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Abstract

We study the exit-time from a domain of a self-interacting diffusion,
where the Brownian motion is replaced by σBt for a constant σ. The first
part of this work consists in showing that the rate of convergence (of the
occupation measure of the self-interacting process toward some explicit
Gibbs measure) previously obtained in [KK12] for a convex confinment
potential V and a convex interaction potential can be bounded uniformly
with respect to σ. Then, we prove an Arrhenius-type law for the first exit-
time from a domain (satisfying classical hypotheses of Freidlin-Wentzell
theory).

Keywords : Self-interacting diffusion, exit-time, Kramers’ law, deter-
ministic flow.

Mathematics Subject Classification : 60K35, 60H10

1 Introduction

Path-interaction processes have been introduced by Norris, Rogers and Williams
during the late 80s in [NRW87]. Since this period, they have been an in-
tensive research area. Under the name of Brownian Polymers, Durrett and
Rogers [DR92] studied a family of self-interacting diffusions, as a model for the
shape of a growing polymer. Denoting by Xt the location of the end of the grow-
ing polymer at time t, the process X satisfies a stochastic differential equation
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driven by a Brownian motion, with a drift term depending on its own occupa-
tion measure. One is then interested in finding the scale for which the process
converges to a non trivial limit. Later, another model of growing polymer has
been introduced by Benaïm, Ledoux and Raimond [BLR02], for which the drift
term depends on its own empirical measure. Namely, they have studied the
following process living in a compact smooth connected Riemannian manifold
M without boundary:

dXt =

N
∑

i=1

Fi(Xt) ◦ dBi
t −

∫

M

∇xW (Xt, y)µt(dy)dt,

whereW is a (smooth) interaction potential, (B1, · · · , BN ) is a standard Brown-

ian motion on R
N , µt =

1
t

∫ t

0
δXs

ds and the symbol ◦ stands for the Stratonovich
stochastic integration. In the compact setting, they have shown that the asymp-
totic behaviour of the empirical measure of the process can be related to the anal-
ysis of some deterministic dynamical flow. Later, Benaïm and Raimond [BR05]
gave sufficient conditions for the almost sure convergence of the empirical mea-
sure (again in the compact setting). More recently, Raimond [Rai09] has gener-
alized the previous study and has proved that for the solution of the SDE living
on a compact manifold

dXt = dBt −
g(t)

t

∫ t

0

∇xV (Xt, Xs)ds dt

unless g is constant, the approximation of the empirical measure by a determin-
istic flow is no longer valid.

Similar questions have also been answered in the non-compact setting, that is
R

d. Chambeu and Kurtzmann [CK11] have studied the ergodic behaviour of the
self-interacting diffusion depending on the empirical mean of the process. They
have proved, under some convexity assumptions (ensuring the non-explosion in
finite time of the process), a convergence criterion for the diffusion solution to
the SDE

dXt = dBt − g(t)∇V
(

Xt −
1

t

∫ t

0

Xsds

)

dt

where g is a positive function. This model could represent for instance the
behaviour of some social insects, as ants who are marking their paths with the
trails’ pheromones. This paper shows in particular how difficult is the study of
general self-interacting diffusions in non-compact spaces as in [Kur10], driven
by the generic equation

dXt = dBt −
1

t

∫ t

0

∇xV (Xt, Xs)ds dt.

Nevertheless, if the interaction function V is symmetric and uniformly convex,
then Kleptsyn and Kurtzmann [KK12] obtained the limit-quotient ergodic theo-
rem for the self-attracting diffusion. Moreover, they managed to obtain a speed
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of convergence. As the results of this former paper are essential for the present
work, we will explain them more precisely in §2.1.

Another problem related to this paper is the diffusion corresponding to
McKean-Vlasov’s PDE. This corresponds to the Markov process governed by
the SDE

dXt = dBt −∇W ∗ νt(Xt)dt (1.1)

where νt = L(Xt), W is a smooth convex potential and * stands for the con-
volution. The asymptotic behaviour of X has been studied by various authors
these last years, see for instance Cattiaux, Guillin and Malrieu [CGM08]. It
turns out that under some assumptions, the law νt converges to the (unique if
W is strictly convex) probability measure solution to the equation ν = 1

Z e
−2W∗ν

where Z = Z(ν) is the normalisation constant. In the latter paper, the authors
use a particle system to prove both a convergence result (with convergence rate)
and a deviation inequality for solutions of granular media equation when the
interaction potential is uniformly convex at infinity. To this end, they use a
uniform propagation of chaos property and a control in Wasserstein distance of
solutions starting from different initial conditions.

A related question to this problem concerns the exit-times from domains of
attraction for the following motion

dXσ
t = σdBt −∇V (Xσ

t )dt−∇W ∗ νt(Xσ
t )dt (1.2)

where V is a potential, * stands for the convolution, νt = L(Xσ
t ) and σ > 0.

This was addressed by Herrmann, Imkeller and Peithmann [HIP08], who ex-
hibited a Kramers’ type law for the particle’s exit from the potential’s do-
mains of attraction and a large deviations principle for the self-stabilizing (also
named McKean-Vlasov) diffusion. To get this, they reconstructed the Freidlin-
Wentzell theory for the self-stabilizing diffusion. More precisely, they estab-
lished a large deviations principle with a good rate function. The exit-problem
for the McKean-Vlasov diffusion has also been already studied recently, without
using the Freidlin-Wentzell method. In [Tug12], Tugaut has analysed the exit-
problem (time and location) in convex landscapes, showing the same result as
Herrmann, Imkeller and Peithmann, but without reconstructing the proofs of
Freidlin and Wentzell. He has then generalised very recently his results in the
case of double-wells landscape in [Tug18]. In [Tug16, Tug19], Tugaut did not use
large deviations principle but a coupling method between the time-homogeneous
diffusion

dXt = σdBt −∇V (Xt)dt−∇W (Xt −m)dt

(where m is the unique point at which the vector field ∇V equals 0) and the
McKean-Vlasov diffusion so that the results on the exit-time of X can be used
for the exit-time of the self-stabilizing diffusion (1.2).

The present paper also deals with the exit-time problem of a specific diffu-
sion, driven by the SDE

dXt = σdBt −
(

∇V (Xt) +
1

t

∫ t

0

∇W (Xt −Xs)ds

)

dt, X0 = x ∈ R
d (1.3)
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where V,W are two potentials and σ > 0. We could adapt the techniques intro-
duced by Herrmann, Imkeller and Peithmann but only in the case of a convex
gradient V . Our aim is to generalize the study also to non-convex potentials.
In the present work, we will solve the exit-problem (time and location) for the
diffusion (1.3). Indeed, the exit-location will be easily obtained once we know
the exit-time. The motivation for the study of such a diffusion is twofold. First,
we wish to obtain the basin of attraction when the diffusion converges (if we
know the speed of convergence, or at least a nice upper bound of it). And more
challenging, our main aim consists in improving the simulated annealing method
(even if we need a concave interaction in that case). This paper is a first step
in this direction.

In the following, for readability issue, we will omit the sigma−exponent for
the process X as well as the empirical measure µt. Nevertheless, the reader has
to keep in mind that the process and µt depend on σ.

1.1 Some useful notations

As usual, we denote by M(Rd) the space of signed (bounded) Borel measures
on R

d and by P(Rd) its subspace of probability measures. We will need the
following measure space:

M(Rd;P ) := {µ ∈ M(Rd);

∫

Rd

P (|y|) |µ|(dy) < +∞}, (1.4)

where |µ| is the variation of µ (that is |µ| := µ+ + µ− with (µ+, µ−) the Hahn-
Jordan decomposition of µ: µ = µ+−µ−) and P is some polynomial. Belonging
to this space will enable us to always check the integrability of P (and therefore
of V,W and their derivatives thanks to the domination condition (2.1)) with
respect to the (random) measures to be considered. We endow this space with
the dual weighted supremum norm (or dual P -norm) defined for µ ∈ M(Rd;P )
by

||µ||P := sup
ϕ∈C(Rd);|ϕ|≤P

∣

∣

∣

∣

∫

Rd

ϕdµ

∣

∣

∣

∣

=

∫

Rd

P (|y|) |µ|(dy), (1.5)

where C(Rd) is the set of continuous functions R
d → R. Without any loss of

generality, we suppose that P (|x|) ≥ 1, so that ‖µ‖P ≥ |µ(Rd)|. This norm
makes M(Rd;P ) a Banach space. Next, we consider P(Rd;P ) = M(Rd;P ) ∩
P(Rd). In the sequel, (·, ·) stands for the Euclidean scalar product.

Definition 1.1. Let d be any positive integer. Let G be a subset of R
d and

let U : Rd → R
d be a vector field satisfying some “good assumptions”. For all

x ∈ R
d, we consider the dynamical system ρt(x) = x+

∫ t

0
U (ρs(x)) ds. We say

that the domain G is positively invariant for the flow generated by U if the orbit
{ρt(x) ; t ∈ R+} is included in G for all x ∈ G.

1.2 Main results

The precise assumptions on the potentials will be given later in Section 2.
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The goal of this paper consists in finding some precise upper and lower
bounds for the exit-time of some positively invariant domain.

Theorem 1.2. Let D be a domain that is positively invariant for the flow
x 7→ −∇V (x)−∇W (x−m) and denote by τ the first time the process X exits
the domain D. Let H := infx∈∂D (V (x) +W (x−m)− V (m)) be the exit cost

from D. Then P− lim
σ→0

σ2

2
log(τ) = H that is for any δ > 0, we have

lim
σ→0

P

(

exp

{

2

σ2
(H − δ)

}

≤ τ ≤ exp

{

2

σ2
(H + δ)

})

= 1 . (1.6)

From Theorem 1.2, we immediately obtain the classical statement on the
exit-location.

Corollary 1.3. Under the same assumptions as the ones of Theorem 1.2, if
N ⊂ ∂D is such that infz∈N (V (z) +W (z −m)− V (m)) > H, then

lim
σ→0

P (Xτ ∈ N ) = 0 . (1.7)

1.3 Outline

Our paper is divided in two parts. First, Section 2 is devoted to the study of the
self-interacting diffusion and more specifically, we will explain the former results
of Kleptsyn and Kurtzmann [KK12] and, more precisely, how we adapt them in
our context. In particular, we will show that the empirical measure of the stud-
ied process converges almost surely with a rate upper bounded independently of
σ. After that, we will prove our main result, that is Theorem 1.2, in Section 3.
To this aim, we will show that our process X is close to the solution of a given
deterministic flow in §3.1. We then prove in §3.2 that the probability of leaving
a positively invariant domain before the empirical mean remains stuck in the
ball of center m and radius κ vanishes as σ goes to zero. Finally, a coupling
permits to conclude the proof of the main theorem in §3.4 and we give the proof
of the corollary in §3.5.

2 The self-interacting diffusion

We assume that V andW satisfy the following set of hypotheses denoted by (H):

i) (regularity and positivity) V ∈ C2(Rd), W ∈ C2(Rd) and V ≥ 0, W ≥ 0;

ii) (growth) V andW have at most a polynomial growth: for some polynomial
P , such that P (|x|) ≥ 1 for any x ∈ R

d, we have ∀x ∈ R
d:

|W (x)|+ |∇W (x)|+ ‖∇2W (x)‖+ |V (x)|+ |∇V (x)|+ ‖∇2V (x)‖ ≤ P (|x|)
(2.1)

and inf∇2V ≥ ρ > 0, inf∇2W ≥ α > 0,

∆V (x) ≤ aV (x) and lim
|x|→∞

|∇V (x)|2
V (x)

= ∞. (2.2)
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iv) (curvature) V and W are uniformly strictly convex functions. V has a
unique minimum in m;

v) (spherical symmetry) W (x) = G(|x|) for some function G from R+ to R.

Remark 2.1. By the growth condition (2.2), |∇V |2−∆V is bounded by below.

Remark 2.2. Note, that without loss of generality we can choose polynomials
P to be of the form P (|x|) = C(1 + |x|k). Then the following property holds:
there exists a constant γ > 0 such that P (|x+ y|) ≤ γ(P (|x|) + P (|y|)).

Let us first show existence and uniqueness of the solution to the latter equa-
tion.

Proposition 2.3. For any x ∈ R
d, there exists a unique global strong solution

(Xt, t ≥ 0).

Proof. Local existence and uniqueness of the solution to (1.3) is standard (see
for instance [DR92]). We only need to prove here that X does not explode in a
finite time. Let us introduce the increasing sequence of stopping times τ0 = 0
and

τn := inf

{

t ≥ τn−1; Et(Xt) +

∫ t

0

|∇Es(Xs)|2 ds > n

}

where Et(Xt) := V (Xt)+
1
t

∫ t

0
W (Xt−Xs)ds. In order to show that the solution

never explodes, we use the Lyapunov functional (x, t) 7→ Et(x). As the process
(t, x) 7→ Eµt

(x) is of class C2 (in the space variable) and is a C1-semi-martingale
(in the time variable), Itô-Ventzell formula applied to (x, t) 7→ Et∧τn(x) implies

Et∧τn(Xt∧τn) = V (x) +

∫ t∧τn

0

(∇Es(Xs), dBs)−
∫ t∧τn

0

|∇Es(Xs)|2 ds (2.3)

+
σ2

2

∫ t∧τn

0

∆Es(Xs)ds−
∫ t∧τn

0

∫ s

0

W (Xs −Xu)du
ds

s2
.

We note that
∫ t∧τn
0

(∇Es(Xs), dBs) is a true martingale. We then get

EEt∧τn(Xt∧τn) ≤ V (x) + a

∫ t

0

EEs∧τn(Xs∧τn)ds.

So, Gronwall’s lemma leads to:

EV (Xt∧τn) ≤ EEt∧τn(Xt∧τn) ≤ V (x)eat.

As lim
|x|→∞

V (x) = ∞, the process (Xt, t ≥ 0) does not explode in a finite time

and there exists a global strong solution.

Remark 2.4. A large family of path-dependent process has been studied by
Saporito, see for instance [JS17]. He proves, with his co-authors, existence
and uniqueness of such processes. The difference with our process is that we
normalize the occupation measure.
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2.1 Speed of convergence

Our results are based on the paper of Kleptsyn and Kurtzmann [KK12]. More
precisely, they have proved the following

Theorem 2.5. [KK12, Theorem 1.6] Let X be the solution to the equation (1.3)
with σ =

√
2.

Suppose, that V ∈ C2(Rd) and W ∈ C2(Rd), satisfy (H) and either V or W
is uniformly strictly convex that is there exists C > 0 such that

∀x ∈ R
d, ∀v ∈ S

d−1,
∂2V

∂v2

∣

∣

∣

∣

x

≥ C or ∀x ∈ R
d, ∀v ∈ S

d−1,
∂2W

∂v2

∣

∣

∣

∣

x

≥ C.

Then there exists a unique density ρ∞ : Rd → R+, such that almost surely

µt =
1

t

∫ t

0

δXs
ds

∗−weakly−−−−−−→
t→+∞

ρ∞(x) dx.

Moreover, if V is symmetric with respect to some point q, then the corre-
sponding density ρ∞ is also symmetric with respect to the same point q. Re-
mark that the density ρ∞ is the same limit density as in the result of [CMV03],
uniquely defined by the following property: ρ∞ is a positive function, propor-
tional to e−(V+W∗ρ∞).

And what is more important, Kleptsyn and Kurtzmann obtained a speed
of convergence in the following way. First, let us recall the definition of the
Wasserstein distance.

Definition 2.6. For µ1, µ2 ∈ P(Rd;P ), the quadratic Wasserstein distance is
defined as

W2(µ1, µ2) :=
(

inf{E(|ξ1 − ξ2|2)}
)1/2

,

where the infimum is taken over all the random variables such that {law of
ξ1} = µ1 and {law of ξ2} = µ2. This corresponds to the minimal L2-distance
taken over all the couplings between µ1 and µ2.

Similarly, the Wasserstein distance W2k is defined as

W2k(µ1, µ2) :=
(

inf{E(|ξ1 − ξ2|2k)}
)1/(2k)

.

More precisely, in [KK12, Theorem 1.12], it is proved the existence of a
constant a > 0 such that almost surely, for t large enough one has

W2(µ
c
t , ρ∞) = O(exp{−a 2k+1

√

log t}) ,

where 2k is the degree of the polynomial P , µc
t is the translation of the empirical

measure µt such that E(µc
t) = 0 and W2 is the quadratic Wasserstein distance.

Of course, in the case W (x) = α |x|2

2 , the polynomial P corresponds to the
growth of V , and we have to replace the Brownian motion by the rescaled Brow-
nian motion σBt. So that the density ρ∞ is uniquely defined by the following
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property: ρ∞ is a positive function, proportional to e−2(V+W∗ρ∞)/σ2

. Let us
sketch the proof of these results and explain how σ appears here.

First, note that the empirical measure µt =
1
t

∫ t

0
δXs

ds evolves very slowly.
Indeed, choose a deterministic sequence of times Tn → +∞, with Tn ≫ Tn+1 −
Tn ≫ 1, and consider the behaviour of the measures µTn

. As Tn ≫ Tn+1 − Tn,
it is natural to expect that the empirical measures µt on the interval [Tn, Tn+1]
almost do not change and thus stay close to µTn

. So we can approximate, on
this interval, the solution Xt of (1.3) with σ =

√
2 by the solution of the same

equation with µt ≡ µTn
:

dYt = σ dBt − (∇V +∇W ∗ µTn
)(Yt) dt, t ∈ [Tn, Tn+1],

in other words, by a Brownian motion in a potential V +W ∗µTn
that does not

depend on time.
On the other hand, the series of general term Tn+1−Tn increases. So, using

Birkhoff Ergodic Theorem, we see that the (normalized) distribution µ[Tn,Tn+1]

of values of Xt on these intervals becomes (as n increases) close to the equilib-
rium measures Π(µTn

) for a Brownian motion in the potential V +W ∗ µTn
,

where

Π(µ)(dx) :=
1

Z(µ, σ)
e−2(V+W∗µ)(x)/σ2

dx, Z(µ, σ) :=

∫

Rd

e−2(V+W∗µ)(x)/σ2

dx.

As

µTn+1
=

Tn
Tn+1

µTn
+
Tn+1 − Tn
Tn+1

µ[Tn,Tn+1],

we then have

µTn+1
≈ Tn
Tn+1

µTn
+
Tn+1 − Tn
Tn+1

Π(µTn
) = µTn

+
Tn+1 − Tn
Tn+1

(Π(µTn
)− µTn

),

and
µTn+1

− µTn

Tn+1 − Tn
≈ 1

Tn+1
(Π(µTn

)− µTn
).

This motivates Kleptsyn and Kurtzmann to approximate the behaviour of the
measures µt by trajectories of the flow (on the infinite-dimensional space of
measures)

µ̇ =
1

t
(Π(µ)− µ), (2.4)

or after a logarithmic change of variable θ = log t,

µ′ = Π(µ)− µ. (2.5)

Indeed, choose an appropriate interval [Tn, Tn+1). On this interval, fix the
empirical measure µt at µTn

. Then construct a new process Y , coupled with X
(the coupling is such that X and Y are driven by the same Brownian motion),
such that for all t ∈ [Tn, Tn+1), we have

dYt = σdBt − (∇V (Yt) +∇W ∗ µTn
(Yt))dt.
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This new process has two advantages. First, it is Markovian (and its invariant

probability measure is Π(µTn
)(dx) = 1

Z e
−2(V+W∗µTn )(x)/σ2

dx), and so is easier
than X to study. Second, its evolution is very close to the evolution of the
desired X. Indeed, we will use Y to prove that the transport distance between
the empirical measure on [Tn, Tn+1], denoted by µ[Tn,Tn+1] in [KK12, Proposition
3.2], and the probability measure Π(µTn

) (both measures being centered in cTn
)

is controlled by T
− 1

3 min(8CW ,1/5d)
n and so, this distance vanishes as n → +∞.

This has been done in [KK12, §3.1.1].
After that, remark that if a.s. the empirical measure µt converges weakly* to
µ∞, then for t large enough, the process X shall be very close to Z, defined by

dZt = σdBt − (∇V +∇W ∗ µ∞)(Zt)dt.

The process Z is obviously Markovian and the ergodic theorem can be applied:

1

t

∫ t

0

δZs
ds −→

t→+∞
Π(µ∞) a.s.

for the weak* convergence of measures. So when the limit µ∞ exists, it satisfies

µ∞ = Π(µ∞) . (2.6)

This explains the idea of introducing the dynamical system µ̇ = Π(µ)− µ
(after the time-shift t 7→ et in order to work with a time-homogeneous system)
defined on the set of probability measures that are integrable for the polyno-
mial P . Note that, instead of considering the latter dynamical system, Kleptsyn
and Kurtzmann work with its discretized version, with the knots chosen at the
moments Tn. They then prove, in [KK12, Proposition 3.5], that the transport
distance between the deterministic trajectory induced by the smoothened (dis-
crete) dynamical system and the (centered) random trajectory µTn

is controlled
and decreases to 0. This has been done in [KK12, §3.1.2].
Next, it remains to show that the free energy between this (centered) determin-
istic trajectory and the set of translates of ρ∞ goes to 0. We recall that for the
dynamics in presence of an exterior potential V , the free energy function is

FV,W (µ) := −σ
2

2
H(µ)+

∫

Rd

V (x)µ(x) dx+
1

2

∫∫

Rd×Rd

µ(x)W (x− y)µ(y) dx dy.

and consider FV+W∗µ = −σ2

2 H(µ)+
∫

Rd(V (x)+W ∗µ(x))µ(x) dx for the energy
of “small parts”, where the entropy of the measure µ is

H(µ) := −
∫

Rd

µ(x) log µ(x)dx. (2.7)

As the free energy is controlled by the quadratic Wasserstein distance W2,
this implies that the transport distance between the two previous quantities
decreases, as asserted in [KK12, Proposition 3.6].
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To conclude, it remains to put all the pieces together and use the triangle in-
equality: W2(µ

c
t , ρ∞) is upper bounded by the sum of three distances, involving

the flow Φn induced by the discretization of the dynamical system µ̇ = Π(µ)−µ
on the interval [Tn, Tn+1), for n large enough. The first term of the summation
bound will be W2(µ

c
t ,Π(µ

c
Tn

)), the second one W2(Π(µ
c
Tn

),Φn
n(µ

c
Tn

)) and the
third one W2(Φ

n
n(µ

c
Tn

), ρ∞).
Finally, the previous decrease estimates will allow Kleptsyn and Kurtzmann

to show the convergence of the center, after having made the appropriate choice
Tn = n3/2.

2.2 The speed of convergence for the solution of (1.3)

For this paper, the corresponding result of [KK12, Theorem 1.12] is the following

Theorem 2.7. Let X be the solution to the equation (1.3). There exists a con-
stant a > 0 such that almost surely, we have for t large enough W2k(µt, ρ∞) =
O(exp{−a 2k+1

√
log t}), where 2k is the degree of the polynomial P , µt is the

empirical measure and W2k is the 2k-Wasserstein distance, that is the minimal
L2k-distance taken over all the couplings between µt and ρ∞ that is the unique

density proportional to e−
2
σ2 (V+W∗ρ∞).

To prove this result, we mimic the proof of [KK12, Theorem 1.12], and show
that the speed of convergence is less than the one of the case corresponding
to σ = 1. We will not reproduce it here. We will only show how we handle
this inequality for the following particular result, as it is representative of the
difficulty and shows how σ appears in the calculation.

Let us prove for instance the exponential decrease for the centered measure
Π(µ) and show that, as σ2 ≪ 1, we can obtain a lower bound of the speed
of convergence that does not depend on σ. We have seen previously that the
centered µc has the same asymptotic behaviour as Π(µ)(· + cµ), up to a time-
scale. An important step to prove the latter result consists in estimating the
behaviour of the centered measures µc

t . More precisely, one has to prove that
the tail of these measures are exponentially decreasing. This is why we have to
introduce the following sets:

Definition 2.8. Let α,C > 0 be given. Define

K0
α,C := {µ ∈ P(Rd); ∀R > 0, µ({y; |y| > R}) < Ce−αR}, (2.8)

Kα,C := {µ ∈ P(Rd); µc ∈ K0
α,C}. (2.9)

We can now prove the exponential decrease of Π(µ)(·+ cµ).

Proposition 2.9. There exist CW , CΠ > 0, two constants independent of σ,
such that for all µ ∈ P(R;P ), we have Π(µ)(· + cµ) ∈ K0

CW ,CΠ
where cµ is

defined by the equation (∇V +∇W ∗ µ)(cµ) = 0.

Proof. Let us fix R > 0. Note first that, imposing a condition CΠ ≥ e2CW , we
can restrict ourselves only to R ≥ 2: for R < 2, the estimate is obvious.
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The measure Π(µ) has the density 1
Z(µ,σ)e

−2(V+W∗µ)(x)/σ2

. To avoid working

with the normalization constant Z(µ, σ), we will prove a stronger inequality, that
is

Π(µ)(|x− cµ| ≥ R) ≤ CΠe
−CR ·Π(µ)(|x− cµ| ≤ 2), (2.10)

which is equivalent to
∫

|x−cµ|≥R

e−2(V+W∗µ)(x)/σ2

dx ≤ CΠe
−CR

∫

|x−cµ|≤2

e−2(V+W∗µ)(x)/σ2

dx.

We use the polar coordinates, centered at the center cµ, and so we want to prove
that

∫

Sd−1

∫ +∞

R

e−2(V+W∗µ)(cµ+λv)/σ2

λd−1dλdv

≤ CΠe
−CR

∫

Sd−1

∫ 2

0

e−2(V+W∗µ)(cµ+λv)/σ2

λd−1dλdv.

It suffices to prove such an inequality “directionwise”: for all v ∈ S
d−1, for all

R ≥ 2
∫ +∞

R

e−2(V+W∗µ)(cµ+λv)/σ2

λd−1dλ ≤ CΠe
−CR

∫ 2

0

e−2(V+W∗µ)(cµ+λv)/σ2

λd−1dλ.

But from the uniform convexity of V and W and the definition of the center,
the function f(λ) = 2(V + W ∗ µ)(cµ + λv) satisfies f ′(0) = 0 and ∀r > 0,
f ′′(r) ≥ C. Hence, f is monotone increasing on [0,+∞), and in particular,

∫ 2

0

e−f(λ)/σ2

λd−1dλ ≥ e−f(2)/σ2

∫ 2

0

λd−1dλ =: C1e
−f(2)/σ2

. (2.11)

On the other hand, for all λ ≥ 2, f ′(λ) ≥ f ′(2) ≥ 2C, and thus f(λ) ≥
2C(λ− 2) + f(2). Hence, as σ2 ≪ 1, we have

∫ +∞

R

e−f(λ)/σ2

λd−1dλ ≤ e−f(2)/σ2

∫ +∞

R

λd−1e−2C(λ−2)/σ2

dλ

≤ e−
f(2)

σ2

∫ +∞

R

λd−1e−2C(λ−2)dλ. (2.12)

So finally, using that σ ≪ 1
∫ +∞

R

e−f(λ)/σ2

λd−1dλ ≤ C2R
d−1e−2CR · e−

f(2)

σ2 ≤ C3e
−CR · e−

f(2)

σ2 . (2.13)

Comparing (2.11) and (2.13), we obtain the desired exponential decrease. In-
deed, as σ only appears in the exponential under the form exp(−const/σ2), we
can upper bound the previous quantity by e−const, so that the constant CW is
upper bounded by a constant that is independent of σ. By an abuse of notation,
we call again this constant CW .

Remark 2.10. This result corresponds to [KK12, Proposition 2.9] for the case
σ = 1.
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2.3 Small-noise limit

In the following, we remind the reader that we don’t emphasize the dependence
on σ, but it will appear everywhere in the computations.

As was mentioned above, the invariant probability measure of self-interacting
diffusion is the unique solution to the equation

ρ∞ = Π(ρ∞),

where Π(µ)(x) = e−2(V+W∗µ)(x)/σ2

/
∫

e−2(V+W∗µ)(z)/σ2

dz. The same invariant
probability measure appears in the self-stabilizing diffusion, small-noise limit of
which was studied in [HT10]. There, authors studied the case of double-wells
potentials which is more general then our diffusion. In this paper the result,
that can be transformed in our context as following, was proved. If the moments
of invariant probability measures ρ∞ are uniformly bounded with respect to σ,
then δm is the weak-* limit of ρ∞ with σ → 0 a.s. Note, that indeed, moments
of ρt are uniformly bounded, since µt ∈ Kα,C for any t > 0 and some α,C that
do not depend on σ.

Thus, consider the following deterministic time, representing the time of
stabilization of the occupation measure, if it occurs, around its supposed limit
δm:

Tκ(σ) := inf {t0 ≥ 0 : ∀t ≥ t0, E (W2k (µt; δm)) ≤ κ} . (2.14)

First, let us discuss why expectation E (W2k (µt; δm)) exists in the first place.
To show that, we use the fact that µt ∈ Kα,C almost surely and get

W2k (µt; δm) ≤
(

22k−1

∫

|x|2kµt(dx) + 22k−1|m|2k
)1/(2k)

≤ Const,

where the last constant depends only on α,C,m and k. Therefore, since the
random variable is bounded by a constant almost surely, expectation exists.

Second, let us show that the definition of the time Tκ(σ) makes sense. Indeed,

EW2k (µt; δm) ≤ EW2k (µt; ρ∞) + EW2k (ρ∞; δm) −−−→
t→∞
σ→0

0,

where the limit is not just iterated, but holds for the pair (t, σ), since the speed
of convergence of µt towards ρ∞ in time does not depend on σ, which was shown
in Theorem 2.7. Therefore, for any κ > 0 we can find σ0 small enough and t0
big enough such that Tκ(σ) < Tκ < ∞ for any σ < σ0, which does not only
prove existence and finiteness of Tκ(σ), but also its uniformness with respect to
σ.

3 Proof of Theorem 1.2

In this section, we prove our main result. First, we show that the process X
solution to (1.3) is close to the solution of a deterministic flow (ψt)t≥0 in §3.1.

12



Using that, we prove in §3.2 that the probability of leaving a positively invariant
domain before the empirical mean remains stuck in the ball of center m and
radius κ vanishes as σ goes to zero. Then, we consider the coupling between the
studied diffusion and the one where the empirical measure is frozen to δm and
we show that these diffusions are close in §3.3. We conclude the proof in §3.4.

3.1 Upper bound

We remind the reader that in this work, the noise vanishes. Consequently, it is
natural to introduce the deterministic flow (ψt)t defined by the following

ψ̇t = −∇V (ψt)−
1

t

∫ t

0

∇W (ψt − ψs)ds, ψ0 = x0. (3.1)

We will show that Xt and ψt are uniformly close while the noise goes to zero.
Namely

Proposition 3.1. For any ξ > 0 and for any T > 0, we have:

lim
σ→0

P

(

sup
t∈[0;T ]

||Xt − ψt(x0)||2 > ξ

)

= 0 . (3.2)

Proof. First of all, we fix some ξ and introduce the following stopping time
T := inf{t : |Xσ

t −ψt|2 ≥ ξ}. We apply Itô formula and get the following result,
for ω ∈ {T > t} (the choice of this event will be clear further) :

|Xt − ψt|2 = 2

∫ t

0

(Xs − ψs, dXs − dψs) + dσ2t

≤ dσ2t− 2CV

∫ t

0

|Xs − ψs|2ds+ σ

∫ t

0

(Xs − ψs, dBs)

−
∫ t

0

1

s

∫ s

0

(Xs − ψs,∇W (Xs −Xz)−∇W (ψs − ψz))dzds.

Let LipK′

∇W be a Lipschitz constant of ∇W inside the following compact
K ′ := {x : |x − ψt|2 ≤ ξ, for some t > 0} (due to our assumptions, this set is
indeed a compact at least for small ξ, which we can decrease without loss of
generality), and CV is the convexity constant of V . We thus have

|Xt − ψt|2 ≤ dσ2t− 2CV

∫ t

0

|Xs − ψs|2ds+ σ

∫ t

0

(Xs − ψs, dBs)

+ LipK′

∇W

∫ t

0

1

s

∫ s

0

(

|Xs − ψs|2 + |Xs − ψs| · |Xz − ψz|
)

dz

≤ dσ2t− 2CV

∫ t

0

|Xs − ψs|2ds+ σ

∫ t

0

(Xs − ψs, dBs) (3.3)

+
LipK′

∇W

2

∫ t

0

1

s

∫ s

0

(

3|Xs − ψs|2 + |Xz − ψz|2
)

dz.
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Note then, that by the BDG inequality we get for some constant C > 0:

E

(

sup
[0,t∧T ]

∣

∣

∣

∣

σ

∫ s

0

(Xz − ψz, dBz)

∣

∣

∣

∣

)

≤ Cσ2
E

√

∫ t∧T

0

|Xs − ψs|2ds

≤ Cσ2

√

√

√

√

∫ t

0

E

(

sup
z∈[0,s∧T ]

(|Xz − ψz|2)
)

ds.

Let us consider the following random variable sups∈[0;t∧T ] |Xs − ψs|2. The
fact that we consider the supremum before time t ∧ T gives us that for any ω
we consider only such s, that s ≤ T (ω), which in turn means that we can apply
estimation (3.3) for any s ∈ [0, t ∧ T ]. We also remind that t ≤ T and derive:

E

(

sup
s∈[0;t∧T ]

|Xs − ψs|2
)

≤ dσ2T + Cσ2

√

√

√

√

∫ t

0

E

(

sup
z∈[0,s∧T ]

(|Xz − ψz|2)
)

dz

+ 2LipK′

∇W

∫ t

0

E

(

sup
z∈[0,s∧T ]

|Xz − ψz|2
)

ds

≤ dσ2T +
Cσ2

2

[

1 + TE

(

sup
s∈[0,t∧T ]

(|Xs − ψs|2)
)]

+ 2LipK′

∇W

∫ t

0

E

(

sup
z∈[0,s∧T ]

|Xz − ψz|2
)

ds,

where in the last inequality we used
√
x ≤ (1 + x)/2. Now, if we denote

ut := E

(

sups∈[0;t∧T ] |Xs − ψs|2
)

, we have

ut ≤
1

1− CTσ2/2

(

2Td+ C

2
σ2 + 2LipK′

∇W

∫ t

0

usds

)

,

for small enough σ (such that 1− CTσ2/2 > 0). Thus, using Grönwall lemma,
we get

ut ≤
(2Td+ C)σ2

2(1− CTσ2/2)
exp

{

LipK′

∇W

1− CTσ2/2
T

}

= O(σ2). (3.4)

This in particular means, that E

(

sups∈[0;T∧T ] |Xs − ψs|2
)

≤ O(σ2). Neverthe-

less, to show the necessary result, we have to get rid of the stopping time T in
the previous equation. It is sufficient to show, that P(T ≤ T ) −−−→

σ→0
0.

Indeed, by its definition, T is the first time when the difference |Xt − ψt|2
reaches ξ. But under the assumption T ≤ T and due to (3.4), by decreasing σ
we can control |Xt − ψt|2 and make it small enough, such that |XT − ψT |2 < ξ
(in some sense), which contradicts the definition of T . Rigorously,

T < T ⇒ sup
[0,T ∧T ]

|Xs − ψs|2 = sup
[0,T ]

|Xs − ψs|2 ≥ ξ.
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Thereby,
P(T < T ) ≤ P( sup

[0,T ∧T ]

|Xs − ψs|2 ≥ ξ) ≤ O(σ2),

by Markov inequality.
To conclude the proof of the Proposition, we consider

P

(

sup
t∈[0;T ]

|Xt − ψt(x0)|2 > ξ

)

≤ P

(

sup
t∈[0;T ]

|Xt − ψt(x0)|2 > ξ, T > T

)

+ P (T ≤ T )

≤ P

(

sup
t∈[0;T∧T ]

|Xt − ψt(x0)|2 > ξ

)

+O(σ2)

≤ O(σ2),

by Markov inequality and (3.4), which completes the proof.

3.2 Probability of leaving before Tκ(σ)

Remind that we denoted in (2.14) by Tκ(σ) the first time at which the expec-
tation of the 2k-Wasserstein distance between the occupation measure of the
process and δm is smaller than κ. By B(m;κ), we denote the ball of center δm
and radius κ for W2k.

Proposition 3.2. We put τ := inf{t ≥ 0 : Xt /∈ D} where D is a domain that
is positively invariant for the flow x 7→ −∇V (x)−∇W (x−m). For any κ > 0,

lim
σ→0

P (τ ≤ Tκ(σ)) = 0 . (3.5)

Proof. First, we remind that if σ is small enough, Tκ(σ) ≤ Tκ where Tκ does
not depend on σ. Moreover, Tκ and Tκ(σ) are deterministic. As a consequence,
we have

P (τ ≤ Tκ(σ)) ≤ P (τ ≤ Tκ) .

We now prove that for any T > 0, P (τ ≤ T ) −→ 0 as σ goes to 0. According
to the assumption {ψt(x0) ; 0 ≤ t ≤ T} ⊂ D, we know (since D is an open set)
that there exists ǫ > 0 such that B (0; ǫ) + {ψt(x0) ; 0 ≤ t ≤ T} ⊂ D.

Now, on the event {τ ≤ T}, we deduce that supt∈[0;T ] ||Xt − ψt(x0)||2 > ǫ2.
As a consequence:

P (τ ≤ T ) ≤ P

(

sup
t∈[0;T ]

||Xt − ψt(x0)||2 > ǫ2

)

,

which goes to 0 as σ goes to 0, thanks to (3.2). This concludes the proof.
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3.3 Coupling for t ≥ Tk(σ)

In [Tug16, Tug18], Tugaut has proved the Kramers’ type law for the exit-time.
He has used a coupling between the diffusion of interest (X here) and another
diffusion that is expected to be close from X if the time is sufficiently large.
The main difficulty with the considered self-stabilizing diffusion is in fact that
we do not have a uniform (with respect to the time) control of the law.

Here, we have proved that the nonlinear quantity appearing in the equation
(that is 1

t

∫ t

0
δXs

ds) remains stuck - with high probability - in a small ball (for
W2k) of center δm and radius κ for any t ≥ Tκ(σ). The idea is thus to replace
1
t

∫ t

0
δXs

ds by δm and to compare the new diffusion with the self-interacting one.
In other words, we consider the diffusion

Yt = XTκ(σ) + σ
(

Bt −BTκ(σ)

)

−
∫ t

Tκ(σ)

∇V (Ys) ds−
∫ t

Tκ(σ)

∇W (Ys −m)ds ,

(3.6)
for any t ≥ Tκ(σ) and Yt = Xt if t ≤ Tκ(σ).

Proposition 3.3. For any ξ > 0, if κ is small enough, we have

lim sup
σ→0

P



 sup
Tκ(σ)≤t≤exp[ 2H+10

σ2 ]
|Xt − Yt| ≥ ξ



 ≤ √
κ . (3.7)

Proof. For any t ≥ Tκ(σ), we have

d |Xt − Yt|2

= −2 (Xt − Yt ; (∇V (Xt) +∇W ∗ µt(Xt))− (∇V (Yt) +∇W (Yt −m))) dt ,

with the empirical measure µt :=
1
t

∫ t

0
δXs

ds. Let us define Wm(x) := V (x) +
W (x−m) and Wµt

(x) := V (x) +W ∗ µt(x). We thus have

d

dt
|Xt − Yt|2 =− 2 (Xt − Yt ; ∇Wµt

(Xt)−∇Wµt
(Yt))

+ 2 (Xt − Yt ; ∇W (Yt −m)−∇W ∗ µt(Yt)) .

However, ∇2Wµt
= ∇2V +∇2W ∗µt ≥ ρ+α > 0. So, putting γ(t) := |Xt − Yt|2,

Cauchy-Schwarz inequality yields to

γ′(t) ≤ −2 (α+ ρ) γ(t) + 2
√

γ(t) |∇W (Yt −m)−∇W ∗ µt(Yt)| .

But by the growth assumption (2.1) on W , we have for any probability measures
µ, ν the following control

|∇W ∗ µ(x)−∇W ∗ ν(x)| ≤ C
(

1 + |x|2k
)

W
2k
2k (µ; ν)

where 2k is the degree of the polynomial P . We introduce the set

Aκ :=
{

ω ∈ Ω : W
2k
2k (µt; δm) ≤ κk

}

.
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By Markov inequality, we have P (Aκ) ≥ 1 − κk. This implies for any t ≥
Tκ(σ) and for any ω ∈ Aκ:

γ′(t) ≤ −2 (α+ ρ) γ(t) + 2Cκk
√

γ(t)
(

1 + |Yt|2k
)

.

However, γ(t) = 0 for any t ≤ Tκ(σ). This means that











t ≥ 0 : γ(t) >
C2κ2k

(

1 + |Yt|2k
)2

(α+ ρ)2











⊂ {t ≥ 0 : γ′(t) < 0} .

We deduce that

sup
Tκ(σ)≤t≤exp[ 2H+10

σ2 ]
γ(t) ≤

C2κ2k
(

1 + supTκ(σ)≤t≤exp[ 2H+10

σ2 ] |Yt|
2k
)2

(α+ ρ)2
,

if ω ∈ Aκ. We now consider R > 0 such that the exit cost of the diffusion
Y from the ball of center m and radius R is at least H + 6, meaning that
inf{V (x) +W (x − m)− V (m) : x ∈ B(m,R)} ≥ H + 6.

Then, by Freidlin-Wentzell theory, we deduce that

limσ→0 P

(

supTκ(σ)≤t≤exp[ 2H+10

σ2 ] |Yt −m| ≥ R
)

= 0. However, we have

P



 sup
Tκ(σ)≤t≤exp[ 2H+10

σ2 ]
|Xt − Yt| ≥ ξ





≤ P



 sup
Tκ(σ)≤t≤exp[ 2H+10

σ2 ]
|Yt −m| ≥ R





+P



 sup
Tκ(σ)≤t≤exp[ 2H+10

σ2 ]
γ(t) ≥ ξ2, sup

Tκ(σ)≤t≤exp[ 2H+10

σ2 ]
|Yt −m| < R





+P (Ac
κ) .

The first term tends to 0 as σ goes to 0. The second term is equal to 0 provided

that ξ >
Cκk
(

1+22k−1(R+|m|2k)
)

α+ρ . In other words, if κ is small enough, the second

term is equal to 0 uniformly with respect to σ. The third term is less than
√
κ.

This concludes the proof.

3.4 Proof of Theorem 1.2

Now we will prove the main Theorem 1.2. The idea of the proof is to use the
fact that diffusions Y and X are close to each other after the deterministic
stabilization time Tκ(σ) and until some fixed deterministic time exp 2(H+5)

σ2 ,
which we chose to be sufficiently big for our line of reasoning. We can control
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the proximity of these two diffusions by parameter κ, which represents how
close time-limit of our occupation measure and δm are. It was already shown
in Proposition 3.2, that with σ → 0 probability of exiting before time Tκ(σ)
tends to zero, which means that we can only focus on our dynamics after the
stabilization of occupation measure happens. After that, for the upper bound

we show, that the event τ > exp{ 2(H+δ)
σ2 } is not very likely due to the fact that,

for small σ, diffusion Y can even leave some bigger domain in a smaller time,
which contradicts the closeness of X and Y . Same type of reasoning takes place
for the lower bound. Let us now provide the rigorous proof.

Fix some δ, κ > 0, decrease it if necessary to be δ < 5. For the upper bound,
consider the following inequality:

P(τ > e
2(H+δ)

σ2 ) ≤ P(τ > e
2(H+δ)

σ2 , τYDe ≤ e
2(H+δ)

σ2 ) + P(τYDe > e
2(H+δ)

σ2 ), (3.8)

where De is some enlargement of domain D such that its exit cost is equal to
H + δ

2 , i.e.:

De := {x ∈ R
d : V (x) +W (x−m)− V (m) < H +

δ

2
};

and τYDe is exit time of diffusion Y from this domain, i.e.:

τYDe := inf{t : Yt /∈ De}.

Note, that domain De (since both V and W are continuous and convex) satisfies
the usual assumptions (see [DZ98]) and de := d(D,De) > 0. By classical result
of Freidlin-Wentzell theory,

P(τYDe > e
2((H+δ/2)+δ/2)

σ2 ) −−−→
σ→0

0.

Let us decrease σκ if necessary, such that the quantity above will be less then√
κ for any σ < σκ. Moreover, the first probability in (3.8) can be bounded by:

P(τYDe ≤ e
2(H+δ)

σ2 < τ) ≤ P(|XτY
De

− YτY
De

| ≥ de) ≤ 2κk,

where we use Proposition 3.3 and decrease κ and σκ if necessary.
We approach the lower bound similarly and introduce the contraction of the

domain D:

Dc := inf{x ∈ R
d : V (x) +W (x−m)− V (m) < H − δ

2
}.

If Dc turns out to be empty, decrease δ. As previously, the domain Dc satisfies
usual properties and has positive distance with the initial domain, that is dc :=
d(Dc,D) > 0. We introduce exit-time from the contracted domain for diffusion
Y :

τYDc := inf{t : Yt /∈ Dc},
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and have the following estimate:

P(τ < e
2(H−δ)

σ2 ) ≤ P(Tκ(σ) < τ < e
2(H−δ)

σ2 ≤ τYDc)

+ P(τ ≤ Tκ(σ)) + P(τYDc ≥ e
2((H−δ/2)−δ/2)

σ2 )

≤ P(|Xτ − Yτ | ≥ dc) + +P(τ ≤ Tκ(σ)) + 2κk

≤ 3κk + P(τ ≤ Tκ(σ)) ≤ 4κk,

by Proposition 3.2 (3.5), with κ and σκ small enough. That leads to:

P(e
2(H−δ)

σ2 ≤ τ ≤ e
2(H+δ)

σ2 ) ≥ 1− 7κk,

which proves the theorem if we consider κ → 0, parameter that uniformly
controls the convergence of σ towards 0.

3.5 Proof of Corollary 1.3

We can apply Theorem 1.2 to the level sets of the potential V +W ∗ δm.
By definition of N in Corollary 1.3, there exists a constant ξ > 0 such that

inf
z∈N

(V (z) +W (z −m)− V (m)) = H + 3ξ. We introduce the set

KH+2ξ :=
{

x ∈ R
d : V (x) +W (x−m)− V (m) < H + 2ξ

}

.

If we denote by τξ the first exit time of X from KH+2ξ, then we obtain

lim
σ→0

P

{

exp

[

2

σ2
(H + 2ξ − ρ)

]

< τξ < exp

[

2

σ2
(H + 2ξ + ρ)

]}

= 1 (3.9)

for any ρ > 0. By construction of KH+2ξ, N ⊂ Kc
H+2ξ, which implies

P {Xτ ∈ N} ≤P {Xτ /∈ KH+2ξ}
≤P {τξ ≤ τ}

≤P

{

τξ ≤ exp

[

2(H + 3ξ)

σ2

]}

+ P

{

exp

[

2H + ξ

σ2

]

≤ τ

}

.

Applying (3.9) with ρ := ξ to the first term and Theorem 1.2 to the second one,
we obtain the result.
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