developers, PhD students, researchers, ergonomists and project managers (cf. Fig. 3). Two weeks before 
recording, participants were asked to fill an online form about (1) their demographic information, (2) self-
assessment of skills in oral presentations and (3) their personal Curriculum Vitae. On a 10-point scale question 
(1 = never, 10 = very frequent), our participants rated themselves on average 5.36 for frequency of giving 
presentations, 6.27 (1 = not at all, 10 = very comfortable) for their comfort in public speak and 6.45 (1 = very 
bad, 10 = very good) on how good they think their nonverbal communication is. Experimenters used the third 
information (i.e. personal CV) to build presentation slides that were sent to participants one week before their 
talk. This protocol helped us to have standard presentations for all speakers, which neutralizes preparation 
effects on behavior performances. Each presenter was asked to give two presentations on two different days 
to minimize learning effect, which leads to a total of 22 presentations. These presentations were recorded in 7 
sessions with groups of 3 or 4 participants. Although the moderate number of participants, we think that the 
data set is sufficiently rich and complex thanks to the multimodality of captured signals and the strictness of 
the protocol. This dataset completely fulfills the objective of capturing the microstructures and regularities of 
speaker behaviors and attitudes. The mean length of a session was about 1 hour and 15 minutes. The groups 
were designed to mix the 11 participants in different groups. Since we have two presentations per participant, 
this protocol avoided presenters’ lassitude caused by the repetition of a talk in front of the same person. For 
each group (for instance a 4-person group), we have one presenter and three observers who constitute the 
audience.  
At the beginning of each session, the experimenter presents the study and its progress phases. He also takes 
few minutes to expose the importance of nonverbal communication in a public speak and gives some 
recommendations about it. This step guarantees that participants have similar baseline knowledge about 
coverbality in public speak. 
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Fig. 3. Experimenter repartitions by gender, age and function. 

After each presentation, one form is filled by the speaker for self-assessment and a second form is filled by an 
audience member that we call the evaluator. Two tablets were used to this end; collected information from 
these questionnaires will be discussed in the post-study experiment section. After each presentation, a role 
changing strategy is applied by the experimenter so that each person participates as a presenter but also as 
observer for the rest. Particularly, he/she will be an evaluator for a specific speaker by rating his/her behavior 
performances through the second questionnaire. Each evaluator was discreetly informed from the beginning 
about the person to evaluate. Note that, our changing role strategy ensured that two persons couldn’t evaluate 
theirself mutually. The evaluators were instructed to pay attention to the coverbal behavior of the speakers 
especially voice, gaze, and body language.  

4.3 Experimental Setting 
The aim of the setting (cf. Fig. 4) is to sense the audiovisual social behavior of a presenter particularly voice 
attributes (volume, intonation, speech rate), eye gaze fixations, hand gestures and body movements. In order 
to make our evaluation system portable and usable in different contexts, only the presenter was equipped with 
wearable devices (cf. Fig. 5). For same reasons, we omitted the use of heavy motion capture systems by 
utilizing only wearables in part already democratized for public. Therefore, the multimodal behavior of a 
presenter was captured by: 

• A smartphone (Samsung®) put in the pocket of the presenter, used to track body movements. 
• A smartwatch (Sony®) worn on the directional hand, used to track hand gestures. 
• Smart glasses (Epson Moverio BT-200®), a head-mounted device used to capture eye gaze fixations. 
• A microphone connected to the glasses, used to monitor the presenter’s speech signal. 

 
For the purpose of annotation, we also equipped the scene with a static camera in order to film the whole 
interaction. 
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Fig. 4. Experimental setting of a presentation. 

 

Fig. 5. List of devices used to capture presenter’s behavior. 
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4.4 Recorded Signals 
For data acquisition, a recording platform was developed in order to collect multimodal and synchronized data 
from all devices. The recorded signals are as follow: 

• Accelerometer and gyrometer data from the pocket smartphone, 
• Accelerometer and gyrometer data from the smartwatch, 
• Accelerometer and gyrometer data from the glasses, 
• Egocentric video scene from the front camera of the glasses, 
• Speech signal from the microphone, 
• Video environment from the static camera. 

 
Human behavior is paced by subtle temporal coordination between different modalities. Thus, the challenge 
for our recording platform was to collect those signals in highly synchronized way; otherwise all social 
behavior modeling will be invalid. To this end, two Android® applications were developed to handle 
recordings. The first application runs on the experimenter smartphone (Samsung®). It allows triggering 
recording for both presenter smartphone and smartwatch. The second Android® application monitors the 
glasses and the connected microphone. The two applications were controlled by the experimenter to help 
orators focus on their presentation task. Note that manual claps are also performed before and after each 
presentation in order to synchronize precisely the different modalities especially audio and video. 

4.5 Input Data Annotation 

Similar to many previous works [12], we chose to segment each presentation on 10-second clips. This frame 
granularity was used for all modalities in our annotation process. The mean duration of the presentations was 
about 37 frames (i.e. 6 minutes and 10 seconds long) and the overall time of presentations was about 2 hours 
and 15 minutes. The experiment design was thought to handle a list of selected modalities known to largely 
contribute on public talk pertinence. Next paragraphs describe the set of signal processing based rules utilized 
to infer these modalities from recorded signals. 
 
4.5.1 Volume. A principal characteristic of human voice is volume. Known also as intensity or speech energy, 
the volume represents the loudness of an audio signal and plays fundamental role for transmitting clear 
messages for audience [10]. To analyze volume, we used an application based on the intensity extraction 
method of the Praat software [4]. We extracted also silent intervals for all segmented clips with a silent 
threshold of –30 dB, minimum silent interval duration of 0.1 sec and minimum sounding interval duration of 
0.05 sec. For each 10-second clip, we first delete silent intervals and we calculate the mean from remaining 
intensities. Then, using two intensity thresholds [17] (50 dB and 60 dB), the volume of the interval is classified 
into three categories: low, good and high. Thus, volume levels under 50 dB were considered as low while 
volume levels above 60 dB were considered as high. Note that these thresholds may slightly change depending 
on room noise and distance from audience. 
 
4.5.2 Intonation. One major attribute of human prosody is intonation. It represents the way speakers 
modulate their voices and plays significant role for retaining audience’s attention [10]. Pitch is known to be 
the main acoustic feature that correlates with intonation. Hence, for intonation analysis, we automatically 
extract pitches using an application based on Praat software [4]. For the extraction, we used a minimum pitch 
of 75 Hz and defaults parameters of the Praat autocorrelation method. To quantify pitch variation, it is 
possible to use the raw pitch standard deviation as a metric. However, because of differences between 
speakers especially males and females, this metric will give invalid and unfair comparison results [20]. 
Therefore, as proposed by R. Hincks [19, 20] the standard deviation should be expressed as a percentage of the 
pitch mean. This normalization is performed by dividing the pitch standard deviation by the mean; the 
resulting quotient is known by the acronym PVQ (Pitch Variation Quotient). Note that in Hincks works, the 
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PVQ is also calculated for 10-second clips. In our work, we first calculate for each 10-second segment the 
corresponding PVQ. Then, using two thresholds inspired from [19] (0.10 and 0.23), the intonation is classified 
into three categories: monotone, medium and lively. In this way, PVQ values under 0.10 characterize 
monotonous speech while values above 0.23 reflect lively voice. 
 
4.5.3 Speech rate. Balanced speech rate is another important attribute featuring voice quality. In fact, a slow 
rate may cause boredom while an accelerated rate may cause incomprehension and ambiguity. To measure 
speaking rate one possibility is to use the word per minute (WPM) metric. Nevertheless, because of major 
difference in word length, this measure can be imprecise in many contexts [15]. Expressing speech rate in 
syllables per second (SPS) solves this problem and presents many advantages. It allows a local analysis of 
voice and more efficient track of its rate variations [20]. In our work, the SPS measurement is used to 
characterize speech rate. In particular, we relied on Jong and Wempe algorithm [25] to segment our audio 
clips into syllables. The speech rate is then computed by dividing the number of detected syllables by the 
length of clips, i.e. 10 seconds. Afterwards, using two thresholds inspired from [8] (5.8 sps and 10 sps), the 
speech rate is classified into three categories: low, good and high. Accordingly, SPS values fewer than 5.8 
feature low speaking rates while values above 10 distinguish highly speech rates. 
 
4.5.4 Gaze. Besides retaining their attention, sustained eye contacts with listeners make the orator look 
engaged, more believable and more convincing. Further, it helps the presenter to better receive listeners’ 
nonverbal signals (e.g. facial expressions) and then, responds and enhances his message deliver. In our work, 
eye gaze performances were annotated semi-automatically. First, using the videos of the glasses, we annotated 
manually fixations over four regions of interest: audience, personal computer, projection screen and 
elsewhere. From these annotations, we computed for each 10-second segment a gaze distribution that contains 
the percentage of each region of interest. Then we established a rule-based model that uses a list of thresholds 
in order to automatically classify the gaze segment into three categories: improvable, medium and good. At 
this state, fixations are annotated manually but we intend in the future to use computer vision techniques to 
automatically detect regions of interest. In particular, we may use accelerometer and gyrometer data of the 
glasses - coupled with visual features - in order to get better estimations. We think that is possible to have 
reliable estimation using this method, especially that our regions of interest are enough distinct (audience, 
personal computer, etc.) to be detected from head movements (extracted from the MEMs sensors of the 
glasses). 
 
4.5.5 Gestures. Hand and body movements are known to be powerful tools to enhance social influence. Hand 
gestures for instance help to add emphasis and clarity to spoken words. Body movements help also to 
reinforce verbal messages and further ameliorate audience attraction [48]. In our setting, hand and body 
movements were sensed by wearables devices. In particular, hand gestures were inferred from accelerometer 
data from the smartwatch, while body movements were extracted from accelerometer data from the pocket 
smartphone. Firstly, for both modalities, a high-pass filter was applied to all axes to eliminate gravity force. In 
fact, a low-pass filter was used to isolate gravity force and then a high-pass filter is used to remove that 
gravity. Secondly, another low-pass filter (beta=0.8) is applied to reduce noises. Finally, using the 10-second 
segments, we computed an energy measurement - based on effective power of signal [34] - in order to 
characterize gesture energy and body energy of the speaker. Based on two thresholds, the gesture energy was 
classified into three categories: low, good and excessive. Similarly, two other thresholds were used to assign 
body energy to one of those classes. Notice that in our annotation, we used only accelerometer data to 
describe overall energy of the presenter. In the future, we may also exploit gyrometer data in order to get 
more precisions on types and categories of gestures. 

4.6 Output Feedback Annotations 
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After analyzing all videos, 9 specific feedbacks about nonverbal behavior of the presenter were proposed with 
an audience point of view: 

1. “volume+” : louder speech volume, 
2. “liveliness+” : more voice liveliness, used when intonation is perceived as monotone, 
3. “speech_rate+” : faster speech rate, 
4. “speech_rate-”: lower speech rate, 
5. “public+” : more eye contacts with the public, 
6. “gesture+” : more hand gestures, 
7. “body+” : more body movements, 
8. “none” : no feedback, used when it is not appropriate to deliver a feedback at that moment, 
9. “good” : used when nonverbal behavior is evaluated as good. 

 
Notice here that the choice of each feedback - regarding the corresponding modality - is highly correlated to 
the context of oral presentation and the more frequent errors of public speakers. For instance, taking the 
volume modality as an example, the more frequent error in presentations context is ‘very low volume’. Thus, 
for that modality, the selected feedback was volume+, i.e. louder speech volume. The same methodology is 
applied for the rest of modalities. As mentioned before, human brain is not adept for multitasking [41, 45] for 
this reason we chose to deliver only one feedback per 10-second segment. Efficiency of this paradigm has been 
already demonstrated in the literature [42, 46]. Each 10-second clip was affected to one of those feedbacks by 
two expert annotators that have strong background on co-verbal behavior research and particularly an 
excellent knowledge about nonverbal communication in public speech.  

 

Fig. 6. Declared importance (from audience) of coverbal modalities for presentation relevance (1= not important at all, 
10=very important). Voice is underlined the most important modality especially volume. Gaze fixations are also 

emphasized but with more diverging opinions. Finally, gestures and body movements are perceived as significant but less 
crucial. 

ELAN software [45] was used to visualize and to annotate each presentation. Annotators were instructed to 
give priority firstly to voice attributes and gaze features, and secondly to hand gestures and body movements. 
These instructions were based on results from the post-experiment study. In fact, participants were asked 
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about importance of each modality in public presentation and the final statistics (cf. Fig. 6) showed that voice 
features, as well as gaze, were declared more important than hand and body energies. It is also very important 
to encourage speakers with ‘good’ labeled feedbacks and stop feedback if everything is OK (i.e. using the 
‘none’ label). Annotators were also instructed to consider the annotated feedback history during the 
annotation process in order to get diversified feedbacks and avoid sustained emphasis on a particular 
modality. Note that in case of mismatch between annotators, they were invited to debate on video segment 
and choose only one final feedback. We remind that the proposed DBN models - in the Feedback modeling 
section (cf. Section 3) – are mainly designed to retrieve these annotated feedbacks from automatic multimodal 
scores. 

5 EXPERIMENTAL RESULTS 

5.1 Quantitative Results on Feedback Prediction 
Bayes Net toolbox [38] was used for DBNs learning and feedback estimation. EM algorithm [9] is applied for 
training while Junction tree algorithm [6] is applied for inference. The Expectation–Maximization (EM) 
algorithm is well adapted to our training problem since it represents an iterative method to estimate 
parameters of statistical models with latent variables, which is the case of DBNs. Junction tree algorithm is 
well adapted too to our model since we have only discrete observations and since it gives an exact solution for 
the inference problem (see [26] for more details about learning in graphical models). In particular, online 
inference is used for prediction, i.e. the feedback value (F) at a slice t is estimated only with the 6 observable 
data (V, I, S, G, H, B) till that instant t. Offline inference would rather use the total sequence, which is not 
appropriate for real-time systems. We remind that we have 22 sequences (11 participants and 2 presentations 
per participant). Using a leave-2-out-cross validation, we end up with 11 models; each model is trained on 
sessions of 10 participants and then tested on the two sessions of the remaining participant. Two metrics were 
used to quantify models performances. First, we used the precision of prediction, which corresponds to the 
percentage of retrieved feedbacks from original sequences. Because we are comparing similarity between two 
sequences, we use also a second approach with F-measure values based on Levenshtein distance [33]. In fact, 
Levenshtein distance computes a minimum number of operations to transform one sequence to another. From 
this optimal alignment the F-measure metric is directly computed. This method is more adequate to our 
problem since it tolerates small miss-alignments between original and predicted values. Indeed, speakers 
prefer to receive good feedbacks with light delays than incorrect feedbacks. 
 
The following table values (cf. Table 1, Table 2, Table 3 and Table 4) correspond to calculated mean precision 
and F-measure values on the 11 trained models. Our first results are evaluated on different configurations. 
First, we chose two values for the temporal granularity of our multimodal data (i.e. 5 and 10 seconds per time 
slice). For instance, with a granularity of 10 seconds per time slice, mean duration of sequences filled to our 
models was 37 frames. Secondly, we chose two input data records: a standard vector with volume, intonation, 
speech rate, gaze, hand gestures, body movements and feedback features; and a compact vector with voice, 
gaze, movement and feedback features. As, we got 3 values per input modality and 9 possible feedback values, 
the input data dimension is {3, 3, 3, 3, 3, 3, 9} for the standard input record. When we compact the acoustic 
information (volume/intonation/speech rate) and the movement features (hand/body movements), we obtain 
an input data dimension of {27, 3, 9, 9} for the compact input record. 
 
5.1.1 Classifiers Results. For the sake of comparison with our DBN-based strategies, we implement others 
classifiers: Decision Trees (J48 algorithm), Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM) 
with Weka software [18] (SMO algorithm for SVM). Table 1 presents the first results with a best F-measure of 
65.93% using the standard features and a granularity of 10 seconds. The SVM classifier obtains these results. 
We can observe that for each tested classifier, the standard input record helps to get better results. For 
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instance, the SVM classifier increases the F-measure values from 63.09% to 65.93% when using respectively the 
standard inputs and the compact inputs. Therefore, the compactness of information about acoustic and 
movement features seems to produce a lack of description impacting the final classification. The relative gain 
obtained by the SVM classifier may be justified by the size of the data to be learned which is quite small and 
the limited data dimension. 

Table 1. Average performances for classifier-based feedback estimations (best results in bold format). 

Granularity 10s Precision (%) F-measure (%) 

Decision Tree (Compact) 58.51 64.32 
Decision Tree (Standard) 60.37 65.30 
MLP (Compact) 59.88 65.06 
MLP (Standard) 60.49 65.19 
SVM (Compact) 57.79 63.09 
SVM (Standard) 61.85 65.93 

 
 
5.1.2 DBN Results. We develop different strategies to evaluate DBN-based training. Two strategies are 
presented in the following: firstly, a simple one without cognitive state (cf. Fig. 2) and secondly, a latent one 
with cognitive state modeling (cf. Fig. 1). 
 
Table 2 presents the first DBN-based feedback estimations. The best performance is done with a latent 
strategy on standard input data and a granularity of 10 seconds per time slice. The corresponding average F-
measure is 65.80% and the mean precision value is 60%. It appears then that adding a latent state representing 
the participant cognitive state is important. It models the hidden relationship between input variables and 
feedback estimations. As we assume, modeling human cognitive state influences positively the acoustic and 
movement productions, which guide then better our DBN-based feedback estimator. We can also observe than 
this first result outperforms the Decision Tree and MLP classifiers but not yet the SVM classifier (cf.  Table 1). 
The drawback of our first DBN-based strategy is to find the right dimension (or cardinality) for the cognitive 
state variable in order to model properly the coverbal complexity. Here, the automatic classical DBN training 
gives a dimension of 5 for the latent states. To go deeper, we investigate 3 clustering methods (i.e. K-means, 
EM (Expectation–Maximization) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise)) 
to determine the best cognitive states based on the input training data. For information, Weka Java API [18] 
has been used to realize the clustering task. 

Table 2. Average performances for our first DBN-based feedback estimations (best results in bold format). 

DBN   Compact  Standard 

Granularity Evaluation Metric Simple DBN Latent DBN Simple DBN Latent DBN 
10s Precision (%) 59.26 59.75 59.14 60.00 

F-measure (%) 64.69 65.43 64.57 65.80 
5s Precision (%) 59.57 59.44 59.20 59.14 

F-measure (%) 64.32 64.38 63.95 63.83 
 
 
Table 3 presents our final DBN-based feedback estimations with automatic clustering algorithms to model the 
cognitive states. The K-mean, EM and DBSCAN clustering give respectively a dimension of 27, 8 and 31 for 
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CS. The best performances were through the K-means clustering method (with 27 clusters). Particularly for 
this method, after many empirical tests and exploring cardinalities multiples of the target variable cardinality 
(i.e. {9, 18, 27, 36}), we chose the optimal number of 27 clusters, which corresponds to 27 specific Cognitive 
States (CS). This number has given the best performance among all configurations. About cluster number for 
K-means algorithm, according to our previous experiences, the number of CS clusters is generally a multiply 
of the cardinality of the target variable (here the feedback F cardinality). Since F cardinality is 9, tested 
numbers for were thus 9, 18, 27 and 36. This way each feedback type will be associated with an equal number 
of CS comparing to other types. The F-measure of 67.17% for our DBN with a cognitive state clustered by 27-
means appears to outperforms all previous results. Designing the right participant cognitive state is then 
crucial to model temporal input correlations in order to estimate the right feedback to the presenter. Classical 
classifiers, as Decision Trees, MLP, SVM do not model this hidden structured information. 

Table 3. Average performances for our final DBN-based feedback estimations (best results in bold format). 

Granularity 10s  (Configuration Standard) Precision (%) F-measure (%) 
DBN with CS by K-means (27 clusters) 62.47 67.17 
DBN with CS by EM (8 clusters) 61.36 66.91 
DBN with CS by DBSCAN (31 clusters) 57.90 64.32 

 
 
5.1.3 Final Comparison. The final performance comparison is presented in Table 4. For the sake of 
comparison, we computed also random performances from the empirical distributions of annotations. The 
random model with weak performances show the complexity of producing the right feedback to participants. 
According to this table, performances of DBN models are largely higher than random levels. Thanks to CS 
modeling, our proposed model outperforms the baseline simple DBN (without CS) on both metrics: 62.47% vs. 
59.14% for precision and 67.17% vs. 64.57% for F-measure. It also outperforms the SVM based classifier for 
feedback estimation (62.47% vs. 61.85% for precision and 67.17% vs. 65.93% for the F-measure). This 
performance gap proves the relevance of our causality network in modeling the studied interaction and 
confirms the significant contribution of cognitive states in enhancing feedback estimation. Results also show 
the importance of detecting the adequate cognitive states; otherwise, the DBN modeling will not fulfill its 
objectives. 

Table 4. Average performances for all feedback estimations (best results in bold format). 

Granularity 10s (Configuration Standard) Precision (%) F-measure (%) 
DBNs with CS by K-means (27 clusters) 62.47 67.17 

Simple DBN without CS 59.14 64.57 

SVM 61.85 65.93 

Random model 17.53 36.91 
 
 
5.1.4 Discussion. The presented results in previous subsections are computed from collected data of the 11 
participants. At first sight, presenters number may appear moderate, but on the contrary, we think that the 
data set is sufficiently rich and complex thanks to the multimodality of captured signals and the strictness of 
the protocol. This should be compared to the exiting data sets in the literature of public speaking evaluations 
[7]. Moreover, we do think that “the devil is in the details” and that behavior patterns are sufficiently complex 
for deserving modeling work. This dataset completely fulfills the objective of capturing the micro-structures 
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and regularities of speaker behaviors and attitudes. Scaling up statistical models trying to capture interaction 
is certainly a very challenging task. Before ingesting thousands of hours of interactive and highly multimodal 
data, we think it is safer and more productive to choose and tune models on carefully designed data. Once the 
performance of data mining and modeling of such “moderate data set” will reach acceptable performance, it 
would be relevant to move on to larger sets of observations and cognitive states. 
 
Finally, it is important to signal our awareness of the overfitting problem that may be caused by the moderate 
number of participants. To cope with this issue, many steps were taken to limit its effect. As a first a step, we 
applied cross-validation which makes presented metrics as an average result. Surely, cross-validation do not 
overcome overfitting but can be considered as a first step to make evaluation more appropriate. Secondly, as 
we used well-known toolboxes in our work, such as Weka for classic classifiers and Bayes Net for DBNs, we 
sticked to the default regularization parameters of the used algorithms. For instance, to reduce overfitting in 
Decision Trees, it is recommended to apply pruning on the trained tree. In our case, we set the corresponding 
parameter (“pruning confidence threshold” to 0.25). For DBNs, Bayes Net toolbox uses the BIC criterion in 
model selection, which is known to reduce overfitting issues. Moreover, Bayes Net toolbox uses for 
initialization uniform (uninformative) prior for regularization purposes. In addition, after training we added to 
CPDs (conditional Probabilities Distributions) a value of 0.001 to remove zero parameters (resulting from 
sticking to only seen data), which makes the model more efficient and less prone to overfitting. 

5.2 Qualitative results about the experiment design 
One aim behind our study is to (1) survey both presenters and audience about many aspect of the experiment 
and (2) collect participants’ opinions about the quality of our automatic assessment system. Three 
questionnaires were established to this end: the first one is filled by the speaker just after his/her presentation, 
the second one is filled by an audience evaluator and the third one is filled by the speaker after getting the 
automatic evaluation. In this section, we first propose qualitative results about the studied interaction and 
then qualitative results about the automatic offline scores generated by our rule-based annotation models. 

 

Fig. 7. Evaluations from the presenters. Notation scale was from 1 to 10 (1=total disagreement, 10=total agreement). 
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Fig. 7. proposes evaluations from the presenters about 8 criteria of the studied interaction. These criteria 
correspond to the following sub-questions: On a scale of 1 to 10, do you agree or disagree with the following 
statements (1 if you totally disagree, 10 if you totally agree): 

1. Awareness: “I was aware of my coverbal behavior during my presentation.” 
2. Concentration: “I was very focused during my presentation.” 
3. Comfort: “I was comfortable during my presentation.” 
4. Attention: “I was attentive to audience reactions.” 
5. Encumbrance: “The experimental devices took up too much space during the presentation.” 
6. Perturbation: “The experimental devices disrupted my social interaction with the audience.” 
7. Online Feedback: “To improve my presentations, it will be good to use the experimental devices to 

get feedbacks about my coverbal behavior during my presentation.”  
8. Offline Feedback: “To improve my presentations, it will be good to use the experimental devices to 

get feedbacks about my coverbal behavior after my presentation.” 
 

 

Fig. 8. Evaluations from the audience. Notation scale was from 1 to 10 (1=total disagreement, 10=total agreement). 

 
Fig. 8 plots expose relevant values about the audience attention, which respected the experiment instructions. 
For the other criteria, a mixed feeling is observed. We noticed positive feelings about comfort criterion but 
also relatively negative ones about perturbation. Indeed, some people complain about the glasses opacity, 
limiting thus eye contacts. This result joins presenter evaluation about the used glasses. 

5.3 Qualitative results about the proposed offline feedback 

The multimodal signal analysis gave us the opportunity to provide offline feedbacks to the participants about 
their coverbal behaviors. Fig. 9 presents one of them. For the two sessions (S1 and S2) of the concerned 
participant, an automatic classification is computed for the six coverbal modalities. First, a learning effect is 
proved between the two sessions (i.e. for all participants better scores were overall recorded for their second 
session). In case of testing online feedback system, it will be necessary to exactly quantify learning effect in 
order to prove that amelioration over time is due to the intelligent system and not simply to a learning effect. 
For this particular presenter (cf. Fig. 9), the speech analysis presents good performances concerning volume, 
intonation - even if this dimension could be improvable - and speech rate. In addition, charts show good 
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performance on gaze, which indicates that it was oriented to the audience most of the time. Gesture energy 
was positively evaluated except few excessive segments during the second session. Looking on videos, 
excessive intervals corresponded to sudden and saccadic gestures performed  
 
Finally, on 10-point scale questions, our participants rated on average 7.45 for the relevance of provided 
statistics in general, 7.36 for the relevance of those statistics to better understand coverbal behaviors, 6.55 for 
their relevance to improve presentations, and 6.82 as a motivation level to participate in future experiments 
with online feedbacks. About the first four criteria, participants have given quite good evaluations, showing in 
part that the experimenter presentation about coverbal behavior was well perceived. One participant gave the 
following comment: “My attention was more focused on my body movements during the second session 
because I was more comfortable”. 

 

Fig. 9. Offline multimodal scores for one presenter. S1 corresponds to session 1 and S2 to session 2. 

About experimental device perception, statistics shows divided opinions on the perturbation criteria. 
However, the box plots show relatively high median for the encumbrance criteria, which is due principally to 
the glasses type. One user explains “I find it extremely heavy”. This particular issue would be probably solved 
in the future thanks to more recent and light devices. Concerning online versus offline feedbacks, the 
evaluations from the presenters give a preliminarily preference to offline feedbacks. One participant judges 
online feedbacks as follows: “I imagine it would be too disturbing”. Consequently, the challenge for an online 
assessment system will be to optimize timing and manner of the feedback render. Evaluations from audience 
evaluators are presented in Fig. 8. They concern 3 criteria that correspond to the following sub-questions: 

1. Attention: “I was careful to the coverbal behavior of the presenter.” 
2. Comfort: “I was comfortable during the presentation even if the presenter wears connected devices.” 
3. Perturbation: “The experimental setting disrupted social interactions between presenter and 

audience.” 
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5.4 Subjective evaluations by participants 
Fig. 10, Fig. 11 and Fig. 12 show 3 sessions for 3 participants: User A, B and C. The 6 modalities are analyzed 
automatically by our rule-based models (cf. Section 4.5) and the relative notations are provided respectively by 
the presenter and an anonymous evaluator from the audience (cf. Section 4.3). The 3 selected speakers 
represent some special cases. Speaker A and B represent an example where the subjective evaluation meets 
the automatic assessments.  Notice that speaker B exhibits high performance while speaker A exhibits less 
successful performances. In addition, we added the case of speaker C since it shows an example where the 
classification was less successful compared to subjective evaluations. 
 
Indeed, user A evaluates the personal behavior with a low mean performance of 5.17/10 (i.e. the average note 
on all modalities) whereas the audience gives a mean note of 6/10. In contrast, user B gets a good self-
evaluation with a mean value of 8.17/10 while the public mean note is 7.83/10. In details, user A (see Fig. 10) is 
aware about some weakness regarding intonation, gaze, gesture and body energies. These weaknesses are 
correctly perceived by our automatic classification with for instance 47% for monotone intonation, 32% for 
good gaze, 13% for correct gesture energy and zero percentage for correct body energy. Otherwise, user B (see 
Fig. 11) gets strong performances for volume, speech rate, gaze, gesture and body energies according to our 
automatic classification (cf. percentages on these 5 criteria). Notice that this automatic result is adequate with 
the personal and the public subjective evaluations.  

 

Fig. 10. User A automatic and human evaluations. 

In Fig. 12, we expose the results obtained on user C with less automatic classification success. For instance, the 
volume is perceived as good for both the presenter and the audience, while the automatic classification 
assigns a low label to 87% of the talk. This mismatch is mainly due to the general threshold parameters (cf. 
Section 4.5.1) that apparently do not match well with this participant in regard to the experimental settings.  
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Fig. 11. User B automatic and human evaluations. 

 

Fig. 12. User C automatic and human evaluations. 
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A calibration phase for each participant could be done to tackle this issue. A similar situation appears with the 
body energy assessment. While both automatic categorization and personal note agree on low performance, 
the audience evaluator does not seem to be perturbed (the evaluation is equal to 7/10). In this case, the 
mismatch could be simply caused by the subjective view of the evaluator and not the classifier threshold. 

 

Fig. 13. Significant correlations between automatic, individual and public notations by modalities (colors reveal only the 
large enough value to be significant). 

5.5 Correlations between automatic, individual and public notations 
To evaluate quantitatively our objective evaluation (versus the subjective one), a correlation study is 
conducted. Fig. 13 shows the Pearson produce-moment correlation values between the notations provided by 
each presenter regarding his/her talk (i.e. individual), those provided by the audience when judging a 
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particular presenter (i.e. public) and our automatic intelligent system (i.e Auto). All experimental sessions are 
considered and classified by the 6 modalities. In Fig. 13, only significant values are displayed in color (p-values 
are inferior or equal to 0.01). This figure illustrates indeed 3 situations. Firstly, some automatic evaluations are 
well correlated to individual and public perceptions. For instance, the correlation value between automatic 
and individual gesture evaluations is equal of 0.67. Likewise, a correlation value of 0.76 is computed between 
automatic and public gesture notations. These results emphasize the good balance of our automatic gesture 
classification and human perception. A good match exists also between the automatic intonation notations 
and the individual evaluations. The correlation value is 0.67 for a p-value equal to 6.81e-04. Nevertheless, 
some automatic rule-based evaluations seem to not correctly fit with human evaluations, such as body 
movements, speech rate and volume. These rules may be improved by learning parameters that optimize these 
correlation relationships. 
Secondly, some individual and public evaluations correlate several modalities. The individuals and the 
audience seem to associate their perception of body and gesture movements. The correlation between gesture 
and body is of 0.81 for individual evaluations and of 0.89 for public evaluations. Other results are remarkable 
as the joint perception of the 3 voice modalities for the audience: (intonation_Public, speechrate_Public), 
(intonation_Public, volume_Public) and (speechrate_Public, volume_Public). 
Finally, another interesting correlation exists between individual and public notations regarding gesture 
perception. The individual and public notations are correlated with a value of 0.78 for a p-value equal to 1.66e-
05. Clearly, this relation does not apply to all modalities confirming the subjectivity of human evaluation and 
the differences in perception between presenters and audience about the same modality.  

6 SUMMARY  

In this paper, we studied human behavior analysis in social interactions. Especially, we were interested in 
modeling nonverbal communication of a public speaker in an oral presentation scenario. The challenge was to 
develop an automatic assessment system able to assist presenters in becoming brilliant and charismatic 
speakers. For this purpose and contrary to many works in literature, we designed a DBN-based model to 
provide relevant feedbacks from only wearable devices and multimodal signal sensing. Using social signal 
processing techniques, we developed rule-based models that computed performance scores concerning 
multimodal behavior of the speaker. In our analysis, we proceeded with a multimodal approach that allowed 
us to model not only voice attributes (volume, intonation, speech rate) but also eye gaze, hand gestures and 
body movements. Performance scores were communicated to participants in an offline reports (after their 
presentations) and received positive evaluations about their relevance and their usefulness. Similarly, overall 
opinions were quite positive about the experimental setting. 
 
In fact, some issues were raised up especially about the heaviness of the smart glasses. This particular issue 
will be overcome in future research. Other investigations should concern the design and the usability of 
wearable devices to better collect user behaviors and better inform users about their skills. We know that the 
precision of the voice, movement and gaze characterization is crucial, but the compactness and the weight of 
the devices are also relevant in order not to disturb the presenter. Likewise, the way that the interactive and 
intelligent system should provide feedbacks to users is fundamental. Visual displays are often privileged but 
audio or tactile information are also more adapted to some public situations. Ergonomic studies will point out 
the more relevant media inside an interactive loop between users and the intelligent system. User studies 
should address also a larger participant number and different usage situations (i.e. meetings, seminars, art 
presentations, etc.). Another interesting topics from the user points of view is to investigate offline and online 
feedback estimations. Some mistakes are difficult to take into account during the presentation. Consequently, 
a global investigation could explore how to deliver the right messages but also when it is more appropriate to 
interrupt the presenter.  
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Moreover, one step toward online feedback delivery is ensured thanks to our DBN model, especially with the 
concern of building a relevant cognitive state variable that links all nonverbal modalities. Indeed, we showed 
that our proposed causality network (with explicit cognitive state modeling) has led to good performance 
rates compared to baseline models. Starting from actual models, we will enrich in future our setting with real-
time capacities in order to deliver online feedbacks, which enables the speakers to improve in real-time and 
in-situ their nonverbal communication. A remaining challenge is then to model in our DBN-based system a 
processing state providing the starting time and the duration of a feedback message to be delivered. 
 
Others learning machine techniques should be investigated in the future such as models using reinforcement 
learning (for instance POMDP: Partially Observable Markov Decision Process) in order to take into account 
presenter behaviors to reward or reprimand the learning model. It is also important to let participants be 
involve during the intelligent system customization with an interactive loop for agreeing or disagreeing the 
feedback messages in real time. In particular situations, a presenter may want to disable some feedbacks 
because judged inappropriate due to a current context. This fact guides our research to better integrate also a 
context management system, understanding more precisely the present situation. Many external parameters 
influence the current presentation, for instance the level of lighting, the ambient noise, room organization and 
space, the moment of the day, etc.  
 
Another perspective is to model audience behaviors to inform presenters about public reactions (e.g. paying 
less attention to the presentation, discussions with colleagues, hands standing up for asking questions, etc.). It 
would thus be very challenging to design the feed-forward and feedback interactions between the presenter 
and the audience models, which would allow to go deeper into a mimetic system reflecting real life social 
interactions.   
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