
HAL Id: hal-01901195
https://hal.science/hal-01901195

Submitted on 22 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-frequency vibrations in a near-critical fluid
Arnaud Jounet, Abdelkader Mojtabi, Jalil Ouazzani, Bernard Zappoli

To cite this version:
Arnaud Jounet, Abdelkader Mojtabi, Jalil Ouazzani, Bernard Zappoli. Low-frequency vibrations in a
near-critical fluid. Physics of Fluids, 2000, 12 (1), pp.197-204. �10.1063/1.870295�. �hal-01901195�

https://hal.science/hal-01901195
https://hal.archives-ouvertes.fr


 

  

 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

Any correspondence concerning this service should be sent  

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: http://oatao.univ-toulouse.fr/20656 
 
 

This is an author’s version published in: http://oatao.univ-toulouse.fr/20656 
 
 

 

To cite this version:  

Jounet, Arnaud and Mojtabi, Abdelkader and Ouazzani, Jalil 
and Zappoli, Bernard Low-frequency vibrations in a near-
critical fluid. (2000) Physics of Fluids, 12 (1). 197-204. ISSN 
1070-6631 

 

To cite this version:  

Jounet, Arnaud and Mojtabi, Abdelkader and Ouazzani, Jalil 
and Zappoli, Bernard Low-frequency vibrations in a near-
critical fluid. (2000) Physics of Fluids, 12 (1). 197-204. ISSN 
1070-6631 

Official URL:  

https://doi.org/10.1063/1.870295 

Official URL:  

https://doi.org/10.1063/1.870295 

Open  Archive  Toulouse  Archive  Ouverte Open  Archive  Toulouse  Archive  Ouverte 



Low-frequency vibrations in a near-critical fluid
Arnaud Jouneta) and Abdelkader Mojtabi
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Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France

Jalil Ouazzani
Arcofluid, Les Bureaux de l’Arche, 5 Rue des allumettes, 13086 Aix-en-Provence Cedex 02, France

Bernard Zappoli
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Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France and Centre National d’Etudes
Spatiales, 18 Avenue Edouard Belin, 31405 Toulouse Cedex 04, France

The response of a near-critical fluid to low-frequency vibrations is investigated by means of
numerical simulations. Its characteristics are first established by one-dimensional analysis. It is
shown that the strong thermo-mechanical coupling occurring in the boundary layers tends to make
the fluid oscillate homogeneously at low frequencies, and with a larger amplitude than in a normal
gas. The numerical results obtained in this first part are found to confirm earlier predictions made
in pioneering theoretical work. Then, the study is extended to a two-dimensional configuration. In
a square cavity, the wall shear stresses developing along the longitudinal boundaries do not affect
the one-dimensional regime, since the viscous layer present in these areas behaves like the Stokes
boundary layer. By contrast, thermostatting these boundaries, like the others, generates local
curvature of the stream lines. The fluid response to the homogeneous acceleration field then takes
some more pronounced two-dimensional patterns, but remains driven by the strong alternating
expansions and retractions of the fluid in the thermal boundary layers, which are specific to
near-critical fluids. ©2000 American Institute of Physics.@S1070-6631~00!00901-6#
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I. INTRODUCTION

For a decade, investigations concerning critical pheno
ena have shown that heat and mass transfer in a pure
near its liquid–vapor critical point is very specific. In pa
ticular, experiments performed in microgravity1–4 have led to
the conclusion that the temperature of a near-critical fl
submitted to heating or cooling from the outside of its co
tainer responds quickly despite its very low thermal diffus
ity. This phenomenon has been theoretically discussed, u
thermodynamical considerations5 or from the asymptotic
analysis of the Navier–Stokes equations.6 It is based on the
anomalies of transport properties near the critical point. T
thermal diffusivity of near-critical fluids becomes very sm
on approaching the critical point, but their compressibil
and their thermal-expansion coefficients diverge at the s
time. As a consequence, when heat is injected into a n
critical fluid, the fluid located in the thin thermal bounda
layer strongly expands, compressing the rest of the fluid~the
bulk! adiabatically. The compression wave involves a ra
and homogeneous rise of the temperature, which is sig
cant on a much shorter time scale than diffusion. T
mechanism has been called the ‘‘piston effect,’’ and sin
effects linked to compressibility become increasingly inten
compared to those of diffusion when approaching the crit

a!Author to whom correspondence should be addressed. Ph
05.61.55.82.33; fax: 05.61.55.83.26; electronic mail: jounet@lm2f.u
tlse.fr
-
id

d
-
-
ng

e

e
r-

d
fi-
s
e
e
l

point, it is responsible for the observed critical speeding
of the thermal relaxation instead of the expected criti
slowing down. On the other hand, it has been shown t
when a near-critical fluid is submitted to heating in a non
sulated cell, the piston effect is responsible for a strong c
cal speeding-up of heat transfer which can make the fl
behave ultimately like a thermal short-circuit.6

In the presence of gravity, two-dimensional numeric
studies7,8 have shown that the thermoacoustics are still e
cient. Thermoconvective instabilities do not prevent the p
ton effect from heating the fluid, while convective heat tran
fer remains very poor close to the critical point, and on
contributes to mass equilibration. This research has a
stressed the complexity of near-critical fluid hydrodynami
as first discussed twenty years ago.9 Recently, the numerica
study of the Rayleigh–Be´nard configuration10 has shown
that, besides the high compressibility of the fluid, the pis
effect can itself contribute to triggering the instability.

Our purpose here is to extend our understanding of n
critical fluid dynamics. Until now, almost all studies relate
to heat and mass transfer in near-critical fluids have b
performed in a configuration in which the fluid state is d
turbed by a temperature inhomogeneity. The response o
fluid to a purely mechanical disturbance was only first stu
ied a few years ago by Carle`s and Zappoli.11 Those authors
considered a one-dimensional near-critical fluid layer s
mitted to vibrations in a thermostatted cell. Again, the
analysis pointed out a peculiar regime, which cannot be w

e:
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nessed in normally compressible fluids. They showed t
due to the strong thermomechanical coupling occurring
the boundary layers at low frequencies, the fluid tended
oscillate like a solid body between the two boundary laye
the behavior of which could be compared to that of damp

In the present paper, we aim to show the influence of
presence of walls parallel to the acceleration field on
regime described above. By means of numerical simulatio
we study the response of the fluid to low-frequency vib
tions in a square cavity for two kinds of thermal bounda
conditions along the longitudinal walls.

In Sec. II, we first present the general model used for
investigations. The results obtained in a one-dimensio
slab-shaped container are recalled in Sec. III, with a spe
emphasis on the low-frequency specific regime. In Sec.
this low-frequency regime is studied in the two-dimensio
case. We report the new model utilized for this purpose,
then show our results when the supplementary bounda
are either adiabatic or thermostatted. In Sec. V we sum
rize the findings obtained in the present paper and concl

II. MODEL

The model used in the present analysis is that alre
presented in previous publications.6–8,11

The van der Waals equation of state is used to take
account the anomalous behavior of many equilibrium para
eters close to the critical point, especially the divergence

FIG. 1. Configuration.
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the isothermal compressibilityKT , that of the dilation coef-
ficient b and that of the specific heat at constant press
CP .

Then, the nondimensional unsteady conservation eq
tions for a viscous heat-conducting compressible fluid can
written on the acoustic time scale as

]r

]t
1“–~rvW !50, ~1!

]~rvW !

]t
1“–~rvW ^vW !52g0

21
“P1eF“2vW 1

1

3
“~“–vW !G1 fW ,

~2!

]~rT!

]t
1“–~rvW T!52~g021!S P1

9

8
r2D ~“–vW !

1
eg0

Pr0
“–@l“T#1eg0~g021!F, ~3!

P5
rT

12r/3
2

9

8
r2, ~4!

in which fW represents the imposed force field andF the
dissipation function.

This system is obtained with the following nondime
sionalization~concerning density, temperature, pressure a
velocity!:

r5
r8

rc8
, T5

T8

Tc8
, P5

P8

rc8R8Tc8
, vW 5

vW 8

c08
,

and the independent variables space and time:

xW5
xW8

L8
, t5

t8

ta8
,

the prime (8) denoting dimensional parameters@rc8 , Tc8 and
Pc8 are the critical coordinates,R8 the perfect gas constan
divided by the molar mass of the substance,c08
5(g0R8Tc8)

1/2 the reference sound velocity~g0 is the ratio of
the specific heats in the absence of divergence!, L8 the char-
acteristic length andta85L8/c08 a typical acoustic time#.

The nondimensional parameters present in Eqs.~2! and
~3! are defined as

Pr05
m08CP0

8

l08
, e5

ta8

td8
Pr0 ,

with
-
FIG. 2. Temperature and velocity pro
files every 1/8th of a period for high-
frequency vibrations ~f 8530 kHz,
DTi850.1 K, A8510 m s22!.
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FIG. 3. Velocity variations for a resonant frequenc
~acoustic regime!: ~a! resonance and~b! saturation
~f 8511500 Hz,DTi850.1 K, A8510 m s22!.
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td85L82
rc8CP0

8

l08
.

Pr0 is a reference Prandtl number~m08 , CP0
8 , l08 are the

dynamic viscosity, the specific heat at constant pressure
the thermal conductivity, respectively, in the absence of c
cal anomalies!ande a small parameter in whichtd8 represents
a reference diffusion time.

l is the nondimensional thermal conductivity. Its critic
divergence is introduced by

l5
l8

l08
5110.75S T82Tc8

Tc8
D 21/2

.

The critical exponent of 1/2 differs from that of a re
substance~0.64!, as do those deduced from the van
Waals equation of state for other properties. But, as
plained elsewhere,6,7,11our purpose is to possess a relative
simple model to describe the main features of near-crit
singular dynamics, such as strong thermomechanical c
pling. Thus, the low divergence of the coefficients of visco
ity or that of the specific heat at constant volume are a
ignored.

For the problem under consideration, the fluid is initia
at rest near the critical point. The initial conditions are

T~ t50!511DTi ,

r~ t50!51,
~5!

P~ t50!5
3

2
~11DTi !2

9

8
,

vW ~ t50!50
nd
i-

r
-

l
u-
-
o

@DTi5(Ti82Tc8)/Tc8 , with Ti8 the initial temperature#.
Since we are interested in the response of the fluid in

absence of gravity, the only source term is imposed thro
a sinusoidal acceleration~see Fig. 1!, that implies

fW5rA sin~2p f t !eW x , ~6!

with

A5
A8L8

g0R8Tc8
and f 5 f 8ta8 ,

the nondimensional amplitude and frequency of the accel
tion field.

The walls in the direction perpendicular to the vibratio
are thermostatted, so that

T~x50!5T~x51!511DTi . ~7!

The walls parallel to the vibration are either adiabatic
thermostatted~see Sec. IV!, while the nonslip condition a
the walls can be written as

vW ~x50!5vW ~x51!5vW ~y50!5vW ~y51!50. ~8!

Calculations have been performed for CO2 ~Tc8
5304.13 K, rc85467.8 kg m23, R85188.8 J kg21 K21! with
L8510 mm. Then, e52.59 1028 and Pr052.274 in the
whole study.

III. ONE-DIMENSIONAL RESULTS

To clarify the problem under study, we first briefl
present the different regimes appearing as a function of
frequency when the presence of the longitudinal bounda
-
FIG. 4. Temperature and velocity pro
files in the bulk fluid for the medium
regime ~f 853 kHz, DTi850.1 K, A8
510 m s22!.
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is not taken into account~one-dimensional fluid layer; here
in thex-direction!. The configuration is thus the same as t
considered in Ref. 11, which reported analytically obtain
pioneering results that we therefore aim to confirm here.

Calculations are performed using a finite-volume12 nu-
merical code, with theSIMPLE algorithm13 applied with the
stabilization procedure of the Thomas algorithm14 described
in Ref. 15, and with a small mesh around the thermosta
boundaries~x50 andx51! because of the very low diffu
sivity of near-critical fluids.

A. The acoustic regime

At high frequencies~typically, a few tens of kHz!, the
vibration characteristic time becomes of the same amplit
or smaller than the acoustic time. Then, as shown in Fig
compression and expansion waves propagate back and
in the fluid due to the very rapid motion of the cell. A
discussed in Ref. 11, the temperature fluctuations are too
in this regime for the thermal boundary layer to have time
form. Thus, the wallsx50 andx51 are adiabatic, and th
fluid response would have been the same in a perfect
Figure 3 also illustrates that resonance can occur for spe
frequencies, as previously shown analytically.11 The numeri-
cal simulation here highlights the saturation of this re
nance.

B. The medium regime

When decreasing the frequency, a regime of perio
linear oscillations around a vibration node centered in
middle of the cell appears for pressure, density and temp
ture @Fig. 4~a!#. The pressure gradient oscillation in the b
generates an almost parabolic oscillating velocity pro
@Fig. 4~b!#, the amplitude of which decreases with the f
quency~Fig. 5!. Nevertheless, it can be noted that the vel
ity at the edge of the thermal boundary layers, which are
thin to appear in Fig. 4~a!, is not zero and becomes hig
compared to the velocity at the cell center as the freque
decreases. This nonzero velocity is linked to the spec
thermomechanical coupling occurring from the bound
layers in near-critical fluids, which becomes prominent
low frequency, as discussed below.

C. The quasi-solid regime

At lower frequencies or closer to the critical point, bu
fluid oscillations tend to become homogeneous~Fig. 6!. The

FIG. 5. Velocity in the bulk fluid when the frequency is decreas
~f 85200 Hz, DTi850.1 K, A8510 m s22!.
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flat velocity profiles are driven by the thermal boundary la
ers. Some oscillating boundary layers form due to the lin
temperature oscillations in the bulk fluid. The temperatu
oscillations in the boundary layers provoke strong osci
tions of density illustrating fluid dilation@Figs. 7~a! and
7~b!#. In turn, thermal expansion~or contraction!is respon-
sible for the presence of oscillating dynamic boundary lay
@Fig. 7~c!#, the velocity at the edge of which becomes mu
larger than that caused by the linear pressure gradient in
bulk. This regime appears in near-critical fluids when t
vibration characteristic time is equal to or smaller than
piston effect time,11,6 that is to say, when the thermome
chanical coupling specific to near-critical fluids has time
develop.

D. Summary

The three different responses demonstrated above ca
summarized in Fig. 8, which represents the maximum vel
ity as a function of the frequency.

One characteristic of the high-frequency regime is t
umax8 decreases as the frequency increases, except for sp
values of the frequency at which resonance occurs.

At lower frequencies, two regimes can be distinguish
Asymptotically, the first exhibits a linear dependence ofumax8
on f 8: this is the medium regime, in which the results o
tained are close to those appearing in a perfect gas16 ~para-
bolic velocity profiles!. Nevertheless, the density gradie
generated in the boundary layers are very large due to
strong dilation occurring in near-critical fluids, that whic
might, in addition, speed up the corrosion of the contai
walls.17

Finally, when decreasing the frequency,umax8 tends to
decrease like the square root off 8. This nonlinear regime is
completely specific to near-critical fluids since it is asso
ated to the strong thermal expansion or contraction of
fluid in the boundary layers. The dynamic response of
fluid to the acceleration field then no longer originates in
bulk. Since, when one boundary layer expands, the oppo
one contracts, the bulk is simultaneously pushed on one
and pulled on the other. Hence, it tends to oscillate a
uniform velocity, like a block of solid matter between tw
highly compressible boundary layers. This regime appe
clearly when decreasing the frequency, but also when
proaching the critical point, since its proximity determin
the strength of the thermomechanical coupling. Con

FIG. 6. Velocity profiles in the bulk fluid for the quasi-solid regime, ov
one period of oscillation every 1/8th of a period~f 855 Hz, DTi8515 mK,
A850.1 m s22!.



FIG. 7. Thermomechanical coupling
in the boundary layer: temperature~a!,
density ~b! and velocity ~c! profiles
over one period of oscillation
~f 855 Hz, DTi8515 mK, A8
50.1 m s22!.
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quently, the crossover between the medium and quasi-s
regimes occurs at higher frequencies if the fluid is initia
closer to the critical point~not plotted;seeRef. 18!. Typi-
cally, the quasi-solid regime could be triggered by g-jitte
aboard a space station, since it appears for frequencies l
than a few tens of Hertz at 15 mK above the critical poi
This should thus concern a large number of micrograv
experiments on critical phenomena.

Lastly, let us add that a very good agreement has b
found between our numerical results and those obtained f
asymptotic methods,11 as shown by the comparison report
in Table I.

IV. LOW-FREQUENCY VIBRATIONS IN A SQUARE
CAVITY

A. Rescaling and modeling

On the acoustic time scale, the time needed to perfo
one oscillation increases as the frequency decreases. T
dimensional computations at low frequency would then
quire a lot of computational time.

Therefore, time and velocity are rescaled with respec
vibration:

t5t8 f 8, vW 5vW /L8 f 8.

Additionally, since a description of acoustic waves is n
necessary, an acoustic filtering procedure19 must be applied
to ensure a relatively good convergence rate of our itera
algorithm~here,SIMPLER12!. This leads to pressure splitting

P5P(0)1g0 Ma2 P(1),

FIG. 8. The three different regimes: maximum velocity versus freque
(DTi8515 mK, A850.1 m s22!.
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Ma5
L8 f 8

c08
!1,

a characteristic small Mach number.P(0) represents the ho
mogeneous and constant part of the pressure andP(1) the
dynamic pressure.

The momentum equation is then

]

]t
~rvW !1“–~rvW ^vW !52“P(1)1

e

MaF“2vW 1
1

3
“~“–vW !G

1rA sin~2pt !eW x , ~9!

with

A5A8L8/~L8 f 8!2.

The other conservation equations are written in the f
lowing form:

“–vW 5

~12br!
dP

dt
2

g0e

Pr0 Ma
“–~l“T!

2g0~P1ar2!12ar2~12br!
, ~10!

]

]t
~rT!1“•~rTvW !5

~g021!

g0
~12br!

dP

dt

22ar2
~g021!

g0
~12br!“•vW

1
e

Pr0 Ma
“•@l“T#, ~11!

P(0)1g0 Ma2 P(1)5
rT

12br
2ar2S a5

9

8
,b5

1

3D . ~12!

P(1) must be taken into account in the equation of st
to allow the density variations that are needed for fluid m
tion when a homogeneous acceleration field is imposed
the absence of temperature inhomogeneities. The above
tinuity and energy equations have been reformulated

y

TABLE I. A comparison between numerical and analytical results
DTi8515 mK, A850.1 m s22: present calculations~1! and values obtained
from the solution of the asymptotic analysis given in Ref. 11~2!.

f 8 (Hz) 5 10 20 50 200 1000 3000

umax8 (mm s21) ~1! 0.0115 0.0166 0.0242 0.0404 0.094 0.29 0.6
umax8 (mm s21) ~2! 0.0113 0.0163 0.0237 0.0397 0.092 0.28 0.6
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combination so that the source term,dP/dt @in fact,
g0 Ma2 dP(1)/dt#, appears explicitly and numerically gene
ates the correct coupling.

Let us add that, to simplify the computation, numeric
calculations were only performed on the lower half of t

FIG. 9. Velocity field evolution in the lower half of the cell when they
50 boundary is insulated~DTi8515 mK, f 8520 Hz, A850.1 m s22!.
l

cavity, because of the configuration symmetry along the a
y50.5. The assumption of symmetry leads to the bound
conditions:

]T

]y
~y50.5!50,

]u

]y
~y50.5!50, v~y50.5!50. ~13!

B. Adiabatic longitudinal wall

In order to isolate the role of the wall shear stresses
the fluid flow, we first consider the case in which the ad
tional boundaries are thermally inactive:

]T

]y
~y50!50. ~14!

The velocity field obtained on one period of oscillatio
is shown in Fig. 9. It appears that the fluid response rema
almost one-dimensional. Figure 10 shows that the quasi-s
regime is not affected by the presence of the lower w
except very close to it, where a boundary layer forms. T
evolution of this viscous boundary layer is shown in Fig.
~at the center of the lower wall!.

This evolution is similar to that of the Stokes bounda
layer, which forms when a flat plate oscillates in an infin
fluid layer at rest.20 The periodic detachment of the bounda
layer provokes transversal propagating waves which stron
damp out in the bulk, as described by the Stokes solutio

u8~y8!5u08e
2 y8/d8 sin~2p f 8t82y8/d8!, ~15!

with

d85S n8

p f 8D
1/2

. ~16!

d8 represents a length characteristic of the penetra
depth~n8 is the kinetic viscosity of the fluid!. Our results are
in good agreement with the value deduced from this exp
sion ~with m0853.45 1025 kg m21 s21, d8/L8;3 1023, and
y8/d8;2p for y;2 1022, about the same as the wav
length that can be observed in Fig. 11!. Figure 12 shows tha
the vibration frequency is the only parameter which det
mines this thickness for a given fluid, and its variations a
found to satisfy the dependence predicted by relation~16!.
Thus, in spite of the presence of the transversal walls~x
FIG. 10. Longitudinal velocity profiles along the vibrational direction~a! and in the transversal direction~b!.
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50 and x51! and a pressure gradient, it can be said,
versely, that the results obtained for an infinite oscillati
plate seem to remain valid.

Here, no singular behavior of the Stokes-like bound
layer is observed when approaching the critical point@see
Figs. 11 and 12~a!#, and the only specificity of this layer
that it is much thinner than that of CO2 taken in normal
conditions because of the small kinematic viscosity it h
near-critical conditions~the critical density of CO2 is rc8
5467.8 kg•m23!. Hence, the quasi-solid regime demo
strated in one dimension can be considered to be unaffe
by the presence of longitudinal boundaries when they
insulated.

C. Thermostatted wall

One very specific feature of near-critical fluids is t
strong thermomechanical coupling which they obey. It
then logical to consider the case in which the longitudi
walls are thermostatted:

T~y50!511DTi . ~17!

Let us add that such conditions are more likely to
fullfilled in the experiments than adiabaticity, since it h
been shown recently that, due to the piston effect and to
specific thermophysical properties of a near-critical flu
boundary walls made of usual insulating materials can
ensure the absence of heat losses from the fluid.21,22

The velocity field evolution obtained with such therm
boundary conditions is illustrated in the lower half of th
cavity in Fig. 13. The fluid oscillation therefore has mo
two-dimensional properties, as illustrated by the curvature

FIG. 11. Evolution of the longitudinal velocity profile in the boundary lay
~DTi8515 mk, f 8520 Hz, A850.1 m s22!.
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the stream lines. This curvature is more pronounced clos
the longitudinal wall, i.e., close to its origin. Since this wa
is thermostatted, a thermal boundary layer forms due to
linear temperature oscillation~in the x-direction!in the bulk
@Fig. 14~a!#. Thus, as in the boundary layers present al
the ‘‘vertical’’ ~y-directed! walls, thermomechanical cou
pling occurs which generates, by dilation or contraction
the fluid, the ‘‘vertical’’ motion illustrated in Fig. 14~b!. This
causes the curvature of the stream lines, and, because of
inhomogeneity along the longitudinal wall, the additional k
netic energy variations also make the longitudinal veloc
inhomogeneous outside the dynamic boundary layer@Fig.
14~c!#.

In such conditions, the one-dimensional approximat
of the fluid response is far less justified, and the quasi-s
regime is affected over a wider area.

V. CONCLUSION

The numerical results presented in this paper cast s
new light on the question of the behavior of a near-critic
fluid confined in a thermostatted cell and submitted to lo
frequency vibrations in the absence of gravity.

By first considering a one-dimensional fluid layer, w
confirmed the theoretical predictions made earlier.11 At low
frequencies and close to the critical point, a fluid tends

FIG. 13. Velocity field evolution in the lower half of the cell when they
50 boundary is thermostatted~f 8520 Hz, DTi850.1 K, A850.1 m s22!.
FIG. 12. Velocity profile in the bound-
ary layer: ~a! DTi850.2 K, f 8
520 Hz, A850.1 m s22 ~b! DTi8
50.2 K, f 85100 Hz, A850.1 m s22

~c! DTi850.2 K, f 8520 Hz, A8
50.5 m s22.
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FIG. 14. Temperature~a!, transversal
velocity ~b! and longitudinal velocity
~c! when the lower wall is thermostat
ted.
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oscillate like a solid body between two highly compressi
layers. On the basis of these results, a two-dimensional s
was then performed, showing that the wall shear stres
parallel to the direction of vibration, do not affect the flu
flow, since the dynamic boundary layers forming along
wall remain very thin. In a square cavity, the low-frequen
regime is affected only if the longitudinal boundaries a
thermostatted. In such cases, longitudinal thermal bound
layers form, and strong thermomechanical coupling occ
which provokes the curvature of the stream lines.

The dynamics exhibited in the present study should
considered by those aiming to study near-critical fluids
micro-gravity, since the low-frequency regime is likely to b
triggered by g-jitters and thus affect the inertia of an expe
mental device. They also suggest that thermovibrational c
vection in near-critical fluids should have some very spec
properties.
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