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Colloidal gels have unique mechanical and transport properties that stem from
their bicontinous nature, in which a colloidal network is intertwined with a vis-
cous solvent, and have found numerous applications in foods, cosmetics, con-
struction materials, and for medical applications, such as cartilage replace-
ments. So far, our understanding of the process of colloidal gelation is limited
to long-time dynamical effects, where gelation is viewed as a phase separa-
tion process interrupted by the glass transition. However, this picture does
not address the emergence of mechanical stability. With confocal microscopy
experiments, here we successfully follow the entire process of gelation with
a single-particle resolution, yielding time-resolved measures of internal stress
and viscoelasticity from the very beginning of the aggregation process. We
observe that the network formed initially is not mechanically stable and un-
dergoes rearrangements driven by self-generated internal stress, mechanically
shaped. We show that mechanical metastability is reached only after isotropic
percolation of locally isostatic environments, establishing a direct link between
the load bearing ability of gels and the isostaticity condition. The emergence of
mechanical stability due to isotropic percolation of isostatic structures leads to
a transition from continuous liquid dynamics to intermittent solid dynamics.
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Our work reveals the crucial roles of momentum conservation, or mechanical
force balance, in gelation beyond the conventional purely out-of-equilibrium
thermodynamic picture.

Introduction
Gels are soft solids composed of two intertwined phases: a solid network and a liquid solvent.
They are an ubiquitous state of matter in every-day life, making up most of the foods we eat,
the cosmetics we use, concretes, and our own organs. In colloidal gels, the network is com-
posed of colloidal particles bonded together by attractive forces. Such colloidal assemblies are
out of equilibrium, as the thermodynamic ground state of the system involves the macroscopic
separation between a particle-rich (liquid) and a particle-poor (gas) phase. Despite the ther-
modynamic driving force towards compactness, the gel persists due to the dynamical arrest of
the network, often described as a glass transition (1–8). This has led to the popular physical
picture that a gel is formed by dynamical arrest of bicontinuous spinodal decomposition due to
glass transition. The direct link between spontaneous gelation and spinodal decomposition has
been carefully confirmed by combining experiments and theories (8). This recently established
scenario is certainly a large step towards a more complete understanding of colloidal gelation.

However, this picture still leaves some fundamental problems unanswered: (i) The knowl-
edge of ordinary spinodal decomposition predicts that the minority colloid-rich phase should
form isolated clusters rather than the observed percolated network (9). (ii) A colloidal gel is
sometimes formed by a network made of thin arms, which are too thin to be regarded as glasses.
This casts some doubt on the popular scenario of dynamic arrest due to a glass transition. In-
deed, the glass transition is defined as a kinetic transition and has no direct link to mechanical
stability in a strict sense. Slow dynamics and mechanical stability are conceptually different.
In an extreme case, for example, a gel formed by bonds with a short lifetime can be ergodic
and in an equilibrium state. (iii) A gel often displays superdiffusive behavior, detected as the
compressed exponential decay of a density correlation function, during aging, as observed by
time-resolved spectroscopy techniques (10–12) and recently simulations (13–15). The origin of
this phenomenon and its relation to problem (ii) are still elusive.

Several mechanisms have been proposed to try to rationalize some of these issues. Fluid mo-
mentum conservation can play an important role in phase separation of colloidal suspensions,
giving to hydrodynamics an active role in network formation of the colloid-rich phase (4, 16).
There have been some numerical studies on the role of hydrodynamics (17, 18) and mechan-
ics (10,13,15,19–21) in colloidal gelation. However, experimental investigations of these prob-
lems have been limited to observation of gels already formed (22,23) due to the lack of a method
to follow the whole kinetic processes with single-particle resolution in both space and time.

Moreover, some questions on the emergence of elasticity, which is the most fundamental
physical property of gels, have still remained unanswered. It is well known that the isotropic
percolation of a bond network is not sufficient to ensure mechanical stability (23–25). The sta-
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Figure 1: Snapshots from the entire gelation process reconstructed via particle-tracking of a
typical sample close to the cluster-gel line (φ = 7.5 %, cp = 1 mg/g) using the salt-injection
protocol. Particles are colored according to the size of the cluster they belong to, going from
blue for monomers to red for the percolated cluster. See also Supplementary Movie 1.

bility of gels is ascribed to the formation of locally favored structures, or local energy-minimum
configurations (26), while the mechanics of the network is being recognized to play a major
role in the aging behavior of gels (13, 14, 27, 28). Purely geometrical conditions for mechan-
ical stability have also been proposed. Whether a network is rigid can be determined using a
pebble game algorithm (29), but this method is limited to 2D systems (30). A criteria on the
average coordination number has been proposed (24) but has been recently invalidated (23).
Kohl et al. (23) have found that in dilute suspensions, a final gel state is obtained only after
directed percolation was observed, which differs from isotropic percolation by taking into ac-
count the directionality of the clusters. Hsiao et al. (31) have found that strain-induced yielding
coincide with the loss of rigid clusters. Rigidity was defined using a local Maxwell criterion
for isostaticity, that is 6 neighbors per particle (32). However, the relationship between local
structures, dynamic arrest, and the emergence of elasticity remains poorly understood even at a
fundamental level.

In order to address these problems, in this Article we study role of mechanics in colloidal
gelation by dynamical confocal microscopy experiments. Various experimental protocols have
been proposed to obtain reproducible gel structures, most of them involving shear (33–36), but
here we use a protocol that does not involve external flow, and that allows us to observe the
entire gelation process, from the beginning to the end with particle-level resolution. Our results
point to the crucial role of isostatic structures, which are clusters of particles that, according to
the Maxwell criteria of stability, have a number of neighbors equal to the number of degrees of
freedom. We observe that the emergence of solidity coincides with the appearance of a system-
spanning cluster of isostatic particles, i.e. with the isotropic percolation of isostatic particles.
Both the glass transition and directed percolation are necessary conditions for the emergence of

3



mechanical metastability, but not sufficient conditions. In relation to this, we show that directed
percolation and isotropic percolation of isostatic particles happen simultaneously only in dilute
systems, while in concentrated systems the two time scales decouple, allowing us to link rigidity
with the appearance of the system-spanning cluster of isostatic particles. These findings shed
new light on the mechanisms of gel formation and coarsening, and also on the fate of gels.

Results

0.1 Phase separation dynamics observed at a single-particle level
0.1.1 System design

In our protocol, we first enclose a salt-free suspension of sterically and charge-stabilized col-
loids and non adsorbing polymers in a thin microscopy cell sketched in Supplementary Fig. S1.
The bottom wall of the cell is an osmotic membrane providing contact with a long channel full
of the same solvent mixture. Salt dissolution and subsequent migration of the ions along the
channel and through the membrane induce screening of the electrostatic repulsion, revealing the
depletion potential well due to the polymers. By contrast to similar designs used in our group
and by others (37–39), here time needed for the ions to diffuse from the membrane across the
cell thickness is of the same order of magnitude as the Brownian time of the particles τB = 10 s.
This relation between the two key timescales enables us to switch instantaneously (physically)
from a long-range repulsive to a short-range attractive system without any external solvent flow.
This causes uniform gelation starting from the homogeneous state, allowing in situ confocal mi-
croscopy observation throughout the process from a well-defined initial time, as shown in Fig. 1
and Supplementary Movie 1.

Here we stress that after the salt concentration is homogenized, our system can be regarded
as a standard model for sticky hard-sphere systems. We confirmed this by comparing the exper-
imental phase diagram with the one obtained with free volume theory for sticky hard spheres
(Fig. 2).

0.1.2 Phase separation dynamics

In Fig. 2A, we show the phase diagram, where we can divide the state points into three regions
based on the final state obtained by our protocol: at low polymer concentration (cp < 0.2 mg/g)
a sample fully relaxes to a fluid state; at very low colloid volume fraction (φ < 0.05) and
high polymer concentration the particles condense into long-lived well separated clusters as
observed in (40); in the rest of the explored phase space we observe a long-lived space spanning
network. In the phase diagram we also plot the spinodal (continuous) and the polymer overlap
concentration (dashed) lines as obtained from free-volume theory calculations (41). Despite the
limitations of the theory, the agreement between the spinodal line and our experiments is rather
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Figure 2: Different regimes of gelation. (A) Phase diagram. Experimental points are catego-
rized based on the final state obtained in the reservoir cell. The spinodal line (solid curve) is
obtained from free volume theory in polymer dilute regime. The dashed line is the polymer
overlap concentration in the free volume. State points analyzed in (B) are circled. (B) Compar-
ison of system evolution in terms of largest cluster extent (lmax/L) and of mean coordination
number (N̄c). Symbols �, ◦, � and • correspond to (φ, cp)=(4.2 %, 1 mg/g), (8 %, 1.5 mg/g),
(16 %, 1.2 mg/g), and (27 %, 1 mg/g), respectively.

satisfactory, with the only exception being the region of small colloidal volume fractions and
high polymer concentration (see, e.g., Ref. (8)).

We confirm in Supplementary Materials that the phase separation kinetics follows arrested
spinodal behavior both in the cluster phase and in the percolating samples. We also confirm in
Supplementary Materials the crucial role of hydrodynamics in facilitating percolation.

To characterize the gelation path in real space, we compute the instantaneous mean number
of neighbors N̄C , or coordination number, that quantifies the compactness of the structure. We
also compute the spatial extent of the largest cluster lmax that we normalize by the size of the field
of view L to obtain a measure of the distance to isotropic percolation of the system. Figure 2B
shows a system trajectory in the (lmax/L, N̄C) plane for various colloidal volume fractions φ.
All trajectories show a linear increase of both cluster size lmax/L and number of neighbors N̄C at
early times. This is followed by the coarsening stage, which happens differently depending on
the density. At high φ, coarsening occurs after percolation, which happens within the first few
τB after charge screening by salt. At low φ, percolation never takes place and coarsening results
in the compaction of individual clusters, that keeps their overall size lmax/L, while increasing the
number of neighbors N̄C , see Supplementary Fig. S4. We did not observe any Ostwald ripening
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among clusters, indicating that the diffusive evaporation-condensation coarsening mechanism is
negligible compared to cluster collisions and coalescence, as expected for colloidal viscoelastic
phase separation (16). At intermediate densities, we observe the process detailed in Fig. 1:
formation of low-compacity clusters that then slowly connect together to build the percolating
network. This process can take hundreds of τB and is competing with cluster compaction,
as indicated by the oblique trajectory (red open circles) in Fig. 2B. Particle-level quantities
thus demonstrate that the path to gelation is not universal and depends on the colloid volume
fraction even within the gelation region. By contrast, polymer concentration, i.e. the depth of
the attraction potential, has little effect on the path to gelation, see Supplementary Fig. S6.

In section 0.2, we will explore the precise mechanism of arrest and the emergence of me-
chanical rigidity by studying the dynamics within the network of percolating samples.

0.2 Emergence of mechanical stability
0.2.1 Percolation

As already noted by Kohl et al. (23), the average coordination number N̄C is a poor predictor
of dynamical arrest, as we confirm in Supplementary Fig. S5. In this section we examine
the different percolation time-scales, and their relation with the emergence of solidity in the
samples.

Isotropic percolation is related to the appearance of a system-spanning network, and can
be determined by looking at the time evolution of the largest connected cluster lmax, as plotted
in Fig. 3A and B (orange curves). The isotropic percolation time (τ allIT ) is then defined as the
moment when lmax > 0.95L. We checked that our field of view is large enough not to suffer
from finite size effects.

Directed percolation is related to the appearance of a directed path that spans the whole
system. A directed path is defined as a path with no loop or turning back, such that every step is
in either the positive X, Y, or Z directions. The maximum spatial extent of directed paths lD is
plotted in Fig. 3A and B (orange symbols). We thus define the directed percolation time (τ allD )
as the moment when lD > 0.95L.

The concepts of isotropic and directed percolation can also be applied to a subset of par-
ticles. In particular, we focus here on isostatic particles, which are particles that have at least
six bonded neighbors. For isostatic clusters we plot in Fig. 3A and B both lmax (purple curves)
and lD (purple symbols) (see also Supplementary Movie 2). The isotropic percolation time of
isostatic particles is τ IS

IT .
Fig. 3A and B show the time evolution of the clusters in the dilute (φ = 8%) and dense

suspensions (φ = 21%) respectively. We observe that directed percolation of all particles and
isotropic percolation of isostatic particles occur simultaneously in the dilute regime, τ allD ∼
τ IS

IT . However the two time scales are well separated in the dense regime,τ allD � τ IS
IT . This

separation of time scales offers the opportunity to test the role of both type of space spanning
microstructures in the mechanical stability of gels.
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Figure 3: Evolution of space-spanning microstructure and mechanical response. (A) and (B):
Percolation processes, for a dilute (φ = 8 %, cp = 1.5 mg/g) and a dense (φ = 27 %, cp =
1 mg/g) sample. The processes of isotropic and directed percolation of all particles (NC ≥ 1)
are respectively plotted as thin orange curve and orange symbols. The processes of isotropic
and directed percolation of isostatic particles (NC ≥ 6) are respectively plotted as thick purple
curve and purple symbols. (C) and (D): Mechanical response for the same samples. Elastic
(G′) and viscous (G′′) shear moduli at the highest available frequency (f = 0.1τ−1B ), obtained
by two-particle microrheology, are drawn respectively as filled and open circles. The thick grey
curve is the internal stress Σ obtained from the measure of bond-breaking probability. The
thin orange and thick purple vertical lines show the isotropic percolation times for all particles
(τ allIT ) and isostatic particles (τ IS

IT ) respectively. The orange dashed vertical line in (D) shows the
directed percolation time for all particles (τ allD ). The gray vertical band shows the possible range
of mechanical gelation time τgel (see Supplementary Materials).

0.2.2 Mechanical stability and percolations

The solid nature of a material is most often defined from linear mechanical response. For
colloidal gels, however, mechanical stability cannot be predicted without an understanding of
internal stresses (14). Here we are able to extract both information from our particle-level
experiments. We use the particles themselves as passive microrheological probes to extract
the elastic (G′) and viscous (G′′) parts of the shear modulus, see Supplementary Materials.
Microrheology is a transformation (generalized Stokes-Einstein relation) applied on the (two-
point) mean square displacement (42). It thus relates dynamical measurements with linear
viscoelasticity. In particular, observing G′ > G′′ for a given frequency indicates the emergence
of elasticity, or dynamical arrest, at the corresponding time scale. We denote this time as τgel,
the gelling time (see Supplementary Materials for a more accurate definition and a discussion on
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uncertainties). We also extract the average value of the internal stress Σ from the bond breaking
rate, see Supplementary Materials. Results are shown in Fig. 3C and D for direct comparisons
with the microstructure.

The typical ranges of stresses and moduli we measure extend below 0.1 mPa, well below
sensitivity of conventional rheometers. That is why previous microscopic studies on the me-
chanics of colloidal gels have been restricted to the comparison of the structure before and after
a large amplitude shear flow with no simultaneous measure of the stress response (31, 34, 43).
From Fig. 3C and D we see that, as expected, all samples are purely viscous at short times, with
a value ofG′′ consistent with the viscosity of a hard sphere suspension at their respective volume
fractions. Internal stresses are high at short time, reflecting the stretching of the network, which
is formed by hydrodynamic interactions in a mechanically frustrated state. The emergence of
mechanical stability is captured simultaneously from both the linear viscoelasticity measure-
ments, with the crossing between G′ and G′′, and the internal stress, which is accompanied by
a sharp drop in Σ. The timing of the emergence of elasticity is thus unambiguous (vertical gray
zone in Fig. 3C and D) and occurs well after isotropic percolation time τ allIT (see orange vertical
lines in Fig. 3C and D). We also find no special value of N̄C at that time, see Supplementary
Fig. S5. This generalizes observations by Kohl et al. (23) on the final state of dilute samples
(see Supplementary Materials).

In dilute samples, the elastic behavior occurs in the same time scale as directed percolation
of all particles. However, isotropic percolation of isostaticity also occurs simultaneously, τ allD ∼
τ IS

IT ∼ τgel. Therefore we have to look at the dense regime to disentangle the two possible
microstructural causes. Indeed in the dense regime the elastic behavior emerges around τgel ∼
45τB well after directed percolation of all particles taking place at τ allD ∼ 4τB. Thus, directed
percolation is not in general a sufficient condition to obtain mechanical stability. However, we
observe systematically that elasticity emerges in the same time scale as isotropic percolation of
isostaticity, τ allD � τ IS

IT ∼ τgel, (see thick purple vertical lines fall inside gray vertical zone in
Fig. 3C and D). Directed percolation of isostaticity (purple symbols in Fig. 3A and B) always
occurs at later times and does not seem to play an important role. This allows to lay the main
result of this article: the emergence of rigidity is caused by isotropic percolation of isostatic
clusters, able to bear stress across the sample. We show below why the isotropic percolation
of isostatic particles occurs at the same time as directed percolation in the dilute regime, while
being decoupled from it at higher volume fractions.

0.2.3 Directed or isostaticity percolations

In Fig. 4A, we compare across all our experiments the time to percolation of isostaticity τ IS
IT (∼

τgel) to the time to directed percolation τ allD . We confirm that at high volume fractions, typically
φ > 14 %, the two types of percolation phenomena are decoupled, with 2 < τ IS

IT/τ
all
D < 20

depending on the state point. By contrast at lower φ, both percolations occur simultaneously,
independently of the attraction strength.

The reason for this coincidence can be understood by the specific path to gelation in the
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Figure 4: Directed percolation and isostaticity percolation. (A) Ratio of the time of isostatic-
ity percolation τ IS

IT to that of directed percolation τ allD , as a function of colloid volume fraction.
Horizontal dashed line shows when both times are equal. (B) Detail of a reconstruction from
confocal coordinates around the percolation time in a dilute sample (φ = 8 %, cp = 1.5 mg/g).
Isostatic particles are drawn to scale, non-isostatic ones are drawn smaller for clarity. The bond
network is displayed in orange. (C) and (D): Same as (B) at later times. (E) Increment of Eu-
clidean distance between two isostatic clusters, averaged over all such pairs initially connected
by a non-isostatic network strand. The reference time is the percolation time tperco
.

dilute regime. We have seen in Fig. 2C that isotropic percolation occurs at a late stage, when the
clusters have already become compact by squeezing out the solvent to form isostatic structures.
Indeed, Fig. 3A shows that at the percolation time (τ allIT ∼ 1.5×102τB), isostatic particles already
form clusters that reach up to a tenth of the observation window L. Cluster-size distribution
(see Supplementary Fig. S11) and three dimensional reconstruction in Fig. 4B show that these
isostatic clusters around the percolation time are compact, typically 3 to 5 particles in diameter
and linked by non-isostatic bridges. The floppiness of these bridges prevents directed paths to
reach percolation.

From this situation, percolation of isostaticity proceeds by the compaction of the floppy
bridges. Importantly, this compaction takes place without adsorption of new particles onto the
bridge. Compaction is a local process that involves no particle migration but only creation of
new bonds, as shown in Fig. 4B-D. Consistently, this compaction leads to a straightening and
a shortening of the strands. We quantify this shortening by computing the Euclidean distance
Xij(t) between the centers of mass of two isostatic clusters i and j. The increment of this
distance as a function to the time distance to the percolation, averaged over all cluster pairs
connected by a floppy bridge, is shown on Fig. 4E. The observed shortening is about 0.7σ or
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Figure 5: Breakup of the network by internal stress. (A) Reconstruction from experimental
coordinates (φ = 29 %, cp = 0.7 mg/g) of strand rupture event. Particles are drawn to scale and
colored by a measure of two-fold symmetry q2 (see Supplementary Materials on its definition)
from blue (low) to red (high). We note that q2 is a measure of the degree of local stretching. (B)
Same event from a topological point of view. The red line indicates the shortest on-graph path
between the two particles of interest, whose drastic change clearly indicates the breakup event.
The meshed surface is a Gaussian coarse-graining of the network pattern.

25% of the initial length. Directed percolation becomes possible only when a percolating path
has become straight enough, which implies isostaticity. That is why directed percolation and
isostaticity percolation occur simultaneously in the dilute regime. The simultaneity of directed
percolation and emergence of rigidity in the dilute regime is thus a coincidence mediated by
isotropic percolation of already isostatic clusters, in which the two different types of percolation
can take place at the same time. In other words, the emergence of rigidity in gels should not be
linked to the universality class of directed percolation.

0.2.4 Stress-induced network breakup

In a dense system, after directional percolation of all particles, the number of nearest neighbors
monotonically increases to minimize the energy of the structure (mainly the interfacial energy
cost), resulting in the growth of isostatic configurations, as discussed above. During this process
the mechanical tension internal to the network grows, driving it towards compaction, which can
lead to network coarsening accompanying bond breakage (see Fig. 5A and B). Unlike in sim-
ulations (13), we cannot directly measure the local internal stress at this moment, but we can
still see its effects through the local stretching measured by the degree of two-fold symmetry
q2 (see the particle color in Fig. 5A). From this, we may say that a bond breakage event is the
consequence of stress concentration on a weak bond, leading to local stretching of the bond, and
its eventual breakup. In other words, mechanical stress acts against diffusive particle aggrega-
tion (or compaction), which is the stress-diffusion coupling characteristic of phase separation in
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dynamically asymmetric mixtures (4, 16). This stress-driven aging is accompanied by mechan-
ical fracture of the percolated network structure by the self-generated mechanical stress. The
mechanical stability can be attained only after the formation of a percolated isostatic structure,
which is a necessary and sufficient condition for a structure to be mechanically stable. When the
percolated isostatic structure can support the internal stress everywhere, the system can attain
mechanical stability.

Discussion
In summary, we have observed with particle-level resolution the entire process of gelation from
the very beginning to the final arrested state at various state points for the first time. The
early stages are characterized by the universal features of spinodal decomposition, with clusters
emerging with a constant wave vector (in Supplementary Materials we show also that hydrody-
namic interactions hinder the formation of isolated compact clusters, leading to the formation
of a percolated network, and give to the coarsening process a non-universal behavior). At high
volume fractions, elongated structures immediately percolate into a thin, mechanically unstable
network that undergoes stress-driven rearrangements enabling the formation of locally isostatic
structures that finally percolate. At low volume fractions, percolation is delayed, thus initially
elongated clusters have the time to compact before eventually connecting into a percolating
structure. Isostatic clusters thus already exist at percolation time but are linked by floppy strands
that have to compact to induce isostaticity percolation. Microrheological information reveals
that the general mechanism responsible for mechanical solidity, which is signaled by the domi-
nance of elastic over viscous modulus, is neither isotropic percolation nor directed percolation,
but instead the isotropic percolation of isostatic structures.

The picture of gelation that emerges from our observations is far more rich than previously
understood, and suggests that mechanical stability plays a fundamental role in addition to dy-
namical arrest. The glass transition is kinetically defined as the point above which the relaxation
time is slower than the observation time, whereas mechanical stability is acquired with the per-
colation of isostaticity. Thus, we argue that a key feature of gelation is the arrest by isostaticity
percolation of a viscoelastic spinodal decomposition. Then, the mechanical stability of a gel is
determined by a competition between the yield stress of the isostaticity network and the internal
stress towards network shrinking produced by the interface free-energy cost. Since a gel is not
in an equilibrium state and the stress can be concentrated in a weak part of the network, perfect
mechanical stability may never be attained, resulting in slow aging via either surface diffusion
or bond breakage.

An understanding based on the mechanical equilibrium and isostaticity might pave the way
to a more operative description of colloidal gels, and allow complex issues to be addressed
in terms of mechanics and rheology. For example, stress-driven aging plays a fundamental
role in the formation of porous crystals (39). The spontaneous delayed collapse of colloidal
gels (44, 45) could be viewed as the final overcome of the mechanical frustration. Under small
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stresses also a delayed yielding is observed (46–48). Despite a sustained attention, the yielding
process of colloidal gels still lacks a general consensus. For instance we do not know why
some colloidal gels display a yield stress fluid behavior, that is a reversible yielding and no
fracture (46,49), whereas others display a brittle solid behavior with the irreversible opening of
fractures (48). Understanding colloidal gels as a both non-ergodic and mechanically stabilized
state of matter may help solving these issues.
Supplementary Material accompanies this paper at http://www.scienceadvances.org/.

Materials and Methods
We use colloidal particles made of poly(methyl methacrylate) copolymerized with 25 kDa methacry-
loxypropyl terminated poly(dimethyl siloxane) (Gelest) for steric stabilisation (50), with 2 % of
methacrylic acid to allow electrostatic repulsion, and with (rhodamine isothiocyanate)-aminostyrene
for fluorescent labeling (51). Particles (diameter σ = 2.75 µm estimated from direct confocal
measurements (52, 53)) are dispersed in a mixture of cis-decalin (Tokyo Kasei) and bromocy-
clohexane (Sigma-Aldrich) that matches both optical index and density of the colloids. To in-
duce short-ranged depletion attraction, we use 8.4 MDa polystyrene (TOSOH) as non-adsorbing
polymer. We estimate the radius of gyration to Rg = 148 nm, leading to an attraction range of
1.10(6)σ. In the absence of salt, the Debye length reaches several µm and the (weakly) charged
colloids experience a long range electrostatic repulsion (54).

We enclose this suspension in a thin (200 µm) microscopy cell sketched in Supplementary
Fig. S1. The bottom wall of the cell is an osmotic membrane providing contact with a long
channel full of the same solvent mixture. At the beginning of the experiment, we introduce
solid tetrabutylammonium bromide (Fluka) into the channel and start data acquisition within
30 s. This salt injection screens the electrostatic interactions between colloids. Thus, after the
salt injection, the colloid system can be regarded as sticky hard spheres.

We collect the data on a Leica SP5 confocal microscope, using 532 nm laser excitation.
We control the temperature of both stage and objective lens, allowing a density matching of
the order of 10−4 between particles and solvent, enough to observe the late stage of gelation
with little influence of gravity despite our large particle size (gravitational Peclet number Pe <
10−6). We track the particle coordinates in three dimensions (3D) with an accuracy of around
0.03σ (55). We consider two particles bonded when their distance is shorter than the first
minimum of g(r), i.e. 3.55 µm. This defines the bond graph that we analyze using NetworkX
library (56). The precise choice of this distance does not affect significantly our results, in
particular percolation times.
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Semi-permeable cell and protocol
Gelation of micron-size colloids suitable for quantitative confocal microscopy is usually in-
duced by depletion attractions due to polymers in the solvent. The experimental protocols that
have been used so far for studying the kinetics of phase separation and gelation are as fol-
lows: (1) Colloidal suspensions saturated with salt and polymer solutions are mixed just before
an experiment, and after mixing transferred to a capillary tube as quickly as possible. (2) A
mixture of colloids, polymers, salt, and solvents, which is already in a final state point in the
phase diagram and intrinsically unstable, or phase-separated, is vigorously stirred just before an
experiment to break pre-existing phase separated structures by shear melting. However, these
protocols have two common serious deficiencies. Firstly the initial state can never been homo-
geneous perfectly, and so there already exist particle aggregates at t = 0. Secondly, the mixing
inevitably involves turbulent flow, which does not decay but remains when the observation is
initiated. The gelation process observed by these conventional protocols inevitably suffers from
the influence of ill-defined initial static and dynamic conditions, and it has been almost impos-
sible to access the very initial stage of gelation without interference of pre-existing aggregates
and/or turbulent flow.

We overcome these limitations as follows. We use a colloidal system that is charge sta-
bilised at long range, has a short range depletion attraction, and is also sterically stabilised caus-
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Fig. S1: Reservoir cell. (A) Sketch of our experimental setup. The observation cell contains
initially colloids, polymer and no salt. (B) Confocal slice of a gel formed in situ by our method
(φ = 25.5 %, cp = 1.4 mg/g), 1 hour after gelation. (C) Idem for a gel at the same state point
formed ex situ and immediately pumped into a capillary.

ing nearly hard sphere repulsion at contact. We disperse colloidal particles and non-adsorbing
polymers in a mixture of organic solvents that matches both the refractive index and the density
of the particles. The ratio of the two solvent is first adjusted at 37 ◦C to match the density of our
particles. Even more precise matching is then obtained by adjusting the temperature. By this
method, we realize a density matching of the order of 10−4 between the density of the colloids
and of the solvent, enough to observe the late stage of gelation with little influence of gravity
despite our large particle size (gravitational Peclet number Pe < 10−6). Because of the weakly
polar nature of the solvent mixture (its dielectric constant εr = 5 ∼ 6), the Debye screening
length is about κ−1 = 10 µm, long enough for the large colloids (diameter σ = 2.75 µm) to
form a homogeneous Wigner crystal in the mixture (1). The short ranged (∼ σ/10), depletion
attraction caused by the polymers is masked by the electrostatic repulsion.

The colloids and polymers are contained in an observation cell (10 mm2 × 200 µm) made
of glass in contact with an half-open glass channel approximately 400 times larger in volume,
via a millipore filter with pore size of 100 nm that allows the salt through but neither polymer
nor colloid (see Fig. S1(A)). The channel is filled with the same solvents at density matching
composition. At the beginning of the experiment, solid tetrabutylammonium bromide (Fluka)
is introduced to the channel. Data acquisition starts within 30 s after salt introduction. Our
procedure induces practically no solvent flow in the observation cell. We confirmed the presence
of undissolved salt several days after mixing, indicating that the observation cell was brought
to saturation concentration.

Given the diffusion constants of Bromide and alkyl cation (6 and 2× 10−10 m2 s−1 (2)),
we estimate the characteristic diffusion time of salt from top to bottom of the order of 10 s.
Therefore, we reach uniform final salt concentration into the observation cell within only a
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few Brownian times of the colloids. Indeed we measured a delay of about 1 min between
the aggregation at the bottom and at the top of the cell. We define the initiation time of the
aggregation process when the maximum of the g(r) jumps from the lattice constant of the
Wigner crystal to the hard-core diameter σ.

We collect the data on a Leica SP5 confocal microscope, using 532 nm laser excitation. The
temperature was controlled on both stage and objective lens, allowing a more precise density
matching. The scanned volume is at least 82×82×85 µm3. The particle coordinates are tracked
in three dimensions (3D) with an accuracy of around 0.03σ (3).

Figure S1(B) and (C) compare the final structures of two gels prepared at the same state
point with the two different protocols: the first one by our salt-injection protocol, and the latter
by the conventional approach, where a gel is formed in a capillary and then shear melted at the
start of the experiment. Already a visual inspection reveals that the latter is coarser, highlight-
ing that shaking or shear melting protocols (4, 5) are not equivalent to a quench. Our special
quench protocol provides an ideal experimental platform to make a comparison with theory
and simulations. However, we note that Brownian Dynamics simulations cannot reproduce our
experimental results even with the same quench, because they neglect the solvent mediated
hydrodynamic interactions (6, 7).

Spinodal decomposition dynamics
To confirm whether the different samples follow spinodal-decomposition kinetics, we compute
the time dependent static structure factor S(q, t). Our experimental data do not have periodic
boundary conditions, so we must use a window function to ensure the correct correlation, es-
pecially at small q. Here we use the Hanning window, that significantly affects only the values
of S(q) at the first lowest five q that we discard in the rest of the analysis. We checked that our
results are not affected by other reasonable choices of the window function.

For all gel and cluster samples, we observe the appearance of a low q peak in S(q), see
Fig. S2, which is characteristic of spinodal decomposition in a system with a conserved order
parameter.

The characteristic wave number is defined as

〈q〉 =

∫ qmin

0
dq q S(q)∫ qmin

0
dq S(q)

, (1)

where qmin is fixed at all times at a value that corresponds to the minimum between the low-q
peak and the hard sphere peak. The temporal evolution of 〈q〉 is shown on Fig. S3 for various
colloidal volume fractions. The curves for all samples follow a master curve coherent with
spinodal decomposition kinetics: At short times 〈q〉(t) shows a plateau indicating that the low q
peak builds up at a constant wave number corresponding to distances of about 2σ. This plateau
is characteristic of the early stage spinodal decomposition, which is described by Cahn’s linear
theory (8). At intermediate times, on the other hand, we observe coarsening with 〈q〉 ∼ t−α,
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Fig. S2: Temporal change of the structure factor. Panels (A-D) are for the four samples shown
on Fig. 2 of the main text by decreasing volume fraction: (φ, cp)=(27 %, 1 mg/g), (16 %, 1.2
mg/g), (8 %, 1.5 mg/g), and (4.2 %, 1 mg/g), respectively. The thick black curve corresponds
to the initial Wigner crystal before salt introduction (ill defined thus not shown in (D)). Thin
curves from dark red to yellow are spaced by 150 s and display a peak corresponding to the hard
sphere diameter as well as a growing peak at low q indicating phase separation.
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Fig. S3: Temporal change in the characteristic wave number. The symbols, �, ◦, � and •,
represent data at φ = 4.2, 8, 16, 27 %, cp = 1, 1.5, 1.2, 1 mg/g, respectively. The lines are
possible scaling laws for the intermediate coarsening regime.

with an exponent α which is compatible with both α = 1/3, typical of spinodal decomposition
without dynamical asymmetry between the two phases, and α = 1/2, which is often observed
in viscoelastic phase separation (see, e.g., Ref. (6)). Due to the narrow range of this power law
regime and finite size effects, we cannot conclude definitely on the exponent value. Finally at
longer times each sample deviates from the master curve to form a plateau indicating dynamical
arrest. The more dilute samples arrest sooner, but reciprocal space information does not allow
to identify whether the origin of arrest is different between clusters and percolated networks.
This problem can be solved by real-space observation.

Our real-space observations indicate that both the cluster and gel phases are due to vis-
coelastic spinodal decomposition (9, 10): network-type spinodal for the gel (see Fig. 1), and
droplet-type spinodal for the clusters (see Fig. S4), where strong dynamical asymmetry be-
tween colloids and the solvent leads to unique roles of hydrodynamics and mechanics in phase
separation.

Real space analysis
Characterization of the system.

From direct confocal measurements (11,12), we estimate the hard-core diameter of our colloids
(σ = 2.75 µm) and the range of the interaction potential (that confirmed our scaling of Rg

within 1%), leading to a polymer-colloid size ratio q = 2Rg/σ = 0.10(6). The spinodal line
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Fig. S4: Cluster phase formation observed by our method. Experimental coordinates are recon-
structed and colored by the number of particles in the cluster (φ = 4.7 %, cp = 1 mg/g).

and polymer overlap concentration lines in Fig. 2 are calculated from this size ratio, using the
generalized free volume theory (13).

Detection of bonds.
In principle the attraction well of the depletion extends to σ + 2Rg, however, resolution-
dependent tracking imprecision and systematic errors do not give a precise enough estimate of
such short distance. Therefore we consider two particles bonded when their distance is shorter
than the first minimum distance of g(r), i.e. 3.55 µm. This defines the bond graph that we
analyse using NetworkX library (14). We have checked that the precise choice of this distance
does not affect significantly our results, in particular percolation times. We consider that a bond
is effectively broken when it does not reform within 10τB.

Coordination number analysis.
On the basis of the above definition of bonds, we analysed the evolution of the coordination
number of the colloidal particles. The results are shown in Fig. S5. We also study how the
gelation path depends on polymer concentration by looking at the growth of the largest cluster
size as a function of the average coordination number N̄c (see Fig. S6) .
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Fig. S5: Coordination number analysis for a dilute (φ = 8 %, cp = 1.5 mg/g: A, C) and a
dense (φ = 27 %, cp = 1 mg/g: B, D) sample. (A,B) Evolution of the mean coordination
number. The thin orange and thick purple vertical lines show the isotropic percolation times
for all particles (τ allIT ) and isostatic particles (τ IS

IT ) respectively. The dashed orange vertical line
shows the directed percolation time of all particles (τ allD ). (C, D) Probability distribution of
the coordination number at τ allIT (thin orange), τ allD (dashed orange and triangles) and τ IS

IT (thick
purple).
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Fig. S7: Evolution of the population of triplets as a function of their radius of gyration. The
result is for a non percolating sample (φ = 4 %, cp = 1 mg/g).

Role of hydrodynamics
To see the role of hydrodynamics in the process of colloidal phase separation, we follow the
compaction of clusters made of only three particles in a non-percolating sample. The time-
averaged probability distribution of the radius of gyration Rg of these triplets shows two peaks
on both sides of R∗g = 0.8σ, see Fig S7. For Rg < R∗g the cluster is compact, with a structure
close to an equilateral triangle. For Rg > R∗g the three particles are aligned and the cluster
is elongated. We found that just after the quench triplets have a slightly higher probability of
being elongated. Afterwards, they either connect to other clusters or relax to the more stable
compact state. To follow this relaxation, we define the probability to stay elongated as

Pel(∆t) = 〈P (δi(t+ ∆t)|δi(t))〉t,i , (2)
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Fig. S8: Role of hydrodynamics on colloidal phase separation. (A) Probability of staying elon-
gated for a triplet in a non-percolating sample (φ = 4 %, cp = 1 mg/g, blue) and in cor-
responding BD simulations. The continuous lines are the respective best exponential fits of
characteristic time 27τB and 5τB respectively. (B) Evolution of the aspect ratios of clusters of
4 particles and more in the same sample (dashed lines) and in a percolating sample (φ = 8 %,
cp = 1.5 mg/g, continuous lines). (C) Bond angle distribution relative to existing bonds (grey),
to a future bond (red) or to a future bond involving an isolated particle (blue) obtained in the
percolating sample. Future bonds are shifted to smaller angles, whereas gas adsorption takes
place from larger angles. Insets sketch both cases, with present bonds drawn thick and future
bonds drawn dotted.
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where δi(t) = 1 when the triplet i is elongated at time t and δi(t) = 0 otherwise. Figure S8(A)
(blue line) shows that the decay of Pel(∆t) is exponential with a characteristic time of 27τB. In
the same figure we also plot (red symbols) the same quantity computed from Brownian Dynam-
ics simulations of short-range attractive colloids designed to match the experiments (see below),
in which the triplet compaction process is simulated in absence of hydrodynamic interactions.
For the simulations we observe a considerably faster exponential decay compared to the exper-
iments, suggesting that the triplet compaction process is indeed slowed down significantly by
hydrodynamic interactions.

Simulations To simulate the process of triplet compaction in absence of hydrodynamic inter-
actions, we use Langevin dynamic simulations, where the characteristic damping time of the
velocities τD is chosen to be equal to the Brownian time τB, i.e. the time it takes a colloid to
diffuse its diameter. We use a generalised LJ potential (with exponent n = 100 and interaction
strength ε = 8kBT ) chosen to match the second virial coefficient of the Asakura-Osawa poten-
tial corresponding to experimental conditions (the ratio of polymer to colloid diameter, q = 0.1
and strength ε = 8kBT ). Following Ref. (4), the process of matching the second virial coeffi-
cient should ensure equivalent dynamical behavior for all short-range potentials. The elongation
probability Eq. (2) is computed by running two hundred independent simulations and measuring
the statistics of open and compact configurations of the triplets.

The shape of clusters composed of more than 3 particles cannot be followed in the same
way. Instead, we compute the principal moments of gyration of individual clusters λj , ordered
such that λ1 ≥ λ2 ≥ λ3, with use the aspect ratios λ2/λ1 and λ3/λ1 to quantify the departure
from sphericity. In Fig. S8(B), we show the evolution of the average value of these aspect ratios
either for a non-percolating sample (dashed line), or before percolation for a percolating one
(continuous line). In both cases, we observe that the clusters are originally not compact and
become more isotropic over tens of τB. As can be seen in Fig. 1 and Fig. S4, structural isotropy
is recovered only after the fusion of many anisotropic clusters into a branched structure that
may or may not be percolating.

These observations can be understood as due to hydrodynamic effects. Indeed in a solvent,
particles cannot converge freely to form compact structures (6,9). The compaction is delayed by
the incompressibility of the solvent, which allows only divergence-free transverse flow fields.
Furthermore, clusters influenced by hydrodynamic interactions tend to be more elongated, less
compact. We can test this hypothesis by measuring at which angle particles meet relative to
existing neighbors. If influenced by hydrodynamics, particles should avoid the direction of
existing neighbors and come from more open angles. In Fig. S8(C) we show the bond angle
distribution for three different sets of bonds: (i) existing bonds, (ii) bonds that will form within
the next τB (future bonds), (iii) future bonds where the newly attached particle is a monomer.
As expected, existing bonds (i) are preferentially at a 60◦ angle, indicating stable packing,
with secondary peaks coherent with a mixture of tetrahedral and hexagonal packing. Future
bonds (ii) have more acute angles and almost never 180◦, since they are mostly due to particles
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attached to second neighbors, see sketch in Fig. S8(C). Here hydrodynamics plays no role. By
contrast, future bonds (iii) involving isolated particles form at more obtuse angles, with a clear
peak around 180◦. This confirms that hydrodynamics has a significant influence on particle
aggregation and explains why clusters are initially elongated.

Consequently, long-lived elongated clusters have a higher probability to meet via either
rotational or translational diffusion than compact spherical clusters. Hydrodynamics explains
why in a rather dilute regime we can observe immediate formation of elongated clusters and
then their slow, hydrodynamically-assisted aggregation into a percolated structure. We stress
that this is a direct consequence of large-size disparity between colloidal particles and solvent
molecules, which leads to the physical situation where discrete solid objects are floating in a
continuum liquid.

Estimation of the internal stress.
We measure kD(t), the bond breaking rate at time t, by counting how many bonds have been
broken between t and t+ τB and dividing by the total number of bonds at t. The resulting rates
are averaged on a window whose size is increased exponentially with t − t0. In this way at
short times the values of kD(t) are instantaneous, while at long times we ensure good statistics
despite the low count of breaking events every τB.

To extract internal stresses from kD(t) measurements, we model the bond breaking rate
using a Kramers approach (15). In absence of force F acting on a bond, the dissociation rate is

kD(F = 0) = ω0 exp

(
− EA
kBT

)
, (3)

where EA is the depth of the potential and ω0 an attempt frequency that depends on the precise
shape of the potential (16) and on the diffusion constant in the depletion shell (17). Under action
of small force F , the rate becomes (18)

kD(F) = kD(F = 0) exp

( Fδ
kBT

)
(4)

with δ the width of the potential, here twice of the gyration radius of polymer, 2Rg. If we can
measure kD in absence of force, we can obtain the force at all times:

F(t) =
kBT

δ
log

kD(t)

kD(F = 0)
. (5)

We convert the force into the internal stress Σ using the area of contact between depletion
shells Σ = 2F/(πσδ). Here we measure kD(F = 0) by supposing that at long times, once
hydrodynamic stresses can be neglected, local rearrangements of the network are force-free,
that is when the involved particles keep a common neighbor after bond breaking, the long time
limit of the blue curve in Fig. S9.

11





100 101 102 103

10−3

10−2

10−1

t/τB

k
D

100 101 102 103

t/τB

total
local

A B

Fig. S9: Bond breaking rates for a dilute (A) (φ = 8 %, cp = 1.5 mg/g) and a dense (B)
(φ = 27 %, cp = 1 mg/g) percolating sample. The thick grey curve shows the total breaking
rate. The thin blue curve counts only breaking events after which the two particles still have a
common neighbor.

Microrheological measurements of viscoelasticity.
We perform two-particle microrheology following Ref. (19). Briefly, we compute the two-point
mean square displacement 〈∆r2〉D(t,∆t), averaged over all couples of particles (i, j) so that
2σ < rij < rmax and particle i is further away than rmax from any edge of the observation
window. We chose rmax as the fourth of the shortest dimension of the observation window.
Using a generalised Stokes-Einstein relation, we obtain the complex modulus

G(ω, t) = G′(ω, t) + ıG′′(ω, t) = |G(ω, t)|eıδ(ω,t). (6)

In a first order approximation, the loss angle δ(ω, t) is directly linked to the logarithmic deriva-
tive of the mean square displacement

α(∆t = ω−1, t) =
d log〈∆r2〉D

d log ∆t
≈ 2

π
δ(ω, t) (7)

Following Ref. (20), we analyse the various sources of errors in our microrheology mea-
surements. Static errors on tracked coordinate affect the magnitude of the complex modulus
G(ω, t), but never its phase δ(ω, t). In other words, the ratio G′′/G′, also called loss tangent
tan δ, is robust to static errors. Dynamic errors can occur due to the finite exposure time τexpo
and can in principle affect the loss tangent. If the mean square displacement can be locally
approximated by a power law of exponent α > 0 function of ∆t, Savin and Doyle (20) have
expressed the MSD affected by dynamic errors function of τ̃ = ∆t/τexpo. Using this expression
and (Eq. (7)), we derive the resulting relative error on δ(ω, t) as

|∆δ|
δ

(ω, t) ≈ (ωτexpo)
2δ/π

(1 + 2δ
π

)(1 + δ
π
)
. (8)
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Fig. S10: Temporal change in loss angle. Time evolution of δ(ω, t) for three frequencies, for
a dilute (A) (φ = 8 %, cp = 1.5 mg/g) and a dense (B) (φ = 27 %, cp = 1 mg/g) sample.
Error bars are estimated from (Eq. (8)). The thin orange and thick purple vertical lines show
the isotropic percolation times for all particles (tperco) and isostatic particles (t6) respectively.
The dashed orange vertical line shows the directed percolation time (tD). The solid horizontal
line marks the criterion tan δ(ω, t) = 1.5. The grey vertical band lies between the time when
the above criterion is satisfied by the highest available frequency and the crossing of all three
frequencies.

When G′′ ≈ G′, we also have tan δ ≈ 1 and (Eq. 8) reduces to

|∆δ|
δ

(ω, t) ≈ 8

15

√
ωτexpo. (9)

In a laser scanning confocal microscope, the exposure time for each particle is only a fraction
of the time needed to acquire a full time step. With our experimental parameters, the volume
of a single particle is scanned in τexpo ≈ 0.3 s, thus at our highest frequency ωτexpo ≈ 10−2

and the relative error on the phase is about 5%. This is smaller than the error coming from the
definition of gelation point itself.

In general the crossing of G′ and G′′ depends on the frequency. That is why the gel point
is defined as the time when G′ and G′′ both scale as identical power laws of frequency which
corresponds to a loss tangent tan δ = G′′/G′ independent of frequency (21). In Fig. S10 we
shows the evolution of the loss angle δ = arctan(G′′/G′) in the two same samples as Fig. 3,
for three frequencies. Depending on the sample, the gelation point can be earlier or later than
the crossing point of G′ and G′′ at the highest available frequency. We consider that the time of
mechanical gelation τgel lies between the time when tan δ fall below 1.5 at the highest available
frequency and the convergence time of the loss angle across all frequencies. On Fig. 3 and
Fig. S10, we materialize this range by a vertical grey zone. We confirmed that for all samples
τ IS

IT the isotropic percolation of isostatic particles fall into this range. Furthermore, in dense
samples τ allIT , the directed percolation time of all particles, lies well outside of the error bars of
τgel.

13





Characterisation of the degree of local stretching.
To detect local 2-fold symmetry and thus elongation, we use the following Steinhardt bond
orientational order parameter (22, 23) for particle i,

q2(i) =

√√√√4π

5

2∑

m=−2
|q2,m(i)|2, (10)

q2,m(i) =
1

Ni

Ni∑

j=1

Y2,m(θ(rij), φ(rij)), (11)

where the Y`,m are spherical harmonics and rij is one of the Ni bonds involving particle i.

Supplementary Analysis of isostaticity percolation
We compute the cluster size distribution of all particles at the percolation time, and also the
isostatic cluster size distribution at the percolation time of isostaticity. We take into account
the finite size of the particles by adding one particle radius to the radius of gyration Rg of each
cluster. The normalized cluster size is thus

Rg

σ
+

1

2
=

1

σ

√√√√1

s

s∑

i=1

∣∣∣∣∣
~Xi −

1

s

s∑

i=1

~Xi

∣∣∣∣∣

2

+
1

2
(12)

where s is the cluster size. In that way a one particle cluster has a size of 0.5σ. In that way
the fractal range is extended to small clusters. Figure S11(A) show the resulting cluster size
distributions for a dilute gel. At usual percolation time, the central range of cluster sizes ex-
hibit a fractal dimension compatible with diffusion-limited cluster aggregation (D = 1.85).
Large clusters that have an extent comparable to the experimental window display a compact
(D = 3) fractal dimension. At small cluster sizes we also observe compactness, consistent
with the scenario where compaction at small scales proceeds before diffusion-limited percola-
tion. This signature of the original compaction remains when isostaticity percolates. However
larger isostatic clusters exhibit a fractal dimension more compatible with directed percolation
(D = 2.27). This is consistent with the simultaneity of the isotropic percolation of isostaticity
and the directed percolation that is observed in dilute samples, see Fig. 3(A) of the main text.
At higher volume fraction, Fig. S11(B) shows that usual percolation is just random (D = 2.53)
at all cluster sizes. However when isostaticity percolates the cluster size distribution of isostatic
clusters displays a fractal dimension compatible with directed percolation (D = 2.27). Since
we know that directed percolation of the whole network took place before isostaticity perco-
lation, see Fig. 3(B), this observation is consistent with a simple invasion of the network by
isostaticity.
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Fig. S11: Cluster size distributions considering either all particles (orange) or isostatic particles
(purple), at their respective isotropic percolation time. The later is vertically shifted by a factor 2
for clarity. The thin black lines correspond to a fractal dimension of 3 (compact), dark grey lines
to a fractal dimension of 2.53 (random percolation), thick light grey lines to a fractal dimension
of 2.27 (directed percolation), and thick light blue lines correspond to a fractal dimension of
1.85 (DLCA). (A) φ = 8 %, cp = 1.5 mg/g. (B) φ = 27 %, cp = 1 mg/g.

To get more insight on the way directed percolation and isostaticity percolation are related
in the dilute case, we take a look at what changes as isostaticity invades the network. We take,
as a reference, configuration at the percolation time tperco. For low volume fraction gels, local
compaction has already occurred at that time, and we detect hundreds of small isostatic clusters
that are embedded in a percolated but non isostatic network. We define Xi(t) the position of
the center of mass at time t of the set particles that formed isostatic cluster i at t = tperco. We
note Xij(t) = |Xj(t)−Xi(t)| the Euclidian distance between the centers of mass of i and j, and
∆Xij(t) = Xij(t) − Xij(tperco) its increment. When taking an ensemble average over all pairs
of clusters that are not directly connected or far apart in the network 〈∆Xij(t)〉 is null. However
when considering only pairs of clusters that are less than 10 bonds away on the network, we can
observe a shortening of the distance between them, see Fig. 4(E). It means that, as loose strands
are converted to isostaticity, see Fig. 4(B-D), these strands shorten and straighten. This change
in morphology allows longer directed path and thus promotes directed percolation.

Comparison with the work of Kohl et al. (24)
The colloidal system used by Kohl at al. (24) is, within minor details, the same as ours. We do
not use the same steric stabilizer or the same dye. One of their solvents is cycloheptylbromide
where we use cyclohexylbromide. They screen electrostatic repulsion using tetrabutylammo-
nium chloride where we use tetrabutylammonium bromide. Their particles are smaller (diam-
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eter of 1.72 µm instead of 2.75 µm) and more polydisperse (7% instead of 4-5 %). Relative
to the particle size, their polymer is also smaller, with a a size ratio of q = 2Rg/σ = 0.076
in their case but 0.10 in our case. Despite the difference in these details, both their and our
experiments are in the limit of sticky spheres with a combination of both depletion attraction
and negligible Coulombic repulsion. We do not expect any fundamental differences from these
experimental variations, although the precise localization of the spinodal line, of the isotropic
percolation line, and of the directed percolation line should be different. We did not compute
the localization of the percolation lines in our case as our conclusions rely on a different set of
evidence.

Once scaled by the particle size, our field of view is comparable to theirs (largest dimension
of≈ 30σ), although our window is cubic whereas theirs is half as thin as large. Our frame rate is
higher in the absolute value and even more so once scaled by the Brownian time. They acquire
a 3D image every 6τB where we acquire every τB. These differences ensure our definitions of
percolation that are less dependent on the direction and a better understanding of fast dynamics.

The first important experimental difference is that Kohl et al. observe only their sample
at a rather late stage, once all percolations have fully developed, whereas we observe the full
process of gelation from a well defined initial state. It is well known that the structure of a gel
can be tuned by its shear history (25, 26). However, without measurements during the sample
introduction protocol of Kohl et al., we cannot quantify the influence of that process on the final
gel structure.

The second important difference is that Kohl et al. have focused both their experiments and
their simulations on a low polymer volume fraction regime φ ≈ 0.2 and varied both polymer
concentration and salt concentration. In particular, their simulations allow much higher salt
concentrations than what is possible experimentally. We have not explored the salt concentra-
tion axis, however we have varied the volume fraction from 6 to 33%. It is on that axis, at high
volume fraction, that we find the discrepancy between τ allD and τ IS

IT . At low volume fraction,
directed percolation of all particles and isotropic percolation of isostatic particles are simulta-
neous. Therefore the conclusion of Kohl et al., that rigidity comes with directed percolation,
is coincidentally correct in the narrow range of polymer volume fraction they explored. We
demonstrate that a more general criterion is the isotropic percolation of isostatic particles.

Supplementary Movie 1 Reconstructions from confocal coordinates of the whole process of
gelation at φ = 7.7 %, cp = 1 mg/g. The phase separation is induced by salt injection. Particles
are drawn to scale, and colored according to the radius of gyration of the cluster they belong to.
Time stamp is (t− t0)/τB. We can see that there is little macroscopic flow in this protocol.

Supplementary Movie 2 Reconstructions in a thin slice from confocal coordinates of the
whole process of gelation at φ = 27 %, cp = 1 mg/g. The depth of view is 7.5 µm, while the
lateral dimension is 140 µm. Isostatic particles are drawn to scale, non isostatic ones are drawn
smaller for clarity. The bond network is displayed in orange. Time stamp is (t − t0)/τB. In
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this sample, isotropic percolation occurs at t = 2τB, directed percolation at 4τB and isostaticity
percolation at 46τB.
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