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ON SPECIAL L-VALUES OF t-MODULES

BRUNO ANGLES, TUAN NGO DAC, AND FLORIC TAVARES RIBEIRO

ABSTRACT. We show that Taelman’s conjecture on special L-values of Ander-
son t-modules holds for a large class of t-modules. This class contains all mixed
A-finite and uniformizable t-modules whose Hodge-Pink weights are at least
1. As a consequence, we deduce various log-algebraicity identities for tensor
powers of the Carlitz module, generalizing the work of Anderson-Thakur.
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Let IF, be a finite field having ¢ elements, ¢ being a power of a prime number p.
Let A = F,[0] with 6 an indeterminate over Fy, K = F,(0), Koo = Fy((3)) and let
Voo be the discrete valuation on K corresponding to the place co normalized such
that v (6) = —1. We denote by Co the completion of a fixed algebraic closure of
K. The unique valuation of C,, which extends vs, will still be denoted by ve.

For d € N, A, 4 denotes the set of monic elements in A of degree d.
In 1930’s, Carlitz [11] introduced the Carlitz zeta values given by

CA(”):Z Z aineKoo, n € 7.

d>0a€Ay 4
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In 1979, Goss [18] introduced a new type of L-functions in the arithmetic of function
fields over finite fields and showed that Carlitz zeta values can be realized as special
values of such L-functions (see [19], Chapter 8). The zeta values (4(n) are related
to the so-called Carlitz module which is defined as the F,-algebra homomorphism
C: A— Cy{r} given by Cp = 6 + 7. Here Co{7} is the non-commutative ring
with the rules 7a = a7 for a € C. The Carlitz exponential expr € Coo{{7}} is
defined by expe = .5 % where Dy = 1 and for j > 1, D; = (67 — 0)Dj_,. Tt
satisfies the functional equation
expo(0z) = Cy(expa(z)), for all z € Co.

The Carlitz logarithm is the inverse series log € Coo{{7}} of the Carlitz exponen-
tial. Further, one can define the special L-values L(C/A,n) € K for any integer
n € Z and show that L(C/A,n) = (a(n).

The following remarkable identity was discovered by Carlitz:

expe(Ca(l)) =1
or equivalently

Ca(1) = loga(1).
The first equality is an example of log-algebraicity identities for C' while the second
one is the class formula for C.

In 1970’s, Drinfeld [15], [16] made a breakthrough by introducing the notion of
Drinfeld modules which generalizes the Carlitz module. Several years later, An-
derson [I] developed the theory of t-modules (or ¢t-motives) which extends that of
Drinfeld modules to higher dimensions. An important example of such objects is
the n-th tensor power C®" of the Carlitz module for any n € N (see [4]).

Recently, Taelman [24], 25] defined fundamental objects attached to a Drinfeld
module: the unit module and the class module. He proved a class formula which
states that the special value of the Goss L-function attached to a Drinfeld module
at s = 1 is the product of a regulator term arising from the unit module and an
algebraic term arising from the class module. It is a vast generalization of the
above-mentioned class formula for the Carlitz module. Taelman’s class formula
has been extended to t-modules by Fang [17] and to t-modules with variables by
Demeslay [13] [14].

However, we should mention that very few log-algebraicity results are known.
Inspired by examples of Carlitz [II] and Thakur [27], Anderson [2], 3] proved further
log-algebraicity identities for C' (and signed-normalized rank 1 Drinfeld modules in
general). His fundamental results are extended and revisited by various works
(4 B, 6l [7, @, 12] and [28], Chapter 8). In a work in progress, Papanikolas [22]
suggests to extend Anderson’s method to develop a theory of log-algebraicity on
tensor powers C®™ of the Carlitz module.

The present paper grew from an attempt to understand the possible connection
between the class formula and the log-algebraicity identities for t-modules. It turned
out that for A-finite and uniformizable t-modules, it has been already formulated as
a conjecture by Taelman [23]. By Taelman’s class formula [25], this conjecture holds
for Drinfeld modules. In this paper, we succeed in proving Taelman’s conjecture for
a large class of t-modules. This class contains all mixed A-finite and uniformizable
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t-modules whose Hodge-Pink weights are at least 1. As an application, we obtain
various log-algebraicity results for tensor powers of the Carlitz module, generalizing
the work of Anderson-Thakur [4] and rediscovering that of Papanikolas [22].

Let us give now more precise statements of our results.

Let F' be a finite extension of K and let O be the integral closure of A in F.
We set Fpo := F @k K. Let E be a t-module of dimension d defined over Op
which consists of an F,-algebra homomorphism F : A — My q4(Op){7} such that
for all a € A, if we write

E,=0g(a)+ Eq17+...,
then we have (9g(a) — aly)? = 0.

We set Lie(E)(Fy) = F%, Wg(Fy) := Lie(E)(Fx)/(0r(0) — 01,) Lie(E)(Fax)
and write w for the projection Lie(F)(Fy) — Wg(Fus). The following statement
is a slightly modified version of a conjecture formulated by Taelman in 2009 ([23],
Conjecture 1).

Conjecture A (Taelman’s conjecture). With the above notation, suppose that E
is A-finite and uniformizable. Then there exist an element a € A\ {0} and a
sub-A-module Z C Lie(E)(Fx) of rank r := dimg_ Wg(Fx) such that

1) expg(Z) C Lie(E)(OF),
2) Naw(Z) =a-L(¢p/Or) - Ny We(Or).

For Drinfeld modules, Conjecture [A] follows from the class formula of Taelman
[25]. More generally, it is true for t-modules satisfying Jg(0) = 01, by the class
formula for t-modules proved by Fang [I7]. Further, when F = K and FE is a
tensor power of the Carlitz module, Taelman’s conjecture holds by the pioneer
work of Anderson and Thakur [4]. However, Conjecture [A|is not always true (see

Proposition |A.2]).
In this paper, we prove that Conjecture [A] holds for a large class of t-modules

(see Theorem Corollaries and [1.6)).

Theorem B (Theorem [4.4). Let E/Op be an A-finite t-module such that oN C
(t — )N where N is its associated dual t-motive. Then Congjecture [A| holds for
E/OF.

Surprisingly, in the above theorem, we do not require the uniformizable assump-
tion for t-modules. For a mixed A-finite and uniformizable t-module F, one can
define the Hodge-Pink structure and the Hodge-Pink weights associated to E (by
[20], Definition 5.32) and one can show that the condition o N C (t — )N is equiv-
alent to the condition that every Hodge-Pink weight of F is at least 1.

The proof of Theorem [B|is based on two key ingredients: the dictionary between
t-modules and dual t-motives ([I], [0, [20]) and the notion of Stark units introduced
in our previous papers ([5, O] and Section [3.2). As an immediate application,
Theorem [B] implies:

Theorem C (Corollaries [4.5] and [4.6).
1) Let E/Op be an A-finite t-module. Then Conjecture [A| holds for E® C/Op.
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2) Let E/Op be a mized A-finite and uniformizable t-module whose Hodge-Pink
weights are at least 1. Then Conjecture[4] holds for E.

Finally, we deal with tensor powers of the Carlitz module C®" (n € N*). As a
special case of Theorem [B] Taelman’s conjecture is true for these t-modules over
any finite extension F' of K (see Theorem [5.2)). Then we apply our techniques to
deduce various log-algebraicity results for C®™ (see Theorem and Proposition
[5.5). These results extend the work of Anderson-Thakur [4] and rediscover that of
Papanikolas [22] (see Section [5.3).

Theorem D (Theorem [5.3). Let n > 1 be an integer and let C®™ /A be the n-th
tensor power of the Carlitz module. Then we have:

1) There exists a nonzero vector x, € Myx1(A) such that

€XPoen Z Z Tn | € MTLXI(A)'

d>0a€A, 4 oen(

2) There exists a nonzero vector X, € M, x1(A[z]) such that

eXP iz, Z Z Xn | € Mpx1(Al2]).

d>0a€A, 4 dcen

We also prove an equivariant log-algebraicity theorem for tensor powers of the
Carlitz module over cyclotomic field extensions.

Theorem E (Theorem . Let n > 1 be an integer and let a € A be a monic
polynomial which is square-free. We denote by F the a-th cyclotomic extension of
K whose Galois group is A, and by Op the integral closure of A in L.

Then there exists a free A[A,]-module of rank one M C Myx1(Or) of the form
M = A[A,|L(n, Ay) Xy, for some vector X,, € M, «1(OF) such that
1) expc®n(L(n A )X ) S Mnxl(OF)-

2) Ifv: Mpx1(Op) — Op denotes the projection on the last coordinate, then
(M) =b(As)L(n,A)OF
for some b(A,) € A[A] N K[A,]*
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1. BACKGROUND

We recall the notion of Anderson t-modules and dual t-motives. We refer the
reader to excellent papers [I}, 10, 20] for more details.

Definition 1.1. Let L C C be a field containing K.

1) An Anderson t-module E/L of dimension d > 1 defined over L (a t-module for
short) consists of an F,-algebra homomorphism E : A — Mgy q(L){7} such that
for all a € A, if we write

Ea = Ea,O+Ea,17+~--7 Ea,i S ded(L)7
we will set Og(a) := Eq4,0 and require

(6E(a) — aId)d = Od.

2) A Drinfeld module is a t-module of dimension 1.

3) Let E and E’ be two t-modules over L of dimension d and d’ respectively. Then
a morphism f : E — E’ over L is a morphism f : L¢ — LY over L commuting with
the actions of A.

Let E/L be a t-module of dimension d. Note that Mgx1(L) is equipped with
two structures of A-module: the first one is induced by E and we denote by E(L)
the corresponding A-module, the second one is induced by 0 : A = Mgxa(L),a —
E, 0, and we denote by Lie(E)(L) the corresponding A-module.

Until the end of this section, we suppose further that L is perfect and for c € L,
we set c(~1) = ¢/9. We introduce the non-commutative ring L[t, o] with

tc=ct, to=ot, oc= c(_l)a, cée L.
Definition 1.2.

1) A dual t-motive N (L) over L is a left L[t, 0]-module which is free and finitely gen-
erated over L{c} such that there exists an integer d € N with (t—0)%(N(L)/oN(L)) =
0.

2) Morphisms of dual t-motives are morphisms of left L[t, o]-modules.

There is an explicit correspondence between t-modules and dual ¢t-motives as
follows. Let E/L be a t-module of dimension d defined over L. We define the
map  : L{r} — L{o} by (> a;7)* := Y c'a; = Zagfi)oi. For any matrix
B € Maxa(L{c}), we put B* € Mgyxa(L{c}) given by Bj; := (Bj;)*. We set
N(L) := Mixa(L{o}). It is equipped with an action of F[t] given by

a(t)-h:=hE; =h|> ¢'E;;|, heN(L),acA
i>0

Then N(L) is a dual t-motive and the functor E — N(L) is covariant. Anderson
proved that it is in fact an equivalence of categories between the category of dual
t-motives and that of t-modules ([I0], Theorem 4.4.1).

Let 61 : N(L) — E(L) be the homomorphism of A-modules defined by
d1(h) == (01(a1), ..., 01(aq))’
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where h = (a1,...,aq) € N(L) and for b = 37 bjo! = 3, (ijg»j) € L{o}, we set

a1(b) =2, b;j ). This map induces a commutative diagram

N(L)/(c — 1)N(L) —2— E(L)

a(t)l E,

N(L)/(c —1)N(L) —2— E(L).

We set
No(L) := Myxa(L) C N(L).
Observe that in general, No(L) is not stable under the action of Fyt].
Now we define another canonical map of A-modules
0o : N(L) — Lie(E)(L).
For any h € N(L), we put h = (a1,...,aq) with a; € L{o}. Then we define
do(h) := (do(ar),...,d0(aa))" where for b = 37, b;07 € L{c}, we set do(b) = bo.
The map dg induces an isomorphism of A-modules
8o : N(L)/oN(L) = Lie(E)(L).
We observe that dg induces an isomorphism of L-vector spaces
¥ No(L) — Lie(E)(L).
Thus we get an induced structure of A-module on Ny(L) defined by
Ip(a) - hy =9~ (0r(a) - ¥(ho)), a€ A hg € No(L).

In particular, Ny (L/K:) is a K-vector space equipped with an action of A via Jg.

2. INVERSE OF THE FROBENIUS

We keep the notation of Section [I} Recall that L C C, is an extension field of
K which is perfect and E/L is a t-module whose corresponding dual ¢-motive is
denoted by N(L).

We set Py(t) =1 and for j > 1, we choose P;(t) € K[t] such that
Pi(t)(t—07) =1 (mod (t — 0)'K[t)).

Recall that (t — 6)?N(L) C oN(L). For j € N, we define the j-th inverse of the
Frobenius ¢; : N(L) = Ny(L) as follows. Let h € N(L), then there exists a unique
y € N(L) such that

Jj—1

H(t - quk)dh = a’y.

k=0
We set
pj(h) ==~ (Bo(Po(t) Pr(t) -+~ Py(£)y))-
One easily verifies that ¢; is well-defined.
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Lemma 2.1. We have the following properties:
i) j(h1 + Aha) = @;(h1) + A @;(hg) for all hy,hy € N(L) and \ € L,
i) j(t-h) = 0g(0) - ¢;(h) for all h € N(L),

iii) @j(o*h) = @;_(h) for all j,k € N and h € N(L) where we put ¢, = 0 if
n < 0.

Proof. Left to the reader. O

We also recall that there exist two series expg,logg € Iy+T7Maxa(L){{7}} such
that

expp Op(a) = Egexpy, foralla € A,
logy Eq = Op(a)logy, foralla € A,

expg logy = logp expy = 14.

Furthermore, expp converges on Lie(E)(Cs) and therefore induces a homomor-
phism of A-modules expy, : Lie(E)(Cy) = E(Coo).

Proposition 2.2. We write logg = Y.<, Ly with Ly € Mgxqa(L). Then for all
k > 0, we have the following identity

vr(h) = Tk(h) wy  forall h € No(L)

k
where TF(a1, ... aq) = (al ,...,ak ) forai,...,aq € L.

Proof. Let k € N be an integer. By Lemma Part i), there exists Qr € Mgxa(L)
such that for h € No(L), we have

pi(h) = 7°(h) Q.
In particular, Qo = I;. Let h € Ny(L), then by Lemma Part ii), we have
pu(t-h) =7"(h) Qi (95(0))".
Recall that t-h :=hEj = h (Zizo ot E‘;‘J-)7 then Lemma Part iii) implies that
pult-h)=78(h) Y T (EG ) Qe
i>0
It follows that for all £ > 0, we have
Qi (0p(0))" =Y 7" (B}, Qi
i>0

Recall that logy is the unique series in Iy + TMgxqa(L){{7}} such that logy Fy =
O0g(0)logy . We deduce that Qi = Lj for all k£ > 0. O

Remark 2.3. Similarly, we can calculate the coefficients of the exponential series
expp using the t-motive attached to E (see [20], Chapter 5).
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3. STATEMENT OF TAELMAN’S CONJECTURE

Let F be a finite extension of K and let Op be the integral closure of A in F.
We set Fi := F @k K. Let E be a t-module defined over Op, i.e. for all a € A,
we have E, € Mgyq(Or){7}.

Recall that for an Op-algebra B, E(B) denotes the A-module B? equipped with
the action of A via F and the tangent space Lie(E)(B) denotes the A-module B?
equipped with the action of A via the map 0g : A = Mgxq(OF). By [I7], Lemma
1.7, the latter map can be uniquely extended to a map O : Koo — Myxa(Foo)
given by

8E Z aiH_i = Z az(f?E(G)_‘

i>m i>m

3.1. The class formula a la Taelman.

Following Taelman [24], we define the class module by

E(Fx)
expp(Lie(E)(Fyx)) + E(OF)
This is an A-module which is finitely generated and of torsion (see [24] for Drinfeld
modules and [I7] for t-modules). We denote by [H(E/OFp)]a € A the monic genera-
tor of the Fitting ideal of H(FE/Op). More generally, for any finitely generated and

torsion A-module M, we denote by [M]4 € A the monic generator of the Fitting
ideal of M.

We set

H(E/Op) =

U(E/OF) :={z € Lie(F)(Fw) : expg(z) € E(OF)}.

Then U(E/Op) is an A-lattice in Lie(F)(F), i.e. U(E/Op) is discrete and co-
compact in Lie(E)(F) (see [24] for Drinfeld modules and [17] for t~-modules). This
module is called the unit module attached to E/Op. We denote by [Lie(E)(OF) :
U(E/OFr)]a € Ky the co-volume of two lattices Lie(E)(Or) and U(E/OF).

Here is the statement of the class formula a la Taelman:

Theorem 3.1 (The class formula). The infinite product

[Lie(E)(Or/p)la
[E(OFr/p)]a

L(E/Or) =]
p

where p Tuns through the set of maximal ideals of Op converges in K. Further,
we have

L(E/Or) = [Lie(E)(Or) : U(E/Op)|a - [H(E/Op)]a.

Theorem was first proved by Taelman [25] for Drinfeld modules. Shortly
after, the class formula was extended to t-modules by Fang [I7] and to ¢#-modules
with variables by Demeslay [I3]. While the proof of Demeslay follows closely the
original proof of Taelman, that of Fang is based on the work of V. Lafforgue [21]
using shtukas and the theory of Fontaine in equal characteristics.
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3.2. Stark units for t-modules.

The module of Stark units attached to a Drinfeld module was introduced in [9
and developed further in [5]. In this section, we extend this notion for t-modules.

Let z be an indeterminate over Ko, and let T.(Ks) := Fy[2]((3)) be the Tate

algebra in the variable z with coefficients in K,,. We set
T.(Fe) = Foo @k, To(Koo)-

We still denote by 7 : T,(Fx) — T,(Fs) the continuous F,[z]-algebra homomor-
phism such that 7(z) = 2 for all x € F.

Let E : F,(2)[0] = Maxa(F(2)){r} be the F,(z)-algebra homomorphism given
by

Ee = Z ZiEg’Z-Ti.
i>0

We also denote by 9z : Fq(2)((3)) = Maxa(Fx ®x.. Fq(2)((3))) the continuous
homomorphism of F,(z)-algebras given by

85 Z .Z‘ieii = Z a:iaE(H)’i, x; € Fq(Z),iQ € 7.

i>ig 12190
There exists a unique element expz € Ig + 7Mgxq(F(2)){{7}} such that
expg 05(0) = Ey exp -

If expp = D550 E;7" with E; € Mgyxq(F), then we have expz = > is0 2Bt In

particular, exp converges on Liez(Fa @k Fq(2)((3))) and induces a homomor-

phism of A-modules Lieg(T.(Fx)) — E(T.(Fx)).

Let ev : Lies(T.(Fs)) — Lie(E)(Fu) be the evaluation at z = 1. We observe
that ev induces a short exact sequence of A-modules:

0= (2 — 1) Lieg (T2 (Fao)) — Lieg(T.(Fao)) — Lie(E)(Fae) — 0.

Definition 3.2. The module of z-units and the module of Stark units attached to
E are defined by

U(E/Oplz)) == {z € Liex(T.(Fx)) | expz(z) € E(Or[2])},
Usi(E/Op) = ev(U(E/Op[2))).

We observe that Ust(E/Op) C U(E/OF).

Theorem 3.3. The module of Stark units Usi(E/OF) is an A-lattice in Lie(E)(Fy)
and we have

L(E/Op) = [Lie(E)(Op) : Usi(E/OF)]A.

Proof. The proof uses similar arguments to those employed in [9], Section 2. We
give a detailed proof for the convenience of the reader.

1) We set

" B(T.(Fy)) |
E(Or[2]) + expg(Licg(T-(Fic))
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Thus H is an A[z}-module via E. Let uy,...,u, be an A-basis of Op where
m = [L : K]. We set M := 3F,[2][[}]] and get a direct sum of F,[z]-modules

By [1], Proposition 2.1.4, there exists an integer N > 1 such that expz induces an
automorphism of Fy[z]-modules on &7 u; 5 9M?. Thus H is a finitely generated
[F4[2]-module. Since expz = Ig (mod z), we finally obtain

H

— ={0}.

—7 = 0
Consequently, H is a finitely generated and torsion Fy[z]-module.

2) Let a : T,(Fx)? — H be the homomorphism of F,[2]-modules given by

1
alz) = m(expﬁ(x) —expp(z)) (mod Op[2]* + expg(T.(Fx)?)).
We observe that
o(U(E/Op)) C H[z —1] := {h € H,(z — 1)h = 0}
and for all x € U(E/Op), we have
a(8p(0)x) = Eg(a(z)) (mod Op[z]? + expz (T2 (Foo)?)).
We deduce that « induces a homomorphism of A-modules still denoted by « :
U(E/Or) — H[z — 1]. Let z € Ust(E/OF), then there exist u,v € T,(Fx )¢ such
that
expg(u) € Or|2]%,
r=u+(z—1)v.
We observe that expz(u) —expg(z) € (z—1)Op[z]%. It implies a(z) = 0. Therefore
o induces an A-module homomorphism still denoted by « : % — H[z —1].
3) Let « € U(E/Op) such that expz(z) € Op[2]? + (2 — 1) expz(T(Fx)?). Then
we have
z € {y € Lieg(T-(Fx)) | expp(y) € E(Op[2])} + (2 — DT=(Foo)™.
Thus we get
z =ev(z) € Usy(E/OF).
We conclude that the map « is injective. It follows that % is a finite A-
module and Usy(E/Op) is an A-lattice in Lie(F)(Foo).
4) Finally, let € T,(Fs )¢ such that
(z—1Dz=a+expz(h), acOp[z]",beT.(Fx)

Thus expg(ev(b)) = —ev(a) € Op. It follows that ev(b) € U(E/Op).

Let ¢ € Op[z]? and d € T, (F4)? such that a —ev(a) = (z — 1)c and b — ev(b) =
(z — 1)d. We have

(z = 1)(x — c—expg(d)) = expg(ev(b)) — expg(ev(b)).

In other words,

a(ev(h)) =z (mod Op[2] + expz(T.(Fo)?).
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Therefore we have an isomorphism of A-modules
U(E/OF)

— L 2~ H[z—1].
Ust(E/Or) [ |
We have another isomorphism of A-modules
H
——— ~ H(E/Op).
(Z _ 1)H ( / F)

Therefore
[H(E/Op)|a = [H/(z = 1)H]a = [H[z — 1]]a.
We conclude
[H(E/OF)|a = [U(E/OF)/Ust(E/OF))a.

The Theorem follows immediately from this equality and the class formula for ¢-
modules (see for example [I7], Theorem 1.7). O

3.3. Taelman’s conjecture.

Definition 3.4. We keep the notation of Sections and We define
Wg = Lie(E)/(0g(0) — 01,) Lie(E)

We denote by w the projection Lie(E) — Wg and set r := dimg, Wg(Fx).

The following conjecture for A-finite and uniformizable t-modules is a slightly
modified version of that formulated by Taelman in 2009 ([23], Conjecture 1).

Conjecture 3.5 (Taelman’s conjecture). Let E be an A-finite and uniformizable
t-module defined over Op with r = dimg_ Wg(Fs) (see Definition . Then
there exist an element a € A\ {0} and a sub-A-module Z C Lie(E)(Fu) of rank r
such that

1) expg(Z) C Lie(E)(Op),
2) Nayw(Z) =a- L(E/OF) - Ny WE(OF).
Remark 3.6.

1) We refer the reader to [20], Sections 5.2 and 5.5 (see also [10,[23]) for the definition
of A-finite and uniformizable ¢-modules.

2) We should mention that Drinfeld modules are always A-finite and uniformizable.
For Drinfeld modules, Conjecture follows immediately from the class formula of
Taelman [25] (see Theorem [3.1]).

3) The original form of Taelman’s conjecture ([23], Conjecture 1) requires a stronger
condition that a = 1. If dg(f) = 614, then by Theorem Taelman’s original
conjecture is true. However, we provide below a counterexample for this strong
form, see Proposition [3.7]

Proposition 3.7. Letn = g+1 and let C®" be the n-th tensor power of the Carlitz
module. We denote by expoen the exponential series attached to C®™. Then there
does not exist v = (x1,...,2n)" € Myx1(Ks) such that expoen(x) € Mpx1(A) and
Zn = Ca(n).
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Proof. 1t is clear that C®" is A-finite and uniformizable. Suppose that there exists
x=(21,...,2,)" € Myx1(Ks) such that expoen (z) € My«1(A) and z,, = Ca(n).

Anderson and Thakur ([4], Section 3.8) proved that there exists z = (21,...,2,) €
K. such that

0 .
eXpPoon (Z) = . + Céeizrig O S Mnxl(A)

and
zn = (09 — 0)Ca(n).
By a theorem of Yu ([30], Theorem 2.3), it follows that z = (07 — #)x. Thus
1 0

+ C’S?fie = expy(2) = C’G@QVLG expeoan ().

_= O

0
Since expy(z) € Myx1(A), there exists y = (y1,...,Yn)" € Mpx1(A) such that

1

5 0
Cy "(y) =

0
We obtain a contradiction since the last equation has no solutions in M, x1(A).
The proof is finished. O

4. TAELMAN’S CONJECTURE FOR A CLASS OF t-MODULES

In this section, we prove Taelman’s conjecture for a large class of ¢t-modules
which states that if F/Op is an A-finite t-module such that cN C (t — )N where
N is its associated dual t-motive, then Taelman’s Conjecture is true for E/OF (see
Theorem 4.4)).

Remark 4.1. Let F be a mixed A-finite and uniformizable t-module (see [20],
Sections 5.4 and 5.5). By [20], Definition 5.32, one can associate to F its Hodge-
Pink structure and its Hodge-Pink weights. By the exact sequence (5.35) of [20],
Section 5.6, the assumption o N(L) C (t — 0)N(L) is equivalent to the condition
that every Hodge-Pink weight of F is at least 1.

4.1. Setup.

Let F' be a finite extension of K and let O be the integral closure of A in F.
We set Fo, := F Q@ K. Let E be a t-module defined over O, i.e. for all a € A,
we have FE, € Mgxq(Or){7}.

We denote by L the perfection of F' and by L, the completion of L ® g K. Let
T : Loo — Lo be the map which sends = to x9. It is an isomorphism of [F -algebras.
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Let ¢ : Loo — Lo be the map which maps z to z'/%. Finally, we assume that F
is A-finite, i.e. N(L) is a free L[t]-module of finite rank. We write

N(L) = &=, L[t]vi,
and we say that F is of rank n, i.e. rk F = n. Recall that
N(L) = oL, L{c}e;,

where (ef,...,€l) is the canonical basis of Lie(F)(Lo). We also have

t- € = €; (ZO’Z E;}) 5
1=0
where Eg = ZZ:O Eg,i’ri, Ee,i S ded(OF)a and 8E(9) = E970.

We have set No(Loo) = @1 Looe;. By Section [2} for all k& > 0, we have con-
structed the maps ¢y : N(Ls) — No(Loo) verifying the following properties:

i) @;(h1 + M) = @ (h1) 4+ A @, (hy) for all hy, hy € N(Lso) and A € Lo,
ii) p;(t-h) = 0g(0)p;(h) for all h € N(Ls),

iii) ;(c*h) = @;_k(h) for all j,k € N and h € N(Ly) where we put ¢, = 0 if
n <0,

iv) ¢r(h) = 7%(h) L} for all k > 0 and h € No(Ls) where log = 2 k>0 Ly7* with
Ly € Maxa(Lo).
4.2. A stabilization result.

Proposition 4.2. With the notation of Section[{.1] there exists a sub-Ko-vector
space V' of No(Fx) verifying the following properties:

1) We have dimg_ V' <nm =1k E - [F : K].
2) For all k sufficiently large, the sub-K-vector space of No(Fso) generated by
0k(No(Fxo)) is always contained in V'.

Proof. We choose elements x1,...,%,, such that F' = @2, Kx;. Fori = 1,...,d,
we put

ei=» [y, fij(t) € L],
j=1
Then there exists an integer ko € N such that for all 4, j, we have f; ;(t)0) € F[t].
It follows that if k& > kg, we get
fi,j(t)(k) c F
Therefore, if ¢* =% > d, then

orlen) €33 Op(Ku)zl ey,

=1 j=1

k—kq

[t], for alli,j.

Next for i = 1,...n, we put

ov; = Zgi,j(t)vj’ 9i,3(t) € L[t].
j=1
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Then there exists an integer k; € N such that for all i, j, g; ;(t)**) € F[t]. Therefore,
if ¢*=%1 > d, then

pr1(vi) = prlov) € 3N On(Ku)el pilvy).

1=1 j=1

Now observe that in Mgy q(Fs), if ¢° > d, we have

N O0p(Ko)al 1o = 0p(Kw) F 1.
=1

Let s be the least integer such that s > max{ko, k1 } and ¢*~ % > d, ¢~ % > d.
We set ko := Inf{s — ko, s — k1}. Then by the previous discussion, for all k > s, we
get

m n k2
orle) €Y On(Koo)af  or(v),
=1 j=1
and
Pr1(0:) = r(ovi) € Y > On(Koo)af er(vy).
1=1 j=1

For k > s, we set

m n ke
Vii= Y Op(Kao)al “pr(v), V' i= UV,
=1 j=1
Vi = aE(Koo)QDk(NO(FOO)) CNO(FOO)a V= Up>s Vi

It follows that for all £ > s, we have the inclusions Vi, C V}/, and V;/_; C V. Since
dimg V) < nm =rkE[F : K], we deduce that for k sufficiently large, V' = V/
and

dimg__ V' < nm.

Since V;, € V C V', the Theorem follows. O

4.3. An injectivity result.

We will give a stronger version of Proposition [.2] under the assumption that
oN(L) C (t—0)N(L).
Proposition 4.3. Suppose further that cN(L) C (t — 0)N(L). Then there exists
a sub-Koo-vector space W of No(Fx) verifying the following properties:
1) We have dimg, W =nm =1k E - [F : K].

2) For all k sufficiently large, the sub-K-vector space of No(Fso) generated by
0r(No(Fso)) is always contained in W.

3) The projection w : No(Fs) — (6E(0)JX"9(II:§°]\)[O(FOO) induces an isomorphism of
K -vector spaces

NO(FOO>
(0p(0) — 01a)No(Foo)

W ~
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Proof. Recall that {v1,...,v,} is an L[t]-basis of the free L[t]-module N(L). Recall

also that w : No(F) — (8E(9)]X%(II;§°A),O(FM) and for k sufficiently large,

V=3 S Op (K )zl o)),

I=1 j=1
where (z1,...,2m,) be a K-basis of F.
We claim that w |y is injective. In fact, for j =1,...,n we write
(t=0)" (=07 )'u; = o™y, yy € N(L).
Recall that £, = (0 — 07)--- (6 — qu), it follows that

on(vy) = jdy (mod (1 — 0)N (L)),

Suppose that there exist elements 6;; € K such that
m n qk2
Z Z(Sjlel w(y;) = 0.
1=1 j=1
In other words,
m n &
DO 5y € (t— 0)N(Loo).

1=1 j=1
It implies that

> (i 52/35*’”) (t =) (t— 07 "), € (¢ — 07 "IN(Loo).

We deduce that for j =1,...,n,
m k
S5l = 0.
1=1

If F/K is a separable extension, then (x‘sz b x?,fg) is still a K-basis of Fi.
We get immediately that ¢;; = 0 for all j,I. Thus dimg_ w(V’') = nm. Since
dimg_ V' < nm, it follows that w |y is injective and dimg__ V' = nm. We set
W=V’

Now suppose that F/K is not separable. We have already observed that
m q*2 2
D 0p(Koo)z] I =0p(Ke)F " I,
1=1

We choose k; sufficiently large such that every element of £ s separable over
K. Thus F*P := KF9" is the maximal separable extension of K contained in F.
We rearrange z1, ..., T, such that for some 1 <r < m, we have

sep __ T qk2
P =@ Kz .
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It follows that for all k > ko, F5P = }'Zle?k. Further, for i =r+1,...,m, we
write

T
k2 ka
a2 _ 4 -
T, = E a; jx; , a;; € K.
=1

It implies that for k sufficiently large,
U k " k
> 0p(Ko)al = 0p(Kx)af .
1=1 1=1

Thus for ko chosen sufficiently large, we deduce again that w |y is injective and
dimg_ V' =n[F : K]sep. We choose y1,...,y, € F such that F = F*P @ @lh:lel
and we set

h n
W=V 4> 0p(Keo)yior(v)).
1=1 j=1
By similar arguments, we show that w |y is injective and

dimg, W =nm.

Now we claim that
No(Foo) N (t —O)N(Leo) = (9p(0) — 01a)No(Fis).

In fact, for € Ny(Fs), we have (t —0)x = (0g(0) — 01;)x (mod o). It implies the
inclusion
(aE(e) - old)NO(Foo) C NO(FOO) N (t - G)N(Loo)'
On the other hand, let © € Ny(F) such that x = (¢t — 0)y for some y € N(Lo).
We have y € @}_; Fio[t]v;. We know that y = ¢’ (mod o) for some y' € No(Fix).
It follows that
(t—0)y = (0r(0) —0I1;)y" (mod o).
Hence
z = (0p(0) — 01a)y" € (9p(0) — 01a) No(Fuo).-

From the above discussion, it follows that the natural map of K.,-vector spaces

w: No(Fso) — @5 (9)]}]9(15301\)@ o) induces an isomorphism of K. -vector spaces
NO(Foo)

(0p(0) — 01a)No(Fuo)

The proof is finished. O

W ~

4.4. Main result.

Recall that the map dg : N(L)/oN(L) — Lie(E)(L) induces an isomorphism of
A-modules Ny(Fs) ~ Lie(E)(Fs) (see Section [1]).

Theorem 4.4. Let E/Op be an A-finite t-module such that cN(L) C (t—0)N(L).
Then there exists a sub-Ko-vector space W of Lie(E)(Fs) such that the following
properties hold:

Lic(B)(Fao)

1) The natural map of Ko -vector spaces Lie(E)(Fs) — @)= 0L) Lot BT (Fs)

duces an isomorphism of K. -vector spaces
Lie(E)(Fu)
(Op(0) — 014) Lie(E)(F)

mn-

W ~
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2) We have the following inclusion
U(E/OF) C Lie(E)(F) + W.
Moreover, U(E/Op) NW and Lie(E)(Op) NW are A-lattices in W and
[ (Lie(E)(Op)NW) : (U(E/Op)NW)] , = aL(E/OF)
for some a € K*.

In particular, Conjecture holds for E/Op.

Proof. We set logp = Zkzo Ly7*, Ly, € Mgy q(F). By Proposition Ethere exist a
sub- K -vector space W of Lie(E)(F) and an integer ks > 0 such that

i) for all k > ko, Ly7"(Lie(E)(Fx)) C W,

ii) the natural map of K.-vector spaces Lie(E)(Fy) — (8E(0)Ei255)1(i°(0123)(1~“00) in-

duces an isomorphism of K. -vector spaces W ~ G (Q)Eiggg)ii"(‘%) 7o)

Let u € Ugt(E/Op). Then there exists a polynomial Z]kvzo biz* € My1(OF[2])
such that

SO FLirt (k) € Maa(Foo @k, T2(Koo)),
>0 k=i

u=>Y "> 2L (by) |1 -

i>0 k4l=i

and

For i > N + ¢*2, we have

Z LlTl(bk) ew.
k+l=i
U(E/OF)

Since T (B/0D) is a finite A-module, it implies that
U(E/OF) C Lie(E)(F) + W.
It is clear that Lie(E)(Op) N W is an A-lattice in W.
Finally, we have
Lie(E)(Fx) + W

dimpg_ W =(d—n)[F: K],
where n[F : K| = dimg__ (3E(9)Iiizgi)£io(c}123)(Foc)' Therefore U(E/Op) N W is an A-

lattice in W. The last assertions follow immediately from the class formula (Theorem

31). O

As an immediate consequence, we obtain the following result:

Corollary 4.5. Let E/Op be an A-finite t-module. Then Conjecture 15 true
for the tensor product E ® C.

Proof. We denote by N¢ the dual t-motive attached to C. It is isomorphic to L[t]
where o acts as follows: for h = Y, a;t" € L[t],

ch=o¢ (iaiﬂ) =(t—10) zn:ai%ti.
k=0 k=0
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Let N(L) be the dual t-motive associated to E. Then the dual t-motive Nggc
associated to E'® C' is defined to be the tensor product N (L) ®r) N as an L[t]-
module on which o acts diagonally. Note that £ ® C' is also A-finite because F is
A-finite. Further, we see that o(Nggc) C (t — ) Nggce. Therefore we can apply
Theorem [£.4] to E ® C' to obtain the Corollary. O

By Remark the above Theorem implies:

Corollary 4.6. Let E/Op be a mized A-finite and uniformizable t-module whose
Hodge-Pink weights are at least 1. Then Conjecture [3.5 holds for E.

5. A DETAILED EXAMPLE: TENSOR POWERS OF THE CARLITZ MODULE

In this section, we study in details the case of tensor powers of the Carlitz module
over any finite extension of K. As an application, we obtain various log-algebraicity
theorems on tensor powers of the Carlitz module.

5.1. Taelman’s conjecture for tensor powers of the Carlitz module.

Let F' be a finite extension of K and Op be the integral closure of A in F. Let
T1,...,T;m € F such that F = @;”le:cj. We fix a K-embedding of F' in C.
Let » > 1 be an integer. We define the n-th tensor power of the Carlitz module
C®" 1 A — Myuxn(Coo){7} by

6 1 -+ 0 0 0 0
gono |0 4| |
0 1 00 -~ 0
0 10 0
The map dgen : A = Myxn(Cx) is given by
61 --- 0
a®n9: 0
con (6) )1
0

We observe that C®" is defined over Op.

The corresponding dual t-motive of C®™ is N = C[t] whose action of ¢ is given
by o+ h:= (t —0)"h(=Y for all h € N. In other words, if we write h = 3, a;t*
with a; € C4, then -

o Zaiti =(t-0)" Zail/qti
i>0 >0

We observe that {(t — 6)"}o<i<n—1 is a basis of N as a Coo{o}-module

n—1

N = Zcm{a}(t —0).



ON SPECIAL L-VALUES OF t+-MODULES 19
We set
n—1
No = E (Coo(t - 9)1
i=0

Recall that the canonical map of A-modules &y : N — Lie(C®")(C.,) which

maps Y1) (35007 aij)(t —0)" to (ag-1,0,--.,a1,0)" induces an isomorphism of
A-modules N/oN =~ Lie(C®")(Cq)-

Let v be the place of F' above co that corresponds to the K-embedding of F' into
Cso, then F, = FK,, C C. Furthermore, we have

n—1 m

No(Fy) =D Y Koox;(t — 6)".

i=0 j=1
Then as a consequence of the proof of Proposition we get:

Proposition 5.1. We set logoen = Ekzo Ly7* with Ly, € Mgyq(K). Let ko be
the smallest integer such that ¢ > n. For k € N, we denote by Vi(Fs) C

Lie(C®")(Fu) the Ko -vector space (via Ocen ) generated by Ly () where x runs
through the set Lie(C®")(Fy).

Then for k > kg, we have

Vk(Foo) - Vko(Foo) = W(FOO)

By Theorem {.4] Taelman’s conjecture is true for C®"/Op:
Theorem 5.2. With the above notation, we have
U(C®™/F) C Lie(C®™)(F) + W (Fx).

Furthermore, U(C®™/Op) NW (Fx) and Lie(C®")(Op) "W (Fy) are A-lattices in
W(Fx), and

[ (Lie(C®™)(OF) N W (Fx)) : (U(C®"/Op) "W (Fx)) ]
L(C@n/OF)

In particular, Conjecture holds for C®"/Op.

4 e KX,

5.2. Log-algebraicity for tensor powers of the Carlitz module.

In this section, we apply our techniques to obtain log-algebraicity identities for

oA

We take F' = K and consider C®" /A as a t-module defined over A. The L-value
of C®" /A at 1 is known to be equal to the Calitz zeta value at n given by

L j4) = Cam) =Y S ain € K.
d>0a€Ay 4

We also set

Caln,z) ::Z Z ainZdGTz(Koo)-

d>0a€Ay 4
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Recall that kg be the smallest integer such that ¢* > n. We define u, :=
(yn—la e 7y0)t S Mnxl(K) by

1

(5.1)  up =g, (1) = ((t—09)...(t— 0

~ = i yi(t—0)"  (mod (t —6)™).
)

We deduce that
W(Ks) = 0cen(Koo)Un.
We are ready to state a log-algebraicity theorem for C®™ /A.
Theorem 5.3.
1) There exists b € A\ {0} such that
Ocan(bCa(n)) - u, € Ug(C®™/A).

In particular,

1
expoen | |2 D0 g | - dcen (Bhun | € Maxa(A).

d>0ac€Ay g4

2) There exists b(z) € Alz]\ {0} such that
D5 (b(2) Ca(n, 2)) - up € U(CEMJA[2])
where U(C® /A[2]) is defined in Definition[3.4 In particular, we have
expgan (05 (Ca(n, 2)) - Oz, (0(2))un) € My (Al2]).

Proof.
1) Theorem implies that
Ust(C®™/A) C Lie(C®™)(K) + W (Ks) = Lie(C®™")(K) + Ocen (Koo )tn.
We observe that dimg_ W (K ) = 1. Combining with the class formula for C®™ /A
(Theorem [3.1]), we deduce that there exists b € A\ {0} such that
Ocen (b L(C®™/A))u, = Ocen (bCa(n))u, € Usi(C¥™/A).
Thus we get Part 1.

2) By similar arguments, Part 2 follows from the class formula for C®" /A with an
extra variable proved by Demeslay (see [14]). O

5.3. Relations with the works of Anderson-Thakur and Papanikolas.

We keep the notation of Section Using Anderson’s method ([2, B]), Pa-
panikolas ([22], Theorem 7.3.3) obtained an explicit log-algebraicity theorem for
tensor powers of the Carlitz module which generalizes the fundamental theorem of
Anderson and Thakur ([4], Theorem 3.8.3). In this section, we will present another
proof of Papanikolas’ theorem as a direct consequence of Theorem

Recall that (see Definition

U(C®/Alz]) = {x € Lie s, (T2 (Kx)) | expgas (z) € CO(A[])}.
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Lemma 5.4. Let x,y € U(@/A[z]) Suppose that 1(x) = u(y) where v is the
projection on the last coordinate. Then x = y.

Proof. We set u =z —y € U(C/’E?;L/A[z]) Then ¢(u) = 0. We have to show that
u=0.

We recall that ev : Lie 5, (T.(Kw)) — Lie(C®")(K ) is the evaluation at z = 1.

Since u € U(C/'E{”/A[z])7 it follows that ev(u) € U(C®"/A). Since t(ev(u)) = 0, by
[30], Theorem 2.3, we deduce that ev(u) = 0. Thus u = (z — 1)v, and
(z = 1) expgsz, (v) € C"g@?l(A[z])
Therefore -
v e U(Cen/AlZ]).
Furthermore ¢(v) = 0. We can then continue with the same arguments applied to
v. Since z — 1 is irreducible in T, (K ), we deduce that u = 0. (]

Following Anderson and Thakur ([4], Section 3.8), we set

J
J ! .
Nt =1 %) =[JE" —), j>1
I=1
Then the Anderson-Thakur polynomials ,(t) € A[t] (n € N) is defined by the

generating series
-1

an(t) () o
Z F()aﬁ =z 1_2%(,)‘%

n>1 " j>0 7

where T',, € A is the factorial of n introduced by Carlitz (see [4], Section 3 for
details). For n > 1, we put

an(t) = Zgjtj, g; € A,
§=0
and we set
0
3a(2) =Y Cn | | e COn(Al)).
=0 0
07z

Anderson and Thakur proved a fundamental theorem ([4], Theorem 3.8.3) which
states that there exists 3,(z) € U(C®"/Az]) such that ¢(3,(2)) = T'nCa(n, z) and

eXp gz (3n(2)) = 3n(2)-

As an immediate consequence of Theorem and Lemma [5.5] we get the fol-
lowing Proposition which is one of the main theorems of [22] (see [22], Theorem
7.3.3).

Proposition 5.5. We have

3n(2) = 005 <¢A(n,z) L >un
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5.4. Tensor powers of the Cartlitz module over cyclotomic extensions.

For every ¢ € F,, we denote by P € A the prime such that P(¢) = 0. Then the
F,-algebra homomorphism x¢ : A — Fy, b(0) — b(¢) induces a group isomorphism

X¢: (A/PA)* ~ ]qudegp.

Let a € A be a monic polynomial which is square-free. We set A, := exp(7/a) €
Cs and denote by F := K, = K()\,) the ath cyclotomic extension of K. In this
section, we consider C®" as a t-module over Op.

We recall that K,/K is a finite abelian extension unramified outside A and oo
whose Galois group A, = Gal(K,/K) is isomorphic to (A/aA)*. This isomorphism
is given as follows: if b € A is prime to A, there exists a unique element o, € A,
such that

Ub()\a) = Cb(/\a)~

We set A, = Hom(A,, F,) ~ A,. For every character x € A, \ {1}, there exist
unique elements (1, ..., ( € F,, and unique integers ny,...,n; € {1,...,¢—1} such
that for any b € A prime to A, we have

l
x(on) = T xe. ™.
k=1

For 1 < k < I, we denote by Pj the prime of A such that Py({x) = 0. By [26],
Section 9.8, the Gauss-Thakur sum attached to the character x is defined by

ng

900 =11 > xa®) GOk

k=1 be A\P, A
deg b<deg Py

l

Finally, we set g(1) = 1.
We set

o= »_ 9(x) € O,
x€Aq
then we have Op = A[A;]n,.

We put F = Fu(x(As), x € ﬁa) and denote by 7 : Fio @, F — Fo ®p, F the
F-algebra homomorphism such that for all z € F, 7(x) = x%. Then for x € ﬁa,
we write xy = HL:IX?: with (1,...,¢ € Fand ny,...,n; € {1,...,¢— 1} and we
have

1
7(90) = [] (G — )™ g(x),
k=1

3(g(x)) = x(6)g(x), 0 € Ay = Gal(L(F)/K(F)).
The L-values attached to the character x are defined by

L(n’x)zz Z MEQ%E n>1,

an
d>0a€Aq, +

where y = Hi::1 Xer-
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We define e, = ﬁ Ysea, X(0)716 € F[A,]. The equivariant L-values are given
by
L(n,As) = > L(n,x)ey € Koo[Aa]*, n>1.
X€A,
Recall that ¢ : Lie(C®™")(F) — Fw be the projection on the last coordinate.
We recall the equivariant class formula for C®"/Op.
Theorem 5.6. Let n > 1 be an integer and recall that L = K(\,). We have the
following equality in Ko[Ag]:
L(n,A,) = [Lie(C®™)(OF) : Ust(C®" /OF)] aa,)-
Proof. Using similar methods to those introduced in [8], one can prove (see [14]
and [13], Theorem 4.15):
L(n, Aa) = [Lie(C®")(OF) : U(C®H/OF)]A[AG] . FittA[Aa]H(C(Xm/OF).
By similar arguments to the proof of Theorem we have
U(c®"/Or)
JUso(C®n JOF)”
The Theorem follows immediately. O

FittA{Aa]H(C(@n/OF) = FittA[A

We are ready to prove an equivariant generalization of Theorem [5.3]

Theorem 5.7. Let n > 1 be an integer. Then there exists a free A[A,]-module
of rank one M C Ust(C®™/OF) such that M = A[Ay]L(n, Ay)X,, for some vector
X, € Mnxl(OF)

In particular, expeen (L(n, Ag)X,) € Myux1(OF).

Proof. Recall that ko be the smallest integer such that ¢*¢ > n. By Theorem |5.2
we have

0

Ust(C®"/Op) C Lie(C®")(L) + Koo [Ag] L, (1)
7+ (114)
Let x € ﬁa be a character. We still denote by 7 the continuous homomorphism

of F-vector spaces 7 ® Ir : Lie(C®")(Fy) ®p, F — Lie(C®")(F) ®F, F. It follows
that

0
ex (Ust(C®" [Op)®p,F) C Lie(C¥")(9(x) (K ®p,F))+ (Koo ®r,F) L,
7 (g(x))
Theorem [5.6] implies
L(n, x) = [Lie(C®")(OF @, F) : e (Us(C®"/Op) @, F)] agy, F-
We conclude that there exists X, (x) € ey (Lie(C®™)(OF) ®r, F) such that
1) Zn(x) = L(n, X) Xn(x) € ex(Ust(C®"/Op) @, F),
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2) (Xn(x)) = b(x)g(x) for some b(x) € A®p, F\ {0} where we recall that ¢ is
the projection on the last coordinate.

Further, we can choose elements X, (x) such that X,(x?) = o(X,(x)) for any
oe A, We set

%= Y Xy € Lie(@®)(0)
X€A,

and
Zn = Z Zn(X) S USt(C®H/OF).
X€A,
It follows that

1) Zp, = L(n,Ay) X, and M = A[A],Z, C Ust(C®"/Op) is a free A[A,]-module
of rank one,

2) UM) = b(Aq)L(n, Ag)OF where b(Aa) =3 (&, b(X)ex € A[Ad] N K[A]*.
The proof is finished. U

As an immediate corollary, if we project on the last coordinate, we obtain an
equivariant generalization of Anderson-Thakur’s theorem ([4], Theorem 3.8.3):

Corollary 5.8. Let n > 1 be an integer. Then there exists a free A[A,]-module of
rank one M C Usy(C®"/OF) such that

(M) =b(As)L(n, Ay)
for some b(A,) € A[A] N K[AL]*.

APPENDIX A. A COUNTEREXAMPLE TO TAELMAN’S CONJECTURE

In general, Taelman’s conjecture is not always true. In this section, we will
present a simple counterexample which is a non-trivial extension of the Carlitz
module by itself, i.e. we have an exact sequence of t-modules0 - C - EF — C — 0
that does not split. We should mention that this counterexample was independently
constructed by Taelman []

Let F/K be a finite extension and let Op be the integral closure of A in F. Let
E: A— Msy2(Op){7} be the t-module given by

E9:<g §‘>+<(1) (1))7 o€ O0p\ {0}.

Thus 95(8) = (g 3‘) .

Let ¢ : Lie(E)(Fs) — Fs be the projection on the second coordinate, then ¢
induces an exact sequence of K..,-vector spaces:

0 — (9p(0) — 01,) Lie(E)(Fao) — Lie(E)(Fx) — Fag — 0.

L. Taelman, private communication, Sep. 2018.
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A.1. The dual t-motive attached to E.

We write down explicitly the dual t-motive attached N over C,, to E. Then
N = Cu{o}e; ® Co{o}es where e; = (1,0) and e3 = (0,1) where ¢ acts via right

0+0o 0 ) . It follows that

multiplication by the matrix ( 040

(t—0)er = ogeq,
(t —0)ea = aey + oes.
Thus we obtain N = Cy[t]le; @ C[t]ea, No = Cooer @ Cooea. As a consequence,
the t-module E is A-finite. We observe that oes & (t — 0)N since a # 0.

Further, one sees that E is pure of weight 1 and the Hodge-Pink weights of F
are 0 and 2. In fact, the calculations are done with the dual ¢t-motive N and follow
the same lines as those given in [20], Example 4.32.

A.2. Computation of L(E/Op).

Let 8 be a maximal ideal of Op and let P € A be the monic generator of the
maximal ideal BN A of A. We put fyz = [Or/B : A/P]. The projection on the

second coordinate induces two exact sequences:
Or

) — 0.

0— Lie(C)(%) — Lie(E)(%) — Lie(C)(
O O Or
0— C(f) — E(T) — C(a

) — 0,

Thus we obtain o
[Lie(E) ()l = PP,

Or

[ECq

Ja= (P —1)%

It follows that
L(E/OF) = COF(]‘)z € Koo

A.3. Computation of units and Taelman’s conjecture.

We put expp = Zizo E;7,E; € Mayxo(F) and Ey = Ip. Recall that exp, =
2250 D%Tj where Dy = 1 and for j > 1,D; = (69" — 0)Dj_,. From the functional
equation expy Op(0) = Eygexpy, it follows that for ¢ > 1, we have

Ei05(0)" — 05(0)E; = BV,
We deduce that

1

e

E;, = (Di f) for some e; € F.
0 5

_ (expe  Gq
XPp = < 0 expc> ’

where G, € F{{7}} converges on F,. Thus expy is surjective on Msx1(Cs).
Therefore, the t-module F is uniformizable.

Thus



26 BRUNO ANGLES, TUAN NGO DAC, AND FLORIC TAVARES RIBEIRO

Remark A.1. As the referee pointed out, the fact that the ¢t-module F is uni-
formizable can follow directly from [20]. We are grateful to the referee to share the
ideas with us and present below his proof.

In fact, we denote by N¢ the dual t-motive attached to C. Then we have a
short exact sequence of dual t-motives 0 - No — N — N¢ — 0. By [20], Lemma
4.20, N is uniformizable since N¢ is uniformizable. Thus the ¢t-module E is also
uniformizable by [20], Theorem 5.28.

Note also that, if ( ) € U(E/OF), then we have exps(y) € Op. Recall that

x
y .
the map of K-vector spaces w : Lie(E)(F) — (8E(0)I:Igf))l(fi%(%)(Fm) can be iden-

tified with the projection on the last coordinate ¢. In particular, w |(g/0,) is not
injective.

For simplicity, we identify w and ¢. Suppose that Taelman’s conjecture (Con-
jecture holds for E/Op. It means that there exists Z C U(E/Op) of A-rank
[F : K] such that in F.,, we have

[OF : «(Z)]a = BL(E/OF), BeK*.

However, we have seen that «(Z) C U(C/Op). It implies that
[U(C/OF) : (Z)]a € A\ {0}
By Taelman’s class formula for C/Op (Theorem [3.1)), we obtain
[OF : U(C/OF)|la = B'L(C/OFr), B € K*.

Therefore,

[Op : u(Z)] = B"L(C/OF), B" € K*.
Since L(C/Or) = (o, (1) and L(E/OFr) = (0, (1)?, we deduce

Cop(l) € K*,

which is conjecturally a contradiction.

For F = K, it is known that 4(1) is transcendental over K (see [29, [30]). We
have proved:

Proposition A.2. Let « € A\ {0}. Let E : A — Mouo(A){7} be the t-module

defined over A defined by
0 « 1 0
Ey = <O 9>+<0 1)7’.
Then C’onjecture is false for E/A.
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