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Yukawa coupling constants are arbitrary parameters in the Standard Model Higgs mechanism meaning that the SM Higgs mechanism does not predict the masses of elementary fermions nor does it explain why there are three generations of matter, namely leptons and quarks, respectively. We will present a formula that accurately measures Yukawa couplings for all three generations of charged leptons that is electrons, muons and tauons, respectively, without relying on the Higgs vacuum expectation value (VEV) but instead only using the fine structure constant, accounting for the running when the scale Q equals the mass of muons and then tauons, respectively. The formula also accounts for charged lepton generations therefore providing the first crucial step towards forming the theoretical framework necessary to explain the generation mechanism of matter.

Introduction

In the Standard Model of Particle Physics [1][2][START_REF] Salam | Elementary Particle Theory[END_REF][START_REF] Glashow | [END_REF], electroweak symmetry breaking [5][6][7][8] is responsible for the mass generation of W and Z gauge bosons thus rendering the weak interactions short ranged. The Standard Model scalar potential is 2 where the Higgs field Φ is a self-interacting SU(2) L complex doublet that has four real degrees of freedom, with weak hypercharge Y =1 and V(Φ) is the most general renormalizable scalar potential and if the quadratic term is negative the neutral component of the scalar doublet acquires a non-zero vacuum expectation value 𝑣 = (√2G F ) -1 2 ⁄

V(Φ) = m 2 Φ † Φ + λ(Φ † Φ)
which is approximately 246,22 GeV. We should also point out that

Φ = 1 √2 ( √2ф + ф 0 + 𝑖𝑎 0 )
where ф 0 and 𝑎 0 are the CP-even and CP-odd neutral components, and ф + is the complex charged component of the Higgs doublet, respectively.

The global minimum of the theory defines the ground state, and spontaneous symmetry breaking implies that there is a symmetry of the system that is not respected by the ground state. From the four generators of the SU(2) 𝐿 × U(1) 𝑌 gauge group, three are spontaneously broken, implying that they lead to non-trivial transformations of the ground state and indicate the existence of three massless Goldstone bosons identified with three of the four Higgs field degrees of freedom. The Higgs field couples to the W μ and B μ gauge fields associated with the SU(2) 𝐿 × U(1) 𝑌 local symmetry through the covariant derivative appearing in the kinetic term of the Higgs Lagrangian

ℒ Higgs = (D μ Φ) † (D μ Φ) -V(Φ)
Where the covariant derivative equals

D μ = ∂ μ + 𝑖gσ 𝑎 W μ 𝑎 2 + 𝑖g′YB μ 2
g and g′ are the SU(2) and U(1) gauge couplings, respectively, and σ 𝑎 where 𝑎 = 1, 2, 3are the typical Pauli matrices. As a result, the neutral and the two charged massless Goldstone degrees of freedom mix with the gauge fields corresponding to the broken generators of SU(2) 𝐿 × U(1) 𝑌 and become the longitudinal components of the Z and W gauge bosons, respectively.

(

(

The Z and W gauge bosons acquire masses

M W = g𝑣 2 (5) and M Z = (g ′ +g)𝑣 2 (6) 
The fourth generator remains unbroken since it is the one associated to the conserved U(1) QED gauge symmetry therefore its corresponding gauge field remains massless or in other words, the photon is massless.

Similarly the eight color gauge bosons, the gluons, corresponding to the conserved SU(3) 𝐶 gauge symmetry with eight unbroken generators, also remain massless. Therefore, from the initial four degrees of freedom of the Higgs field, two are absorbed by the W ± gauge bosons, one by the Z 0 gauge boson, and there is one remaining degree of freedom H, that is the physical Higgs boson. The Higgs boson is neutral under the electromagnetic interactions and transforms as a singlet under SU(3) 𝐶 and hence does not couple at tree level to the massless photons and gluons.

The mass of the Higgs boson is given as m h = √2λ𝑣 2 , where λ is a free coupling parameter and therefore the mass of the Higgs boson is not predicted in the Standard Model.

With the Higgs field in the unitary gauge, the SU(2) 𝐿 × U(1) 𝑌 invariant Yukawa Lagrangian For leptons takes the form

ℒ 𝑓 = -λ 𝑓 (L ̅ Φe R + Φ † e ̅ R L) = - λ 𝑓 𝑣 √2 e ̅e - λ 𝑓 ℎ √2 e ̅e
The respective masses of fermions are not predicted since the Yukawa coupling λ 𝑓 is a free parameter provided in the formula

m 𝑓 = λ 𝑓 𝑣 √2
in that sense the Higgs mechanism does not predict any of the fermion masses. It is possible to estimate the strength of the fermion-fermion-Higgs interactions

ℒ 𝑓𝑓ℎ = m e 𝑣 e ̅eℎ - m u 𝑣 u ̅uℎ + ⋯
where m e is the mass of an electron and m u is the mass of an up quark. A very important consequence of the fermion-fermion-Higgs interaction is its direct dependence on fermion masses. The larger the mass the stronger this interaction becomes.

Yukawa coupling generation formula

In order to make sure that Yukawa couplings are no longer arbitrary parameters in the SM Higgs mechanism, we have to avoid using the Higgs VEV. Therefore the generation formula for leptonic Yukawa couplings is:

λ 𝑙 = ∑ (λ C,𝑙 • R ∞ • 3 g 𝑓 ) 1 3 (n G -1) ⁄ n G 2 3 n G =1
Where λ 𝑙 is the lepton Yukawa coupling, 𝑙 = 𝑒, 𝜇, 𝜏 are the flavors for electrons as the first generation, muons as second and tau leptons as third respectively, where n G = 1, 2, 3 represents their respective generations in the formula, λ C,𝑙 is the Compton wavelength of the lepton, g 𝑓 is the g-factor of the charged lepton and R ∞ is the Rydberg constant. Compton wavelengths of electrons, muons and tau leptons are known to high accuracy however the Rydberg constant and the g-factors of electrons and muons are some of the best measured quantities in all of physics, along with the fine structure constant α which will be used in the more complex version of the formula above, replacing the Rydberg constant and Compton wavelengths.

When n G = 1 and therefore 𝑙 = 𝑒 we obtain the formula for the electron Yukawa coupling

λ 𝑒 = λ C,𝑒 • R ∞ • 3 g 𝑓 = m 𝑒 √2 𝑣
where λ 𝑒 is the Yukawa coupling of the electron, λ C,𝑒 is the Compton wavelength of the electron and m 𝑒 is the mass of the electron. Using the known values for the Compton wavelength, Rydberg constant and the g-factor of the electron g 𝑓 = -2.00231930436182(52) as provided by NIST, we obtain 99.46% agreement for the two sides of the equation above.

When n G = 2 and therefore 𝑙 = 𝜇 we obtain the formula for the muon Yukawa coupling

λ 𝜇 = (λ C,𝜇 • R ∞ • 3 g 𝑓 ) 1 3 ⁄ 4 = m 𝜇 √2 𝑣
where the two sides of the formula are in 99.92% agreement accounting for the g-factor of the muon g 𝑓 = -2.0023318418(13). The accuracy of the formula's left side is slightly higher than for its electronic counterpart. This occurrence could be due to the fact that the Higgs VEV is measured using the Fermi coupling constant as depicted in the above section. The Fermi coupling constant is measured by using muonic mean lifetime as shown by T. van Ritbergen and

(10) (11) (12) 
R. G. Stuart in their paper "On the Precise Determination of the Fermi Coupling Constant from the Muon Lifetime" [9].

When n G = 3 and therefore 𝑙 = 𝜏 we obtain the formula for the tau lepton Yukawa coupling:

λ 𝜏 = (λ C,𝜏 • R ∞ • 3 -2 ) 1 9 ⁄ 9 = m 𝜏 √2 𝑣
Where we used g 𝑓 = -2 since the tau lepton g-factor is still unknown and measuring it might provide evidence for new physics beyond the Standard Model. The two sides of the equation are in 93.51% agreement. One shouldn't make the mistake of trying to predict the tau g-factor using the formula from equation 13 since, as elegant and accurate as it may be, it is far too simplistic for such a complex task. We will, however, present a possibility to do so in the following chapter.

Eliminating the Rydberg constant and Compton wavelengths

The revised formula from equation 10 takes the form in which we only rely on the fine structure constant and the g-factor.. The formula is

λ 𝑙 = ∑ ( α 2+(n G -1) (Q) • 3 g 𝑓 2 + (n G -1) ) 1 3 (n G -1) ⁄ n G 2 3 n G =1
where α(Q) is the running value of the fine structure constant on the scale Q. When n G = 1 and therefore 𝑙 = 𝑒 we obtain the formula for the electron Yukawa coupling

λ 𝑒 = α 2 • 3 g 𝑓 2
which is essentially the same as the left hand side of equation 11 following the relationship the Rydberg constant has with the Compton wavelength R ∞ = α 2 /2λ C,𝜏 , however this only applies for the Compton wavelength of electrons, not muons and tau leptons. The accuracy is therefore the same as in equation 11.

When n G = 2 and therefore 𝑙 = 𝜇 we obtain the formula for the muon Yukawa coupling

λ 𝜇 = ( α 3 (M 𝜇 ) • 3 g 𝑓 3 ) 1 3 ⁄ 4
where α(M 𝜇 ) is the value of the fine structure constant on the muonic scale, that is when Q = M 𝜇 . This value has to be calculated using the formula

α -1 (M 𝜇 ) = α -1 + 2 3π ln ( m 𝑒 m 𝜇 ) + 1 6π ≅ 136
however there are some features that become out of place at higher orders. Alternatively we can use the MS ̅̅̅̅ renormalization scheme as explained in ref. [9] thus obtaining the value α -1 (M 𝜇 ) = 135.9. This provides us with 99.05% of agreement between the formula in equation 16 and the right hand side of the formula in equation 12 that uses the Higgs VEV.

When n G = 3 and therefore 𝑙 = 𝜏 we obtain the formula for the tau lepton Yukawa coupling:

λ 𝜏 = ( α 4 (M 𝜏 ) • 3 g 𝑓 4 )
1 9 ⁄ 9 using the MS ̅̅̅̅ renormalization scheme provides us the value α -1 (M τ ) = 133.557 and when g 𝑓 ≅ -2 we obtain an accuracy of 83% between the formula in the equation above and the right hand side of equation 13. However, other sources, such as the paper "QCD analysis of the tau hadronic width" [10] by E. Braaten, S. Narison and A. Pich, provide a value α -1 (M 𝜏 ) = 133.29. It is evident that the drastic fall in accuracy, compared to the left hand side of equation 13, means that the formula is incomplete for tau leptons.

Having in mind that the formula from equation 14 works for electrons and muons rather well with an above 99% level of accuracy, the question is: what is missing for tau leptons and does it require new physics beyond the Standard Model?

(18)

Conclusions and Debate

Both the formula from eq. 10 and the formula from eq. 14 provide a solid generation mechanism for the Yukawa couplings of charged leptons. The formula from equation 10 also manages to prove that Yukawa couplings of leptons are not arbitrary parameters in the Standard Model, nor any model that goes beyond thus requiring new physics, with extremely high accuracy for electrons and even more so for muons. The accuracy isn't as high for tau leptons but it is still satisfying. The formula from equation 14 relying on the fine structure constant, also provides very accurate values for the first two generations of leptons, namely electrons and muons respectively, but it also provides for an incomplete tau formula thus raising the question can the latter be completed within the framework of the Standard Model? If one manages to complete the tau formula, forming the theoretical basis of the matter generation mechanism should be a much simpler task than it ever was before and one can then easily predict the tau g-factor value.

There is also a possibility that the formula from eq. 14 is even incomplete for muons as well since almost an entire percentage of accuracy is lost between formulas in eq. 12 and 16 respectively. If this cannot be attributed to a slightly inaccurate measurement of α -1 (M 𝜇 ) that leaves us with a possibility for new physics BSM even on the second generation of charged leptons.