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A KRAMERS’ TYPE LAW FOR SELF-INTERACTING
DIFFUSIONS

P. DEL MORAL, A. KURTZMANN, J. TUGAUT

Abstract. We study the exit time of a domain for a self-interacting diffusion,
where the Brownian motion is replaced by σBt for a constant σ. We first
show that the rate of convergence previously obtained for a convex confinment
potential V and a convex interaction potential does not depend on σ. Then,
we show a Kramers’ type law for the first exit-time from a domain (satisfying
classical hypotheses).

Keywords : Self-interacting diffusion, exit time, Kramers’ law, deterministic
flow.
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1. Introduction

Path-interaction processes have been introduced by Norris, Rogers and Williams
during the late 80s in [NRW87]. Since this period, they have been an intensive
research area. Under the name of Brownian Polymers, Durrett and Rogers [DR92]
studied a family of self-interacting diffusions, as a model for the shape of a growing
polymer. The model is the following. Denoting by Xt the location of the end of the
growing polymer at time t, the process X satisfies a stochastic differential equation
driven by a Brownian motion, with a drift term depending on its own occupation
measure. One is then interested in finding the scale for which the process converges
to a non trivial limit. More recently, another model of growing polymer has been
introduced by Benaïm, Ledoux and Raimond [BLR02], for which the drift term
depends on its own empirical measure. Namely, they have studied the following
process living in a compact smooth connected Riemannian manifold M without
boundary:

dXt =

N∑
i=1

Fi(Xt) ◦ dBit −
∫
M

∇xW (Xt, y)µt(dy)dt,

where W is a (smooth) interaction potential, (B1, · · · , BN ) is a standard Brownian
motion on RN , µt = 1

t

∫ t
0
δXsds and the symbol ◦ stands for the Stratonovich sto-

chastic integration. In the compact setting, they have shown that the asymptotic
behaviour of the empirical measure of the process can be related to the analysis of
some deterministic dynamical flow. Later, Benaïm and Raimond [BR05] gave suffi-
cient conditions for the almost sure convergence of the empirical measure (again in
the compact setting). More recently, Raimond [Ra09] has generalized the previous
study and has proved that for the solution of the SDE living on a compact manifold

dXt = dBt −
g(t)

t

∫ t

0

∇xV (Xt, Xs)ds dt

1
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unless g is constant, the approximation of the empirical measure by a deterministic
flow is no longer valid.

Similar questions have also been answered in the non-compact setting, that is Rd.
Chambeu and Kurtzmann [CK11] have studied the ergodic behaviour of the self-
interacting diffusion depending on the empirical mean of the process. They have
proved, under some convexity assumptions (ensuring the non-explosion in finite
time of the process), a convergence criterion for the diffusion solution to the SDE

dXt = dBt − g(t)∇V
(
Xt −

1

t

∫ t

0

Xsds

)
dt

when g is a positive function. This model could represent for instance the be-
haviour of some social insects, as ants who are marking their paths with the trails’
pheromones. This paper shows in particular how difficult is the study of general
self-interacting diffusions in non-compact spaces as in [AK10], driven by the generic
equation

dXt = dBt −
1

t

∫ t

0

∇xV (Xt, Xs)ds dt.

Nevertheless, if the interaction function V is symmetric and strictly uniformly con-
vex, then Kleptsyn and Kurtzmann [KK12] obtained the limit-quotient ergodic the-
orem for the self-attracting diffusion. Moreover, they managed to obtain a speed of
convergence. As the results of this former paper are essential for the present work,
we will explain them more precisely later in §2.2.

Another problem related to this paper is the diffusion corresponding to McKean
and Vlasov’s PDE. This corresponds to the Markov process governed by the SDE

(1.1) dXt = dBt −∇W ∗ νt(Xt)dt

where νt = L(Xt),W is a smooth convex potential and * stands for the convolution.
The asymptotic behaviour ofX has been studied by various authors these last years,
see for instance Cattiaux, Guillin and Malrieu [CGM08]. It turns out that under
some assumptions, the law νt converges to the (unique if W is strictly convex)
probability measure solution to the equation ν = 1

Z e
−2W∗ν where Z = Z(ν) is the

normalisation constant. In the later paper, the authors use a particle system to
prove both a convergence result (with convergence rate) and a deviation inequality
for solutions of granular media equation when the interaction potential is uniformly
convex at infinity. To this end, they use a uniform propagation of chaos property
and a control in Wasserstein distance of solutions starting from different initial
conditions.

A related question to this problem concerns the exit times from domains of
attraction for the following motion

(1.2) dXε
t =
√
εdBt −∇V (Xε

t )dt−∇W ∗ νt(Xε
t )dt

where V is a potential, * stands for the convolution, νt = L(Xε
t ) and ε > 0. This

was addressed by Herrmann, Imkeller and Peithmann [HIP08], who exhibited a
Kramer’s type law for the particle’s exit from the potential’s domains of attraction
and a large deviations principle for the self-stabilizing diffusion. To get this, they
reconstructed the Freidlin-Wentzell theory for the self-stabilizing diffusion. More
precisely, they established a large deviation principle with a good rate function. The
exit problem for the McKean-Vlasov diffusion has also been already studied recently,
without using the Freidlin-Wentzell method. In [Tug12], Tugaut has analysed the
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exit problem (time and location) in convex landscapes, showing the same result
as Herrmann, Imkeller and Peithmann, but without reconstructing the proofs of
Freidlin and Wentzell. He has then generalised very recently his results in the case
of double-wells landscape in [Tug18]. In the papers [Tug16, Tug17], Tugaut did not
use large deviation principle but a coupling method between the time-homogeneous
diffusion

dXt =
√
εdBt −∇V (Xt)dt−∇W (Xt − x∗)dt

(where x∗ is the unique point at which the vector field ∇V equals 0) and the
McKean-Vlasov diffusion so that the results on the exit-time of X can be used for
the exit-time of the self-stabilizing diffusion (1.2).

The present paper also deals with the exit time and exit location problem of a
specific diffusion, driven by the SDE

(1.3) dXt = σdBt −
(
∇V (Xt) + α

(
Xt −

1

t

∫ t

0

Xsds

))
dt, X0 = x ∈ Rd

where V is a potential and σ ∈ R, α > 0. We could adapt the techniques introduced
by Herrmann, Imkeller and Peithmann but only in the case of a convex gradient
V . Our aim is to generalize the study also to non convex potentials. In the present
work, we will solve the exit problem (time and location) for the diffusion (1.3).
Indeed, the exit location will be easily obtained once we know the exit time. The
motivation for the study of such a diffusion is twofold. First, we wish to obtain the
basin of attraction in the case when the diffusion converges (and if we know the
speed of convergence). And more challenging, our main aim consists in improving
the simulated annealing method (even if we need a negative interaction coefficient
α < 0 for that). This paper is a first step in this direction.

1.1. Some usefull notation. As usual, we denote byM(Rd) the space of signed
(bounded) Borel measures on Rd and by P(Rd) its subspace of probability measures.
We will need the following measure space:

(1.4) M(Rd;P ) := {µ ∈M(Rd);
∫
Rd
P (|y|) |µ|(dy) < +∞},

where |µ| is the variation of µ (that is |µ| := µ+ + µ− with (µ+, µ−) the Hahn-
Jordan decomposition of µ: µ = µ+ − µ−) and P is some polynomial. Belonging
to this space will enable us to always check the integrability of P (and therefore of
V , W and their derivatives thanks to the domination condition (2.3)) with respect
to the (random) measures to be considered. We endow this space with the dual
weighted supremum norm (or dual P -norm) defined for µ ∈M(Rd;P ) by

(1.5) ||µ||P := sup
ϕ∈C(Rd);|ϕ|≤P

∣∣∣∣∫
Rd
ϕdµ

∣∣∣∣ =

∫
Rd
P (|y|) |µ|(dy),

where C(Rd) is the set of continuous functions Rd → R. We recall that P (|x|) ≥ 1,
so that ‖µ‖P ≥ |µ(Rd)|. This norm makes M(Rd;P ) a Banach space. Next, we
consider P(Rd;P ) =M(Rd;P )∩P(Rd). In the sequel, (·, ·) stands for the Euclidian
scalar product.

Definition 1.1. Let d be any positive integer. Let G be a subset of Rd and let U
be a vector field from Rd to Rd which satisfies good assumptions. For all x ∈ Rd,
we consider the dynamical system ρt(x) = x +

∫ t
0
U (ρs(x)) ds. We say that the

domain G is stable by U if the orbit {ρt(x) ; t ∈ R+} is included in G for all x ∈ G.
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1.2. Main result. We study the following diffusion

(1.6) dXt = σdBt −
(
∇V (Xt) + α

(
Xt −

1

t

∫ t

0

Xsds

))
dt, X0 = x ∈ Rd

where B is a Brownian motion and α > 0, σ > 0. We also suppose that the potential
V is regular and has a unique local minimum m. The precise assumptions on V
will be given later in Section 2.

The goal of this paper consists in finding some precise upper and lower bounds
for the exit time of some stable domain.

Theorem 1.2. Consider a domain D that is stable by the flow x 7→ −∇V (x) −
α(x − m) and denote by τ the first time the process X exits the domain D. Let
H := infx∈∂D V (x) + α

2 ||x−m||
2 − V (m) be the exit cost from D. For any δ > 0,

we have

(1.7) lim
σ→0

P
(

exp

{
2

σ2
(H − δ)

}
≤ τ ≤ exp

{
2

σ2
(H + δ)

})
= 1 .

1.3. Outline. Our paper is divided in two parts. First, Section 2 is devoted to
the study of the self-interacting diffusion and more specifically, we will explain
the former results of Kleptsyn and Kurtzmann [KK12] and how we adapt them
in our context. In particular, we will show that the empirical measure of the
studied process converges almost surely with a rate upper bounded independently
of σ. After that, we will prove our main result, that is Theorem 1.2, in Section 3.
To this aim, we will show that our process X is close to the solution of a given
deterministic flow in §3.1. We then prove in §3.2 that the probability of leaving a
stable domain before the empirical mean remains stuck in the ball of center m and
radius κ vanishes as σ goes to zero. Finally, a coupling permits to conclude the
proof in §3.4.

2. The linear self-interacting diffusion

We remind the reader that X is solution to

dXt = σdBt −
(
∇V (Xt) + α

(
Xt −

1

t

∫ t

0

Xsds

))
dt, X0 = x ∈ Rd.

Consider the potential V : Rd → R+. Let Max = {M1, . . . ,Mp} be the (finite)
set of saddle points and local maxima of V and denote by m the unique local
minimum of V . So CP := m ∪Max is the set of critical points of V . We assume
that V satisfies:

1) (regularity and positivity) V ∈ C2(Rd) and V > 0;
2) (convexity) V = χ + W where χ is a compactly supported function and

there exists c > α such that ∇2W ≥ cId;
3) (growth) there exists a > 0 such that for all x ∈ Rd, we have

(2.1) ∆V (x) ≤ aV (x) and lim
|x|→∞

|∇V (x)|2

V (x)
=∞;

4) (critical points) ∀ξ ∈ Rd, (∇2V (m)ξ, ξ) > ρ|ξ|2 with ρ > α and for all Mi,
∇2V (Mi) admits a negative eigenvalue.

Remark. By the growth condition (2.1), |∇V |2 −∆V is bounded by below.
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Proposition 2.1. For any x ∈ Rd, there exists a unique global strong solution
(Xt, t ≥ 0).

Proof. The local existence and uniqueness of the solution to (1.6) is standard. We
only need to prove here that X does not explode in a finite time. To this aim, apply
Itô’s formula to the function x 7→ V (x):

dV (Xt) = σ(∇V (Xt),dBt)

−
(
|∇V (Xt)|2 − α(Xt,∇V (Xt)) +

α

t

∫ t

0

(∇V (Xt), Xs))ds−
σ2

2
∆V (Xt)

)
dt,

and introduce the sequence of stopping times τ0 = 0 and

τn = inf{t ≥ 0;V (Xt) +
α

t

∫ t

0

(Xs,∇V (Xt))ds > n}.

The convexity condition and the growth condition (2.1) imply that

EV (Xt∧τn) ≤ V (x) + a
σ2

2
E
∫ t∧τn

0

V (Xs)ds− αE
∫ t∧τn

0

1

s

∫ s

0

(Xu,∇V (Xs))duds

≤ V (x) + a
σ2

2
E
∫ t∧τn

0

V (Xs)ds+ dαE
∫ t∧τn

0

(
1

s

∫ s

0

|Xu|2du+ |∇V (Xs)|2
)

ds

≤ V (x) + a
σ2

2
E
∫ t∧τn

0

V (Xs)ds+ dαE
∫ t∧τn

0

(
1

s

∫ s

0

V (Xu)du+ aV (Xs)

)
ds

≤ V (x) + a

(
σ2

2
+ dα

)
E
∫ t∧τn

0

V (Xs)ds+ dαE
∫ t∧τn

0

V (Xs) log(t/s)ds.

We finally conclude that

EV (Xt∧τn) ≤ V (x) + βt log teβt log t

with β = aσ
2

2 + dα(a+ 1). �

2.1. Behaviour near the critical points of V . We first prove that X gets close
to the critical points of V .

Proposition 2.2. For ε > 0, let T εt := inf{s ≥ t : d(Xs, CP) < ε}. Then, for all
ε > 0 and all t ≥ 0, we have P(T εt < +∞) = 1.

Proof. Let ε > 0. We have

d(V (Xt) +
α

2
|Xt −

1

t

∫ t

0

Xsds|2) = σ

(
∇V (Xt) + α(Xt −

1

t

∫ t

0

Xsds), σdBt

)
−
(
|∇V (Xt)|2 − (α2 − α

t
)|xt −

1

t

∫ t

0

Xsds|2 −
σ2

2
∆V (Xt)− αd

)
dt.

There exists t0 such that for any t ≥ t0, we have that(
V (Xs∧T εt ) +

α

2
|Xs∧T εt −

1

s ∧ T εt

∫ s∧T εt

0

Xudu|2 +
σ2

2

∫ s∧T εt

0

∆V (Xu)du+

+α2

∫ s∧T εt

0

|Xu −
1

u

∫ u

0

Xvdv|2du+ αds ∧ T εt

)
s≥t
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is a positive supermartingale. It thus converges a.s. as s→ +∞. The same calculus
also applies to the positive super-martingale(

V (Xs∧T εt ) +
α

2
|Xs∧T εt −

1

s ∧ T εt

∫ s∧T εt

0

Xudu|2 +
σ2

2

∫ s∧T εt

0

∆V (Xu)du

+α2

∫ s∧T εt

0

|Xu −
1

u

∫ u

0

Xvdv|2du+ αds ∧ T εt +
1

2

∫ s∧T εt

0

|∇V (Xu)|2du

)
s≥t

.

We thus conclude that
(∫ s∧T εt

0
|∇V (Xu)|2du

)
s≥t

) converges a.s.

Suppose now that we are on the set {T εt = +∞}. It follows that |∇V (Xs∧T εt )|
converges a.s. to 0. This implies that Xs∧T εt gets close to CP, leading to a contra-
diction. We conclude that P(T εt < +∞) = 1. �

2.2. Speed of convergence. Our results are based on the paper of Kleptsyn and
Kurtzmann [KK12]. More precisely, they have proved the following

Theorem 2.3. [KK12, Theorem 1.6] Let X be the solution to the equation

(2.2) dXt =
√

2dBt −
(
∇V (Xt) +

1

t

∫ t

0

∇W (Xt −Xs)ds

)
dt.

Suppose, that V ∈ C2(Rd) and W ∈ C2(Rd), and:
i) spherical symmetry: W (x) = W (|x|);
ii) V and W are convex, lim|x|→+∞ V (x) = +∞, and either V or W is uni-

formly convex:

∃C > 0 : ∀x ∈ Rd,∀v ∈ Sd−1,
∂2V

∂v2

∣∣∣∣
x

≥ C or ∀x ∈ Rd,∀v ∈ Sd−1,
∂2W

∂v2

∣∣∣∣
x

≥ C;

iii) V and W have at most a polynomial growth: for some polynomial P , we
have ∀x ∈ Rd

(2.3) |V (x)|+ |W (x)|+ |∇V (x)|+ |∇W (x)|+ ‖∇2V (x)‖+ ‖∇2W (x)‖ ≤ P (|x|).

Then there exists a unique density ρ∞ : Rd → R+, such that almost surely

µt =
1

t

∫ t

0

δXsds
∗−weakly−−−−−−→
t→+∞

ρ∞(x) dx.

Moreover, if V is symmetric with respect to some point q, then the corresponding
density ρ∞ is also symmetric with respect to the same point q. Remark that the
density ρ∞ is the same limit density as in the result of [CMV03], uniquely defined
by the following property: ρ∞ is a positive function, proportional to e−(V+W∗ρ∞).

And what is more important, Kleptsyn and Kurtzmann obtained a speed of con-
vergence in the following way. First, let us remind the definition of the Wasserstein
distance: for µ1, µ2 ∈ P(Rd;P ), the quadratic Wasserstein distance is defined as

W2(µ1, µ2) :=
(
inf{E(|ξ1 − ξ2|2)}

)1/2
,

where the infimum is taken over all the random variables such that {law of ξ1} = µ1

and {law of ξ2} = µ2.
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Theorem 2.4. [KK12, Theorem 1.12] There exists a constant a > 0 such that
almost surely, we have for t large enoughW2(µct , ρ∞) = O(exp{−a k+1

√
log t}), where

k is the degree of the polynomial P , µct is the translation of the empirical measure
µt such that E(µct) = 0 and W2 is the quadratic Wasserstein distance, that is the
minimal L2-distance taken over all the couplings between µct and ρ∞.

Of course, we study here the case W (x) = α |x|
2

2 and thus P corresponds to
the polynomial growth of V , and we have to replace the Brownian motion by the
rescaled Brownian motion σBt. So that the density ρ∞ is uniquely defined by the
following property: ρ∞ is a positive function, proportional to e−2(V+W∗ρ∞)/σ2

. Let
us sketch the proof of these results and explain how σ appears here.

First, note that the empirical measure µt = 1
t

∫ t
0
Xsds of Xt evolves very slowly.

Indeed, choose a deterministic sequence of times Tn → +∞, with Tn � Tn+1−Tn �
1, and consider the behaviour of the measures µTn . As Tn � Tn+1−Tn, it is natural
to expect that the empirical measures µt on the interval [Tn, Tn+1] almost do not
change and thus stay close to µTn . So we can approximate, on this interval, the
solution Xt of (2.2) by the solution of the same equation with µt ≡ µTn :

dYt = σ dBt − (∇V +∇W ∗ µTn)(Yt) dt, t ∈ [Tn, Tn+1],

in other words, by a Brownian motion in a potential V + W ∗ µTn that does not
depend on time.

On the other hand, the series of general term Tn+1 − Tn increases. So, using
Birkhoff Ergodic Theorem1, we see that the (normalized) distribution µ[Tn,Tn+1] of
values of Xt on these intervals becomes (as n increases) close to the equilibrium
measures Π(µTn) for a Brownian motion in the potential V +W ∗ µTn , where

Π(µ)(dx) :=
1

Z(µ, σ)
e−(V+W∗µ)(x)/σ2

dx, Z(µ, σ) :=

∫
Rd
e−(V+W∗µ)(x)/σ2

dx.

As

µTn+1
=

Tn
Tn+1

µTn +
Tn+1 − Tn
Tn+1

µ[Tn,Tn+1],

we then have

µTn+1
≈ Tn
Tn+1

µTn +
Tn+1 − Tn
Tn+1

Π(µTn) = µTn +
Tn+1 − Tn
Tn+1

(Π(µTn)− µTn),

and
µTn+1

− µTn
Tn+1 − Tn

≈ 1

Tn+1
(Π(µTn)− µTn).

This motivates Kleptsyn and Kurtzmann to approximate the behaviour of the mea-
sures µt by trajectories of the flow (on the infinite-dimensional space of measures)

(2.4) µ̇ =
1

t
(Π(µ)− µ),

or after a logarithmic change of variable θ = log t,

(2.5) µ′ = Π(µ)− µ.

Indeed, choose an appropriate interval [Tn, Tn+1). On this interval, fix the em-
pirical measure µt at µTn . Then construct a new process Y , coupled with X (the

1see for instance [RY98], chap. X
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coupling is such that X and Y are driven by the same Brownian motion), such that
for all t ∈ [Tn, Tn+1), we have

dYt = σdBt − (∇V (Yt) +∇W ∗ µTn(Yt))dt.

This new process has two advantages. First, it is Markovian (and its invariant
probability measure is Π(µTn)(dx) = 1

Z e
−(V+W∗µTn )(x)dx), and so is easier than

X to study. Second, its evolution is very close to the evolution of the desired X.
Indeed, we will use Y to prove that the transport distance between the empirical
measure on [Tn, Tn+1], denoted by µ[Tn,Tn+1] in [KK12, Proposition 3.2], and the
probability measure Π(µTn) (both measures being centered in cTn) is controlled by
T
− 1

3 min(8CW ,1/5d)
n and so, this distance vanishes as n → +∞. This has been done

in [KK12, §3.1.1].
After that, remark that if a.s. the empirical measure µt converges weakly* to µ∞,
then for t large enough, the process X shall be very close to Z, defined by

dZt =
√

2dBt − (∇V +∇W ∗ µ∞)(Zt)dt.

The process Z is obviously Markovian and the limit-quotient theorem applies
(see [RY98]):

1

t

∫ t

0

δZsds −→
t→+∞

Π(µ∞) a.s.

for the weak* convergence of measures. So when the limit µ∞ exists, it satis-
fies µ∞ = Π(µ∞). This explains the idea of introducing the dynamical system
µ̇ = Π(µ)− µ (after the time-shift t 7→ et in order to work with a time-homogeneous
system) defined on the set of probability measures that are integrable for the poly-
nomial P . Note that, instead of considering the latter dynamical system, Kleptsyn
and Kurtzmann work with its discretized version, with the knots chosen at the mo-
ments Tn. They then prove, in [KK12, Proposition 3.5], that the transport distance
between the deterministic trajectory induced by the smoothened (discrete) dynam-
ical system and the (centered) random trajectory µTn is controlled and decreases
to 0. This has been done in [KK12, §3.1.2].
Next, it remains to show that the free energy between this (centered) determinis-
tic trajectory and the set of translates of ρ∞ goes to 0. We remind that for the
dynamics in presence of an exterior potential V , the free energy function is

FV,W (µ) := σ2H(µ) +

∫
Rd
V (x)µ(x) dx+

1

2

∫
Rd

∫
Rd
µ(x)W (x− y)µ(y) dxdy.

and consider FV+W∗µ = σ2H(µ) +
∫
Rd(V (x) +W ∗ µ(x))µ(x) dx for the energy of

“small parts”, where the entropy of the measure µ is

(2.6) H(µ) :=

∫
Rd
µ(x) logµ(x)dx.

As the free energy is controlled by the quadratic Wasserstein distance W2, this
implies that the transport distance between the two previous quantities decreases,
as asserted in [KK12, Proposition 3.6].
To conclude, it remains to put all the pieces together and use the triangle inequality:
W2(µct , ρ∞) is upper bounded by the sum of three distances, involving the flow
Φn induced by the discretization of the dynamical system µ̇ = Π(µ) − µ on the
interval [Tn, Tn+1), for n large enough. The first term of the summation bound
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will be W2(µct ,Π(µcTn)), the second one W2(Π(µcTn),Φnn(µcTn)) and the third one
W2(Φnn(µcTn), ρ∞).

Finally, the previous decrease estimates will allow Kleptsyn and Kurtzmann
to show the convergence of the center, after having made the appropriate choice
Tn = n3/2.

Let us now prove for instance the exponential decrease for the centered measure
Π(µ) and show that, as σ2 << 1, we can obtain a minoration of the speed of
convergence that dos not depend on σ. First, define the following spaces:

Definition 2.5. Let α,C > 0 be given. Define

K0
α,C := {µ ∈ P(Rd); ∀r > 0, µ({y; |y| > r}) < Ce−αr},(2.7)

Kα,C := {µ ∈ P(Rd); µc ∈ K0
α,C}.(2.8)

Proposition 2.6. [KK12, Proposition 2.9] There exist CW , CΠ > 0 such that for
all µ ∈ P(R;P ), we have Π(µ)(·+ cµ) ∈ K0

CW ,CΠ
where cµ := E(µ).

Proof. Note first that, imposing a condition CΠ ≥ e2CW , we can restrict ourselves
only to R ≥ 2: for R < 2, the estimate is obvious.

The measure Π(µ) has the density 1
Z(µ,σ)e

−2(V+W∗µ)(x)/σ2

. To avoid working
with the normalization constant Z(µ, σ), we will prove a stronger inequality, that
is

(2.9) Π(µ)(|x− cµ| ≥ R) ≤ CΠe
−CR ·Π(µ)(|x− cµ| ≤ 2),

which is equivalent to∫
|x−cµ|≥R

e−2(V+W∗µ)(x)/σ2

dx ≤ CΠe
−CR

∫
|x−cµ|≤2

e−2(V+W∗µ)(x)/σ2

dx.

We use the polar coordinates, centered at the center cµ, and so we want to prove
that∫
Sd−1

∫ +∞

R

e−2(V+W∗µ)(cµ+λv)/σ2

λd−1dλdv ≤ CΠe
−CR

∫
Sd−1

∫ 2

0

e−2(V+W∗µ)(cµ+λv)/σ2

λd−1dλdv.

It suffices to prove such an inequality “directionwise”: for all v ∈ Sd−1, for all R ≥ 2∫ +∞

R

e−2(V+W∗µ)(cµ+λv)/σ2

λd−1dλ ≤ CΠe
−CR

∫ 2

0

e−2(V+W∗µ)(cµ+λv)/σ2

λd−1dλ.

But from the uniform convexity of V and W and the definition of the center, the
function f(λ) = (V + W ∗ µ)(cµ + λv) satisfies f ′(0) = 0 and ∀r > 0, f ′′(r) ≥ C.
Hence, f is monotone increasing on [0,+∞), and in particular,

(2.10)
∫ 2

0

e−f(λ)λd−1dλ ≥ e−f(2)

∫ 2

0

λd−1dλ =: C1e
−f(2).

On the other hand, for all λ ≥ 2, f ′(λ) ≥ f ′(2) ≥ 2C, and thus f(λ) ≥ 2C(λ− 2) +
f(2). Hence, as σ2 << 1, we have∫ +∞

R

e−f(λ)λd−1dλ ≤ e−f(2)

∫ +∞

R

λd−1e−2C(λ−2)/σ2

dλ

≤ e−f(2)

∫ +∞

R

λd−1e−2C(λ−2)dλ

≤ C2R
d−1e−2CR · e−f(2) ≤ C3e

−CR · e−f(2).(2.11)
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Comparing (2.10) and (2.11), we obtain the desired exponential decrease. �

2.3. Conclusion. Let us introduce the stopping time

(2.12) Tκ(σ) := inf

{
t0 ≥ 0 : ∀t ≥ t0,

∣∣∣∣∣∣∣∣1t
∫ t

0

Xsds−m
∣∣∣∣∣∣∣∣2 ≤ κ2

}
.

By the convergence result, we know that for any σ > 0, Tκ < ∞. Moreover,
by the rate of convergence result, we even know that for any κ > 0, there exists
Tκ <∞ such that if σ < 1, then Tκ(σ) < Tκ.

3. Proof of Theorem 1.2

In this section, we will prove our main result. First, we will show that our process
is close to the solution of a deterministic flow (ψt)t≥0 in §3.1. Using that, we will
prove in §3.2 that the probability of leaving a stable domain before the empirical
mean remains stuck in the ball of center m and radius κ vanishes as σ goes to zero.
Then, we consider the coupling between the studied diffusion and the one where the
empirical mean is frozen to m and we show that these diffusions are close in §3.3.
We conclude the proof in §3.4.

3.1. Majoration. We remind the reader that in our work, the noise elapses. Con-
sequently, it is natural to introduce the deterministic flow (ψt)t defined by the
following

(3.1) ψ̇t = −∇V (ψt)− α
(
ψt −

1

t

∫ t

0

ψsds

)
, ψ0 = x0.

We will show that Xt and ψt are uniformly close while the noise goes to zero.
Namely

Proposition 3.1. For any ξ > 0 and for any T > 0, we have:

(3.2) lim
σ→0

P

(
sup
[0;T ]

||Xt − ψt(x0)||2 > ξ

)
= 0 .

Proof. We apply the Itô formula to obtain
1

2
d|Xt − ψt|2 = (Xt − ψt,d(Xt − ψt)) +

1

2
d < X· − ψ· >t

= σ(Xt − ψt,dBt) + (Xt − ψt,−∇V (Xt) +∇V (ψt)−

−α
(
Xt −

1

t

∫ t

0

Xsds− ψt +
1

t

∫ t

0

ψsds

)
)dt+

σ2

2
dt

≤ σ(Xt − ψt,dBt)− (ρ+ α)|Xt − ψt|2dt+
α

t

∫ t

0

(Xt − ψt, Xs − ψs)dsdt+
σ2

2
dt.

The triangular inequality applied to the scalar product (Xt−ψt, Xs−ψs) now leads
to
1

2
d|Xt − ψt|2 ≤ σ(Xt − ψt,dBt)− (ρ+

α

2
)|Xt − ψt|2dt+

α

2t

∫ t

0

|Xs − ψs|2dsdt+
σ2

2
dt

≤ σ(Xt − ψt,dBt) +
α

2t

∫ t

0

|Xs − ψs|2dsdt+
σ2

2
dt.
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Thus, we will find a upper bound for each term of the preceding inequality. First,
we apply the BDG inequality for the local martingale term to get that there exists
a positive constant C such that

E

(
sup
[0,T ]

∣∣∣∣σ ∫ t

0

(Xs − ψs,dBs)
∣∣∣∣2
)
≤ Cσ2E

√∫ T

0

|Xs − ψs|2ds ≤ Cσ2

√∫ T

0

E(|Xs − ψs|2)ds.

Then, we remark that∫ T

0

1

t

∫ t

0

E(|Xs − ψs|2)dsdt ≤
∫ T

0

E(|Xt − ψt|2) log tdt.

Putting all the pieces together, we have

ξ2P

(
sup
[0;T ]

||Xt − ψt(x0)||2 > ξ

)
≤ Cσ2

√∫ T

0

E(|Xs − ψs|2)ds+
α

2
log T

∫ T

0

E(|Xu − ψu|2)du+
σ2

2
T.

As T is given and both X and ψ do not explode in a finite time, this leads to the
result. �

3.2. Probability of leaving before Tκ(σ). Remind that we denoted in (2.12) by
Tκ(σ) the first time at which the empirical mean of the process remains stuck in
the ball centered in m with radius κ.

Proposition 3.2. We put τ := inf{t ≥ 0 : Xt /∈ D} where D is a domain stable
by the drift x 7→ −∇V (x)− α (x−m). For any κ > 0,

(3.3) lim
σ→0

P (τ ≤ Tκ(σ)) = 0 .

Proof. First, we remark that Tκ(σ) ≤ Tκ where Tκ does not depend on σ. Indeed,
it has been proved that the exponential decrease is uniform with respect to the
noise. As a consequence, we have

P (τ ≤ Tκ(σ)) ≤ P (τ ≤ Tκ) .

We now prove that for any T > 0, P (τ ≤ T ) −→ 0 as σ goes to 0.
According to the assumption {ψt(x0) ; 0 ≤ t ≤ T} ⊂ D, we know (since D is an

open set) that there exists ε > 0 such that B (0; ε) + {ψt(x0) ; 0 ≤ t ≤ T} ⊂ D,
where B (0; ε) is the ball centered in 0 with radius ε.

Now, on the event {τ ≤ T}, we deduce that supt∈[0;T ] ||Xt − ψt(x0)||2 > ε2. As
a consequence:

P (τ ≤ T ) ≤ P

(
sup
t∈[0;T ]

||Xt − ψt(x0)||2 > ε2

)
,

which goes to 0 as σ goes to 0, thanks to (3.2).
This achieves the proof.

�
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3.3. Coupling for t ≥ Tk(σ). In [Tug16, Tug18], Tugaut has proved the Kramers’
type law for the exit-time by making a coupling between the diffusion of interest
(X here) and a diffusion that we expect to be close from X if the time is sufficiently
large. The main difficulty with the self-stabilizing diffusion that was under consid-
eration is in fact that we did not have a uniform (with respect to the time) control
of the law.

Here, we have proved that the nonlinear quantity appearing in the equation
(that is 1

t

∫ t
0
Xsds) remains stuck in a small ball of center m and radius κ for any

t ≥ Tκ(σ). The idea thus is to replace 1
t

∫ t
0
Xsds by m and to compare the new

diffusion with the self-interacting one.
In other words, we consider the diffusion

(3.4) Yt = XTκ(σ) + σ
(
Bt −BTκ(σ)

)
−
∫ t

Tκ(σ)

∇V (Ys) ds− α
∫ t

Tκ(σ)

(Ys −m) ds ,

for any t ≥ Tκ(σ) and Yt = Xt if t ≤ Tκ(σ).

Proposition 3.3. For any ξ > 0, if κ is small enough, we have

(3.5) P

{
sup

t≥Tκ(σ)

||Xt − Yt|| ≥ ξ

}
= 0

Proof. For any t ≥ Tκ(σ), we have

d ||Xt − Yt||2 = −2 (Xt − Yt ; (∇V (Xt) + α (Xt − µt))− (∇V (Yt) + α (Yt −m))) dt ,

with µt := 1
t

∫ t
0
Xsds. We put Wm(x) := V (x) + α

2 ||x−m||
2. We thus have

d

dt
||Xt − Yt||2 =− 2 (Xt − Yt ; ∇Wm (Xt)−∇Wm (Yt))

+ 2α (Xt − Yt ; µt −m) .

However, ∇2Wm = ∇2V + α ≥ ρ + α > 0. So, by putting γ(t) := ||Xt − Yt||2,
Cauchy-Schwarz inequality yields

γ′(t) ≤ −2 (α+ ρ) γ(t) + 2
√
γ(t)κ ,

for any t ≥ Tκ(σ). However, γ(t) = 0 for any t ≤ Tκ(σ). This means that{
t ≥ 0 : γ(t) > κ2

(α+ρ)2

}
⊂ {t ≥ 0 : γ′(t) < 0}. We deduce that

sup
t≥Tκ(σ)

γ(t) ≤ κ2

(α+ ρ)2
.

The last term is smaller than ξ2 provided that κ < (α + ρ)ξ. This achieves the
proof. �

3.4. Conclusion: proof of Theorem 1.2. We now are in position to obtain the
Kramers’ type law for the exit-time and prove Theorem 1.2.

We decompose the proof in several parts. Let ξ > 0. It has been proved
in [Tug12] that there exist two families of domains (Di,ξ)ξ>0 and (De,ξ)ξ>0 such
that

• Di,ξ ⊂ D ⊂ De,ξ.
• Di,ξ and De,ξ are stable by Wm. The terminology “stable by” has been

introduced in Definition 1.1.
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• sup
z∈∂Di,ξ

d (z ; Dc) + sup
z∈∂De,ξ

d (z ; D) tends to 0 when ξ goes to 0.

• inf
z∈∂Di,ξ

d (z ; Dc) = inf
z∈∂De,ξ

d (z ; D) = ξ.

We do not provide the proof since it is technical and we refer to [Tug12, Definition
2.1, Proposition 2.2] for the details.
Step 2. By τ ′i,ξ(σ) (resp. τ ′e,ξ(σ)), we denote the first exit time of the diffusion Y
from the domain Di,ξ (resp. De,ξ).

Step 3. We prove here the upper bound:

P
(
τ ≥ e

2
σ2 (H+δ)

)
=P
(
τ ≥ e

2
σ2 (H+δ) ; τ ′e,ξ(σ) ≥ e

2
σ2 (H+δ)

)
+ P

(
τ ≥ e

2
σ2 (H+δ) ; τ ′e,ξ(σ) < e

2
σ2 (H+δ)

)
≤P
(
τ ′e,ξ(σ) ≥ e

2
σ2 (H+δ)

)
+ P

(
τ ≥ e

2
σ2 (H+δ) ; τ ′e,ξ(σ) < e

2
σ2 (H+δ)

)
=: aξ(σ) + bξ(σ) .

This will be decomposed in three parts.
Step 3.1. First, by taking ξ sufficiently small, the exit-cost of the diffusion

Y from the domain De,ξ will be less than H + δ
3 . Since the diffusion Y is time

homogeneous, we can apply the classical results of Freidlin-Wentzell theory and we
thus obtain:

aξ(σ) = P
(
τ ′e,ξ(σ) ≥ e

2
σ2 (H+ δ

3 +2 δ3 )
)
−→ 0

as σ > 0 since 2 δ3 > 0. Indeed, we remind the reader that the probability for a clas-
sical diffusion (with exit-cost H0) to exit at a time more than exp

{
2
σ2 (H0 + θ)

}
tends to 0 as σ goes to 0, for any θ > 0. We deduce that there exists ξ1 > 0

such that for all 0 < ξ < ξ1, we have: limσ→0 P
(
τ ′e,ξ(σ) ≥ exp

[
2
σ2 (H + δ)

])
= 0.

Therefore, if ξ is small enough, then the first term aξ(σ) tends to 0 as σ goes to 0.

Step 3.2. Let us now control the second term bξ(σ). On the event{
τ ≥ e

2
σ2 (H+δ) ; τ ′e,ξ(σ) < e

2
σ2 (H+δ)

}
,

we know that at time τ ′e,ξ(σ), the distance between X and Y is at least ξ (since X
is in D whilst Y is outside De,ξ). Now, according to classical results on Freidlin-
Wentzell theory, we know that the time τ ′e,ξ(σ) is larger than Tκ(σ) with high
probability (indeed, τ ′e,ξ(σ) is at least exp

{
2
σ2 (H − δ)

}
for any δ > 0 and we have

proved that Tκ(σ) is uniformly bounded with respect to σ). Consequently, we have

lim
σ→0

P
(
τ ≥ e

2
σ2 (H+δ) ; τ ′e,ξ(σ) ≤ e

2
σ2 (H+δ)

)
= lim
σ→0

P

(
sup

Tκ(ε)≤t
||Xt − Yt|| ≥ ξ

)
.

According to Theorem 3.3, there exists κ > 0 such that the previous term is 0.
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Step 3.3. Finally, choosing ξ and κ arbitrarily small, we obtain the upper bound

lim
σ→0

P
(
τ ≥ exp

[
2

σ2
(H + δ)

])
= 0 .

Step 4. Analogous arguments show that limσ→0 P
(
Tκ(σ) ≤ τ ≤ e

2
σ2 (H−δ)

)
= 0.

However, we have limσ→0 P (τ ≤ Tκ(σ)) = 0. This ends the proof.

Remark 3.4. If we consider a non-convex potential V (but still convex at infinity),
we have (1.7) if the domain D is included into a domain in which V is convex (and
contains a wells m). Indeed, let us consider two potentials V1 and V2 such that
V1 = V2 on a compact K. Then, for the self-interacting diffusion, Xt1t≤τK =
Yt1t≤τK where X and Y are two self-interacting diffusions defined with confining
potentials V1 and V2 respectively. We also remark that this does not hold with the
self-stabilizing diffusion since all the trajectories are taken into account.
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