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Abstract. Bisimulation and bisimilarity are fundamental notions in comparing
state-based systems. Their extensions to a variety of systems have been actively
pursued in recent years, a notable direction being quantitative extensions. In this
paper we present an abstract categorical framework for such extended (bi)simulation
notions. We use coalgebras as system models and fibrations for organizing predicates—
following the seminal work by Hermida and Jacobs—but our focus is on the
structural aspect of fibrational frameworks. Specifically we use morphisms of fi-
brations as well as canonical liftings of functors via Kan extensions. We apply
this categorical framework by deriving some known properties of the Hausdorff
pseudometric and approximate bisimulation in control theory.

1 Introduction

In the study of transition systems, bisimulation relations are a fundamental concept,
and their categorical study revealed the importance of coalgebras. One approach to
characterise bisimilarity is via liftings of the coalgebra functor along fibrations [12],
which are a well-established framework to attach relational structures on categories for
modelling transition systems and programming languages [14].

Recently, there is emerging interest in quantitative analysis of transition systems.
Behavioural metrics were introduced in [7, 5] to refine bisimilarity for probabilistic
transition systems. Metrics give a real number for each pair of states in a transition
system, while a relation can only provide a bit for each pair (whether the pair is in the
relation or not). Therefore a metric can indicate a degree to which the behaviour of
two states differ, whereas a bisimilarity relation can only indicate whether or not those
behaviours differ. From this observation, a common desideratum for behavioral metrics
associated with coalgebras is that two states should have distance 0 if and only if they
are bisimilar.

Bisimilarity and behavioural metrics are also analogous on a categorical level. Be-
havioural metrics were recently shown to be constructible from liftings of the coalgebra
functor to categories of (pseudo)metrics [3, 2], similar to how Hermida-Jacobs bisimu-
lations are constructed from liftings of a functor to the category of relations. This type
of construction is known generally as a coalgebraic predicate and can be performed
when a lifting of the coalgebra functor is known.

These developments present two natural issues. The first is an open-ended quest for
liftings of functors in general fibrations. These liftings are the rare ingredient in forming
coalgebraic predicates, so having a variety of liftings in a variety of fibrations allows us



to express more coalgebraic predicates. The second issue is more recent and concerns
the desired relationship between behavioural metrics and bisimilarity mentioned above.
Given some liftings in different fibrations, is there a relationship between the liftings
we can use to verify a relationship between the coalgebraic predicates they define on a
given coalgebra?

The main contributions of this paper pertain to these two issues:

– We propose two methods to lift functors along fibrations, both of which generalise
existing constructions. The first is the codensity lifting of endofunctors, generalising
Baldan et al.’s Kantorovich lifting [3] to arbitrary fibrations. This lifting also repre-
sents a further development of the codensity lifting of monads [15]. The second is
the construction of an enriched left Kan extension using the canonical symmetric
monoidal closed structure [17] on the total category in fibrations. This generalises
Balan et al.’s construction [2] of enriched left Kan extension for quantale-enriched
small categories.
Apart from these lifting methods, we derive several methods to combine existing
liftings. Using these methods, we construct the Hausdorffmetric as the pushforward
of the lifting of the list functor along a particular transformation.

– We propose the use of predicate morphisms to translate between these liftings. We
use these translations to provide facilities for establishing relationships between the
coalgebraic predicates provided by these liftings on coalgebras. We illustrate the
utility of this approach with two examples. First, we demonstrate the translation of
approximate functions to ε-approximate relations, which is the key technical tool
used in control theory. Second, we translate metrics to relations to show the kernels
of many behavioural metrics are bisimilarity relations.

Outline. In Section 2, we recall the important technical background for this work, par-
ticularly focusing on a class of fibrations where each fibre category is a lattice. In Sec-
tion 3, we recall the construction of Hermida-Jacobs bisimulations and general coalge-
braic predicates. As mentioned above, these require a lifting of a functor. Existence of
such liftings is not guaranteed, and in Section 4 we present a few generalizations of ex-
tant techniques for producing liftings in particular fibrations to our more general class
of fibrations. Finally, in Section 5, we use so-called predicate morphisms to establish
relationships between coalgebraic predicates, focusing on deriving approximate func-
tions from ε-approximate relations and deriving bisimilarity as the kernel of behavioural
metrics.

2 Background

In this paper, we are interested in finding data about a wide variety of state-based tran-
sition systems. This data comes in a variety of types: relations, unary predicates, and
pseudometrics are frequently found in the literature. Data of a particular type can also
satisfy a variety of properties. For example, we are interested in both a relation consist-
ing of the states with exactly the same behaviours, and a relation where the behaviours
of the first member in the pair is a subset of the behaviours of the second member of the
pair.
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We capture these degrees of flexibility with three largely orthogonal categorical
abstractions. First, we use coalgebras as a means of modeling many kinds of transition
systems. Second, fibrations represent the types of data we are interested in deriving
about the states of a coalgebra. Finally, functor liftings together with a property of
fibrations allow us to model the different ways the same type of data may be created.
We review each of these concepts separately here.

We assume familiarity with basic category theory, but not necessarily with the the-
ory of fibrations.

2.1 Coalgebras

Coalgebras are our tool of choice for modeling state-based transition systems. Given a
Set endofunctor F, an F-coalgebra is a pair (I, f ) consisting of a set I and a function
f : I → FI. The set is often called the carrier of the coalgebra, while the function
provides the transition structure of the coalgebra.

This pair is usually interpreted as a transition system under the following scheme.
The (object part of the) functor F is thought of as an operation which sends a set of
states to the set of all possible transition structures on that set. The set I is the set of
states of a transition system. Under this interpretation, FI is then set of all the possible
transition structures available using the set of states I, so the transition structure map
f : I → FI assigns one of these possible transition structures to every state in I.

A coalgebra morphism φ : (I, f ) → (J, g) is a function on the underlying state sets
φ : I → J which respects the transitions in the source coalgebra, meaning g◦φ = Fφ◦ f .
F-coalgebras together with their morphisms form a category we denote by Coalg(F).

By varying the functor F, we can capture a wide variety of transition system types,
including deterministic and nondeterministic finite automata, Mealy and Moore ma-
chines, probabilistic transition systems, Markov decision processes, Segala systems and
many more. For more background on the theory of coalgebra, we recommend consult-
ing [20].

2.2 Fibrations

A fibration over a category B is a functor π : E → B with a cartesian lifting property.
We will describe this property later, but intuitively, it allows us to take the inverse image
of objects in E along morphisms in B. The source category of the fibration, E, is referred
to as the “total category” and the target is the “base category”.

Often the total category of a fibration is depicted vertically above the base cate-
gory and language referencing this physical configuration is common. An object or
morphism ȧ in E is above or over an object or morphism a in B means πȧ = a. The
collection of objects and morphisms above an object I and the idI morphism is called
the fibre over I. Each of these fibres is itself a subcategory of E, denoted by EI .

Now we discuss the cartesian lifting property. In a fibration3 over B, for every mor-
phism f : I → J in B and every object Y in E above J, there is a morphism ḟ : f ∗Y → Y

3 In this work we always assume that a cleavage is given to a fibration.
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such that ḟ is above f (hence f ∗Y is above I). This morphism is called a cartesian lift-
ing of f with Y and is further required to satisfy the following universal property: for all
morphisms g : K → I in B and ḣ : Z → Y in E above f ◦ g, there is a unique morphism
ġ : Z → f ∗Y above g such that ḣ = ḟ ◦ ġ.

The operation sending Y to f ∗Y is often called pullback.4

Pullback also sends morphisms in EJ to morphisms in EI by the universal property.
Straightforward checks show that the assignment Y 7→ f ∗Y extends to a functor f ∗ :
EJ → EI . When g∗ f ∗ = ( f ◦ g)∗ and id∗I = IdEI holds, we say that the fibration is split.

A functor π is a cofibration if πop : Eop → Bop is a fibration, and bifibration if π
and πop are fibrations. Pullback in πop is denoted by f∗, and called pushforward. In a
bifibration, the pullback f ∗ is a right adjoint to pushforward f∗ [14, Lemma 9.1.2].

A common scenario encountered in the study of fibrations is that each fibre EI has
a categorical structure, say X, and pullback functors preserve these fibrewise structures.
When this is the case, we say that the fibration has fibred X. For instance, a fibration
π : E → B has fibred final objects if 1) each fibre EI has a final object, and 2) for any
morphism f : I → J, the pullback functor f ∗ : EJ → EI preserves final objects. The
fibrewise structure and the structure on the total category often have a close relationship.
We state it next for the case X = “limit”.

Theorem 1 ([14]). Let π : E→ B be a fibration and D be a category. If B has limits of
shape D, and π has fibred limits of shape D, then E also has limits of shape D.

The dual version of this theorem also holds, replacing fibration with cofibration, limit
with colimit and pullback with pushforward.

We also mention the preservation of fibrations by functor-category construction:

Theorem 2. For any fibration π : E → B and category C, π ◦ − : [C,E] → [C,B] is
also a fibration.

In this work, we are interested in state-based transition systems. Hence, the fibra-
tions we are most interested in have B = Set. Indeed, most of the total categories we
are interested in are sets equipped with some extra structure, such as sets with relations
or sets with a metric. In these cases, the forgetful functor is usually a fibration.

Example 3. The forgetful functors from the following categories to Set are fibrations:

– Pre is the category of preorders and monotone functions between them.
– ERel is the category of endorelations. An object is a pair (I,R) of a set I and a

relation R ⊆ I × I. Morphisms are functions which preserve the relation, meaning
f : (I,R)→ (J, S ) is a function f : I → J such that i R i′ implies f (i) S f (i′).

– RERel is the category of R+-indexed endorelations.5 That is, an object is a pair
(I,R) of I ∈ Set and a R+-indexed family {Rε}ε∈R+ of endorelations on I monotone
in the index, so δ ≤ ε implies Rδ ⊆ Rε . Morphisms are required to preserve the
relation at each value ε, meaning i Rε i′ implies f (i) S ε f (i′) for all ε.

4 In this paper we shall use the word pullback in this fibrational sense. This usage generalizes
the word’s common meaning as a limit of a cospan in a category. Specifically, the latter gives
a (fibrational) pullback in a codomain fibration. See [14].

5 Throughout this paper, we write R+ = [0,∞].
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– BVal is the category of all R+-valued binary endorelations. Objects in this category
are pairs (I, r) of a set I together with a function r : I× I → R+, with no constraints.
Morphisms in this category are required to be non-expansive, so f : (I, r) → (J, s)
satisfies s( f (i), f (i′)) ≤ r(i, i′) for all i, i′ ∈ I.

– PMetb is the full subcategory of BVal consisting of b-bounded pseudometric spaces,
for a fixed bound b ∈ (0,∞].6 An extended pseudometric is an∞-bounded pseudo-
metric, and the category of extended pseudometrics is called EPMet.

– Top,Meas are the categories of all topological / measurable spaces and continuous
/ measurable functions between them, respectively.

– V-Cat, with a commutative quantale V, is the category of small V-categories and
V-functors between them. The forgetful functor extracts the object part of small
V-categories. This category is used in [2] as a generalisation of metric spaces.

Technically, a fibration is a functor, particularly the forgetful functor in the examples
above. In these examples, however, the functor is relatively unremarkable, so we will
abuse terminology slightly and refer to the fibration by the name of the total category.

Cartesian morphisms in ERel preserve and reflect their source relation, in RERel
they preserve and reflect the relation at each index, and in BVal and PMetb they are
isometries, replacing the inequality in the condition for non-expansiveness with equal-
ity.

2.3 CLat∧-Fibrations over Set

In this paper, we focus on the fibrations over Set such that 1) each fibre category is
a complete lattice and 2) pullbacks preserve all meets in fibres. Such fibrations bijec-
tively correspond to functors of type Setop → CLat∧ via the Grothendieck construction,
where the codomain is the category of complete lattices and meet-preserving functions
between them. Following [1, Secrion 4.3], we call such fibrations CLat∧-fibrations over
Set, or simply CLat∧-fibrations in this paper. This is a restricted class of topological
functors to Set [13], where each fibre category is a poset.

There are indeed many examples of CLat∧-fibrations over Set, covering a wide
range of mathematical objects, including preorders, predicates, relations, pseudomet-
rics, topologies, σ-fields and so on. In particular, every fibration listed in Example 3 is
a CLat∧-fibration.

We introduce a notation: for objects X,Y ∈ E in a CLat∧-fibration π : E → Set
and a function f : πX → πY , by f : X →̇ Y we mean the sentence: “there exists a
(necessarily unique) ḟ : X → Y such that π ḟ = f ”. For instance, in the CLat∧-fibration
π : Top → Set, f : X →̇ Y is equivalent to the sentence “a function f : πX → πY is a
continuous function from X to Y .

Despite their simple definition, CLat∧-fibrations have many useful properties. Let
π : E→ Set be a CLat∧-fibration. The following properties are well-known:

6 A b-bounded pseudometric on a set I is a function r : I × I → [0, b] which satisfies the axioms
of a pseudometric: (1) r(i, i) = 0, (2) r(i, i′) = r(i′, i), and (3) r(i, i′′) ≤ r(i, i′) + r(i′, i′′) for all
i, i′, i′′ ∈ I. A pseudometric drops only the definiteness condition of a metric, so r(i, i′) = 0
does not imply i = i′ when r is a pseudometric. This is crucial for our intended application
to coalgebras where distinct states may have identical behaviours and we wish the distance
between two states to reflect the difference in their behaviours only.
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– π is a split bifibration. (Each fibre is a poset and each pullback functor f ∗ : EJ → EI

has a left adjoint f∗ : EI → EJ by the adjoint functor theorem.)
– π is faithful and has left and right adjoints, mapping I ∈ Set to the least and greatest

elements in EI , respectively. We name the left adjoint ∆ : Set → E. Intuitively, it
constructs discrete spaces of given sets.

– E has small limits and colimits by Theorem 1.
– π uniquely lifts arbitrary limits and colimits that exist in Set, including large ones.

We describe this for the case of colimits. For any diagram F : D → E and a
colimiting cocone {ιD : πFD→ C}D∈D of πF in Set, there exists a unique colimiting
cocone {ι̇D : FD → Ċ}D∈D of F in E such that πι̇D = ιD. The colimit Ċ is given as∨

D∈|D|(ιD)∗(FD). The same statement holds for coends instead of colimits.
– The change-of-base of a CLat∧-fibration π : E → Set along any F : Set → Set is

again a CLat∧-fibration.

Another less known, but important fact is that the total category E of any CLat∧-
fibration over Set carries a canonical (affine) symmetric monoidal closed (SMC for
short) structure. The one on Top is described in [21, 4]. The following construction
of the SMC structure is a reformulation of the one given in [17] using fibred category
theory.

The tensor unit is a chosen terminal object 1.
The tensor product of X,Y ∈ E is constructed as follows. Let us define πX · Y to be

the coproduct of πX-many copies of Y . We explicitly construct it above πX ×πY by

πX · Y =
∨
x∈πX

(x,−)∗Y,

where (x,−) : πY → πX×πY is the function that pairs an argument with a specified
x ∈ πX. We similarly define X · πY to be the coproduct of πY-many copies of X,
again constructed above πX × πY . We then define the tensor product of X and Y to
be the join of these two in the fibre over πX × πY:

X ⊗ Y = (πX · Y) ∨ (X · πY).

This tensor product classifies bi-E-morphisms in the following sense: a function f
satisfies f : X ⊗ Y →̇ Z if and only if f (x,−) : Y →̇ Z and f (−, y) : X →̇ Z holds for
any x ∈ πX and y ∈ πY .

The closed structure of X,Y ∈ E is constructed as follows. We first construct the prod-
uct πX t Y of πX-many copies of Y above Set(πX, πY) by

πX t Y =
∧
x∈πX

(−(x))∗Y,

where −(x) : Set(πX, πY)→ πY is the function that evaluates an argument function
with a specified x ∈ πX. We then define the closed structure X ( Y to be the
pullback of πX t Y along the morphism part πX,Y : E(X,Y)→ Set(πX, πY) of π:

X ( Y = π∗X,Y (πX t Y).
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We note that both π : E → Set and its left adjoint ∆ : Set → E are strict symmetric
monoidal (for Set we take the cartesian monoidal structure).

Example 4. We illustrate the bifibrational structure of BVal. Let us recall the order
relation in the fibre categories. The following are equivalent: (1) in the fibre BValI ,
(I, r) ≤ (I, s) holds, (2) idI is a nonexpansive function from (I, r) to (I, s), and (3)
s(x, y) ≤ r(x, y) holds for all x, y ∈ I. Note the apparent disparity between (1) and (3):
though r ≤ s in the fibre order, s has smaller values than r pointwise.

Next, let (I, r) ∈ BVal and H
f // I

g // J be functions. The pullback (H, f ∗r) and
the pushforward (J, g∗r) are given by

f ∗r(x, y) = r( f (x), f (y)), g∗r(x, y) = inf
g(p)=x
g(q)=y

r(p, q).

The fibrational construction of the canonical SMC structure on BVal yields the follow-
ing tensor product and closed structure:

(I, r) ⊗ (J, s) =

I × J, λ((x, y), (x′, y′)) .


∞ x , x′ ∧ y , y′

s(y, y′) x = x′ ∧ y , y′

r(x, x′) x , x′ ∧ y = y′

min(r(x, x′), s(y, y′)) x = x′ ∧ y = y′


(I, r)( (J, s) =

(
BVal((I, r), (J, s)), λ( f , f ′) . sup

x∈I
s(π f (x), π f ′(x))

)

2.4 Liftings

Another major object of study in this work are liftings of a functor. Given a Set endo-
functor F and two functors π : E → Set and ρ : F → Set, a lifting of F is a functor
Ḟ : E → F such that ρ ◦ Ḟ = F ◦ π. In many of the cases we consider π = ρ, so Ḟ is
an endofunctor on the domain of π. To emphasize this particular situation we will call
such an Ḟ an endolifting. In [11], endoliftings were called modalities.

Obviously, we will also usually be considering a situation where π and ρ are CLat∧-
fibrations. In such a case, restricting a lifting to a particular fibre yields a functor be-
tween fibre categories: Ḟ|I : EI → FFI . Some liftings also specially respect the cartesian
morphisms of the fibrations they operate between. A lifting is called a fibration mor-
phism if it sends cartesian morphisms in E to cartesian morphisms in F.

Notation. We pause here to set out some notational conventions, some of which have
already been used. Set is the category of sets and functions. Typical objects of Set are
denoted I, J, and K and typical morphisms are denoted f , g, and h. Generally, F is a
Set endofunctor, CI is the constant-to-I Set endofunctor, −∗ is the list functor, and Pfin
is the finite (covariant) powerset functor.

Abstract categories are denoted D, E, and F and are often the total category for a
CLat∧-fibrations over Set with functors π or ρ. In such a case, applying a dot or two
over a Set-related entity denotes an entity in the total category above the named Set-
related entity. For example, İ is an object in the total category, ḟ is a morphism in the
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total category, ×̇ is the binary product in the total category, and Ḟ is a lifting of F to the
total category. We will also generally use X, Y , and Z as objects in a total category.

Two fibrations—BVal and ERel—are important enough to merit their own nota-
tions. Generally, r and s will denote the function in a BVal object, while R and S are
the relation in an ERel object. Generally, writing a ·̂ or ·̃ over a Set-related entity has
the same meaning as a dot over that entity, but particularly for the total categories BVal
and ERel, respectively.

The length of a list is denoted len and subscripts shall be used to select an element
from a list at the indicated (zero-indexed) list position.

3 Endoliftings and invariants

In this section, we describe how CLat∧-fibrations and liftings of a functor F to that
fibration can be used to define data about every F-coalgebra. Perhaps the best-known
instance of this construction creates Hermida-Jacobs bisimulations from the canonical
relation lifting of a functor along ERel → Set. We describe this example first, particu-
larly for polynomial functors F.

3.1 Relation Liftings Define Coalgebraic Relations

Recall from the previous section the fibration ERel has objects consisting of pairs (I,R)
where I is a set and R ⊆ I × I is a relation on that set. The fibre category ERelI is
(isomorphic to) the lattice of relations on I with a vertical morphism from (I,R) to
(I, S ) if and only if R ⊆ S .

A consequence of the equivalence between inclusion of relations in a fibre and the
existence of a vertical morphism between them is that any functor between fibre cate-
gories in ERel is necessarily a monotone function on relations with respect to the usual
inclusion ordering.

Two important cases where we can apply this fact are (1) ERel liftings of functors
restricted to a fibre and (2) pullbacks along Set functions, since these are both functors
between fibre categories. If F̃ is an ERel lifting of F, then F̃|ERelI is a monotone function
ERelI → ERelFI . Similarly, if f : I → FI is an F-coalgebra structure on I, pullback
along f is a monotone function f ∗ : ERelFI → ERelI .

Composing the above functions yields a monotone function f ∗ ◦ F̃|ERelFI on ERelI .
Since ERelI is a complete lattice, this composite monotone function has a greatest fixed
point, which we denote by (I, νF̃(I, f )). The relation νF̃(I, f ) picked out in this greatest
fixed point has historically turned out examples of great interest.

Perhaps foremost among these examples is the so-called canonical relation lifting,
which yields bisimilarity as its greatest fixed point. We recall the description of this
lifting for polynomial endofunctors.7 The polynomial Set endofunctors are precisely
those generated by the following grammar:

P ::= Id | CA |
∐

i Pi | P1 × P2

7 The canonical relation lifting can in fact be defined for all functors using image factorization
in Set. We use the less-general inductive version as we will need it in Section 5.
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We can create an ERel lifting for any polynomial P with constructions for each of
the inductive cases.

Definition 5 (canonical relation lifting). Let
∐̃

and ×̃ be the coproduct and binary
product operations in ERel, respectively. (These exist by Theorem 1.) The canonical
relation lifting of a polynomial Set functor P is:

Rel(P) =


Ĩd = IdERel if P = IdSet,

C̃A : (I,R) 7→ (A, ∆A) if P = CA,∐̃
i Rel(Pi) if P =

∐
i Pi, and

Rel(P1)×̃Rel(P2) if P = P1 × P2.

Given a polynomial Set functor P and a P-coalgebra (I, f ), we can use the canonical
relation lifting Rel(P) to form the function f ∗ ◦ Rel(P)|ERelI . Postfixed points of this
function in ERelI give a useful general definition of bisimulation on (I, f ) [12]. The
greatest postfixed point νRel(P)(I, f ) is bisimilarity on this coalgebra.

Example 6. As two examples of the canonical relation lifting, we present bisimulation
on coalgebras of the list functor and on coalgebras of the finite powerset functor. These
examples will be referenced later when we construct behavioural metrics on the same
coalgebra types similarly to how we do it here.

The list functor is defined as (−)∗ =
∐

n∈ω
∏

i∈n Id. Following the inductive defi-
nition above, each summand in the coproduct,

∏
n Id, sends a relation R to the n-fold

repetition of R: two lists k, ` of length n are related by Rel(
∏

n Id)(R) if kiR`i holds for
0 ≤ i < n. The canonical relation lifting for

∐
n∈ω

∏
n Id then relates two lists k, ` of

arbitrary length if and only if len(k) = len(`) (they come from the same index in the
coproduct), and kiR`i holds for 0 ≤ i < len(k). In other words, (k, `) ∈ Rel(

∏
n Id)(R).

The finite powerset functor is the quotient of the list functor by the transformation
setI : I∗ → PfinI given by setI : (i1, . . . , in) 7→ {i1, . . . , in}. The pushforward of the
lifting for the list functor along this natural transformation is the usual definition of
bisimulation for the finite powerset functor. Explicitly,

Rel(Pfin)(R) = {(J,K) ∈ PfinI × PfinI : ∀ j ∈ J,∃k ∈ K. jRk ∧ ∀k ∈ K,∃ j ∈ J. jRk}

3.2 Generalizing Hermida-Jacobs Bisimulation

The necessary components to define Hermida-Jacobs bisimulation conveniently can be
found in any CLat∧-fibration with any endolifting of any functor. Thus, we can define
the abstract counterpart of a bisimulation. This terminology is intended to echo [11].

Definition 7. Let Ḟ be a endolifting for F. An Ḟ-invariant [on an F-coalgebra (I, f )]
is an Ḟ-coalgebra (X, α) [such that πX = I and πα = f ].

An Ḟ-invariant morphism is an Ḟ-coalgebra morphism.

Ḟ-invariants and Ḟ-invariant morphisms together form a category, in fact exactly
the category Coalg(Ḟ). Ḟ-invariants also evidently sit over F-coalgebras according to
π, so we name the functor sending Coalg(Ḟ) to Coalg(F).

9



Definition 8. Given a endolifting Ḟ on a functor F, the underlying coalgebra functor
Coalg(π) : Coalg(Ḟ)→ Coalg(F) is defined as

Coalg(π)(X, α) = (πX, πα), Coalg(π)h = h.

Since π is faithful in a CLat∧-fibration, the coalgebra structure α of an Ḟ-invariant
(X, α) on (I, f ) is unique. Therefore, an alternative definition of an Ḟ-invariant on (I, f )
is an object X above I such that there exists a (necessarily unique) morphism α : X →
ḞX above f .

Yet another definition of an Ḟ-invariant can be derived from the lattice structure of
EI . For each coalgebra (I, f ), there is a monotone function f ∗ ◦ Ḟ|EI : EI → EFI → EI

as described above. An Ḟ-invariant on (I, f ) is then precisely a postfixed point for this
function.

A useful consequence of this last characterization is the observation that since each
fibre EI is a complete lattice, Knaster-Tarski ensures the Ḟ-invariants on (I, f ) form a
complete sublattice. In particular

Definition 9. The greatest Ḟ-invariant on an F-coalgebra (I, f ) always exists and is
called the Ḟ-coinductive invariant. We denote the Ḟ-coinductive invariant on (I, f ) by
νḞ(I, f ).

We can alternatively reach νḞ(I, f ) by the final sequence argument inside the fibre EI ;
this is the approach taken in [3]. In [11], coinducive invariants were called coinductive
predicates.

Ḟ-similarities give final objects within each fibre category, but there is no assurance
of a final object in the total category, nor that final objects are preserved by coalgebra
morphisms. The next result, which reorganizes results presented in [11, Section 4], sets
out some conditions entailing these desiderata.

Theorem 10. Let Ḟ be a endolifting for F. If it preserves cartesian morphisms,

1. [11, Proposition 4.1] The underlying coalgebra functor Coalg(π) : Coalg(Ḟ) →
Coalg(F) is a fibration where pullbacks are the same as in the fibration π.

2. Each pullback functor of Coalg(π) preserves final objects (hence Coalg(Ḟ) has
fibered final objects).

3. If additionally Coalg(F) has a final object νF, then Coalg(Ḟ) has a final object.

For the item 2 and 3 of the above theorem, see also [11, Corollary 4.3].
This theorem is a fibred counterpart of some results in Section 6 of [3]. To see this,

we instantiate Theorem 10 with the following data: the CLat∧-fibration π : PMetb →

Set (Section 2), a functor F : Set → Set having a final F-coalgebra νF and a lifting Ḟ
of F along π that preserves cartesian PMetb morphisms (isometries). Then

– Theorem 6.1 in [3] is equivalent to the conclusion of (this instance of) item 3 of
Theorem 10.

– Let I = (I, f ) be an F-coalgebra, and !I : I → νF be the unique F-coalgebra mor-
phism. The behavioural distance of I in [3] corresponds to the pullback !∗I (νḞνF) in
our fibrational language.

– Theorem 6.2 in [3] corresponds to νFI =!∗I (νḞνF), which follows from (this instance
of) item 2 of Theorem 10.
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4 Constructions of Liftings along CLat∧-Fibrations

There are many examples of liftings of functors in well-known fibrations, such as the
fibration of relations or pseudometrics. Some of these liftings even form classes which
cover all functors, such as the canonical relation lifting or the generalized Kantorovich
liftings of [3], which ensure every functor has a lifting in ERel and PMetb respectively.
In this work we are considering a variety of fibrations, so a natural concern is whether
liftings of Set functors exist in all of these CLat∧-fibrations.

In this section, we generalize a variety of constructions known in particular fibra-
tions to arbitrary CLat∧-fibrations. In Sections 4.1 and 4.2, we give two constructions,
the first using enriched left Kan extensions and the second using codensity liftings. Then
in Section 4.3 we mention how to use the categorical structure of the CLat∧-fibration
to create new liftings from old.

Hence, in this section we find ourselves with the ingredients F and π:

Set F // Set E
πoo π : CLat∧-fibration (1)

and seek to create an endolifting of F in a variety of ways.

4.1 Lifting by Enriched Left Kan Extensions

The canonical SMC structure on E (Section 2) allows us to discuss enriched liftings
of F to Ee, the self-enriched category of E with its SMC structure. To discuss this, we
introduce some E-categories and E-functors.

– By Ee we mean the self-enriched E-category of E (that is, Ee(X,Y) = X ( Y).
– Since the left adjoint ∆ : Set → E of π (see Section 2.3) is strict monoidal, it

yields the change-of-base 2-functor ∆∗ : CAT → E-CAT. It takes a locally small
category C and returns the E-category ∆∗C defined by Obj(∆∗C) = Obj(C) and
(∆∗C)(I, J) = ∆(C(I, J)).

– For any functor G : C → E, we define the E-functor G : ∆∗C → Ee by: GI = GI,
and GI,J : (∆∗C)(I, J)→ Ee(GI,GJ) is the mate of GI,J : C(I, J)→ E(GI,GJ) with
the adjunction ∆ a π; recall that π(Ee(X,Y)) = π(X ( Y) = E(X,Y) by construction.

The following is a generalisation of [2, Theorem 3.3].

Theorem 11. Consider the situation (1). Let C : Set → E be a functor such that
πC = F. Then there is an enriched left Kan extension Ḟ of C : ∆∗Set → Ee along
∆ : ∆∗Set → Ee such that its underlying functor Ḟ0 : E → E (see [16]) is a lifting of F
along π.

Proof. Since the codomain Ee of C has E-tensors, the enriched left Kan extension can
be computed by the enriched coend:

Lan∆CX =

∫ I∈∆∗Set
Ee(∆I, X) ⊗CI;

see [16, (4.25)]. We define the body of this coend by B(I, J) = Ee(∆I, X) ⊗ CJ. It is
an E-functor of type (∆∗Set)op ⊗ ∆∗Set → Ee. Similarly, we define an ordinary functor
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B : Setop × Set → E by B(I, J) = B(I, J) on objects and B( f , g) = πB(I,J),(I′,J′)( f , g) on
morphisms. A calculation shows that B is equal to the ordinary functor λ(I, J) . (LI (
X) ⊗CJ.

Because the codomain of B is Ee, the enriched coend can be computed as an ordinary
colimit of the following large diagram in E [16, Section 2.1]:

· · · B(I, I) B(J, J) · · ·

· · ·

;;``

∆∗Set(J, I) ⊗ B(I, J)
rI,J

66

lI,J

hh

· · ·

cc >> (2)

where I, J ranges over all objects in Set, and lI,J and rI,J are the uncurrying of B(I,−)J,I

and B(−, J)I,J , respectively.
In E, ∆I ⊗ X is a tensor of X with I ∈ Set because

E(∆I ⊗ X,Y) ' E(∆I, X ( Y) ' Set(I, π(X ( Y)) = Set(I,E(X,Y)).

We name the passage from right to left φ. The bottom objects of diagram (2) are thus
tensors of B(I, J) with Set(J, I) for each I, J ∈ Set, and moreover, by easy calculation,
we have lI,J = φ(B(I,−)) and rI,J = φ(B(−, J)). Therefore a colimit of the diagram (2)
can be computed as an ordinary coend of B : Setop × Set→ E.

To compute this (large) coend of B, it suffices to show that the coend of πB exists in
Set, because π uniquely lifts coends. We have a natural isomorphism ιI,J : πB(I, J) →
Set(I, πX) × FJ, and the right hand side has a coend {iI : Set(I, πX) × FI → FπX}I∈Set
defined by iI( f , x) = F f x. Therefore since π uniquely lifts colimits (Section 2.3), we
obtain a coend of B. To summarise, the enriched left Kan extension is computed as

Lan∆CX =
∨
I∈Set

(iI ◦ ιI,I)∗((LI ( X) ⊗CI).

Example 12. Let π : Pre → Set be the CLat∧-fibration from the category Pre of pre-
orders and F : Set → Set be a functor. We compute the enriched left Kan extension
Lan∆∆F. For (X,≤) ∈ Pre, the enriched left Kan extension Lan∆∆F(X,≤X) is the pre-
order on FX generated from the following binary relation:

{(F f a, Fga) | I ∈ Set, a ∈ FI, f , g ∈ Set(I, X),∀i ∈ I . f i ≤X gi}

= {(F p1a, F p2a) | a ∈ F(≤X)}

where pi : (≤X) → X is the composite of the inclusion (≤X) ↪→ X × X of the preorder
relation and the projection function πi : X × X → X.

When F is the powerset functor P, the enriched left Kan extension Lan∆∆P(X,≤X)
gives the Egli-Milner preorder vX on PX, as computed in [2, Example 3.8]:

V vX W ⇐⇒ (∀v ∈ V . ∃w ∈ W . v ≤X w) ∧ (∀w ∈ W . ∃v ∈ V . v ≤X w).

4.2 Codensity Lifting of Endofunctors

As an analog to the codensity lifting of monads along CLat∧-fibrations [15, Proposition
10], we give a method to lift Set-endofunctors along CLat∧-fibrations. We retain the

12



name and call it the codensity lifting (of Set-endofunctors). We demonstrate in Example
15 that it subsumes the Kantorovich lifting in [3].

Consider the situation (1). We take the category SetF of F-algebras and the as-
sociated forgetful functor U : SetF → Set. It comes with a natural transformation
α : FU → U, whose components are defined by the F-algebra structure: α(A,a) = a :
FA→ A.

The codensity lifting of F is defined with respect to a lifting parameter for F, which
is a pair (R, S ) of functors from a discrete category A such that πS = UR:

A
S //

R
��

E

π
��

SetF
U

// Set

SetF : category of F-algebras
U : forgetful functor
πS = UR

(3)

Then the codensity lifting F[R,S ] of F with respect to the above lifting parameter
(R, S ) is defined by the following fibred meet:

F[R,S ]X =
∧

A∈A, f∈E(X,S A)

(αRA ◦ Fπ f )∗(S A).

The codensity lifting can be characterise as a vertex of a pullback when the co-
density monad RanS S exists. Suppose that RanS S exists. Since the CLat∧-fibration
π : E → Set preserves all limits, πRanS S is a right Kan extension of πS along S . We
then take the mate of the natural transformation αR : FπS → πS with the right Kan
extension of πS along S , and obtain αR : Fπ→ πRanS S .

Theorem 13. Suppose that RanS S exists. Then F[R,S ] is the vertex of the following
pullback in the fibration [E, p] : [E,E]→ [E,Set]:

F[R,S ] // RanS S [E,E]

p◦−
��

Fπ
αR

// πRanS S [E,Set]

The codensity lifting enjoys the following universal property. First, we introduce
a partial order on the liftings of F by: Ḟ ≤ F̈ if and only if ḞX ≤ F̈X holds for all
X ∈ E. Moreover, we say that a lifting Ḟ of F along π makes S an algebra above R if,
αRA : ḞS A →̇ S A holds for all A ∈ A.

Theorem 14. Consider the situation (1) and a lifting parameter given as (3). The co-
density lifting F[R,S ] of F is the largest lifting of F that makes S an algebra above R.

Example 15. Fix a bound b ∈ (0,∞] for metrics. We show that the Kantorovich lift-
ing in [3] is a codensity lifting along the CLat∧-fibration π : PMetb → Set. Let
α : F[0, b] → [0, b] be an F-algebra; in [3] it is called an evaluation function. We
then form the following lifting parameter: A = 1, R = ([0, b], α), and S = ([0, b], de),
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where de is the standard Euclidean distance de(x, y) = |x − y| on [0, b]. Then the coden-
sity lifting with this parameter yields the following construction of pseudometric:

F[R,S ](I, r) = (FI, r′)
r′(x, y) = sup {|α((Fπ f )(x)) − α((Fπ f )(y))| | f ∈ PMetb((I, r), S )} .

This is exactly the Kantorovich lifting in [3, Definition 3.1].

4.3 Combining Liftings

We have seen two methods to lift endofunctors. In this section, we discuss building
new liftings from existing ones. Below we set up a suitable category in which these
operations are characterised as categorical constructions.

Let π : E → Set be a CLat∧-fibration. Then π ◦ − : [E,E] → [E,Set] is a partial
order bifibration with fibred meets of arbitrary size. We take the following change-of-
base of this fibration along − ◦ π:

Lift(π)
q
��

// [E,E]

π◦−
��

[Set,Set]
−◦π

// [E,Set]

The vertex of this change-of-base is the category Lift(π) of liftings along π. An object
is a pair (F, Ḟ) of an endofunctor F : Set → Set and its lifting Ḟ : E → E along π. A
morphism from (F, Ḟ) to (G, Ġ) is a pair (α, α̇) of natural transformations α : F → G
and α̇ : Ḟ → Ġ such that πα̇ = απ.

The derived vertical leg q : Lift(π) → [Set,Set] is also a partial order bifibration
with fibred meets (of arbitrary size). Since [Set,Set] has small limits and colimits, by
Theorem 1, Lift(π) has small limits and colimits, hence small products and coproducts.

The bifibredness of q, together with these products and coproducts give us a recipe
to combine liftings.

Identity and Constant The lifting of IdSet is IdE, while the lifting of the constant func-
tor CI(J) ≡ I is ĊI(X) ≡ ∆I.

Product and Coproduct Let (Fi, Ḟi) be an I-indexed family of liftings along π. Then
their product and coproduct are computed pointwise.

Pullbacks and Pushforwards For a lifting (F, Ḟ) along π and natural transformations

H α // F
β // G , the pullback lifting α∗F above H and pushforward lifting β∗F

above G are computed pointwise in the fibration π : E→ Set:

(α∗Ḟ)(X) = (απX)∗(ḞX), (β∗Ḟ)(X) = (βπX)∗(ḞX).

In particular, these constructions ensure all polynomial and finitary functors in Set
have at least one lifting in every CLat∧-fibration.
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4.4 The Hausdorff Pseudometric

As an example of how liftings can be constructed with these basic operations, we
demonstrate the construction of the Hausdorff pseudometric on finite sets in a BVal
lifting of the finite powerset functor. Our version of the Hausdorff distance will take a
BVal object (I, d) and create a BVal object (PfinI,Hd).

Recall that the finite powerset can be realized as a quotient of a polynomial functor
with the following construction. First, recall the list functor: (−)∗ =

∐
n∈ω

∏
i∈n Id. This

is patently a polynomial functor. Then the finite powerset functor is the quotient of the
list functor by the natural transformation setI : I∗ → PfinI from Example 6.

We can build up a BVal lifting of the finite powerset functor in parallel with this
construction. First, using the product and coproduct in BVal we derive a BVal lifting
for the list functor. Given a BVal object (I, d) the lifted distance on lists k, ` ∈ I∗ is:

d∗(k, `) =

 max
0≤i<len(k)

d(ki, `i) if len(k) = len(`)

∞ if len(k) , len(`)

Then a BVal lifting for the finite powerset functor arises as the pushforward of the
list lifting along the transformation set. In Example 4, we found pushforward in BVal
explicitly so, Hd(J,K) = inf

k∈I∗: set(k)=J
`∈I∗: set(`)=K

d∗(k, `). We have denoted this distance Hd since

it turns out to be equal to the usual Hausdorff distance. However, this is not the usual
formulation for the Hausdorff distance, so we briefly discuss why this is equivalent.

The usual definition of Hausdorff distance for a metric space is

Hd(J,K) = max
(
sup
y∈J

inf
z∈K

d(y, z), sup
z∈K

inf
y∈J

d(y, z)
)

where J,K ⊆ I. Typically the Hausdorff distance is also restricted to nonempty compact
subsets of the metric space so thatHd is truly a metric. (OtherwiseHd(J,K) = 0 does
not imply J = K, for example.) Since we are interested in pseudometrics anyway, we
do not place any such restriction on the domain ofHd.

In the finite case, the Hausdorff distance has a game theoretic interpretation as the
result of a two-turn game played between a lazy walker (Gerry) and an antagonist
(Tony). In the first round, Tony picks a starting point from either J or K for Gerry.
In the second round, Gerry walks from Tony’s starting point in J (K) to any point in K
(J). The result of the game is the distance Gerry walks. Gerry’s goal is to minimize this
distance; Tony’s goal is to maximize it.

Gerry’s optimal strategy is straightforward. Given a starting point, Gerry finds the
distances to the (finitely many) points in the other set and picks the least one. Since
Gerry’s optimal strategy is clear, Tony can make a list consisting of all the points in
J ∪K and the distance Gerry will have to walk if that point is used as the starting point.
Then Tony’s optimal strategy is to pick the starting point corresponding to the greatest
distance on this list.

This analysis indicates we can interchange the order of the players and obtain a
game with the same result: Gerry can first announce where he will walk given every
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possible choice of starting point, then Tony picks one of the choices offered by Gerry.
If Tony is given two lists k and ` by Gerry, he will be to force the result of this modified
game to be

d∗(k, `)

where d∗ is the list distance defined above. Gerry’s best strategy is to pick k and ` with
the closest corresponding distances possible, making the final result of this modified
game

inf
k∈I∗: set(k)=J
`∈I∗: set(`)=K

d∗(k, `)

where the constraints set(k) = J and set(`) = K express the fact that Gerry must make a
choice for every single starting point. Since these games have the same result, we know

max
(
sup
y∈J

inf
z∈K

d(y, z), sup
z∈K

inf
y∈J

d(z, y)
)

= inf
k∈I∗: set(k)=J
`∈I∗: set(`)=K

d∗(k, `)

Therefore, our formulation of the Hausdorff distance is equal to the usual formulation
of the Hausdorff distance, modulo the consideration that we are satisfied with a pseu-
dometric and so do not confine our definition to nonempty compact sets.8

5 The Category of Endoliftings

In Section 3, we defined endoliftings and their instantiations to Ḟ-invariants on par-
ticular coalgebras. We showed that with certain constraints on the ambient categories,
the Ḟ-coinductive invariant exists and is preserved by coalgebra morphisms. In Sec-
tion 4, we showed that endoliftings exist in many CLat∧-fibrations, and gave several
constructions and combinators for producing endoliftings in these general conditions.
In this section, we we observe that endoliftings can be collected into a category using
the following definition.

Definition 16. A endolifting morphism from one endolifting (π : E → Set, Ḟ) to an-
other (ρ : F → Set, F̈) is a lifting H : E → F of IdSet (i.e. π = ρ ◦ H) such that
H ◦ Ḟ = F̈ ◦ H.

Endolifting morphisms do not appear in the story of Hermida-Jacobs bisimulations
or the coalgebraic predicates defined analogously, but we will observe this category is
a useful abstraction for comparing coalgebraic invariants of various endoliftings.

A concrete goal in this section is to establish some general conditions under which
a BVal coinductive invariant has an ERel coinductive invariant at its kernel. Results of
this type are pursued, for example, in [6].

8 A more technical proof of the same result proceeds by first showing the Hausdorff distance on
the left is a lower bound for d∗(k, `) given the constraints on k and `. The fact that J and K are
finite is crucial so that the value of the left-hand side must be witnessed at a particular entry in
one of the lists. Then it can be shown that this lower bound is sharp by a particular choice of
k and ` witnessing Gerry’s optimal strategy, so indeed the left-hand side is the greatest lower
bound for the collection of values on the right-hand side.
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5.1 Quantitative and Qualitative Liftings

We begin by focusing on three CLat∧-fibrations introduced in Section 2.3, namely
ERel, RERel, and BVal. These total categories consist of sets together with endore-
lations, real-indexed families of endorelations, and “distance” functions (which satisfy
no metric axioms other than having codomain nonnegative reals), respectively.

These fibrations have many functors between them:

BVal

T ε=(−ε)◦S

��

p
((

S //
> RERel
L

oo
−ε //

q

��

> ERel
χε

oo

r
vv

Set

where (the object parts of) each of these functors are given by

L(I,R) = (I, λ(x, y) . inf{δ | (x, y) ∈ Rδ}) S (I, r) = (I, λε . {(x, y) ∈ I | r(x, y) ≤ ε})

χε(I,R) =

(
I, λδ .

{
(I,∅) if δ < ε
(I,R) if δ ≥ ε

)
(I,R)ε = (I,Rε)

Note that the two functors between ERel and RERel are actually a real-indexed
family of functors, where ε ∈ [0,∞). It may help to think of S as Stratifying a distance
function into a family of relations and L as finding the Least index where the relation
holds. As usual, the empty infimum in the definition of L is the maximum element,
namely∞.

These functors patently do not change the index set I associated with each of the
objects in the total category. Each of these functors is also defined to be the identity on
morphisms.9 Therefore, these are liftings of the identity on Set.

We define the composite functor T ε = (−ε) ◦ S . This functor sends (I, r) ∈ BVal to
(I, {(x, y) | r(x, y) ≤ ε}) ∈ ERel, truncating the distance function r at ε. The fact that T ε
is a right adjoint, as depicted in the diagram above, will be an important fact later on.

The functor T0 gives the kernel of a distance function, namely the relation consist-
ing of pairs which are at distance 0. A common desideratum of pseudometric liftings or
more generally BVal liftings is that the kernel of the F̂-coinductive invariant function in
BVal is bisimilarity in ERel (i.e. the Rel(F)-coinductive invariant where Rel(F) is the
canonical relation lifting of F, defined in Section 3.1). We show how to establish this
result for the Hausdorff metric in a highly reusable manner.

5.2 Tε is a Endolifting Morphism between Kripke Polynomial Functors

Next, we show that T ε is a endolifting morphism from every polynomial functor in
BVal to the polynomial functor of parallel shape in ERel. This result is the backbone

9 Morphisms in each of these categories are Set-functions which satisfy conditions regarding the
extra data in the total category. (That is, functions which preserve the source relation, shrink
the source distance, etc.) It is straightforward to show f : X → Y is a morphism in A implies
f : FX → FY is a morphism in B by writing down the extra conditions on f imposed by A
and B where F : A→ B is any of the four functors defined above.

17



of our proof that T ε is a endolifting morphism from the Hausdorff lifting of the finite
powerset functor to the canonical relation lifting of the finite powerset functor.

Proposition 17. For all ε ∈ [0,∞), T ε is a endolifting morphism:

1. from IdBVal to IdERel,
2. from ĈA to C̃A where CA is the constant-to-A functor, and
3. from F̂1×̂F̂2 to Rel(F1)×̃Rel(F2), given that it is a morphism from F̂i to Rel(Fi),

and
4. from

∐̂
iF̂i to

∐̃
i Rel(Fi), given that it is a morphism from F̂i to Rel(Fi)

Therefore, T ε is a endolifting morphism from any polynomial functor in ERel to the
polynomial functor of the same shape in BVal.

This establishes T ε as a endolifting morphism between polynomial functors, but
we also want it to be a endolifting morphism from the Hausdorff lifting of Pfin to the
canonical relation lifting in BVal. That is, we want to show T ε : H → Rel(Pfin) is a
endolifting morphism. A reasonable strategy, given the proof we just completed, would
be to hope that if T ε is a endolifting morphism between two liftings of a functor, then it
is a morphism between the pushforward of those functors along a natural transformation
in the base category. In general this is not true, but liftings satisfying a simple side
condition do have this property.

Proposition 18. Suppose τ : P → F is a natural transformation in Set, T ε : P̂ → P̃
(Section 5.1) is a endolifting morphism from a BVal lift of P to an ERel lift of P, and F̂
and F̃ are the pushforwards of P̂ and P̃ along τ. Further suppose for every set I, every
f , f ′ ∈ FI and r : I × I → R+, the lower bound for {P̂r(p, p′) : τp = f and τp′ = f ′} is
achieved in this set. Then T ε is a endolifting morphism from F̂ to F̃.

We can now apply this proposition to obtain the following corollary.

Corollary 19. T ε is a endolifting morphism fromH to Rel(Pfin).

Proof. Proposition 17 shows T ε is a endolifting morphism from the standard BVal
lifting for the list functor to the standard ERel lifting for the list functor. We know H
and Rel(Pfin) are the pushforwards of these list functors along setX in their respective
total categories.10 Hence to apply Proposition 18 we only need to show for all finite
sets J,K ⊆ I, and all distances r : I × I → R+, there exist lists k† and `† such that
set(k†) = J, set(`†) = K and r∗(k†, `†) = inf

set(k)=J
set(`)=K

r∗(k, `). We noted this in the Hausdorff

distance section, where these dagger lists represent Gerry’s optimal strategy.

5.3 Approximate Bisimulations: an Example from Control Theory

Here we present an example from a rather different context: approximate bisimulation
by Girard and Pappas [8]. Defined as a binary relation on a metric space that is subject to
the “mimicking” condition, the notion is widely used in control theory as a quantitative

10 Recall setX from Example 6.
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relaxation of usual (Milner-Park) bisimulation that allows bounded errors. Its princi-
pal use is in bounding errors caused by some abstraction of dynamical systems: given
the original dynamics S, one derives its abstractionA; by exhibiting an ε-approximate
bisimulation between S and A, one then shows that the difference between the trajec-
tory ofA and that of S is bounded by ε. Such abstraction methods include: state space
discretization (e.g. in [10]) and ignoring switching delays [18]. See [9] for an overview.

In the above scenario, an ε-approximate bisimulation between S and A is synthe-
sized through analysis of the continuous dynamics of S: for example the incremental
stability of S yields an approximate bisimulation via its Lyapunov-type witness. An-
other common strategy for finding an approximate bisimulation is via a bisimulation
function. Our goal here is to describe the latter strategy in the current coalgebraic and
fibrational framework.

We fix the set O of output values together with a distance function d : O×O→ R+,
and a U-labelled finitely branching LTS (Q, δ : Q → U t P f inQ) with an output func-
tion o : Q → O, where t denotes the power operation [19, p. 70]. An ε-approximate
bisimulation relation is a binary relation R ⊆ Q × Q such that

∀(q, q′) ∈ R . d(o(q), o(q′)) ≤ ε ∧ ∀l ∈ U .

(∀r ∈ Q . r ∈ δ(l, q) =⇒ ∃r′ ∈ Q . r′ ∈ δ(l, q′) ∧ (r, r′) ∈ R)∧
(∀r′ ∈ Q . r′ ∈ δ(l, q′) =⇒ ∃r ∈ Q . r ∈ δ(l, q) ∧ (r, r′) ∈ R). (4)

The difference from the usual Milner-Park bisimulation is that R is additionally required
to witness the ε-proximity of outputs of related states q and q′.

A bisimulation function is a quantitative (real-valued) witness for an approximate
bisimulation. In many settings in control theory where dynamics are smooth and de-
scribed by ordinary differential equations, such real-valued functions are easier to come
up with than an approximate bisimulation itself. For the above LTS, a function v :
Q × Q→ R+ is a bisimulation function if it satisfies, for each q, q′ ∈ Q,

max
(

d
(
o(q), o(q′)

)
, sup

l∈U
Hv

(
δ(l, q), δ(l, q′)

) )
≤ v(q, q′) (5)

A crucial fact is that a bisimulation function v gives rise to an ε-approximate bisimula-
tion {(q, q′) | v(q, q′) ≤ ε}. See e.g. [9].

We move on to give a categorical account of this construction. We use the following
functor as a coalgebra signature:

F : Set→ Set, FX = O × (U t P f inX),

We can then package a U-labelled finitely branching LTS and an output function into a
single F-coalgebra Q = (Q, 〈o, δ〉 : Q→ FQ).

Firstly, the endolifting that captures ε-approximate bisimulations consists of

r : ERel→ Set, F̃εX = T ε(O, d) × (U t Rel(P f in)(X)).

Secondly, the endolifting that captures bisimulation functions consists of

p : BVal→ Set, F̂X = (O, d) × (U t HX).
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Indeed, by unfolding the definitions the following can be observed: F̃ε-invariants on Q
are nothing but ε-approximate bisimulations; and F̂-invariants on Q are bisimulation
functions. Thanks to Proposition 17 and Corollary 19, the functor T ε—that sends a
function v : Q×Q→ R+ to the relation {(q, q′) | v(q, q′) ≤ ε}—is a endolifting morphism
from F̂ to F̃. Therefore T ε transfers a F̂-invariant v on Q to a F̃ε-invariant T εv on Q,
that is, a bisimulation function to an ε-approximate bisimulation.

5.4 Endolifting Morphisms Preserve Final Coalgebras

We next state a result which we can use to ensure that the coinductive invariant in the
source of a endolifting morphism is sent to the coinductive invariant in the target of that
morphism.

Lemma 20. Suppose H is a endolifting morphism from (π : E → Set, Ḟ) to (ρ : F →
Set, F̈) which is also a fibration map. Suppose additionally that H preserves fibred
meets. Then H(I, νḞ(I, f )) = (I, νF̈(I, f )).

Proof. Preservation of top elements ensures H>EI = >FI . Since H is a fibration map and
a endolifting morphism, we get H( f ∗Ḟ(AI)) = f ∗F̈(H(AI)) for all AI ∈ EI . Combining
this with the above observation ensures H sends the final sequence in the fiber EI to
the final sequence in the fiber FI . Finally, H preserving meets ensures H will send the
Ḟ-coinductive invariant for (I, f ) to the F̈-coinductive invariant for (I, f ).

Note T ε satisfies most of the conditions in this lemma. Since we are interested in
concluding something about the kernel of a behavioural metric, we specialize to the
case where ε = 0 where these conditions are all satisfied.

Corollary 21. If T0 is a endolifting morphism from (F̂,BVal) to (Ḟ,ERel), then the
behavioural metric induced by F̂ has the coalgebraic predicate induced by Ḟ at its
kernel.

Proof. T ε is a fibration map and a right adjoint, and thus preserves all fibred meets.

All our work from the previous section establishing that T ε is a endolifting mor-
phism fromH to Rel(Pfin) now pays off.

Corollary 22. The Hausdorff behavioural metric on PfinX has Pfin-bisimilarity at its
kernel.

Above, we also showed T0 is a endolifting morphism between many other BVal
and ERel liftings (Proposition 17). Therefore, we could also derive an analog of Corol-
lary 21 for these pairs and conclude behavioural metrics of the BVal lift have bisimilar-
ity (the coalgebraic relation of the corresponding ERel lift) at their kernels.
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6 Conclusions and Future Work

We presented a fibrational framework for various extensions of (bi)simulation notions.
On the categorical side our focus has been on structural aspects of fibrations such as
fibration morphisms and lifting by Kan extensions; on the application side we took
examples from quantitative reasoning about systems. This has allowed us to capture
known constructions in more abstract and general terms, such as the Hausdorff pseudo-
metric and approximate bisimulation in control theory.

As future work, we shall investigate conditions under which the two liftings in
Section 4—one by left Kan extension and the other involving right Kan extension—
coincide. We would then compare this coincidence and the Kantorovich-Wasserstein
duality, which is the coincidence of the metric on probability distributions computed by
sup and inf. We mentioned that Top and Meas are examples of CLat∧-fibrations; their
use in reasoning about systems will also be explored.

Acknowledgement

This research was supported by ERATO HASUO Metamathematics for Systems Design
Project (No. JPMJER1603), JST. The authors are grateful to anonymous reviewers,
whose constructive comments helped to improve the paper.

References

1. Azevedo de Amorim, A., Gaboardi, M., Hsu, J., Katsumata, S.y., Cherigui, I.: A seman-
tic account of metric preservation. In: Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages (POPL 2017). pp. 545–556 (2017).
https://doi.org/10.1145/3009837.3009890, http://doi.acm.org/10.1145/3009837.3009890

2. Balan, A., Kurz, A., Velebil, J.: Extensions of Functors From Set to V-cat. In:
Proceedings of the 6th Conference on Algebra and Coalgebra in Computer Sci-
ence (CALCO 2015). pp. 17–34 (2015). https://doi.org/10.4230/LIPIcs.CALCO.2015.17,
https://doi.org/10.4230/LIPIcs.CALCO.2015.17

3. Baldan, P., Bonchi, F., Kerstan, H., König, B.: Behavioral Metrics via Func-
tor Lifting. In: Proceedings of the 34th International Conference on Foun-
dation of Software Technology and Theoretical Computer Science (FSTTCS
2014). pp. 403–415 (2014). https://doi.org/10.4230/LIPIcs.FSTTCS.2014.403,
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.403

4. Borceux, F.: Handbook of Categorical Algebra 2, Encyclopedia of Mathematics and Its Ap-
plications, vol. 51. Cambridge University Press (1994)

5. van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems.
Theoretical Computer Science 331(1), 115–142 (2005)

6. Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized Bisimulation Metrics.
In: Proceedings of the 25th International Conference on Concurrency Theory (CONCUR
2014). pp. 32–46 (2014)

7. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The Metric Analogue of Weak
Bisimulation for Probabilistic Processes. In: Proceedings of the 17th IEEE Symposium on
Logic in Computer Science (LICS 2002). pp. 413–422 (2002)

21



8. Girard, A., Pappas, G.J.: Approximation Metrics for Discrete and Continu-
ous Systems. IEEE Transactions on Automatic Control 52(5), 782–798 (2007).
https://doi.org/10.1109/TAC.2007.895849

9. Girard, A., Pappas, G.J.: Approximate Bisimulation: A Bridge Between Computer
Science and Control Theory. European Journal of Control 17(5-6), 568–578 (2011).
https://doi.org/10.3166/ejc.17.568-578

10. Girard, A., Pola, G., Tabuada, P.: Approximately Bisimilar Symbolic Models for Incremen-
tally Stable Switched Systems. IEEE Transactions on Automatic Control 55(1), 116–126
(2010)

11. Hasuo, I., Cho, K., Kataoka, T., Jacobs, B.: Coinductive Predicates and Final Sequences
in a Fibration. Electronic Notes in Theoretical Computer Science 298, 197–214 (2013).
https://doi.org/10.1016/j.entcs.2013.09.014, https://doi.org/10.1016/j.entcs.2013.09.014

12. Hermida, C., Jacobs, B.: Structural Induction and Coinduction in a Fi-
brational Setting. Information and Computation 145(2), 107–152 (1998).
https://doi.org/https://doi.org/10.1006/inco.1998.2725

13. Herrlich, H.: Topological functors. General Topology and its Applications 4(2),
125–142 (1974). https://doi.org/https://doi.org/10.1016/0016-660X(74)90016-6,
http://www.sciencedirect.com/science/article/pii/0016660X74900166

14. Jacobs, B.: Categorical Logic and Type Theory, Studies in Logic and the Foundations of
Mathematics, vol. 141. Elsevier Science (1999)

15. Katsumata, S., Sato, T.: Codensity Liftings of Monads. In: Proceedings of
the 6th Conference on Algebra and Coalgebra in Computer Science (CALCO
2015). pp. 156–170 (2015). https://doi.org/10.4230/LIPIcs.CALCO.2015.156,
https://doi.org/10.4230/LIPIcs.CALCO.2015.156

16. Kelly, G.M.: Basic Concepts of Enriched Category Theory, Lecture Notes in Mathematics,
vol. 64. Cambridge University Press (1982)

17. Kelly, G.M., Rossi, F.: Topological categories with many symmetric monoidal closed
structures. Bulletin of the Australian Mathematical Society 31(1), 41–59 (1985).
https://doi.org/10.1017/S0004972700002264

18. Kido, K., Sedwards, S., Hasuo, I.: Bounding Errors Due to Switching Delays in In-
crementally Stable Switched Systems (Extended Version). arXiv:1712.06311 (2017),
http://arxiv.org/abs/1712.06311

19. Lane, S.M.: Categories for the Working Mathematician, Graduate Texts in Mathematics,
vol. 5. Springer (1998)

20. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249(1),
3–80 (2000). https://doi.org/10.1016/S0304-3975(00)00056-6
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