
HAL Id: hal-01901147
https://hal.science/hal-01901147v1

Submitted on 22 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lifted projective Reed–Solomon codes
Julien Lavauzelle

To cite this version:
Julien Lavauzelle. Lifted projective Reed–Solomon codes. Designs, Codes and Cryptography, 2019,
87, pp.1541-1575. �10.1007/s10623-018-0552-8�. �hal-01901147�

https://hal.science/hal-01901147v1
https://hal.archives-ouvertes.fr

Lifted Projective Reed-Solomon Codes

Julien Lavauzelle

Laboratoire LIX, École Polytechnique, Inria & CNRS UMR 7161
Université Paris-Saclay

julien.lavauzelle@inria.fr

Abstract

Lifted Reed-Solomon codes, introduced by Guo, Kopparty and Sudan in 2013, are
known as one of the few families of high-rate locally correctable codes. They are built
through the evaluation over the affine space of multivariate polynomials whose restriction
along any affine line can be interpolated as a low degree univariate polynomial.

In this work, we give a formal definition of their analogues over projective spaces, and
we study some of their parameters and features. Local correcting algorithms are first de-
rived from the very nature of these codes, generalizing the well-known local correcting
algorithms for Reed-Muller codes. We also prove that the lifting of both Reed-Solomon
and projective Reed-Solomon codes are deeply linked through shortening and puncturing
operations. It leads to recursive formulae on their dimension and their monomial bases.
We finally emphasize the practicality of lifted projective Reed-Solomon codes by comput-
ing their information sets and by providing an implementation of the codes and their local
correcting algorithms.

1 Introduction

Motivation and previous works. Locally decodable codes (LDC) and locally correctable
codes (LCC) are codes equipped with a probabilistic algorithm which can efficiently decode
or correct a single symbol of a noisy codeword, by querying only a few of its symbols. Low
degree Reed-Muller codes define a well-known family of LDCs/LCCs with reasonable rate.
Indeed, when restricted to an affine line, a sufficiently low-degree multivariate polynomial
can be interpolated by a low-degree univariate polynomial. However, the rate R of such
Reed-Muller codes stays stuck below 1/2. Multiplicity codes [KSY14] were the first family
of codes breaking the R = 1/2 barrier for correcting a constant fraction of errors. The con-
struction was based on a generalization of Reed-Muller codes which introduce multiplicities
in the evaluation map. Shortly after the multiplicity codes breakthrough, Guo, Kopparty and
Sudan [GKS13] proposed another generalization of Reed-Muller codes and considered all the
multivariate polynomials (i.e. not only the low-degree ones) which can be interpolated as low-
degree univariate polynomials when restricted to a line. Surprisingly, it sometimes appears
that much more polynomials satisfy this property than the low-degree ones lying in Reed-
Muller codes. Resulting codes are named lifted Reed-Solomon codes, and in this work, more
shortly referred to as affine lifted codes.

Organisation. In this work, we show how to build analogues of these codes in projective
spaces, that we call projective lifted codes. Our construction relies on the notion of degree sets
which also appears in [GKS13] and helps us to exhibit relations between affine and projective

This paper appears in: J. Des. Codes Cryptogr. (2018). DOI: 10.1007/s10623-018-0552-8.
This work is partially funded by French ANR-15-CE39-0013-01 “Manta”.

1

mailto:julien.lavauzelle@inria.fr
https://doi.org/10.1007/s10623-018-0552-8

lifted codes. Section 2 introduce tools necessary to our construction. Affine and projective
lifted codes are built in Section 3, where we also prove main properties of projective lifted
codes, notably their monomiality and the structure of their degree set. In Section 4 we present
a family of local correcting algorithms for projective lifted codes, whose locality depends on
the number of admissible errors on the queried line. Section 5 is devoted to the links between
affine and projective lifted codes, through puncturing and shortening. Finally, we show mis-
cellaneous properties of projective lifted codes in Section 6 which emphasize their explicitness
and practicality: we present explicit information sets, we bound on their minimum distance
and we prove their (quasi-)cyclicity under certain conditions.

We emphasize the practicality of our construction by presenting tables of parameters of
projective lifted codes in Appendix C. A basic implementation of affine and projective lifted
codes in the open-source software SageMath [S+17] is also made available1.

2 Notation and preliminaries

This section is devoted to introducing the algebraic background for the definition of affine
and projective lifted codes.

2.1 Geometry, polynomials and evaluation maps

We denote by Fq the finite field with q elements, and by F×q its non-zero elements. For m ≥ 1,
the affine space of dimension m is the set of m-tuples with coordinates in Fq, and is denoted
Am. We also define the projective space of dimension m as

Pm := (Am+1 \ {0})/ ∼ ,

where for a, b ∈ Am+1 \ {0}, the relation ∼ is given by

a ∼ b ⇐⇒ ∃λ ∈ F×q , a = λb .

A projective point will be denoted a = (a0 : · · · : am) ∈ Pm. It has (q− 1) different represen-
tatives, and we call standard representative the only one such that ∀j < i, aj = 0 and ai = 1. The

projective space Pm contains θm,q := qm+1−1
q−1 distinct points.

The hyperplane at infinity Π∞ := {a ∈ Pm, a0 = 0} is isomorphic to Pm−1, and the bijective
map (a1, . . . , am) 7→ (1 : a1 : · · · : am) embeds Am into Pm. A projective line is a (q + 1)-subset
of Pm of the form

La,b := {xa + yb, (x : y) ∈ P1}
for some distinct points a, b ∈ Pm. The line La,b is the only one containing both a and b, and
there are exactly θm−1,q = |Pm−1| = qm−1

q−1 projective lines on which a given point a ∈ Pm lies.

Polynomials and degrees. We denote by Fq[X] := Fq[X1, . . . , Xm] the ring of m-variate poly-
nomials over Fq. Following the terminology given in [GKS13], for f = ∑d fdXd ∈ Fq[X], the
set {d ∈ Nm, fd 6= 0} is called the set of degrees of f and is denoted Deg(f). For a subset
D ⊆ Nm, we denote by Poly(D) the vector space of polynomials generated by monomials Xd

for d ∈ D:
Poly(D) := 〈Xd, d ∈ D〉 ⊆ Fq[X] .

Some subsets D are of particular interest. For instance, for v ∈N,

• the 1-norm ball Bm
1 (v) := {d ∈Nm, ∑m

i=1 di ≤ v} generates the space Fq[X]v of multivari-
ate polynomials of total degree bounded by v,

1see https://bitbucket.org/jlavauzelle/lifted_codes

2

https://bitbucket.org/jlavauzelle/lifted_codes

• the ∞-norm ball Bm
∞(v) := {d ∈ Nm, di ≤ v, ∀i = 1, . . . , m} generates the space of

multivariate polynomials of partial degree bounded by v,

• the 1-norm sphere Sm+1(v) := {d ∈ Nm+1, ∑m
i=0 di = v} generates the space Fq[X]Hv of

homogeneous polynomials of degree v (plus the zero polynomial).

We write |d| := ∑i di the weight of a tuple of integers d.

Evaluation of homogeneous polynomials on a projective point. For any homogeneous
polynomial f ∈ Fq[X]Hv , it is well-known that

f (λX) = λv f (X) , ∀λ ∈ F×q .

It means that different representatives of a fixed projective point may result to different eval-
uations by f . In order to remove any ambiguity, we adopt the following definition. Let
(a0 : · · · : am) be the standard representation of a projective point P ∈ Pm. Then we define the
evaluation of f at P as:

evP(f) := f (a0, . . . , am) .

In other words, every projective point must be written in the unique standard representation when
evaluated by homogeneous polynomials.

Denote by (P1, . . . , Pθm,q) (resp. (Q1, . . . , Qqm)) an ordered list of all the projective (resp.
affine) points. Thanks to the previous definition, the following evaluation map can be defined
without ambiguity for all v ≥ 0:

evPm : Fq[X]Hv → F
θm,q
q

f 7→ (evP1(f), . . . , evPθm,q
(f))

Its affine analogue is:

evAm : Fq[X] → F
qm

q
f 7→ (f (Q1), . . . , f (Qqm))

Clearly, evPm and evAm are Fq-linear maps. Since xq = x for all x ∈ Fq, we have

ker(evAm) = 〈Xq
i − Xi, ∀i = 1, . . . , m〉 .

Moreover, since evPm evaluates homogeneous polynomials, for a fixed v ∈N

ker(evPm) = 〈Xq
i Xj − XiX

q
j , ∀i 6= j ∈ {0, . . . , m}〉 ∩Fq[X]Hv .

These properties are formally proved in [RTR97].

2.2 Evaluation codes

A common way to build linear codes is to evaluate polynomials over a list of points. In this
subsection, we formally define the family of evaluation codes we are studying. We also recall
well-known examples of such codes, namely the Reed-Solomon and Reed-Muller codes, as
well as their projective analogues.

Definition 1 (affine evaluation code). Let F be a linear subspace of Fq[X]. The affine evaluation
code associated to F is the Fq-linear code of length n = |Am| = qm composed by the evaluation
vectors of polynomials in F :

evAm(F) = {evAm(f), f ∈ F} ⊆ F
qm

q .

The n-tuple (Q1, . . . , Qn) of evaluation points is called the support of the code.

3

Definition 2 (projective evaluation code). Let F be a linear subspace of Fq[X]Hv . The projective
evaluation code associated to F is the Fq-linear code of length n = |Pm| = θm,q composed by
the evaluation vectors of polynomials in F :

evPm(F) = {evPm(f), f ∈ F} ⊆ F
θm,q
q .

Once again, the n-tuple (P1, . . . , Pn) of evaluation points is called the support of the code.

We point out a specific class of evaluation codes which is generated by evaluation vectors
of monomials.

Definition 3 (monomial code). An affine evaluation code C = evAm(F) (resp. a projective
evaluation code C = evPm(F)) is said monomial if F = Poly(D) for some D ⊆ Nm (resp.
D ⊆ Sm+1(v)).

As we will see later, monomial codes turn out to be very convenient to describe with their
set of degrees D.

Reed-Solomon and Reed-Muller codes.

Definition 4 (Reed-Solomon code). Let 0 ≤ k ≤ q− 1. The vector space of evaluation vectors
of polynomials of degree ≤ k over Fq is called the (full-length) Reed-Solomon code:

RSq(k) := {evA1(f), f ∈ Fq[X]k} .

and has dimension k + 1 over Fq.

Definition 5 (Reed-Muller code). Let 0 ≤ d ≤ m(q− 1). The (generalized) Reed-Muller code
of order m and degree d over Fq is the subspace of F

qm

q consisting in evaluation vectors of
m-variate polynomials over Fq of total degree ≤ d:

RMq(m, d) := {evAm(f), f ∈ Fq[X]d} .

For d > 0, the dimension of RMq(m, d) is given by [AK92]:

dim RMq(m, d) =
d

∑
i=0

m

∑
j=0

(−1)j
(

m
j

)(
i− jq + m− 1

i− jq

)
,

and simplifies to (m+d
m) for d ≤ q− 1.

Reed-Muller codes generalize Reed-Solomon codes, in the sense that RMq(1, k) = RSq(k).

Projective Reed-Solomon and Reed-Muller codes. Previous codes can be naturally adapted
to the context of projective spaces.

Definition 6 (Projective Reed-Solomon code). Let 0 ≤ k ≤ q. The projective Reed-Solomon code
of dimension k+ 1 over Fq is the linear code of length q+ 1 = |P1| consisting of the evaluation
of bivariate homogeneous polynomials of degree k over Fq:

PRSq(k) := {evP1(f), f ∈ Fq[X, Y]Hk } .

Projective Reed-Solomon codes are also called extended, or doubly-extended Reed-Solomon
codes. Similarly, Reed-Muller codes have a projective analogue, defined as follows [Lac86,
Lac90, Sør91]:

4

Definition 7 (Projective Reed-Muller code). Let 1 ≤ v ≤ m(q− 1). The projective Reed-Muller
code of order m and degree v over Fq is the linear code of length |Pm| = (qm+1 − 1)/(q− 1)
consisting of the evaluation of (m + 1)-variate homogeneous polynomials over Fq of degree v:

PRMq(m, v) := {evPm(f), f ∈ Fq[X]Hv } .

The dimension of PRMq(m, v) is (see [Sør91]):

dim PRMq(m, v) = ∑
t∈Iv

(
m+1

∑
j=0

(−1)j
(

m + 1
j

)(
t− jq + m

t− jq

))
,

where Iv = {t ∈ [1, v], t ≡ v mod q− 1}. For v ≤ q− 1, it simplifies to dim PRMq(m, v) =
(m+v

v).

Once again, by definition we have PRSq(k) = PRMq(1, k) for every 1 ≤ k ≤ q− 1.

2.3 Reduced degree sets

In the previous subsection, we have seen that well-known families of linear codes are defined
as the image of subspaces of polynomials by evaluation maps. For coding theoretic reasons
(e.g. giving the dimension of the code, or computing a basis), it is interesting to find sets
D ⊆ Sm+1(v) (resp. D ⊆ Bm

1 (v)) such that the map evPm (resp. evAm) is injective over Poly(D).
So let us define such sets.

First of all, we introduce specific tuples.

Definition 8 (A and P-reduced tuples).

1. A tuple d ∈Nm is A-reduced if d lies in Bm
∞(q− 1).

2. A tuple d = (d0, . . . , dm) ∈Nm+1 is P-reduced if, for all 0 ≤ i ≤ m:

di ≥ q ⇒
{

dj = 0 ∀j < i ,
dj ≤ q− 1 ∀j > i .

We see that any A-reduced tuple is also P-reduced. We also say that a set D of tuples is
A-reduced (resp. P-reduced) if every tuple it contains is A-reduced (resp. P-reduced).

Denote by (e1, . . . , em) the canonical basis of Nm. Let d ∈Nm, 1 ≤ i < j ≤ m, and assume
that dj ≥ q and di ≥ 1. For such d (and only for such d), we define ρj(d) := d− (q− 1)ej and
τij(d) := d + (q− 1)(ei − ej). Remark that |τij(d)| = |d|.

Remark 9. Let d ∈Nm or Nm+1 depending on the context (affine or projective). Then,

• we have evAm(Xρj(d)) = evAm(Xd) and evPm(Xτij(d)) = evPm(Xd);

• as long as they are defined, ρj ◦ ρ` = ρ` ◦ ρj and τij ◦ τk` = τk` ◦ τij;

• if no τij can be applied to d, then d is P-reduced;

• if no ρj can be applied to d, then d is A-reduced;

• if we keep applying to some tuple d the maps τij, for 0 ≤ i < j ≤ m, until we cannot
apply any of them, then we obtain a P-reduced tuple;

• if we keep applying to some tuple d the maps ρj, for 1 ≤ j ≤ m, until we cannot apply
any of them, then we obtain an A-reduced tuple.

5

Definition 10. Let d ∈ Nm. The A-reduction of d is the tuple d ∈ Nm which is obtained by
applying iteratively ρj (for 1 ≤ j ≤ m) until the result lies in Bm

∞(q− 1). It satisfies evAm(Xd) =

evAm(Xd). The A-reduction of D ⊆ Nm+1, denoted D, consists in the A-reduction of the
tuples in D.

Definition 11. Let d ∈ Sm+1(v) for some v > 0. The P-reduction of d is the tuple d ∈ Sm+1(v)
which is obtained by applying iteratively τij (for 0 ≤ i < j ≤ m) until the result is P-reduced.
It satisfies evPm(Xd) = evPm(Xd). The P-reduction of D ⊆ Sm+1(v), denoted D, consists in the
P-reduction of the tuples in D.

A- and P-reduction are defined in order to make the evaluation maps evAm and evPm

injective over polynomial spaces of the form Poly(D), where D is A- or P-reduced. Next
lemma details these properties.

Lemma 12. Let m ≥ 1 and v ∈N. The following properties hold:

1. If D ⊆Nm is A-reduced, then the map evAm is injective over Poly(D).

2. If D ⊆ Sm+1(v) is P-reduced, then the map evPm is injective over Poly(D).

3. For every D ⊆Nm, the A-reduction D of D is the unique A-reduced subset of Nm satisfying

evAm(Poly(D)) = evAm(Poly(D)) .

4. For every D ⊆ Sm+1(v), the P-reduction D of D is the unique P-reduced subset of Sm+1(v)
satisfying

evPm(Poly(D)) = evPm(Poly(D)) .

Proof.

1. By definition, if D is A-reduced, then D is a subset of Bm
∞(q − 1). Since ker(evAm) =

〈Xq
i − Xi〉1≤i≤m, we can see that Poly(D) ∩ ker(evAm) = {0}.

2. We proceed by induction on m. Recall that ker(evPm) = 〈Xq
i Xj−XiX

q
j 〉0≤i<j≤m ∩Fq[X]Hv .

• For m = 1 and v ∈ N, let D be a P-reduced subset of S2(v). If v ≤ q, it is clear
that ker(evP1) ∩ Poly(D) = {0}. So assume v > q and let f (X, Y) ∈ Poly(D) ∩
ker(evP1). Since D is P-reduced, we can write

f (X, Y) := fvYv +
q−1

∑
i=0

fiXv−iYi ∈ Poly(D) .

Then, we see that fv = f (0, 1) = 0, hence g(Y) := f (1, Y) = ∑
q−1
i=0 fiYi lies in

Poly(D′), for some set D′ ⊆ B1
∞(q − 1). Moreover f ∈ ker(evP1) implies g ∈

ker(evA1). Hence, the first point of this Lemma (applied to D′ which is A-reduced)
shows that g = 0, and f = 0 follows.
• Let m > 1 and v ∈ N. The proof works similarly. Let D be a P-reduced subset of

Sm+1(v), and let

f (X) := f0(X1, . . . , Xm) + X0 f1(X0, X1, . . . , Xm) ∈ Poly(D) ∩ ker(evPm) .

Since f0 does not depend on X0, we can see that f0 ∈ ker(evPm−1) and f0 ∈ Poly(D0)
where D0 ⊂ Sm(v). Besides, D0 is P-reduced as a subset of D. Therefore, by
induction f0 = 0, and f = X0 f1(X0, X1, . . . , Xm) follows. Let us define g :=
f (1, X1, . . . , Xm); we see that g ∈ ker(evAm) and g ∈ Poly(D′) where D′ ⊆ Bm

∞(q− 1)
since D is P-reduced and every degree tuple in D′ comes from a tuple d ∈ D such
that d0 6= 0. Thanks to the first point of the lemma, it follows that g = 0. Therefore,
f = αXv

0 with α ∈ Fq, which necessarily implies f = 0 (evaluate it at (1 : 0 : · · · : 0)).

6

3. Since evAm(Xd) = evAm(Xd) for every d ∈Nm, we have evAm(Poly(D)) = evAm(Poly(D)).
Uniqueness comes from the injectivity of evAm .

4. Same argument.

Definition 13 (Degree set). Let C = evAm(Poly(D)) be an affine (resp. let C = evPm(Poly(D))
be a projective) monomial code. Its degree set is the unique A-reduction (resp. P-reduction) of
D, and is denoted Deg(C).

By definition, if C is monomial, then we have C = ev(Poly(Deg(C))) where ev ∈ {evAm , evPm}
depending on the context. Moreover, since ev is injective over Poly(Deg(C)), it also holds that:

dim C = |Deg(C)| .

Example 14. Reed-Solomon and Reed-Muller codes, as well as their projective analogues, are
monomial codes. Table 1 presents their degree sets.

Code Degree set

Reed-Solomon code RSq(k) B1
1(k) = {0, 1, . . . , k}

Reed-Muller code RMq(m, k) Bm
1 (k) = {e | e ∈Nm, |e| ≤ k}

projective Reed-Solomon code PRSq(k) S2
1(k) = {(k, 0), (k− 1, 1), . . . , (0, k)}

projective Reed-Muller code PRMq(m, k) Sm+1
1 (k) = {d | d ∈Nm+1, |d| = k}

Table 1: Degree sets of classical monomial codes.

2.4 Permutations, automorphisms

Generally, a linear code C is a linear subspace of FX
q for some finite set X. Any permutation σ

of X induces a permutation of the coordinates of vectors c ∈ FX
q given by:

σ(c) = (cσ−1(x))x∈X ∈ FX
q

Denote by S(X) the group of permutations of X. The subset of permutations of X which let C
invariant is a subgroup of S(X), called the permutation group of C, and denoted by Perm(C).

Let Iso(X) be the semi-direct product
(
F×q
)X oS(X). Any (w, σ) ∈ Iso(X) acts on c ∈ FX

q
by:

(w, σ) · c = w ? σ(c) ,

where ? denotes the component-wise product between tuples: a ? b = (a1b1, . . . , ambm). If
w = (1, . . . , 1), we simply write σ ∈ Iso(X).

The subgroup of Iso(X) letting C invariant is called the automorphism group of C, and is
denoted by Aut(C). Of course, Perm(C) ⊆ Aut(C).

Let us finally denote by GLm(Fq) the group of m× m invertible matrices over Fq. Using
the canonical basis, these matrices represent linear automorphisms Am → Am.

Affine evaluation codes. In the case X = Am, let us define the affine transformations TM,b :
Am → Am by x 7→ Mx + b, for every M ∈ GLm(Fq) and b ∈ Fm

q . Each TM,b is a permutation
of Am. Denote by Aff(Fq, m) the group of such transformations:

Aff(Fq, m) = {TM,b | (M, b) ∈ GLm(Fq)×Fm
q } .

In Appendix A.3 we prove that Aff(Fq, m) ⊆ Perm(RMq(m, k)) for every 0 ≤ k ≤ m(q− 1).

7

Projective evaluation codes. In the case X = Pm, let M ∈ GLm+1(Fq). Then x 7→ Mx
induces a permutation of Pm, but does not necessarily preserve the standard representation
of projective points. Still, there exists λM,x ∈ F×q such that the standard representative of Mx
is λM,x Mx. For every f ∈ Fq[X]Hv , we then have:

evMx(f) = f (λM,x Mx) = (λM,x)
v f (Mx) = (λM,x)

v evx(f ◦M) ,

and we see that (λM,x)
v does not depend on f (only on its total degree). Let us denote by

wv
M := ((λM,x)

v : x ∈ Pm), and by σM the permutation of Pm induced by M. Then, we have:

evPm(f ◦M) = wv
M ? σM−1(evPm(f)) .

Denote by Proj(Fq, m) := {(wv
M, σM−1) ∈ Iso(Pm), M ∈ GLm+1(Fq)} in the context of eval-

uating homogeneous polynomials of degree v. In Appendix A.3 we prove that Proj(Fq, m) ⊆
Aut(PRMq(m, v)) for every 1 ≤ v ≤ m(q− 1).

2.5 Embedding maps

Here we define maps embedding lines into higher dimensional spaces. For U, V two Fq-linear
spaces, we denote by Hom(U, V) the set of linear maps U → V. Let EmbP(m) be the set of
full-rank (i.e. injective) linear maps from F2

q to Fm+1
q :

EmbP(m) := {L ∈ Hom(F2
q, Fm+1

q), rank L = 2} .

Each L ∈ EmbP(m) induces a projective embedding P1 → Pm sending (x : y) 7→ L(x, y).
One can easily check that this map is well defined over projective spaces. Moreover, the set
{L(P1), L ∈ EmbP(m)} describes all the projective lines of Pm, though a projective line is
obviously associated to many maps L in EmbP(m).

Similarly, the set

EmbA(m) := {L∗ = (L1, . . . , Lm) ∈ Hom(F2
q, Fm

q) | L = (L0, . . . , Lm) ∈ EmbP(m)}

defines affine embeddings A1 → Am by t 7→ L∗(1, t). The set {L∗(1, A1), L∗ ∈ EmbA(m)}
defines the set of affine lines of Am.

Remark 15. Elements of EmbP(m) and EmbA(m) will sometimes be seen as (m + 1)× 2 or
m × 2 matrices over Fq. Besides, for convenience and when the context is clear, we will
improperly write L∗(t) instead of L∗(1, t). By using this notation, we want to emphasize that,
for every f ∈ Fq[X] and every L∗ ∈ EmbA(m), the map t 7→ f (L∗(1, t)) can be interpolated as
a univariate polynomial denoted f ◦ L∗ ∈ Fq[T].

Remark 16. For local correction purposes (see section 4), it is important to notice the following
points.

1. In the affine setting, for every L∗ ∈ EmbA(m) and f ∈ Fq[X], the word evA1(f ◦ L∗) is a
subword of evAm(f), and can be read at indices L∗(t) for t ∈ A1.

2. In the projective setting, evP1(f ◦ L) is not necessary a subword of evPm(f), since nothing
asserts that L preserves the standard representation of projective points, similarly to the
discussion in Subsection 2.4. We solve this issue in a very similar manner. Let x ∈ P1 and
L ∈ EmbP(m). We know there exists λL,x ∈ F×q such that the standard representative P
of L(x) is λL,xL(x) ∈ Pm. Then it holds:

∀ f ∈ Fq[X]Hv , evP(f) = f (λL,xL(x)) = (λL,x)
v(f ◦ L)(x) .

Therefore, let us define wv
L = ((λL,x)

v : x ∈ P1). Then wv
L ? evP1(f ◦ L) is a subword of

evPm(f), and can be read at indices L(x) ∈ Pm for x ∈ P1.

8

Example 17. Let us fix an ordered list of points in P1(F3) and P2(F3):

P1(F3) =
(
(1 : 1), (1 : 2), (1 : 0), (0 : 1)

)
P2(F3) =

(
(1 : 1 : 1), (1 : 1 : 2), (1 : 1 : 0), (1 : 2 : 1), (1 : 2 : 2), (1 : 2 : 0),
(1 : 0 : 1), (1 : 0 : 2), (1 : 0 : 0), (0 : 1 : 1), (0 : 1 : 2), (0 : 1 : 0), (0 : 0 : 1)

)
Let f = X1 ∈ F3[X0, X1, X2]H1 and L ∈ EmbP(2) represented by the matrix:

L =

1 1
0 1
1 0

Denote by c = evP2(f) = (1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 0) ∈ F13

3 . On the one hand we have

L(P1) = ((2 : 1 : 1), (0 : 2 : 1), (1 : 0 : 1), (1 : 1 : 0))
= ((1 : 2 : 2), (0 : 1 : 2), (1 : 0 : 1), (1 : 1 : 0)) ,

(1)

hence evP2(f)|L(P1) = (c5, c11, c7, c3) = (2, 1, 0, 1). On the other hand (f ◦ L)(S, T) = T ∈
F3[S, T]H1 , and we get evP1(f ◦ L) = (1, 2, 0, 1). Clearly evP2(f)|L(P1) 6= evP1(f ◦ L).

Nevertheless, w1
L can be obtained through the homogenizing made in (1):

w1
L = (21, 21, 11, 11) .

Therefore it gives:
w1

L ? evP1(f ◦ L) = (2, 1, 0, 1) = evP2(f)|L(P1) .

3 Affine and projective lifted Reed-Solomon codes

Before introducing our construction, we recall the definition of affine lifted codes given by
Guo, Kopparty and Sudan [GKS13]. Notice that we restrict our study to the lifting of (pro-
jective) Reed-Solomon codes, but we believe that our construction can be extrapolated to the
lifting of (projective) Reed-Muller codes. Besides, our formalism is slightly different from
the paper of [GKS13], since their notion of restriction f|L of a polynomial f along a line L is
somewhat ambiguous.

3.1 Affine lifted codes

We first need to introduce a few notation.

• Let a = ∑ a(i)pi be the p-adic decomposition of a non-negative integer a. We define a
partial order ≤p on integers by:

a ≤p b ⇐⇒ a(i) ≤ b(i), ∀i . (2)

The relation ≤p can be naturally extended to m-tuples by a ≤p b ⇐⇒ ∀j, aj ≤p bj.

• We also extend binomial coefficients to m-tuples of integers by (a
b) := ∏m

i=1 (
ai
bi
).

We also recall that, for f ∈ Fq[X] and L ∈ EmbA(m), the notation f ◦ L represents the
univariate polynomial f (L(1, T)).

Definition 18 (Affine lifting of Reed-Solomon codes [GKS13]). Let 0 ≤ k ≤ q− 2 and m ≥ 1.
The affine lifting of order m of the Reed-Solomon code RSq(k) is

Liftq(m, k) := {evAm(f) | f ∈ Fq[X], ∀L ∈ EmbA(m), evA1(f ◦ L) ∈ RSq(k)} .

9

The codes Liftq(m, k) will shortly be called affine lifted codes. In [GKS13] it is also proved
that every affine lifted code Liftq(m, k) is monomial and satisfies

Liftq(m, k) =
〈

evAm(Xd) | d ∈ Bm
∞(q− 1), ∀e ≤p d, |e| ≤ k

〉
, (3)

where p = char(Fq) and |e| = ∑i ei. Note that monomiality of affine lifted code follows from
their affine-invariance, by using a result of Kaufman and Sudan [KS08].

A careful observation of their degree sets shows that Liftq(m, k) fits between two projective
Reed-Muller codes:

RMq(m, k) ⊆ Liftq(m, k) ⊆ RMq(m, k + (m− 1)(q− 1)) . (4)

The main interest of affine lifted codes appears for some values of q and k (essentially q
non-prime and k close to q), for which the first inclusion is proper. Indeed, Kaufman and Ron
give in [KR06] arguments that shows that affine lifted codes are Reed-Muller codes as long as
k < q− q

p (where p is the characteristic of the field).
In the k ≥ q− q

p setting, some families of affine lifted codes give rise to a family of high-
rate locally decodable and correctable codes, while Reed-Muller codes have rate bounded by
1/m!. More specifically, the following theorem is proved in [GKS13] (we report the formal
definition of locally correctable codes to Section 4):

Theorem 19 (High rate lifted codes, [GKS13]). Let 0 < ρ, γ < 1 and n0 ≥ 1. Define m := d1/δe,
q := 2s ≥ nγ

0 , b := 1 + dlog me and c := db2bm log(1/ρ)e. Finally, let k := (1− 2−c)q. Then the
code Liftq(m, k) has length n ≥ n0, rate R ≥ 1− ρ, and is locally correctable with locality ` = nγ for
a δ = 2−c/6 fraction of errors.

However, for generic parameters m, k, q, exact formulae for the dimension of affine lifted
codes are hard to produce. We give some concrete values in Appendix C.

3.2 Projective lifted codes

In this section, we aim at defining the projective analogues of the lifted Reed-Solomon codes
introduced by Guo et al. [GKS13]. A way to build an evaluation code over a projective space
is to evaluate homogeneous polynomials of fixed degree v, as it is done for projective Reed-
Muller codes. It raises the problem of determining a meaningful value of v we could use to
define projective lifted codes. Equation (4) suggests to set v = vm,k := k + (m− 1)(q− 1).

Definition 20. Let 1 ≤ k ≤ q− 1, m ≥ 1 and v = vm,k = k + (m− 1)(q− 1). The projective
lifting of order m of the projective Reed-Solomon code PRSq(k) is

PLiftq(m, k) = {evPm(f) | f ∈ Fq[X]Hv , ∀L ∈ EmbP(m), evP1(f ◦ L) ∈ PRSq(k)} .

Such a code will shortly be called a projective lifted code, and its length is θm,q = |Pm| =
(qm+1 − 1)/(q− 1).

3.3 Monomiality of projective lifted codes

Similarly to the affine setting, a main issue remains to give a basis of PLiftq(m, k). In this
subsection, we show that projective lifted codes are monomial, and then we compute their
degree set. For this purpose, we first prove Theorem 21 which can be seen as a projective
analogue of the monomial extraction lemma of Kaufman and Sudan [KS08].

Theorem 21. Let C = evPm(F) be a projective evaluation code, where F is a subspace of Fq[X]Hv for
some m, v ≥ 1. Assume that Proj(Fq, m) ⊆ Aut(C). Then C is monomial.

10

Before diving straight into the proof, we first observe that lie in Proj(Fq, m) elements
(wv

M, σM−1) where M is:

• a diagonal isomorphism Diaga for any a ∈ (F×q)
m+1, where

Diaga : Pm → Pm

(P0 : . . . : Pm) 7→ (a0P0 : . . . : amPm)

• an elementary switch of coordinates si,j for any 0 ≤ i, j ≤ m, i 6= j, where

si,j : Pm → Pm

(P0 : . . . : Pi : . . . : Pj : . . . : Pm) 7→ (P0 : . . . : Pj : . . . : Pi : . . . : Pm)

• an elementary transvection ti,j,β for any 0 ≤ i, j ≤ m, i 6= j, and β ∈ Fq, where

ti,j,β : Pm → Pm

(P0 : . . . : Pi : . . . : Pm) 7→ (P0 : . . . : Pi + βPj : . . . : Pm)

Proof of Theorem 21. Let c = evPm(f) ∈ C, where f = ∑d fdXd, and denote by D = Deg(f) =
{d, fd 6= 0}. Our goal is to prove that every j ∈ D satisfies evPm(Xj) ∈ C. The proof will
consist in three main parts:

(i) we prove that evPm(Qj(X)) ∈ C for some polynomial Qj(X) such that j ∈ Deg(Qj) and
Deg(Qj) is much smaller than Deg(C);

(ii) we analyse and rephrase Deg(Qj), allowing us to write Qj as X j1
1 . . . X ja

a R(X0, Xa+1, . . . , Xm)
for some multivariate polynomial R;

(iii) we prove that, if there exists an (m− a + 1)-variate polynomial R satisfying some pre-
scribed properties and such that evPm(X j1

1 . . . X ja
a R(X0, Xa+1, . . . , Xm)) ∈ C, then we can

compute an (m − a)-variate polynomial R′ satisfying the same prescribed properties,
and such that the vector evPm(X j1

1 . . . X ja+1
a+1R′(X0, Xa+2, . . . , Xm)) ∈ C.

Reasoning inductively on the last part will conclude the proof.
Proof of part (i). Let j ∈ D, and define

Qj(X) := (−1)m+1 ∑
a∈(F×q)m+1

(m

∏
i=0

a−ji
i

)
(f ◦Diaga)(X) .

Since C is linear and Diaga ∈ Aut(C) for every a ∈ (F×q)
m+1, we see that evPm(Qj(X)) ∈ C. We

also have:

Qj(X) = (−1)m+1 ∑
a∈(F×q)m+1

(m

∏
i=0

a−ji
i

)
∑
d

fd ad0
0 . . . adm

m Xd

= (−1)m+1 ∑
d

fd ∑
a∈(F×q)m+1

(m

∏
i=0

adi−ji
i

)
Xd

= (−1)m+1 ∑
d

fd

m

∏
i=0

(
∑

ai∈F×q

adi−ji
i︸ ︷︷ ︸

=0 if di 6≡ji mod (q−1), −1 otherwise

)
Xd

= ∑
d∈Ej

fdXd ,

11

where Ej = {d ∈ D, d ≡ j mod (q− 1)}.
Proof of part (ii). The code C is invariant under the action of elementary switches of coor-

dinates. Therefore one can assume w.l.o.g. that, if exists, the ji’s satisfying ji ∈ (q− 1)N lie
at the end of the tuple j. Besides, by P-reduction and by definition of Ej, we can assume that
ji /∈ {0, q− 1} implies that ji = di, except maybe for the leftmost non-zero coordinate of d and
j. Therefore, w.l.o.g. there exists a ∈ [1, m] such that every d ∈ Ej satisfies the following three
properties

∀1 ≤ i ≤ a, we have di = ji < q− 1
∀a < i ≤ m, we have di ∈ {0, q− 1} and ji ∈ {0, q− 1}
d0 = v−∑m

i=1 di .

Therefore, Qj(X) can be written as X j1
1 . . . X ja

a R(X0, Xa+1, . . . , Xm), where R is an homoge-
neous polynomial of degree v−∑a

i=1 ji, whose monomials have partial degree either 0 or q− 1,
for every coordinate Xi, i > a.

Proof of part (iii). Recall that we aim to prove that evPm(X j0
0 X j1

1 . . . X jm
m) ∈ C, and we know

that evPm(Qj(X)) ∈ C. Our strategy is to proceed inductively, from i = a to m, by proving there
exists an (m− i + 1)-variate polynomial Ri such that j ∈ Deg(X j1

1 . . . X ji
i Ri(X0, Xi+1, . . . , Xm))

and evPm(X j1
1 . . . X ji

i Ri(X0, Xi+1, . . . , Xm)) ∈ C. Notice that step i = a has been proved in part
(ii), and that step i = m concudes the proof. Hence there remains to prove the induction step.

Write Ri = R′i + Xq−1
i+1 R′′i , where polynomials R′i and R′′i do not depend on Xi+1. Also

denote by Si = X j1
1 . . . X ji

i Ri(X0, Xi+1, . . . , Xm), and assume that evPm(Si) ∈ C and j ∈ Deg(Si).
If R′′i = 0, then the induction step is proved. Otherwise:
• 1st case: ji+1 = 0. Since ∑β∈Fq

(Xi+1 + βX0)q−1 = −Xq−1
0 (see Lemma 62 in the appendix),

we get

∑
β∈Fq

Si(X0, . . . , Xi+1 + βX0, . . . , Xm)

= X j1
1 . . . X ji

i ∑
β∈Fq

(
R′i(X0, Xi+2, . . . , Xm) + (Xi+1 + βX0)

q−1R′′i (X0, Xi+2, . . . , Xm)
)

=
(

∑
β∈Fq

X j1
1 . . . X ji

i R′i(X0, Xi+2, . . . , Xm)
)
− X j1

1 . . . X ji
i Xq−1

0 R′′i (X0, Xi+2, . . . , Xm)

= −X j1
1 . . . X ji

i Xq−1
0 R′′i (X0, Xi+2, . . . , Xm) .

By linearity and stability of C under elementary transvections, evPm(Si) ∈ C ensures that the
word evPm(X j1

1 . . . X ji
i Xq−1

0 R′′i (X0, Xi+2, . . . , Xm)) ∈ C. We conclude by defining Ri+1 = Xq−1
0 R′′i .

• 2nd case: ji+1 = q− 1. Since ∑β∈Fq
(βXi+1 + X0)q−1 = −Xq−1

i+1 , we get

∑
β∈Fq

Si(X0, . . . , Xi+1 + βX0, . . . , Xm)

= X j1
1 . . . X ji

i ∑
β∈Fq

(
R′i(X0, Xi+2, . . . , Xm) + (βXi+1 + X0)

q−1R′′i (X0, Xi+2, . . . , Xm)
)

= −X j1
1 . . . X ji

i Xq−1
i+1 R′′i (X0, Xi+2, . . . , Xm) .

Similarly to the first case, we can conclude by defining Ri+1 = R′′i .

Projective lifted codes can be proved invariant under Proj(Fq, m).

Lemma 22. Let k ≤ q − 1, m ≥ 1 and C = PLiftq(m, k). Then Proj(Fq, m) ⊆ Aut(C). Said
differently,

∀c = evPm(f) ∈ C, ∀M ∈ GLm+1(Fq), evPm(f ◦M) ∈ C .

12

Proof. It is sufficient to notice that, for every L ∈ EmbP(m) and every M ∈ GLm+1(Fq), the
map M ◦ L also lies in EmbP(m).

As a corollary,

Corollary 23. Every projective lifted code is monomial.

3.4 Degree sets of lifted codes

A natural question is now to determine the degree set of PLiftq(m, k). Let us first recall that
affine lifted codes have the following degree sets (see equation (3)):

ADegq(m, k) := Deg(Liftq(m, k)) = {d ∈ Bm
∞(k), ∀e ≤p d, |e| ≤ k} .

Similarly, we define PDegq(m, k) := Deg(PLiftq(m, k)).
In this subsection, we state a few links between degree sets of affine and projective lifted

codes. Propositions 24 and 25 show that d ∈ PDeg(m, k) can be sent either to ADeg(m, k− 1)
or to PDeg(m− 1, k), according to the value of d0. Then, in Theorem 26 we derive a recursive
formula on the degree sets of affine/projective lifted codes, which translates into another
recursive formula on the dimension of these codes (Corollary 27).

Proposition 24. Let v = k + (m− 1)(q− 1) for 1 ≤ k ≤ q− 1 and m ≥ 2. Let also d = (d0, d∗) ∈
Sm+1(v) such that d0 6= 0. Then:

evPm(Xd0
0 Xd∗) ∈ PLiftq(m, k) ⇐⇒ evAm(Xd∗) ∈ Liftq(m, k− 1) ,

or, equivalently,

d = (d0, d∗) ∈ PDegq(m, k) ⇐⇒ d∗ ∈ ADegq(m, k− 1) .

Proof. (⇒). Let evPm(Xd0
0 Xd∗) ∈ PLiftq(m, k) with d0 6= 0. Let also L∗ ∈ EmbA(m); we need

to prove that evA1(Xd∗ ◦ L∗) ∈ RSq(k− 1). Let us define L = (L0, . . . , Lm) ∈ Hom(F2
q, Fm+1

q)
as follows: the m last coordinates (L1, . . . , Lm) = L∗, and the first coordinate L0 is chosen
between L0(S, T) = S and L0(S, T) = T, in order to have rank(L) = 2. Now assume w.l.o.g.
that L0(S, T) = S.2 Then,

evP1(Xd0
0 Xd∗ ◦ L) = evP1(X0Xd∗ ◦ L) = evP1(S . (Xd∗ ◦ L∗)(S, T)) ∈ PRSq(k) (5)

since Xd0
0 Xd∗ and X0Xd∗ evaluate identically. Besides, for any homogeneous polynomial

P(S, T), we know that

evP1(S . P(S, T)) ∈ PRSq(k) ⇐⇒ evA1(P(1, T)) ∈ RSq(k− 1) . (6)

Applying this to P(S, T) = (Xd∗ ◦ L∗)(S, T), we get our result.
(⇐). Let evAm(Xd∗) ∈ Liftq(m, k) and L ∈ EmbP(m). Let also d0 6= 0 such that (d0, d∗) ∈

Sm+1(v). We need to prove that evP1(Xd0 Xd∗ ◦ L) ∈ PRSq(k). If L0 = 0, then the result holds
since 0 ∈ PRSq(k). Otherwise, it is worthwhile to notice that, since PRSq(k) is invariant under
Proj(Fq, 1), we can assume w.l.o.g. that L0(S, T) = S. Define L∗ = (L1, . . . , Lm), which lies in
EmbA(m) by definition. Therefore evA1(Xd∗ ◦ L∗) ∈ RSq(k− 1), and using (5) and (6), we get
our claim.

2Two points could be clarified here. First, if the linear map (S, L∗(S, T)) as rank 1, by definition of EmbA(m)
the linear map (T, L∗(S, T)) has rank 2. Second, the choice L0(S, T) = S can be done since PRSq(k) is invariant
under Proj(Fq, 1).

13

Proposition 25. Let v = k + (m− 1)(q− 1) for 1 ≤ k ≤ q− 1 and m ≥ 2. Let also d = (d0, d∗) ∈
Sm+1(v), ans assume that d0 = 0. Then:

evPm(Xd) ∈ PLiftq(m, k) ⇐⇒ evPm−1(Xd∗) ∈ PLiftq(m− 1, k) ,

or equivalently,
d = (0, d∗) ∈ PDegq(m, k) ⇐⇒ d∗ ∈ PDegq(m− 1, k) .

Proof. (⇒). Let evPm(Xd) ∈ PLiftq(m, k) where d = (d0, d∗) and d0 = 0. Let also L′ ∈
EmbP(m− 1); we need to prove that evP1(Xd∗ ◦ L′) ∈ PRSq(k). Any L0 ∈ Hom(F2

q, Fq) extends
L′ to L = (L0, L′) ∈ EmbP(m). Therefore,

evP1(Xd∗ ◦ L′) = evP1(X0
0Xd∗ ◦ L) = evP1(Xd ◦ L) (7)

lies in PRSq(k) since evPm(Xd) ∈ PLiftq(m, k).
(⇐). Let d = (d0, d∗) ∈ Sm+1(v) with d0 = 0, and assume that evPm−1(Xd∗) ∈ PLiftq(m−

1, k). Let also L ∈ EmbP(m); we need to prove that evP1(Xd ◦ L) ∈ PRSq(k). Write L = (L0, L′).
If L′ ∈ EmbP(m− 1), then the result follows using (7). The case rank L′ = 1 is a bit trickiest.
Since Proj(Fq, 1) let the code PRSq(k) invariant, we can assume w.l.o.g. that, seen as a 2×m
matrix, the second row of L′ is zero. In other words, L′(S, T) can be written (`1S, . . . , `mS)
with some non-zero (`1, . . . , `m) ∈ Fm

q . Therefore, (Xd ◦ L)(S, T) = αS|d
∗| with α ∈ Fq, and

evP1(Xd ◦ L) = α evP1(S|d
∗|) ∈ PRSq(k) since the P-reduction of (|d∗|, 0) is (k, 0) which lies in

Deg(PRSq(k)).

Theorem 26. For every m ≥ 2 and 1 ≤ k ≤ q − 1, there is a bijection between PDeg(m, k) and
PDeg(m− 1, k) ∪ADeg(m, k− 1).

Proof. According to Propositions 24 and 25, this bijection is given by:

d = (d0, d∗) 7→
{

d∗ ∈ ADeg(m, k− 1) if d0 6= 0
d∗ ∈ PDeg(m− 1, k) otherwise.

A recursive formula on the dimension of lifted codes follows.

Corollary 27. Let m ≥ 2 and 1 ≤ k ≤ q− 1. Then,

dim PLiftq(m, k) = dim PLiftq(m− 1, k) + dim Liftq(m, k− 1) .

One can also check that PLiftq(1, k) = PRSq(k) and Liftq(1, k− 1) = RSq(k− 1). Therefore
we also get:

Corollary 28. Let m ≥ 1 and 1 ≤ k ≤ q− 1. Then,

dim PLiftq(m, k) =
m

∑
j=1

dim Liftq(j, k− 1) + 1 .

Finally, if one would like to explicit PDegq(m, k), one could use iteratively the bijective
map given in Theorem 26 and the characterisation of ADegq(j, k − 1), 1 ≤ j ≤ m, given
previously. For d = (d0, . . . , dm) ∈ Sm+1(v), define ι(d) the minimum i such that di 6= 0, and
η(d) = (dι(d)+1, . . . , dm) ∈ Sm−ι(d). We then obtain

Corollary 29. Let m ≥ 2 and 1 ≤ k ≤ q− 1. Denote by v = k + (m− 1)(q− 1). Then,

PDegq(m, k) = {d ∈ Sm+1(v), ∀e ≤p η(d), |e| ≤ k− 1} .

14

One also can see that any d ∈ Sm+1(k) can be lifted in Deg(PLiftq(m, k)) by adding (q−
1)(m− 1) to the leftmost non-zero coordinate of d. Hence a corollary is the projective analogue
of equation (4).

Corollary 30. Let 1 ≤ k ≤ q− 1 and v = k + (m− 1)(q− 1). Then we have:

PRMq(m, k) ⊆ PLiftq(m, k) ⊆ PRMq(m, v) ,

where the inclusion are taken up to diagonal isomorphisms of codes.

Example 31. We give here the smallest example of projective lifted code that is not isomorphic
to any projective Reed-Muller code. Let q = 4, m = 2 and k = 3, giving v = k + (m− 1)(q−
1) = 6. The corresponding projective Reed-Muller code has length q2 + q + 1 = 21, dimension
(m+d+1

d) = 10, and admits

D = {(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 3, 0),
(0, 2, 1), (0, 1, 2), (0, 0, 3)}

as a degree set. A computation shows that PLiftq(m, k) is given by the following degree set:

DL = {(6, 0, 0), (5, 1, 0), (5, 0, 1), (4, 2, 0), (4, 1, 1), (4, 0, 2), (0, 6, 0),
(0, 5, 1), (0, 4, 2), (0, 0, 6), (2, 2, 2)} .

One observes that DL = D′ ∪ {(2, 2, 2)}, where D′ is obtained by adding q − 1 = 3 to the
leftmost non-zero coordinate of every d ∈ D. Besides, the affine lifted code Liftq(m, k− 1) has
the following degree set:

DA = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 2)} .

We see that DA corresponds to elements d ∈ DL such that d0 6= 0, then punctured on their first
coordinate. We also remark that the remaining elements {(0, 6, 0), (0, 5, 1), (0, 4, 2), (0, 0, 6)},
being at first punctured on their first coordinate and then P-reduced, give the degree set
{(3, 0), (2, 1), (1, 2), (0, 3)} of PRSq(k).

Finally, notice that the extra degree (2, 2, 2) which makes PLiftq(m, k) non-isomorphic to
PRMq(m, k) corresponds to the codeword c = evP2(X2Y2Z2). A tedious computation can then
confirm that any embedding (S, T) 7→ (a0S + b0T, a1S + b1T, a2S + b2T) sends c to a projective
Reed-Solomon codeword.

4 Local correction

4.1 Definitions

This section is devoted to local correcting properties of projective lifted codes. After Guo et
al.’s work [GKS13], we know that affine lifted codes are (perfectly smooth) locally correctable
codes. We first recall this notion.

Definition 32 (locally correctable code). Let Σ be a finite set, 2 ≤ ` ≤ k ≤ n be integers, and
δ, ε ∈ [0, 1]. A code C : Σk → Fn

q is (`, δ, ε)–locally correctable if and only if there exists a
randomized algorithm D such that, for every input i ∈ [1, n] we have:

• for all c ∈ C and all y ∈ Fn
q , if |{j ∈ [1, n], yj 6= cj}| ≤ δn, then

P(D(y)(i) = ci) ≥ 1− ε ,

where the probability is taken over the internal randomness of D;

15

• D reads at most ` symbols yq1 , . . . , yq` of y.

Notation D(y) refers to the fact that D has oracle access to single symbols yqj of the word
y ∈ Fn

q . The parameter ` is called the locality of the code. Moreover, the code C is said
perfectly smooth if on arbitrary input i, each individual query of the probabilistic algorithm D
is uniformly distributed over the coordinates of the word y.

By definition of projective lifted codes, if c = evPm(f) ∈ PLiftq(m, k), then evP1(f ◦ L) ∈
PRSq(k) for all L ∈ EmbP(m). In Remark 16 we noticed that evP1(f ◦ L) is not a subword of
evPm(f). Nevertheless, denoting v = k + (m− 1)(q− 1), there still exists wv

L ∈ (F×q)
q+1 such

that wv
L ? evP1(f ◦ L) is such a subword. Moreover, given L and the standard representation

of points in P1, each coordinate of wv
L is expressed as a v-th power of a linear combination of

O(m) Fq-symbols (hence, it is also a k-th power since every x ∈ Fq satisfies xq = x). Therefore,
wv

L ∈ F
q+1
q can be computed in O(mq log k) operations over Fq.

To sum up we get:

Lemma 33. Let c = evPm(f) ∈ PLiftq(m, k) and L ∈ EmbP(m). There exists a deterministic algo-
rithm which computes evP1(f ◦ L) from c and L, with q + 1 queries to c and O(mq log k) operations
in Fq.

4.2 Local correcting algorithms

For convenience, we fix a projective lifted code PLiftq(m, k), and we denote by n = θm,q its
length. We also denote by ∞ the point (0 : 1) ∈ P1, and for a given P ∈ Pm,

EmbP(m, P) := {L ∈ EmbP(m), ev∞(L) = P}

is the set of embeddings having P as image of the point at infinity. We denote by L(P1) the
set {evQ(L), Q ∈ P1}.

In this subsection, we present a generic local correcting algorithm for projective lifted
codes. This algorithm depends on a parameter s ∈ [k + 1, q], and it informally works as
follows: (i) pick at random s points on a random projective line of Pm, (ii) correct the associated
noisy PRSq(k) codeword, and (iii) output the desired corrected symbol. This is somewhat a
projective analogue of a generalization of the two well-known Reed-Muller local correcting
algorithms (see Yekhanin’s survey [Yek12, Section 2.2]), since we do not restrict s ∈ {k + 1, q}.

Let us assume we have access to a query generator Rs, for k + 1 ≤ s ≤ q, with parameters
P ∈ Pm and L ∈ EmbP(m, P), such that for all P we have:

• for all L ∈ EmbP(m, P), if S← Rs(P, L), then S ⊆ L(P1) and |S| = s,

• ∀Q ∈ Pm, PrL←EmbP(m,P)
S←Rs(P,L)

[Q ∈ S] = s/n.

Such a query generator can be implemented, as we show in Appendix B.
We also assume to have at our disposal an error-and-erasure correcting algorithm for

PRSq(k), which corrects q + 1 − s erasures and up to t = b s−k−1
2 c errors (we recall that

PRSq(k) is an MDS code and dim PRSq(k) = k + 1). Call CorrPRS
s this correcting algorithm,

and see [RTM79] for a simple example.

Theorem 34. Let k + 1 ≤ s ≤ q and t = b s−k−1
2 c. For every δ ≤ t+1

2s , the code PLiftq(m, k) is a
perfectly smooth (s, δ, δs

t+1)-locally correctable code using Algorithm 1.

Proof. Let us analyse Algorithm 1. Concerning the locality, the algorithm indeed makes ` = s
queries to y. Besides, it is smooth due to our assumption on Rs. Now let us focus on the
correctness.

16

Algorithm 1: A generic local correcting algorithm CorrPLift
s for C := PLiftq(m, k)

Data: a noisy word y ∈ FPm

q such that d(c, y) ≤ δn for some codeword c ∈ C, and a
point P ∈ Pm where to correct yP

Result: the symbol cP
1 Pick uniformly at random L← EmbP(m, P), and pick S = {Q1, . . . , Qs} ← Rs(P, L).
2 Denote by Rj = evQj(L). Collect yR1 , . . . , yRs and define y′ ∈ FP1

q by:

y′Q :=

{
wv

L,Qj
· yRj if Q = Qj for some j

⊥ otherwise.

where wv
L,Qj

is the symbol indexed by Qj in the tuple wv
L given in Remark 16

3 Use CorrPRS
s to correct y′ as a noisy codeword of PRSq(k).

4 If this succeeds, return y′(∞). Otherwise return ⊥.

Let y ∈ FPm

q such that d(y, c) ≤ δn for some c ∈ PLiftq(m, k). Denoting E = {Q ∈ Pm, cQ 6=
yQ}, we have |E| ≤ δn. By definition of the correcting algorithm of PRSq(k), the output value
is correct as long as |E ∩ S| ≤ t. Let us bound this probability. Using Markov’s inequality,

PrL,S[|E ∩ S| ≤ t] = 1− PrL,S[|E ∩ S| ≥ t + 1] ≥ 1−EL,S[|E ∩ S|]/(t + 1) .

By linearity, we get:

EL,S[|E ∩ S|] = ∑
e∈E

PrL,S[e ∈ S] = ∑
e∈E

s
n
= δn

s
n
= δs .

Hence,

PrL,S[algorithm succeeds] ≥ 1− δs
t + 1

.

We exhibit the two extreme instances which correspond to the well-known correcting al-
gorithms of Reed-Muller codes presented in [Yek12] for instance. The first one picks the least
possible number of symbols, but assumes few errors on the corrupted codeword.

Corollary 35 (s = k + 1). For every δ ≤ 1
2(k+1) , the code PLiftq(m, k) is a perfectly smooth (k +

1, δ, δ(k + 1))-locally correctable code.

Proof. s = k + 1 implies t = 0.

The second one achieves local correction under a constant fraction of errors on the cor-
rupted codeword.

Corollary 36 (s = q). Let τ = k+1
q . For every δ ≤ 1

4 (1− τ), the code PLiftq(m, k) is a perfectly
smooth (q, δ, 2δ

1−τ)-locally correctable code.

Proof. s = q implies t = b q(1−τ)
2 c, hence t + 1 ≥ q(1−τ)

2 .

Remark 37. In Algorithm 1, we can avoid to compute the tuple wv
L. Indeed, it can be proved

that for every projective line S ⊂ Pm and every point P ∈ S, there exists an L ∈ EmbP(m)
such that L(P1) = S, P ∈ {ev(1:0)(L), ev∞(L)} and wv

L = (1, . . . , 1).

Remark 38. Local testability of affine lifted codes was also proved by Guo et al. [GKS13]. Once
again, their results rely on the work of Kaufman and Sudan [KS08] regarding the testability of
some families of affine-invariant codes. Though, projective lifted codes cannot be proved lo-
cally testable the same manner, since their automorphism group is slightly different. Though,
this issue is worth addressing in a future work.

17

5 Puncturing and shortening relations between affine and projective
lifted codes

In this section we aim at showing links between affine and projective lifted codes through
shortening and puncturing operations on codes.

5.1 Motivation and similar results

The embedding of both Pm−1 and Am into Pm issues the relation between affine and projective
Reed-Muller codes. Indeed, the hyperplane at infinity Π∞ := {P ∈ Pm, P0 = 0} defines a
restriction map

π : FPm

q → F
Π∞
q

c 7→ c|Π∞
.

Map π induces a surjective map PRMq(m, k) � PRMq(m− 1, k) by seeing Π∞ as the projec-
tive space Pm−1. Indeed, every m-variate homogeneous polynomial of degree k can be also
considered as an (m + 1)-variate homogeneous polynomial of same degree (in which the new
variable, denoted X0, does not appear).

Besides, the vector space K := ker
(
PRMq(m, k) � PRMq(m− 1, k)

)
consists in evaluation

vectors of homogeneous polynomials P ∈ Fq[X0, . . . , Xm]Hk such that X0 divides P. That is,

K = {evPm(X0Q), Q ∈ Fq[X0, . . . , Xm]
H
k−1} .

Now, restricting K to coordinates in (Pm \Π∞) ' Am leads to a vector space isomorphic
to RMq(m, k− 1), since X0 evaluates to 1 on every affine point of Pm.

To sum up, we have the following short exact sequence:

0→ RMq(m, k− 1)→ PRMq(m, k) π−→ PRMq(m− 1, k)→ 0 .

From a coding theory point of view, it may be more convenient to see this sequence in the
terminology of puncturing and shortening. Indeed, up to isomorphism, the surjective map
π corresponds to the puncturing of PRMq(m, k) on coordinates lying in Am ⊂ Pm, while the
injection RMq(m, k− 1) ↪−→ PRMq(m, k) corresponds to its shortening on Pm−1 ⊂ Pm.

A very similar exact sequence holds for the codes coming from the block designs of inci-
dences between points and hyperplanes. Let us denote by C(D) the code whose dual code is
generated by the incidence matrix of a block design D (we refer to [Sti04, AK92] for details on
block designs and their associated codes). Let also AGt(m, q) and PGt(m, q) be respectively
the designs of points and t-flats in affine and projective spaces of dimension m > t over Fq.
Then it holds that

0→ C(AG1(m, q))→ C(PG1(m, q)) π−→ C(PG1(m− 1, q))→ 0 .

This result is presented by Assmus and Key in [AK92, Theorem 5.7.2] for the dual of these
codes, but it remains true for the codes we consider, since duality of codes preserves such
short sequences.

In this section, our goal is to prove similar results for lifted codes.

5.2 Shortening and puncturing projective lifted codes

We recall that Π∞ denotes the hyperplane of Pm defined by X0 = 0.

Theorem 39. Let m ≥ 1, 1 ≤ k ≤ q− 1, and v = k + (m− 1)(q− 1). Let also

S := {c|Am | c ∈ PLiftq(m, k) and cP = 0, ∀P ∈ Π∞}

18

be the shortening of PLiftq(m, k) at the coordinates indexed by points in Π∞, and

P := {c|Π∞
| c ∈ PLiftq(m, k)}

be the puncturing of PLiftq(m, k) at the coordinates indexed by points in Pm \Π∞. Then

S = Liftq(m, k− 1) and P = PLiftq(m− 1, k) .

Proof. (i) Proof of S = Liftq(m, k − 1). Let c = evAm(Xd) ∈ Liftq(m, k − 1) and extend it to
c′ = evPm(Xd0

0 Xd) ∈ PLiftq(m, k), with d0 = v − |d| > 0. We notice that c′ vanishes on the
coordinates corresponding to points in Π∞, and that c′ = c elsewhere, hence c ∈ S .

Conversely, let c ∈ S . There exists f ∈ Fq[X]Hv such that c′ = evPm(f) satisfies c′ = 0 over
all coordinates of Π∞, and c′ = c elsewhere. It means that the polynomial f vanishes on the
whole projective hyperplane Π∞ given by X0 = 0. Therefore f vanishes over the hyperplane
Π′∞ of the affine space Am+1 given by X0 = 0.

The previous remark makes sense since we can apply the Combinatorial Nullstellensatz
proved by Alon in [Alo99] (see Theorem 61 in the appendix). This result asserts that, if
W = ∏m

i=0 Wi ⊆ Fm+1
q and deg f = ∑m

i=0 ti with each ti < |Wi|, then f (W) = {0} implies ft = 0,
where ft denotes the coefficient of the monomial Xt in f . In our context, let W = {0} × Fm

q
and t satisfy t0 = 0 and ti ≤ q− 1 for all i > 0. The Combinatorial Nullstellensatz then shows
that Coeff(f , Xt) = 0. Therefore every monomial in f must be divisible by X0. Said differently,
f is a sum of monomials Xd with d such that d0 6= 0, and Proposition 24 then shows that
evAm(f) ∈ Liftq(m, k− 1).

(ii) Proof of P = PLiftq(m − 1, k). First, PLiftq(m − 1, k) ⊆ P , since c = evPm−1(Xd) ∈
PLiftq(m− 1, k) can be extended to c′ = evPm(Xd′) ∈ PLiftq(m, k), where we define d′ by
adding q− 1 to the leftmost non-zero coordinate of d.

Conversely, let c′ = evPm(f) ∈ PLiftq(m, k) such that c′|Π∞
∈ P \ {0}. Let Xd be a monomial

in f . If d0 6= 0, then evPm(Xd)|Π∞
= 0, hence one can assume that every monomial Xd

composing f satisfies d0 = 0. Using Proposition 25 and by linearity, it means that c′|Π∞
∈

PLiftq(m− 1, k).

Remark 40. For m = 1, we know that by definition, Liftq(1, k) = RSq(k) and PLiftq(1, k) =
PRSq(k). Therefore, Theorem 39 rewrites the well-known result stating that the shortening at
the infinity of the projective Reed-Solomon code is a (classical) Reed-Solomon code.

Theorem 39 also translates in terms of exact sequences:

Corollary 41. The following exact sequence holds for every 1 ≤ k ≤ q− 1 and m ≥ 1:

0→ Liftq(m, k− 1)→ PLiftq(m, k) π−→ PLiftq(m− 1, k)→ 0 ,

where π is the restriction map to points at infinity.

6 On the practicality of projective lifted codes

We here present miscellaneous results emphasizing the practicality of projective lifted codes.
At first, we present tables and figures demonstrating the gain in terms of information rate,
compared to projective Reed-Muller codes. In Subsection 6.2, we prove that the storage cost of
projective lifted codes can be reduced since they admit (quasi-)cyclic automorphisms. Explicit
information sets are then computed in Subsection 6.3. We conclude this section by estimat-
ing the minimum distance (Subsection 6.4) and connecting our construction to a well-known
family of design-based codes (Subsection 6.5).

19

6.1 Information rate

In this section, we emphasize how projective lifted codes surpasses projective Reed-Muller
codes in terms of code rate (the local correcting capability being fixed). In Figure 1, we
present the rate of PRMq(m, k) and PLiftq(m, k) for increasing values of q = 2e. These codes

are comparable since they have same length n = qm+1−1
q−1 , and same local correction features

(locality and error tolerance). In each subfigure of Figure 1, four curves are plotted: blue
ones represent projective lifted codes and red ones projective Reed-Muller codes. Plain curves
correspond to the minimum error tolerance setting, for which local correction admits no error
on the line being picked (see Section 4). To compare, dotted curves correspond to a constant
fraction of errors tolerated by the local correcting algorithm. Here, the constant has been
arbitrarily fixed to 1/32.

102 103 104 105 106
length0

0.2

0.4

0.6

0.8

1

rate

PLiftq(m= 2, k= q− 1)
PRMq(m= 2, k= q− 1)
PLiftq(m= 2, k= 15q/16)
PRMq(m= 2, k= 15q/16)

102 103 104 105 106
length0

0.2

0.4

0.6

0.8

1

rate

PLiftq(m= 3, k= q− 1)
PRMq(m= 3, k= q− 1)
PLiftq(m= 3, k= 15q/16)
PRMq(m= 3, k= 15q/16)

103 104 105 106
length0

0.2

0.4

0.6

0.8

1

rate

PLiftq(m= 4, k= q− 1)
PRMq(m= 4, k= q− 1)
PLiftq(m= 4, k= 15q/16)
PRMq(m= 4, k= 15q/16)

Figure 1: Rate of projective Reed-Muller codes (red) and projective lifted codes (blue).

6.2 Automorphisms and (quasi-)cyclicity

In this section, we address the question of the (quasi-)cyclicity of projective lifted codes. More
precisely, we prove in Proposition 46 that, under arithmetic constraints between q and m, the
code PLiftq(m, k) is a quasi-cyclic code up to diagonal isomorphims. This result relies deeply
on the fact that PLiftq(m, k) is invariant under the action of Proj(Fq, m), that has been proved
in Lemma 22.

In coding theory, automorphism groups of codes, and a fortiori their permutation groups,
are interesting for many reasons. For instance, they can be used for reducing the practical
storage cost of the codes (through the storage of their generator or parity-check matrix). Cyclic
or quasi-cyclic codes are known to be specifically efficient in that sense.

20

Definition 42 (Cyclicity, quasi-cyclicity). A code C ⊆ FX
q , |X| = n, is said cyclic if Perm(C)

contains a cyclic permutation of order n (that is, an n-cycle). It is said quasi-cyclic of index c if
Perm(C) contains a permutation which is the product of c different (n/c)-cycles with disjoint
orbits. In particular, a cyclic code is a quasi-cyclic code of index 1.

In all what follows, we fix a finite field Fq and an integer m ≥ 1, and we define n = |Pm|
and d = gcd(n, q− 1).

Definition 43 (representation of Pm). A tuple u = (u1, . . . , un) ∈ (Fm+1
q)n represents Pm if

{u1, . . . , un} = Pm, when the ui are taken up to projective equivalence.

Let now φ : Fqm+1 → Fm+1
q be an isomorphism of Fq-vector spaces, and ω be a primitive

element of Fqm+1 . We define β := ωq−1. It is clear that β has order n in the multiplicative group
F×qm+1 since (q− 1)n = qm+1 − 1. For every 0 ≤ i < d, we define:

Ui =
(

φ
(
ωiβd), . . . , φ

(
ωi(βd)n/d)) ∈ (Fm+1

q)n/d .

We also define its concatenation U = U0 | . . . | Ud−1 ∈ (Fm+1
q)n.

Lemma 44. If n/d and q− 1 are coprime, then U represents Pm.

Proof. We need to prove that all φ(ωiβdj) define distinct projective points for 0 ≤ i < d and
1 ≤ j ≤ n/d. Since φ is bijective, it reduces to prove that, for 0 ≤ i1, i2 < d and 1 ≤ j1, j2 ≤ n/d,
if ωi1−i2 βd(j1−j2) ∈ Fq, then (i1, j1) = (i2, j2).

Assume (ωi1−i2 βd(j1−j2))q−1 = 1. Then ord(ω) = (q − 1)n divides (q − 1) × ((i1 − i2) +
d(q− 1)(j1 − j2)), that is, n | (i1 − i2) + d(q− 1)(j1 − j2).

Since d | n, we get d | (i1 − i2) which implies i1 = i2 because 0 ≤ i1, i2 < d. Hence
n | d(q − 1)(j1 − j2), and our assumption gcd(n/d, q − 1) = 1 ensures that (n/d) | j1 − j2.
Since 1 ≤ j1, j2 < n/d, we finally obtain j1 = j2.

Of course, every u = φ(ωiβdj) ∈ Ui is not necessarily represented in a standard form.
Denote by Pu ∈ Fm+1

q its standard form. We have u = wuPu and we can define w = (wu)u∈U ∈
Fn

q . Up to a reordering, if n/d and q− 1 are coprime, then we have

U = w ? P

where P ∈ (Fm+1
q)n denotes the standard evaluation points of Pm. Similarly to the definition

of evPm given in the introduction, we can define a map evU : f 7→ (f (u) : u ∈ U).

Lemma 45. Assume n/d and q− 1 are coprime. Let C = PLiftq(m, k), v = k + (m− 1)(q− 1), and
denote by D = Deg(C). Let also C ′ = evU(Poly(D)). Then, up to a permutation of coordinates,

C ′ = wv ? C,

where wv denotes the v-fold ?-product of w by itself.

Proof. If P ∈ Pm is represented by u in U, then by definition (evU(f))u = wv
u evP(f). Since

C ′ = evU(Poly(Deg(C))), we get our result.

Let us now introduce σ : Fqm+1 → Fqm+1 given by x 7→ βx. We also denote by ψ := φ ◦ σ ◦ φ−1

the associated map over the vector space Fm+1
q . It is clear that ψ ∈ Hom(Fm+1

q , Fm+1
q), and

since σ and φ are bijective, ψ ∈ GLm+1(Fq). We finally denote by ψi the i-fold composition of
ψ. We then have ψi(P) = φ(ωi(q−1)φ−1(P)) for any point P ∈ Pm.

Proposition 46. If n/d and (q− 1) are coprime, then C ′ = wv ? PLiftq(m, k) is quasi-cyclic of index
d, through the permutation ψd ∈ S(U). The orbits of ψd are given by the subsets Ui.

21

Proof. We can check that ψd(U) = U, hence ψd ∈ S(U). Since ψd ∈ GLm+1(Fq), the polyno-
mial space Poly(D) is invariant under ψd, where D = Deg(C). Besides, C ′ = evU(Poly(D))
thanks to Lemma 45. Therefore ψd ∈ Perm(C ′).

Let us now prove that ψd is an (n/d)-cycle. For φ(ωiβjd) ∈ Ui, we have

ψd(φ(ωiβjd)) = φ(ωiβjdβd) = φ(ωiβ(j+1)d) ∈ Ui .

It remains to show that the order of ψd is n/d. Since φ is bijective and U represents Pm, for
every 0 ≤ s ≤ t < n/d we have:

∀u ∈ Ui, (ψd)s(u) = (ψd)t(u) ⇐⇒ ω(t−s)d(q−1) = 1 ⇐⇒ n | (t− s)d(q− 1) .

Our assumption on n/d and (q− 1) implies that t = s; hence ψd has order n/d.

As an easy corollary, when d = 1 we obtain

Corollary 47. If n and q− 1 are coprime, then for all 1 ≤ k ≤ q− 1 the code wv ? PLiftq(m, k) is
cyclic.

Remark 48. A very similar approach was used by Berger and de Maximy in [BdM01], in order
to prove the quasi-cyclicity of codes isomorphic to our definition of projective Reed-Muller
codes.

6.3 Explicit information sets

In this section, we aim at giving explicit information sets for projective lifted codes. Such
sets are useful in order to extend the local correctability of lifted codes to a local decodability
property (see [Yek12]).

Our techniques are highly inspired by the work of Guo and Kopparty [GK16, Appendix
A]. We also prove a quite stronger result, being that a quite large family of affine evaluation
codes presents the same information sets as affine lifted codes.

Monomiality of bounded degree affine evaluation codes. Similarly to the previous section,
let φ : Fqm → Fm

q be an Fq-isomorphism. We denote by Fq[X]∞q−1 := Poly(Bm
∞(q − 1)) the

space of m-variate polynomials of partial degree bounded by q − 1. If f ∈ Fq[X]∞q−1 is seen
as a function, then the map f ◦ φ : Fqm → Fqm can be interpolated uniquely as a univariate
polynomial in Fqm [X]qm−1. We denote by φ∗ this process, which also appears to be an Fq-
isomorphism:

φ∗ : Fq[X]∞q−1 → Fqm [X]qm−1

f (X) 7→ (f ◦ φ)(X)

We know that Ω ∈ GLm(Fq) acts on m-variate polynomials by (Ω, f (X)) 7→ f (Ω(X)). For
some subspace F of polynomials, we say that Ω ∈ Aut(F) if { f ◦Ω, f ∈ F} ⊆ F .

For a nonzero a ∈ F×qm , we denote by µa : Fqm → Fqm , x 7→ ax. It is well-known that
GL1(Fqm) = {µa, a ∈ F×qm}. Every map µa being Fq-linear, we have Ma := φ ◦ µa ◦ φ−1 ∈
GLm(Fq). Map Ma is known as the Fq-homomorphism of the multiplication by a ∈ Fqm .

Lemma 49. LetF be a subspace of Fq[X]∞q−1. If GLm(Fq) ⊆ Aut(F), then GL1(Fqm) ⊆ Aut(φ∗(F)).

Proof. Let f ◦ φ ∈ φ∗(F). For every µa ∈ GL1(Fqm), we have f ◦ φ ◦ µa = f ◦ Ma ◦ φ by
definition of the matrix of the multiplication by a. But Ma ∈ GLm(Fq), hence f ◦Ma ∈ F and
we get f ◦ φ ◦ µa ∈ φ∗(F).

Let us define the subgroup of diagonal isomorphisms

Diag(Fq, m) := {Diaga : P 7→ (a1P1, . . . , amPm), a ∈ (F×q)
m} ⊆ GLm(Fq) .

22

Proposition 50. Let F be a subspace of m-variate polynomials of partial degree bounded by q− 2, that
is F ⊆ Poly(Bm

∞(q− 2)). If Diag(Fq, m) ⊆ Aut(F), then F is generated by monomials.

Proof. Let f ∈ F , such that f (X) = ∑d∈D fdXd with D = {d ∈ Nm, fd 6= 0}. It is sufficient to
prove that for all d ∈ D, Xd lies in F .

Let d ∈ D. Similarly to the proof of Theorem 21, we define

Qd(X) := (−1)m ∑
a∈(F×q)m

(m

∏
i=1

a−di
i

)
(f ◦Diaga)(X)

Since F is a vector space and Diag(Fq, m) ⊆ Aut(F), we see that Qd(X) ∈ F .

Qd(X) = ∑
a∈(F×q)m

(m

∏
i=1
−a−di

i

)
∑

j
fj aj1

1 . . . ajm
m Xj

= ∑
j

fj ∑
a∈(F×q)m

(m

∏
i=1
−aji−di

i

)
Xj

= ∑
j

fj

m

∏
i=1

(
− ∑

ai∈F×q

aji−di
i︸ ︷︷ ︸

=0 if di 6=ji , 1 otherwise

)
Xj = fdXd .

We know that d ∈ D, hence fd 6= 0 and by linearity we obtain Xd = 1
fd

Qd(X) ∈ F .

Information sets of some affine evaluation codes. We first recall the definition of an infor-
mation set of a linear code.

Definition 51 (information set). Let C ⊆ FX
q be a linear code of dimension k and support X,

where |X| = n. An information set for C is a subset S ⊆ X, |S| = k such that the restriction of
C to coordinates in X is Fk

q. In other words, S is such that the projection of C on FS
q is injective.

Lemma 52. Let F ⊆ Poly(Bm
∞(q − 1)) and assume that S ⊂ A1(Fqm) is an information set for

evA1(φ∗(F)). Then φ(S) is an information set for evAm(F).

Proof. This follows from the fact that φ∗(F) = { f ◦ φ, f ∈ F} and φ is an Fq-isomorphism.

In the next proposition, we give a result that improves the theorem given by Guo and
Kopparty in [GK16, Appendix A], in the specific case of codes evaluating polynomials with
partial degree bounded by q− 2 (which is the case for many interesting codes). Indeed, their
result holds for affine-invariant codes while we only need codes invariant under GLm(Fq).

Proposition 53. Let C = evAm(F) be an affine evaluation code of dimension k over Fq, and assume
that F ⊆ Poly(Bm

∞(q− 2)) and GLm(Fq) ⊆ Aut(F). Then, for every primitive element ω of Fqm ,
and every isomorphism φ : Fqm → Fm

q , the set {φ(ω), . . . , φ(ωk)} is an information set for C.

Proof. The proof is highly inspired by [GK16, Appendix A]. Thanks to Lemma 52, it is suffi-
cient to prove that S = {ω, . . . , ωk} is an information set for C ′ = evA1(φ∗(F)). Moreover,
since Diag(Fq, m) ⊆ GLm(Fq), the conjunction of Proposition 50 and Lemma 49 ensures that
C ′ is monomial. Denote by I = Deg(C ′) = {i1, . . . , ik}, and let g(X) = ∑i∈I aiXi ∈ F . We need
to prove:

g 6= 0 =⇒ evS(g) 6= 0 .

23

For this sake, we remark that
ωi1 ωi2 . . . ωik

ω2i1 ω2i2 . . . ω2ik

...
...

. . .
...

ωki1 ωki2 . . . ωkik

a1
a2
...

ak

 =

g(ω)
g(ω2)

...
g(ωk)

 = evS(g) .

Since the left-hand square matrix is a Vandermonde matrix and ω is primitive, it is invertible
and the result is proved.

As a corollary we recover Guo and Kopparty’s result, since GLm(Fq) is a subgroup of the
group of affine transformations.

Corollary 54 (given in [GK16]). Let C = Liftq(m, k) for k ≤ q− 2. Then, for every ω primitive
element of Fqm , and every φ isomorphism Fqm → Fm

q , the set {φ(ω), . . . , φ(ωdim C)} is an information
set for C.

The case of projective evaluation codes. We would like to prove a similar result for pro-
jective lifted codes. Unfortunately, one cannot define an isomorphism between P1(Fqm) and
Pm(Fq) since they do not have same cardinality. To solve this issue, our idea is to decompose
Pm(Fq) into affine parts, and to use recursively the links between projective and affine lifted
codes we stated in previous sections.

Let Pm(Fq) =
⊔m

i=0 Am,i(Fq), where

Am,i(Fq) := {(0 : · · · : 0 : 1 : x1 : · · · : xi), (x1, . . . , xi) ∈ Ai(Fq)} .

Informally, Am,i is the affine part of the i-dimensional projective subspace at infinity of Pm.

Theorem 55. Let C = PLiftq(m, k) for k ≤ q− 1. Then, for every ωi primitive element of Fqi , and
every isomorphism φi : Fqi → Am,i(Fq), the set

S =
m⊔

i=0

{φi(ωi), . . . , φi(ω
dim Ci
i)}

is an information set for C, where Ci = Liftq(i, k− 1) for i > 0, and by convention, dim C0 = 1 and
φ0(Fq0) := {(0 : · · · : 0 : 1)}.

Proof. We proceed by induction on m.
• Case m = 1. Then C = PRSq(k) which is an MDS code of dimension k + 1, hence any (k +

1)-subset of P1 is an information set for C. In particular, S = {(0 : 1)} ∪ {φ1(ω1), . . . , φ1(ω
k
1)}

is one of them.
• Induction step. Assume the result holds for step m− 1. A basis of PLiftq(m, k) consists

in evaluating monomials with exponents in PDegq(m, k). Thanks to Theorem 26, we know
that PDegq(m, k) is in bijection with ADegq(m, k − 1) t PDegq(m − 1, k), where the bijection
is given in the proof of the theorem. Hence, there exists a generator matrix of PLiftq(m, k)
defined as follows:

24

G0 0

∗ G1

· · · (1 : x1 : · · · : xm) · · · (0 : . . .)

 Am(Fq) ' Pm−1(Fq)

evaluation of monomials with
degrees in ADeg(m, k− 1)

evaluation of monomials with
degrees in PDeg(m− 1, k)

where G0 and G1 are generator matrices of Liftq(m, k− 1) and PLiftq(m− 1, k) respectively.
Since G1 and G0 are full-rank, we know that the union of an information set S0 of Liftq(m, k−

1) and an information set S1 of PLiftq(m− 1, k) gives an information set S of PLiftq(m, k). In-
formation sets of affine lifted codes are described in Corollary 54 (we just need to take care
about the way we represent affine points in the projective space, whence the definition of the
Am,i, 1 ≤ i ≤ m). Therefore we have S0 = {φm(ωm), . . . , φm(ω

dim Cm
m)} with φm, ωm defined

as in the statement of the theorem. Besides, the inductive step gives the information set of
PLiftq(m− 1, k): S1 =

⊔m−1
i=0 {φi(ωi), . . . , φi(ω

dim Ci
i)}.

Therefore S = S0 t S1 leads to the result at step m.

6.4 Estimation of the minimum distance

We give bounds on the minimum distance of a projective lifted code, depending on the
minimum distance of the underlying projective Reed-Solomon code. In this section, wt(c)
denotes the Hamming weight of a vector c, and nzS(f) denotes the number of zeroes of
f ∈ Fq[X0, . . . , Xm]Hv over the set S ⊆ Pm.

Proposition 56 (upper bound). Let 1 ≤ k ≤ q − 1 and PRSq(k) be the projective Reed-Solomon
code of dimension k + 1 and distance d = q + 1− k. Then the distance D of PLiftq(m, k) satisfies:

D ≤ θm,q − qm−1(q + 1− d)

where θm,q =
qm+1−1

q−1 . As a corollary, the relative distance δ of PRSq(k) and ∆ of PLiftq(m, k) satisfy:

∆ ≤ (1− b)δ + b, where 0 ≤ b ≤ q−2 .

Proof. Let c = evP1(g) ∈ PRSq(k) be a minimum-weight codeword, i.e. wt(c) = d. Assume
that g(X0, X1) = ∑k

i=0 giXi
0Xk−i

1 , and let

f (X0, . . . , Xm) := g0X(q−1)(m−1)+k
1 +

k

∑
i=1

giX
(q−1)(m−1)+i
0 Xk−i

1 ∈ Fq[X0, . . . , Xm]
H
v

where v = (q− 1)(m− 1)+ k. By studying the degrees of f , one can check that c′ := evPm(f) ∈
PLiftq(m, k). Moreover, for every (x0 : x1) ∈ P1, we have:

f (x0, x1, x2, . . . , xm) = g(x0, x1), ∀x = (x2, . . . , xm) ∈ Fm−1
q .

Hence c′ is non-zero, and:

D ≤ wt(c′) = θm,q − nzPm(f) ≤ θm,q − nzP1(g) qm−1 = θm,q − qm−1(q + 1− d) .

25

For the bound on the relative distance, we divide both sides of the previous equation by θm,q
and we use that d = (q + 1)δ by definition. Then we get:

∆ ≤ 1 + (δ− 1)a ,

where a = (q+1)qm−1

θm,q
= 1− qm−1−1

qm+1−1 satisfies 1− q−2 ≤ a ≤ 1. Denoting b = 1− a concludes the
proof.

Proposition 57 (lower bound). Let 1 ≤ k ≤ q− 1 and PRSq(k) be a projective Reed-Solomon code
of dimension k + 1 and distance d = q + 1− k. Then the distance D of PLiftq(m, k) satisfies:

D ≥ (d− 1)θm−1,q + 1

where θm,q =
qm+1−1

q−1 . As a corollary, the respective relative distance δ of PRSq(k) and ∆ of PLiftq(m, k)
satisfy:

∆ ≥ (1− b′)δ− b′, where 0 ≤ b′ ≤ q−1 .

Proof. Let c = evPm(f) ∈ PLiftq(m, k) be a minimum-weight codeword, meaning that D =
wt(c) 6= 0. Let also a ∈ Pm such that ca = eva(f) 6= 0. We denote by Λa the set of projective
lines of Pm passing through a. It is clear that (

⋃
L∈Λa

(L \ {a})) ∪ {a} is a partition of Pm, and
|Λa| = θm−1,q =

qm−1
q−1 . Besides we have:

∑
L∈Λa

wt(c|L) = |θm−1,q|+ ∑
L∈Λa

wt(c|L\{a}) = θm−1,q + wt(c|Pm\{a}) = θm−1,q + (D− 1) .

Therefore, there must exist a line L0 such that

wt(c|L0
) ≤ 1
|Λa| ∑

L∈Λa

wt(c|L) = 1 +
D− 1
θm−1,q

.

Since c|L0
∈ PRSq(k) and c|L0

6= 0, its weight is greater than d and we get:

D ≥ (d− 1)θm−1,q + 1 .

Dividing both sides by θm,q and using θm,q = qθm−1,q + 1 finally leads to:

∆ ≥
(q + 1)θm−1,q

θm,q
δ−

θm−1,q − 1
θm,q

≥ (1− b′)δ− b′ ,

where b′ = θm−1,q−1
θm,q

= qb and b is defined in the previous proposition.

6.5 Connection with codes based on projective geometry designs

In this section, we simply point out a link between the construction of lifted codes and the
codes coming from design theory — we refer to [AK92] as a good reference for links between
codes and designs. We focus on projective lifted codes since they are the core of our work, but
the upcoming facts also hold for affine lifted codes.

Let us consider the highest value of k for which PLiftq(m, k) is non-trivial, that is k = q− 1.
It is well-known that dual codes of projective Reed-Solomon codes are also projective Reed-
Solomon codes, and in the setting k = q− 1 we have:

Lemma 58. The dual code of PRSq(q − 1) is the repetition code 〈(1, . . . , 1)〉 = PRSq(0) of length
q + 1 over Fq.

26

Hence, a (non full-rank) parity-check matrix H for PLiftq(m, k) can be written by listing in
rows the incidence vectors of lines and points of the projective space Pm. More formally,

H =

 1L1
...

1LN

where {L1, . . . , LN} denotes the set of all the projective lines of Pm, and 1X is the {0, 1}-vector
of length θm,q = |Pm| which is 1 at coordinate i if and only if i ∈ X (for any X ⊂ Pm).

In fact, matrix H is exactly the incidence matrix of the projective geometry design PG1(m, q),
the block design of points and lines in the projective space Pm. Moreover, the vector space
over Fq spanned by this matrix gives rise to a linear code, which has been thoroughly studied
and whose significant properties are given in [AK92]. This code is known as the code spanned
by the design PG1(m, q), and is denoted by C(PG1(m, q)). To sum up we have:

Lemma 59. For every prime power q and every m ≥ 2, the projective lifted code PLiftq(m, q− 1) and
the code C(PG1(m, q)) spanned by the projective geometry design PG1(m, q) are dual codes.

This characterisation allows us to obtain the dimension of projective lifted codes, for which
the rank of matrices H has been computed. For instance, it is proved (e.g. in [Smi69]) that the
rank over Fpt of the design of points and lines in P2(Fpt) is (1+p

2)
t
+ 1. Therefore,

Corollary 60. For any t ≥ 1 and any prime p, we have:

dim
(

PLiftpt(2, pt − 1)
)
= p2t + pt −

(p(p + 1)
2

)t
.

7 Conclusion

In this work we introduced lifted projective Reed-Solomon codes as an analogue of the lifting
of Reed-Solomon codes studied by Guo, Kopparty and Sudan in [GKS13]. We presented lo-
cal correcting algorithms for these codes, and proved their practicality through explicit bases,
information sets and automorphisms. However, similarly to the affine setting, we still lack
closed formulae for the dimension of the codes. Future works may then consist in keeping
studying the lifting process, for a better understanding of the structure of lifted codes. A gen-
eralisation of our work to the lifting of projective Reed-Muller codes or other codes invariant
under Proj(Fq, t) would also be of interest.

Acknowledgements

This work is partially funded by French ANR-15-CE39-0013-01 “Manta”. The author would
like to thank Françoise Levy-dit-Vehel and Daniel Augot for their valuable comments and
advice concerning the presentation of the results.

References

[AK92] Edward F. Assmus and Jennifer D. Key. Designs and Their Codes. Cambridge Univer-
sity Press, 1992.

[Alo99] Noga Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing,
8(1-2):7–29, January 1999.

[BC93] Thierry P. Berger and Pascale Charpin. The automorphism group of Generalized
Reed-Muller codes. Discrete Mathematics, 117(1-3):1–17, 1993.

27

[BdM01] Thierry P. Berger and Louis de Maximy. Cyclic Projective Reed-Muller Codes. In
Serdar Boztas and Igor E. Shparlinski, editors, Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes, 14th International Symposium, AAECC-14, Melbourne, Aus-
tralia November 26-30, 2001, Proceedings, volume 2227 of Lecture Notes in Computer
Science, pages 77–81. Springer, 2001.

[Ber02] Thierry P. Berger. Automorphism groups of homogeneous and projective Reed-
Muller codes. IEEE Trans. Information Theory, 48(5):1035–1045, 2002.

[GK16] Alan Guo and Swastik Kopparty. List-decoding algorithms for lifted codes. IEEE
Trans. Information Theory, 62(5):2719–2725, 2016.

[GKS13] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from
lifting. In Robert D. Kleinberg, editor, Innovations in Theoretical Computer Science,
ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 529–540. ACM, 2013.

[KR06] Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM J.
Comput., 36(3):779–802, 2006.

[KS08] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance.
In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 403–412. ACM,
2008.

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with
sublinear-time decoding. J. ACM, 61(5):28:1–28:20, 2014.

[Lac86] Gilles Lachaud. Projective Reed-Muller codes. In Coding Theory and Applications,
volume 311 of Lecture Notes in Computer Science, pages 125–129. Springer, 1986.

[Lac90] Gilles Lachaud. The parameters of projective Reed-Müller codes. Discrete Mathemat-
ics, 81(2):217–221, 1990.

[RTM79] Irving S. Reed, Trieu-Kien Truong, and Robert L. Miller. Simplified algorithm for
correcting both errors and erasures of Reed-Solomon codes. Institution of Electrical
Engineers, 126:961–963, 1979.

[RTR97] Carlos Renterìa and Horacio Tapia-Recillas. Reed-Muller codes: an ideal theory
approach. Communications in Algebra, 25(2):401–413, 1997.

[S+17] W. A. Stein et al. Sage Mathematics Software (Version 8.0). The Sage Development
Team, 2017.

[Smi69] K.J.C. Smith. On the p-rank of the incidence matrix of points and hyperplanes in a
finite projective geometry. Journal of Combinatorial Theory, 7(2):122–129, 1969.

[Sør91] Anders Bjært Sørensen. Projective Reed-Muller codes. IEEE Trans. Information Theory,
37(6):1567–1576, 1991.

[Sti04] Douglas R. Stinson. Combinatorial Designs - Constructions and Analysis. Springer,
2004.

[Yek12] Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical
Computer Science, 6(3):139–255, 2012.

28

A Useful results

A.1 Combinatorial Nullstellensatz

We recall the Combinatorial Nullstellensatz proved by Alon in [Alo99].

Theorem 61 (Combinatorial Nullstellensatz [Alo99]). Let F be a field and f ∈ F[X1, . . . , Xr].
Assume that deg(f) = ∑r

i=1 ti and the coefficient of the monomial Xt = ∏r
i=1 Xti

i in f is non-zero
(in other words, assume that t = (t1, . . . , tr) is a degree of f). Let finally W1, . . . , Wr ⊆ F such that
|Wi| > ti for every 1 ≤ i ≤ r.

Then, there exists w ∈W1 × · · · ×Wr such that f (w) 6= 0.

A.2 Technical results

Lemma 62. The following equality over bivariate polynomials holds:

∑
β∈Fq

(βX + Y)q−1 = −Xq−1 .

Proof. Let α be a primitive element of Fq.

∑
β∈Fq

(βX + Y)q−1 = Yq−1 +
q−2

∑
i=0

(αiX + Y)q−1 = Yq−1 +
q−2

∑
i=0

q−1

∑
j=0

(
q− 1

j

)
αijX jYq−1−j

= Yq−1 +
q−1

∑
j=0

(
q− 1

j

)(q−2

∑
i=0

(αj)i

)
X jYq−1−j

= Yq−1 +

((
q− 1

0

)
× (−1)× X0Yq−1

)
+

((
q− 1
q− 1

)
× (−1)× Xq−1Y0

)
= −Xq−1

A.3 Automorphism groups of (projective) Reed-Muller codes

The automorphism group of affine Reed-Muller codes has been thoroughly studied by Berger
and Charpin in [BC93] with group algebra techniques. For our needs, we recall below that
this group contains the subgroup of affine transformations.

Proposition 63 (Reed-Muller code). Let 0 ≤ k ≤ m(q − 1). The automorphism group of the
Reed-Muller code C = RMq(m, k) contains the affine permutations Aff(Fq, m).

Proof. Let c = evAm(f) ∈ C, M ∈ GLm(Fq) and b ∈ Fm
q . Denote by TM,b(x) = Mx + b for

every x ∈ Am. Let us prove that TM,b(c) ∈ C.
We remark that TM,b(c) = evAm(f ◦ T−1

M,b). Since TM,b is affine, so is T−1
M,b, and the total

degree of f ◦ T−1
M,b is the same that the total degree of f . Hence evAm(f ◦ T−1

M,b) ∈ RMq(m, k)
and the proof is completed.

A few years later, Berger also studied the automorphism group of projective Reed-Muller
codes [Ber02].

Proposition 64 (projective Reed-Muller code). Let 0 ≤ v ≤ m(q− 1). The automorphism group of
the projective Reed-Muller code C = PRMq(m, v) contains the projective automorphisms Proj(Fq, m).

Proof. Using that
evPm(f ◦M) = wv

M ? σM−1(evPm(f))

for every (wv
M, σM−1) ∈ Proj(Fq, m), the proof is very similar to the previous one.

29

B Building the query generator Rs

We recall that in our local correction algorithm (Section 4.2) we need a randomized query
generator Rs which, given a point P ∈ Pm and an embedding L ∈ EmbP(m, P), returns s
random points of L(P1) such that:

∀Q ∈ Pm, PrL←EmbP(m,P)
S←Rs(P,L)

[Q ∈ S] = s/n . (8)

The tricky point is that, for a fixed L ∈ EmbP(m, P), we cannot pick the s points uniformly
at random on L(P1), otherwise the point P will have a larger probability to be chosen than
the other points. We provide a solution to this issue in Algorithm 2.

Algorithm 2: Query generator Rs

Data: a point P, an embedding L ∈ EmbP(m, P)
Result: s points S = {Q1, . . . , Qs} ⊆ L(P1) satisfying (8)

1 Set S = ∅.
2 Add P to S with probability s/n.
3 if P ∈ S then
4 Pick uniformly at U random an (s− 1)-subset of L(P1) \ {P}.
5 S := S ∪U.
6 else
7 Pick uniformly at U random an s-subset of L(P1) \ {P}.
8 S := U.

9 Return S.

C Computation of the dimension of lifted codes

In the following tables are presented some parameters of affine lifted codes, projective lifted
codes and projective Reed-Muller codes. We denote respectively by nA, dim(A) and RA the
length, dimension and rate of A = Liftq(m, k− 1) the value of k given in the first row (q and
m being fixed in each table). Similarly, nP, dim(P) and RP represent the length, dimension
and rate of P = PLiftq(m, k), while dim(PRM) and RPRM denote the dimension and the rate
of PRMq(m, k) (its length being nP).

We choose to compare these codes because, in the local correcting algorithm, they admit
approximately the same error-correction capability and locality. Our goal is to show how
lifting leads to higher rates, and that projective and affine lifted codes behave similarly.

C.1 Parameters of the kind m = 2, q = 2t

k nA dim(A) RA nP dim(P) RP dim(PRM) RPRM
1 16 1 0.0625 21 3 0.143 3 0.143
2 16 3 0.188 21 6 0.286 6 0.286
3 16 7 0.438 21 11 0.524 10 0.476

Table 2: Parameters for m = 2 and q = 4.

30

k nA dim(A) RA nP dim(P) RP dim(PRM) RPRM
1 64 1 0.0156 73 3 0.0411 3 0.0411
2 64 3 0.0469 73 6 0.0822 6 0.0822
3 64 6 0.0938 73 10 0.137 10 0.137
4 64 10 0.156 73 15 0.205 15 0.205
5 64 16 0.25 73 22 0.301 21 0.288
6 64 24 0.375 73 31 0.425 28 0.384
7 64 37 0.578 73 45 0.616 36 0.493

Table 3: Parameters for m = 2 and q = 8.

k nA dim(A) RA nP dim(P) RP dim(PRM) RPRM
8 256 36 0.141 273 45 0.165 45 0.165
9 256 46 0.18 273 56 0.205 55 0.201
10 256 58 0.227 273 69 0.253 66 0.242
11 256 72 0.281 273 84 0.308 78 0.286
12 256 88 0.344 273 101 0.37 91 0.333
13 256 109 0.426 273 123 0.451 105 0.385
14 256 135 0.527 273 150 0.549 120 0.44
15 256 175 0.684 273 191 0.7 136 0.498

Table 4: Parameters for m = 2 and q = 16.

k nA dim(A) RA nP dim(P) RP dim(PRM) RPRM
24 1024 336 0.328 1057 361 0.342 325 0.307
25 1024 373 0.364 1057 399 0.377 351 0.332
26 1024 415 0.405 1057 442 0.418 378 0.358
27 1024 462 0.451 1057 490 0.464 406 0.384
28 1024 514 0.502 1057 543 0.514 435 0.412
29 1024 580 0.566 1057 610 0.577 465 0.44
30 1024 660 0.645 1057 691 0.654 496 0.469
31 1024 781 0.763 1057 813 0.769 528 0.5

Table 5: Parameters for m = 2 and q = 32.

k nA dim(A) RA nP dim(P) RP dim(PRM) RPRM
56 4096 2004 0.489 4161 2061 0.495 1653 0.397
57 4096 2122 0.518 4161 2180 0.524 1711 0.411
58 4096 2254 0.55 4161 2313 0.556 1770 0.425
59 4096 2400 0.586 4161 2460 0.591 1830 0.44
60 4096 2560 0.625 4161 2621 0.63 1891 0.454
61 4096 2761 0.674 4161 2823 0.678 1953 0.469
62 4096 3003 0.733 4161 3066 0.737 2016 0.484
63 4096 3367 0.822 4161 3431 0.825 2080 0.5

Table 6: Parameters for m = 2 and q = 64.

C.2 Parameters of the kind m = 3, q = 2t

31

k nA dim(A) RA nP dim(P) RP dim(PRM) RPRM
1 64 1 0.0156 85 4 0.0471 4 0.0471
2 64 4 0.0625 85 10 0.118 10 0.118
3 64 13 0.203 85 24 0.282 20 0.235

Table 7: Parameters for m = 3 and q = 4.

k nA dim(A) RA nP dim(P) RP dim(PRM) RPRM
1 512 1 0.00195 585 4 0.00684 4 0.00684
2 512 4 0.00781 585 10 0.0171 10 0.0171
3 512 10 0.0195 585 20 0.0342 20 0.0342
4 512 20 0.0391 585 35 0.0598 35 0.0598
5 512 38 0.0742 585 60 0.103 56 0.0957
6 512 69 0.135 585 100 0.171 84 0.144
7 512 139 0.271 585 184 0.315 120 0.205

Table 8: Parameters for m = 3 and q = 8.

k nA dim(A) RA nP dim(P) RP dim(PRM) RPRM
8 4096 120 0.0293 4369 165 0.0378 165 0.0378
9 4096 168 0.041 4369 224 0.0513 220 0.0504
10 4096 233 0.0569 4369 302 0.0691 286 0.0655
11 4096 320 0.0781 4369 404 0.0925 364 0.0833
12 4096 434 0.106 4369 535 0.122 455 0.104
13 4096 601 0.147 4369 724 0.166 560 0.128
14 4096 854 0.208 4369 1004 0.23 680 0.156
15 4096 1377 0.336 4369 1568 0.359 816 0.187

Table 9: Parameters for m = 3 and q = 16.

k nA dim(A) RA nP dim(P) RP dim(PRM) RPRM
24 32768 3044 0.0929 33825 3405 0.101 2925 0.0865
25 32768 3561 0.109 33825 3960 0.117 3276 0.0969
26 32768 4192 0.128 33825 4634 0.137 3654 0.108
27 32768 4970 0.152 33825 5460 0.161 4060 0.12
28 32768 5928 0.181 33825 6471 0.191 4495 0.133
29 32768 7250 0.221 33825 7860 0.232 4960 0.147
30 32768 9169 0.28 33825 9860 0.292 5456 0.161
31 32768 13011 0.397 33825 13824 0.409 5984 0.177

Table 10: Parameters for m = 3 and q = 32.

k nA dim(A) RA nP dim(P) RP dim(PRM) RPRM
56 262144 44064 0.168 266305 46125 0.173 32509 0.122
57 262144 48340 0.184 266305 50520 0.19 34220 0.128
58 262144 53401 0.204 266305 55714 0.209 35990 0.135
59 262144 59480 0.227 266305 61940 0.233 37820 0.142
60 262144 66810 0.255 266305 69431 0.261 39711 0.149
61 262144 76717 0.293 266305 79540 0.299 41664 0.156
62 262144 90874 0.347 266305 93940 0.353 43680 0.164
63 262144 118873 0.453 266305 122304 0.459 45760 0.172

Table 11: Parameters for m = 3 and q = 64.

32

	Introduction
	Notation and preliminaries
	Geometry, polynomials and evaluation maps
	Evaluation codes
	Reduced degree sets
	Permutations, automorphisms
	Embedding maps

	Affine and projective lifted Reed-Solomon codes
	Affine lifted codes
	Projective lifted codes
	Monomiality of projective lifted codes
	Degree sets of lifted codes

	Local correction
	Definitions
	Local correcting algorithms

	Puncturing and shortening relations between affine and projective lifted codes
	Motivation and similar results
	Shortening and puncturing projective lifted codes

	On the practicality of projective lifted codes
	Information rate
	Automorphisms and (quasi-)cyclicity
	Explicit information sets
	Estimation of the minimum distance
	Connection with codes based on projective geometry designs

	Conclusion
	Useful results
	Combinatorial Nullstellensatz
	Technical results
	Automorphism groups of (projective) Reed-Muller codes

	Building the query generator Rs
	Computation of the dimension of lifted codes
	Parameters of the kind m=2, q=2t
	Parameters of the kind m=3, q=2t

