N

N
N

HAL

open science

MBA: A Framework for Building Systems of Systems
Gregory Moro Puppi Wanderley, Marie-Hélene Abel, Emerson Cabrera

Paraiso, Jean-Paul Barthes

» To cite this version:

Gregory Moro Puppi Wanderley, Marie-Héléene Abel, Emerson Cabrera Paraiso, Jean-Paul Barthes.
MBA: A Framework for Building Systems of Systems.
ence on System of Systems Engineering (SoSE 2018), Jun 2018, Paris, France.

10.1109/SYSOSE.2018.8428721 . hal-01901510

HAL Id: hal-01901510
https://hal.science/hal-01901510
Submitted on 5 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

13th Annual International Confer-
pp-358-364,

https://hal.science/hal-01901510
https://hal.archives-ouvertes.fr

MBA: A Framework for Building Systems of
Systems

Gregory Moro Puppi Wanderley*, Marie-Héléne Abel*, Emerson Cabrera Paraiso!, Jean-Paul A. Barthés*
*Sorbonne Universités, Université de Technologie de Compiégne,
CNRS, UMR 7253 Heudiasyc, Compiegne, France
Email: {gregory.wanderley, matie-helene.abel, barthes} @utc.fr
fPontificia Universidade Cat6lica do Parand
PPGIa - Graduate Program in Informatics, Curitiba, Brazil
Email: paraiso@ppgia.pucpr.br

Abstract—Although the concept of System of Systems (SoS)
has become quite popular, most applications are still hand
crafted. In this paper we present a framework, called MBA for
Memory-Broker-Agent, addressing the development of systems of
systems from an engineering perspective. The main features of the
framework result from the experience gained from building an
SoS for developing software collaboratively. In the paper we recall
the requirements for building an SoS and show how they can be
met by using a multi-agent substrate. The MBA framework is
a first step towards proposing a generic platform for developing
systems of systems.

Index Terms—Systems of Systems, Architecture, Multi-agent
system, Knowledge management, User interface

Since the first introduction of the General System Theory
(GST) by Ludwig von Bertalanffy in the 40s [1] a number
of complex systems have been developed in various domains.
Also, the need of building systems successfully has led to
the emergence of the field of systems engineering and the
creation of the International Council on Systems Engineering
(INCOSE).

Today complex applications require to let several systems
that have been developed independently work together, leading
to the concept of system of systems (SoS). The notion of SoS
from a systems engineering perspective, focused on connecting
independent systems together, gained momentum with the
United States Strategic Defense Initiative (SDI) from the late
1980s [2].

Nowadays, SoS has been applied and developed in a number
of different domains, e.g., to improve the quality of the code
[3], to assess the sustainability of different sources of energy
[4], to support manufacturing [5], to improve understanding
medication prescriptions [6], to support tourism [7], to support
military activities ([8]; [9]; [10]), or to help developing particle
accelerator facilities [11].

However, most SoS are still hand crafted and no consensus
has yet been reached about a precise definition of what they
are ([12]; [13]; [14]; [15]; [16]). In this paper, we present a
framework to facilitate the development of systems of systems
from an engineering perspective. We determine essential ele-
ments and discuss how the corresponding architecture answers
most of the requirements for building systems of systems.

I. REQUIREMENTS FOR BUILDING AN SOS

The lack of consensus in the definition of systems of
systems has lead researchers to start basing their definitions
on SoS characteristics, which according to Maier [17] are the
following.

e Operational Independence: all the constituent systems of
an SoS can often deliver their functionalities when not
working with other constituents.

e Managerial Independence: each constituent system of an
SoS is governed by its own rules rather than by others
external to the constituent.

e Evolutionary Development: functions and purposes of an
SoS can dynamically change and constituent systems can
be added or removed to fit them.

e Emergent Behaviour: an SoS is capable of delivering
new functionalities that are the result of the constituent
systems working together.

o Geographic Distribution: constituent systems of an SoS
are geographically distributed, meaning that they can
readily exchange only information and not substantial
quantities of mass or energy.

Note that such features are also cited by the INCOSE [18] as
useful to define what an SoS can be.

Because of such characteristics, developing an SoS meets
several challenges like interoperability, robustness, knowledge
management, user involvement, or evolution.

a) Interoperability: In an SoS, constituent systems need
to exchange information and cooperate. Interoperability can be
defined as the ability of distinct systems to share semantically
compatible information and then process and manage such
information in semantically compatible ways, enabling users
to perform desired tasks (Zeigler et al. [19]; Madni and Sievers
[20]). Providing interoperability between constituent systems
that do not interoperate natively can require substantial effort
and cost. To support SoS interoperability, communication
protocols need to be used, simplifying and managing the
connections among heterogeneous systems.

b) Robustness: Because of the evolutionary nature of
SoS, interdependencies and relations between SoS constituents
can be modified, meaning that changes can occur in an unpre-

dictable manner (De Laurentis [21]). Thus, it is paramount to
consider robustness in SoS. In the context of SoS, robustness
can be defined as the ability to deliver capability in unknown
future conditions.

c¢) Knowledge management: Performing Knowledge
Management (KM) is essential as SoS change over time.
Because systems and users may change during SoS life cycle,
crucial knowledge must be collected, organized and preserved.

d) User dimension: Besides being an important char-
acteristic, the user dimension is also a challenge in SoS.
Unlike in monolithic systems in which users have predefined
interfaces, in an SoS users interact through changing inter-
faces with other systems or with users of the SoS (Madni
and Sievers [20]). Such a dynamic behavior occurs mainly
because systems can be added, removed or replaced in an
SoS. Moreover, interactions can occur through interfaces in
external systems connected to the SoS such as a Web server
or another application. Furthermore, information for decision-
making should be given on behalf of individuals, i.e., should
take a user perspective, providing customized information
perhaps through Al-based systems.

e) Evolution: Evolution means changing an SoS, for
instance, by adding, removing, replacing or modifying its
constituent systems. According to Agarwal et al. [22], some of
the needs for evolving an SoS can be for: (i) improving SoS
performance; (ii) rendering constituent systems interoperable;
(iii) including additional requirements for the SoS goal; (iv)
handling evolution in the constituent systems; and (v) adding
new functionalities to the constituent systems. A usual practice
recommended to handle the evolution in SoS is to leave
constituent systems loosely coupled.

The following section proposes a new approach, bringing
answers to the challenges we just mentioned.

II. THE MBA ARCHITECTURE

Considering the characteristics and challenges for building
systems of systems, one cannot but think of multi-agents
systems (MAS). Indeed, although an agent in an MAS usually
cannot work meaningfully without the support of the other
agents, many MAS features constitute good candidates for
supporting an SoS architecture. The approach thus consists
of building systems of systems on top of a multi-agent layer
that will provide the needed mechanisms for answering the
requirements. Such an approach is inspired by the PACT (Palo
Alto Collaborative Testbed) project (Cutkosky et al. [23])
that introduced the idea of facilitator and allowed Gruber to
develop the concept of ontology.

A. Overall Approach

The main idea is to render the component systems interop-
erable by using facilitator agents, one for each system. Then,
we link the agents to brokers (Park et al. [24]) that will
take care of organizing exchanges using a standard protocol.
The MAS platform will also offer the possibility of adding
Personal Assistant agents to interface with users, and agents
in charge of recording information necessary for managing

knowledge. Thus, the interoperability and robustness issues
will be addressed by agentifying the component systems
using facilitators, brokers, a standard protocol and ontologies;
knowledge management, by the existence of agents in charge
of memory; user dimension, by personal assistant agents; and
evolution, by a possibility of plug and play of the component
systems. Hence, the name of the proposed framework: MBA
for Memory-Broker-Agents.

B. The MBA Framework

The MBA model can be defined as a tuple ¢ :=
(M, B, A,Y), where
e M, B, A are finite sets of memories, brokers, and agents,
respectively.
e Y is aternary relation among them, i.e., Y C M x Bx A.
This relation specifies the coupling among parts.

The MBA architecture is a domain-independent core archi-
tecture, meaning that it is extended according to the domain,
goals and systems of the SoS being developed. In the ar-
chitecture, three main elements are distinguished: “system,”
“broker” and “memory.” A minimal example of the proposed
architecture is shown in Fig. 1.

Fig. 1. The MBA architecture proposed in this research.

The system element represents a component system of an
SoS. To become a constituent system of an MBA SoS, a sys-
tem must provide at least an API (Application Programming
Interface). After being interfaced through a facilitator agent,
the system will be augmented by a communication protocol,
ontologies, and optional interfaces.

The communication protocol is used to exchange messages
and information between the system and the other constituent
systems in the MBA SoS.

The broker element is intended to receive requests from
component systems, try to find potential providers, and then
once the tasks are allocated, transfer the results back to
the callers. In addition to providing loose coupling between
systems, an important characteristic of the broker is that
it can be a single agent or a set of broker agents. Using
several brokers can avoid overloading a single broker, thus
enhancing efficiency, and making the MBA architecture more
robust. In addition brokers use a Contract-Net protocol (Smith
[25]), which allows including component systems offering

competing services, selecting from the most efficient one, or
easily phasing out a subsystem when a new version appears.
The memory element is there to capitalize and manage
knowledge concerning the SoS and its domain. In our ap-
proach, it is possible to have as many memories as needed
or required by a given domain, including redundant elements.
The main advantage of memories in our approach is that we
are able to reuse knowledge from the SoS and its domain.
Memories are usually external systems. Currently, the MBA
architecture provides facilitator agents ready to interface differ-
ent kinds of memories based on object, relational, key-value
and triplestore data models. The advantage of doing this, is
that our approach facilitates the work of SoS architects, letting
them customize such facilitator agents for their application.
Once all elements have been “agentified,” one must provide
a standard protocol for requesting services and receiving an-
swers and ensure both syntactic and semantic interoperability.

C. The MBA Communication Protocol

The low level protocol is provided by the supporting multi-
agent platform. At a higher level, requests for services are
modelled using work orders and answer formats by answer
patterns.

1) Work Orders: A work order describes a request sent to
a broker. Formally, it can be defined as follows:

<work order> ::= (<message-content>[, <action>],

<timeout>[, <C-net strategy>])

where,

e <message-content> is the content or arguments of the
work order detailed below.

e <action> is an optional parameter, being the name (a
keyword) of a requested functionality. To succeed in
requesting <action>, the requester must appear some-
where in the ontology of the potential providers.

e <timeout> is a number representing the maximum
amount of time a requester will wait to receive an answer
to its request.

e <C-net strategy> is a parameter used by requesters
to specify the strategy used in a Contract Net for getting
answers.

Because there may be different reasons for a request not to
be answered, e.g. the facilitator agents interfacing the systems
are fully busy working on several requests, or they simply
do not want to answer, the MBA architecture adopts the
approach that systems are permitted not to answer requests.
Consequently, it is necessary to allow specifying timeouts in

the work order.
The arguments or content of a work order,
<message-content>, can be defined as follows:

ie.,

<message—-content> ::= ([<query>], [<data>],

[<pattern>], <language>)

where,

e <query> represents a request made in a query format
(the ontologies of the facilitator agents of requesters and
providers must be at least compatible).

e <data> stands for some input data.

e <pattern> an answer pattern determining how results
should be structured.

e <language> the language used in the the message con-
tent.

2) Answer Patterns: An answer pattern in the MBA ar-
chitecture specifies how the results from a request should be
structured in order to be understood by the requester. It is
a list of linguistic cues expressed as a tree of ontological
terms. These terms are concepts and properties taken from the
requester’s ontology. The pattern gives semantics to requests
and results.

({<attribute>}*))
| {<relation> <pattern>}*

<pattern> ::= (<concept>

D. Ontologies

Ontologies constitute the backbone of our architecture. They
play four different roles: (i) modeling the SoS domain; (ii)
modeling the users of constituent systems; (iii) decoding
interactions in natural language; (iv) handling the semantics
of the communication protocol.

Because an SoS is composed of systems that were built
independently and because its structure will change over time,
it is not possible to construct a single ontology that could
homogenize all its different parts. It is possible however to
align parts of the different ontologies within the application to
ensure a minimal understanding.

A second role of the ontologies is to model users of
the component systems. Representing the behavior of the
user interacting with a component system will help provide
personalized support for improving her interaction with the
SoS. This can be done in connection with the user’s personal
assistant.

Ontologies are also essential for decoding interactions in
natural language. On the system side, the goal in this case is
to help decoding, interpreting and understanding the utterances
between users and their PAs.

Ontologies are also necessary to interpret expressions of the
message content language, ensuring semantic interoperability.

The ontologies used to support the semantics are kept within
the facilitator agents. It is important to highlight that such on-
tologies can differ in each agent, being specialized according
to the characteristics of the systems they are interfacing. Thus,
the ontologies of two given facilitator agents need not be the
same but must have a minimal degree of compatibility to allow
exchanging information coherently.

E. Summarizing Process

After accomplishing the allocated tasks, providers are re-
sponsible for structuring the results in a format understandable
by the requester. To do that, they must perform a summarizing
process, which consists of filling an answer pattern with the

relevant information. Each provider, through its facilitator,
must align its ontology with the content of the answer pattern
in the work order, then organize its data to structure it
according to the pattern.

F. User Dimension

SoS have a number of human users who have two kinds
of interfaces: an interface with a component system, and an
interface with the SoS. Because point and click interfaces are
not efficient in complex environments, and because with the
MAS substrate we can use personal assistant agents (PA), a
natural way of interacting with the SoS is by using natural
language written or spoken.

A PA is an important asset since it can act proactively,
provide customized support, reduce the user’s cognitive load,
help to increase cooperation with other SoS users, and handle
multimodal interactions. Moreover it has been shown that
natural language dialogues in a professional context are not
very difficult to implement (Barthes [26], Fuckner et al.
[27]). Finally, speech-to-text and text-to-speech programs have
made enough progress to be now integrated in such kinds of
interfaces (Jones et al. [28]).

III. CASE STUDY

We built a prototype in the domain of software development
to assess the different problems that could arise.

A. Overview

The objective of software development is to support team
members working collaboratively for improving the quality
of the code they produce in a given project. The purpose
of the targeted SoS was the following: While developers
are writing their code, knowledge about the code quality is
capitalized automatically and in a non intrusive way; then,
feedback is provided showing possible quality issues and
recommendations for addressing them; in parallel, managers
receive information about the quality of projects or the quality
of the code through charts or tables, to help them make
decisions.

The SoS shown in Fig. 2 consists of coding systems, a
code analysis system, a versioning system, different kinds
of DataBases (DB) such as relational, object, key-value, and
triplestore, MBA Browsers systems, and a Web search system.
All the systems are operational and managerial independent,
but cooperate together aiming to improve the quality of the
code.

The overall SoS works as follows. Developers use their IDE
to produce (Java) code. They can write code of a given project
that has its quality considered by the SoS, or to develop code
in parallel related to other projects which are not taken into
account by the SoS. The produced code is kept in a versioning
system which can store code in real-time from a number of
different projects. The analysis system retrieves the code from
the versioning system, performing quality analysis. At the
same time the analysis system cooperates with the SoS, it can
also provide analysis to code from different teams and projects.

AMUNicy «...
QRrerface 00,)

«\mUﬂic%.
o)
Cerface 0,

‘(\\'“Unfc‘g .

%
Qkerface 2

QMUNTc,,
Ryterface %
Y os

Fig. 2. The proposed MBA architecture applied to the context of collaborative
software development.

When weaknesses are found, recommendations are extracted
from the various databases and from the Web which may also
work in parallel for storing or retrieving information outside
the SoS. After that, the recommendations are forwarded to
the developer through her coding system. An interactive vocal
interface allows communicating with the system for requesting
services or with other developers to obtain information. The
project manager has an external system with a Web interface
handled by a Personal Assistant, allowing her to request and
receive information from the SoS, for instance, to view the
progress of the developments and the problems encountered.

B. Implementation

The coding system used by each developer was Eclipse'.
The versioning system was github®>. The analysis system
was a multi-agent system applying rules to compute the
quality of the produces Java code. The relational database
was MySQL?, the object database was AllegroCache*, the
key-value database was Redis’, the triplestore was actually a
knowledge management system handling documents viewed as
resources MEMORAe® (Abel [29]). The supporting MAS plat-
form was OMAS’ (Barthes [30]). Facilitators were instances
of the OMAS Transfer Agents, interfaces were implemented
as instances of OMAS Personal Assistant Agents. The Broker
was an instance of OMAS Service Agent. All Web interfaces
were used the possibility of viewing the MAS platform as
a Web server. Interactions used the platform Contract Net
facility. Vocal interface was implemented using speech-to-text
and text-to-speech software.

Uhttps://www.eclipse.org/
Zhttps://github.com/
3https://www.mysql.com/
“https://franz.com/products/allegrocache/
Shttps://redis.io/
Ohttp://memorae.hds.utc.fr/demo/labo/
Thttp://www.utc.fr/~barthes/OMAS/

C. Discussion

Building the prototype of SoS for developing software
collaboratively allowed us to determine the important feature
a generic platform should offer. The role of the MAS during
implementation was crucial since it provided agent models for
building the facilitators, the personal assistant agents for inter-
facing humans and the Contract-Net protocol for exchanging
messages. The OMAS environment also provided support for
developing ontologies easily and a reasoning process similar
to Jena or SPARQL. Work orders were built in a trivial
fashion, and OMAS offered the summarizing mechanism to let
facilitators format their answers. Natural language processing
and dialogue mechanism were also supported by existing
structures. A difficult point however was to build the actual
personal assistant dialogues, which required a long and tedious
work. Building facilitators used the available Transfer Agent
mechanism, but required to install a specific ontology and
translators for matching the inter-agent message structure
to the idiosyncrasies of each element system, for example,
matching the ontology with relational tables for the MySQL
facilitator.

An important discovery was that we could replace the
broker agent by using conditional addressing allowing to
deliver messages only to agents that satisfy certain conditions
formulated using the sender ontology and the ontology query
structure. The OMAS platform is quite efficient with broadcast
messages or Contract-Net messages since the call for bids can
be done with a single message, as well as granting a task. This
approach, defining a virtual broker, preserves the P2P nature
of the exchanges among agents.

IV. GLOBAL DISCUSSION

After presenting the approach, let us see now how it answers

some of the challenges listed at the beginning of the paper.

o Interoperability is provided by the underlying multi-agent
platform and the use of facilitators to insert external
systems or legacy systems. The MAS platform also
allows geographical distribution.

¢ Robustness is improved by the use of Contract-Net, which
allows inserting new components in parallel to existing
ones as well as optimizing services.

o Knowledge management must be implemented in the
framework of each application but can rely on the in-
terface of databases (relational, object, or other) or more
sophisticated systems like MEMORAe.

e User dimension is taken into account by the possibility
of interfacing users to the SoS through Personal Assistant
agents, conducting exchanges using natural language in a
textual or vocal mode. Personal assistants can be proac-
tive and make use of user profiles to better customize
interactions.

o Evolution is favored by the loose coupling of element
systems and the use of standard Work Orders and Answer
Patterns in the protocol. Loose coupling ensures the op-
erational and managerial independence of the component
systems.

Note that the proposed framework does not apply to all the
characteristics of a system of systems, for example concerning
emergence. Such characteristics relate to applications. How-
ever, by trying to answer challenges, we hope that the MBA
framework will lead to develop systems of systems displaying
the characteristics mentioned at the beginning of the paper.

Concerning related work, there is not enough room here
to mention the numerous papers that have discussed the
architecture of an SoS. We examine some recent ones.

Many approaches rely on centralized components, for in-
stance, to store and provide the services or functionalities
used by systems in the SoS or to render constituent systems
interoperable focusing on semantics and translations (e.g.
Perez et al. [31] or Varga et al. [32]). The use of a centralized
component makes the architecture more brittle, creating single
points of failure, which is even more risky in the case of SoS
because of emergent and unpredictable behavior. Furthermore,
the central component can be overloaded with requests, thus
the SoS can suffer from bottlenecks, which can affect the
expected results. In addition, the use of central elements leads
to tight coupling, which is not appropriate for coping with the
evolution of the system.

Regarding interoperability, most approaches use or recom-
mend the use of standards. Some works like (Wong et al. [33])
use several protocols or standards at the same time. In this
case, message translation is done within central components.
This increases the complexity, effort and cost, and each time
a system using a different protocol is connected to the SoS,
new translation mechanisms need to be created and added to
the central element. In some cases, in order to implement the
changes, the central element needs to be stopped, bringing the
entire SoS to a halt.

Some works take a more conceptual view regarding archi-
tectural support for SoS. Some authors propose languages
to formally describe the architecture (Oquendo [34]), or
techniques to optimize and provide decision-making using
SoS architectures (Agarwal et al. [22]). Others try to study
architectural patterns (Ingram et al. [35]). Others still, like Ge
et al. [36] propose using well-known architecture frameworks
such as DoDAF. However, such frameworks represent the
architecture statically and focus too much on what should be
described rather than on the practical problems. They focus
mainly on a conceptual level, i.e., describing and documenting
the architectures, rather than a practical point of view for
supporting the development of SoS.

Regarding user dimension, most approaches use the WIMP
paradigm (Windows, icons, menus, pointer), difficult to use in
the case of SoS as information is exchanged among different
kinds of systems. Moreover, the use of rigid interfaces cannot
be appropriate for SoS as they change over time. Some authors
offer interaction in natural language, but on a limited scale.

Although robustness is an important issue, we did not
find an approach that tries to support SoS robustness from a
practical point of view, i.e., directly during SoS operation. For
instance, none of the approaches try to bring back an SoS to
a coherent state after its constituent systems have gone down.

This can be important since once systems are reconnected to
the SoS their state may no longer be consistent with the rest
of the SoS, and thus their information can be incoherent and
spread over all the SoS.

Over the years, a growing number of authors have been
trying to categorize SoS, for instance, to guide the selection
of architecting principles. Four main categories (Maier [17];
Dahmann and Baldwin [37]) based on the authority relation-
ships between the SoS and the constituent systems have been
widely adopted (Dahmann and Roedler [38]):

o Directed: In these SoS, the constituent systems are subor-

dinated to a central authority to fulfill a specific purpose.
The constituent systems of the SoS have the ability to
operate independently, but are managed to satisfy the
target purpose.

o Collaborative: The constituent systems interact and col-
laborate voluntarily to fulfill the agreed common purpose.
In this category of SoS, a central management organiza-
tion does not have coercive power to run the system.

o Acknowledged: Tt is a hybrid of the directed and col-
laborative SoS. There is a management authority at
both the SoS and the system levels. The acknowledged
SoS have clear purposes, management and resources.
The constituent systems continue as independent entities,
pursuing their own goals with independent management,
resources, stakeholders. There is a concurrent manage-
ment. Competing interests and priorities may arise.

e Virtual: In this type of SoS, there is a lack of both
central management authority and centrally agreed upon
purposes. Large-scale behavior emerges, and may be
desirable, but the SoS must rely upon relatively invis-
ible mechanisms to maintain it. A virtual SoS may be
deliberate or accidental.

Now, how could the MBA framework help to build such

types of SoS?

First, it is important to note that the constituent systems of
an SoS built through our framework are not naturally con-
strained by any form of managerial control. The main reason
is because our goal is to provide a generic approach, thus we
avoid imposing such a constraint. However, we describe now
how our framework could be used for building SoS of the four
types mentioned above.

Directed SoS: when building a directed SoS with the
MBA framework, the central authority could use external
systems with Personal Assistant (PA) agents to control the SoS
by requesting or receiving its functionalities. Our approach
already provides such an external system which is the MBA
Browser used by software managers in the case study of
Section III. The access to the SoS functionalities by both, the
central authority and constituent systems, could be customized
in facilitators of constituents and dialogs of the PAs.

Collaborative SoS: for building a collaborative SoS with
our approach, an architect may use the MBA framework di-
rectly. For instance, she needs to interface potential constituent
systems with facilitators and link them with brokers, as de-
scribed in this paper. The reason for that is because inherently

an SoS built through the MBA framework is not compelled to
central authorities. An example of collaborative system built
using our approach can the case study of collaborative software
development described in Section III.

Acknowledged SoS: in an acknowledged SoS, the central
authority could also use external systems interacting through
PAs, as we have recommended for the Directed SoS type.
When dealing with competing interests and priorities, con-
stituent systems could rely on a more technical level on the
Work Order protocol, by using timeouts and parametrizing
facilitators to answer or not requests. However, if a more
sophisticated approach is needed, then it must be implemented
by the architect, for instance, specifying in the facilitator
agents how to handle the incoming Work Orders.

Virtual SoS: for building a virtual SoS with the MBA
framework, first the architect would be required to interface
potential constituent systems with facilitators, as usual. Then,
because a virtual SoS does not have a central authority and not
even a specific purpose, the facilitators could be customized
for allowing the constituents request and receive perhaps all
functionalities from each other freely.

Following this line of categorizing SoS through types, the
MBA SoS we built in the case study of Section III could be
considered of the collaborative type. The main reasons are that,
first the constituent systems do not rely on central authorities
controlling the SoS. That is, the interactions between them
are performed mainly according to the SoS goal of improving
code quality. The stakeholders such as software development
managers and developers are free to request the SoS func-
tionalities, in consonance with their roles in the SoS domain.
Moreover, in the application level, managers and developers
can collaborate, for instance, by suggesting recommendations
to improve the code quality. However, developers are free to
accept or not such suggestions.

The main differences between the works of the literature to
the approach proposed by this research is that we propose a
domain-independent peer-to-peer (P2P) architecture with loose
coupling between its elements, focusing on the development of
an SoS from a practical point of view. Our approach does not
rely on centralized components or keep references between
each its elements. Moreover, thanks to the loose coupling
provided by our architecture, the SoS developed with it can be
easily adapted to different domains. Furthermore, our approach
provides basic elements for knowledge capitalization and man-
agement, and uses a single communication protocol providing
syntactic and semantic interoperability between constituent
systems. It also takes into account the user dimension by
providing proactive interfaces capable of interacting with SoS
users through dialogues with Personal Assistants, and offering
proactive support when they are using the SoS. In addition, our
approach considers robustness during SoS operation, trying to
support it keeping coherent when constituent systems go down.

The work done until now allowed us to propose the MBA
framework. We are currently developing a generic platform
using this framework, as well as a method for building systems
of systems. We started testing the approach on new problems,

in particular in the domain of health care (Wanderley et al.

[6]).

ACKNOWLEDGMENT

Gregory Moro Puppi Wanderley would like to thank CNPq-
Brazil (grant 233137/2014-9) for its support in this research.

[1]
[2]

[3]

[5

=

[6]

[7

—

[8

[t}

[10]

[11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

L. v. Bertalanffy, General system theory: Foundations, development,
applications. George Braziller, 1969.

C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Pe-
leska, “Systems of systems engineering: basic concepts, model-based
techniques, and research directions,” ACM Computing Surveys (CSUR),
vol. 48, no. 2, p. 18, 2015.

G. M. P. Wanderley, M.-H. Abel, J.-P. Barthes, and E. C. Paraiso, “A
core architecture for developing systems of systems,” in 2017 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
2017, pp. 141-146.

S. Hadian and K. Madani, “A system of systems approach to energy
sustainability assessment: Are all renewables really green?” Ecological
Indicators, vol. 52, pp. 194-206, 2015.

S. Ford, U. Rauschecker, and N. Athanassopoulou, “System-of-system
approaches and challenges for multi-site manufacturing,” in System of
Systems Engineering (SoSE), 2012 7th International Conference on.
IEEE, 2012, pp. 1-6.

G. M. P. Wanderley, E. Vandenbergh, M.-H. Abel, J.-P. A. Barthes,
M. Hainselin, H. Mouras, A. Lenglet, M. Tir, and L. Heurley, “Con-
signela: A multidisciplinary patient-centered project to improve drug
prescription comprehension and execution in elderly people and parkin-
sonian patients,” Telematics and Informatics, 2017.

L. Bai, “System of systems engineering and geographical simulation:
Towards a smart tourism industry information system,” in Advanced
Communication Technology (ICACT), 2013 15th International Confer-
ence on. 1EEE, 2013, pp. 1015-1018.

P. Hershey, M.-C. Wang, and D. Toppin, “System of systems for au-
tonomous mission decisions,” in System of Systems Engineering (SoSE),
2013 8th International Conference on. 1EEE, 2013, pp. 129-134.

J. P. Olivier, S. Balestrini-Robinson, and S. Briceno, “Approach to
capability-based system-of-systems framework in support of naval ship
design,” in Systems Conference (SysCon), 2014 8th Annual IEEE. 1EEE,
2014, pp. 388-395.

J. C. Kilian and T. M. Schuck, “Architecture and system-of-systems
design for integrated missile defense,” in System of Systems Engineering
Conference (SoSE), 2016 11th. 1EEE, 2016, pp. 1-6.

T. Friedrich, C. Hilbes, and A. Nordt, “Systems of systems engineering
for particle accelerator based research facilities: A case study on
engineering machine protection,” in Systems Conference (SysCon), 2017
Annual IEEE International. 1EEE, 2017, pp. 1-8.

M. W. Maier, “Architecting principles for systems-of-systems,” Systems
Engineering, vol. 1, no. 4, pp. 267-284, 1998. [Online]. Avail-
able: http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-
SYS3>3.0.CO;2-D

R. L. Ackoff, “Towards a system of systems concepts,” Management
science, vol. 17, no. 11, pp. 661-671, 1971.

J. P. Dauby and S. Upholzer, “Exploring behavioral dynamics in systems
of systems,” Procedia Computer Science, vol. 6, pp. 34-39, 2011.

C. Stary and D. Wachholder, “System-of-systems supporta bigraph
approach to interoperability and emergent behavior,” Data & Knowledge
Engineering, vol. 105, pp. 155-172, 2016.

M. Jamshidi, Systems of systems engineering: principles and applica-
tions. CRC press, 2017.

M. W. Maier, “Architecting principles for systems-of-systems,” INCOSE
International Symposium, vol. 6, no. 1, pp. 565-573, 1996. [Online].
Available: http://dx.doi.org/10.1002/j.2334-5837.1996.tb02054.x

D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin, and T. M.
Shortell, Systems engineering handbook: A guide for system life cycle
processes and activities. John Wiley & Sons, 2015.

B. P. Zeigler, S. Mittal, and X. Hu, “Towards a formal standard for
interoperability in m&s/system of systems integration,” in GMU-AFCEA
Symposium on Critical Issues in C41, 2008.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[34]

[35]

[36]

[37]

(38]

A. M. Madni and M. Sievers, “System of systems integration: key
considerations and challenges,” Systems Engineering, vol. 17, no. 3, pp.
330-347, 2014.

D. A. DeLaurentis, “A taxonomy-based perspective for systems of
systems design methods,” in Systems, Man and Cybernetics, 2005 IEEE
International Conference on, vol. 1. 1EEE, 2005, pp. 86-91.

S. Agarwal, L. E. Pape, C. H. Dagli, N. K. Ergin, D. Enke, A. Gosavi,
R. Qin, D. Konur, R. Wang, and R. D. Gottapu, “Flexible and intelli-
gent learning architectures for sos (fila-sos): Architectural evolution in
systems-of-systems,” Procedia Computer Science, vol. 44, pp. 76-85,
2015.

M. R. Cutkosky, R. S. Engelmore, R. E. Fikes, M. R. Genesereth, T. R.
Gruber, W. S. Mark, J. M. Tenenbaum, and J. C. Weber, “Pact: an
experiment in integrating concurrent engineering systems,” Computer,
vol. 26, no. 1, pp. 28-37, Jan 1993.

H. Park, J. Tenenbaum, and R. Dove, “Agile infrastructure for manufac-
turing systems: A vision for transforming the us manufacturing base,”
in Proceedings of the Defense Manufacturing Conference, 1993.

R. G. Smith, “The contract net protocol: High-level communication
and control in a distributed problem solver,” IEEE Transactions on
computers, no. 12, pp. 1104-1113, 1980.

J.-P. A. Barthes, “Flexible communication based on linguistic and
ontological cues,” in E-Technologies: Transformation in a Connected
World - 5th International Conference, MCETECH 2011, Les Diablerets,
Switzerland, January 23-26, 2011, Revised Selected Papers, 2011, pp.
131-145. [Online]. Available: https://doi.org/10.1007/978-3-642-20862-
1.9

M. Fuckner, J.-P. A. Barthe¢s, and E. E. Scalabrin, “Using personal
assistant dialogs for automatic web service discovery and execution,”
in WEBIST 2013 - Proceedings of the 9th International Conference
on Web Information Systems and Technologies, Aachen, Germany, 8-
10 May, 2013, 2013, pp. 189-198.

A. Jones, A. Kendira, C. Moulin, J.-P. A. Barthés, D. Lenne, and
T. Gidel, “Vocal interaction in collocated cooperative design,” in Cogni-
tive Informatics & Cognitive Computing (ICCI* CC), 2012 IEEE 11th
International Conference on. I1EEE, 2012, pp. 246-252.

M.-H. Abel, “Knowledge map-based web platform to facilitate organi-
zational learning return of experiences,” Computers in Human Behavior,
vol. 51, pp. 960-966, 2015.

J.-P. A. Barthes, “Omas a flexible multi-agent environment for cscwd,”
Future Generation Computer Systems, vol. 27, no. 1, pp. 78-87, 2011.
J. Pérez, J. Diaz, J. Garbajosa, A. Yagiie, E. Gonzalez, and M. Lopez-
Perea, “Towards a reference architecture for large-scale smart grids
system of systems,” in Proceedings of the Third International Workshop
on Software Engineering for Systems-of-Systems. 1EEE Press, 2015,
pp. 5-11.

P. Varga, F. Blomstedt, L. L. Ferreira, J. Eliasson, M. Johansson,
J. Delsing, and I. M. de Soria, “Making system of systems interoperable—
the core components of the arrowhead framework,” Journal of Network
and Computer Applications, vol. 81, pp. 85-95, 2017.

R. K. Wong, C. H. Chi, Z. Yu, and Y. Zhao, “A system of systems service
design for social media analytics,” in Services Computing (SCC), 2014
IEEE International Conference on. 1EEE, 2014, pp. 789-796.

F. Oquendo, “Formally describing the software architecture of systems-
of-systems with sosadl,” in System of Systems Engineering Conference
(SoSE), 2016 11th. 1EEE, 2016, pp. 1-6.

C. Ingram, R. Payne, and J. Fitzgerald, “Architectural modelling patterns
for systems of systems,” in INCOSE International Symposium, vol. 25,
no. 1. Wiley Online Library, 2015, pp. 1177-1192.

B. Ge, K. W. Hipel, K. Yang, and Y. Chen, “A novel executable modeling
approach for system-of-systems architecture,” IEEE Systems Journal,
vol. &, no. 1, pp. 4-13, 2014.

J. S. Dahmann and K. J. Baldwin, “Understanding the current state
of us defense systems of systems and the implications for systems
engineering,” in Systems Conference, 2008 2nd Annual IEEE. 1EEE,
2008, pp. 1-7.

J. Dahmann and G. Roedler, “Moving towards standardization for system
of systems engineering,” in System of Systems Engineering Conference
(SoSE), 2016 11th. 1EEE, 2016, pp. 1-6.

