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ABSTRACT

This paper aims to build an image coding system based on

a model of the mammalian retina. The retina is the light-

sensitive layer of tissue located on the inner coat of the eye

and it is responsible for vision. Inspired by the way the retina

handles and compresses visual information and based on pre-

vious studies we aim to build and analytically study a retinal-

inspired image quantizer, based on the Leaky Integrate-and-

Fire (LIF) model, a neural model approximating the behavior

of the ganglion cells of the Ganglionic retinal layer that is

responsible for visual data compression. In order to have a

more concrete view of the encoder’s behavior, in our experi-

ments, we make use of the spatiotemporal decomposition lay-

ers provided by extensive studies on a previous retinal layer,

the Outer Plexiform Layer (OPL). The decomposition layers

produced by the OPL, are being encoded using our LIF im-

age encoder and then, they are reconstructed to observe the

encoder’s efficiency.

Index Terms— Retina, Ganglion cells, Leaky Integrate-

and-Fire (LIF) model, neural coding, image coding, weighted

difference of Gaussians.

1. INTRODUCTION

As technology advances, the need for finding new ways for

the efficient transmission and storage of information aug-

ments dramatically. Living in the age of the social networks,

the media to be stored and transmitted grows rapidly. How-

ever, despite the fact that during the past few decades com-

pression standards kept evolving, the compression ratio does

not evolve accordingly to the needs. Consequently, the urge

for finding new means of compression remains to be of a great

importance. With this paper, we aim to propose a different,

bio-inspired, dynamic approach for the encoding of images.

Our work is being inspired by the mammalian retina. The

retina can be divided into three basic layers. The Outer Plex-

iform Layer (OPL) which acts as a spatiotemporal filter, the

Inner Plexiform Layer (IPL) that performs a non-linear rec-

tification, and the Ganglionic Layer which is responsible for

the encoding of the visual data. The Ganglionic layer consists

of the ganglion cells, a type of neuron that compresses visual

information according to the Leaky Integrate-and-Fire (LIF)

neural model which encodes intensity values into spikes. Un-

der the main belief that nature performs in an optimal way,

and based on previous works on the OPL filtering in [1], we

built a quantization system making use of the LIF properties

to compress images already filtered by the OPL. Unlike the

already existing static encoding algorithms, this quantization

scheme encodes images in a dynamic way and then using an

inverse function the encoded information provides an estima-

tion of the initial image.

2. THE LIF

2.1. Background

As described in [2], the LIF is a neural model which is de-

scribed by the relation:

τm
du

dt
= −u(t) +RI(t). (1)

where u(t) represents the membrane potential at time t, τm
is the membrane time constant and R is the membrane resis-

tance. In the LIF model, spikes are generated at a firing time

t(f) defined by the following threshold criterion:

t(f) : u(t(f)) = θ. (2)

Immediately after t(f) the potential is set to a new value

ur < θ,

lim
t→t(f);t>t(f)

u(t) = ur. (3)

While t < t(f) the dynamics is given by eq. (1) until

the next threshold crossing occurs. The LIF neuron may also

incorporate a refractory period. In this case, if u reaches the

threshold at time t = t(f), the dynamics is interrupted during

an absolute refractory time ∆abs and the integration restarts

at time t(f) +∆abs with a new initial condition.

Let’s consider the simple case of a constant input current

stimulus I(t) = I0. For the sake of simplicity we will assume



Fig. 1: The LIF encoding and decoding process

a reset potential ur = 0. Assuming that the kth spike has

occurred at time t = tk when the trajectory of the membrane

potential is given by integrating eq. (1) with the initial condi-

tion u(t) = ur = 0. The solution is given by the relation:

uk(t) = RI0

[

1− exp

(

−
t− tk

τm

)]

. (4)

After each spike, the potential is reset to the value ur = 0
and the integration process starts again. The condition u(t) =
θ is satisfied for t = tk+1, where tk+1 denotes the time when

the next spike occurs. Then, eq. (2) can be written as follow-

ing:

u(tk+1) = θ = RI0

[

1− exp

(

−
tk+1 − tk

τm

)]

. (5)

We assume d(RI0) = tk+1 − tk, the inter-spike delay of

an integrate-and-fire neuron with no refractory period, which

depends on the input current I0. Consequently, solving (5)

for the delay d(RI0) and simplifying the notation setting u =
u(I0) = RI0 yields:

d(u) =















∞, u < θ

h(u; θ) = τm ln(
u

u− θ
), u ≥ θ,

(6)

The firing rate of the LIF neuron, is then given by the relation

ν = 1/d(u).
At this point, it is important to denote that for the case of

a neuron with an absolute refractory period, the occurrence of

the next spike will be delayed by the duration of the refractory

period ∆abs. So, in this case, the inter-spike delay d′(u) is

given by:

d′(u) = d(u) + ∆abs = tk+1
− tk +∆abs, (7)

where t = tk+1 − tk + ∆abs is the time instance when the

next integration will start after the emission of the (k + 1)th

spike.

2.2. The LIF Quantizer

The LIF quantizer, which has analytically been studied and

explained in [3], uses the LIF properties to encode input in-

tensities into numbers of spikes within an observation time

tobs. In the encoder, according to Ohm’s law, we compute the

action potential of the LIF neuron from the relation u = RI .

Then, using eq. 6, we compute the integration delay d(u) and

by adding the refractory period ∆abs we get the interspike

delay d′(u). Finally, the floor value of the division of the pa-

rameter tobs by the interspike delay d′(u) gives the number of

spikes.

In the decoder, following the inverse procedure, we can get

an approximation of the delay by dividing the parameter tobs
by the number of spikes produced by the encoder. Using this

decoded delay and thanks to the inverse function h−1 we get

an approximation of the action potential ûand dividing by R
we finally get the quantized values of the input current Î The

process of the quantization using the LIF is shown in Figure

1.

There were some previous attempts to use similar bio-

inspired coding schemes [4, 5]. However, both these works

tried to approximate the LIF model by conventional compres-

sion tools. The originality of this work lies in the implemen-

tation of a real LIF quantizer with a refractory period.

3. THE OUTER PLEXIFORM LAYER (OPL)

3.1. Background

The Outer Plexiform Layer (OPL) is the first layer of the

retina which consists of a dense network of synapses between

the photoreceptor, horizontal and bipolar cells.

The input of the OPL cells is the visual stimulus f(x, t), x ∈

R
2, t ∈ R

+ which is spatiotemporally transformed into an

electrical signal. This signal is dynamically encoded by

the neurons into a code of spikes and is then propagated to

the visual cortex. Our goal is to build a bio-inspired encod-

ing/decoding system for images. Figure 2 shows the proposed

architecture.

The dynamic OPL transformation has been approximated

by the the retina-inspired filter [1, 6]. The retina-inspired filter

φ(x, t) is a novel Weighted Difference of Gaussian (WDoG)

[6] which models the center-surround structure of the recep-

tive field of the bipolar cells:

φ(x, t) = a(t)GσC
(x) − b(t)GσS

(x), (8)

where a(t) and b(t) are two time-varying weights which tune
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Fig. 2: Retina-inspired image codec. The figure describes the de-

composition of the input image f using the retina-inspired filter φ

into several layers Atj
each one of which is quantized by the LIF

quantizer Q. Based on the quantized layers A∗

tj
, one is able to re-

construct f̃ and compute the distortion comparing to f .

the shape of the DoG, σc and σs are the standard deviations

of the center and the surround Gaussians respectively with

σc < σs.

The retina-inspired filtering, which is a frame, is applied

to temporally constant input signals f(x, t) = f(x)1[0≤t≤T ](t)
resulting in:

A(x, t) = φ(x, t)
x
∗ f(x), (9)

where
x
∗ is a spatial convolution. Let t1, . . . , tm some tem-

poral samples. For each time instant tj , j = 1, . . . ,m there

is a different decomposition layer Atj = A(x, tj). This re-

dundancy is sufficient to perfectly reconstruct the input signal

f̃ . It is proven in [1] that the retina-inspired filter is a frame

hence, the filter is invertible meaning that it is possible to re-

construct the input image.

4. EXPERIMENTS

4.1. Results on one subband

Lets assume x1, . . . , xn some spatial samples such that

Atj =
(

A(x1, tj), . . . , A(xn, tj)
)

, j = 1, . . . ,m a discrete

decomposition layer. The LIF quantizer is applied to every

single spatiotemporal sample A(xk, tj) where k = 1, . . . , n.

For the experiment, we have chosen grayscale images of the

size n = 512×512 pixels taken from USC-SIPI database [7].

In our tests, we are going to use a LIF neuron with a random

refractory period which follows a half-Gaussian distribution.

In [3], it is proven that the presence of a refractory pe-

riod introduces overload noise to the LIF quantizer. This

yields the existence of an optimal θ value which minimizes

the Mean Squared Error (MSE). In this work we select this

optimal value for each of the OPL subbands.

4.2. Subband Generation using the OPL

The purpose of this paper is to experiment on the application

of the LIF quantizer on each of the subbands produced by

T = 90 ms
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Fig. 3: Subband generation rate. Case 1, corresponds to a subband

generation rate with dense middle bandpass frames. Case 2, cor-

responds to a subband generation rate with sparse middle bandpass

frames.

the retina-inspired filter and evaluate the quality and the ef-

ficiency of the extended system depicted in Figure 2. In [6]

it has been shown that the amount of information on the sub-

bands produced by the OPL decomposition varies while time

evolves. More specifically, according to the bio-plausible fil-

tering parameters given in [6], in the very first subbands the

range of the intensity values is very small while in the last

subbands (i.e. t ≥ 120ms) there is no big change in the

subbands’ content. Consequently, in order to reduce the re-

dundancy of the latest subbands, we are going to generate 10

subbands in the range 0 ≤ t ≤ 90ms. As a first step, we

tested the generation of 10 subbands uniformly distributed in

the total filtering range, observing each of the produced lay-

ers for a tobs = 9ms as described in Figure 3. Moving on, we

experimented on the non-uniform case, trying the two differ-

ent non-uniform schemes shown in Figure 3. The first one,

corresponds to an attempt to keep most of the middle and

most informative subbands in the bandpass range 25ms ≤

t ≤ 50ms. In this case, although we keep most of the mid-

dle informative subbands, we observe each layer for a shorter

observation time tobs. Then we also tried the second non-

uniform scheme, depicted in Figure 3, which corresponds to a

subband generation with sparser layers in the bandpass range

of observation times. In this second case, while we keep less

of the informative subbands, they are better encoded, as we

observe them for a longer observation time. At this point, we

should mention the fact that this is only a first experimental

attempt to apply the LIF to the layers produced by the OPL

filter, in order to evaluate and better understand the properties

of our proposed encoder. As a result, our subband selection

for the non-uniform sampling cases has been experimentally

achieved, without using some specific function.

For our experiments, we have used two different images.

After the subband generation we apply the LIF quantization

on each of the generated subbands, we reconstruct the en-
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PSNR = 17.0814 dB

SSIM = 0.5204
H = 3.316 bpp
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Fig. 4: Comparison of visual results and quality metrics of PSNR, SSIM and Entropy for the original image (first on the left), the uniform

subband generation(second from left to right), the non-Uniform subband generation with a sparser middle (second from left to right), and the

non-uniform scheme with a denser middle sumbbands (first on the right)

coded layers and evaluate the quality of the reconstructed

image compared to the original one as described in Figure 2.

In Figure 4 we present the visual results of our experiments

showing also the values of the Entropy, the Peak Signal to

Noise Ratio (PSNR), and the Structural Similarity Index

(SSIM)[8].

We observe that for the first image, the non-Uniform sub-

band generation with the denser subbands in the bandpass

area provides a better value of PSNR and SSIM compared to

the uniform case, while the entropy is being slightly reduced.

On the contrary, the nonuniform generation with sparser

subbands in the middle observation times behaves poorly in

comparison to the uniform generation. For the second image

though, depicted in the lower part of Figure 4, we observe

that both non-uniform cases of subband generation provides

better results of PSNR and SSIM than the uniform case,

with the denser middle subband generation behaving slightly

better than the sparser middle subbands case.

Consequently, we can assume that the selection of the

good θ value according to the observation time as well as

the good rate of subband generation in the OPL filtering, can

provide very promising results and significantly improve the

rate-distortion trade off. In addition to this, we conclude that

the good rate of subband generation varies according to the

image characteristics (statistics, content).

4.3. Conclusions

In this work we have implemented an extended retina-inspired

compression system. This is an innovative approach which

uses a dynamic way of quantization adapted to the needs of

the encoding process unlike the existing encoding algorithms.

Our study, reveals the fact that this bio-inspired dynamic en-

coding process can provide very promising results. The good

choice of layers produced by the OPL filter, plays an impor-

tant role to the quality of the image reconstruction and gives

a strong motive to further study the behavior of the model ac-

cording to the total observation time. Since this is a very first

attempt to apply this extended encoding system on images,

we should underline the significance of improving these re-

sults by further experimenting and studying the system’s be-

havior. Furthermore, since in our experiments we used an ex-

perimental way of non-uniform subband generation, the use

of a particular function that will be able to minimize the rate

distortion trade-off according to the image characteristics, is

a very important future step that should be studied and imple-

mented.
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