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ABSTRACT

We propose an implicit all-speed scheme for the simulation of compressible flows inside gases, liquids
and solids in different regimes. The scheme accurately simulates the propagation of material waves. A
numerical model for the description of physical interfaces will also be introduced.

INTRODUCTION

We introduce an all-speed relaxation scheme for the simulation of compressible material flows at all speeds.
A monolithic Eulerian model describing gases, fluids and elastic solids with the same system of conservation
laws is adopted [1].

The numerical scheme is based on the relaxation technique introduced by Jin and Xin [2]. We adopt a fully
implicit time integration thanks to the linearity of the transport operator in the relaxation system. The spatial
discretization is obtained by a combination of upwind and centered schemes, in order to recover the correct
numerical viscosity at all Mach numbers [1].

EULERIAN MODEL FOR COMPRESSIBLE MATERIALS

The conservative form of the equations of a general medium in the deformed configuration is given by
∂tρ +divx (ρu) = 0
∂t (ρu)+divx (ρu⊗u−σ) = 0
∂t ([∇xY ])+∇x (u · [∇xY ]) = 0
∂t (ρe)+divx

(
ρeu−σT u

)
= 0.

(1)

Here ρ is the density, u is the Eulerian velocity field, σ is the Cauchy stress tensor and [∇xY ] is the gradient
of the backward characteristics, describing the solid deformation. e is the total energy per unit mass and it is
given by the sum of the kinetic energy and the internal energy per unit mass ε . We adopt the following general
constitutive law, which is able to describe gases, fluids and elastic solids at the same time:

ε (ρ,s, [∇xY ]) =
κ (s)
γ−1

(
1
ρ
−b
)1−γ

−aρ +
p∞

ρ︸ ︷︷ ︸
general gas

+
χ

ρ

(
trB−2

)
︸ ︷︷ ︸

neohookean solid

. (2)

Here κ (s) = exp(s/cv) (s being the entropy), B is the 2D right Cauchy-Green tensor and χ , p∞, γ , a, b are
positive constants characterizing a given material.
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ALL-SPEED RELAXATION SCHEME

Letting ψ = [ρ, ρu1, ρu2, Y 1
,1, Y 2

,1, Y 1
,2, Y 2

,2, ρe] be the conservative variables and F(ψ) and G(ψ) the fluxes
in the x1 and x2 directions, we adopt the relaxation method introduced by Jin and Xin [2]. The relaxation rate η

and the relaxation matrices A1 and A2 are introduced. The fluxes F(ψ) and G(ψ) are “relaxed” by the vectors
of relaxation variables v and w respectively: thanks to this procedure, the advective operator becomes linear.
In this framework, a fully implicit time discretization is easily implemented. By employing finite volumes on a
Cartesian mesh, the full scheme at first order reads:
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(3)

The variables at the interfaces xi+1/2, j inside (3) are computed as follows

vi+1/2, j = f (Mloc)
(
vi+1/2, j

)
upw +(1− f (Mloc))

(
vi+1/2, j

)
cent . (4)

This is a convex combination of upwind and centered fluxes, which provides the correct numerical viscosity for
each regime, according to the local Mach number Mloc. We choose f (Mloc) = min{1,Mloc}.

NUMERICAL VALIDATIONS

As a sample of the numerical results, here we show the results on a 2D Riemann problem (2DRP) involving
two contact waves, a shock and a rarefaction in a gas. This is solved with an adaptive mesh refinement technique
based on the numerical entropy production criterion [3]. The grid and the density profile obtained at time t = 0.3
are shown in Figs. 1(a) and 1(b). The all-speed scheme keeps the contact waves sharp, thanks to (4).
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FIGURE 1: (a)-(b): 2D Riemann problem in a gas. (c): multi-material flow (water/gas interface).

In Fig. 1(c) we present a preliminary 1D multi-material test, where a water/gas interface is solved. The
Mach number in water (left) is around 3 ·10−2, whereas in the gas (right) is around 0.15, hence we are dealing
with a multi-regime test. The transmission conditions are imposed via immersed boundary extrapolations, thus
the interface is sharp by construction.
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