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The response of a near-critical fluid to low-frequency vibrations is investigated by means of
numerical simulations. Its characteristics are first established by one-dimensional analysis. It is
shown that the strong thermo-mechanical coupling occurring in the boundary layers tends to make
the fluid oscillate homogeneously at low frequencies, and with a larger amplitude than in a normal
gas. The numerical results obtained in this first part are found to confirm earlier predictions made
in pioneering theoretical work. Then, the study is extended to a two-dimensional configuration. In
a square cavity, the wall shear stresses developing along the longitudinal boundaries do not affect
the one-dimensional regime, since the viscous layer present in these areas behaves like the Stokes
boundary layer. By contrast, thermostatting these boundaries, like the others, generates local
curvature of the stream lines. The fluid response to the homogeneous acceleration field then takes
some more pronounced two-dimensional patterns, but remains driven by the strong alternating
expansions and retractions of the fluid in the thermal boundary layers, which are specific to
near-critical fluids. ©2000 American Institute of Physid$$1070-6631(00)00901-6]

I. INTRODUCTION point, it is responsible for the observed critical speeding up

. N . . of the thermal relaxation instead of the expected critical
For a decade, investigations concerning critical phenom-

. sdowing down. On the other hand, it has been shown that

ena have shown that heat and mass transfer in a pure flui - o . o .

Lo i A o when a near-critical fluid is submitted to heating in a nonin-
near its liqguid—vapor critical point is very specific. In par- . : : o
ticular, experiments performed in microgravit have led to sulated ce_II, the piston effect is respo_nsuble for a strong crlt_|—
the conclusion that the temperature of a near-critical ﬂuicgalhspeedl;pg-l:pl o:kheatt:‘ranszr ;:V h'tCh. ng make the fluid
submitted to heating or cooling from the outside of its con- € ?Veihu imately i e? er_rpa ts ord_-cwc I | ical
tainer responds quickly despite its very low thermal diffusiv- d'n gygi presehnce ohgraxl y’h wo-dimensiona num_ﬁrlcf?
ity. This phenomenon has been theoretically discussed, usi udie ave shown ,t at. the t, 'e.rmoacoust|cs are still e L
thermodynamical consideratioh®r from the asymptotic clent. Thermoconvective instabilities do not prevent the pis-
analysis of the Navier—Stokes equatifrisis based on the ton effect from heating the fluid, while convective heat trans-
anomalies of transport properties near the critical point. Thd€" rémains very poor close to the critical point, and only
thermal diffusivity of near-critical fluids becomes very small contributes to mass equilibration. This research has also
on approaching the critical point, but their compressibilityStre_Ssed_the complexity of near-critical fluid hydrodynqmlcs,
and their thermal-expansion coefficients diverge at the sam@s first discussed twenty years é’gagcent!y, the numerical
time. As a consequence, when heat is injected into a neaffudy of the Raylggh—erd cpr?f}guratm?? has shown
critical fluid, the fluid located in the thin thermal boundary that, besides the high compressibility of the fluid, the piston
layer strongly expands, compressing the rest of the fiitie effect can itself contrlpute to triggering the mstab!llty.
bulk) adiabatically. The compression wave involves a rapid  Our purpose here is to extend our understanding of near-
cant on a much shorter time scale than diffusion. Thido heat and mass transfer in near-critical fluids have been
mechanism has been called the “piston effect,” and sincdperformed in a configuration in which the fluid state is dis-
effects linked to compressibility become increasingly intensdurbed by a temperature inhomogeneity. The response of the

compared to those of diffusion when approaching the criticafluid to a purely mechanical disturbance was only first stud-
ied a few years ago by Cadend Zappolt! Those authors

@Author to whom correspondence should be addressed. Phone(::o.nSldereci .a or_le-dlmensmnal near-critical fluid Iafyer Su.b_

05.61.55.82.33; fax: 05.61.55.83.26; electronic mail: jounet@lme.ups—m|tted to vibrations in a thermostatted cell. Again, their

tlse.fr analysis pointed out a peculiar regime, which cannot be wit-




aT the isothermal compressibilit{, that of the dilation coef-

y m = —— T = N
. v=0 By Oor T=1+AT; ficient 8 and that of the specific heat at constant pressure
Cp.
Then, the nondimensional unsteady conservation equa-
B tions for a viscous heat-conducting compressible fluid can be
. f(t) = pAsin(27 ft) &, F=0 written on the acoustic time scale as
= ) =1+ AT J R
T=1+AT; T + AT, &—Ft)+V-(pv)=0, 1)
g=0 -
d(pv) R 1 ,. 1 N
e +V.(pveV)=—179, VP+¢ VV+ §V(V-v) +f,
0 1 =z (2
7=0 3—T=00rT=1+A7}
dy a(pT) . 9, .
TV (pvT)==(yo—1)| P+ 5p°|(V-V)
FIG. 1. Configuration. ot 8
€Yo
+ 5 VINVTI+exo(yo- 1@, (3)
nessed in normally compressible fluids. They showed that, 0
due to the strong thermomechanical coupling occurring in pT 9,
the boundary layers at low frequencies, the fluid tended to T 1-p/3 87 (4)

oscillate like a solid body between the two boundary layers, o ] .
the behavior of which could be compared to that of dampersn Which f represents the imposed force field addthe
In the present paper, we aim to show the influence of th&lissipation function. _ _ _

presence of walls parallel to the acceleration field on the ~ This system is obtained with the following nondimen-

regime described above. By means of numerical simulationsionalization(concerning density, temperature, pressure and

we study the response of the fluid to low-frequency vibra-Velocity):

tions in a square cavity for two kinds of thermal boundary p' T p’ v’

conditions along the longitudinal walls. p=—7, T= T P= TR

In Sec. Il, we first present the general model used for our Pe ¢ Pt Te 0

investigations. The results obtained in a one-dimensionadnd the independent variables space and time:

slab-shaped container are recalled in Sec. lll, with a special <! t/

emphasis on the low-frequency specific regime. In Sec. IV, X= IRE t=—=,

this low-frequency regime is studied in the two-dimensional a

case. We report the new model utilized for this purpose, anthe prime () denoting dimensional parametdgs. , T. and

then show our results when the supplementary boundarig8; are the critical coordinate®’ the perfect gas constant

are either adiabatic or thermostatted. In Sec. V we summadivided by the molar mass of the substance,

rize the findings obtained in the present paper and concludes (yoR’ T.)Y2the reference sound velocity, is the ratio of
the specific heats in the absence of diverggrcethe char-
acteristic length and,=L'/c} a typical acoustic time].

Il. MODEL The nondimensional parameters present in E2jsand

The model used in the present analysis is that aIread&g) are defined as
presented in previous publicatiofg:? woCh t/

The van der Waals equation of state is used to take into  Pry= 0 e= —?
account the anomalous behavior of many equilibrium param- ta
eters close to the critical point, especially the divergence oWith

Pro,

No

FIG. 2. Temperature and velocity pro-
files every 1/8th of a period for high-
frequency vibrations (f’'=30kHz,
AT/=0.1K, A’=10ms?),

u(ums’) 4
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15000 15000
‘0 "0 FIG. 3. Velocity variations for a resonant frequency
£ E (acoustic regime (a) resonance andb) saturation
=2 =2 (f'=11500 Hz,AT/=0.1K, A’=10m 2.
v v
i i
= ” >
-150005 . 700 -15000; 500 1000 7500
1 /ta 1 /ta
Pécéo [ATiz_(Ti’—Té)/Té, with T/ _the initial temperature]. .
ty= L'ZT_ Since we are interested in the response of the fluid in the
0

absence of gravity, the only source term is imposed through
Pr, is a reference Prandtl numbeu}, Clgo, A, are the @ sinusoidal acceleratiosee Fig. 1), that implies
dynamic viscosity, the specific heat at constant pressure and §— pAsin(2mft)é,, (6)
the thermal conductivity, respectively, in the absence of criti-
cal anomaliesande a small parameter in whidt represents with
a reference diffusion time. AL’
\ is the nondimensional thermal conductivity. Its critical A
divergence is introduced by
N T 12 the npndimensional amplitude and frequency of the accelera-
= :1+0_7% C) tion field.
Ao ¢ The walls in the direction perpendicular to the vibration
The critical exponent of 1/2 differs from that of a real '€ thermostatted, so that
substance(0.64), as do those deduced from the van der T(x=0)=T(x=1)=1+AT,. (7)
Waals equation of state for other properties. But, as ex- N . . .
plained elsewher®!'*our purpose is to possess a relatively The walls parallel to the vibration are either adiabatic or
simple model to describe the main features of near-critica}hermos'[attec{See S_ec. V), while the nonslip condition at
singular dynamics, such as strong thermomechanical codh® walls can be written as

:W and f:f’t{;,
C

pling. Thus, the low divergence of the coefficients of viscos-  vV(x=0)=v(x=1)=v(y=0)=v(y=1)=0. (8)
:tyncc))rret:at of the specific heat at constant volume are also Calculations have been performed for £QT!
9 : N o =304.13K, pl=467.8kgm 3, R'=188.8Jkg K1) with
For the problem under consideration, the fluid is initially | ,~ -~ 8 a .
. . o . =10mm. Then,e=2.5910° and P=2.274 in the
at rest near the critical point. The initial conditions are
whole study.
T(t=0)=1+AT;,
p(t=0)=1,
(5) I1l. ONE-DIMENSIONAL RESULTS
3
P(t:0)25(1+ATi)—§, To clarify the problem under study, we first briefly
present the different regimes appearing as a function of the
V(t=0)=0 frequency when the presence of the longitudinal boundaries

(a) (b)

I

2

70
— N
X ) FIG. 4. Temperature and velocity pro-
é E files in the bulk fluid for the medium
. — ] 3 regime (f'=3 kHz, AT{=0.1K, A’
- ~ =10ms?.
< : S

0.2§ 70
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FIG. 5. Velocity in the bulk fluid when the frequency is decreased FIG. 6. Velocity profiles in the bulk fluid for the quasi-solid regime, over
(f’=200Hz,AT/=0.1K, A’=10ms 2. one period of oscillation every 1/8th of a periéd =5 Hz, AT{ =15 mK,
A’=0.1ms?).

is not taken into accouribne-dimensional fluid layer; here, | loci - dri by the th | boundary |
in the x-direction). The configuration is thus the same as tha[ at velocity proties are driven by the thermal boun ary lay-
rs. Some oscillating boundary layers form due to the linear

considered in Ref. 11, which reported analytically obtaineq[e ‘ i in the bulk fluid. The t i
pioneering results that we therefore aim to confirm here. emperature oscliations In the bulk 1iuid. ‘The temperature

Calculations are performed using a finite-voldfau- oscillations in the boundary layers provoke strong oscilla-

merical code, with thesivPLE algorithni applied with the tions of density illustrating fluid dilatio{Figs. 7(a)and

stabilization procedure of the Thomas algoritirdescribed 7_(b)]' In turn, thermal expan_sm(@r contrac_t lon)is respon-
in Ref. 15, and with a small mesh around the thermostatte ible for the presence of oscillating dynamic boundary layers

boundariesx=0 andx=1) because of the very low diffu- IFig. 7(?]’ tr;]e velocitydatt) thﬁ e?ge of which becorg_es ”?“CE
sivity of near-critical fluids. arger than that caused by the linear pressure gradient in the

bulk. This regime appears in near-critical fluids when the
A. The acoustic regime vibration characteristic time is equal to or smaller than the
piston effect timé!® that is to say, when the thermome-

At high frequenciedtypically, a few tens of kHz), the . : < N ; ’
ghanical coupling specific to near-critical fluids has time to

vibration characteristic time becomes of the same amplitud
or smaller than the acoustic time. Then, as shown in Fig. 2d€velop.

compression and expansion waves propagate back and forth

in the fluid due to the very rapid motion of the cell. As D- Summary

discussed in Ref. 11, the temperature fluctuations are too fast The three different responses demonstrated above can be
in this regime for the thermal boundary layer to have time tosummarized in Fig. 8, which represents the maximum veloc-
form. Thus, the wallx=0 andx=1 are adiabatic, and the ity as a function of the frequency.

fluid response would have been the same in a perfect gas. One characteristic of the high-frequency regime is that
Figure 3 also illustrates that resonance can occur for specifig/ . decreases as the frequency increases, except for special
frequencies, as previously shown analyticaliythe numeri-  values of the frequency at which resonance occurs.

cal simulation here highlights the saturation of this reso- At lower frequencies, two regimes can be distinguished.

nance. Asymptotically, the first exhibits a linear dependence gf,
on f': this is the medium regime, in which the results ob-
B. The medium regime tained are close to those appearing in a perfect®dpsra-

olic velocity profiles). Nevertheless, the density gradients

When decreasing the frequency, a regime of perIOdI(Penerated in the boundary layers are very large due to the

linear oscillations around a vibration node centered in th trona dilation oceurring in near-critical fluids. that which
middle of the cell appears for pressure, density and temperg— 9 9 !

ture[Fig. 4(a)]. The pressure gradient oscillation in the bquVT;?lzti?m addition, speed up the corrosion of the container
enerates an almost parabolic oscillating velocity profile : .
g P g y P Finally, when decreasing the frequenay,,, tends to

[Fig. 4(b)], the amplitude of which decreases with the fre- ! : ) o
quency(Fig. 5). Nevertheless, it can be noted that the veloc-decrease like the__square rootf_d_t This _nonll_near regime1s
ity at the edge of the thermal boundary layers, which are to&ompletely specific to near-critical _flmds since 1t IS assocl-
thin to appear in Fig. 4(a), is not zero and becomes highe te_d _to the strong thermal expansion or contraction of the
compared to the velocity at the cell center as the frequenc u!d in the boundary Iayers. The dynamic response Qf the
decreases. This nonzero velocity is linked to the specifi luid to_the acceleration field then no longer originates in thg
thermomechanical coupling occurring from the boundar ulk. Since, when one poundary layer expands, the opposﬁe
layers in near-critical fluids, which becomes prominent at’he contracts, the bulk is smultangously pushed on one side
low frequency, as discussed below. anq pulled on thg other. Hence, |§ tends to oscillate at a
uniform velocity, like a block of solid matter between two
highly compressible boundary layers. This regime appears
clearly when decreasing the frequency, but also when ap-
At lower frequencies or closer to the critical point, bulk proaching the critical point, since its proximity determines
fluid oscillations tend to become homogenedkig. 6). The the strength of the thermomechanical coupling. Conse-

C. The quasi-solid regime



0.002 0.05 0.015
o ~§“ Ea FIG. 7. Thermomechanical coupling
bé (a) S (b) © (©) in the boundary layer: temperatui@),
R’ [=1)] E density (b) and velocity (c) profiles
“F' = 5 over one period of oscillation
< (=% - (f’=5Hz, AT/=15mK, A’
< = =0.1ms?.

-0.0 -0.05, -0.015,

020 X 0.005 0 X 0.005 0 X 0.005
guently, the crossover between the medium and quasi-solidith
regimes occurs at higher frequencies if the fluid is initially L
closer to the critical pointnot plotted;seeRef. 18). Typi- Ma= ——<1,
cally, the quasi-solid regime could be triggered by g-jitters Co

aboard a space station, since it appears for frequencies lowgrcharacteristic small Mach numbé? represents the ho-
than a few tens of Hertz at 15 mK above the critical point.mogeneous and constant part of the pressure Riitithe
This should thus concern a large number of microgravitygynamic pressure.
experiments on critical phenomena. The momentum equation is then

Lastly, let us add that a very good agreement has been

. ; € 1
found between our numerical results and those obtained frori(pVHV'(p\;@g): —_vpW4 A V2J+ ZV(V-V)

asymptotic methods: as shown by the comparison reported dt 3
in Table I. 4 pASIN271)8, )
with

IV. LOW-FREQUENCY VIBRATIONS IN A SQUARE

CAVITY A=A'L'I(L"f")2

A. Rescaling and modeling The other conservation equations are written in the fol-
On the acoustic time scale, the time needed to perforrr|1owIng form:

one oscillation increases as the frequency decreases. Two- dpP Yo€

dimensional computations at low frequency would then re- (1_bp)a_ Pr MaV-()\VT)

quire a lot of computational time. Vv=— Praod) t2a02(1—Dbo) (10)
Therefore, time and velocity are rescaled with respect to Vol P9 a p)

vibration:

O o+ (1) = = (1, IP
t=t'f’, V=v/L'f’. P (pTV)=— —(mbe) g

Additionally, since a description of acoustic waves is not 282 (y0—1) 1-bp)V -V
necessary, an acoustic filtering proced@imaust be applied P Yo ( PIV-V
to ensure a relatively good convergence rate of our iterative
algorithm (here,sIMPLER'?). This leads to pressure splitting: + 5 EM V.[\VT], (11)
P=pPO) + 5, Ma2PD), LMa
pT 9 1
0)4 epm=_P ol =2
P voMa“ P 1-bp apla 8,b 3/ (12)

50.00

P() must be taken into account in the equation of state
to allow the density variations that are needed for fluid mo-
tion when a homogeneous acceleration field is imposed in
the absence of temperature inhomogeneities. The above con-
tinuity and energy equations have been reformulated by

>T)>=C

¥
s i
/
.
/
T //f
[Nipe®

9.00

4.00 /QZ
0.80 ,\/{3
0.30

0.07 ’ ;Of e

u__ (um/s)

P TABLE I. A comparison between numerical and analytical results for
0.02 O/fd”_ AT/=15mK, A’=0.1m s2 present calculationél) and values obtained
from the solution of the asymptotic analysis given in Ref.(21L

1 6 20 70 300 800 40009000 50000

' f'(Hz) 5 10 20 50 200 1000 3000

f (Hz)
Unax(ums™) (1) 0.0115 0.0166 0.0242 0.0404 0.094 0.29 0.652
FIG. 8. The three different regimes: maximum velocity versus frequencyu’max(p,m s} (2) 0.0113 0.0163 0.0237 0.0397 0.092 0.28 0.668
(AT/=15mK, A’=0.1ms?).
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FIG. 9. Velocity field evolution in the lower half of the cell when tige
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=0 boundary is insulatedA T/ =15mK, f'=20Hz, A’=0.1m s2).

combination so that the source ternd,P/dt [in fact,

cavity, because of the configuration symmetry along the axis:
y=0.5. The assumption of symmetry leads to the boundary
conditions:

oT B B Ju 3 B B -
@(y—o.S)—o, @(y—o.S)—o, v(y=0.5=0. (13)

B. Adiabatic longitudinal wall

In order to isolate the role of the wall shear stresses on
the fluid flow, we first consider the case in which the addi-
tional boundaries are thermally inactive:

oar
@(y—O)—O. (14)

The velocity field obtained on one period of oscillation
is shown in Fig. 9. It appears that the fluid response remains
almost one-dimensional. Figure 10 shows that the quasi-solid
regime is not affected by the presence of the lower wall,
except very close to it, where a boundary layer forms. The
evolution of this viscous boundary layer is shown in Fig. 11
(at the center of the lower wall).

This evolution is similar to that of the Stokes boundary
layer, which forms when a flat plate oscillates in an infinite
fluid layer at rest’ The periodic detachment of the boundary
layer provokes transversal propagating waves which strongly
damp out in the bulk, as described by the Stokes solution:

u'(y)=upe Y% sin(2mf't' —y'/8'), (15)
with

V' 1/2
(2 .

f’

&' represents a length characteristic of the penetration
depth(v’ is the kinetic viscosity of the flujd Our results are
in good agreement with the value deduced from this expres-
sion (with u(=3.4510°kgm s} §'/L'~3103 and
y'18'~2m for y~210 2, about the same as the wave
length that can be observed in Fig.)1Eigure 12 shows that

voMa?dPM/dt], appears explicitly and numerically gener- the vibration frequency is the only parameter which deter-

ates the correct coupling.
Let us add that, to simplify the computation, numericalfound to satisfy the dependence predicted by relai).

calculations were only performed on the lower half of theThus, in spite of the presence of the transversal walls

2.2x10°

’ -
U5 (MM.S7)

2.2x10°

(a)

0

X

mines this thickness for a given fluid, and its variations are

(b)

05T

I
ux=0.5

= .
09oxi0° 2.0x10°

(mm.s™)

FIG. 10. Longitudinal velocity profiles along the vibrational directi@ and in the transversal directidb).
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FIG. 11. Evolution of the longitudinal velocity profile in the boundary layer t = 3/4

(AT/=15mk, f'=20Hz, A’=0.1ms?).

=0 andx=1) and a pressure gradient, it can be said, in-

versely, that the results obtained for an infinite oscillating

plate seem to remain valid. FIG. 13. Velocity field evolution in the lower half of the cell when the
Here, no singular behavior of the Stokes-like boundary=0 boundary is thermostatted’ =20 Hz, AT/ =0.1K, A’=0.1m s 2.

layer is observed when approaching the critical pdsge

Figs. 11 and 12(a)], and the only specificity of this layer is

that it is much thinner than that of GQaken in normal the stream lines. This curvature is more pronounced close to

near-critical conditionsithe critical density of CQis p. IS thermostatted, a thermal boundary layer forms due to the
—467.8kg-m3). Hence, the quasi-solid regime demon- linear temperature oscillatiofin the x-direction)in the bulk
strated in one dimension can be considered to be unaffectéfig- 14(a)]. Thus, as in the boundary layers present along

by the presence of longitudinal boundaries when they aréhe “vertical” (y-directed)walls, thermomechanical cou-
insulated. pling occurs which generates, by dilation or contraction of

the fluid, the “vertical” motion illustrated in Fig. 14b). This

causes the curvature of the stream lines, and, because of their

- - o inhomogeneity along the longitudinal wall, the additional ki-
One very specific feature of near-critical fluids is the netic energy variations also make the longitudinal velocity

Strong thermomechanical Coup|lng which they Obey. It |Sinh0mogeneous outside the dynamic boundary |dm

then logical to consider the case in which the longitudinali4(c)].

walls are thermostatted: In such conditions, the one-dimensional approximation
T(y=0)=1+AT;. (17)  of the fluid response is far less justified, and the quasi-solid

- ) regime is affected over a wider area.
Let us add that such conditions are more likely to be

fullfilled in the experiments than adiabaticity, since it has

been shown recently that, due to the piston effect and to th\e/' CONCLUSION

specific thermophysical properties of a near-critical fluid, The numerical results presented in this paper cast some

boundary walls made of usual insulating materials cannobew light on the question of the behavior of a near-critical

ensure the absence of heat losses from the fAtl. fluid confined in a thermostatted cell and submitted to low-
The velocity field evolution obtained with such thermal frequency vibrations in the absence of gravity.

boundary conditions is illustrated in the lower half of the By first considering a one-dimensional fluid layer, we

cavity in Fig. 13. The fluid oscillation therefore has more confirmed the theoretical predictions made earfteit low

two-dimensional properties, as illustrated by the curvature ofrequencies and close to the critical point, a fluid tends to

0 1

C. Thermostatted wall

(a) (b) (c)

0.03 0.03 0.03

FIG. 12. Velocity profile in the bound-
ary layer: (a) AT{=0.2K, f’
=20Hz, A'=0.1ms? (b) AT/
Y Y Y =0.2K, f'=100Hz, A’=0.1ms?2
(c) AT/=02K, f'=20Hz, A’
=0.5ms?2

0'108 10° ' 1y 1.0x10° 0'308 10° 1y 3.0010° Ofgxm" ' 1y 4.0x10°
-1.0x’ . 0x -3.0x° - X 3 - |
U_os (MM.SY) U._os (MM.S™) u_, . (mms’)

x=0.5
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FIG. 14. Temperaturéa), transversal
velocity (b) and longitudinal velocity
Y Y Y (c) when the lower wall is thermostat-
ted.
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oscillate like a solid body between two highly compressible 7B. Zappoli, S. Amiroudine, P. Cadeand J. Ouazzani, “Thermoacoustic
layers. On the basis of these results, a two-dimensional studya”d buoyancy-driven transport in a square side heated cavity filled with a

. near critical fluid,” J. Fluid Mech316, 53 (1996).
was then perfor_med_, ShOWIﬂg t_hat the wall shear Stres_se%B. Zappoli, A. Jounet, S. Amiroudine, and A. Mojtabi, “Thermoacoustic
parallel to the direction of vibration, do not affect the fluid peating and cooling in near-critical fiuids in the presence of a thermal

flow, since the dynamic boundary layers forming along the plume,” J. Fluid Mech.388, 389 (1999).
wall remain very thin. In a square cavity, the low-frequency 9M. Gitterman, “Hydrodynamics of fluids near a critical point,” Rev. Mod.

: . : - f : Phys.50, 85 (1978).
regime is affected only if the Iongnudmal boundaries areyog Amiroudine, P. Bontoux, Ph. Larrouid. Gilly, and B. Zappoli, “Di-
thermostatted. In such cases, |0ng|tUdm_a| thermql boundaryyect numerical simulation of unsteady instabilities inside a near-critical
layers form, and strong thermomechanical coupling occurs fluid layer under Rayleigh—Brard configuration,” submitted to J. Fluid

which provokes the curvature of the stream lines. Mech.

. - . 11p. Carles and B. Zappoli, “The unexpected response of near-critical fluids
The dynamics exhibited in the present study should be to low-frequency vibrations,” Phys. FIids, 2905(1995).

co_nsidered_ by _those aiming to study nefar'cr?ticfil fluids ini2g v patankarNumerical Heat Transfer and Fluid FlowHemisphere,
micro-gravity, since the low-frequency regime is likely to be washington, DC, 1980).
triggered by g-jitters and thus affect the inertia of an experi_13s. V. Patankar and D. P. Spalding, “A calculation procedure for heat,

mental device. They also suggest that thermovibrational con- mass and momentum transfer in three-dimensional parabolic flows,” Int.
. . . . "~ J. Heat Mass Transi.5, 1787 (1972).
vection in near-critical fluids should have some very specificag Peyret and T. D. TaylorComputational Methods for Fluid Flow
properties. (Springer-Verlag, New York, 1983
153, Amiroudine, J. Ouazzani, B. Zappoli, and P. CarléNumerical solu-
tions of 1D unsteady hypercompressible flows using finite volume meth-
K. Nitsche and J. Straub, “The critical ‘hump’ &, under microgravity, ods,” Eur. J. Mech. B/Fluid46, 665(1997).
results from the D-Spacelab experiment ‘ivekapazitg' “Proceedings  1°B. Zappoli, “Response of a solid—gas growth interface to a homogeneous
of the 6th European Symposium on Material Sciences Under Microgravity time dependent acceleration field,” Int. J. Heat Mass TraB&f9 (1990).

Conditions,” ESA SP-256, 1987. 17, Zappoli and P. Cart “The speeding up of heterogeneous reactions in
M. Bonetti, F. Perrot, D. Beysens, and Y. Garrabos, “Fast thermalization near-critical phases,” Acta Astro38, (1) (1996).
in supercritical fluids,” Phys. Rev. B9, 4779(1994). 1A, Jounet, “Numerical simulation of the piston effect in near-critical flu-

3T. Frohlich, P. Guenoun, M. Bonetti, F. Perrot, D. Beysens, Y. Garrabos, ids in the presence of thermal or mechanical disturbance,” IMFT-UPS,
B. Le Neindre, and P. Bravais, “Adiabatic versus conductive heat transfer Ph.D. thesis, Toulouse, France, 1999.

in off-critical SF; in the absence of convection,” Phys. Rev5E, 1544 195 paolucci, “On the filtering of sound from the Navier—Stokes equa-
(1996). tions,” SAND 82-8257, 1982.
4Y. Garrabos, M. Bonetti, D. Beysens, F. Perrot, T.lfich, P. Carls, and 20| Landau and E. Lifchitz,Mécanique des FluidesEllipse, Ed. Mir,

B. Zappoli, “Relaxation of a supercritical fluid after a heat pulse in the 1994).

absence of gravity effects: theory and experiments,” Phys. Re¥7,EL 2IA. Jounet, B. Zappoli, and A. Mojtabi, “Numerical simulation of the

(1998). Piston Effect with realistic boundary conditions,” C. R. Acad. Sci. Paris
SA. Onuki and R. A. Ferrell, “Adiabatic heating effect near the gas—liquid 327, 991(1999).
critical point,” Physica A164, 245 (1990). 22, Jounet, B. Zappoli, and A. Mojtabi, “Rapid thermal relaxation in a

6B. Zappoli and P. Cark “Thermoacoustic nature of the critical speeding-  near-critical fluid with boundary effects taken into account,” submitted to
up,” Eur. J. Mech. B/Fluidsl4, 41 (1995). Phys. Rev. Lett.





