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Abstract 
Bistable generator for vibration energy harvesting is one of the most promising solutions to reach 
practical enhanced performance. Due to the BSM (Buckled-Spring-Mass) specific behavior, the 
deformation of the piezoelectric transducer is nonlinearly dependent on the displacement, especially in 
the inter-well motion case. An analytical model is developed using harmonic balance analysis for the 
BSM generator architecture. Contrary to the usual method, a special doubled frequency voltage 
solution in the inter-well motion case is assumed in harmonic balance analysis to obtain an accurate 
predictive model，which is validated by experimental results. The influence of five critical parameters 
on the performance is thoroughly discussed. Design rules are then deduced: low damping ratio, 
properly high coupling level, matched load, optimal buckling level and low characteristic frequency 
are required to get optimal performance in the inter-well motion case. Besides, we show some 
interesting results about the parameter optimization study. 
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1. Introduction 
The building of smart city promotes the rapid development and wide applications of WSNs (Wireless 
Sensor Networks). Good prospects have been foreseen in many facets of the future society, including 
industry, health, agriculture, scientific research (Ruiz-Garcia et al., 2009; Oliveira et al., 2011; Ko et 
al., 2010) etc. The energy autonomous requirements for WSNs are being more and more important 
since people expect as less interference in daily activities as possible. Maintenance cost reduction and 
lifespan extension are highly concerned. The advancements in energy harvesting technology have 
confirmed it as the most promising solution to the energy autonomy of WSNs. Among the numerous 
available wasted energy sources, vibration energy exhibits some good features of relatively high 
power density and pervasive existence.  

 Continuous progress has been made in vibration energy harvesting during recent decades (Toprak 
et al., 2014; Harb, 2011). At the early stage, most of vibration generators were linear with narrow 
operation band (Roundy et al., 2003; Xu et al., 2012; Arroyo et al., 2013). However, the majority of 
environment real vibrations are variable and broadband (Neri et al., 2012). Then, wideband vibration 
harvesting solutions are going through increasing developments as they are capable of providing stable 
and robust performance. Researchers have proposed a variety of mechanisms (Tang et al., 2010; Zhu 
et al., 2010): resonance tuning solutions (Leland and Wright, 2006; Roundy and Zhang, 2005; Challa 
et al., 2011), multi-modal generators (Shahruz, 2006; Yang and Yang, 2009), frequency-up-conversion 
methods (Pillatsch et al., 2012; Galchev et al., 2011; Wickenheiser and Garcia, 2010), nonlinear 
generators (Stanton et al., 2009; Sebald et al., 2011; Nguyen and Halvorsen, 2011) and other concepts.  



As one of the numerous effective and promising mechanisms, nonlinear generators have attracted 
great interests recently. Various architectures were developed, such as piecewise generators (Soliman 
et al., 2008; Liu et al., 2012), monostable softening or hardening generators (Mann and Sims, 2009; 
Hajati and Kim, 2011), bistable generators (Liu et al., 2013a; Liu et al. 2014; Masana and Daqaq, 2011; 
Cottone et al., 2012; Liu et al., 2015; Tang et al., 2011; Cottone et al., 2009; Mann and Owens, 
2010;Stanton et al., 2010; Erturk and Inman, 2011), tri-stable generators (Kim and Seok, 2014) etc. 
Among them, the bistable generator is considered as a most promising one because of its unique 
features. The snap-through mechanism in the case of large excitations induces large motion amplitude. 
The frequency-up-conversion effect for the low frequency excitation and the nonlinear wideband 
response can significantly enhance the harvested power and the operation band. 

Although many bistable generators have been published (Harne and Wang, 2013a; Pellegrini et al., 
2013), they can be classified into two categories according to the bi-stability mechanisms: i) 
mechanical buckling effect (Liu et al., 2013a; Liu et al. 2014; Masana and Daqaq, 2011; Cottone et al., 
2012; Liu et al., 2015); ii) magnetic interaction (Tang et al., 2011; Cottone et al., 2009; Mann and 
Owens, 2010;Stanton et al., 2010; Erturk and Inman, 2011). 

Until now, numerical simulation and experimental test are two common ways for the investigation 
of the bistable generator seen in the literature. They usually require significant computation or test 
time while the results are highly sensitive to the initial states. An overall understanding of the bistable 
generator’s properties and available solutions is usually missing. Consequently, the optimization of the 
bistable generator becomes somehow difficult and cumbersome. Analytical approach is a good way of 
addressing this issue. However, only few efforts about modeling and optimization with analytical 
methods have been performed in the field of nonlinear energy harvesting. Stanton et al. investigated 
the dynamics of a bistable cantilever generator realized with magnetic interactions using harmonic 
balance analysis for a generic parameter study (Stanton et al., 2012a) and Melnikov method for a 
simplified predictive criterion about the homoclinic bifurcation (Stanton et al., 2012b) meanwhile. 
Owen and Mann investigated the linear and nonlinear electromagnetic coupling models of the 
harvester with the harmonic balance approach (Owen and Mann, 2012). Harne et al. also utilized 
harmonic balance method for analyzing a bistable harvester with an auxiliary linear oscillator (Harne 
et al., 2013b) and subsequently studying the fundamental and super-harmonic effects in bistable 
energy harvesting (Harne and Wang, 2014). Neiss et al. proposed analytical expressions for the 
jump-up and jump-down points of monostable nonlinear generators (Neiss et al., 2014) through 
harmonic balance method. More recently, Leadenham and Erturk took advantage of the harmonic 
balance approach for developing an analytical model for a nonlinear M-shape harvester (Leadenham 
and Erturk, 2015) while Chen and Jiang employed the multi-scale method for studying the internal 
resonance of a bistable harvester with an additional linear oscillator (Chen and Jiang, 2015). However, 
except comparisons with numerical simulations, experiments did not completely confirm the analytical 
model accuracy in usual cases. These studies do not analyze the performance dependency on the 
bistable generator’s parameters thoroughly and discuss the optimization issue in depth as well. 
Moreover, these analytical models are usually derived on the assumption of linear coupling force. 
Consequently, the present analytical models in the literature are not applicable for the BSM generator 
because of the nonlinear coupling force due to its special architecture. 

In order to propose an improved analytical model for the BSM (Buckled-Spring-Mass) generator 
architecture recently introduced by the authors (Liu et al., 2013a), a proper perturbation method is to 



be determined. Among different approaches, the straightforward expansion and the Linstedt-Poincaré 
method are incapable of excluding secular terms while the method of averaging is likely to have 
inconsistent results in some cases (Nayfeh AH and Mook DT, 2008). Meanwhile, considering that the 
multi-scale approach usuallly requires complex operations, the harmonic balance method is considered 
as a better choice due to the simplicity and the consistency with the real bistable harvester, since some 
prior knowledge about the solutions can be known in advance from the literature or primary 
experiments. The frequent utilization (Stanton et al., 2012a; Owen and Mann, 2012; Harne et al., 
2013b; Harne and Wang, 2014; Neiss et al., 2014; Leadenham and Erturk, 2015; Chen and Jiang, 2015) 
justifies the use of the harmonic balance method as well. Therefore, the harmonic balance method is 
selected for the modeling of the bistable generator. A new specific model is then established in this 
paper. The model is firstly validated using experimental results. Following that, the influence of the 
critical parameters on the performance is studied. Then, the average power for the full frequency range 
in the inter-well motion case is used as a figure of merit to aim at the best available performance of the 
generator through the optimization study with the proposed analytical model. 

 

Figure 1. Scheme of the BSM generator. 

2. Bistable generator model 
As presented in figure1, the BSM system is composed of two piezoelectric components acting as 
electromechanical springs and a central dominant inertial mass respectively. Four flexible hinges are 
used as rotation parts in the structure and each one can be viewed as the combination of an ideal 
revolute joint and a rotational spring with the stiffness KT. The rotation center is placed at the middle 
point of the hinge. Different from many reported bistable oscillators, the piezoelectric transducers 
operate in d33 mode, ensuring a high electromechanical coupling level. Table 1 lists the BSM 
parameters. 

Tab. 1. Parameters’ definitions for the BSM generator 
Definition Symbol 
Mass  M 
Horizontal Distance between two adjacent rotary centers  L 
Stiffness of one piezoelectric spring  K/2 
Damping coefficient  µ 
Capacitance of two parallel piezoelectric elements  C0 
Piezoelectric force factor  D 
Rotational stiffness of hinge  KT 
Initial buckled position  x0 
Electrical load resistance R 



 Before utilization for harvesting, all the components are assembled and aligned horizontally with 
the centerline x=0 without deformation. We denote this initial free length between two adjacent rotary 
centers of the piezoelectric element by l0. With a small tuning displacement applied at the left, the 
piezoelectric transducers are compressed while the mass does not move at first due to the rotational 
stiffness of the flexible hinges before the happening of buckling. As the tuning displacement increases 
to 'X, the hinges buckle and the mass moves up or down to one of the two symmetric stable positions 
(x0 or –x0). Then we have:l0=L+'X���Easy to find, the pre-strain of the piezoelectric elements induced 
by the rotational stiffness is 

2 2
0 0s L x l'  � �                                                             (1) 

while the variation of the length between the two adjacent rotary centers during operation is 
calculated by: 

2 2 2 2
0L L x L x'  � � �                                                      (2) 

Therefore, the deformation of the piezoelectric transducer is written as the function of the mass 
position x: 

2 2
0l s L l L x'  ' �'  � � �                                                  (3) 

With a short version of the model of the BSM generator given hereafter, more details can be 
found in a previous article (Liu et al., 2013a). The classical Euler-Lagrange approach is applied to 
deduce the dynamic equation. Neglecting any other inertias apart from the central inertial mass 
considered, the kinetic energy of the system is:  

                                                                  (4) 

We can also write the expression of the total potential energy as follows: 

2 214
2 2
KU l KTT ' � u                                                        (5) 

in which T≈x/L. The first term in eq. (5) represents the potential energy of the transducers while the 
second term comes from the flexible hinges. 

The Euler-Lagrange equation is then written as: 

   (6) 

where Vp is the piezoelectric voltage.  

The electric charge balance equation is: 

                                           (7) 

in which I is the piezoelectric transducer’s output current going to the interface circuit. Combining eq. 
(6) and eq. (7), the full electromechanical equation set is: 



               

(8) 

The simplification is carried out here using the Taylor expansion (assuming x<<L). The BSM 
generator has two stable equilibrium positions x = x0 and x = –x0 and one unstable equilibrium position 
x=0 providing that Kθ < (l0

2-L2)K/8 is satisfied. It means that the hinge’s stiffness determines the 
threshold of the buckling. Then the simplified model shown in figure 2 (a) can represent the BSM 
structure after buckled. 

 From figure 2 (a), it is interesting to notice that the transducers’ deformation Δl is not proportional 
to the displacement x, which is typical in many regular generators. Instead, a relatively complex 
nonlinear relationship between Δl and x exists as shown in eq. (3). Accordingly, the electrical current 
generated by the transducers is not only related to the velocity 𝑥̇ but also to the position x as indicated 
by the electric equation in eq. (7). Moreover, because of the special symmetric structure of the BSM 
generator, the deformation Δl is identical for position x and –x. For better understanding, the potential 
and the deformation curves are plotted in figure 2 (b). 

Using the parameters defined in Tab.2, eq. (8) is normalized as: 

                              (9) 

Using the normalized parameters, the generator’s power output is: 

2 2 2 2
2 20 0

2
0 1p
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C k
D Z

    
�                                     

(10) 

Then the product of the output power P and the efficiency of the interface circuit determine the final 
harvested power. For the case of a pure resistor load, the circuit efficiency would be 100% and P is 
therefore the harvested power.  

      

(a)                                      (b) 
Figure 2. (a) Simplified sketch for the BSM generator modeling; (b) Potential and deformation curves. 



Considering the simplest case of a resistor R as the electric load, eq.(9) can be further written as: 

                             (11) 

where Zr=1/R/C0. 

It is clear that the generator’s performance is related to five normalized parameters: Z0 the 
characteristic frequency, k2 the electromechanical coupling coefficient, [��the mechanical damping 
ratio, H� the buckling level and Zr the electric load. In this case, the normalized power is expressed as: 

2 2
20

21
rkP V

k
Z Z

 
�                                                             

(12) 

Tab. 2. Normalized parameters and variables 
Normalized parameters and variables Symbol Definition Unit 
Buckling level  H� x0/L  
Electromechanical coupling coefficient  k2 D2/(D2+KC0) �
Mechanical damping coefficient  [� μ/(2H.���0���)  
Characteristic angular frequency  Z0 H.����0��� rad s-1 
Normalized displacement x  x/L  
Normalized excitation J  J/L s-2�
Normalized voltage V  Vp /(D x0/C0)�  
Normalized current I  I / D x0� s-1 
Normalized power P   P/(ML2) s-3 

3. Harmonic balance analysis and validation 
In this section, harmonic balance analysis is used to study the dynamic responses, especially for the 
desired inter-well motions under external harmonic excitations. Compared with traditional numerical 
and experimental investigation approaches for the nonlinear generators, the analytical method is more 
efficient on characterizing the dynamic properties of the BSM generator for different parameters’ 
variations and providing important guiding information for design. It also provides a rapid and 
convenient solution for initial optimizations and evaluations.  

It is well known that the periodic response for a harmonic excitation can be approximated by a 
truncated Fourier series. The number of the preserved orders determines the accuracy. Since it is 
shown in (Cohen et al., 2012) that the periodic motion of the bistable generator has a dominant 
fundamental frequency component and is similar to a sinusoidal signal, the motion solution of the 
BSM generator is assumed as: 

                                       (13) 

The amplitude of the motion is supposed to vary slowly so that the second or higher derivatives 



are neglected. c(t) is the DC component of the intra-well motion and the value is zero for the inter-well 
motion as explicated (Stanton et al., 2012a).  

3.1 Intra-well motion 
When the generator vibrates around one of the two equilibrium positions, the displacement DC value 
can be considered as a constant, and it equals H in the case of small vibrations. Therefore, the 
deformation is assumed as approximately proportional to displacement. Then we estimate the 
piezoelectric voltage solution as: 

                                         (14) 

with only the fundamental frequency kept. 

Substituting eq. (13) and eq. (14) into eq. (11), removing the high-order harmonic terms and 
balancing the items for DC, sinZt and cosZt components, five equations are obtained: 

   (15) 

In a steady state operation, eq. (15) becomes: 
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With r=(a2+b2 )1/2and rv=(p2+q2)1/2 standing for the amplitude of the displacement and the voltage 
respectively, the equation group (16) can be simplified as: 
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where  
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The frequency response of the BSM generator is finally determined by finding the real roots of eq. 
(17).  

Figure 3 depicts the intra-well displacements responses for different damping cases. The thick 
lines represent stable solutions while the thin lines are unstable solutions. The stability of each solution 
is figured out using the perturbation method (Nayfeh and Mook, 2008). For a given solution s(a0; b0; 
c0; p0; q0), a small perturbation Δs(Δa; Δb; Δc; Δp; Δq) is applied so that we can develop s+Δs. 
Substituting this perturbed solution into eq. (16) and linearizing it for small Δs, we obtain a new 
differential equation set for the new variable Δs. The stability of the solution s is determined along 
with the eigenvalue of the coefficient matrix: stable if all the eigenvalues have negative real parts; 
unstable if there are any positive real parts. This stability determination is also applied for the 
following inter-well solution. As seen in the figure 3, the BSM generator behaves as a softening 
Duffing oscillator while the nonlinear effect decreases as the damping coefficient increases.  

 

Figure 3. Intra-well displacement responses for different damping coefficients 
(��𝛾̅ ������H ��������Z� �����Zr=Z0, k2=0.07, [={0.0156, 0.03, 0.045}). Thick lines, stable solutions; 
Thin lines, unstable solutions. 

The DC component c for the intra-well motion is related to the amplitude because the system in 



this case is not symmetrical around the equilibrium position. As the amplitude increases, c will drift 
from H towards the position 𝑥̅=0. The relationship between c and r is pictured in figure 4. As the 
displacement amplitude r goes to 0.8H, c gets close to the zero position. However, it is worthy of note 
that the amplitude r for the inter-well motion needs to satisfy r<c. Otherwise, the motion of the 
generator has crossed the potential saddle (c-r<0) and should be analyzed as the inter-well motion case. 
The converging point of the red thin line and the thick line in figure 4 indicates this transition point. 
The intra-well solutions are valid at the left side of the critical point. When the amplitude goes to the 
right side, the inter-well solutions are applicable. An example of the transition from the intra-well 
motion to the inter-well motion is demonstrated in figure 3 for [=0.0156. The amplitude responses that 
are higher than the indicated critical point in the figure are no longer valid as stable solutions. 

 

Figure 4. DC component c versus the displacement response amplitude r (H ��������Zr=Z0=110, 
k2=0.07,�[=0.0156). 

3.2 Inter-well motion 

Since the most desired properties come from the inter-well motion of the bistable generator, main 
efforts go to the solutions in this case. With the same assumed displacement solution as eq. (13), the 
voltage solution for the inter-well motions is a little different. Since the deformation of the 
piezoelectric components is symmetric about the position x=0 as figure 2 (b), the same is applicable to 
the piezoelectric voltage. Then in a period of a harmonic inter-well motion, the piezoelectric voltage 
has twice the identical waveform for the x>0 and x<0 range. It means the voltage frequency is two 
times the displacement frequency. Moreover, it is observed in the electric equation in eq. (11) that the 
voltage is proportional to the product of the displacement and the velocity. As a result, the frequency is 
doubled according to the trigonometric formula. Then we have: 

                                      (19) 

With the same operations as for the intra-well motion, the equation group for solving the steady 
states is: 
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After the simplification, we have the final equations: 
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Figure 5 shows an inter-well frequency response for a given BSM generator by solving eq. (21). 
The top thick line represents the stable inter-well solution while the two red thin lines are the unstable 
solutions. Since eq. (21) only accounts for the high-energy inter-well orbits, it is necessary to use the 
eq. (17) to obtain the low-energy intra-well orbits as shown by the two thick lines (stable) below and 
the green thin line (unstable) for the purpose of completed solutions. It is clear that for the same 
excitation, the inter-well motion has a much better response than the intra-well case, thus (resulting in) 
more power to be harvested. The dashed lines with arrows indicate the jump positions between the 
high-energy orbit and the low-energy orbit. The jump-up arrow represents the harvester transiting from 
the low-energy orbit to the high-energy one for the reverse sweep while the jump-down arrow is the 
position from the high-energy orbit to the low-energy one for the forward sweep. These jump positions 
are obtained through the stability boundary of the solution as shown in figure 5. The special hysteresis 
phenomena of the nonlinear system response are easily inferred from the jump indications. 



 

Figure 5. Inter-well (solid lines) and intra-well (dashed lines) displacement responses of a BSM 
generator (𝛾̅ ����H ��������Z� �����Zr=Z0, k2=0.07, [=0.0156). Thick lines, stable solutions; Thin lines, 
unstable solutions. 

3.3 Experimental validation 

In order to validate the model obtained with harmonic balance analysis, the analytical solution is 
compared with the experimental results for a BSM generator prototype (Liu et al., 2013a) with the 
parameters listed in Tab.3.  

Tab. 3. Parameters for the BSM generator 
M(g) L(mm) K(N/m) x0(mm) C0(µF) D�1�V) µ(N•s/m) R(KΩ) J�m/s2) 
45.8 33 3.9e5 1.25 2.3 0.26 0.16 3.84 3 
H� Z0(rad/s) k2 [� Zr(rad/s) 𝛾̅(s-2)    

0.0379 110.5 0.0684 0.016 113 91    
 

The prototype includes four flexible hinges made from machined PTFE material and two 
APA120S from Cedrat-Technologies actuator used as the piezoelectric components (Figure 1). A 
tuning screw is utilized to adjust the buckling level H� Fixed on a horizontal shaker table, the prototype 
is excited using a chirp acceleration of amplitude 3m/s2 from 7Hz-42Hz with a rate of 0.025Hz/s 
which is slow enough to obtain the steady state responses. A Matlab© program is used to produce the 
desired excitation signals and communicate with the real-time control board (RTI1103, dSpace©). The 
shaker (2075E-HT, The Modal Shop©) is driven through a PI feedback loop using an accelerometer 
(M352C68, PCB©) to ensure constant acceleration amplitude. A differential optical vibrometer 
(OFV-552 and OFV-5000, Polytec©) allows the displacement of the central mass to be measured. 
Finally, a load resistance is selected according to the classical strategy for linear harvesters as follows: 

0 0

1R
C Z

 
                                                                  

(23) 

Due to the resistor box value limitation, a resistor 3.84kΩ is used in reality. Then we have Zr=113(≈
Z0) in this case. 



 

(a) 

 

(b) 

Figure 6. Analytical results vs experimental results for a BSM prototype: (a) Displacement; (b) Power. 
Solid circles: experimental results of forward sweep; Crosses: experimental results of reverse sweep；
Thick lines: stable analytical solutions; Thin lines: unstable analytical solutions; Dashed lines: 
numerical results of forward sweep; Dash-dot lines: numerical results of reverse sweep. 

Figure 6 presents the displacement and power responses with three different approaches: 
analytical, numerical and experimental. The solid circles represent the experimental forward sweep 
response and the crosses the reverse sweep response. The thick lines are stable solutions while the thin 
lines are unstable solutions calculated from the analytical model. Numerical results for the forward 
sweep and the reverse sweep are plotted with dashed and dash-dot lines respectively. As we can see, 
the experimental results are very close to the analytical and numerical ones. However, we can observe  
relatively large deviation at some positions between the analytical and experimental results indicated 
by the texts. It is due to the chaotic motions or the super-harmonic resonance (Nayfeh AH and Mook 
DT, 2008) of the BSM generator. 

It is worthy of note that this chaotic motion cannot be analyzed with the harmonic balance 
method or other analytical methods with periodic motion assumptions. Although Melnikov approach 
presents a common way of predicting chaos, it is only usable in weakly excited systems (Stanton et al. 



2012b) with preliminary conclusions while the happening of chaos is still difficult to foresee 
accurately. Besides, since the harmonic balance method only considers the fundamental frequency 
component, the super-harmonic resonance is not included in the model either. However, as the chaotic 
motion and the super- and sub- harmonic resonances are infrequent events, it is not so relevant when 
considering the power performance (only the stable solutions) as shown in figure 6 (b). Thus, further 
efforts for detailing these two phenomena are beyond the scope of this article. 

By inspecting figure 6, better agreements between the experimental results and the numerical 
results are found, especially for the chaos and super-harmonic resonance observed in the simulation as 
well. However, since the solutions of the bistable generator is strongly dependent on the initial 
condition (Erturk and Inman, 2011; Nayfeh AH and Mook DT, 2008), the numerical simulation can 
only give the specific solution corresponding to a determined initial status as the experimental 
approach, while losing the completeness of the solution space. As shown in figure 6, the intra-well 
solution at the low frequency side is not visible. Moreover, due to the high time cost for the numerical 
simulation, it is difficult to perform complete parameter optimization study as the analytical approach. 

Despite of the small discrepancies, the good correlation between experiment and theory confirms 
that the analytical model is fully capable of predicting the performance of the BSM generator. Thus, 
we can conclude that it can be an efficient tool in the design and optimization, especially at the early 
stage. 

4. Discussion 
Compared with commonly used numerical methods, the analytical model is able to provide simulation 
results in a much quicker way. Moreover, the whole solution space of the dynamic system is provided by 
the analytical method whereas numerical simulation results are related to the chosen initial conditions. As a 
result, the analytical model presents more details of the system, which helps to understand the generator’s 
behavior. In this section, the influence of the five critical parameters ([, Zr, k2, H, Z0) on the generator’s 
performance is studied with the analytical model. As a result, the optimization of the BSM generator is 
provided with theoretical support. As the basis for further discussion, the generator is assumed to have the 
same inertial mass M and feature size L as well as identical excitation case considered (𝛾̅ = 91s-2, 22 rad 
s-1-275rad s-1). Since the high-energy inter-well response is sought, the discussion is mainly focused on this 
case. 
4.1 Damping ratio [ 

Figure 7 shows the inter-well responses for the increasing damping coefficient that might be from the 
mechanical part or the electric part or both. As can be seen, the BSM generator jumps from the 
high-energy orbit to the low-energy orbit earlier for higher damping cases as expected (Stanton et al., 
2012a). Nevertheless, the influence of the increasing damping on the low-energy and the high-energy 
orbits is not so obvious below the jump frequencies. The responses at these positions are almost 
identical, similar to the case of vibration with constant displacement amplitude. The jump locations 
from low-energy to high-energy orbits are not affected either. It implies that, in these cases, the 
generator is not sensitive to the damping. As a result, it is possible to extract more energy with the 
circuits in these situations. However, from a global perspective, it would be better to aim at lower 
damping systems to have a wider band and higher power output. 

 



 

Figure 7. Inter-well displacement responses for different damping ratios. (𝛾̅ ���s-2��H ��������Z� ��� 
rad s-1��Zr=Z0, k2=0.07, [={0.0156, 0.03, 0.045}). Thick lines: stable solutions; Dotted lines: unstable 
solutions; Arrows: the jumps between the high-energy stable orbits to low-energy stable orbits. 

 

   
(a)                                       (b) 

 

(c) 

Figure8 (a) Inter-well displacement responses for different resistor values; (b) Corresponding power 
responses. (c) Average power of inter-well motions versus different load values over the concerned 
frequency range. ( 𝛾̅  ���s-2��H ��������Z� ����rad s-1��Zr={0.01, 0.1, 0.5, 1, 10, 100}Z0, k2=0.07, 
[=0.0156). 



4.2 Electric load related pulsation�Zr 

The electric load related pulsation Zr=1/(RC0) represents the load. It has strong relationship to the 
application and influences the harvested power and the dynamic displacement responses eventually. 
Figure 8 (a) and (b) shows the inter-well displacement responses and the corresponding power for 
different resistor values (for fixed C0). For the power, only the meaningful stable solutions are 
considered. It is interesting to find out that the inter-well motion range first decreases then increases 
with Zr (Zr=0.01Z0 o Zr=Z0). The jump position from the high to the low energy orbits moves from 
high frequencies indicated by the green arrow to the low frequencies shown by the black arrow. 
However, we can see the harvested power enhanced by comparing the power curves for these two 
different Zr cases. As Zr keeps on increasing until 100Z0, the jump-down position shifts back to a 
much higher frequency while the power decreases sharply at the same time. When looking back at the 
influence of the damping on the system responses, it seems that the power dissipated at the load acts as 
a specific electrical damping for the generator motion as pointed out in this article (Liu et al., 2013b). 

   
(a)                                          (b) 

 
(c) 

Figure9 (a) Inter-well displacement responses for different coupling levels; (b) Corresponding power 
responses. (c) Average normalized power of inter-well motions over the concerned frequency range versus 
coupling levels. (𝛾̅ ���s-2��H ��������Z� ����rad s-1��Zr=Z0, k2={0.01,0.035, 0.07, 0.18, 0.24}, [=0.0156). 

Moreover, from the power response trends for three different load conditions, one can infer that 
there is an optimal value of the load resistor to get the maximum total harvested power over a specific 
frequency range. The trade-off between the harvested energy and the operation bandwidth has to be 
considered. To get a clear relationship between the harvested power and the load value, the average 
normalized power of the inter-well motion over the concerned frequency range 
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is calculated for five load cases Zr={0.01, 0.1, 1, 10, 100}Z0. A notable issue to be pointed out is that 
only the high-energy orbit considered. For the frequency range without inter-well motions, 𝑃̅ is 
considered as zero for the power contribution of the intra-well motions in these cases is negligible. It is 
seen in figure 8 (c) that an optimal load value exists around Zr=�Z0. As Zr changes from 0.5Z0o10Z0, 
the power stays above 70% of the maximum value. Therefore, the availability of a satisfying power 
level for a considerable load range is an obvious advantage of the bistable generator. 

4.3 Coupling level k2 

Figure 9 (a) and (b) pictures the displacement responses and the power responses respectively for three 
different coupling levels. As we can see, the increase of the coupling level leads to a decrease of the 
inter-well motion range and an increase of the available power for the frequency points where the 
inter-well motions appear in each case. The shrink of the inter-well motion is due to the enlarged 
damping brought by the increased harvested energy and piezoelectric force. Figure 9 (c) presents the 
average normalized power of the inter-well motions defined in eq. (24) for more different coupling 
levels. 

It is shown in figure 9 (c) that the power first rapidly increases with k2 when its value is small. 
Then the power increases slowly until reaching its maximum value. Finally, it begins to decrease very 
slowly with increasing coupling. As the coupling level keeps on increasing, it brings more damping in 
the form of harvested energy so that the displacement amplitude decreases obviously. As a result, the 
power increase slows down when it approaches the apex. As the coupling continually rises to a 
nonrealistic value, the dynamic response of the generator is further suppressed. As a result, the power 
response will decrease except an alternative optimal load value selected. This trend is very similar to 
the relationship between the load and the coupling level in linear cases (Arroyo et al., 2012). 

4.4 Buckling level H�and characteristic frequency Z0 

Considering the normalized equation (11), we can deduce the normalized potential expression with 
first integration: 
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In order to have the inter-well motions, the BSM generator has to cross the potential barrier at the 
center: 
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These two equations suggest that the static properties of the BSM structure are driven by H and Z0. 

The buckling level H is an extra parameter brought by the bistable architecture compared with 
linear generators. It is relevant to the nonlinearity level and induces important impact on the BSM 



generator’s performance. Figure 10 (a) shows the displacement responses of the BSM generators with 
three different buckling levels. As H increases, the inter-well motion range decreases while the 
displacement amplitude of the inter-well motion increases. It is interesting to notice three stable 
solutions in a small frequency range for the highest H case. The middle stable solution has two possible 
jump directions as shown by the red arrows: to the upper high-energy inter-well orbit or to the bottom 
low-energy intra-well orbit. 

As pictured in figure 10 (b), �the generator has the largest power but the worst inter-well motion 
range in the highest H case while the generator has the widest inter-motion range but the drastically 
decreased power amplitude in the smallest H case; in the intermediate H case, the inter-well motion 
range and the power amplitude are both acceptable. It suggests that the trade-off between bandwidth 
and power has to be sought for the best performance as well. Still using the average normalized power 
over the whole excitation frequency range as the figure of merit, the performance for different 
buckling levels is studied in figure 10 (c). Clearly, an optimal buckling level is then found. Indeed, 
high buckling levels mean high potential barriers that restrict the available inter-well motion. Low 
buckling levels make the generators similar to mono-stable generators without the advantages of 
power enhancement due to the snap-through behavior, especially over the low frequency range. 
Therefore, a proper buckling level has to be determined according to the excitation while the analytical 
model provides a good tool for seeking this optimal value.  

   
(a)                                           (b) 
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Figure 10. (a) Inter-well displacement responses for different buckling levels; (b) Corresponding 
power responses. (c) Average normalized power of inter-well motions over the concerned frequency range 
versus buckling levels. (𝛾̅ ���s-2��Z� ����rad s-1��Zr=Z0, k2={0.01,0.035, 0.07, 0.18, 0.24}, [=0.0156). 



Concerning the critical characteristic frequency Z0 of the BSM generator, the results obtained by 
the analytical model are presented in figure 11 (a) for different cases. As Z0 increases, the inter-well 
motion range and the displacement amplitude get worse at the same time. However, the power 
amplitude in the inter-well motion range is not impacted much for all three cases as indicated in figure 
11 (b). In cooperation with the power performance in figure 10 (b) for different H, it seems that the 
power amplitude is more related to the buckling level H, less influenced by Z0. That is somehow 
contrary to the normal sense that the power amplitude is almost equally affected by H and Z0 that 
determine the potential shape of the BSM generator together.  

However, considering that small Z0 induces lower potential barrier, the inter-well motion range is 
extended. Then the total energy harvested in the concerned frequency range is enlarged. It is validated 
by the average normalized power for different Z0 values in figure 11 (c). The performance of the BSM 
generator declines with higher Z0 values. 
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(c) 

Figure 11. (a) Inter-well displacement responses for different characteristic frequencies; (b) 
Corresponding power responses. (c) Average normalized power of inter-well motions versus Z0. 
(𝛾̅ ���s-2��H ��������Z� ^������������������������`�rad s-1���Zr=Z0, k2=0.07, [=0.0156). 

4.5 Remarks about the results from the analytical model 

From the above investigations with the analytical model, one can infer that an optimal BSM generator for a 
selected excitation has to satisfy the following criteria: 



- Low damping ratio. Lower [�promises better displacement responses with wider operation 
bandwidth as shown in figure 7. Moreover, it multiplies the probabilities for the BSM generator to 
work at the high-energy orbits that is favorable to the available power. 

- Properly high coupling level. Considering both the peak power and the average power over the 
interested frequency range, excessively high coupling level will introduce too much damping to the 
generator’s dynamic responses. Thus, it decreases the available power as insufficient coupling 
cases unless the load varies correspondingly. It underlines that it is not necessary to realize a 
generator with a very high coupling level for the sake of the available power. It has to be pointed 
out that a high coupling level will improves the load independence properties. 

- Matched electrical load. As the case for linear generators, there is an optimal load for the nonlinear 
BSM generator. However, the investigations show an interesting result that the average power 
merit used for this wideband generator does not strongly relies on the load. It means that the power 
performance is relatively stable if the load situation changes in a proper range.  

- Optimal buckling level and low characteristic frequency. Buckling level H�and characteristic 
frequency Z0 are the two most important structural parameters that determine the potential 
curve, including the potential barrier. The analysis on the proposed model confirms the 
existence of the optimal buckling level as shown in literature (Cottone et al., 2012; Cottone et 
al., 2009; Liu et al., 2015). Indicated by the studies, Z0 presents a different effect from H that 
the performance declines as Z0 value increases. Moreover, Z0 appears to have less influence 
on the power amplitude that is more determined by H. 

It is worthy of note that the optimal parameter might not be satisfied due to the structural limitations in 
most cases. Nevertheless, the discussions here can be a design guide to reach optimal BSM generators. 
However, this optimal performance is only accounted for the maximum available performance in the 
inter-well motion cases. In fact, if we calculate the average performance for both intra-well and inter-well 
cases, it shows that the inter-well case dominates the results while the intra-well case contributes only a 
small ratio. 

4.6 Short comments for the intra-well motion branch  

In real applications, the generator is likely to operate on the intra-well orbits that would lead to much 
smaller power output. Even though the low-level excitation makes the generator reside in a single potential 
well, the bandwidth widen effect is also observed as shown in figure 3. In this case, it is similar to a 
softening monostable generator.  

The operation on high-energy inter-well orbits or low-energy intra-well orbits is dependent on the 
initial condition of the generator (Erturk et al., 2011), the attracting basin for different stable solutions 
(Daqaq et al., 2014) and the excitation (Liu et al., 2013a) etc. The common ways to make the generator 
switch from the low-energy orbit to the high-energy one are to increase the excitation force or decrease the 
potential barrier as discussed in section 4. Fortunately, more possible methods are envisioned in some 
literatures (Tang et al.,2010; Elvin and Erturk, 2013), such as using a virtual negative load (Masuda et al., 
2013), applying a shock excitation (Wu et al., 2014), utilizing the stochastic resonance (Ramlan et al., 2010) 
or adaptively adjusting the bistable potential well (.Hosseinloo and Turitsyn, 2016).  



5. Conclusion 
In this paper, we develop an analytical model dedicated to the BSM architecture generators using 
harmonic balance analysis. This simple modeling approach points out that the generator has some 
special properties especially that the piezoelectric transducer’s deformation is not proportionally to the 
displacement as most generators. The electric charge accumulation rate on the piezoelectric transducer 
is no longer linearly dependent on the velocity, but determined by the product of the velocity and the 
displacement instead. In the intra-well motion case, this effect is negligible, but relevant in the 
inter-well motion case. Consequently, the usual method of considering energy harvesting as a constant 
viscous damping ratio is not suitable any more. According to the feature of the BSM generator, a 
doubled frequency voltage solution is assumed in the harmonic analysis. The newly derived analytical 
model has then been validated by matched experimental results. Besides, the conditions for intra-well 
motions to inter-well motions are discussed. 

Compared with many proposed analytical models for the nonlinear generator, the proposed model 
in this article deals with several critical variables, which are related to the specific device parameters 
respectively (Z0 the characteristic frequency, k2 the electromechanical coupling coefficient, [��the 
mechanical damping ratio, H� the buckling level and Zr the electric load). These factors are well 
decoupled. Therefore, the optimizations of the generator for each parameter are feasible with this 
analytical model, especially considering the consistency between theory and experiment. All the 
critical parameters are investigated in detail using the available average power of the inter-well 
motions as the figure merit. It shows that an optimal generator is meant to have a low damping ratio, a 
properly high coupling level, a matched load, an optimal buckling level and a low characteristic frequency. 
In addition, some interesting results not emphasized before are presented here about the load, the 
coupling level and the characteristic frequency. It helps us to better understand the design of the BSM 
generator. Then we can conclude that the analytical model can provide an efficient and fast tool for the 
optimization and design of the BSM generator in real applications. 

Further work will focus on developing an optimized design of the BSM generator with the help of 
the proposed analytical tool and exploring feasible structures and systems to facilitate the transition 
from the low-energy orbit to the high-energy one. This would allow more efficient and reliable devices 
to be obtained.  
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