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Purpose: Compensation for respiratory motion is important during abdominal cancer treatments. In 
this work we report the results of the 2015 MICCAI Challenge on Liver Ultrasound Tracking and 
extend the 2D results to relate them to clinical relevance in form of reducing treatment margins and 
hence sparing healthy tissues, while maintaining full duty cycle.
Methods: We describe methodologies for estimating and temporally predicting respiratory liver 
motion from continuous ultrasound imaging, used during ultrasound-guided radiation therapy. Fur-
thermore, we investigated the trade-off between tracking accuracy and runtime in combination with 
temporal prediction strategies and their impact on treatment margins.
Results: Based on 2D ultrasound sequences from 39 volunteers, a mean tracking accuracy of 
0.9 mm was achieved when combining the results from the 4 challenge submissions (1.2 to 3.3 mm). 
The two submissions for the 3D sequences from 14 volunteers provided mean accuracies of 1.7 and 
1.8 mm. In combination with temporal prediction, using the faster (41 vs 228 ms) but less accurate 
(1.4 vs 0.9 mm) tracking method resulted in substantially reduced treatment margins (70% vs 39%) 
in contrast to mid-ventilation margins, as it avoided non-linear temporal prediction by keeping the 
treatment system latency low (150 vs 400 ms). Acceleration of the best tracking method would 
improve the margin reduction to 75%.
Conclusions: Liver motion estimation and prediction during free-breathing from 2D ultrasound 
images can substantially reduce the in-plane motion uncertainty and hence treatment margins. 
Employing an accurate tracking method while avoiding non-linear temporal prediction would be 
favorable. This approach has the potential to shorten treatment time compared to breath-hold and 
gated approaches, and increase treatment efficiency and safety. 

Key words: image guidance, motion prediction, respiratory motion, treatment margins, ultrasound

with an increase in treatment margins. Another option is gat-
ing the radiation beam whilst the patient breathes freely,
which relies on a method of respiratory monitoring to deter-
mine the respiratory phase but target coverage can be com-
promised due to loss of correlation between internal motion
and respiratory signals and irregular breathing and drift.16

The advantage of continuous motion monitoring and tracking
of the radiation beam over these techniques is that the treat-
ment is not interrupted, patients can breath freely and that
breathing irregularities and drift are compensated for dynami-
cally rather than by increasing margins, which may result in a
decrease in radiation-induced liver toxicity and duration of
the therapy, and increase in chance of tumor control.17,18

Another frequently used technique for motion monitoring
is the invasive implantation of fiducial markers for tumor
tracking during radiation.19–22 Fiducial markers can be used
for image-based tracking, e.g. simultaneous kilovoltage and
megavoltage imaging23,24 or kilovoltage intra-fraction moni-
toring,20 or non-image based tracking, e.g. as for radio fre-
quency triangulation.21,25 Examples of limitations of using
fiducial markers are the requirement for surgery, possibility
of markers migration and accuracy of the triangulation.21,26

Ultrasound (US) imaging is a suitable choice for observ-
ing motion during therapy due to its high temporal resolution,
non-invasiveness and cost-efficiency. Currently, US-guided
IMRT is mainly used in clinics to treat prostate27,28 and breast
cancer.29 US-guided targeting of the liver in RT has been
recently investigated.30–32 However, during therapy fractions,
liver tumors are not necessarily visible in US images. The
acoustic impedance or acoustic reflectivity of liver tumors is
often similar to that of surrounding tissue. This makes the

1. INTRODUCTION

Intra-fraction organ motion due to breathing represents a
challenge during intensity-modulated radiation therapy
(IMRT) of the liver, lungs, pancreas, kidneys, breast and
prostate.1–8 The aim of IMRT is to deliver conformal and
localized dose to the tumor, while sparing surrounding
healthy tissue. Yet the motion of these organs requires sub-
stantially larger therapy margins (e.g. approximately 1–
18 mm for lung, 10–55 mm for liver, 10–40 mm for
kidney and 20–40 mm for pancreas3), to include the entire
tumor volume in the treated area for the anticipated range of
motion and hence, to ensure the effectiveness of the
treatment.3,9 Yet large margins are undesirable and reduce
the advantages of IMRT.10

Image-guided radiation therapy uses imaging of target tis-
sues prior to each fraction and may also provide continuous
imaging during radiation delivery. This enables the estima-
tion of the target position, size and shape, and the intra-frac-
tion target motion. While most current treatment protocols
attempt to arrest motion during radiation delivery using
breath-hold, continuous imaging (or motion monitoring) can
enable tracking of radiation beam to follow tumor motion in
real-time.11 One drawback of breath-holding is that repeat
breath holds are often required if patients cannot hold their
breath for the entire delivery period (i.e. greater than approxi-
mately 15 s12), thus treatment times will be lengthened as the
beam is switched off between breath-holds. Also, it has been
observed that the liver position is subject to variation between
breath-holds and that the liver may undergo drift during
breath-hold.13–15 These uncertainties should be accounted for
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previously unseen validation set during the challenge, which
was used to assess the tracking performance under realistic
conditions and to evaluate the change of treatment margins
when considering motion prediction. The aforementioned
additions to the tracking challenge presented in this paper,
i.e. temporal motion prediction and combined results for
motion-compensated margin calculations, are novel com-
pared to our previous study.35

The paper is organized as follows. In Section 2.A we
describe the challenge data. In Section 2.B we list the tracking
methods proposed by the challenge participant groups and
their fusion. Temporal prediction was applied to selected track-
ing results, as described in Section 2.C. Predicted motion esti-
mates were then used to compute treatment margins for
motion-compensated therapy, see Section 2.D. Evaluation cri-
teria are described in Section 2.E. Tracking and prediction
results, and their impact in estimating treatment margins are
reported and discussed in Sections III and IV. Finally, Sec-
tion V summarizes conclusions of the challenge outcome and
extension to motion-compensated treatment planning.

2. MATERIALS AND METHODS

2.A. Ultrasound data

A total of 85 US sequences of the liver of 60 healthy vol-
unteers of 18 yr of age and older under free-breathing were
collected between 2009 and 2015. Exclusion criteria were
pregnancy, existing malignant tumor or undergoing cancer
treatment. The data were provided by seven groups, the
Biomedical Imaging Research Laboratory of CREATIS
INSA, Lyon, France (CIL); Computer Vision Laboratory,
ETH Zurich, Switzerland (ETH);38,47 mediri GmbH, Heidel-
berg, Germany (MED); Biomedical Imaging Group, Depart-
ments of Radiology and Medical Informatics, Erasmus MC,
Rotterdam, The Netherlands (EMC);48 Joint Department of
Physics, Institute of Cancer Research & Royal Marsden NHS
Foundation Trust, London and Sutton, UK (ICR);49,50 and
SINTEF Medical Technology, Image Guided Therapy, Trond-
heim, Norway (SMT).51 The acquisition and use of subject
data were approved where applicable, by an ethics committee
or institutional review board, and informed consent by each
study participant was received.

An overview of the data is given in Appendix A. The
sequences were acquired with a broad range of equipment (7
US scanners, 8 types of transducer) and different acquisition
settings. The data consisted of 63 2D and 22 3D sequences
from 42 and 18 subjects, respectively, which are characterized
by duration ranging from 4 s to 10 min and temporal resolu-
tion form 6 to 31 Hz. Examples of the first frames and anno-
tations are shown in Figure 1. Data were anonymized and
randomly divided into two sets:

Training set: (40% of the sequences, i.e. 24 2D and seven
3D sequences), for which annotations of 10% of the images
were released, to allow for tuning of the tracking algo-
rithms.

tumors appear in US images with the same or similar
echogenicity to tissue. The images can also be filled with
acoustic clutter.33 In both cases, it is difficult to distinguish
the tumors in traditional US images.34 Instead, the motion of
other visible anatomical structures (e.g. vessels) can be esti-
mated35,36 and used as input to 4D liver motion models to
spatially predict the tumor position.37–40

Although US probes are typically operated by hands,
either passive arms or robotic arms can be used to hold the
probe and therefore operators are not required to be in the
treatment room. A robotic arm offers the additional advan-
tage of moving with the target organ or helping inexperienced
users to find it through cooperative control.41,42

Linear accelerator-based systems (LINAC) or adaptive tar-
geting of the radiation beam using a multileaf collimator
(MLC) or robotic treatment head, to follow the tumor motion
during fractions, should take into consideration the treatment
system latencies, including delays from the image acquisition,
motion estimation algorithm, communication and control
system, and beam delivery.10,32,43 Therefore, the motion of
the tumor should be accurately predicted for a sufficient time
in the future to ensure the delivery of the radiation dose to the
tumor and reduce the treatment margins.44

In this paper we investigate the impact of tracking liver
motion under free breathing using US on treatment margins.
US tracking has been investigated in several applications, e.g.
for respiratory35,36 and cardiac motion estimation.36 How-
ever, reported performances in the liver are still not always
suitable for direct translation into clinical application. In the
case of respiratory motion, limiting factors are low robustness
(i.e. high percentage of tracking errors >5 mm3) and high
run-time (e.g. >300 ms) of the proposed algorithms, which
both undermine the potential use of US tracking for online
target localization during treatment. In addition, to the best of
our knowledge, very few works have demonstrated its clinical
impact in radiotherapy5 and recent works on US guidance for
real-time motion compensation are still based on phantom
experiments.45,46 Based on the results of the MICCAI 2015
Challenge on Liver Ultrasound Tracking (CLUST 2015)
(http://clust.ethz.ch/), we propose an accurate and robust
strategy to track anatomical landmarks in the liver, which
fuses the tracking results of the algorithms that were submit-
ted to the challenge. In addition to CLUST 2015, we tempo-
rally extrapolate the motion of the tracked landmarks, such as
vessels, to compensate for system delays that occur in a real
treatment scenario and investigate different strategies. Finally,
the resulting uncertainties of the predicted motion are used to
define motion-compensated treatment margins. These are
compared to standard margins to investigate the efficiency of
the proposed approach.

Compared to our previous benchmark (CLUST 2014),35

we evaluated landmark tracking results on a larger dataset
(overall +60% sequences and from 36 to 60 subjects) and
with respect to more manual annotations, provided by three
observers on 10% of the images. These annotations under-
went a quality check and a correction if necessary to ensure
optimal evaluation conditions. Furthermore, we provided a
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Test set: (60%, 39 2D and 14 3D sequences), for which
annotations of the first images were provided. The resulting
tracking estimates were used to train the parameters of the
temporal prediction model and to define treatment margins.
From this set, 15 2D and 6 3D sequences were released dur-
ing the on-site challenge at the MICCAI 2015 CLUST
event.

2.B. Tracking methods

2.B.1. Tracking objective

Similarly to35, I(t,x) represents the intensity (or bright-
ness) of the US image I(t) at position x, with
x ¼ ½x1; . . .; xD#T 2 RD for D = {2;3}, at frame t, with
t = 1,. . .,T and T the total number of frames of the image
sequence. The tracking objective was to compute the position
of J point-landmarks PjðtÞ 2 RD in each image, with
j = 1,. . .,J and J 2 {1;. . .;5} in this challenge, similar to.35

The test set accounted a total JTOT = 85 2D and 22 3D land-
marks. For all sequences, annotations of the first frame Pj(1)
was provided.

In the following we give an overview of the four 2D and
two 3D tracking algorithms, which were submitted to the
challenge. A detailed description of each method can be
found in the challenge proceedings.*

2.B.2. 2D tracking

Nouri & Rothberg — convolutional neural network: The
method proposed by Nouri & Rothberg trains a convolutional

neural network to learn a function (with almost 1.9 millions
parameters) which maps the intensities of image patches
(46 9 46 pixels) into a low-dimensional embedding space,
such that the Euclidean distance metric in that space is robust
to the encountered landmark transformations.52,53 A classical
window search of size 24 pixels around a seed point pj is used
to find the location Pj(t) in the new frame t that is most likely
to be the tracked landmark. The window search finds the
point that minimizes the learned distance metric to a tem-
plate, which is composed of both the initial frame and the
previous 10 frames [I(1),I(t & 10 + 1),. . .,I(t)].

Kondo — kernelized correlation filter: Kondo proposed
two extensions to the Kernelized correlation filter (KCF),54

which applies a Gaussian kernel (r = 0.2) to the correlation
of image windows in the Fourier domain. KCF is extended by
refining the initial tracked position by template matching in
the region of '2 pixels around the KCF prediction, based on
normalized cross correlation. The second extension is the
adaption of the window size. In a so-called calibration step,
tracking is performed with a manually predetermined window
size of 96 9 96 pixels for the first breathing cycle. Then the
window size is revised based on the maximum frame-
to-frame displacements and the feature size. From then
onwards, the revised window size is used for KCF tracking
with template matching refinement.

Makhinya & Goksel — optical flow: Makhinya & Goksel
have extended an algorithm for identifying and tracking
superficial veins in the forearm55,56 by integrating several
tracking recovery strategies to take advantage of the repetitive
nature of respiration. Lucas-Kanade-based57 tracking was
applied on regularly-spaced grid points around each land-
mark, and used for reference tracking (I(1) to I(t)), when the

FIG. 1. Examples of first frame I(1) of representative sequences of the training data: (top row) 2D sequences and (bottom row) 3D sequences. Point-landmarks
Pj(1) are highlighted and depicted in yellow.

*The proceedings of MICCAI 2015 CLUST are available at
http://clust.ethz.ch/clust2015.html
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local appearance of I(1) and I(t) is similar. Meanwhile, itera-
tive tracking (I(t & 1) to I(t)) tracks points when the former
fails. Each tracking strategy yields several motion vectors,
which are then filtered for outliers. Subsequently, an affine
transformation is fitted to the remaining vectors to provide a
robust motion estimate for the landmark. For vessel-like
structures model-based tracking is utilized via an axis-
aligned ellipse representation of vessels. For each I(t), first
the ellipse is translated by the previous motion estimate.
Then, its center and radii are re-estimated as in56 using the
Star edge detection, dynamic programming, model fitting,
and binary templates. The resulting ellipse center is taken as
the sought landmark.

Hallack, et al. — logDemons: Hallack et al. used the dif-
feomorphic logDemons image registration method,58 but
with a dense scale invariant feature transform (SIFT)59 as
similarity measure.60, 61 Each landmark Pj was tracked inde-
pendently and sequentially using image registration around a
region of interest (Wj).

62 For frame I(t), Wj,t & 1(t) of size
51 9 51 pixels is extracted around the previous estimated
landmark location Pj(t & 1). The current landmark position
Pj(t) is obtained by finding a nonlinear transformation Tt
between the moving (Wj,t & 1(t)) and the fixed (Wj,1(1))
region. Both image regions were transformed into vector-
valued images where a SIFT feature vector was computed for
each pixel x from the histogram of gradients around its neigh-
borhood (cell size of 2, 8 bins). The logDemons framework
was applied using the sum of squared differences of the fea-
tures vectors as image forces, 3 resolution levels, 6–20 itera-
tions at each level and transformation field smoothing
rdiff = 2 pixels.

2.B.3. 3D tracking

registrations to the previous and reference frame using the
register-to-reference-by-tracking strategy.63 This is followed
by the local 3D registration step, where the tracking result
from the previous step is refined by performing registration
on the neighborhood region close to the anatomical landmark
j, using the register-to-reference strategy.64 Both steps use
block-matching, with normalized cross correlation as similar-
ity metric, followed by an outlier rejection scheme. Finally
the rigid transformation is estimated from the trusted block-
matching results.64

2.B.4. Decision fusion

To improve accuracy and robustness,35,65 we combined
the tracking results of all previously described methods (four
2D or two 3D methods) by computing for each frame t the
median position of the tracked points Pj(t) from these meth-
ods. Taking the median minimizes the absolute difference
between the individual results and their combined value66

and hence is robust to outliers (i.e. minority of predictions
being bad). It assumes all results to be equally likely and
should be extended to a weighted median if methods provide
reliable uncertainties.

2.C. Temporal prediction for latency compensation

Conformal radiotherapy and IMRT treatments are usually
delivered using MLCs. In image-guided dynamic MLC track-
ing, the accuracy of the target localization and treatment can
be affected by the latency between the target motion and the
MLC response.67 The overall system latency is given by the
sum of image formation, image processing and system adjust-
ment latency. Image formation times depend on the US sys-
tem and acquisition protocol, e.g. imaging depth and
aperture, frame rate, dimensionality and transducer
frequency. The latency due to image processing include run-
times of motion estimation and temporal prediction
algorithms. The duration for repositioning and adjusting a
MLC ranges from 50 to 200 ms, depending on the target
shift.3,67–70 For example, approximately 50 ms are necessary
to reposition the MLC for target shifts of 0.2–1.3 mm, 80 ms
for 2 mm, and 200 ms for 5–6 mm.67

To compensate for the aforementioned system latency Dt,
we forecast at time t the landmark position Pj(t+Dt) at horizon
Dt by using the available tracking positions [Pj(1),. . .,Pj(t)]
and the temporal prediction approach proposed in Ref. [71]
This approach considered the median results of four methods,
namely a linear adaptive filter,10 second order polynomial
adaptive filter, support vector regression72 and kernel density
estimation,73 as this previously provided improved results in
comparison to the individual results.71 Simulated annealing
was used to optimize the method parameters for the motion
trace of each Pj, based on leave-one-subject-out cross valida-
tion on the sequences in the test set. Finally, the method used
the median parameters from the population excluding the
subject. For short latencies (Dt ≤ 150 ms) the linear adaptive

Royer, et al. — affine registration and mechanical
model: Royer et al. proposed a 3D target tracking method,
which combines an intensity-based approach and mechanical
regularization. The first step consists in obtaining a tetrahe-
dral mesh model from a manual segmentation of the target in
the initial image I(1). To update the node positions of the
model q(1) over time t, a dense displacement field is com-
puted by minimizing the sum of squared intensity differences,
for a piece-wise affine transformation model, using a steepest
gradient optimization (step size a = 2 9 10&6). To ensure
robustness, each node displacement is constrained by internal
forces of a mass-spring-damper system (spring stiffness 3.0,
spring damping 1.0, nodal velocity damping 2.7), which is
associated with the tetrahedral mesh.

Banerjee, et al. — block matching and local registration:
The anatomical landmark tracking approach of Banerjee
et al. consists of two rigid registration steps. In the global 4D
tracking step, the whole liver volume is tracked by combining
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filter provided similar results as the median (0.68 vs
0.62 mm) while having a much reduced run-time (1.3 vs
21.2 ms).71 Hence both median fusion and linear adaptive fil-
ter were investigated in this work.

2.D. Treatment margins

Safety margins are required in the planning of all RT treat-
ments, to compensate for known sources of error and ensure
that the planned dose is delivered to the target.74 Safety mar-
gins are added to the clinical target volume (CTV) and result
in the planning target volume (PTV).75

Motion in the context of radiation therapy is defined as
the displacement of target tissues between the planning CT
image and treatment. Inter-fraction motion is the daily
motion at the start of each treatment fraction, which can be
minimized by correct patient positioning. Intra-fraction
motion can occur during treatment due to patient movement
or physiological processes, i.e. respiration. Errors in radio-
therapy can be classified into systematic and random errors.
For an individual patient, their systematic and random
errors are their mean and standard deviation daily target
displacements from their target position at planning (prepa-
ration) over all fractions, respectively. The population sys-
tematic and random errors are the standard deviation and
root mean square of the individual patient systematic and
random errors, respectively. Systematic errors occur in
treatment preparation and include errors from set up
(mainly due to patient positioning) and organ motion. Ran-
dom errors occur during treatment and are caused by set up
errors and organ motion.74 The latter is comprised of inter-
fraction motion, i.e. day-to-day motion, and intra-fraction
motion, i.e. motion during treatment due for example to
respiration.

Approximations have been proposed to estimate the mar-
gin sizes using so-called margin recipes, e.g.76–78. These gen-
erally assume that the magnitude of the motion is < 10 mm,
errors <3 mm77 and error components are Gaussian dis-
tributed and base the width of the margin on the sum of the
variances of the contributory errors.74 In this study we inves-
tigate the size of treatment margins required because of intra-
fraction errors from respiratory motion. Inter-fraction errors,
for example due to differences in patient positioning, are not
investigated since the collected data does not provide this
information.

2.E. Evaluation

2.E.1 Tracking error

Three observers were asked to manually annotate the cor-
responding position of the initial point Pj(1) in 10% of ran-
domly selected images I ð̂tÞ from each sequence. The number
of annotated frames/volumes per sequence is listed in Table
A1. After review and eventual subsequent adjustment of the
annotations by an additional observer, we computed the mean
of the three annotations, denoted as P̂jð̂tÞ. Following the same
error metrics as in,35 the tracking error (TE) is calculated for
each annotated frame I ð̂tÞ and landmark j as

TEjð̂tÞ ¼ kPjð̂tÞ & P̂jð̂tÞk; (1)

where ‖.‖ is the Euclidean distance between the estimated
landmark position Pjð̂tÞ and its mean manual annotation
P̂jð̂tÞ. Results were then summarized by mean, standard devi-
ation (Std) and 95th percentile of the single distribution
including all TEjð̂tÞ belonging to a particular subgroup. These
subgroups were the individual landmarks j, and landmark
dimensionality (2D or 3D).

For baseline comparison and to estimate the motion mag-
nitude of the landmarks, we included the case of no tracking,
defined as

NoTEjð̂tÞ ¼ kPjð1Þ & P̂jð̂tÞk: (2)

2.E.2 Directional error

To assess the error in the main motion directions indepen-
dently of the US probe orientation, we first determine the
motion directions via principle component analysis (PCA) of
each landmark trajectory, see Appendix B for details. The
directional error is then computed as

DTEj;ið̂tÞ ¼ pj;ið̂tÞ & p̂j;ið̂tÞ 2 RD; (3)

where pj;ið̂tÞ and p̂j;ið̂tÞ are the projections of !Pjð̂tÞ and P̂jð̂tÞ,
respectively, onto the PCA space. Finally, we summarize the
results by the mean and Std of the single distribution includ-
ing all DTEj;ið̂tÞ belonging to a particular subgroup, as above.
Directional errors (1st and 2nd PCA components) are
reported only for 2D results, as these are used in this work to
predict elliptical shaped treatment margins.

2.E.3 Prediction error

The error measures described in Sections 2.E.1 and 2.E.2
were also used to evaluate the prediction errors at time t̂(:

PEjð̂t(Þ ¼ kPPjð̂t(Þ & P̂jð̂t(Þk (4)

and

DPEj;ið̂t(Þ ¼ ppj;ið̂t(Þ & p̂j;ið̂t(Þ; (5)

where PPjðt(Þ 2 RD is the predicted position of landmark j
at time t* = t + Dt (see Section 2.C) and ppj;iðt(Þ 2 R is its
projection in the ith eigendirection.

We compared the performance of the tracking methods
described in Section 2.B on the test set (see Appendix A),
consisting of a total of 85 point-landmarks (e.g. vessel cen-
ters) in 39 2D sequences, and 22 point-landmarks (e.g. vessel
bifurcations) in 14 3D sequences, which the observers were
confident to be able to reliably annotate. In the following we
describe the evaluation scheme used to validate and quantify
the tracking and the prediction accuracy.

6



The prediction performance was compared to the case of
doing no temporal prediction, i.e. assuming no motion during
Dt:

NoPEjð̂t(Þ ¼ kPjðtÞ & P̂jð̂t(Þk; (6)

with Pj(t) being the results of the considered tracking
method.

2.E.4 Margin calculation

To illustrate the effect of the different methods on
therapy margins, we employed a common recipe for cal-
culating margins to compensate for intra-fraction motion
errors, i.e. assuming zero set-up and delineation errors.
Specifically, we used the population-based 3D margin
recipe from van Herk et al.77 given by:

mPTV ¼ 2:5Rþ 1:64ðr& rpÞ * 2:5Rþ 0:7r0; (7)

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
m þ R2

s þ R2
d

q
denotes the Std of the system-

atic error, which is composed of the motion error Std (Σm),
the setup error Std (Σs), and the delineation error (Σd). The

Std of the random error is given by r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2m þ r2s þ r2p

q
,

with motion error Std (rm), setup error Std (rs), and penum-
bra width Std (rp). The approximation using
r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2m þ r2s

p
is valid for rp = 3.2 mm, r 2 [0,5] mm

and big (diameter > 20 mm) CTVs of circular shape.77

This recipe ensures that the CTV is fully covered by
95% of the prescribed dose for 90% of the patient popu-
lation. As mentioned above, setup and delineation errors
are unknown and hence set to zero in this work, i.e.
Σs = Σd = rs = 0.

The intra-fraction motion errors Σm and rm are determined
from the mean and Std of the ith directional errors (DE) of J
landmarks and K time points76 via

Mi ¼
1
J

XJ

j¼1

lj;i; Rm;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
J

XJ

j¼1

ðlj;i &MiÞ2
vuut (8)

and

rm;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
J

XJ

j¼1

r2j;i

vuut ; (9)

where

lj;i ¼
XK

k

DEj;ið̂t(k Þ=K; (10)

rj;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

k

ðDEj;ið̂t(k Þ & lj;iÞ
2=K

vuut (11)

3. RESULTS

3.A. 2D tracking

The results of the 2D point-landmark tracking on the test
set are summarized in Table I. The mean TE ranges from
1.2 mm to 3.4 mm for the methods submitted to MICCAI
2015 CLUST, with best results achieved by Hallack et al. Fus-
ing the results of all tracking methods improved accuracy by
24–73% in comparison to the individual results. Yet these
errors are higher than the inter-observer variability, with
mean (95%) TE of the three observers <0.5 (1.1) mm. The
tracking error distributions are shown in Figure 2.

To assess the robustness of all methods, we quantified the
percentage of failures on the test set, i.e. the percentage of
landmark results for which TE > 3 mm or TE > 5 mm, see
Table I. The fusion method achieved the highest robustness,
with TE > 5 mm in only 1.0% of the landmark results and
TE > 3 mm in 4.3%.

There was low correlation between the motion magnitude
of the landmarks and the tracking errors, with the sample
Pearson correlation coefficients q ranging from 0.01 to 0.25.
Correlation between TE and imaging center frequency (see
Table A1, surrogate measure for image quality) was found to
be low for all methods (q 2 [0.06,0.18]). We also found
low correlation between the tracking error (TE) and Std of the
observers’ error (q 2 [0.02,0.12]).

The mean run-time per frame, determined per sequence,
was per method at most 41 ms (Makhinya & Goksel) to
228 ms (Kondo), see Table I. The tracking method of Makhi-
nya & Goksel was faster than the US acquisition frame-rate
for all sequences.

3.B. 3D tracking

The results of 3D tracking on the test set are shown in
Table II. On average, the highest accuracy and fastest run-
time were achieved by Royer et al., with TE of 1.7 ' 0.9 mm
and 350 ms per volume. The percentages of failures, for
which TE > 3 mm, ranged between 8.4% and 8.7%, while
for only 0.8–1.7% of annotated landmarks TE was <5 mm.

As before, we investigated if the tracking error is corre-
lated with the motion of the landmarks and found weak sam-
ple Pearson correlation coefficients q = 0.29 and 0.39 for
Royer et al. and Banerjee et al., respectively. Low correlation
was also found between TE and Std of the observers TE for
Royer et al. (q = 0.36) and Banerjee et al. (q = 0.11). Moder-
ate correlation (q = 0.44 and 0.48) was only found between
tracking errors and center frequency of the imaging acquisi-
tion (see Table AI) for each landmark j.

3.C. Temporal prediction

Forecasting of the landmark motion traces was evaluated
only for 2D sequences, as these have a sufficient amount of
long sequences to adapt the temporal prediction model. Fur-
thermore, run-times of the proposed 2D tracking methods are
short enough to not create a great burden for the prediction,

and DE stands for either DTE or DPE as defined in Eqs. (3)
and (5).
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include 3D forecasting in this work. 3D guidance from 2D
motion predictions can be achieved by carefully aligning the
US transducer with the main direction of the respiratory
motion, calibrating the US coordinate system with the treat-
ment coordinate system, and employing a 4D motion
model.38,40

Figure 3 compares the mean prediction error (MPE) of the
linear adaptive filter and decision fusion prediction. Predictions
are obtained from leave-one-subject-out cross-validation on

TABLE II. Results of 3D tracking on the test set. Best results among the automatic methods are highlighted in bold.

Method

Tracking error (mm)

Mean TE range (mm)

Landmarks (%) with

Run-time (ms)Mean Std 95% TE > 3 mm TE > 5 mm

No tracking 5.54 3.77 12.17 [1.95, 10.66] 68.35 48.10 –

Royer et al. 1.74 0.92 3.65 [0.79, 3.54] 8.86 0.84 350
Banerjee et al. 1.80 1.64 3.41 [0.78, 5.24] 8.44 1.69 10860

Fusion 1.74 1.15 3.49 [0.78, 3.71] 8.44 0.84 10860

Observer 3 1.36 1.14 3.37 [0.55, 4.68] 6.33 2.53 –

Observer 1 1.27 1.07 3.47 [0.33, 3.25] 9.28 0.84 –

Observer 2 1.19 0.83 2.89 [0.44, 2.40] 4.64 0.00 –

TABLE I. Results of 2D tracking on the test set. Best results among the automatic methods are highlighted in bold. (D)TE: (directional) tracking error; 1st (2nd):
error in the first (second) direction of motion.

Method

TE (mm)

Mean TE range (mm)

Landmarks (%) 1st DTE (mm)
2nd DTE
(mm)

Run-time (ms)Mean Std 95% TE > 3 mm >5 mm Mean Std Mean Std

No tracking 6.45 5.11 16.48 [2.76, 17.06] 69.72 51.09 &0.87 7.99 0.35 1.72 –

Nuori & Rothberg 3.35 5.21 14.19 [0.46, 23.03] 27.36 18.58 1.44 5.14 0.49 3.10 100

Kondo 2.91 10.52 5.18 [0.33, 56.21] 9.32 5.19 &1.32 10.20 &0.49 3.63 228

Makhinya & Goksel 1.44 2.80 3.62 [0.49, 16.67] 5.60 3.75 0.28 2.75 0.32 1.47 41
Hallack et al. 1.21 3.17 2.82 [0.34, 16.13] 4.63 2.18 0.09 3.29 0.04 0.85 208

Fusion 0.92 0.98 2.78 [0.34, 3.52] 4.31 0.95 0.23 1.15 0.13 0.65 228

Observer 1 0.46 0.36 1.13 [0.22, 1.28] 0.09 0.00 &0.06 0.44 &0.08 0.37 –

Observer 3 0.47 0.34 1.08 [0.23, 1.33] 0.07 0.00 0.05 0.44 &0.01 0.38 –

Observer 2 0.44 0.32 1.03 [0.21, 1.20] 0.04 0.00 0.01 0.42 0.09 0.33 –

FIG. 2. 2D tracking error distributions up to 5 mm.

and hence allow envisioning clinical applicability of such a
guidance system. On the contrary, the fastest 3D tracking
approach (Royer et al.) requires 350 ms and 3D acquisition
(with a large enough field of view to reliably capture respira-
tory motion) and MLC tracking add another approximately
170 ms68 to the system latency. Hence the prediction horizon
needs to be greater than 500 ms. In addition, the short 3D
sequences, which were available for this study, do not allow
to train all temporal prediction methods. Therefore we did not
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Fusion (the most accurate) andMakhinya & Goksel (the fastest)
tracking results on 2D test data. When considering each track-
ing strategy, using temporal prediction resulted in lower errors
than without prediction for all horizons Dt 2 {150,300,400,
600,1000} ms, apart from the result of Fusion for
Dt = 150 ms, where MPE = 1.44 (1.43) mm for median (no)
prediction. Linear adaptive filters achieved the highest accuracy
for short latencies (Dt = 150 ms, MPE = 1.10 mm for Fusion
tracking). For Dt = 300 ms results are very similar, while for
higher Dt the median-based prediction outperforms the linear
filter by 9% to 44% (3% to 49%) for Fusion (Makhinya & Gok-
sel) tracking. In all cases, errors increased with latency, suggest-
ing that shorter latencies are preferable.

3.D. Treatment margins and strategies

We investigate the trade-off between accuracy and run-
time by comparing the treatment margins required for the
following three motion compensation strategies: A. fusion
tracking and median prediction method (total run-time
251 ms) with 400 ms latency; B. fast tracking by Makhinya
& Goksel and linear adaptive filter (run-time 42 ms) with
150 ms latency; and C. fusion tracking and linear filter (run-
time 235 ms) with 150 ms latency. Even though fusion track-
ing would require a speed-up by a factor of 5.6 for strategy C
to become feasible, we included it to investigate the potential
benefit of such a speed-up. The latencies chosen for strategies
A and B include algorithm run-time, and re-positioning and
adjustments time of the treatment beam. We considered
approximately 150 ms and 100 ms for strategies A and B,
respectively, as times that are needed to adjust the treatment
beam.67 These latencies increase with the magnitude of the
target position shift (see Section 2.D), which depends on the
time difference between consecutive position estimations,
given by the tracking algorithm run-time. The three strategies
are compared to (a) only tracking with the two aforemen-
tioned approaches (no prediction); (b) the mid-ventilation
approach,79,80 where the time-weighted mean position of the

tracked landmark !Pj over the first three breathing cycles is
used as landmark location throughout therapy; and (c) the
case of no motion compensation, i.e. without tracking.
Results are summarized in Table III.

Table III also lists the safety margins mPTV = {mi,PTV}
due to respiration, computed as described in Eqs. (7)and (8)
in the main motion directions i 2 {1;2}. Compared to the
baseline (no tracking), mPTV can be reduced by 62–84% and
29–69% in each direction when using tracking without and
with temporal prediction, respectively. For the mid-ventila-
tion approach, mPTV reduction is 14–32% (Fusion tracking)
and 13–31% (Makhinya & Goksel tracking method) in each
direction. Strategies characterized by lower error variance,
such as C, result in smaller margins. Figure 4 illustrates the
moving margin ellipse for one representative landmark and
breathing cycle, and compares Strategy C to the baseline of
no tracking and mid-ventilation. It can be observed that the
fixed margins (no tracking, mid-ventilation) require larger
margins to not miss the moving vessel center, while Strategy
C is able to stay close to it. The population-based margins do
not ensure that all targets are fully encompassed by the PTV
100% of the time, such as in end-inhale positions (see
t = 23.70 s in Figure 4, bottom row).

In addition, we considered a spherical CTV with 50 mm
diameter, representing the central cross-section of a stage T2
to T3a liver tumor,81 and added the resulting elliptical-shape
2D margins. The PTV is then the ellipsoid with semi-axes
[m1, PTV, m2, PTV, 0] + CTV radius. The margin volume
(Vm = PTV & CTV) is reduced from 73,390 mm3 (no track-
ing) to 51,294 mm3 (margin volume reduction rVm = 30%)
when employing the mid-ventilation margins (based on the
mid-position from Fusion tracking), and to 13,234 mm3

(82%) and 12,649 mm3 (83%) by strategy C without and
with temporal prediction, respectively.

To incorporate motion prediction in the out-of-plane
direction, we considered the same 3rd component of the
ellipsoidal margin of size m3,PTV = 3 mm39 for all strate-
gies, see last column of Table III. The margin volume is

FIG. 3. Summary of the mean prediction error vs prediction horizon (Dt) for the test set in case of tracking based on Fusion or Makhinya & Goksel combined
with no prediction, linear or median prediction.
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now reduced from 90,072 mm3 (no tracking) to
65,308 mm3 (3D margin volume reduction rVm,3D = 27%)
when using the mid-position from Fusion tracking;

24,748 mm3 (73%) when using strategy A with temporal
prediction; and 22,031 mm3 (76%) when using strategy C
with temporal prediction.

TABLE III. Summary of prediction errors (PE), directional prediction errors (DPE) in the first (1st) and second (2nd) direction of motion, 2D margins (mPTV) and
margin volume reduction relative to no tracking for 2D margins (rVm) and when considering an additional fixed margin in the 3rd direction m3,PTV = 3 mm
(rVm,3D). Three selected motion-compensation strategies are compared, namely: A. slower, more accurate tracking and 400 ms latency; B. faster, less accurate
tracking and 150 ms latency; C. same accurate tracking as strategy A, but accelerated 5.3 times and 150 ms latency (currently unfeasible) on the test set. The
mid-ventilation results for strategy C are the same as for A, as both use the same tracking method.

Strategy

PE (mm)

Mean PE range (mm)

1st DPE (mm)
2nd DPE
(mm) mPTV (mm)

rVm (%) rVm,3D (%)Mean Std 95% Mean Std Mean Std 1st D 2nd D

No tracking 6.13 4.59 15.20 [2.76, 13.79] –0.16 14.65 0.54 3.06 19.20 5.00 0 0

A

No prediction 2.63 1.97 6.20 [1.19, 6.31] 0.23 3.18 0.13 0.80 4.52 1.66 &77 &70

Prediction 1.63 1.46 4.28 [0.60, 4.57] 0.26 2.01 0.15 0.82 3.76 1.74 &79 &73

Mid-ventilation 5.13 4.09 13.35 [1.98, 14.06] 0.31 6.34 0.49 1.56 13.05 4.30 &30 &27

B

No prediction 1.87 2.84 4.52 [0.79, 17.09] 0.27 3.02 0.32 1.50 7.17 3.35 &59 &54

Prediction 1.63 2.89 4.23 [0.64, 18.43] 0.28 2.91 0.31 1.54 7.39 3.50 &57 &52

Mid-ventilation 5.27 4.13 13.61 [2.16, 13.55] 0.34 6.46 0.72 1.57 13.32 4.33 &29 &26

C

No prediction 1.43 1.20 3.57 [0.65, 4.01] 0.23 1.71 0.13 0.70 3.30 1.55 &82 &75

Prediction 1.10 1.08 3.09 [0.46, 3.70] 0.25 1.34 0.12 0.72 3.03 1.61 –83 –76

FIG. 4. Illustration of prediction results with margins for a representative case (MPEj = 1:44 mm). (Top row, left) fixed region from reference image I(1) with
magenta cross for P̂j(1) and green dots showing the predicted positions Pj(t) by strategy C for 5 consecutive breathing cycles. (Top row, right) plot of correspond-
ing results from strategy C (green line) vs initial (dash-dot magenta line) and mid-ventilation positions (dashed cyan line) over time, with black circles highlight-

ing 5 results shown in details. Manually annotated P̂jðt̂Þ are displayed as blue crosses. (Bottom row) Images for the 5 highlighted results. Green ellipse represents
margin required for strategy C, centered in predicted position Pj(t) (green dot). Magenta dash-dotted ellipse shows margin required for no tracking strategy and
hence is centered at P̂jð1Þ (magenta cross). The fixed margin of the mid-ventilation strategy is depicted as dashed line and plus symbol in cyan.
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4. DISCUSSION

4.A. Respiratory motion estimation

When comparing individual 2D tracking methods submit-
ted to the 2015 MICCAI CLUST competition (see Sections
2.B), the combination of optical-flow and model based track-
ing proposed by Makhinya & Goksel was the only real-time
approach, while ranking second in terms of accuracy. Its main
strength is the combination of several fast tracking strategies.
The highest accuracy was achieved by the diffeomorphic log-
Demons image registration by Hallack et al., by using dense
features and having the most flexible transformation model.
The KCF in the Fourier space of Kondo had the highest run-
time and failed in tracking one sequence. The CNN-based
block-matching method from Nuori & Rothberg had the over-
all lowest accuracy and robustness, with a mean TE of
3.4 mm and 19% of failures. While learning a suitable simi-
larity measure by the CNN has potentials, its drawback is the
need for a large dataset of manual annotations for training.

Computing the median value of the results from all 2D
tracking methods yielded on average the highest landmark
tracking accuracy (0.9 mm) and robustness (<1% failures).
This reduced mean motion by 86%, but required the run-time
of at least the slowest method (228 ms). When comparing to
the previously published 2D tracking results of CLUST
2014,35 mean errors of the individual submitted methods
were in a similar range, i.e. from 1.4 to 2.1 mm. Four out of 6
compared individual approaches could achieve real-time per-
formance. Similar to this work, considering the median track-
ing results of all submitted methods improved the mean
tracking error to 1.2 mm and 1.6% failures, which are higher
than the presented results. Yet this comparison is only quali-
tative, as the CLUST 2014 evaluation was based on a smaller
dataset and slightly different manual annotations. Recently,
after the on-site MICCAI 2015 CLUST event, Shepard et al.
validated a GPU implementation of a learning-based block-
matching approach on the CLUST 2015 data.82 Compared to
the proposed median fusion approach, this method achieved
real-time performance (4–14 vs 228 ms), lower mean track-
ing error (0.72 vs 0.92 mm) but higher error Std (1.25 vs
0.98 mm). Future work should extend results to the latest
submitted methods and evaluate their impact on margin
reductions.

For spatially predicting the 3D position of the treatment
target, our 2D motion estimation and temporal prediction
results could be used as input to a 4D liver model.37,39 Such
an approach achieved in-vivo for the right liver lobe of eight
subjects a spatio-temporal 3D mean prediction accuracy of
2.4 (2.7) mm for a system latency of 150 (400) ms based on
2D US tracking (mean accuracy 0.9 mm) and a population
4D motion model.38 Note that improved performance was
observed for the central liver region, which is closer to the
typical US plane, and by adapting the model to the subject
using few breath-hold observations.40

For 3D tracking, the combination of an intensity-based

still far from being real-time, than the block matching algo-
rithm of Banerjee et al. The latter had a run time of almost
11 s, which limits its applicability in clinical practice. Accu-
racy of these two methods was comparable (MTE = 1.7 and
1.8 mm) and greater than two of the 2D algorithms. Further-
more, averaging the tracking results did not improve perfor-
mance. Fusing results from more methods might improve
accuracy. These results are generally improved compared to
the ones of CLUST 2014, where a 3D mean tracking error
between 2.5 and 4.6 mm on a smaller dataset was reported.35

The tracking performance was generally not dependent on
the motion magnitude of 2D landmarks nor image quality.
When considering the 3D case, the moderate correlations of
tracking error with motion magnitude and image quality,
together with lower volume rates, suggest that advances in
4D image resolution could improve results. Another aspect to
take into account is the difficulty of visually inspecting and
annotating 3D sequences. This is supported by the higher
intra-observer variability of the manual annotations in 3D, as
shown by the mean TE of the observers in Table II (mean
TE3D 2 [1.19, 1.36] mm) vs Table I (mean TE2D 2 [0.44,
0.47] mm). This difference is still substantial even when
approximately adjusting for differences due to 2D vs 3D mea-
sures, i.e. mean TE3D

2D 2[0.53, 0.58] mm, where
TE3D

2D ð̂tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 TE2

2Dð̂tÞ=2
p

which assumes equal error com-
ponents.35

A limitation of this work is that we were not able to quan-
tify potential errors that may be introduced by the US guid-
ance system. Ultrasound-based tracking of hepatic vessels for
the purpose of radiotherapy relies on accurate spatial calibra-
tion, which enables transformation of pixel locations in the
ultrasound image to treatment room coordinates. Geometrical
accuracy and precision of US localization of <1 mm can be
achieved,83 however care must be taken to ensure the calibra-
tion is subject to strict quality assurance.84 Another source of
error is speed of sound (SOS) error.85 Most US systems
assume a fixed SOS of 1540 ms&1 for all tissues, however
SOS varies with tissue type potentially causing inaccurate
measurement of the change in depth of a hepatic vessel as the
subject breathes. Assuming a SOS in liver of 1595 ms&186

and a maximum axial vessel displacement of 20 mm, SOS
will give an maximum error in vessel motion of approxi-
mately 0.7 mm. Methods for the correction of SOS error
have been explored in depth by Fontanarosa et al.85 and
future work should incorporate such approaches.

In a real treatment scenario, delays of the treatment system
introduce errors in the estimation of the target position during
therapy. Hence we quantified the prediction errors using two
approaches proposed in,71 namely a fast linear adaptive filter
and a median fusion of four linear and non-linear methods,
see Section 2.C. These approaches were tested on the fastest
(Makhinya & Goksel) and most accurate (Fusion) tracking
results. For the four compared combinations, prediction
errors increased by 39% to 73% with prediction horizons
from 150 to 1000 ms, see Figure 3. Despite being currently
unfeasible, the lowest error (mean PE = 1.1 mm) is obtained
by strategy C (Fusion tracking + linear adaptive filter for

affine registration and a mechanical model proposed by
Royer et al. was computationally much more efficient, but
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150 ms latency). When comparing strategy B (based on a fast
tracking method, which requires shorter prediction horizons)
to A (more accurate tracking with longer horizon), the mean
prediction errors are similar while the Std almost doubled for
strategy B, leading to substantially increased margins, see
Section 4.B. This investigation shows that the trade-off
between a faster, less accurate versus a slower, more accurate
tracking method can be hard to judge and should be quanti-
fied in the system context.

The tracking and prediction performances were worse than
the observer annotation accuracy, indicating the potential for
additional improvements. The American Association of
Physicists in Medicine recommends for external-beam radia-
tion therapy the use of respiratory management when the tar-
get motion is greater than 5 mm.3 Therefore, errors of target
prediction should also not exceed 5 mm. Overall this was not
yet achieved by any automatic method and observers had dif-
ficulties in 3D. Yet for the most accurate 2D and 3D tracking
method, TE was greater than 5 mm in only 0.95% and 0.84%
of the 2D and 3D images, respectively. With lower tracking
errors and much lower number of failures, results have sub-
stantially improved compared to those of CLUST 2014.35 For
2D prediction, errors were greater than 5 mm in 3.25%,
4.19%, and 1.31% of the images for strategies A, B and C,
respectively.

4.B. Impact on treatment margins

Respiratory motion per image sequence followed a Gaus-
sian distribution only in 24.7%. In fact, respiratory motion
follows per cycle a path similar to a sin48 function, which is
not normally distributed.87 In addition, landmark positions
can drift over time, influencing the motion distribution and
leading to multi-modal distributions. After tracking, residual
errors were more often Gaussian distributed (62.3%) and
95th percentiles substantially reduced. Based on results
from,87,88 which showed the applicability of the margin
recipe for similar distributions and motion amplitudes below
10 mm, we conclude that the margin recipe can be applied to
the tracked data.

Our analysis has focused on 2D tissue tracking, which,
considering the limited validation options and increased
image acquisition and processing times of 3D tracking, may
be the more practical to implement. Liver motion is typically
greatest in the superior-inferior (SI) and anterior-posterior
(AP) directions with left-right (LR) motion being signifi-
cantly smaller. In some studies, typical liver motion in the LR
direction is reported to be <2 mm89,90 and therefore relatively
small PTV margins to account for this motion could be
applied in the LR directions. This relies on the accurate align-
ment of the 2D transducer with the SI/AP plane, which may
be assisted by optical tracking of the transducer. To incorpo-
rate motion uncertainties in the out-of-plane direction, we
considered the same margin size m3,PTV = 3 mm for all
strategies in Table III. Slightly smaller margin reductions
were obtained: from 76% to 73% for strategy Awith temporal
prediction, from 83% to 76% for strategy C with temporal
prediction, and from 26–27% to 29–30% for mid-ventilation
for added m3,PTV = 3 mm. Note that for these margin calcu-
lations zero out-of-plane motion was assumed (m3,PTV = 0).
Increasing m3,PTV leads to larger margins and reduced margin
reductions (73% to 76%, mid-ventilation 26–27% to 29–30%
for m3,PTV = 3 mm). However the ranking of the strategies
remains the same†. As in other studies,87,91 we neglect setup
errors as we focus on intra-fraction motion mitigation. Mar-
gins of all strategies will need to be increased by the same
amount to compensate for setup errors. Similarly as for out-
of-plane motion, this will increase the required margins, but
ranking of the strategies would remain the same.

5. CONCLUSIONS

In this work, we compared different tracking and predic-
tion techniques, and combined results in a common margin

†The margin volume reduction of method a over method b is given
by

rV ða;bÞ
m ¼ V ðaÞ

PTV & VCTV

V ðbÞ
PTV & VCTV

& 1 ¼
srðaÞ1;PTV r

ðaÞ
2;PTV & VCTV

srðbÞ1;PTVr
ðbÞ
2;PTV & VCTV

& 1;

where ri,PTV = mi,PTV + ri,CTV, s = 4p/3 r3,PTV, and the same
m3,PTV is added in the 3rd dimension. The ranking of the
methods remain the same for all s>0, as rV ða;bÞ

m \rV ðc;bÞ
m if

rðaÞ1;PTV r
ðaÞ
2;PTV\rðcÞ1;PTV r

ðcÞ
2;PTV .

We investigated how the trade-off between accuracy and
speed of tracking methods affects the treatment system per-
formance, by combining tracking with temporal prediction to
compensate for the corresponding system latency. The system
performance was quantified by means of required treatment
margins to compensate for intra-fraction motion. This showed
that for a tumor of 50 mm diameter, the most accurate track-
ing method combined with temporal prediction (strategy A)
reduces the volume of healthy tissue which gets irradiated by
79% in comparison to no tracking. Trading tracking accuracy
against speed (strategy B) was counterproductive, with mar-
gin volumes being only reduced by 57%. Speeding-up the
accurate tracking to achieve strategy C provided another
reduction by 4% over strategy A, which amounts to
2425 mm3 spared healthy tissue. Margin reductions are much
lower for the mid-ventilation approach (30%) than for any
tracking method.

Margin size generally increases with DPE. An exception
is strategy B, no prediction versus strategy A, no prediction,
which have similar error in the first motion component of the
prediction errors (1st DPEs) (0.27 ' 3.02 vs 0.23 '
3.18mm) but quite different margins (7.17 vs 4.52 mm). This
comes from large differences in the standard deviations of the
systematic error Σm,1 (2.11 vs 0.89 mm) between the two
methods. The discrepancies in ranges of mean PE ([0.79,
17.09] vs [1.19, 6.31] mm) and Std PE (2.84 vs 1.97 mm)
hinted at such an effect. Hence tracking and prediction errors
should be assessed not only with regard to their mean errors
but also to their error variation.
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recipe to predict treatment margins for ultrasound-guided
radiation therapy of the liver.

We first validated tracking on a large dataset of 2D and
3D US sequences of the liver of volunteers under free breath-
ing. We compared several approaches, as part of the 2015
MICCAI CLUSTworkshop. The tracking of anatomical land-
marks achieved an overall accuracy of 0.9 and 1.7 mm for 2D
and 3D sequences, respectively. In 2D, the best results were
obtained by fusing all proposed algorithms by computing the
median estimation per frame. In 3D the combination of inten-
sity-based registration and mechanical model of Royer et al.
obtained the highest accuracy.

Adding temporal prediction is fundamental to compensate
for the treatment system latency and hence to correctly com-
pensate for the target motion during therapy. Therefore, we
compared two 2D prediction approaches, namely using a fast
linear adaptive filter or the median of four linear and non-lin-
ear methods. These were applied to the 2D tracking results.
Both high tracking accuracy and short prediction horizon (i.e.
high computational speed) positively influence the accuracy
of temporal prediction. The lowest prediction error of
1.1 mm was achieved by strategy C. Given the high run-time
of the fusion algorithm, this strategy is not yet feasible. Yet
computational improvements and implementation optimiza-
tion could reduce the current run-time.

Accurate compensation for target motion results in a
potential reduction of 79% to 83% of the treatment margin
volume. The mid-ventilation strategy could reduce this treat-
ment margin volume by only 29–30%.

The proposed tracking and prediction approach can be
applied to US guidance in IMRTs to continuously estimate
the motion of the organ under treatment and hence reduce
treatment margins, which decreases dose to healthy tissue.
Due to a duty cycle of 100% compared to gating with the

patient free-breathing or in breath-holding, this approach
would allow for shorter and more efficient treatments.

Future work includes testing of the motion compensation
framework on patient data, use of 4D motion models39 of the
liver for the spatial (and hence spatio-temporal) prediction of
the tumor motion.
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APPENDIX A

DATA

Tables AI–AII list all relevant information on the 2D and 3D US sequences, respectively, namely: size and length, spatial and
temporal resolutions, number of annotations and US scanner details. We used the following convention to assign sequence
names: InstitutionAbbreviation-InstitutionSubjectNumber-RepetitionNumber. For example, ETH-01-2 corresponds to the US
sequence of subject no. 1 and repetition number 2 provided by ETH Zurich. When the repetition number is not provided, only
one sequence was acquired for the correspondent subject.

TABLE AI. Summary of the 2D challenge data (part 1 of 2). The sequence name (first column) of the test set is listed in regular black font. The training
sequences, for which all available annotations were provided, are highlighted in bold font. The test data provided at the on-site challenge are underlined.

Sequence

Sequence info Annotation Acquisition info

Im.size
(pix/vox)

Im.res.
(mm)

No.
frames

Im.rate
(Hz) No. ann.

No.ann.
frames Scanner Probe

Center freq.
(MHz)

CIL-01 480 9 640 0.30 1342 22 2 144 Ultrasonix MDP 4DC7-3/40 4.5

CIL-02 480 9 640 0.40 1075 17 1 131 Ultrasonix MDP 4DC7-3/40 4.5

CIL-03 480 9 640 0.40 1070 18 2 138 Ultrasonix MDP 4DC7-3/40 4.5
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TABLE AI. Continued.

Sequence

Sequence info Annotation Acquisition info

Im.size
(pix/vox)

Im.res.
(mm)

No.
frames

Im.rate
(Hz) No. ann.

No.ann.
frames Scanner Probe

Center freq.
(MHz)

CIL-04 480 9 640 0.50 895 15 2 112 Ultrasonix MDP 4DC7-3/40 4.5

CIL-05 480 9 640 0.30 1430 23 2 161 Ultrasonix MDP 4DC7-3/40 4.5

ETH-01-1 490 9 570 0.40 3652 15 2 366 Siemens Antares CH4-1 2.22

ETH-01-2 482 9 608 0.41 4650 15 2 466 Siemens Antares CH4-1 2.22

ETH-02-1 472 9 565 0.42 2620 15 1 263 Siemens Antares CH4-1 2.22

ETH-02-2 462 9 590 0.41 4826 15 1 483 Siemens Antares CH4-1 2.22

ETH-03-1 473 9 437 0.28 4588 14 1 460 Siemens Antares CH4-1 2.22

ETH-03-2 464 9 442 0.28 4191 13 1 420 Siemens Antares CH4-1 2.22

ETH-04-1 469 9 523 0.40 5247 16 2 525 Siemens Antares CH4-1 1.82

ETH-04-2 480 9 652 0.38 4510 14 2 452 Siemens Antares CH4-1 1.82

ETH-05-1 462 9 563 0.42 4615 15 2 463 Siemens Antares CH4-1 1.82

ETH-05-2 477 9 556 0.40 3829 13 2 384 Siemens Antares CH4-1 1.82

ETH-06-1 462 9 580 0.40 5244 16 1 525 Siemens Antares CH4-1 2.00

ETH-06-2 476 9 604 0.38 5165 16 1 518 Siemens Antares CH4-1 2.00

ETH-07-1 475 9 548 0.37 5586 17 2 560 Siemens Antares CH4-1 1.82

ETH-07-2 467 9 568 0.37 5582 17 2 559 Siemens Antares CH4-1 1.82

ETH-08-1 466 9 562 0.36 5574 17 2 558 Siemens Antares CH4-1 1.82

ETH-08-2 466 9 589 0.36 5577 17 2 559 Siemens Antares CH4-1 1.82

ETH-09-1 464 9 560 0.40 4587 15 4 460 Siemens Antares CH4-1 1.82

ETH-09-2 479 9 566 0.42 4590 15 3 460 Siemens Antares CH4-1 1.82

ETH-10-1 462 9 589 0.36 5578 17 3 559 Siemens Antares CH4-1 1.82

ETH-10-2 470 9 595 0.36 5584 17 3 559 Siemens Antares CH4-1 1.82

ETH-11-1 478 9 552 0.45 4284 14 2 429 Siemens Antares CH4-1 2.22

ETH-11-2 476 9 541 0.45 3785 12.4 1 380 Siemens Antares CH4-1 2.22

ETH-12-1 264 9 313 0.71 14516 25 1 1453 Siemens Antares CH4-1 2.22

ETH-12-2 262 9 313 0.77 15640 25 1 1565 Siemens Antares CH4-1 2.22

ETH-13-1 268 9 304 0.71 9934 25 1 994 Siemens Antares CH4-1 2.00

ETH-13-2 268 9 304 0.71 10525 25 1 1054 Siemens Antares CH4-1 2.00

ICR-01 393 9 457 0.55 9 0.42 4858 23 3 608 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5

ICR-02 393 9 457 0.55 9 0.42 3481 23 2 436 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5

ICR-03 393 9 457 0.55 9 0.42 3481 23 3 436 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5

ICR-04 393 9 457 0.55 9 0.42 3481 23 4 349 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5

ICR-05 397 9 485 0.55 9 0.43 3481 20 2 348 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5

ICR-06 397 9 485 0.55 9 0.43 3481 21 2 348 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5

ICR-07 397 9 495 0.49 9 0.38 3481 23 2 348 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5

ICR-08 399 9 495 0.50 9 0.39 3481 23 3 348 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5

ICR-09 399 9 485 0.57 9 0.44 3481 19.9 2 349 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5

ICR-10 397 9 495 0.49 9 0.38 3481 23.5 2 349 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5

MED-01-1 408 9 512 0.41 2455 20 3 246 DiPhAs Fraunhofer VermonCLA 5.5

MED-02-1 408 9 512 0.41 2458 20 3 246 DiPhAs Fraunhofer VermonCLA 5.5

MED-02-2 408 9 512 0.41 2443 20 3 245 DiPhAs Fraunhofer VermonCLA 5.5

MED-02-3 408 9 512 0.41 2436 20 5 244 DiPhAs Fraunhofer VermonCLA 5.5

MED-03-1 408 9 512 0.41 2442 20 2 245 DiPhAs Fraunhofer VermonCLA 5.5

MED-03-2 408 9 512 0.41 2450 20 3 246 DiPhAs Fraunhofer VermonCLA 5.5

MED-04-1 524 9 591 0.35 3304 11 1 331 Zonare z.one C4-1 4.0

MED-05-1 524 9 591 0.35 3304 11 2 331 Zonare z.one C4-1 4.0

MED-06-1 408 9 512 0.41 2427 20 4 243 DiPhAs Fraunhofer VermonCLA 5.5

MED-06-2 408 9 512 0.41 2424 20 3 243 DiPhAs Fraunhofer VermonCLA 5.5

MED-07-1 408 9 512 0.41 2470 20 3 248 DiPhAs Fraunhofer VermonCLA 5.5

MED-07-2 408 9 512 0.41 2478 20 3 248 DiPhAs Fraunhofer VermonCLA 5.5
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Cwi ¼ kiwi; 8i 2 ½1; . . .;D#; (13)

where C ¼ ½!̂Pjð1Þ; . . .; !̂PjðT̂Þ#T + ½!̂Pjð1Þ; . . .; !̂PjðT̂Þ# is the
covariance matrix of the centered manual annotations of
the D-dimensional landmark j!̂Pjð̂tÞ ¼ P̂jð̂tÞ & pj, with
pj ¼ 1=T̂

PT̂
t̂¼ 1 P̂jðtÞ the mean position and T̂ the

TABLE AI. Continued.

Sequence

Sequence info Annotation Acquisition info

Im.size
(pix/vox)

Im.res.
(mm)

No.
frames

Im.rate
(Hz) No. ann.

No.ann.
frames Scanner Probe

Center freq.
(MHz)

MED-07-3 408 9 512 0.41 2450 20 3 246 DiPhAs Fraunhofer VermonCLA 5.5

MED-07-4 408 9 512 0.41 2456 20 4 246 DiPhAs Fraunhofer VermonCLA 5.5

MED-08-1 524 9 591 0.35 3304 11 3 331 Zonare z.one C4-1 4.0

MED-08-2 524 9 591 0.35 3304 11 3 331 Zonare z.one C4-1 4.0

MED-09 408 9 512 0.48 2420 30 1 243 DiPhAs Fraunhofer VermonCLA 3.5 3.4

MED-10 408 9 512 0.45 2416 31 2 243 DiPhAs Fraunhofer VermonCLA 3.5 3.4

MED-11 408 9 512 0.45 2425 31 2 243 DiPhAs Fraunhofer VermonCLA 3.5 3.4

MED-12 408 9 512 0.48 2415 30 2 242 DiPhAs Fraunhofer VermonCLA 3.5 3.4

MED-13 475 9 687 0.27 3135 17 1 314 Zonare z.one C6-2 , 4.0

MED-14 475 9 687 0.27 3855 17 2 386 Zonare z.one C6-2 , 4.0

TABLE AII. Summary of the 3D challenge data. The sequence name (first column) of the test set is listed in regular black font. The training sequences, for which
all available annotations were provided, are highlighted in bold font. The test data provided at the on-site challenge are underlined.

Sequence

Sequence info Annotation Acquisition info

Im.size (pix/vox) Im.res. (mm)
No.

frames
Im.rate
(Hz) No. ann.

No.ann.
frames Scanner Probe

Center
freq. (MHz)

EMC-01 192 9 246 9 117 1.14 9 0.59 9 1.19 79 6 1 8 Philips iU22 X6-1 3.2

EMC-02 192 9 246 9 117 1.14 9 0.59 9 1.19 54 6 4 6 Philips iU22 X6-1 3.2

EMC-03 192 9 246 9 117 1.14 9 0.59 9 1.19 159 6 1 16 Philips iU22 X6-1 3.2

EMC-04 192 9 246 9 117 1.14 9 0.59 9 1.19 140 6 1 15 Philips iU22 X6-1 3.2

EMC-05 192 9 246 9 117 1.14 9 0.59 9 1.19 147 6 1 15 Philips iU22 X6-1 3.2

EMC-06-1 192 9 246 9 117 1.14 9 0.59 9 1.19 100 6 1 11 Philips iU22 X6-1 3.2

EMC-06-2 192 9 246 9 117 1.14 9 0.59 9 1.19 100 6 1 11 Philips iU22 X6-1 3.2

EMC-06-3 192 9 246 9 117 1.14 9 0.59 9 1.19 100 6 1 11 Philips iU22 X6-1 3.2

EMC-07-1 192 9 246 9 117 1.14 9 0.59 9 1.19 100 6 1 11 Philips iU22 X6-1 3.2

EMC-07-2 192 9 246 9 117 1.14 9 0.59 9 1.19 100 6 1 11 Philips iU22 X6-1 3.2

EMC-07-3 192 9 246 9 117 1.14 9 0.59 9 1.19 100 6 1 11 Philips iU22 X6-1 3.2

ICR-01 480 9 120 9 120 0.31 9 0.51 9 0.67 141 24 1 15 Siemens SC2000 4Z1c 2.8

ICR-02 480 9 120 9 120 0.31 9 0.51 9 0.67 141 24 1 20 Siemens SC2000 4Z1c 2.8

SMT-01 227 9 227 9 229 0.70 97 8 3 96 GE E9 4V-D 2.5

SMT-02 227 9 227 9 229 0.70 96 8 3 92-93 GE E9 4V-D 2.5

SMT-03 227 9 227 9 229 0.70 96 8 2 45-96 GE E9 4V-D 2.5

SMT-04 227 9 227 9 229 0.70 97 8 1 96 GE E9 4V-D 2.5

SMT-05 227 9 227 9 229 0.70 96 8 2 64-96 GE E9 4V-D 2.5

SMT-06 227 9 227 9 229 0.70 97 8 3 49-96 GE E9 4V-D 2.5

SMT-07 227 9 227 9 229 0.70 97 8 2 95 GE E9 4V-D 2.5

SMT-08 227 9 227 9 229 0.70 97 8 3 96 GE E9 4V-D 2.5

SMT-09 227 9 227 9 229 0.70 97 8 3 96 GE E9 4V-D 2.5

APPENDIX B

PCA

We used Principal Components Analysis (PCA) to com-
pute the directional tracking error, see Section 2.E.2. For each
tracking method and landmark j, PCA consists in solving the
eigenproblem:
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number of annotated frames for landmark j. ki are the
sorted eigenvalues (ki > ki+1) and wi the corresponding
eigenvectors. For each ith eigendirection, we calculated
the trajectory projection p̂j;ið̂tÞ ¼ wT

i
!̂Pjð̂tÞ. Similarly, we

then project the tracking trajectories Pj onto the PCA
space by pj;ið̂tÞ ¼ wT

i ðPjð̂tÞ & pjÞ.

V. De Luca, E. Harris, M.A. Lediju Bell and C. Tanner orga-
nized MICCAI CLUST 2015; all other authors contributed
results of their tracking methods; Website: http://clust.ethz.ch/

a)

Author to whom correspondence should be addressed: Electronic mail:
valeria.de_luca@novartis.com.

REFERENCES

1. Bortfeld T, Jokivarsi K, Goitein M, Kung J, Jiang SB. Effects of intra-
fraction motion on IMRT dose delivery: statistical analysis and simula-
tion. Phys Med Biol. 2002;47:2203.

2. Jiang SB, Pope C, Al Jarrah KM, Kung JH, Bortfeld T, Chen GT. An
experimental investigation on intra-fractional organ motion effects in
lung IMRT treatments. Phys Med Biol. 2003;48:1773.

3. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory
motion in radiation oncology report of AAPM Task Group 76a). Med
Phys. 2006;33:3874–3900.

4. Omari EA, Erickson B, Ehlers C, et al. Preliminary results on the
feasibility of using ultrasound to monitor intrafractional motion dur-
ing radiation therapy for pancreatic cancer. Med Phys.
2016;43:5252–5260.

5. OShea T, Bamber J, Fontanarosa D, van der Meer S, Verhaegen F, Har-
ris E. Review of ultrasound image guidance in external beam radiother-
apy part II: intra-fraction motion management and novel applications.
Phys Med Biol. 2016;61:R90.

6. Ozhasoglu C, Murphy MJ. Issues in respiratory motion compensation
during external-beam radiotherapy. Int J Radiat Oncol Biol Phys.
2002;52:1389–1399.

7. Shirato H, Seppenwoolde Y, Kitamura K, Onimura R, Shimizu S. Intrafrac-
tional tumor motion: lung and liver. Semin Radiat Oncol. 2004;14:10–18.

8. Webb S. Motion effects in (intensity modulated) radiation therapy: a
review. Phys Med Biol. 2006;51:R403.

9. Morgan-Fletcher SL. Prescribing, recording and reporting photon beam
therapy (supplement to ICRU report 50). ICRU report 62, PP. IX+52. Br
J Radiol. 1999;74:294.

10. Vedam S, Keall P, Docef A, Todor D, Kini V, Mohan R. Predicting res-
piratory motion for fourdimensional radiotherapy. Med Phys.
2004;31:2274–2283.

11. Verellen D, De Ridder M, Linthout N, Tournel K, Soete G, Storme G. Inno-
vations in image-guided radiotherapy. Nat Rev Cancer. 2007;7:949–960.

12. Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, et al. Deep
inspiration breath holdbased radiation therapy: a clinical review. Int J
Radiat Oncol Biol Phys. 2016;94:478–492.

13. Eccles C, Brock KK, Bissonnette JP, Hawkins M, Dawson LA.
Reproducibility of liver position using active breathing coordinator
for liver cancer radiotherapy. Int J Radiat Oncol Biol Phys.
2006;64:751–759.

14. Korreman SS. Motion in radiotherapy: photon therapy. Phys Med Biol.
2012;57:R161.

15. Parkes MJ, Green S, Cashmore J, et al. Int J Radiat Oncol Biol Phys.
2016;96:709–710.

16. Korreman SS, Juhler-N⊘ttrup T, Boyer AL. Respiratory gated beam delivery
cannot facilitate margin reduction, unless combined with respiratory corre-
lated image guidance. Radiother Oncol. 2008;86:61–68.

17. Dawson LA, Jaffray DA. Advances in image-guided radiation therapy. J
Clin Oncol. 2007;25:938–946.

18. Ehrbar S, Perrin R, Peroni M, et al. Respiratory motion-management in
stereotactic body radiation therapy for lung cancer – a dosimetric com-
parison in an anthropomorphic lung phantom (luca). Radiother Oncol.
2016;121:328–334.

19. Depuydt T, Poels K, Verellen D, et al. Treating patients with real-time
tumor tracking using the vero gimbaled linac system: implementation
and first review. Radiother Oncol. 2014;112:343–351.

20. Iwata H, Ishikura S, Murai T, et al. A phase i/ii study on stereotactic
body radiotherapy with real-time tumor tracking using CyberKnife
based on the Monte Carlo algorithm for lung tumors. Int J Clin Oncol.
2017;22:706–714.

21. Shirato H, Harada T, Harabayashi T, et al. Feasibility of insertion/
implantation of 2.0-mm-diameter gold internal fiducial markers for pre-
cise setup and real-time tumor tracking in radiotherapy. Int J Rad Oncol
Biol Phys. 2003;56:240–247.

22. Takao S, Miyamoto N, Matsuura T, et al. Intrafractional baseline shift or
drift of lung tumor motion during gated radiation therapy with a
real-time tumor-tracking system. Int J Radiat Oncol Biol Phys.
2016;94:172–180.

23. Hunt MA, Sonnick M, Pham H, et al. Simultaneous MV–kV imaging
for intrafractional motion management during volumetric-modulated arc
therapy delivery. J Appl Clin Med Phys. 2016;17:473–486.

24. Wiersma R, Mao W, Xing L. Combined kV and MV imaging for real-
time tracking of implanted fiducial markers. Med Phys. 2008;35:1191–
1198.

25. Harris EJ, Donovan EM, Yarnold JR, Coles CE, Evans PM. Characteri-
zation of target volume changes during breast radiotherapy using
implanted fiducial markers and portal imaging. Int J Radiat Oncol Biol
Phys. 2009;73:958–966.

26. Kitamura K, Shirato H, Shimizu S, et al. Registration accuracy and pos-
sible migration of internal fiducial gold marker implanted in prostate
and liver treated with real-time tumor-tracking radiation therapy
(RTRT). Radiother Oncol. 2002;62:275–281.

27. Fung AY, Ayyangar KM, Djajaputra D, Nehru RM, Enke CA. Ultra-
sound-based guidance of intensity-modulated radiation therapy. Med
Dosim. 2006;31:20–29.

28. Lattanzi J, McNeeley S, Hanlon A, Schultheiss TE, Hanks GE. Ultra-
sound-based stereotactic guidance of precision conformal external beam
radiation therapy in clinically localized prostate cancer. Urology.
2000;55:73–78.

29. Fontanarosa D, van der Meer S, Bamber J, Harris E, OShea T, Verhae-
gen F. Review of ultrasound image guidance in external beam radiother-
apy: I. treatment planning and inter-fraction motion management. Phys
Med Biol. 2015;60:R77.

30. Fuss M, Salter BJ, Cavanaugh SX, et al. Daily ultrasound-based image-
guided targeting for radiotherapy of upper abdominal malignancies. Int J
Radiat Oncol Biol Phys. 2004;59:1245–1256.

31. Bloemen-van Gurp E, van der Meer S, Hendry J, et al. Active breathing
control in combination with ultrasound imaging: a feasibility study of
image guidance in stereotactic body radiation therapy of liver lesions. Int
J Radiat Oncol Biol Phys. 2013;85:1096–1102.

32. OShea TP, Bamber JC, Harris EJ. Temporal regularization of ultra-
sound-based liver motion estimation for image-guided radiation therapy.
Med Phys. 2016;43:455–464.

33. Lediju MA, Pihl MJ, Dahl JJ, Trahey GE. Quantitative assessment of
the magnitude, impact and spatial extent of ultrasonic clutter. Ultrason
Imaging. 2008;30:151–168.

34. Cho SH, Lee JY, Han JK, Choi BI. Acoustic radiation force impulse
elastography for the evaluation of focal solid hepatic lesions: preliminary
findings. Ultrasound Med Biol. 2010;36:202–208.

35. De Luca V, Benz T, Kondo S, K€onig L, et al. The 2014 liver ultrasound
tracking benchmark. Phys Med Biol. 2015;60:5571.

36. De Luca V, Sz"ekely G, Tanner C. Estimation of large-scale organ motion
in B-mode ultrasound image sequences: a survey. Ultrasound Med Biol.
2015;41:3044–3062.

37. McClelland JR, Hawkes DJ, Schaeffter T, King AP. Respiratory motion
models: a review. Med Image Anal. 2013;17:19–42.

38. Preiswerk F, De Luca V, Arnold P, et al. Model-guided respiratory organ
motion prediction of the liver from 2D ultrasound. Med Image Anal.
2014;18:740–751.

16



39. Tanner C, Boye D, Samei G, Szekely G. Review on 4D models for organ
motion compensation. Crit Rev Biomed Eng. 2012;40:135–154.

40. Tanner C, Yang M, Samei G, Sz"ekely G. Influence of inter-subject cor-
respondences on liver motion predictions from population models. In:
Int Symposium on Biomedical Imaging. Prague, Czech Republic: IEEE;
2016:286–289.

41. S!en, HT, Bell MAL, Zhang Y, et al. System integration and in vivo test-
ing of a robot for ultrasound guidance and monitoring during radiother-
apy. IEEE Trans Biomed Eng. 2017;64:1608–1618.

42. Su L, Iordachita I, Zhang Y, et al. Feasibility study of ultrasound imag-
ing for stereotactic body radiation therapy with active breathing coordi-
nator in pancreatic cancer. J Appl Clin Med Phys. 2017;18:84–96.

43. Sharp GC, Jiang SB, Shimizu S, Shirato H. Prediction of respiratory
tumour motion for real-time imageguided radiotherapy. Phys Med Biol.
2004;49:425.

44. Verma PS, Wu H, Langer MP, Das IJ, Sandison G. Survey: real-time
tumor motion prediction for imageguided radiation treatment. Comp Sci
Engin. 2011;13:24–35.

45. Ipsen S, Bruder R, OBrien R, Keall PJ, Schweikard A, Poulsen PR.
Online 4D ultrasound guidance for real-time motion compensation by
MLC tracking.Med Phys. 2016;43:5695–5704.

46. Schwaab J, Prall M, Sarti C, et al. Ultrasound tracking for intra-frac-
tional motion compensation in radiation therapy. Phys Med.
2014;30:578–582.

47. De Luca V, Tschannen M, Sz"ekely G, Tanner C. A learning-based
approach for fast and robust vessel tracking in long ultrasound sequences.
In: Medical Image Computing and Computer-Assisted Intervention –
MICCAI. Vol. 8149. Berlin, Heidelberg: Springer; 2013:518–525.

48. Banerjee J, Klink C, Peters ED, Niessen WJ, Moelker A, van Walsum T.
4D liver ultrasound registration. In: Biomedical Image Registration,
Cham: Springer; 2014:194–202.

49. Bell MAL, Byram BC, Harris EJ, Evans PM, Bamber JC. In vivo liver
tracking with a high volume rate 4D ultrasound scanner and a 2D matrix
array probe. Phys Med Biol. 2012;57:1359.

50. Lediju M, Byram BC, Harris EJ, Evans PM, Bamber JC, et al. 3D liver
tracking using a matrix array: implications for ultrasonic guidance of
IMRT. In: Ultrasonics Symposium. San Diego, CA: IEEE; 2010:1628–
1631.

51. Vijayan S, Klein S, Hofstad EF, Lindseth F, Ystgaard B, Lango T. Vali-
dation of a non-rigid registration method for motion compensation in 4D
ultrasound of the liver. In: International Symposium on Biomedical
Imaging. Melbourne, Australia: IEEE; 2013:792–795.

52. Chopra S, Hadsell R, LeCun Y. Learning a similarity metric discrimina-
tively, with application to face verification. In: Computer Vision and Pat-
tern Recognition. Vol. 1. San Diego, CA: IEEE; 2005:539–546.

53. Hadsell R, Chopra S, LeCun Y. Dimensionality reduction by learning an
invariant mapping. In: Computer Vision and Pattern Recognition. Vol.
2. New York, NY: IEEE; 2006:1735–1742.

54. Henriques JF, Caseiro R, Martins P, Batista J. High-speed tracking with
kernelized correlation filters. Trans Pattern Anal Mach Intell.
2015;37:583–596.

55. Crimi A, Makhinya M, Baumann U, Szekely G, Goksel O. Vessel track-
ing for ultrasound-based venous pressure measurement. In: IEEE Int
Symp Biomedical Imaging. 2014:306–9.

56. Crimi A, Makhinya M, Baumann U, Thalhammer C, Szekely G, Goksel
O. Automatic measurement of venous pressure using B-mode ultra-
sound. IEEE Trans Biomedical Engineering. 2016;63:288–299.

57. Lucas B, Kanade T. An iterative image registration technique with an
application to stereo vision. In: Proceedings of Imaging Understanding
Workshop; 1981:121–130.

58. Vercauteren T, Pennec X, Perchant A, Ayache N. Symmetric log-domain
diffeomorphic registration: a demons-based approach. In: Medical
Image Computing and Computer-Assisted Intervention–MICCAI 2008.
New York:Springer; 2008:754–761.

59. Liu C, Yuen J, Torralba A. SIFT flow: Dense correspondence across
scenes and its applications. Trans Pattern Anal Mach Intell.
2011;33:978–994.

60. Cifor A, Risser L, Chung D, Anderson EM, Schnabel J, et al. Hybrid
feature-based diffeomorphic registration for tumor tracking in 2-D liver
ultrasound images. IEEE Tran Med Imaging. 2013;32:1647–1656.

61. Hallack A, Papie_z BW, Wilson J, et al. Correlating tumour histology and
ex vivo MRI using dense modality-independent patch-based descriptors.
In: International Workshop on Patch-based Techniques in Medical Imag-
ing; 2015:129–136.

62. K€onig L, Kipshagen T, R€uhaak J. A non-linear image registration
scheme for real-time liver ultrasound tracking using normalized gra-
dient fields. Challenge on Liver Ultrasound Tracking CLUST 2014;
2014:29.

63. Banerjee J, Klink C, Niessen W, Moelker A, van Walsum T. 4D ultra-
sound tracking of liver and its verification for TIPS guidance. IEEE
Trans Med Imaging. 2015;35:52–62.

64. Banerjee J, Klink C, Peters ED, Niessen WJ, Moelker A, van Walsum T.
Fast and robust 3D ultra sound registration – block and game theoretic
matching. Med Image Anal. 2015;20:173–183.

65. Sinha A, Chen H, Danu D, Kirubarajan T, Farooq M. Estimation and
decision fusion: a survey. Neurocomputing. 2008;71:2650–2656.

66. Yager RR, Rybalov A. Understanding the median as a fusion operator.
Int J Gen Syst. 1997;26:239–263

67. Poulsen PR, Cho B, Sawant A, Ruan D, Keall PJ. Detailed analysis of
latencies in image-based dynamic MLC tracking. Med Phys.
2010;37:4998–5005.

68. Goodband J, Haas O, Mills J. A comparison of neural network
approaches for on-line prediction in IGRT. Med Phys. 2008;35:1113–
1122.

69. Jin JY, Yin FF. Time delay measurement for linac based treatment deliv-
ery in synchronized respiratory gating radiotherapy. Med Phys.
2005;32:1293–1296.

70. Ren Q, Nishioka S, Shirato H, Berbeco RI. Adaptive prediction of respi-
ratory motion for motion compensation radiotherapy. Phys Med Biol.
2007;52:6651.

71. Tanner C, Eppenhof K, Gelderblom J, Szekely G. Decision fusion for
temporal prediction of respiratory liver motion. In: International Sympo-
sium on Biomedical Imaging. Beijing, China: IEEE; 2014:698–701.

72. Riaz N, Shanker P, Wiersma R, Gudmundsson O, Mao W, Widrow B,
Xing L. Predicting respiratory tumor motion with multi-dimensional
adaptive filters and support vector regression. Phys Med Biol.
2009;54:5735.

73. Ruan D. Kernel density estimation-based real-time prediction for respi-
ratory motion. Phys Med Biol. 2010;55:1311

74. Van Herk M. Errors and margins in radiotherapy. Semin Radiat Oncol.
2004;14:52–64.

75. van Herk M, Remeijer P, Lebesque JV. Inclusion of geometric uncertain-
ties in treatment plan evaluation. Int J Radiat Oncol Biol Phys.
2002;52:1407–1422.

76. Cacicedo J, Perez J, de Zarate RO, et al. A prospective analysis of inter-
and intrafractional errors to calculate CTV to PTV margins in head and
neck patients. Clin Transl Oncol. 2015;17:113–120.

77. van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of cor-
rect target dosage: dose-population histograms for deriving treatment
margins in radiotherapy. Int J Rad Oncol Biol Phys. 2000;47(4):1121–
1135

78. Stroom JC, de Boer HC, Huizenga H, Visser AG. Inclusion of geometri-
cal uncertainties in radiotherapy treatment planning by means of cover-
age probability. Int J Radiat Oncol Biol Phys. 1999;43:905–919.

79. Wolthaus JW, Schneider C, Sonke JJ, et al. Mid-ventilation CT scan
construction from fourdimensional respiration-correlated CT scans for
radiotherapy planning of lung cancer patients. Int J Rad Oncol Biol
Phys. 2006;65:1560–1571.

80. Wolthaus JW, Sonke JJ, van Herk M, et al. Comparison of different
strategies to use four-dimensional computed tomography in treatment
planning for lung cancer patients. Int J Rad Oncol Biol Phys.
2008;70:1229–1238.

81. Liver cancer – stages. http://www.cancer.net/cancer-types/liver-cancer/
stages; 2016. Accessed1:0302017-03-27

82. Shepard AJ, Wang B, Foo TK, Bednarz BP. A block matching
based approach with multiple simultaneous templates for the real-
time 2D ultrasound tracking of liver vessels. Med Phys. 2017;44:
5889–5900.

83. Lachaine, M., Falco, T. Intrafractional prostate motion management with
the Clarity Autoscan system. Med Phys Int. 2013;1:72–80.

17



84. Molloy JA, Chan G, Markovic A, et al. Quality assurance of us-guided
external beam radiotherapy for prostate cancer: report of AAPM task
group 154.Med Phys. 2011;38:857–871

85. Fontanarosa D, Meer S, Bloemen-van Gurp E, Stroian G, Verhaegen F.
Magnitude of speed of sound aberration corrections for ultrasound
image guided radiotherapy for prostate and other anatomical sites. Med
Phys. 2012;39:5286–5292.

86. Mast TD. Empirical relationships between acoustic parameters in human
soft tissues. Acoust Res Lett Online. 2000;1:37–42.

87. Rit S, Van Herk M, Zijp L, Sonke JJ. Quantification of the variability of
diaphragm motion and implications for treatment margin construction.
Int J Radiat Oncol Biol Phys. 2012;82:e399–e407.

88. van Herk M, Witte M, van der Geer J, Schneider C, Lebesque JV. Bio-
logic and physical fractionation effects of random geometric errors. Int J
Radiat Oncol Biol Phys. 2003;57:1460–1471.

89. Brix L, Ringgaard S, Sørensen TS, Poulsen PR. Three-dimensional liver
motion tracking using real-time two-dimensional MRI. Med Phys.
2014;41:042302.

90. Davies S, Hill A, Holmes R, Halliwell M, Jackson P. Ultrasound quanti-
tation of respiratory organ motion in the upper abdomen. Br J Radiol.
1994;67:1096–1102.

91. Ecclestone G, Bissonnette JP, Heath E. Experimental validation of the
van Herk margin formula for lung radiation therapy. Med Phys.
2013;40:111721.

18


