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ASYMPTOTIC SOLUTION OF NATURAL CONVECTION
PROBLEM IN A SQUARE CAVITY HEATED FROM
BELOW

M. GRUNDMANNT, A. MOJTABIT and B. VAN ’T HOF#

Yinstitut de Mécanique des Fluides, UMR CNRS/NP/UPS, 118 Route de Narbonne,
31062 Toulouse, France

tDepartment of Mathematics, University of Groningen, 9700 AV Groningen, The Netherlands

ABSTRACT

Studies a two-dimensional natural convection in a porous, square cavity using a regular asymptotic
development in powers of the Rayleigh number. Carries the approximation through to the 34th order.
Analyses convergence of the resulting series for the Nusselt number in both monocellular and multicellular
cases, providing insight in the validity regions of the power series.

KEY WORDS Natural convection Porous medium Square cavity Asymptotic solution Algebra code

NOMENCLATURE
Y = Stream function £  =Parameter of development e= VRa — Ra,
T  =Temperature ¢,t = Eigenfunctions
Ra = Rayleigh number A =Eigenvalue
Ra, = Critical Rayleigh number x = Dimensionless horizontal co-ordinate
Nu = Nusselt number z = Dimensionless vertical co-ordinate
Nu = Modified Nusselt number

INTRODUCTION

Natural convection in porous media has been the subject of many studies, the great number of
publications on the subject being a testimony!-2, In the theoretical analysis of flow in the porous,
vertical, rectangular cavity, heated from below, which is the subject of this study, Beck?
performed a linear stability analysis of the convective solution from which he derived critical
Rayleigh numbers and the type of convective flow which sets up after the first transition.

Schubert and Strauss* conducted a numerical study using a Galerkin method with double or
triple Fourier series in the case of a square or cubic porous cavity heated from below. They proved
the existence of monocellular and multicellular convective solutions for Rayleigh numbers higher
than the critical values, at which the transition from conduction to convection occurs.

Caltagirone and Fabrie® confirmed Schubert and Strauss’s results and extended their results to
nonstationary flow using the same numerical approach as Schubert and Strauss. They found
periodic as well as non-periodic solutions.

Riley and Winters® used results from bifurcation theory in their study of a porous, vertical,
rectangular cavity heated from below. They showed numerically the existence and stability of



multiple solutions and analysed the influence of the height-width cavity ratio on the stability of
the solutions. Building on these results, they produced a graph of the existence and stability of
stationary solutions for different Rayleigh numbers and height-width ratios.

This study was completed by Riley and Winters’, when they analysed the Hopf bifurcations of
the different solutions.

The purpose of this work is to use analytical methods for the construction of an accurate
solution of the equations describing convection in a porous, vertical, rectangular cavity heated
from below. The analytical solution obtained describes very well the mono-, bi- and tricellular
flow in a square cavity, and can be extended to cavities of arbitrary height-width ratios.

The solution uses an asymptotic development up to 34th order in the parameter £ = VRa — Ra_,
where Ra, denotes the value of the critical Rayleigh number (critical for the transition from
conduction to convection).

The series can be constructed analytically because every power term consists of only a finite
number of two-dimensional Fourier components. To find those components and their coefficients,
it is necessary to use a program for symbolic computations. In this study the Maple program was
used. The results were in very good accordance with numerical results that have been computed
earlier by other authors.

An estimation has been made for the convergence radius of the Nusselt number series solution,
given in powers of (Ra — Ra,). The series for the monocellular solution was found to be an
alternating series, with the result that the error is of the same order as the largest ignored term in
the series.

The series solution that has been obtained can be used as a reference solution for the validation
of future numerical codes. The discrepancy between this method and that of the Legendre spectral
collocation (43 x 43) is less than 10°'3 for Ra = 45. A 34th order development is not sufficient to
obtain the radius of convergence of these series in the bi- and tricellular case. However, the
computation of the Nusselt number gives results in good agreement with the numerical one.

ASYMPTOTIC APPROACH

The following system of coupled partial differential equations describes the natural convection in
terms of the stream function ¥ and the temperature T:

AY =-— (1a)

AT = Ra[ ————— J (ib)

The domain Q is the square cavity [0, 7] X [0, x], heated from below, with adiabatic side walls. At
the boundaries d<2 of the cavity, the following conditions are prescribed:

¥ =0 Y(x, z) € X2 (2a)
T=0 z=0 Vx (2b)
T=-m z=n Vx (2c)
oar =0 x=0, =& Vz. (2d)
ax

This dimensionless formulation has been chosen in order to obtain an analytical solution in the
simplest possible form.



The problem described above has a conductive solution valid for any value of Ra. It is given by
Yo =0 Ty = -z 3

Starting from this solution, the Rayleigh number for the solutions which set up when the Rayleigh
number exceeds its critical value Rac can be expressed in the form

Ra = Ra, + £ 4)

Let W and T be written in the following asymptotic expansions

‘i’:ie'w,- T=-z+Y €', 5)

=1 i=1
Using equations (1a) and (2a), it is seen that ¥ is determined by T. Therefore W can be written as
Y =Y(T). (6)

One can easily see that ‘¥ is linear. Equations (1) and (2) can now be represented by the following
symbolic form

D(T,¥(T))=0. (7
Expanding the operator D with respect to €, the equation can be rewritten as
e’ (To, ¥ (T )1y +0€*) =0 (®)
with D’ a linear operator. The solution ¢, is searched in a basis of eigenfunctions of the operator
P .One can easily prove that the functions

. -n . .
T, m = cos(nx)sin(mz), @, ,, =V(T, )= ——z—ﬁsm(lu)sm(mz) &)
n“+m

are eigenfunctions of D’, with eigenvalues

Ran® - (n2 +m’ )2

Ao = n? +nt a0
Critical values Ra,_ are those for which 4, =0, so we have
Ra. = ﬁz'"i (an
n
The Nth order approximation is given by
¥y = ie'\y(x,.) Ty =-z+§e'r,.. (12)
i=1 1=t

Then, an asymptotic expansion is constructed for chosen numbers m and n, which remain constant
during the entire calculation. The choice m = n = 1 yields the monocellular solution, n =2, m =1
the bicellular solution, n = 3, m = | the tricellular, etc. Choices with m >1 yield mathematical
solutions which are always unstable. For chosen m and n, it is found that

tl = al‘[n.m' (13)

The coefficient a; will be determined later.



Let Ty, Wy = Vv (TN) be an Nth order solution. We have
D(Ty, ¥y) = 0e™"). (14)

Let Ry, denote the (N+1)th order term of the residual

D(Ty, Wy) =™ ' Ry +0(e™?). (15)
Since the functions T, ,, are eigenfunctions of the linear operator D’, we have
D(Ty + €7, Wy +eMW(1, ) = €M (R, + A7)+ O(eM2). (16)
Therefore, let us write R, in the form
RN+l :an.m.NH Tn.m + z aA.I.N+l TL.I' (‘7)
(h,D)z(n.m)
Let us write f, , in the form
o
tN+l = aN+lTn.m - LN . (]8)
(R.=(nm) '11‘ )
This yields to
DTy, ¥y y)="" 01, ot +O("*?) (19)
with
Qv = fvaay_p)- (20)

For all N > 3, f,, is a linear function, but f; is cubic. The three resulting solutions yield the
conductive and two convective solutions, each with cells turning in opposite directions.
Increasingly high orders of accuracy can be attained by following this method.

RESULTS

After having obtained solution for the temperature and stream function up to the 32nd order in g,
a similar expression is derived for the Nusselt number, which is a series in powers of £2 .
Therefore, the Nusselt number Nu is written as

N
Nuy =1+ 2,q,(Ra— Ra,)'. @
1=1
For the monocellular solution, the series is an alternating series, and the convergence radius
appears to be equal to the critical Rayleigh value Ra,. This allows us to have an improved
estimation of the Nusselt number by



%ﬁ\

Figure I The isothermal lines and the stream function of the monocellular flow for Ra = 80

o Nt i N Ra.
Nuy =1+ Y.q;(Ra-Ra,) +qy(Ra—Ra,) (—R—‘) (22)
a

=]

This new approximation permits not only a higher accuracy, but also a better approximation of
Nusselt numbers beyond the convergence radius, as shown by the comparison of the results
(Tables 1 and 3) obtained from the asymptotic solution and those of the spectral collocation
method mentioned above. A look at Tables 2-6 concerning bi- and tricellular flow shows that the
expansion to the 32nd order does not allow for an accurate estimation of the convergence radius
for the power series of the Nusselt number. However, the analytical solution obtained gives a good
estimation of the solution of the problem, for a wide range of Rayleigh numbers.

&

Figure 2 The isothermal lines and the stream function of the bicellular flow for Ra = 100



Tuble I  Nusselt number for monocellular flow
Ra Nuy, numer Nuy asymp. IGuN asymp. q6(Ra~— Rac)"’
40 1.0261794087377 1.0261794087371 identical —-0.11889 10-%°
45 1.255196788925 1.255196788923 identical -0.29579 107'3
50 1.452229038043 1.452229038246 1.452229038434 —-0.89386 107
55 1.625249807210 1.625249686269 1.625249807187 -0.44973 1076
60 1.7796363848 1.7796229737 1.7796363806 —-0.39205 107*
65 1.9191744666 1.9186703464 1.9191744140 -0.12838 1072
70 2.046622822 2.036822727 2.046622018 -0.22474 107!
75  2.164048659 2.043454594 2.164041026 -0.25459
80 2.273036 - 2.272986 -
85 2.374825 - 2.374574 -
90 2.470398 - 2.469441 -
95 2.560549 - 2.557751 -
100 2.645923 - 2.640312 -
Table 2 Nusselt number for bicellular flow

Ra Nuy, numer NAuN asymp. Nuy asymp.

65 1.10641386417 1.10641386418 identical

70  1.26356799365 1.26356799368 identical

75  1.41744309151 1.41744309152 1.41744309157

80 1.568266578 1.568266573 1.568266581

85 [.71588368 1.71588338 [.71588373

90 1.85997950 1.85997217 1.85997952

95  2.0002157 2.0001116 2.0002055

100 2.1363029 2.1353021 2.1361377

105  2.2680306 2.2608550 2.2665188

110 2.3952272 2.3542884 2.3853340

115 2.5179802 2.3227308 2.4662712

120 2.636168 1.8338256 2.4111036

Tuble 3 Convergence radius for monocellular flow

n 9y

1 0.05066 19.74 19.74
2 -0.90896 10-? 55.73 33.17
3 0.21557 10 42.16 35.93
4  -0.54908 10 39.26 36.74
5 0.14259 107 38.51 37.08
6 —0.36750 10-° 38.80 37.36
7 0.93288 10~ 39.39 37.65
8  —0.23476 10712 39.74 37.90
9 0.59111 10-14 39.71 38.10
10 —0.14956 10-15 39.52 38.24
i1 0.37968 10-17 39.39 38.34
12 -0.96396 [0-1? 39.39 38.43
13 0.24432 10-%0 39.46 38.51
14 -0.61836 1022 39.51 38.58
15 0.15648 1023 39.52 38.64
16 -0.39625 10-%% 39.49 38.69




Tuble 4 Convergence radius for bicellular flow

4, !
n In }_“I':.‘ll " \llfl..l

1 0.03242 30 30
2 -0.1058 10} 306 97
3 02950 10°9 36 70
4 -0.9577 1677 30 57
5 0.1431 10-8 67 59
6  -0.1056 10! 135 68
7 0.1580 10-12 66 67
8 06737 10714 24 59
9 0.1322 10°1% 51 58
10 -0.6456 10-'8 205 66
i -0.5572 10-20 16 69
12 -0.4598 102 12 60
13 0.1682 10722 27 56
14 -0.7496 107 224 62
15  -0.3873 10°26 19 57

Table 5 Convergence radius for tricellufar flow

4 ]

n (I n q,, n \,Iq“'
1 0.01824 54 54
2 0.1158 10-? 157 93
3 0.9569 10-° 121 101
4 -03427 107 28 73
5 -0.1871 10°° 183 88
6 0.8325 10-° 22 70
7 0.1149 1012 72 70
8 03298 10-™ 34 64
9  -0.5794 10716 57 64
10 0.1234 10-'7 43 61
1 0.3220 10-" 41 59
12 -0.5826 10°2! 55 59
13 -0.183] 1022 32 56
i4 0.2508 10~ 73 57

Tauble 6 Nusselt number for tricellular flow

Ra Nuy numer. Nuy asymp.
110 1.0617268324 1.00617268331
120 1.201570134198 1.20157013429
130 1.421001419 1.421001137
140 1.659415 1.659337

150 1.9093 1.9058

160 2.1639 2.1067

70 24177 1.9743




CONCLUSIONS

Recent developments in the field of symbolic computation have made possible the computation of
very accurate analytical solutions of non-linear problems. We have obtained results for the
problem of natural convection in porous media in a rectangular cavity for a range of Rayleigh
numbers exceeding three times the critical value for the first transition. In the case of a
monocellular flow, the alternating series is found to be convergent for Ra < 872, a value very close
to the critical Ra, = 81.01, found by Riley and Winters®, above which bicellular flow becomes
stable. The error in the determination of the Nusselt number has been evaluated very carefully for
several values of Ra. The solution thus obtained could serve as a reference solution for the
validation of numerical codes.
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