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It is a well-established result in the theory of linear composites that the local fields in
such materials satisfy an integral equation which can be written symbolically as (Kröner,
1972; Willis, 1981; Milton, 2002; Jeulin, 2005)(

I + Γ0δL
)
ε = E, (1)

where ε is the local field under investigation, E is its average, Γ0 is the Green’s operator
associated with a homogeneous reference medium L0 and δL = L−L0 is the deviation of
the actual material properties of the composite from the homogeneous reference medium.
As recognized by Kröner, this integral equation has the same form as the Lippmann-
Schwinger (LS) equation in scattering theory.

The resolution of (1) requires the inverse of I + Γ0δL. One of the earlier method to
perform this inversion iteratively is based on a fixed point method:

ε(k+1) = −Γ0δLε(k) +E, i.e. ε(k) =
k∑

j=0

(
−Γ0δL

)j
E. (2)

This scheme with one of the phases as reference medium has been used by Brown (1955)
to study the first few terms of the series and Moulinec and Suquet (1994) used an opti-
mized reference medium, together with the discrete Fourier transform to turn the formal
expansion (2) into an iterative computational scheme. Although the simple fixed point
technique is quite efficient for composites with moderate contrast, it is sensitive to the
choice of the reference medium and its convergence can be slow for materials with high
contrast. Accelerated iterative methods have been proposed, and some of them have been
used by D. Jeulin and his coworkers (Escoda et al., 2011). According to Mishra et al.
(2016) conjugate gradient methods (see in particular Zeman et al., 2010; Gélébart and
Mondon-Cancel, 2013) are among the most efficient existing techniques. However, as
noted by these authors, the operator I + Γ0δL is not a self-adjoint operator (the corre-
sponding matrix for the discrete problem is not symmetric) since the operators Γ0 and
δL do not commute. So the use of biconjugate gradient methods is in principle required
to solve (1).

The starting point of this study is the following question: can the Lippmann- Schwinger
operator be made self-adjoint by some magic? The answer is "yes" (Schneider, 2017), the
proof is elementary and relies on a simple change of scalar product (similar, but different
from that used in Jeulin, 2005 p189).

1



The variational property of the LS equation opens new avenues for computational
schemes. Its extension to constituents governed by one non-quadratic potential is straight-
forward. The extension to materials governed by two potentials relies on incremental vari-
ational principles (Mialon, 1986; Ortiz and Stainier, 1999; Bourdin et al., 2008; Michel
and Suquet, 2016). Assume that the constitutive laws for each constituents can be written
as:

σ =
∂w

∂ε
(ε,α),

∂w

∂α
(ε,α) +

∂ϕ

∂α̇
(α̇) = 0, (3)

where α denote a set of internal variables. Then, after time-discretization with an implicit
scheme (backward Euler), the fields (strain and internal variables) solution of the local
problem (expressing equilibrium of the stress field, compatibility of the strain field with
appropriate boundary) at time tn+1 has the variational property :

(εn+1,αn+1) = Argmin
〈ε〉=ε

Argmin
α
〈w(ε,α) + ∆tϕ

(
α−αn

∆t

)
〉. (4)

This variational property is used to derive computational schemes for the class of com-
posites described by (3) which are significantly faster than the usual schemes.
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