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Abstract 

Buckled beams structures are a classical kind of bistable energy harvesters which attract more and 

more interests because of their capability to scavenge energy over a large frequency band in 

comparison with linear generator. The usual modeling approach uses the Galerkin mode discretization 

method with relatively high complexity, while the simplification with a single-mode solution lacks 

accuracy. It stems on the optimization of the energy potential features to finally define the physical 

and geometrical parameters. Therefore, in this paper, a simple lumped model is proposed with explicit 

relationship between the potential shape and parameters to allow efficient design of bistable beams 

based generator. The accuracy of the approximation model is studied with the effectiveness of 

application analyzed. Moreover, an important fact, that the bending stiffness has little influence on the 

potential shape with low buckling level and the sectional area determined, is found. This feature 

extends the applicable range of the model by utilizing the design of high moment of inertia. 

Numerical investigations demonstrate that the proposed model is a simple and reliable tool for design. 

An optimization example of using the proposed model is demonstrated with satisfactory performance. 

 

Keywords: Post-buckled beam; Bistable wideband generator; Simplified lumped model; Energy 

harvesting; Optimization and design 
 
 

1. Introduction 

1.1 Background 

As an emerging technology, vibration energy harvesting has been an active research area in the past years 
because of its prospective applications [1]. It offers new possibilities for the development of autonomous 
sensor networks which are becoming more and more important in many industry fields, structure health 
monitoring, environment monitoring and protection, smart transportation etc.  
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In order to make the harvester adapt to the variable vibration excitations of various application 
environments, the development of an energy harvester of wideband performance is attracting more and 
more interests. Numerous studies have been done in recent years [2-5]. Different mechanisms have been 
proposed: frequency-up conversion methods [6, 7], resonance-tuning solutions [8], nonlinear oscillators 
[9-15], array or multi-mode harvesters [16-18], nonlinear energy sink [19, 20] etc.  

Within the nonlinear generator group, bi-stable oscillator has been extensively studied [21, 22] due to 
its two favourable aspects: i) the frequency-up conversion effects associated to the snap-through motion 
in the low-frequency ; ii) the bandwidth increase due to the nonlinear backbone responses. The first bi-
stable generator was almost proposed at the same time by Cottone et al. using a piezoelectric inverted 
pendulum using magnetic repelling force [23] and Erturk et al. with a piezomagnetoelastic beam utilizing 
the attractive force of two magnets [24]. Numerous studies were further performed on similar structures 
with different arrangements or excitations [25-29]. Subsequently, Mann et al. presented a circular bi-
stable electromagnetic harvester driven by non-contact magnetic repulsion [30] while Ferrari et al. 
showed a design of the bi-stable cantilever beam with a single magnet by using the attractive force from 
two separate poles [31]. Apart from the aforementioned structures that adopt the magnetic interaction 
mechanisms, the buckling effect is another common way of creating bi-stable generators. Arrieta et al. [32] 
and Betts et al. investigated a piezoelectric bi-stable composite plate and its optimal configuration used 
for vibration energy harvesting [33], while the present authors proposed a bi-stable BSM (Buckled-
Spring-Mass) generator architecture [34, 35]. One of the most well-known bi-stable structures of this type 
is the post-buckled beam. Masana and Daqaq [36] investigated the performance of the clamped-clamped 
beam in mono-stable and bi-stable cases for sweep excitations. An axially compressed beam shows the 
same characteristics as the hardening oscillator in the mono-stable case and the bi-stable Duffing 
oscillator ones after buckling. Cottone et al. discussed the post-buckled beam structure for piezoelectric 
[37] and electromagnetic [38] energy harvesting respectively. Sneller et al. [39] investigated a post-
buckled piezoelectric beam with an attached centre mass to scavenge energy from the chirp excitations in 
consideration of increasing the probabilities of inter-well motions. More recently, Cottone et al. studied 
the effect of different boundary conditions on the piezoelectric post-buckled beam that the fixed-fixed 
case presents better performance than hinged cases [40]. In comparison with other bi-stable structures, the 
post-buckled beam is compact and easy to fabricate, which is especially favourable to achieve high power 
density. 

The shape of the mechanical energy potential function (EPF) of the post-buckled beam plays an 
important role on the harvested power [36]. The structure geometrical and material parameter 
optimization is then to be derived from the chosen EPF for obtaining desired performance with a proper 
model required. The Galerkin modal discretization is a mostly used approach for the analysis of the post-
buckled beams [36-40]. A single-mode model is often used in the literatures [37-39] for simplification 
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instead of the more complex multi-mode solution that is difficult to analyse. However, as shown in [41], 
the single-mode model does not represent the real system well since the potential symmetry is lost in 
many cases. Furthermore, the explicit relationship between the shape of the post-buckled beam’s EPF and 
the beam parameters has not been well established yet even with the single-mode model. As a 
consequence, the lack of a simple and accurate model hinders the optimization and design of the post-
buckled beam generator. 

 

1.2 Geometry description of a potential representative architecture 

As a first example, the bistable oscillator and the transducer are supposed to be weakly coupled. Fig. 1 
shows the general scheme of a potential realistic fixed-fixed post-buckled beam generator including an 
electromagnetic energy conversion. The latter will be typically considered as a damper for the mechanical 
non-linear oscillator. An inertial mass M is placed at the centre of the beam to improve the dynamic 
responses. The geometry parameters are summarized in table 1. As the horizontal axial force exceeds the 
critical buckling force, the beam becomes unstable at the original position and bends into one of the 
buckling symmetrical configuration as indicated by the solid and dashed shapes.  

Table 1 Parameters for the post-buckled beam 

Parameter Symbol Parameter Symbol 

Young’s modulus (N/m2) E Inertial mass (kg) M 

Density (kg/m3) U� Beam mass per unit of length (kg/m) m 

Buckling level (m) hp Cross section (m2) A 

Length of beam (m) L Quadratic momentum (m4) I 

Width (m) Wt Thickness (m) h0 

 

In this paper, a simple lumped model for a post-buckled with a dominant inertial mass is derived from 
the Galerkin multi-mode solution by assuming the symmetric snap-through buckling behaviour. Its 
effectiveness is discussed in detail by analysing the influence of the antisymmetric buckling and 
comparing the solved beam shape and the potential function of the two models with the possible 
applicable situations given. Numerical simulations show that the proposed model obtains almost the same 
results as the multi-mode model approach under the given conditions. Based on this model, the potential 
function exhibits an explicit relationship to the post-buckled beam parameters. It shows that the post-
buckled beam can be approximated as a snap-through spring-mass system in which the spring stiffness is 
determined by axial stiffness of beam. As a result, it greatly facilitates the optimization and design of the 
post-buckled beam generator. Finally, using this simple lumped model, the optimization of a post-buckled 
beam is performed and its performance is confirmed by comparison with the multi-mode model. 
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Fig. 1. Schematic of an elementary electromagnetic post-buckled beam harvester 

 

2. Galerkin and simplified models 

2.1 Galerkin model 

Considering the symmetry of the structure, only half of the beam is considered. The governing dynamical 
equation can be written as [42-44]: 

22 4 2 2 2

2 4 2 2 2
0
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2

L
n n n n n

n n
n n n n n n
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in which, Wn is the deflection of the beam, Pn is the compression force which is an indication of the 
beam’s initial buckling level，C= Ce+ Cm stands for a combined linear damping associated to the 

electromechanical convertor Ce and the intrinsic mechanical damping Cm, and u �is the excitation 
movement of the base. 

It is pointed out in [45] that eq. (1) derived by Nayfeh et al. [42] is only applied to the case with 
immovable boundary conditions without accounting for the axial motion which will happen for the 
unvaried axial force Pn with movable ends. However, in this case, Pn is not exactly the unvaried axial load, 
but used to achieve the desired buckled level at the beginning while the boundary condition will be fixed 
afterwards. The buckling process can be assumed as follows: (1) Firstly, the beam is restricted to have 
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only axial deformation without any bending when an axial load is applied; (2) As the axial load increases 
to Pn, the beam’s two ends are fixed; (3) Finally, the restriction on bending is cancelled and the beam gets 
buckled with a certain rise hp, which is related to the value of Pn.  

Clearly, Pn is more specifically the compression force in the case that the post-buckled beam is made 
flat between two immovable ends while the actual axial force corresponding to the average midline strain 
can be written as  

2

0

( )
L

n
n n

n

W
N P dx

x
w

 �
w³                                                                     (3) 

which equals the critical Euler buckling load in the post-buckled regime for static analysis as seen in [42, 
46-47]. An alternative view of thermal analogy can be helpful to avoid the misunderstanding about the 
immovable ends and Pn. The post-buckled beam with the desired rise hp in fig. 1 can be assumed to be 
induced by applying a temperature change to the clamped-clamped beam. During the whole process, the 
beam ends are fixed without any movement and Pn is still the compression force induced by the 
temperature change when the beam is flat. Therefore, eq. (1) still holds without axial motion considered. 
It has to be mentioned that, when the beam ends are movable with a constant axial load, eq. (1) are not 
applicable any more. 

For a more generic discussion, the following dimensionless parameters are introduced: 

4 2

   /      n n
n n

x WmL Lx t t w P P
L EI r EI

                                          (4) 

Here, r is the gyration radius defined as r=(I/A)1/2which equals h0/2√3 in the case of a rectangular cross 
section. 

Hence, eqs.(1) -(2) are written again as: 
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in which D M���mL) is the ratio of the inertial mass to total beam mass ratio, and c=CL/√ . 

Noting that if P is greater than the Euler critical force Pc=S2 for boundary conditions associated to this 
problem, any first-mode buckled configuration can be defined as: 

1 (1 cos( ))
2bw b xS �        where b=4(P-Pc)1/2/S                                        (7) 

in which b represents the dimensionless buckling level as a function of the force P. 
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Consequently, the solution of eqs. (5)-(6) can be expressed as: 

( , ) ( ) ( , )bw x t w x v x t �                                                         (8) 

v(x,t) is the time-dependent deflection around the initial dimensionless buckling shape wb(x).  

Following the approach of Emam and Nayfeh [42], v(x,t) can be expressed according to the Galerkin 
mode discretization method: 
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in which Ii is the ith modal shape, qi(t) is the corresponding time-dependent response, N is the considered 
mode number, Zi is the ith natural frequency and 

2 4 2 2 4 2
,1 ,2

1 1( 4 )          ( 4 )
2 2i i i iS SS S Z S S Z � �  � � �                     (10) 

By doing this, eqs. (5)-(6) become the set of N differential equations: 
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in which, [i is the damping coefficient of mode i and coefficients Aijk, Bijkl and Fi are define as: 
21 1 1 1
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The multi-mode solution w(x,t) can be then numerically solved using eqs. (11)-(14). For any specific 
time t0, the deflection of the beam at the mid-span point w(x=1,t0), which is also the displacement of the 
mass, is then determined. Meanwhile, the potential function V of the post-buckled beam is obtained by 
substituting the corresponding non-normalized solution Wn(x,t0) into the following potential function [43]: 

2
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Hence, the function relationship between V and the displacement of the mass xq=Wn(x=1) is 
established. It is worthy of note that, for the whole post-buckled beam, twice the mechanical energy is to 
be considered. 

 

Fig. 2. Post-buckled beam potential shape with different mode numbers considered and various buckling 
levels: (a) b = 1; (b) b = 4; (c) b = 8. 

Fig. 2 shows the evolution of the beam’s normalized EPF Vn versus the normalized deflection at the 
mid-span point xq/hp for various buckling configuration (b=hp/r=2√3(hp/h0)) with 1, 3 and 5 modes 
discretization, respectively. For a small buckling level (fig. 2 (a)), the potential shape from the single-
mode model is only slightly un-symmetrical with two stable wells. However, as b increases, the 
symmetry is loss and one of the two stable wells becomes preponderant (fig. 2 (b) and (c)). It is clear that 
the single-mode model is only acceptable for very small buckling levels. As the buckling level increases, 
significant discrepancies between the single-mode model, the 3-modes model and the 5-modes model can 
be seen (fig. 2 (b) and (c)), especially for the lower stable and central unstable positions. In order to have 
an accurate description of the beam’s dynamics over a wide range of buckling levels (for example, b=0-8), 
5 or more modes are to be accounted. However, as we can see, the relationship between potential shape 
and the beam parameters is not a straight definition using multi-mode model. It is then difficult to use this 
model directly for the optimization of the EPF of the beam and the optimization of the post-buckled beam 
generator.  

2.2 Approximation and preliminary comparison 

In order to develop a simple and efficient model, the multi-mode solution is further investigated. The 
snap-shots of the beam shape at different time and for different initial buckling levels are presented in fig. 
3 with the classical Galerkin multi-mode solution. By observing the beam shape of the 5-modes solution 
and inspired by the studies [37, 38] in which the first static buckling mode is used as the single-mode 
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solution for the post-buckled beam (actually, the first static buckling mode is not exactly the single-mode 
solution according to the Galerkin method), an approximate solution for eqs. (5)-(6) is assumed as follows: 

1( , ) (1 cos )
2 qw x t x xS �                                                           (16) 

in which /  is the dimensionless displacement at the mid-span point (x=1). The corresponding 

snap-shots of the proposed approximate solution are also plotted in fig. 3 for comparison with the 5-
modes one. It is obvious that for small and medium buckling levels (fig.3 (a) and (b)), the two solutions 
are almost the same. As the buckling level increases to a high value (b=8), slight discrepancies are found, 
especially when the beam is far away from its initial buckling position. Nevertheless, the agreement 
between two solutions is deemed well enough.  

 
Fig. 3. Snap-shots of the dynamic post-buckled beam for the 5-modes model and the approximate model 
with various buckling levels: (a) b = 2; (b) b = 4; (c) b = 8. 

 
Fig. 4. EPF comparisons for different dimensionless buckling levels between the approximated and the 5-
modes models: (a) b=2; (b) b=4; (c) b=8. 
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Substituting the corresponding non-normalized solution Wn(x,t)=xq(1-cos(S�x/L))/2 into the EPF eq. 
(15) and then multiplying it by two for the total energy, we get: 

4 2 2 2 4 4

3 38 8 256
q n q q

n

EI x P x EA x
V

L L L
S S S

 � �                                               (17) 

Here, the three terms are related to the bending energy and the axial force and the axial deformation, 
respectively. With the approximate solution and the 5-modes solution used, the corresponding potential 
shapes are compared in fig.4. The difference ratio dr is also plotted for each case using the following 
definition: 

2 1 1 1( ) / max( , )dr V V V V � '                                                          (18) 

where V1 is the EPF of the 5-modes solution, V2 is the EPF of the approximate solution and 'V1 the depth 
of the potential well for V1. The introduction of max(V1,'V1) at the denominator allows to avoid the 
singularity around zero potential. 

From fig. 4 (a) and (b), it is confirmed again that the proposed model is consistent for low and medium 
buckling levels. Even in the strong buckling level (see fig .4 (c) for which b=8), the difference is small 
except for the margin zones away from the initial buckling position (xq/hp=1). Though, if we further 
inspect the plot in an alternative view of xq’s specific value to reach the same potential value as shown by 
the zoom window, the difference (xq1-xq2)/xq1 is less than 5% for the considered range as indicated in fig. 4 
(c). Thus, it is inferred that the two models’ results are close enough for the dynamic responses.  

2.3 Effectiveness analysis 

Beside the discrepancy between the approximation and the 5-modes model at the margin, it is also found 
that the difference of the potential barrier’s height slightly increases with the buckling level as well, 
which can be seen in fig. 4 (c). The zoomed picture around x=0 shows that the 5-modes model presents a 
smaller potential than the approximation one. In comparison with the discrepancy at the margin, the 
difference of the potential barrier height has a more critical influence since it directly affects the inter-well 
dynamics and the effectiveness of the approximation solution. Therefore, further analysis is expected to 
investigate this issue.  

As stated at the beginning, eq. (1) - eq. (2) assumes the symmetric situation. Moreover, by carefully 
checking the approximation solution in eq. (16), it can be drawn that the assumption of symmetric snap-
through has been used and only the first symmetric buckling mode is accounted. However, as the post-
buckled rise b increases, the antisymmetric snap-through might coexist with the symmetric one. 
Furthermore, the high-order symmetric buckling mode might appear as well during the snap-through 
process. The anti-symmetric snap-through significantly decreases the potential barrier when it plays an 
important role in the snap-through process as pointed out in [50-52].  
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Fig. 5. Post-buckled beam with a distributional load and a concentrated load together. 

In order to find out the condition of the antisymmetric snap-through solution, a point force Qf is 
assumed at the beam’s mid-span in fig. 5. Following the approach in [47-48], the nonlinear equilibrium 
equation can be obtained as: 

   
4 2

2
4 2

d d 0
d d

w w
x x

O�                                                                      (19) 

where 
2

12

0

1 d( )
2 d

wP dx
x

O  � ³                                                            (20) 

stands for the actual axial force N in eq. (3) for the dimensionless case and the boundary conditions are  
3

| 0 3
| 0

0;   0;     
2

f
x

x

Qw ww
x x 

 

w w
   �

w w
                                       (21) 

Here, =Qf/r is the force normalized by the gyration radius. It is noted that the boundary conditions in eq. 

(21) is different from the symmetric case in eq. (6) with the slope unrestricted at the beam mid-span. Then 
we can write the solution as: 

0 0 0 02 3( ) cos ( tan ) ( tan )sin
2 cos 2 cos

f fQ Q
w x c c x c x x c x

x
O O O O O

O O O O
 � � � � � �      (22)                          

in which c0 is the constant related to . Substituting eq. (22) and the expression of P from eq. (7) into eq. 

(20) and using the lowest anti-symmetric snap-through condition O≈������S� [43, 47], we have 

2 2
0 0180.57 2.86 16.74 7.603fQ c b c| r r � �                            (23) 

Considering c0
2 ≥0, b>√16.74 4.09 is required to have a real solution. It hints that the anti-symmetric 

snap-through exists only when the normalized buckling level b is larger than 4.09.  

Similarly, when the second symmetric buckling mode appears during the snap-through,  applying the 
corresponding buckling condition O=2S [43], we can obtain the solution in this case as 

2 2
3048 162

3f
b cQ S� �

| r                                               (24) 
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The requirement for a possible real solution of the second symmetric buckling mode is therefore b>6.93. 

 Combined the results of eq. (23) and eq. (24), it can be concluded that the accuracy of the snap-
through approximation using the first symmetric buckling mode is ensured for b<4.09. By calculating the 
corresponding compression force P at the buckling level thresholds for the anti-symmetric buckling mode 
and the second symmetric buckling mode with eq. (7), it is found that the values are identical to the case 
without the lateral load [43]. It hints that the buckling mode solutions of the beam are only related to the 
initial mid-span rise or the axial compression force when the beam is made flat.  

When the initial buckling level b is higher than the corresponding thresholds, the anti-symmetric 
buckling or the second symmetric buckling might appear, the potential barrier is lowered obviously 
during the snap-through of the buckled beam as shown in [50-52]. Fig. 4 (c) presents a direct example of 
the influence of the second symmetric buckling for a buckling level b=8, larger than the threshold 6.93. 
With the same boundary conditions for symmetric buckling assumption, the 5-modes approach which 
covers the second symmetric buckling mode shows a relatively lower potential barrier than the 
approximation approach which only considers the first symmetric buckling as indicated in Fig. 4 (c).  

Fig. 6 shows the difference between the potential barriers of the assumed first-order symmetric snap-
through solution 'V1, the solution with anti-symmetric buckling 'V2 and the solution with both the first 
two symmetric buckling modes 'V3 (with symmetric snap-through only). It is clear that the difference 
between 'V1 and 'V2 increases sharply for b>4.09 while the difference between 'V1 and 'V3 is observed 
for b > 6.93. The approximation solution of eq. (16) has satisfactory accuracy for b<4.09. For b>4.09, the 
approximation solution is usable depending on the accuracy threshold. For instance, with an allowed 
maximum difference of 10%, the buckling level b=5 is still acceptable with the anti-symmetric buckling. 
Moreover, with the anti-symmetric buckling constrained by design, b<=8 is usable for the selected 
threshold of 10%.  To be noted, eq. (23) and eq. (24) only give the necessary condition for the anti-
symmetric and the second-order symmetric buckling respectively. When the lateral load is not meant to 
excite the anti-symmetric buckling mode or the second-order symmetric buckling load, they will not 
appear unless internal resonance between two modes happens [42].  

 

Fig. 6. Difference of the potential barrier height between different snap-though solutions. 　  
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Fig. 7. Simple lumped model for the post-buckled beam: (a) Original form; (b) Reduced form. 

2.4 Simplified lumped model 

When the approximation solution in eq. (16) is applicable for the selected accuracy, a simple lumped 
model in fig. 7 (a) as an analogy for the post-buckled beam can be established according to the EPF of eq. 
(17). The vertical spring accounts for the bending stiffness while the horizontal ones represent for the 
axial stiffness. Considering the common case of x0=hp<<L, the EPF is written as: 

2 4
12

2

1
2 4

ns q q
ns r q

P x K x
V K x

L L
 � �                                                      (25) 

in which Pns is the compression force of the spring with the mass placed at x=0. The model parameters 
can be identified comparing eq. (25) with eq. (17): 

4 4 2

13

3               
4 64 8 4r ns n eff

EI EAK K P P M M mL
L L
S S S

    �                       (26) 

in which Meff is the equivalent mass calculated by using the approximate solution eq.(16) for the post-
buckled beam. Using the minimum EPF constraint at the initial position xq=hp, it holds that: 

3

1 2| 2 0
q p

p pns
x h r p ns

q

h hdV K h P K
dx L L  � �                                           (27) 

Then, we can express the buckling force as: 
2 2 22 2 2 2

12 2 2 2 2

4 ( ) (1 ) (1 ) (1 )
16 16 16

p p p
n r

h h hEI A EI EI bP K L K
L L I L r L

S S S
S

 �  �  �  �         (28) 

which is exactly the same as the buckling force for the post-buckled beam obtained with the relationship 
between P and b in eq. (7). It shows that the lump model has good agreement with the model in eqs. (1)-
(2).  

Substitute eq. (28) into eq. (17) or eq. (25) and perform the simplification: 
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Finally, we can write the dynamic equation for the lumped model as: 
2 3 2

1 12 2 2
p q q

eff q q eff

h x x d uM x Cx K K M
L L dt

� � �  �� �                                   (30) 

The available power is: 

21
2e e qP C x �                                                               (31) 

It is worthy of note that from the approximated lumped model, once the initial buckling level hp fixed, 
the EPF is independent of the beam’s bending stiffness EI, and only determined by the beam’s axial 
stiffness EA/L. In another word, the bending stiffness only influences the buckling force to achieve the 
desired buckling level. As a result, the model in fig. 7 (a) is identical to the reduced form in fig. 7 (b). The 
post-buckled beam is then approximated by the simple lumped model composed of the inertial mass and 
the spring which is only related to the axial stiffness. This feature is especially useful for the design of the 
post-buckled beam generator with multiple meanings. Firstly, for a given post-buckled rise hp and a 
constant section area A, a section shape design of high moment of inertial I can be chosen so that the 
normalized buckling level b=hpr-1=hpA1/2I-1/2 can be set to a lower value. In this way, the normalized post-
buckled rise b can be controlled to fall in the effective range of the approximation solution, for instance, 
b<=7 or even b<=4.09. The possible solutions of increasing the moment of inertia include increasing the 
thickness and decreasing the width for the rectangular beam, adopting the I-shape beam, utilizing the 
double beam structure [49] and so on. The post-buckled rise hp can be then extended to a high value with 
the simple lumped model still effective.  Secondly, more flexibility is expected for the definition of the 
beam section shape according to specific requirements (i.e. fabrication constraints) with unvarying area A. 
Finally, the proposed lumped model allows an explicit mapping relationship of the EPF and the beam 
geometrical and material parameters. It greatly reduces the design effort and increases the feasibilities of 
the design and optimization of a post-buckled beam generator. 

Moreover, it can be found that the EPF of the post-buckled beam is mostly driven by the axial 
deformation while the bending deformation due to the strain difference between the various vertical beam 
planes can be neglected. This is quite different from the cases of a cantilever or a fixed-fixed beam 
without pre-stress, in which the bending deformation plays the major role. This is especially relevant 
when designing bimorph generator with piezoelectric material on each of the beam surfaces. Indeed, for 
the cantilever beam and the fixed-fixed beam without pre-stress, the piezoelectric material at the top side 
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has opposite deformation compared with the one at the bottom side, and the deformation direction 
changes reversely as the generator crosses the zero position. On the contrary, for a piezoelectric bimorph 
generator based on post-buckled beam structures, the deformations in the piezoelectric layers at the 
beam’s two sides tend to be the same direction. Moreover, they are symmetrical with respect to the “zero 
position” so that the induced voltage frequency is two times the excitation frequency in the inter-well 
motion case as the buckled-spring-mass generator [14, 34].  

3. Numerical validation and generator optimization strategy 

3.1 Numerical validation 

In order to verify the effectiveness of the proposed simplified lumped model neglecting the bending 
energy, we perform investigations on two post-buckled beams with different shapes while keeping the 
sectional area constant. The parameters of these two beams are listed in table 2. It is worthy of note that 
with the same initial buckling level hp the corresponding dimensionless buckling level is different: b=2.08 
for beam 1 and b=3.464 for beam 2 by varying the moment of inertia with different thickness as 
mentioned before. The corresponding spring stiffness for the lumped model is calculated as K1=1.92 ×107 
N/m. Fig. 8 presents the EPF of the two beams using the 5-modes and the simplified lumped models 
respectively. As expected, despite two different geometrical quadratic moments, similar results are 
obtained and both of them are close to the equivalent lumped model.  

Table 2 Parameters of the two considered post-buckled beams 

Parameter Beam 1 Beam 2 Parameter Beam 1 Beam 2 

E (MPa) 210 000 210 000 M (g) 31.2 31.2 

U��kg/m3)� 7800  7800  m (g/m) 35.1 35.1 

hp (mm) 0.6 0.6 A (mm2) 4.5 4.5 

L (mm) 75 75 I (mm4) 0.375 0.135 

Wt (mm) 4.5 7.5 h0 (mm) 1 0.6 

 

Table 3 1st resonant frequencies of the post-buckled beams with different approaches 

Method Beam 1 discrepancy Beam 2 discrepancy 

Simplified lumped model 43.3 Hz 5.89 % 43.3 Hz 2.04 % 

Mode discretization 43.1 Hz 6.52 % 42.79 Hz 3.19% 

Finite Element  46.01 Hz - 44.2 Hz - 
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A finite element model simulation has been performed to check for the first-order natural frequencies. 
From the results in table 3, although the three models show better agreements for beam 2, the error 
between the discretization method and the simplified lumped model is larger in this case with a higher 
dimensionless buckling level b. The discrepancy between the approximated and the 5-modes solutions 
one increases with b as pointed out in the previous section. It shows that the approximated model tends to 
be stiffer than the multi-mode model. In both cases, good agreement is exhibited between the finite 
element approach, the model-discretization method and the proposed lump model. The results are 
restricted in a tolerance of 10% for these three approaches.  

Numerical simulations are also performed to investigate the consistence of the proposed model and the 
multi-mode solution for beam 1 and beam 2. A forward and backward frequency sweep excitation of 
amplitude 6m/s2 from 20Hz to 100Hz is applied and the displacement responses are presented in fig. 9. 
The two beams have close results, except for the discrepancy around the sub-resonant frequency close to 
the twice the value of the resonant frequency which is underlined in the simplified lumped model. The 
absence of this sub-resonance in the 5-modes model is thought to be due to the interaction between the 
different modes as shown in eq. (11). 

 

 

Fig. 8. EPF comparison between the beams with different EI using the 5-modes and the simplified 
lumped models. 
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Fig. 9. Displacement responses for beam 1 and 2 using the multi-mode methods and the simplified 
lumped model. Left: forward sweep, Right: reverse sweep. (a) and (b), beam 1 with 5-modes solution; (c) 
and (d), beam 2 with 5-modes solution; (e) and (f) simplified lumped model for beam 1 and beam 2. 

 

Fig. 10. Nominal power responses for the beam 1 and beam 2 with the multi-mode method and the lump 
model: (a) forward sweep; (b) reverse sweep. 

Considering the sought inter-well dynamics for energy harvesting maximization purpose, the 
relevance of the simplified lumped model is confirmed whatever the beam’s quadratic moment while the 
interchangeability between the proposed model and the multi-mode model is approved as well. 



17 
 

As deduced from eq. (31), the generated power is proportional to the square of the velocity and the 
damping coefficient Ce. The energy harvesting performances of the two compared generators are 
evaluated with the RMS value of the nominal power which is defined as follows: 

2

0

1 T

rms qP x dt
T

 ³ �                                                                            (32) 

in which T is the calculation time period for the RMS value. Fig. 10 clearly presents the amplitude of the 
power responses. The consistency exhibited by the displacement and the power responses in Fig. 9 and 
Fig. 10 is a plain validation of the accuracy of the proposed model. 

3.2 Generator optimization strategy 

In order to demonstrate the ability of the simplified lumped model to be used for efficient design, an 
optimization example is presented. The assumed given excitation signal is the same as before (chirp, 
6m/s2, 20Hz-100Hz), whereas the length of the buckled beam is 2×L=150mm with an inertial mass of 
M=31.2g, which are usually required to be compliant with some specific application. With the steel 
material (E=210Gpa) and the damping coefficient C composed of the mechanical friction Cm and the 
energy harvesting Ce assumed, the available optimization parameters of the lump model in eq. (30) are 
restricted to K1 and hp, which represent the beam’s section area and the initial buckling level respectively.  

Prior to the optimization, some mathematics are performed on eq. (30) to aim at a more general 
discussion. Eq. 30) is written again as: 

2 2
2 2 30
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2 2q q q q
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[ is the damping ratio assumed to be 0.025 on the base of the authors’ knowledge and Z0 is the linear 
resonant frequency for small displacements around the initial buckling position xq=hp. 

Then, the optimization of the parameters turns to hp and Z0 which is determined by hp and K1 together. 
Besides, considering the time period to be the whole simulation time Ta, the calculated average nominal 
power Pav_rms can be used to account for the overall performance of the generator. The optimization 
results with respect to parameters Z0 and hp varying for a selected range are shown in fig. 11. 

For a forward sweep in fig. 11 (a), the optimal performance locates at the area of low resonant 
frequency Z0, and an optimal buckling level is found which is consistent with the studies about the bi-
stable generators [15, 23, 25, 37]. As for the reverse sweep in fig. 11 (b), the optimal performance is 
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obtained for relatively high hp and Z0 values at the right corner, in which cases the generator motion is 
stuck in one of the potential well and the response is similar to a softening mono-stable generator [35]. 
The power peak is due to the softening generator’s good performance in the reverse sweep case. Though, 
the potential harvested power value is much lower than for the forward sweep excitation. A discontinuity 
is found in both the forward sweep and the reverse sweep cases from the left corner to right corner, which 
hints the transition from the generators with abundant inter-well motions to the ones with rare inter-well 
motions (residing in one potential well). 

 

Fig. 11. Average nominal power for different Z0 and hp: (a) forward sweep; (b) reverse sweep; (c) mean 
value of forward and reverse sweep. 

As an overall consideration, the mean nominal power values for the forward and reverse sweep cases 
are presented in fig. 11 (c). Since a much better performance is obtained in the forward case, the mean 
results look very similar to fig. 11 (a). 

According to the chosen optimal design point (Z0=158.06 rad/s and hp=0.18 mm), we can calculate the 
corresponding section area A=Wt×h0=20.44mm2. As analyzed in section 3, the simplified lumped model 
provides better approximation when the dimensionless buckling level b=hp/r=2 √3 p/h0 is small. 
Therefore, we could choose the beam parameters as follows: Wt=20mm and h0=1.022mm with b=0.61 and 
Meff=40.17g. 
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Fig. 12. Displacement responses of the optimal generator design with the model discretization approach 
and the lump model: (a), (b) 5-modes solution; (c), (d) lump model. Left, forward sweep; Right, reverse 
sweep. 

 

Fig. 13. Nominal power responses of the optimal generator design with the model discretization approach 
and the lump model: (a) forward sweep; (b) reverse sweep. 

Fig. 12 shows again the numerical displacement responses with the Garlerkin discretization method of 
5 modes and the simplified lumped model respectively. As we can see, the inter-well motions happen 
over the whole concerned frequency range for the forward sweep. Even for the reverse sweep, inter-well 
motions occur for a considerable frequency range. The nominal power responses are also plotted in fig. 13. 
The broad bandwidth with the optimal design parameters is clearly observed. Moreover, the agreement 
between the lump model and the 5-modes solution is once again exhibited. It confirms that the 
optimization results with the proposed model are reliable enough and equivalent to the outcomes of the 
multi-mode model with the Galerkin discretization method. The difficulties of using the latter one for the 
optimization and design of the post-buckled beam generator are therefore solved. The explicit relationship 
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of dependence between the beam parameters and the model variables greatly simplifies the optimization 
process and makes the proposed lump model as a feasible and trustworthy approach. 

4. Conclusion 

As a common realization of the bi-stable generator, the post-buckled beam generator has the advantages 
of wide bandwidth, compact volume and easy realization. However, the complexity of the regular multi-
mode model obtained with the Galerkin method makes it difficult to be used for optimization and design. 
The availability of a simple and sufficiently predictive model will ease the post-buckled beam 
optimization. 

Based on the multi-mode model derived for a post-buckled beam generator with an inertial mass 
mechanical arrangement, a simple lumped model has been proposed. The effectiveness is demonstrated 
by static as well as dynamic evaluations within a certain normalized buckling range. It shows that the 
proposed lump model has a good approximation of the multi-mode model, especially in the low 
dimensionless buckling cases. Moreover, it is observed and underlined that the bending stiffness (EI) has 
a negligible influence on the beam’s energy potential shape and the ensuing dynamics with the buckling 
level and the section area fixed. It allows the extensive use of the approximation model by selecting a 
design of high moment of inertial with the section area constant. Moreover, further simplification can be 
performed and more design space is provided to adapt to the various potential future real applications.  

The complexity of using a multi-modes Galerkin approach for the optimization and design of a post-
buckled beam generator is therefore skirted. The explicit relationship of dependence between the beam 
parameters and the model variables greatly simplifies the optimization process. An optimization realistic 
example is presented to illustrate the applicability of the proposed simplified lumped model. 

Obviously, the scope of the model encompasses the post-buckled generator with the electromechanical 
transducer. Though, further works will aim at designing post-buckled beam generator including 
piezoelectric layers. This would allow more compact and efficient devices to be obtained. 
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