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Differential Dynamic Microscopy
to characterize Brownian motion and bacteria motility

David Germain, Mathieu Leocmach, and Thomas Gibaud∗

Université de Lyon, Laboratoire de Physique, École Normale Supérieure de Lyon,
CNRS UMR 5672, 46 Allée d’Italie, 69364 Lyon cedex 07, France

(Dated: October 6, 2015)

We have developed a lab work module where we teach undergraduate students how to quantify
the dynamics of a suspension of microscopic particles, measuring and analyzing the motion of those
particles at the individual level or as a group. Differential Dynamic Microscopy (DDM) is a relatively
recent technique that precisely does that and constitutes an alternative method to more classical
techniques such as dynamics light scattering (DLS) or video particle tracking (VPT). DDM consists
in imaging a particle dispersion with a standard light microscope and a camera. The image analysis
requires the students to code and relies on digital Fourier transform to obtain the intermediate
scattering function, an autocorrelation function that characterizes the dynamics of the dispersion.
We first illustrate DDM on the textbook case of colloids where we measure the diffusion coefficient.
Then we show that DDM is a pertinent tool to characterize biologic systems such as motile bacteria
i.e.bacteria that can self propel, where we not only determine the diffusion coefficient but also the
velocity and the fraction of motile bacteria. Finally, so that our paper can be used as a tutorial to
the DDM technique, we have joined to this article movies of the colloidal and bacterial suspensions
and the DDM algorithm in both Matlab and Python to analyze the movies.

I. INTRODUCTION

Quantifying the dynamics of a suspension of micro-
scopic particles consists in measuring and analyzing the
motion of those particles at the individual level or as a
group. Like hockey for Canadians or cricket for Indians
and Pakistanis, quantifying the dynamics of a suspen-
sion of microscopic particles is the national sport of a
large community of researchers in physics and biology.
For example, a century ago, Perrin has characterized the
motion of small particles in a liquid, an experiment that
evidenced the Brownian motion and firmly proved the
existence of atoms1. More recently, the motion of tracer
particles has been used extensively in soft matter2,3 to
extract the mechanical properties such as viscosity or
elasticity of fluids, gels4,5, pastes, cell cytoplasm6,7 and
foods at scales unreachable by macroscopic techniques.
In the past decade, the study of the collective motion of
fish schools, bird flocks and bacteria swarms has lead to
the emergence of a new field, active matter8.

Video Particle Tracking (VPT) and Dynamic Light
Scattering (DLS) are two of the most well-known tech-
niques that allows to characterize the dynamics of a
suspension of microscopic particles and that have been
widely described in a teaching context. VPT consists in
tracking the position of an individual particle as a func-
tion of time to digitalize its trajectory. It provides precise
information of small portions of a sample9–11. DLS con-
sists in shining a laser through the particle suspension
and monitoring the fluctuations of scattered intensity as
a function of time12. It yields average information about
the dynamics of a sample12–14.

Here, we present a tutorial for an alternative method
called Differential Dynamic Microscopy (DDM) recently
proposed by Cerbino and Trappe15. DDM is intuitive as
it deals with real-space video of the moving objects like

VPT, however it uses digital Fourier transform to ob-
tain the same kind of information as DLS. Contrary to
tracking algorithm, DDM algorithm is straightforward to
implement at the programming level of most undergrad-
uate students. We believe lab work on DDM is a great
opportunity to become familiar with a microscope and
with reciprocal units, the range of accessible wavenum-
bers and other nitty-gritty details necessary to tame the
power of the Fourier transform16,17. We have joined to
this article movies of suspensions with different types of
particles and the DDM codes in Matlab and Python so
that the reader may reproduce the image analysis proper
to DDM, see EPAPS.

In this article, we show how to apply DDM to two sets
of different micrometer particles, colloids at first, then
motile bacteria, i.e.bacteria that can self propel. In sec-
tion II, we present the materials and method we use to
prepare the samples as well as the acquisition parame-
ters. Section III presents the DDM principle and algo-
rithm. In section IV, we use DDM to characterize the
Brownian motion of colloidal particles which has been
widely studied in a teaching context18–20 and we deter-
mine the diffusion coefficient of the particles. In section
V, we apply DDM to salmonella bacteria and show that it
is possible to characterize entangled dynamics where the
bacteria both diffuse and “swim”. In particular we de-
termine the proportion of motile bacteria, their diffusion
coefficient as well as their velocity. This last example
highlight the impact of physical techniques on biology.
Finally in section VI we focus of the didactic aspect of
the lab work.
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II. MATERIALS AND METHODS

A. Colloidal particles

We use polystyrene spheres (Density of polystyrene,
ρc = 1.04 g cm−3) with a catalog radius of R = 0.50 µm
(FluoSpheresr from Thermo Fisher Scientific). The
commercial dispersion is diluted 50 times in deionized
water (at T = 20 ◦C the viscosity of water is η =
1.002 mPa s, and its density is ρs = 1.00 g cm−3) to a
final concentration of 1× 108 particles/mL so that we
have a dilute dispersion: the distance between two in-
dividual particles is large compared to R, typically 20R.
This concentration remains sufficiently high to observe
enough particles in the camera field of view and to ac-
cumulate satisfactory statistics. Polystyrene refractive
index is ≈ 1.6, larger than the one of water ≈ 1.3, so the
particles are visible in bright field microscopy.

To observe the Brownian motion of particles in a New-
tonian fluid, several conditions are required21. The par-
ticle has to be colloidal, meaning that its size has to be
far larger than the size of the solvent molecules, it is the
case for the suspension we used (molecular diameter of
water22 0.34 nm). Furthermore, colloidal particles have
to be in the dilute regime to avoid interaction between
them. This is checked once the sample is made. As our
particles do not have long distance interaction, we esti-
mate that the sample is dilute when the mean distance
between particles is higher than at least 10 times the di-
ameter of a particle. Finally, one has to make sure that
the thermal agitation is the physical process that domi-
nates the dynamics of the colloidal particles. We ensure
that the solvent is not flowing by using an immobile,
sealed and thin optical cell with negligible temperature
gradient. The sedimentation motion can be characterized
by the Péclet number23,24

Peg =
Eg

Eth
, (1)

where Eg = 4πR3

3 (ρc−ρs)g×2R is the variation of poten-
tial energy for a difference of altitude equal to the diam-
eter 2R of the particle, Eth = kBT is the thermal energy,
ρc and ρs the respective densities of the particle and the
surrounding solution, g the acceleration of gravity, kB

the Boltzmann constant and T the temperature. Here
we have Peg ≈ 0.1, indicating that the sedimentation
can be neglected over Brownian motion. Equivalently in
the time domain, our particle respectively sediments and
diffuses on a distance equal to its own diameter on respec-
tive characteristic times τs = 9η/(8(ρc − ρs)R) ≈ 100 s
and τd = 24πηR3/kBT ≈ 2 s, so we have τs � τd. Ab-
sence of both flow and sedimentation will be verified a
posteriori. In presence of a flow the trajectory of the
particle, that should be random, is biased in the direc-
tion of the flow.

B. Bacteria

In section V, we study the motion of non-pathogenic
bacteria Salmonella Typhimurium SJW1103 (American
Type Culture Collection, Manassas, VA, U.S.A.)25. This
bacteria has the shape of a rod with a length of 2 µm
and a diameter of around 1 µm and is motile because it
can self propel. The global motion of the bacteria can
be split into two modes26. In the “tumble” mode, the
motors rotate clockwise and independently, causing the
bacteria to move erratically. In the “run” mode, the mo-
tors are synchronised and rotate counter-clockwise lead-
ing the bacteria to move ballistic and straight forward. A
mean tumble has an average time of 0.1 s and a run has
an average time of 1 s27. As we gently mixed the culture
medium during growth, the nutriment medium can be
considered homogeneous in our samples and the bacteria
are moving isotropically.
Salmonella Typhimurium SJW1103 are stored in a

freezer at −80 ◦C in a mixture of water (' 33 %w) and
glycerol (' 66%w). First, using a sterile inoculation
loop, we streak bacteria from the storage solution on a
sterile agar/LB plates (500 mL of LB/agar was made of
5 g of NaCl, 5 g of Tryptone, 2.5 g of Yeast Extract, 7.5 g
of Agar). Second, the agar plates are closed and placed in
an incubator at 37 ◦C. The agar plates are oriented such
that the LB/agar gel is at the top, to prevent the conden-
sation from disturbing the development of the bacteria.
After ' 12 hours, we observe the formation of mono-
clonal circular colonies. Third, Using an inoculation loop,
we take a monoclonal colony of bacteria from LB/Agar
plate and disperse it in a Falcon tube with ' 5 mL TN
growth medium. The TN growth medium is sterile and
composed of 4 g L−1 of bacto-tryptone, 2.5 g L−1 of NaCl
and 0.4%w of glycerol diluted in water. The Falcon
tubes have an oxygen permeable cap which allows the
bacteria to breath and limits evaporation. Those bacte-
ria are pre-cultured for a night at 32 ◦C at a shaking speed
of 300 rpm in an Incu-Shaker 10L. Finally, we collected
50 µL of the solution of bacteria with a sterile pipette
and we put it in a new Falcon tube filled with ' 5 mL
of TN growth medium. The tube is then placed in the
Incu-Shaker 10L at 300 rpm and 32 ◦C for 1h30. Around
this time the optical density (OD) at 600 nm is around
OD=0.5 and most bacteria are “swimming”. It is impor-
tant to grow bacteria in a nutriment poor media and to
collect them early on, at low concentrations, otherwise
the bacteria tend not to develop a flagella. More details
about bacteria preparation can be obtained in ref28? ,29.

C. Microscope slide

For the microscope observations, the aqueous suspen-
sion of colloids or bacteria are enclosed in a home made
hermetic optical cell, Fig.1.a and observed at room tem-
perature, T = 20 ◦C. The cell is composed of a glass
slide (RS France) and a cover slip (Menszel-gläser)
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FIG. 1. Experimental setup. (a) Schematics of the micro-
scope cell used to study the motion of particles, namely, col-
loids and bacteria. (b) Typical bright field image of our col-
loidal suspension. (c) idem with bacteria.

spaced by two stripes of paraffin film (Bemis) creating
a slit between the glass slide and the cover slip of ap-
proximately 125 µm. The optical cell is briefly heated on
a hot plate so that the paraffin welds to the slide and
the cover slip. The suspension of colloids or bacteria is
then introduced into the slit by capillarity, and the slit is
immediately sealed at both extremity using ultraviolet-
cured glue (Norland Optical).

D. Microscope and acquisition parameters

The colloidal and bacterial suspensions are observed
with light field microscope30 (nikon Eclipse Ti) in
bright field with an objective 10× of numerical aperture
N.A. = 0.3, Fig.1.b-c. The focus is made in the middle
of the microscope slide in z-direction so that we observe
only particles able to move in the 3 dimensions. Images
are acquired with a camera (Hamamatsu ORCA-Flash
2.8).

The images are coded in 8 bits grey-scale: each pixel
intensity is proportional to the incoming light intensity
from the sample and varies linearly from 0 (black) to 255
(white). Using an exposure time of 1 ms, we adjusted
the brightness of the microscope light in order to have a
maximum number of pixel around a value of ∼ 120 which
minimize the amount of saturated pixels.

The choice of the acquisitions parameters is a com-
promise between the spatial and the temporal resolu-
tion. With the 10× objective, a pixel corresponds to
dL = 0.645 µm, a bit smaller than the optical resolution
of the microscope, λ/(2N.A.) ≈ 0.8 µm. Bacteria or col-
loidal particles are about 1 µm and therefore correspond
to a few pixels on the camera. We chose a (512 px)2 field
of view which is large enough to capture the motion of
100 of particles and small enough to reach high acquisi-
tion frequencies, up to 400 Hz. At 400 Hz it is impossible
to directly send the data from the camera to the com-
puter during the capture, so we have to temporarily save

the acquisition on the buffer of the camera, and, once
it is over, we send the data from the buffer of the cam-
era to the computer. The camera buffer memory limits
the number of images in one stack to 4000. To cover
a wide range of time scales, we chose to acquire a first
stack of 4000 images at 400 Hz and a second similar stack
at 4 Hz. With this procedure, we cover time scales be-
tween 2.5× 10−3 s and 1000 s and length scales between
dL = 0.645 µm and L = 330 µm. In Fourier space, the
wave number increment, which also corresponds to the
minimum wave number, is related to the image size,
dq = 2π/L = 0.019 µm−1. The maximum wave num-
ber is qmax = 2π/(2dL) = 4.87 µm−1. Indeed according
to the Nyquist–Shannon sampling theorem, the smallest
wavelength measurable corresponds to a sinusoidal wave
of period 2 pixels: 1 pixel for the positive part of sinu-
soidal wave and 1 pixel for the negative.

III. DIFFERENTIAL DYNAMIC MICROSCOPY

A. DDM principle

Dynamic Light Scattering (DLS) and Differential Dy-
namic Microscopy (DDM) are two different ways to ob-
tain the auto-correlation function f31 of a stationary sys-
tem, that is to say a system whose statistical properties
do not change when shifted in time. f(~q,∆t) is sensitive
to the dynamics of the system and measures the similar-
ity of the statistical properties of the suspensions after a
lag time ∆t at a wavevector ~q. For an ergodic system,
able to explore all configurations, f decays with ∆t from
1 when the system has not changed (∆t = 0) to 0 when
the system has changed completely (∆t → ∞). For a
system with isotropic dynamics, such as the colloidal or
the bacteria dispersion, we can drop the dependence on
the orientation of the wavevector ~q. f(q,∆t) depends on
the length scale via the wavenumber q. The characteris-
tic decay time of f is longer for large length scales, i.e.
smaller q because larger structures need longer time to
decorrelate.

The combined dependence of f with q and ∆t contains
information about the physical origin of the decorrelation
process. Based on dimensional analysis, the characteris-
tic decorrelation time τ necessary to diffuse a density is
proportional to (2π/q)2 and f can be scaled on a master
curve when plotted as a function of q2τ (dimension of the
inverse of the diffusion coefficient) whereas the character-
istic decorrelation time τ necessary to advect a density
is proportional to the distance 2π/q and f can be scaled
on a master curve when plotted as a function of qτ (di-
mension of the inverse of the velocity) rather than τ .

Furthermore, an appropriate model of the dynamics of
the system can yield a functional form for f that can be
fitted against experimental data. For Brownian colloids
the measurements and the fit of f allows the determi-
nation of the diffusion coefficient D and for the bacte-
ria suspension it allows the determination of the ratio of
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motile bacteria, their diffusion coefficient as well as their
velocity.

In DLS, we measure the intensity Î(~q, t) scattered by
the sample at a given angle, i.e at a given wavector ~q
in the Fourier space as function of time. The autocor-
relation of the scattered intensity yields the so called
Intermediate Scattering Function (ISF)32 F (q, t,∆t) =〈
Î∗(~q, t)Î(~q, t+ ∆t)

〉
which is the product between the

scattered intensity at time t, Î∗(~q, t), and time t + ∆t,

Î(~q, t + ∆t). The brackets denote the average over the
initial time t and the orientation of the wavevector ~q.
The ISF is normalized into f by

f(~q,∆t) =
F (~q,∆t)

F (~q, 0)
. (2)

In DDM, we acquire microscopy images in real space,
I(~r, t). In real space the autocorrelation function f(~r,∆t)
is defined by a convolution product between two images
separated by ∆t. The convolution product is a compu-
tationally intensive operation since it requires N2 opera-
tions, N being the number of pixels in the image. How-
ever in Fourier space the convolution product becomes
an inexpensive simple product, thanks to the Wiener-
Khintchine theorem and the fast Fourier transform algo-
rithm requires a most N logN operations. In DDM we
therefore numerically Fourier transform the image and
f(q,∆t) is obtained as follow.

We consider the difference between two images sepa-
rated by ∆t,

∆I(~r, t,∆t) = I(~r, t+ ∆t)− I(~r, t) (3)

and we compute numerically its spatial 2D Fourier trans-

form ∆̂I. Once ensemble averaged on t, the squared
normed of this quantity, the DDM matrix D, is directly
related to the correlation function, thanks to the cross
product term:

D(~q,∆t) ≡
〈∣∣∣∆̂I∣∣∣2〉

=

〈∣∣∣Î(~q, t+ ∆t)− Î(~q, t)
∣∣∣2〉

=

〈∣∣∣Î(~q, t+ ∆t)
∣∣∣2 +

∣∣∣Î(~q, t)
∣∣∣2

−2 Î∗(~q, t+ ∆t)Î(~q, t)
〉

= 2F (~q, 0)︸ ︷︷ ︸
≡A(~q)

[
1− F (~q,∆t)

F (~q, 0)︸ ︷︷ ︸
f(~q,∆t)

]
(4)

Since the dynamics is isotropic we average radially
D(~q,∆t) into D(q,∆t). The contribution of the dark,
shot and read-out noise30,33 of the camera is taken into
account by adding a supplementary term B(q). B(q) is
decorrelated at all time and therefore independent of ∆t.

D(q,∆t) = A(q) [1− f(q,∆t)] +B(q) (5)

The DDM matrix does not directly yield f . Ones need
to correctly evaluate A(q) and B(q) to get f . Two dif-
ferent strategies can be adopted. In the first one, the
parameters A(q) and B(q) are measured independently
based on the properties of D: at short times, D(q,∆t→
0) = B(q), and long times, D(q,∆t→∞) = A(q)+B(q).
This first method gives access directly to the autocorre-
lation function f which can then be fitted. It is however
necessary to measure small enough and long enough lag
time with respect to the decorrelation time otherwise B
is overestimated and A + B is underestimated, respec-
tively. The other strategy consists in fitting the DDM
matrix with A and B as free parameters and a model for
f . This last method is less demanding on the range of the
lag time ∆t but it requires a model for f and therefore
prevents a scaling approach in the first place.

B. DDM algorithm

The DDM algorithm yields the DDM matrix D(q,∆t)
from a stack of microscope images. It consists in two
nested loops on ∆t and t respectively, see Fig. 2a. At each
iteration, we first open the couple of images I(~q, t) and
I(~q, t+∆t), calculate ∆I(~r, t,∆t) via Eq. (3), see Fig. 2b,

and its Fourier spectrum
∣∣∣∆̂I(~r, t,∆t)

∣∣∣2, see Fig. 2c. This

last operation uses the Fast Fourier Transform (FFT) al-
gorithm which is widespread and included in most high-
level languages. The loop on t allows to compute at a
fixed ∆t the time-averaged D(~q,∆t). For each q, we av-
erage the value of all the pixels that are between q and
q + dq from the center of this 2D spectrum. This radial
average yields D(q,∆t), see Fig. 2d. We then iterate on
∆t.

A few tricks are performed to reduce calculation time.
The role of the inner loop on t is to gather statistics. At
most it runs over 4000−∆t couples of images which can
be very expensive for short ∆t. We found that limiting
this number to 300 was enough provided that the initial
times t are evenly sampled across the accessible time win-
dow. Again to save calculation time, we logarithmically
sampled ∆t with 10 points per decades which reduces
the number of iteration of the outer loop from 3999 to
35. With those optimizations, the calculation time falls
to a few minutes. In terms of complexity we went from
∼ N2 to ∼ logN iterations, were N is the number of

images in the stack.
We run the DDM procedure on both stacks of images

at 400 Hz and 4 Hz independently. We then merged the
two sets of data by scaling the data at 4 Hz so that both
values at 0.25 s are equal. We average the values of D
at 4 Hz and 400 Hz in the overlap interval, from 0.25 s
to 10 s. We thus obtain D(q,∆t), see Fig. 2e, for ∆t
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(a)

(c)(b)

20 µm

(d) (e)

FIG. 2. DDM principle. a) Schematic of the DDM algorithm. b) Image differences of the colloidal suspension ∆I(~r, t,∆t =

100 s). c) Square of the Fourier transform |∆̂I|2 of the image in (b). d) DDM matrix for the colloidal suspension radial averaged
and projected on q for different lag times ∆t. e) DDM matrix for the colloidal suspension radial averaged and projected on ∆t
for different q.

from 2.5× 10−3 s to 1000 s a range of ∆t wide enough to
correctly measure or fit A and B.

The final step consist in analyzing D (Eq. 5) to extract
information on dynamics of the observed dispersion. In
the following, for both colloidal and bacteria suspensions,
we decided to display f rather than D because it is easier
to interpret and to compare to DLS experiments. Scaling
will be displayed using direct measure of A(q) and B(q),
whereas model-dependent parameters will be obtained
by fitting. D is fitted in logarithmic scale in order not to
attribute too much weight on points with high intensity
and we dismiss timescales above 200 s where the statics
is poor because D is averaged less than 4 times.

IV. BROWNIAN MOTION AND DDM

A. The Brownian motion of colloids

The Brownian motion is the unceasing and random
motion of small particles suspended in a fluid at rest. It
is due to the shocks between the solvent molecules and
the colloidal particles. The history of Brownian motion
is particularly interesting1,18,34–37 and has often been re-
viewed18–20,26,38. For spherical Brownian particles diffus-
ing in the background solvent, it can be shown that the
autocorrelation function is12–14,39:

f(q, ∆t) = exp(−∆t/τd) (6)

with τd =
1

Dq2
. (7)

τd is the characteristic diffusion time of the exponential
decay and D the diffusion coefficient of the particles. D

is increasing with the temperature and decreasing with
the radius R of the particle and the viscosity η of the fluid
according to the Stokes-Einstein formula18,21,26,40:

D =
kBT

6πηR
(8)

B. Results

From the short and long times values of D(q), we es-
timate A(q) and B(q) and isolate f , Fig.3.a. According
to (Eq. 6), by plotting f(q,∆t) as a function of ∆tq2, we
remove the q-dependence on f resulting into a collapse
of the data on a master curve, Fig.3.b. The scaling is
compatible with a diffusive process.

Now we use the second strategy, using as free parame-
ters A, B and τd in Eq. (6) for f , for each q we fit D(q,∆t)
(Eq. (5)) as a function of ∆t. The initial parameters for
the fit are: A0 = D(q,∆tmax)−D(q,∆tmin)

B0 = D(q,∆tmin)
τd = 1 s

(9)

where ∆tmax and ∆tmin are respectively the maximum
and the minimum interval of time between two images.

The fit results are displayed as a function of q in Fig.4.
We observe 3 regimes:

(1) Insufficient statistics. The radial average is per-
formed on very few pixels (4 pixels for q = qmin

which correspond to the central cross of the Fourier
transforms). Also, at small q the characteristic time
is comparable to the duration of the experiment,
1000 s.
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FIG. 3. Autocorellation function extracted from the DDM
matrix D at various q versus ∆t (a) and ∆tq2 (b). Lines are
exponential fits to the data according to Eq. 6.

(3) For q > 3.5 µm−1, A(q) (signal) is too close to B(q)
(noise), to yield a consistent fit. This sets the spa-
tial resolution of DDM to 2π

3.5 = 1.8 µm.

(2) Statistics are good and the signal-to-noise ratio is
low enough.

We fit τd(q) in regime (2) according to (Eq. 7), which
corresponds in logarithmic scale to a straight line of slope
-2 and of intercept − log(D), Fig.4.a. The theoretical
model is in a very good agreement with our measure-
ments and we obtain a diffusion coefficient of Dfit =
0.39 µm2 s−1. Using the Stokes-Einstein formula with our
experimental conditions, we obtain DE = 0.41 µm2 s−1

which implies an error of only ∼ 5%.
Using DDM, we always subtract images with one an-

other and therefore we remove all static artifacts en-
counter in the optical path such as optical aberation or
dirt on the slide. We can see three main sources of un-
certainties that affect the precision of the DDM results.
First it is necessary to measure fast enough so that f
remains almost completely correlated at short times and
long enough so that f becomes completely decorrelated
at long times. If this is not properly done on the short
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FIG. 4. Characteristic Brownian diffusion time and the pa-
rameters A(q), B(q) as extracted from the fit of the measure-
ments of the DDM matrix D. (a) τd (◦) and its fit (—) versus
q. (b) Fit parameters A (∗), B (+). The red dashed line is a
fit of A(q) to the model in Ref41.

times B is underestimated and consequently so is τd. If
this is not properly done on the long times then A + B
is underestimated and consequently is τd overestimated.
Experimentally this is easily checkable. One needs to ob-
serve for each q two plateaus of the DDM matrix D at
short and long lag times ∆t. Then, the choice of the
region (2) where we fit the characteristic time also need
to be properly estimated. Finally, the results are model
dependent. Ones need in fact to take the proper model
for f . For example, the model in Eq. (6) considers that
the particles are monodisperse. This is not exactly the
case: the manufacturer stipulate a 10% polydispersity.
This could be refine by integrating a size polydispersity.
DDM is all the more precise that the experimentalists
have some good knowledge about the system they study
and have also first validated their procedure on a simple
system like the one presented in this section.

Finally, We also have access to informations about the
parameters A(q) and B(q) , Fig.4.b. According to our
data, the noise level B(q) seems constant for every q: the
camera is adding a white noise to each images. With
bright field, due to the depth of field of the objective in
the z-direction, we are imaging a volume projected on
xy plane. The depth of field is an issue mostly on the
large length scales (small q) due to the disappearance of
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particles from the z-field, which leads to underestimate
the characteristic times42. Taking into account the 3D
nature of the experiment, F. Giavazzi et al.41 have shown
that it is possible to model A(q).

In this section, we have verified and dissected the DDM
procedure. We have shown that we obtain via the inter-
mediate scattering function quantitative information on
the 3D dynamics of a hundreds of colloidal particles si-
multaneously on length scales ranging from ∼ 2 µm to
∼ 200 µm and on time scales ranging from the millisec-
ond to the minutes. This exact experiment can also be
exploited in a different manner thanks to the Stokes Ein-
stein formula. Provided that we know the temperature T
and the hydrodynamics radius of the particles R, we can
measure the viscosity of the solvant η. In our experiment,
we find η= XXX mPas. Compared to a classical rheology
experiment, DDM is actually better suited to measure
small viscosity (∼ mPas) of a solvent that we have on
limited quantities (∼ 50 µL). Finally, provided that this
time we know T and η, we can measure R for particles
size ranging from tens of nanometers to a few microns15.
In our experiment, we find R = XXX1111 µm. Given
the robustness and high throughput of DDM, DDM is
appropriate for screening purposes.

V. BACTERIA AND DDM

A. Motile Bacteria

The Salmonella Typhimurium SJW1103 dispersion
has a more complex dynamics than colloidal dispersion.
We used the same acquisition parameters as with the col-
loids and applied the same algorithm as the one presented
above. We extracted f from the DDM matrix using the
first strategy where A and B are measure experimen-
tally. Contrary to the colloidal case, f(q,∆t) shows a
two step decay which corresponds to two decorrelation
mechanisms, Fig.5.a. We first identify the physical ori-
gin of those mechanism by trying a scaling approach. The
first decorrelation mechanism, for ∆t < 0.3 s, is due to a
ballistic motion of bacteria. It is confirmed as the first
decay of f for different q collapses on a master curve as
we scale f with the abscissa ∆tq (dimension of an inverse
velocity), see Fig.5.b. The second decorrelation mecha-
nism is due to a diffusion process and confirmed by the
collapse of the second decay of f for different q when
plotted as a function of ∆tq2 (dimension of an inverse
diffusion coefficient), see Fig.5.c.

Based on the scalings properties of the f , we turn to
a model that takes into account the Brownian motion of
bacteria due to kBT , the mean velocity and the velocity
distribution during the run, the fact that some of our
bacteria are motile and some are not. Considering these
new conditions, it can be shown that an adequate f is43:

f(q,∆t) = exp

(
−∆t

τd

)
[(1− α) + αP(q,∆t)] , (10)

P(q,∆t) =

∫ ∞
0

P (v) sinc(∆t/τr)dv, (11)

with τd = 1/(Dq2) the characteristic Brownian diffusion
time and τr = 1/(qv) the characteristic run time.
α is the fraction of motile bacteria. sinc(∆t/τr) is the f

of an isotropic population of swimmers at velocity v. The
distribution of velocity P (v) and the integral P(q,∆t)
over v take into account that all bacteria do not move
at the same velocity. Following Wilson et al.43, we chose
a Schulz distribution for P (v) which respects the appar-
ent dynamic of bacteria, i.e. peaked around the average
velocity v and going to 0 when v →∞:

P (v) =
vZ

Z!

(
Z + 1

v

)Z+1

exp

[
−v(Z + 1)

v

]
, (12)

with Z is a parameter related to the standard deviation
σ of the distribution P (v):

Z =

(
v

σ

)2

− 1. (13)

It is then possible to formally calculate the integral P:

P(q,∆t) =
sin
(
Z tan−1 θ

)
Zθ (1 + θ2)

Z/2
, with θ =

∆t

τr(Z + 1)
. (14)

B. Results

Using the fitting strategy of D(q,∆t) with Eq. (10) as
model for f , requires 6 parameters. Even though the 2
decays of f are well separated in time, we have initialized
the fit with values very close to the results so that the fit
converges:

A0 = D(q,∆tmax)−D(q,∆tmin)
B0 = D(q,∆tmin)
τd0 = 1/(0.1q2)
τr0 = 1/(10q)
α0 = 0.5
Z0 = 1

(15)

The interesting fit-output parameters are displayed in
Fig. 6 function of q. We limit the q range to the regime
(2) set by the colloid experiment where the statistics and
the signal to noise are optimal. Fig. 6a display the run
time and the diffusion time as the function of q and are
fitted in logarithmic scale by straight lines of respective
slopes -1 (ballistic) and -2 (diffusion). The intercept of
τd yields a diffusion coefficient of D = 0.28 µm2 s−1. The
Stokes-Einstein relation considering spherical bacteria
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FIG. 5. Autocorellation function f extracted from D at var-
ious q versus ∆t (a), ∆tq (b) and ∆tq2 (c). Lines are fit to
the data according to Eq. (10).

of diameter 1.5 µm, a viscosity η = 1 mPa s and a temper-
ature T = 293 K, yields DSE = 0.28 µm2 s−1, a very good
agreement even though we are not considering the real
shape of bacteria. The intercept of τr yields the mean ve-
locity of the bacteria v = 21.2 µm s−1 in the ”run” state.
The Salmonella Typhimurium SJW1103 are quite fast
compared to E. Coli (v ≈ 10 µm2 s−1)42. In Fig. 6b, we
show the fraction of motile bacteria as a function of q.
Our bacteria suspension displays a high fraction of motile
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FIG. 6. Fit parameters for the motile bacteria as a function of
q as extracted from the fit of the measurements of the DDM
matrix D. (a) characteristic time for the diffusion, τd (◦), and
balistic motion, τr (◦). (b) Fraction of motile bacteria α. (c)
Z. Inset: Shulz velocity distribution, P for < Z >=2.4. (d)
Standard deviation of the Shulz distribution σ obtained from
Eq. (13).

bacteria, α ≈ 0.8 compared to E. Coli (α ≈ 0.6)42. This
is why we chose this XXXspices rather than E. Coli. In
Fig. 6c-d, we show the Shultz distribution properties Z
and σ. The standard deviation of the Shultz distribu-
tion is σ = 11.3 µm s−1. We note that α, Z and σ are
expected to be constant as the statistical properties of
the bacteria dispersion and should not change over the
duration of the experiment nor with q. This is roughly
what we observe.

In the model and our experiment we are not charac-
terizing tumble. On the experimental side, this would
require to measure over a much longer time. On the the-
oretical side, Martens et al.44 have proposed a model for
the autocorrelation function that takes into account the
tumble.
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VI. DIDACTIC CONSIDERATIONS

We had the chance to test this lab work on an unusu-
ally long format: 48h spread on 6 days. However, pro-
vided that the DDM code is already written45, and the
acquisition parameters given to the students, the colloid
part of this paper can be accomplished in a regular lab
class of 8h. In this reduced format the students can make
the sample, use the microscope and the camera, put in
practice the concept of diffusion, build a Peclet number,
understand the importance of the auto-correlation func-
tion and get familiar with reciprocal units. A similar lab
class on bacteria is more involved and probably to be
kept for students who have already done the lab class on
colloids.

An other option is a physics-inspired computer
project46,47. In this case, the students start from the
movies in EPAPS and have to write the code to analyse
them. Before any coding, we discuss with the students
how to translate the principle of DDM into an algorithm,
section III. To keep the code structured and readable for
us we give them the signature of each function to code
with predefined input and output. Students have to first
produced a non optimised version of the algorithm to
run on only 100 images. In this way the students can feel
that unoptimized calculations are heavy and unpractical
for longer movies and can then optimise the algorithm
as explained in section III B. All along this process, we
discuss the nitty-gritty of the Fourier transform, units
conversion and the Nyquist–Shannon sampling theorem.

VII. CONCLUSION

Differential Dynamic Microscopy (DDM) is a mi-
croscopy technique that probes the dynamics of a sys-
tem of particles using a microscope, a camera and nu-
merical computations. We exposed this technique in the
well-known case of simple Brownian motion before ap-
plying it to the more complex case of a motile bacteria.
We have shown how to extract physically relevant infor-
mation from DDM based on scaling and how to obtain
quantitative values such as the diffusion coefficient or the
velocity.

DDM is based on microscopy and can therefore benefit
from more advanced techniques than bright field imaging.

For example, it is possible to use fluorescence microscopy
to tell apart colloidal probes in a crowed medium48,
confocal microscopy49, or polarized light microscopy50.
Apart from colloidal Brownian motion, DDM has also
been used to characterize ellipsoidal particles50 and ki-
netics of phase separation51 and aggregation52 and other
kind of bacteria, such as E. Coli or C. Reinhardtii42.
Even macroscopic systems, like human crowds shot from
above, could be studied by DDM. In that sense, DDM
opens much more possibilities than dynamic light scat-
tering and can be used in various contexts both in the
lab and in the classroom.

EPAPS

EPAPS are accessible as zip file at: http://
perso.ens-lyon.fr/thomas.gibaud/ddm and contains
4 movies and a note describing each movies:

• Movie 1: bright field stack composed of 4000 images
of colloidal particle dispersed in water. facq = 400
Hz. 1 px = 0.645 µm. Image size = (512 px)2.

• Movie 2: bright field stack composed of 4000 images
of colloidal particles dispersed in water. facq = 4
Hz. 1 px = 0.645 µm. Image size = (512 px)2.

• Movie 3: bright field stack composed of 4000 images
of salmonella bacteria dispersed in water. facq =
400 Hz. 1 px = 0.645 µm. Image size = (512 px)2.

• Movie 4: bright field stack composed of 4000 images
of salmonella bacteria dispersed in water. facq = 4
Hz. 1 px = 0.645 µm. Image size = (512 px)2.

We have attributed a DOI 10.5281/zenodo.2094545 to
the codes which are accessible at GitHub.
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gion Rhône Alpes and the Programme d’Avenir Lyon -
Saint Etienne (PALSE NoGELPo) for postoctoral grant.

∗ Correspondence and requests for materials should be ad-
dressed to thomas.gibaud@ens-lyon.fr

1 J. Perrin, Les atomes (CNRS, 2014).
2 T. A. witten, Phys. Today 43, 21 (1990).
3 M. Reiner, Phys. Today 17, 62 (1964).
4 T. G. Mason, K. Ganesan, J. H. van Zanten, D. Wirtz,

and S. C. Kuo, Phys. Rev. Lett. 79, 3282 (1997).

5 D. T. N. Chen, Q. Wen, P. A. Janmey, J. C. Crocker, and
A. G. Yodh, Annual Review of Condensed Matter Physics
1, 301 (2010).

6 B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer,
D. Navajas, and J. J. Fredberg, Phys. Rev. Lett. 87,
148102 (2001).

7 A. W. C. Lau, B. D. Hoffman, A. Davies, J. C. Crocker,
and T. C. Lubensky, Phys. Rev. Lett. 91, 198101 (2003).

http://perso.ens-lyon.fr/thomas.gibaud/ddm
http://perso.ens-lyon.fr/thomas.gibaud/ddm
http://dx.doi.org/10.5281/zenodo.20945
mailto:thomas.gibaud@ens-lyon.fr
http://dx.doi.org/ 10.1103/PhysRevLett.79.3282
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104120
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104120
http://dx.doi.org/ 10.1103/PhysRevLett.87.148102
http://dx.doi.org/ 10.1103/PhysRevLett.87.148102
http://dx.doi.org/10.1103/PhysRevLett.91.198101


10

8 A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot,
and D. Bartolo, Nature 503, 95 (2013).

9 J. C. Crocker and D. G. Grier, Journal of Colloid and In-
terface Science 179, 298 (1996).

10 M. A. Catipovic, P. M. Tyler, J. G. Trapani, and A. R.
Carter, American Journal of Physics 81, 485 (2013).

11 P. Maurer, J. Ferrand, M. Leocmach, and T. Gibaud,
Bulletin de l’Union des Physiciens 969, 1567 (2014).

12 N. A. Clark, J. H. Lunacek, and G. B. Benedek, American
Journal of Physics 38, 575 (1970).

13 J. P. David, Soft and Fragile Matter. Light scattering
and rheology of complex fluids driven far from equilibrium
(Taylor and Francis, 2000) pp. 9–47.

14 W. I. Goldburg, American Journal of Physics 67, 1152
(1999).

15 R. Cerbino and V. Trappe, Phys. Rev. Lett. 100, 188102
(2008).

16 R. J. Higgins, American Journal of Physics 44, 766 (1976).
17 D. J. Whitford, M. E. C. Vieira, and J. K. Waters, Amer-

ican Journal of Physics 69, 490 (2001).
18 D. S. Lemons and A. Gythiel, American Journal of Physics

65, 1079 (1997).
19 R. Newburgh, J. Peidle, and W. Rueckner, American Jour-

nal of Physics 74, 478 (2006).
20 J. Bernstein, American Journal of Physics 74, 863 (2006).
21 W. C. K. Poon, Colloidal Suspensions (Oxford University

Press, 2012).
22 M. Yizhak, The properties of solvents (Wiley Chichester,

1998).
23 S. Patankar, Numerical heat transfer and fluid flow (CRC

Press, 1980).
24 H. Saka, R. D. Bengtson, and L. E. Reichl, American

Journal of Physics 77, 240 (2009).
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