
HAL Id: hal-01901517
https://hal.science/hal-01901517

Submitted on 5 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Proactive Interfaces for Cooperation using
Systems of Systems

Gregory Moro Puppi Wanderley, Marie-Hélène Abel, Emerson Cabrera Paraiso

To cite this version:
Gregory Moro Puppi Wanderley, Marie-Hélène Abel, Emerson Cabrera Paraiso. Designing Proactive
Interfaces for Cooperation using Systems of Systems. 22nd IEEE International Conference on Com-
puter Supported Cooperative Work in Design (CSCWD 2018), May 2018, Nanjing, China. pp.122-127,
�10.1109/CSCWD.2018.8465388�. �hal-01901517�

https://hal.science/hal-01901517
https://hal.archives-ouvertes.fr


Designing Proactive Interfaces for Cooperation
using Systems of Systems

Gregory Moro Puppi Wanderley∗, Marie-Hélène Abel∗ and Emerson Cabrera Paraiso†
∗Sorbonne Universités, Université de Technologie de Compiègne,

CNRS, UMR 7253 Heudiasyc, Compiègne, France
Email: {gregory.wanderley, marie-helene.abel}@utc.fr

†Pontifı́cia Universidade Católica do Paraná
PPGIa - Graduate Program in Informatics, Curitiba, Brazil

Email: paraiso@ppgia.pucpr.br

Abstract—Cooperation is a fundamental trait of Systems of
Systems (SoS). In this paper we discuss the design and imple-
mentation of proactive vocal interfaces with the goal of improving
and stimulating cooperation between users and constituent sys-
tems. Our approach is based on intelligent personal assistants
displaying proactive behavior and capable of interacting vocally.
The paper discusses the main challenges for integrating proactive
behavior into SoS interfaces, as well as for using them. The
proposed approach is generic and can be applied to different
domains.

Index Terms—Systems of Systems, Vocal interface, Collabora-
tive work, Multi-agent system

I. INTRODUCTION

Recently, a booming interest in Systems of Systems (SoS)
has led to the design of a range of different applications
belonging to several domains such as health care, e-commerce,
transportation or production (Nielsen et al. [1]).

Formally, a System of Systems can be defined as a set
of independent constituent systems cooperating to achieve a
common purpose through the synergism between them (Ackoff
[2], Nielsen et al. [1]). In an SoS, the constituent systems are
owned and operated by independent users. According to Maier
[3], five main features characterize an SoS: (i) operational
independence of constituent systems; (ii) managerial indepen-
dence of constituent systems; (iii) geographic distribution; (iv)
evolutionary development; and (v) emergent behavior.

Since an SoS is complex and difficult to be designed, one
faces some challenges like limitations on the exchange of
information and on collaboration, caused for instance by users’
competing interests and priorities (Dahmann and Baldwin [4]).
This can compromise the expected results of the SoS goal.
According to Nielsen et al. [1], there is a need to employ
methods and tools that support collaboration in an SoS.

The research reported in this paper aims at improving the
collaboration between the users and constituent systems of an
SoS. Recently, we have proposed an architecture (Wanderley et
al. [5]), named Memory-Broker-Agent (MBA), for simplifying
the development of an SoS. MBA relies on several types of
agents such as Service Agents (SA) and Personal Assistant
(PA) agents. In our approach, the particular skills of a PA
are devoted to understanding its master and presenting the
information intelligently and in a timely manner. The main

goal of such an agent is to reduce the user’s cognitive load
(Paraiso and Barthès [6]). In this paper, we present the design
of a new feature to be added to the PA interface: a Proactive
Vocal Interface for improving the collaboration between users
and constituent systems of an SoS. Our approach is based
on intelligent personal assistant agents, displaying proactive
behavior when assisting SoS users, and capable of interacting
vocally.

This type of approach can improve the quality of assistance
that personal assistants can offer. First, in our approach the PAs
act proactively anticipating problems and needs of SoS users
for improving cooperation to achieve the expected results. Sec-
ond, our PAs can provide customized support to their users, by
keeping models (ontologies) which contain knowledge about
users, systems, or the SoS domain. Moreover, using traditional
interface approaches like point-and-click may rapidly become
difficult to implement and to maintain in an SoS, due to its
evolutionary nature. On the contrary personal assistant agents
can provide a flexible interface when using natural language,
which could stimulate and better motivate users (Song et al.
[7]). In addition, when using vocal interfaces users can keep
working while interacting and cooperating with the SoS.

Our main contribution in this paper is to provide a detailed
description of our proactive personal assistant agent, designed
for interfacing users to an SoS. First, we summarize related
work. Then, we present a scenario to provide an overview of
the vocal interaction between users and personal assistants.
After that, we detail our approach. Next, we apply our
approach to a scenario, showing how it works in practice.
Finally, we conclude with a discussion on the advantages and
disadvantages of our approach and present possible directions
for future work.

II. RELATED WORK

There has been much research in designing natural language
interfaces for a wide range of applications and domains.
However, we could not find any work for doing it for Systems
of Systems. Most works in the SoS literature focus mainly on
the integration or connection between constituent systems, but
do not take into account the user dimension. Let us briefly
review some of the work dealing with interfaces.



Jokinen et al. [8] intended to provide reconfigurable in-
terfaces for users of SoS consisting of production systems.
The interfaces took into account user privileges and data
permissions to allow users to monitor and receive data from
the systems, presented in dashboards and charts. The approach
relies on a central component, to distribute and provide infor-
mation to the interfaces. However, the necessary services for
providing information are hosted in a single system, and the
interfaces do not offer any means for collaboration among the
different users of the SoS.

Some researchers have exploited the use of Web portals to
let users obtain information from the SoS. Nativi et al. [9])
have designed a Web portal for retrieving information from
an SoS involving systems for Earth observation, monitoring
and information. The visualization of the information adopted
a strategy involving filters and zooming. Mazetti et al. [10]
proposed an SoS for a Virtual Research Environment (VRE),
mostly focused on monitoring and retrieving information con-
cerning volcanoes. The Web portal designed in this work lets
users publish, discover, and access datasets, according to their
profile. The interfaces are point-and-click, being composed
of several menus, buttons and bars. Such an approach may
become difficult when implementing and maintaining an SoS,
as the SoS consists of several distributed systems that may
change over time. Besides, such interfaces do not favor the
exchange of information or the collaboration among users.

The main difference between our approach and what we
found in the literature is that we provide a proactive vocal
interface based on intelligent personal assistants, for improving
the collaboration between users and the systems. Moreover,
our approach fits an SoS globally and does not rely on a cen-
tralized component, preserving the distributed and independent
features of the SoS.

III. VOCAL INTERFACE AND PROACTIVE BEHAVIOR

To better explain our approach, we first present a scenario
used to design and build an SoS with our MBA architecture.
Then, we present and exemplify the vocal interaction used to
interface users and personal assistants in such an SoS.

A. Collaborative Software Development Scenario

During software development, team members use several
different systems and tools. At the same time, they need
to pay attention to the quality of the code being developed
(Wanderley et al. [11]). Because the systems used by team
members, including the ones to measure the code quality, are
not integrated, it is difficult to use all of them at the same
time and share information among systems and participants.
Thus, in this scenario we designed and implemented an SoS
using the MBA architecture, aiming at improving the quality
of code being developed. Among the constituent systems of
the SoS, we have a version control system to host and manage
different versions of code, a system to analyze the quality of
the code, coding systems used by developers for coding, and
project management systems for managers. In such a context,

Fig. 1. The MBA Browser interface used for communication between a user
and her personal assistant.

managers and developers are interfaced to the SoS through
proactive vocal interfaces.

B. Example of Vocal Interface and Proactive Behavior

In our SoS team members can interact vocally with their per-
sonal assistants, requesting functionalities from other systems
for improving the quality of their code through collaboration.
Vocal interaction requires a special interface between team
members and their personal assistants. Our approach already
provides such an interface, named MBA Browser (Fig. 1). An
MBA Browser has speech-to-text and text-to-speech engines,
for translating speech into text and for synthesizing text into
voice. Moreover, the interface has dialog panels displaying the
text of the vocal interaction, and a dynamic avatar (Bot Libre
[12]) that embodies the PA and displays the synthesized text.
Besides, as an option, the user can also interact with her PA
by typing in text instead of using voice.

To give an example of the vocal interaction and the proactive
behavior of PAs, we focus on the role of software managers.
Table I illustrates the vocal request made by a manager to
her PA using the MBA Browser of Fig. 1. The manager
asks her PA to show the global code quality of a project.
The utterance is captured and treated using the speech-to-text
engine of the MBA Browser. Next, the PA asks the manager
for additional information, using text-to-speech engine. When
results are available, the PA checks the quality of the project.
Then, if the quality is not good enough, it acts proactively
to find information that can be help the user to improve it.
Once the task is completed the PA provides a chart showing
the results along with helpful information for the manager.

TABLE I
AN EXAMPLE OF VOCAL INTERACTION BETWEEN A SOFTWARE

DEVELOPMENT MANAGER AND HER PERSONAL ASSISTANT.

Interlocutor Utterance
Manager Show me the global quality of the project.
Personal Assistant What’s the project name?
Manager ACE4SD.
Personal Assistant I have the results, please see the chart.
Personal Assistant ...
Personal Assistant There are some quality issues. Please, find below

information that may be helpful.



Fig. 2. A proactive vocal interface integrated in a constituent system of the
MBA architecture.

IV. DESIGNING PROACTIVE VOCAL INTERFACES FOR
SYSTEMS OF SYSTEMS

In this section, we present the design of proactive vocal
interfaces for Systems of Systems. First, we present how to
integrate vocal interfaces into constituent systems, and then
we show how to add proactive behaviors to them.

A. Integrating Vocal Interfaces into Constituent Systems

In our approach, proactive vocal interfaces are designed in
an “SoS fashion,” i.e., they are integrated and kept encap-
sulated in constituent systems, preserving the distributed and
independence features of the SoS. Fig. 2 shows a proactive
vocal interface integrated in a given constituent system of an
SoS developed using the MBA architecture.

In Fig.2 the user’s system is connected to a proxy agent
which is a transfer agent (XA) that acts as a gateway, taking
care of communication with the interface. Here, the user of the
constituent system has a Personal Assistant (PA) agent that acts
proactively on her behalf. The PA obeys the concept of digital
butler proposed by Negroponte [13]. It has a staff agent [14]
for dealing with more specialized services. In this research,
the staff has a model represented by an ontology, consisting
of concepts describing the constituent system, the user, and
the domain of the SoS. We use the model for supporting the
proactive behavior of the PA (details in the next section).

When integrating the interface into the constituent system,
the designer can choose between two approaches for the
interaction between the PA and the user of the system. The
first (see Fig. 2 (a)) is based on a generic browser interface
already provided by the MBA architecture, and the second (see
Fig. 2 (b)) consists in augmenting the user’s system.

The MBA Browser interface, detailed in the section III-B,
is shown in Fig. 1. The messages exchanged between the
user and her PA are handled by a local server that is an SA,
named “Local server,” also provided by our MBA framework.
To integrate the MBA Browser into a constituent system, the
designer needs only to connect the agents (PA, staff and Local
server) of the browser to the same LAN (Local Area Network)
containing the proxy agent of the constituent.

Conversely, the second approach that can be used for inte-
grating the proactive interfaces is the augmented one. In this
case instead of the browser interface, the designer is required
to augment the user’s system. For instance, the designer could
create a specific window by using the system API, and then

adding some modules for the natural language interaction such
as text input/output, or if also desired coupling speech-to-text
and text-to-speech engines to the window for vocal interaction.
After that, the designer needs to connect the interface agents,
now only the PA and its staff (see Fig. 2), to the same LAN
of the proxy agent of the constituent system. The messages
between the PA and the augmented system pass through the
proxy agent. Note that the MBA architecture requires that
systems have an API to be part of the SoS (Wanderley et al.
[5]). Thus, building augmented interfaces is not constrained
when using our approach.

After integrating the interface using either one or other
approach, the designer is required to developed the content
of the dialogs for the interaction between PAs and their
users. Usually such dialogs are focused on requesting SoS
functionalities (details in section V). Moreover, note that one
should decode the interactions in natural language between
users and PAs. This is done with the help of the proxy
agent ontology (Wanderley et al. [5]) which is an ontology
containing concepts describing the system, its user, and the
SoS domain. The ontology is built when the requirements of
the SoS are defined. It is beyond the scope of this paper, thus
we do not detail it.

B. Adding Proactive Behavior to the Vocal Interfaces

In this section we indicate how to add proactive behavior to
the Personal Assistant (PA) agents offering the vocal interfaces
integrated in constituent systems. In our approach, the PAs
display proactive behavior by assisting their users to achieve
the expected results of the SoS goal, regarding the SoS func-
tionalities requested through their systems. To add proactive
behavior to a PA, a designer needs to follow the activities of a
method we call ProPA for “Proactive Personal Assistant.” The
ProPA has two activities, named “Create User Model” and
“Act Proactively.” For a better comprehension of the method,
we give examples using the manager of software development
(section III-B) during the descriptions of the ProPA activities.

The “Create User Model” activity intends to create a User
Model (UM) to describe the user of the system in which the
PA is integrated. Note that this task is related to the domain of
the SoS. The activity consists of three steps, named “Describe
User,” “Define User Scores” and “Define Shared Information.”

The “Describe User” receives as input the proxy agent
ontology and focus on extending a concept for describing
the user of the system. For instance, for the scenario of
software development the designer could create a concept
for the manager describing her name, address, or email. The
output of this step is the ontology updated with the user’s
concept.

The “Define User Scores” receives the ontology of the
previous step, aiming at extending a concept to define scores
along with thresholds for SoS functionalities the user can
request through her system. The goal is to define scores
showing how well the user is performing tasks related to
the SoS functionalities. For instance, for the example of the
manager requesting analysis for code quality, it could be scores



Fig. 3. The steps of the “Act Proactively” activity of the ProPA method for adding proactive behavior to the personal assistants of vocal interfaces.

and thresholds related to quality metrics (Wanderley et al. [11])
measuring the quality of the code of her projects. The output
of this step is the ontology updated with the user’s scores.

The “Define Shared Information” receives the ontology
from the previous step, aiming to extend a concept describing
shared information related to the user for supporting SoS
cooperation and the expected results of its goal. For instance,
for the software manager example the shared information
could be her contact to keep in touch with other users, or
the scores of her projects for supporting the code quality
improvement. The output of this step and also of the“Create
User Model” activity is the UM which is kept within the staff
agent of the PA.

The “Act Proactively” activity of the ProPA method aims
to let the PA acting proactively based on the UM that was
created. The activity consists of the steps: “Results User Re-
quest,” “Update User Score,” “Evaluate User Score,” “Retrieve
Recommendation,” “Try User Cooperation” and “Synthesize
Results,” as shown in Fig. 3.

In the “Receive Results Request,” the PA receives the results
for an SoS functionality requested by its user. Then, it verifies
through the UM if there are user’s scores associated with such
a functionality. In case negative, the PA steps out of the method
and sends the results to her user. Conversely, if there is a score,
then the PA performs the step “Update User Scores” taking the
UM along with the results for the request, and then updating
the user’s scores. The output of this step are the new scores.

Next, in the “Evaluate User Scores” the goal is to evaluate
the user’s scores outputted in the previous step. To do that,
the PA takes the scores and apply the thresholds associated
with them. If the results indicate that the user is going well
with the tasks related to the functionality of such scores, then
it steps out of the method sending the results of the request
to its user. Conversely, if the evaluation indicates that the user
needs further assistance, then the PA can execute in parallel
(but not obliged to) the steps “Retrieve Recommendation” and
“Try User Cooperation” which receive as input the results for
the request performed and the results for the score evaluation.

In the “Retrieve Recommendation,” the PA tries to fetch
recommendations from the SoS memories for helping its user
to improve her tasks for achieving the SoS goal. The recom-
mendations could be found, for instance, through keywords

describing the tasks. For the code quality context of the
manager, the recommendations fetched could be, for instance,
texts like “Reduce the depth of inheritance tree of classes,”
or links to external pages providing useful information for
improving the code quality. The output of this step are the
recommendations fetched.

In the step “Try User Cooperation” the PA aims to find
useful information for supporting its user by cooperating with
other PAs. To do that, it exchanges messages with the other
PAs trying to establish Contract Nets through Work Orders,
i.e., the protocol of the MBA architecture (details in Wanderley
et al. [5]). The information from the cooperation among PAs
is retrieved from the shared information of the UMs of their
users. Note that, the information coming from other SoS users
could create an intrinsic cooperation among them. For the
example of the software manager, the information received by
her PA could be the scores of the developers with the worst
code quality. Such an information could be useful for letting
her support and cooperate with such developers to improve
their code quality. The output of this step are the information
received from the cooperation among PAs.

In the last step of the “Act Proactively” activity and the
ProPA, named “Synthesize Results,” the PA synthesizes the
results from the “Receive Results Request,” the “Retrieve
Recommendation” and “Try User Cooperation” steps. After
that, it sends the synthesis to its user.

V. APPLYING PROACTIVE INTERFACES

In this section, we apply our approach using the SoS
built for the scenario of collaborative software development
introduced in section III. First, we detail the implementation
of our approach. Then, shown the results of the interactions
for the request made by the software manager in the example
of section III-B.

A. Implementation
To test our proactive interfaces, we implemented both the

MBA Browser and the augmented approach (section IV-A).
For the MBA browser we used HTML5 and JavaScript. The
vocal interface of the browser was handled by the Google Web
Speech API1. Conversely, we augmented the coding system

1https://www.google.com/intl/en/chrome/demos/speech.html



used by developers which was Eclipse2 by implementing a
plugin with Java. Then, we connected to the plugin a simple
application in C# used for handling the vocal interface through
the Microsoft System.Speech API3. All agents were imple-
mented in Common Lisp through the OMAS platform (Barthès
[14]). For other systems of our scenario, the versioning system
was GitHub4. The analysis system was a multi-agent system
applying rules based on quality metrics (Wanderley et al. [11])
to compute the quality of the produced Java code.

The vocal interaction between a user and her Personal Assis-
tant (PA) was made by task selection. The reason was because
usually in an SoS the interactions between systems and users
involve mainly performing requests for functionalities and
then transferring back results. In our approach when a user
makes a request, her PA tries to select a possible task from
a library of tasks. The library consists of tasks related to the
functionalities the system is able to request. Once the PA finds
a task, a dialog associated with such a task is triggered in
order to acquire missing information necessary to execute the
task. When enough information is gathered, the PA sends the
request associated with the task to find providers in the SoS.
Then, when providers are found they perform the task and
send the results to the PA that in turn presents them, using
voice or text, to the user. In this research, we implemented
our task dialogs through the OMAS platform.

B. Interactions for the Software Development Scenario

For matters of space, to show the results from vocal requests
and the proactive behaviors in our approach, we focus on
detailing the interactions for the request made by the soft-
ware manager in the example of section III-B. The sequence
diagram of Fig. 4 shows the interactions for the vocal request
of project quality made by the manager. After, translating the
utterance using speech-to-text the MBA Browser sent it to the
PA of manager (“PA-Mgr”). Then, the PA sent a work order
(the MBA protocol) for retrieving the code of the project,
based on its name, from the Version Control System. Once
the code was retrieved, the PA sent a work order requesting a
quality analysis for it. The Code Quality Analyzer received
it, performed the analysis and sent the results for the PA.
After receiving the results, the PA requested its staff agent
for retrieving the User Model (UM) of the manager. Based
on the UM it checked if the functionality for analyzing the
code quality has scores associated with it. For the manager
we defined a score, based on the code quality of the project
determined by the analysis system, and on the current date. For
instance, if the analysis system had determined that the project
quality was about 65% and the current date was 28/07/2017,
then the new score would be as follows in JSON standard
format: {“score” : {“project-quality” : 0.65, “date” : “28/07/2017”}}

Then, the PA asked the staff to update the UM based on
the new score. After that, the personal assistant sent a request
to its staff to evaluate the score. In this case, the staff agent

2https://www.eclipse.org
3https://msdn.microsoft.com/en-us/library/office/hh361625
4https://github.com

Fig. 4. The interactions resulted from the proactive behavior of the personal
assistant of the software development manager.

applied a threshold based on project milestones for evaluating
the scores. That is, in the interface we built, the staff had
a list consisting of several dates indicating milestones for
the manager’s project. If the score had a quality below 70%
and the current date was less than two weeks for the next
milestone such as 02/08/2017, both defined empirically, then
the PA started to act proactively on behalf of the manager.
For that, the PA sent a work order for trying to retrieve
helpful information for the manager, containing keywords that
indicated information required such as “code” and “quality.
The work order established a Contract Net with the other SoS
PAs (in the case of developers, “PA-Dev-1” and “PA-Dev-2”),
aiming to gather shared information related to the keywords.
In this case the shared information was quality scores, base
on software metrics like Cyclomatic Complexity, indicating
how well each developer was coding. After receiving the
information the PA of the manager selected the worst scores,
synthesized the information with the project quality analysis,
and then displayed it to the manager, warning her through
voice.

VI. DISCUSSION

Implementing and testing the MBA Browser and the aug-
mented approach for the proactive interfaces has allowed us
to learn important lessons. One of the main advantages of
using the MBA Browser as interface is that it is generic and
can be reused by different systems and SoS domains. To
change between domains, the designer only needs to develop
the content of the dialogs for the interaction between a PA
and its user. However, a disadvantage can be the switching
among different different windows, i.e., system and browser,
though when interacting vocally, setting up a new window may
not be necessary and could be discarded. Conversely, the aug-
mented interface is tailored and specialized to a given system.



Moreover, besides augmenting a system with a new window,
if vocal interaction is desired, the designer is also required to
link the engines for the speech interface. Nevertheless, such
an approach may require more effort and time to set up, it
allows users to stay in their (constituent-) system environment,
avoiding switching among different windows.

Another relevant point concerns the vocal interaction. Al-
though it facilitates the communication between users and the
SoS, it has some requirements involving the speech recognition
and synthesis. In the SoS implemented for the collaborative
software development scenario, we tested two approaches
for speech-to-text and text-to-speech modules, named here
as “server-based” and “local-based.” The “server-based” ap-
proach was implemented using Google Web Speech API which
performs the recognition and translation in servers distributed
over the Web. This approach has performed very well and with
good quality for the voice recognition and the text-to-speech.
The main drawback is that it requires an Internet connection.
The second approach we implemented was “local,” using the
local modules of the Microsoft Speech API for speech-to-
text and text-to-speech. Such an approach has the advantage
of being used locally without requiring Internet connection.
However, to obtain a good recognition it needs that each
user train the speech-to-text module, or we need to adopt a
constrained grammar.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented the design of proactive vocal
interfaces for Systems of Systems, aiming at improving coop-
eration when using them. Our approach has some advantages,
for instance, each user has her own personal assistant agent tai-
lored to her and her system, according to the SoS requirements
and domain. The PA acts proactively and cooperates in the SoS
providing customized support to its user, in order to achieve
the expected results of its goal. Moreover, in our approach
personal assistants are activated by voice, thus allowing users
to keep working while interacting and cooperating with the
SoS.

We can summarize the contributions of this research in: (i)
an original and generic method for adding proactive behavior
to SoS user interfaces, meaning that to change between
domains the designer needs only to customize User Models
according to the user of a system; (ii) a generic vocal interface
ready to be integrated to SoS systems, i.e., the MBA Browser;
and (iii) detailed insights into integrating our proactive inter-
faces, and challenges faced by different approaches.

With all that in mind, perhaps one may still think what
are the differences between our personal assistants and the
embodied agents used in other fields like virtual reality. First,
the Personal Assistant agents of our approach are digital
butlers focusing on assisting human beings, i.e., the SoS users.
Moreover, the PAs are cognitive and use their knowledge (UM)
for providing personalized support to their users. Furthermore,
in our approach the natural language interaction between
SoS users and PAs is much more simple, as in SoS usually
the interactions involve requests for SoS functionalities for

achieving the expected results of the SoS goal. Conversely,
usually embodied agents of virtual reality take a more social
and psychological perspective, approaching aspects such as
emotions and trust (Callebert et al. [15]). Furthermore, the
conversations also tend to be longer in order to exploit such
an aspects.

In the future, we plan to improve the presentation policy
of personal assistants, for instance, to not interrupt users that
are busy. We are also interested, to work with more languages
besides English, as well as apply and test the approach in other
domains.

VIII. ACKNOWLEDGMENT

Gregory Moro Puppi Wanderley would like to thank CNPq-
Brazil (grant 233137/2014-9) for its support in this research.

REFERENCES

[1] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Pe-
leska, “Systems of systems engineering: basic concepts, model-based
techniques, and research directions,” ACM Computing Surveys (CSUR),
vol. 48, no. 2, p. 18, 2015.

[2] R. L. Ackoff, “Towards a system of systems concepts,” Management
science, vol. 17, no. 11, pp. 661–671, 1971.

[3] M. W. Maier, “Architecting principles for systems-of-systems,” in IN-
COSE International Symposium, vol. 6, no. 1. Wiley Online Library,
1996, pp. 565–573.

[4] J. S. Dahmann and K. J. Baldwin, “Understanding the current state
of us defense systems of systems and the implications for systems
engineering,” in Systems Conference, 2008 2nd Annual IEEE. IEEE,
2008, pp. 1–7.

[5] G. M. P. Wanderley, M.-H. Abel, J.-P. Barthès, and E. C. Paraiso, “A
core architecture for developing systems of systems,” in Systems, Man,
and Cybernetics (SMC), 2017 IEEE International Conference on. IEEE,
2017, pp. 141–146.

[6] E. C. Paraiso and J.-P. A. Barthès, “An intelligent speech interface for
personal assistants in r&d projects,” in Computer Supported Cooperative
Work in Design (CSCWD), 2005 IEEE 9th International Conference on.
IEEE, 2005, pp. 804–809.

[7] D. Song, E. Y. Oh, and M. Rice, “Interacting with a conversational agent
system for educational purposes in online courses,” in Human System
Interactions (HSI), 2017 10th International Conference on. IEEE, 2017,
pp. 78–82.

[8] J. Jokinen, M. B. Ambat, and J. L. M. Lastra, “Condition monitoring
for distributed systems with reconfigurable user interfaces and data per-
missions,” in Industrial Electronics Society, IECON 2016-42nd Annual
Conference of the IEEE. IEEE, 2016, pp. 5705–5710.

[9] S. Nativi, P. Mazzetti, M. Santoro, F. Papeschi, M. Craglia, and
O. Ochiai, “Big data challenges in building the global earth observation
system of systems,” Environmental Modelling & Software, vol. 68, pp.
1–26, 2015.

[10] P. Mazzetti, G. Puglisi, L. DAuria, R. Roncella, D. Reitano, R. Merenda,
and S. Nativi, “The med-suv virtual research environment for enabling
the geo geohazard supersites in italy,” Earth Science Informatics, pp.
1–13, 2017.

[11] G. M. P. Wanderley, M.-H. Abel, J.-P. Barthès, and E. C. Paraiso,
“An advanced collaborative environment for software development,”
in Systems, Man, and Cybernetics (SMC), 2016 IEEE International
Conference on. IEEE, 2016, pp. 002 917–002 922.

[12] Botlibre, “Bot Libre,” https://www.botlibre.com, 2017, online; accessed
2 November 2017.

[13] N. Negroponte, “Agents: From direct manipulation to delegation,” in
Software agents. MIT Press, 1997, pp. 57–66.

[14] J.-P. A. Barthès, “Omas a flexible multi-agent environment for cscwd,”
Future Generation Computer Systems, vol. 27, no. 1, pp. 78–87, 2011.

[15] L. Callebert, D. Lourdeaux, and J.-P. Barthès, “Trust-based decision-
making system for action selection by autonomous agents,” in Computer
Supported Cooperative Work in Design (CSCWD), 2016 IEEE 20th
International Conference on. IEEE, 2016, pp. 4–9.


