N
N

N

HAL

open science

Importance of many-body correlations in glass
transition: An example from polydisperse hard spheres

Mathieu Leocmach, John Russo, Hajime Tanaka

» To cite this version:

Mathieu Leocmach, John Russo, Hajime Tanaka.
transition: An example from polydisperse hard spheres. Journal of Chemical Physics, 2013, 138 (12),

pp-12 - 536. 10.1063/1.4769981 . hal-01901035

HAL Id: hal-01901035
https://hal.science/hal-01901035
Submitted on 22 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Importance of many-body correlations in glass


https://hal.science/hal-01901035
https://hal.archives-ouvertes.fr

AP chemical Physics

Impbﬁance of many-body correlations in glass transition: An example from
polydisperse hard spheres

Mathieu Leocmach, John Russo, and Hajime Tanaka

Citation: J. Chem. Phys. 138, 12A536 (2013); doi: 10.1063/1.4769981
View online: http://dx.doi.org/10.1063/1.4769981

View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v138/i12
Published by the American Institute of Physics.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/

Journal Information: http://jcp.aip.org/about/about_the_journal
Top downloads: http://jcp.aip.org/features/most_downloaded
Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

Instruments for advanced science

Gas Analysis Surface Science Plasma Diagnostics Vacuum Analysis contact Hiden Analytical for further details

&2 HIDIN

ANALYTICAL

® UHVTPD = plasma source characterization = partial pressure measurement and

= SIMS = etch and deposition process control of process gases |nf°@hlden|nc.com

m end point detection in ion beam etch reaction Kinetic studies = reactive sputter process control o N

w elemental imaging - surface mapping = analysis of neutral and radical = vacuum diagnostics www.HidenAn a'ytlcal_co m
species ® vacuum coating process monitoring

CLICK to view our product catalogue %

Downloaded 26 Feb 2013 to 140.77.242.71. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions


http://jcp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/485603956/x01/AIP/Hiden_JCPCovAd_1640x440Banner_02_26_2013/1640x440_-_23874-BANNER-AD-1640-x-440px_-_USA.jpg/7744715775302b784f4d774142526b39?x
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Mathieu Leocmach&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=John Russo&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Hajime Tanaka&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4769981?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v138/i12?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov

THE JOURNAL OF CHEMICAL PHYSICS 138, 12A536 (2013)

® CrossMark
¢

Importance of many-body correlations in glass transition: An example

from polydisperse hard spheres

Mathieu Leocmach,??) John Russo,”°) and Hajime Tanaka®)
Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

(Received 12 October 2012; accepted 20 November 2012; published online 14 February 2013)

Most of the liquid-state theories, including glass-transition theories, are constructed on the basis of
two-body density correlations. However, we have recently shown that many-body correlations, in
particular, bond orientational correlations, play a key role in both the glass transition and the crys-
tallization transition. Here we show, with numerical simulations of supercooled polydisperse hard
spheres systems, that the length-scale associated with any two-point spatial correlation function does
not increase toward the glass transition. A growing length-scale is instead revealed by considering
many-body correlation functions, such as correlators of orientational order, which follows the length-
scale of the dynamic heterogeneities. Despite the growing of crystal-like bond orientational order, we
reveal that the stability against crystallization with increasing polydispersity is due to an increasing
population of icosahedral arrangements of particles. Our results suggest that, for this type of systems,
many-body correlations are a manifestation of the link between the vitrification and the crystalliza-
tion phenomena. Whether a system is vitrified or crystallized can be controlled by the degree of
frustration against crystallization, polydispersity in this case. © 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4769981]

. INTRODUCTION

Amorphous materials have been of prime importance in
our technology for millennia, from antique glass works to
fashionable phones made of metallic glass. One of the new
frontiers of the amorphous technology is in the design of
amorphous drugs,'>? better absorbed by our metabolism with
less side effects, that would be stable at room temperature.
The main obstacle is a lack of our basic understanding of the
physics of the glass transition, without any operative consen-
sus despite half a century of intensive research.®*

When cooled below its freezing temperature while avoid-
ing crystallization, a liquid becomes supercooled. Upon fur-
ther cooling, the dynamics slows down by many orders of
magnitude leading to a material that is mechanically a solid
without long range positional order, thus called amorphous. It
is now known that the dynamics in a supercooled liquid is het-
erogeneous, with a length-scale that grows when approaching
the glass transition™® (see Ref. 4 for a review). The length-
scale defined by the dynamical heterogeneity is not static
(one-time spatial correlation) but dynamic (two-time spatial
correlation).

The existence of a static (structural) length that would
grow and accompany the dynamic heterogeneities is still not
clear in the general case. However, in a class of system that in-
cludes polydisperse hard spheres, we have shown’ that some
medium range bond orientational order reminiscent of the
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crystal exists in the supercooled liquid and grows toward the
glass transition in the same way as the dynamical heterogene-
ity. The presence in glassy materials of structures locally rem-
iniscent of crystals has been confirmed recently in amorphous
silicon® and in a metallic glass.” While bond orientational
order is a member of the class of many-body correlations
between neighboring particles, it is yet unclear if a similar
length-scale can be extracted from two-body correlation func-
tions. This question is particularly important considering that
the mode-coupling theory (MCT) of the glass transition takes
as input only two-body quantities, and similarly, modern spin-
glass-type theories of the structural glass transition'®'? are
not taking explicitly into account many-body correlations.

At polydispersities over 6%—7%, the system needs to
fractionate to crystallize.'> What is the bond order of the ref-
erence crystal is then unclear and may challenge our scenario.
This is a situation reminiscent of binary hard sphere systems
of size ratio close to one!* !> where growing bond order has
not been reported.'® However, it is known that even in binary
systems locally favored structures play a role in the slowing
down of the dynamics in some cases.!”!® Interestingly, re-
cent studies by Mosayebi et al.'?° demonstrate that there
are static growing lengths in binary Lennard-Jones and soft
sphere mixtures. They estimated the static length by looking
at the spatial correlation of the degree of non-affine deforma-
tion of inherent structures under shear deformation.

In the present study we will use polydisperse hard sphere
systems, where we know how to extract meaningful many-
body correlations, and look for a two-body quantity that
would show the same behavior as the bond order. We will
show that the two-body part of the free energy (which,
for hard potentials, correspond to the two-body part of the
structural entropy) is unable to capture medium range bond

© 2013 American Institute of Physics
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ordered regions or to yield correlation lengths meaningful
from the point of view of the glass transition. We thus con-
firm the medium range crystalline order scenario and test its
robustness against increasing polydispersity. Since bond ori-
entational order is directly linked to the underlying crystalline
structures, we will then address the important question of
what is the mechanism responsible for the avoidance of crys-
tallization. We will show that in the metastable fluid phase,
crystalline packings are in competition with icosahedral pack-
ings, and that polydispersity acts in favor of the latter ones.

The paper is organized as follows. In Sec. II, we present
the details of the simulations and the order parameters con-
sidered in this work. In Sec. III, the results are organized
into a study of the order parameters distribution (Sec. III A)
and their static length-scales (Sec. III B), and a method to
determine the competition between crystalline structures and
icosahedral packings (Sec. III C). In Sec. IV, we discuss our
results. In Sec. V, we summarize our work.

II. METHODS
A. Simulation method

We run Monte Carlo simulations in the isothermal-
isobaric ensemble (NpT) for N = 4000 polydisperse hard
spheres. The diameters (o) follow a Gaussian distribu-
tion P(0) = exp[—(0 — 00)?/252]/~/27s, with polydisper-
sity index A = s/o. In the following, we fix the unit of length
as ¢ = 1 and the unit of energy so that the Boltzmann con-
stant is unity, kg = 1.

B. Estimation of two-point quantities: Pair entropy
and pair free energy

Our aim is to compare the behavior of both two-point
quantities and many-body quantities with increasing pres-
sure. Due to the hard-sphere interaction, entropy is the only
contribution to the system free energy. All two-pair corre-
lation quantities are thus derived from the two-body excess
entropy,>>?? defined as

pkg
S = ———

> dr(g(r)log(g(r)) —g(r)+1]. (1)

In principle, s, can be calculated separately for each par-
ticle i in the system. In practice, this requires time averages to
compute the pair correlation function of each particle, g;(r),
where the particle distribution around a particle i is averaged
over short-time scales (8 processes). In Refs. 7, 23, and 24
we averaged on times comparable or longer than the « relax-
ation, leading to a quantity that was trivially a reflection of the
dynamical heterogeneity.

Here we instead construct an approximate but instanta-
neous s,(7) using the pair correlation function g(r):

k
$1) = —pTB Z[g("ij)log(g("ij))—g(rij)+ 1. ()
J

This quantity is in very good agreement with the one obtained
by calculating the radial distribution function for each parti-

J. Chem. Phys. 138, 12A536 (2013)

cle, gi(r), averaged over times comparable to the § relaxation
time.

More rigorously, one can compute directly the free-
energy of each configuration by measuring the free volume
of the particles, defined as the volume (v(i)) in which each
sphere can freely move while holding all the other spheres
fixed. It has been shown?’ that this free volume is simply re-
lated to the pair free-energy (f>) by the following relation:

fr=)" pli)=—kpT Y log(u(i)/»), 3)

where X is the thermal de Broglie wavelength. To compute
the free volume v(i), we follow previous studies:> first the
Voronoi-diagram for each configuration is computed, and the
polyhedron surrounding each particle is determined. To ac-
count for polydispersity, we employ the radical Voronoi tes-
sellation. The free volume of particle  is then computed by
shifting normally all the faces of the corresponding polyhe-
dron by o (i)/2 toward particle i, and computing the new vol-
ume. In this way the volume v(i) represents the volume in
which the excluded volume of particle i can move without
leaving its Voronoi cell. This procedure is conducted inde-
pendently for each particle and for each configuration.

C. Estimation of many-point quantities: Bond
orientational order parameter analysis

To study many-body correlations we use the local bond-
order analysis introduced by Steinhardt,”® first applied to
study crystal nucleation by Frenkel and co-workers.”’ The
£-fold symmetry of a neighborhood around each particle i
is characterized by a (2¢ 4+ 1) dimensional complex vector

. Ny(i A . .
(qu) as qem (i) = #(1) Zji({) Yy (E;), where £ is a free integer
parameter, and m is an integer that runs from m = —¢ to m

= (. The functions Y, are the spherical harmonics and fj; is
the vector from particle i to particle j. The sum goes over all
neighboring particles N,(i) of particle i. Usually N,(i7) is de-
fined by all particles within a cutoff distance, but in an inho-
mogeneous system the cutoff distance would have to change
according to the local density. Instead, we sort neighbors ac-
cording to their distances from particle i, and fix Ny(i) = 12
which is the number of nearest neighbors in icosahedra and
close packed crystals (like hcp and fcc) which are known to
be the only relevant crystalline structures for hard spheres.

In the analysis, one uses the rotational invariants defined
as

4
4
= 2 4
z 2Z+1m;|qzm| , )

L ¢ ¢
Wy = Z (ml my ms)‘ﬂmlcﬂmzqém;, ®))

mi+my+m3=0

where the term in brackets in Eq. (5) is the Wigner 3-j symbol.
In particular, both crystalline and icosahedral neighborhoods
have high g¢ (strong 6-fold symmetry), with the highest val-
ues for the latter. To detect specifically icosahedral order, one
prefers wg, whose minimum value is obtained only by a per-
fect icosahedron.
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The identification of crystalline particles follows the
usual procedure.?’ A particle is identified as crystal if its ori-
entational order is coherent (in symmetry and in orientation)
with that of its neighbors. The scalar product (qe(i)/|1qe()]) -
(q6(7)/1q6(j)!) quantifies this similarity. If it exceeds 0.7 be-
tween two neighbors, they are deemed connected. We then
identify a particle as crystalline if it is connected with at least
7 neighbors.?’” In a more continuous way, summing the con-
tribution of all the bonds of a given particle, we define the

“crystallinity:”?8
Ny(i) . .
Cli) = %(l.) %(J.) ' ©)
— 1961 1q6())]
j=
Alternatively, one can coarse-grain q, over the
neighbors,?
NG)
m(i) = ——— m(l m(J s 7
@@)Nmﬁ>wm+;wu> ©)

to suppress the signal from locally incoherent orientations
(icosahedral order)®® and use the resulting invariant Qg as
an indication of crystallinity, more precisely, the degree
of crystal-like rotational symmetry. Alternatively, we note
that the shortcomings of non-coarse-grained order parame-
ters in the identification of crystallinity can be addressed by
Minkowski tensors.?!

Here, we briefly consider the physical meaning of
crystal-like bond orientational order parameters. The crystal-
lization transition is characterized by the symmetry break-
ing of both orientational and translational order. We note that
both C and Q¢ are good measures of bond orientational order,
whereas the density or other two-body quantities are measures
of translational order. It was shown?® that in hard spheres
crystallization is driven by fluctuations in bond orientational
order and not by density fluctuations. Crystals continuously
form, grow, and melt in regions of high bond orientational
order, which then effectively act as precursors for the crys-
tallization transition. So C and Qg¢, while not being direct in-
dicators for the presence of crystals, rather measure the ten-
dency to promote crystallization. In Sec. III B we are going to
show that indeed the length-scale associated with bond orien-
tational order fluctuations increases with supercooling. Then
in Sec. IIT C we are going to study the mechanism by which
the crystallization transition is avoided.

D. Estimation of the correlation lengths
of various quantities

Finally, we explain how to evaluate the correlation length
of various order parameters. The calculation can be carried
out both in real space and in Fourier space. While formally
containing the same information, the Fourier analysis has
some practical advantages over the real space analysis. In real
space, the correlation function of any order parameter is an
oscillating and rapidly decaying function of r. The correla-
tion length is obtained by fitting the envelope of the correla-
tion function with an Ornstein-Zernike expression. This ex-
pression is only asymptotic, so the two first peaks at short r

J. Chem. Phys. 138, 12A536 (2013)

should be omitted, and it is also rapidly decaying, so that the
statistical noise strongly affects the quality of the fit at long
r. The problem is less severe for order parameters having a
tensorial nature, and correlation lengths of crystal-like bond
orientational order have been easily measured in real space in
previous studies.”-?%30:32.33 For example, the tensorial order
parameter Qg,, effectively correlates 7 scalar fields, allowing
a sevenfold reduction of the noise. But the real space analysis
requires much longer time averages for two-body correlation
functions, both f, and s,, which have a purely scalar nature.
This problem can be overcome by calculating the correlation
functions in Fourier space. These functions are not oscillatory
at small ¢ where we can expect the Ornstein-Zernike form,
and thus much easier to fit unambiguously. So, to keep both
two-body and many-body correlation functions consistent, we
calculate all correlations in Fourier space. We explain in the
following a straightforward procedure to extract correlation
length from Fourier space analysis.

At a given time step, for any scalar order parameter field
x increasing with order, we compute a structure factor keeping
only the 10% most ordered particles (more on this choice be-
low). This condition defines a threshold x*. The ensemble av-
erage of the thresholds (x*) are indicated in Fig. 2. Formally,
we define a function w(i) = O[x(i) — x*], where ®(x) is the
Heaviside’s step function, and a four-point structure factor,

S:(@) = N7 (QU@A(—q)) — | (Q(q))* ]). (3)
where €2(q) is the Fourier transform of w(i):
Qq) =) w(i)exp(—iq- ;). ©)

This structure factor is then ensemble averaged (still noted
S.(q) for concision) over ~10* configurations. The case of
order parameters decreasing toward ordering (i.e., s, wg) iS
trivially obtained by changing the sign.

lll. RESULTS

Figure 1 shows the equation of state for the simulated
state points. In particular, we consider three data-sets. The
first one (blue filled circles in the figure) corresponds to sim-
ulations at a constant polydispersity of A = 7%. For each

25
23
21
19
17
15
13
11

Bpo®

0.46 048 0.5 0.52 0.54 0.56 0.58
¢

FIG. 1. Simulated state points. The blue filled circles (with blue curve) rep-
resent the equation of state for polydispersity, A = 7%. The red open squares
(with red line) instead are simulation points at the same pressure (Bpo?
= 23) but at different polydispersities, A: from low to high volume frac-
tion they correspond to A = 7%, 9%, 11%, 13%, and 15%, respectively.
Similarly, the black open diamonds (with black line) are at /Sp(r3 =17 and
A = 0%, 4%, and 7%.
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FIG. 2. Probability distributions (red dashed line) and mobility (blue contin-
uous line) function of various order parameters at Spo> = 25 and for a time
difference corresponding to the a-relaxation. (Top row): Two-body excess
entropy s, (left) and pair free energy f> (right). (Central row): Local sixfold
orientational orders g¢ (left) and wg (right). (Bottom row): Coarse-grained
Qg (left) and crystallinity C (right). Mobility is in unit of mean-square dis-
placement. The shaded area shows the contribution from 10% of the particles
having highest (for f>, g6, Qs, and C) or lowest (for s2, we) value of the order
parameter.

state point we run 8 independent simulation runs and extract
configurations for the calculation of correlation lengths. The
second data set (red open squares in the figure) is instead iso-
baric simulation (at Spo® = 23) with increasing polydisper-
sity, A = 7%, 9%, 11%, 13%, and 15%. The third data set
(black open diamonds in the figure) is also isobaric simula-
tion at Bpo3 = 17 with increasing polydispersity, A = 0%,
4%, and 7%. The two last data sets are used to study the mech-
anism by which crystallization is suppressed upon an increase
of polydispersity, unveiling the role played by icosahedral ar-
rangement of particles.

A. Order parameter distribution and mobility

We study systematically two-body (s», f») and many-
body (gs, we, Qs, C) scalar order parameter fields for our
highest pressure (8po> = 25). For each of these parameters
one can define if a particle is “ordered” or not. Very negative
values of s, indicate low two-body configurational entropy
and thus a priori some kind of ordering or stability. Similarly,

20 g 20
=
e

BN o=

10 o 10
=
53
9

0 0

0 0.2 0.4 0.6 —4 -2 0
Qs 100ws

FIG. 3. Correlation between two-body and many-body parameters. Proba-
bility distribution functions in the f>-Q¢ map (left) and in the f>-we map
(right) for a metastable fluid with polydispersity A = 7% and pressure Spo>
= 23. There is no linear correlation between the parameters, meaning that
high values of Qg (the crystalline regions) or low values of we (the icosahe-
dral regions) are not extremum values of f5.

high values of f, indicate high two-body free energy (low free
volume). High values of Q¢ or C indicate locally crystalline
environment (locally similar to hcp or fce crystal), whereas
very negative values of wg correspond to icosahedral pack-
ings. High values of g¢ can indicate ambiguously either crys-
talline or icosahedral environments.

In Fig. 2 we show the “ordered” side of each parameter
as a shaded area, and the probability distribution of this pa-
rameter as a red dashed line. Note that for any parameter, the
maximum probability does not correspond to the ordered side.
However, the probability distribution decays more slowly on
the ordered side, indicating the presence of rare but very or-
dered particles.

By plotting the probability distribution function of the
metastable fluid in the (Qs, f>) and (we, f>) planes, Fig. 3
shows the absence of linear correlations between f, and both
Q¢ and wg. Since Qg identifies regions of high crystal-like
bond orientational order and wg locates icosahedral arrange-
ments of particles, it is clear that high f, regions are not asso-
ciated with any of these structures. We checked in the same
way that s, is not correlated with many-body parameters.

The absence of strong correlations between two-body
quantities and both crystalline and icosahedral packings are
also evident from the microscopic dynamics. To study the
correlation between any scalar order parameter x and the dis-
placement of the particles, we define the mobility,

> i (@) — 1 (0)[1* 8(x (@) — xo)
> 8(x(@) — xo)

Arz(x = X9, 1) =

’

(10)
shown in Fig. 2 for a time difference corresponding to the a-
relaxation time. Note that we use § functions of a constant
finite width and thus the number of particles involved in the
average of Eq. (10) varies like the probability distribution, ex-
plaining the noise in the low probability regions.

We found that for each parameter, its mobility decreases
with increasing order. The mobilities of bond-order quan-
tities are flat in the disordered regions and decrease when
approaching the perfect structure (i.e., icosahedron for wg,
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FIG. 4. Structure factors collapse on the Ornstein-Zernike form for (top) f>
and (bottom) Q¢. Note that the f, structure factors are almost similar for all
pressures considered. For Qg instead, the growth of the correlation length
is evident already from the systematic change in the relative position of the
nearest-neighbors peaks.

crystal structures for Qg or C). By contrast, the mobility of
two-body order parameters tends to increase strongly in the
disordered region and decreases less in the ordered region (it
is almost flat at high f>). We conclude that many-body quan-
tities describe better the slowing down accompanying good
local ordering, while two-body quantities are not clearly cor-
related to such slower structures. Note that in Fig. 2 both
icosahedral packings (low wg particles) and bond-ordered
crystalline regions (high Qg and C) are associated with slow
dynamics. As was shown by some of us,*” the structures pri-
marily responsible for the slowing down of the dynamics are
the crystal-like particles, while icosahedral particles act to
prevent the crystal nucleation process.?® This will be shown
in detail in Sec. III C.

B. Length-scales

As explained in Sec. II D, we estimate the correlation
lengths of various quantities x in Fourier space not only for
the two-body s, and f;, but also for scalars derived from the
multi-body bond orientational order, i.e., gg, wg, Q¢, and C,
which allows us to have overall coherency of the length-scale
analysis of all the parameters.

Figure 4 shows the increase of S.(q) toward small
wavenumbers (x = f, upper panel; x = Q¢ lower panel), which
is well described by the asymptotic Ornstein-Zernike function
in Fourier space:

Xx

Si(g > 0)~ W,

oY)
where &, is the correlation length and y . the susceptibility of
fluctuations of quantity x. In general, an independent deter-
mination of x, is crucial for the fit.** However, here we deal
with correlation lengths much smaller than the simulation box
and both &, and x, can be reliably estimated from a two pa-

rameter fit of S,(¢). We note that the absence of the finite-size
effects was confirmed for this situation.’

J. Chem. Phys. 138, 12A536 (2013)
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FIG. 5. Correlation length (£,) and susceptibilities () extracted for two-
body and many-body scalar order parameters, plotted as a function of the
pressure. Only many-body correlation lengths are increasing (only slightly
for &), while the length-scale associated with the two-body quantities is
almost constant.

The dependence on the pressure of the resulting correla-
tion lengths &, is shown in Fig. 5. Most of the order param-
eters produce constant length-scales, including not only the
two-body quantities but also gg, we that are sensible to icosa-
hedral order. The only growing lengths are extracted from
measures of local crystal-like order, i.e., Q¢ and C. We con-
firm that the same results are obtained from real-space corre-
lation functions (but in real space it is possible to detect the
growth also in tensorial gg, see Ref. 35).

The absence of correlations for two-body quantities and
the presence of a growing length-scale for Q¢ and C are ev-
ident also by direct inspection of the particle configurations.
Figure 6 plots the 10% most ordered particles for the differ-
ent order parameters at 8po> =23 and A = 7%. The first row
of Fig. 6 shows the absence of any appreciable correlation for
both two-body quantities f, and s,. The middle row shows that
also the signal from icosahedral clusters (both g¢ and wg have
icosahedra as their extremum) display no appreciable corre-
lation length, i.e., they form randomly and homogeneously
throughout the system. Only Q¢ and C (last row in Fig. 6)
show clustering of the ordered particles on medium range.

The length-scales obtained from Qg or C in Fourier space
and from the tensorial q¢ or Qg in real space (not shown)
are similar and increase monotonically with pressure. Note
that the scalar g¢ (dominated by the icosahedral order) yields
a very different correlation length. This is consistent with
the spatial coherency (in orientation) of crystal-like order
that is missing in icosahedral order.”-3* Coherently, real-space
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FIG. 6. Visualization of the 10% most ordered particles defined by the vari-
ous order parameters. All pictures correspond to a thin slice (50) of the same
configuration at po> = 23 and A = 7%. Only Q¢ and C show meaning-
ful spatial fluctuations. We can also see anti-correlation between (Q¢,C) and
(g6,ws)-

correlation functions (not shown) of f, (respectively s,) are
perfectly identical at all pressures.

The choice of the threshold x* is a balance between tak-
ing in too many particles or too few. If too few (below 5%), Sy
is too noisy. If too many, the threshold does not discriminate
between ordered and disordered particles and S, tends to the
trivial density S(g). We found that between 5% and 40%, the
absolute value of the length depends marginally on x* but its
pressure dependence does not. We chose to use 10% across
this paper because this value allows the easiest direct visu-
alization on a single frame (Fig. 6). We checked the pressure
independence of the two-body parameter’s length with thresh-
olds up to 90%.

The study of correlation lengths has shown that by in-
creasing pressure the range of crystal-like bond orientational
order increases, driving the slowing down of the system
as shown in Refs. 7 and 30. Bond orientational order cor-
responds to orientationally ordered regions which sponta-
neously form in the metastable phase. f; is instead decoupled
from the relevant structures involved in the transition, as was
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FIG. 7. Effect of polydispersity on local structures at constant pressure
(Bpo? = 23): (top) detail of the distribution of we (full distribution in in-
set) showing a small increase in the icosahedra population saturating around
10%; (bottom) distribution of Qg showing a marked decrease in the crys-
tallinity with polydispersity.

shown in Fig. 3. We now address the question of how the sys-
tem avoids crystallization despite the growing length-scale of
bond orientational order.

C. Competition between icosahedral arrangements
and crystal-like arrangements

We will now focus on the state point at fpo> = 23 at
different polydispersities to study the mechanism by which
polydispersity disfavors the crystallization transition.

In Fig. 7 we show the probability distributions for the or-
der parameters Qg and wg at different polydispersities. It is
immediately evident that, while bond orientational order is
rapidly suppressed with increasing polydispersity (as shown
in the suppressed signal at high Qg), particles in icosahedral
environments are not disfavored by polydispersity. On the
contrary, the fraction of icosahedral particles increases with
polydispersity, and saturates at around A = 10%. This is in
agreement with recent evidence of increased icosahedral or-
dering with size disparity in metallic glasses.*® Intuitively, we
can conclude that icosahedral order is more tolerant to size
asymmetry (with the small particle usually sitting at the cen-
ter of the icosahedral cage) than crystalline order is.

Figure 8 shows the metastable fluid distribution on the
q4-q¢ plane, which is a convenient representation as perfect
icosahedral packings sit on the top-left corner of the distribu-
tion, while perfect crystals on the top-right corner. The figure
clearly shows that, by increasing polydispersity, the biggest
change in the metastable fluid distribution is the suppression
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FIG. 8. Average crystallinity order parameter projected on the g4-g¢ plane
for the metastable fluid at Bpo? = 23 at A = 7% (left) and A = 15% (right).
Icosahedra appear in the top-left corner of each plot (in dark gray) and perfect
fce crystals would be in the top-right corner with C = 12 (in black).

of crystal-like regions (high values of ¢4, g¢, and C, the black
region), while icosahedral environments are slightly enhanced
(high g¢, low g4, and negative C, the dark gray region).

The different effects of polydispersity on icosahedral and
crystalline ordering are reflected in the different correlation
lengths. Figure 9 shows the correlation length extracted from
QO¢, we, and f> as a function of polydispersity. While the corre-
lation length for Qg (associated with crystal-like regions) de-
creases with increasing polydispersity, the one extracted from
wg (associated with icosahedral regions) increases. However,
the two lengths are far from crossing and seem to saturate
around A = 13%-15%. The correlation length of f; is con-
stant or even slightly decreasing with A, never taking over the
many-body lengths. It is thus clear that, in the present range
of polydispersity, crystal-like bond order fluctuations are still
the dominant contribution in the static (and dynamic*’) prop-
erties of the system.

In Ref. 28 we have shown that the competition between
crystalline packings and icosahedral packings can be studied
via two-dimensional maps of translational vs orientational or-
der. Orientational order is captured by g, which is small for
disordered arrangement of particles and increases for both
crystal-like and icosahedral particles. Translational order is
instead measured with the local packing fraction, ¢, obtained
by measuring the volume of the Voronoi diagram associ-
ated with each particle. The calculation is straightforward:
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FIG. 9. Polydispersity dependence of the correlation lengths at Spo> = 23.
The dominant crystalline length decreases, the icosahedral length increases,
however they plateau well before crossing. The two-body length shows no
indication of becoming dominant with increasing A, even decreasing slightly.
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FIG. 10. Average ¢ as a function of ge for particles identified as “fluid” and
“crystalline” according to the criteria outlined in Sec. II C. The continuous
red curve represents fluid particles in a system at Spo> = 17 and A = 0%,
while dashed blue curve represents fluid particles at the same pressure but at
A = 4%. The thick black curve represents instead crystalline particles (this
curve is less sensitive to polydispersity and it is reported once). Note that,
while in the monodisperse case there is a ¢ interval in which the crystalline
particles have higher orientational order, in the polydisperse case crystalline
particles have lower orientational order at all ¢. While the monodisperse case
is easily crystallized in direct simulations, the polydisperse system always
remains metastable.

for each configuration, crystalline particles are identified with
the method described in Sec. II C and the other particles are
termed “fluid.” For each subset of particles, the average value
of the volume fraction ¢ is calculated as a function of the or-
der parameter gg, and plotted in Fig. 10. For each value of
qe¢ the map captures the average volume fraction ¢ of both
crystalline and non-crystalline environments.

In Fig. 10 we compare the curves at Spo> = 17 and at dif-
ferent polydispersities (see also the black diamonds of Fig. 1):
at 0% (monodisperse system, red continuous curve) and at 4%
(blue dashed curve). The curve for the crystalline particles is
similar at the two considered polydispersities and is reported
once as the thick solid line. First, we consider the monodis-
perse case. As shown in the figure, at low volume fraction, a
particle in the fluid phase has higher orientational order than
in the crystalline phase. But at ¢ = 55.8%, a crossover occurs
and the crystal phase gains microscopic stability: a particle in
a crystalline environment will have higher orientational order
than a particle in the fluid phase at the same volume frac-
tion. This crossover marks the appearance in the fluid phase
of the metastable crystals which continuously appear, grow,
and shrink, until eventually a crystal droplet reaches the criti-
cal size and starts the crystallization process. At a higher vol-
ume fraction (¢p = 58%), another crossover occurs, with crys-
talline particles having less orientational order than particles
in the “fluid” branch. These particles in the fluid phase at high
qe are easily identified as particles in icosahedral packings
(they have a low value of wg). It is thus clear that icosahe-
dral packings are competing with crystalline packings, even-
tually dominating at high ¢. This scenario is confirmed by
looking at the polydisperse case (blue dashed line in Fig. 10).
At polydispersity A = 4%, the crystalline branch always lays
above the fluid one, meaning that crystalline environments,
at any fixed ¢, are not able to attain higher bond orienta-
tional order than other configurations. Microscopically, the
difference between the monodisperse and the polydisperse
cases is due to an increased population of icosahedral parti-
cles, which dominate the fluid branch for g¢ = 0.5. We have
shown that, while for the monodisperse case there is a range of
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volume fractions where crystalline particles attain higher ori-
entational order than icosahedral arrangements, for the poly-
disperse case icosahedral particles always attain higher orien-
tational order. This is immediately reflected in direct simula-
tions, as at this pressure it is not possible to crystallize sim-
ulations at A = 4%, while the monodisperse simulations are
easily crystallized.>”3® Since the diffusional dynamics of the
system, which controls the kinetic factor of crystallization,*
is approximately the same at different values of A,*’ this dif-
ference in the crystallization behavior has to come from some
structural difference introduced by polydispersity, i.e., an in-
creased population of icosahedral particles (see Figs. 7 and
8). We also confirm that at polydispersity A = 7%, icosa-
hedral particles are favored over crystalline ones for all the
pressures studied, in line with the observation of Fasolo and
Sollich® that one-phase crystallization is suppressed at high
polydispersity.

We have thus provided direct evidence that icosahedral
particles are responsible for the suppression of crystallization
in polydisperse hard spheres.

IV. DISCUSSION

In the present study we have compared the evolution
of static length-scales in polydisperse hard spheres for both
two-body and many-body correlation functions. While two-
body correlation functions do not show any sign of an in-
creasing length-scale with pressure, we have confirmed that
in the glass transition of polydisperse hard spheres the rel-
evant static length is the correlation length of the crystal-like
bond order. We have also determined the relevant microscopic
structures that are associated with the increasing length-scale:
they correspond to crystal-like environments of particles and
are characterized by slow dynamics. We thus confirm that in
the glass transition of polydisperse hard spheres, the relevant
static length is the correlation length of the crystal-like bond
orientational order.

The other relevant structure with slow dynamics is icosa-
hedral packings of particles, but its length-scale does not grow
appreciably with increasing pressure. Icosahedral assemblies
of particles are spatially uncorrelated. While not having a di-
rect role in the slowing down of the dynamics, we have shown
that icosahedral packings are responsible for the avoidance
of the crystallization transition with increasing polydispersity.
The increase in polydispersity reduces the degree of crystal-
like bond orientational order, whereas enhances the icosa-
hedral order (see Figs. 7 and 8). The former is crucial for
triggering crystal nucleation,”® whereas the latter leads to the
frustration against crystallization, a role that increases with
polydispersity. None of these physical aspects of the system
could be described by two-body quantities.

We previously showed that spatial fluctuations of
crystal-like bond orientational order are closely correlated
with local dynamics: more ordered regions have slower
dynamics.”-3%41=#% Together with these results, we may say
that it is many-body correlations, or crystal-like bond orienta-
tional ordering, that are the cause of slow dynamics and dy-
namic heterogeneity. This means that future theories of glass
transition and crystallization should deal with many-body cor-
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relation effects properly. The link between the symmetry of
the relevant bond order parameter for describing structural
ordering in a supercooled liquid and that for crystallization
is another interesting point. This may be a direct consequence
of the fact that glass transition is governed by the same free
energy as that controlling crystallization.*>*” This conjecture
is further supported by the role of polydispersity in the glass-
forming ability of hard spheres.

The mechanism by which polydispersity increases the
barrier for crystal nucleation may be twofold: (i) direct ran-
dom disorder effect which destroys crystal-like bond orien-
tational order in a supercooled liquid, which is the first step
in crystal nucleation;® (ii) enhancement of icosahedral order-
ing with an increase in the polydispersity. It is known that size
disparity between a particle and its surrounding neighbors sta-
bilizes icosahedral order.’® Since the symmetry of icosahe-
dral order is not consistent with that of the equilibrium crystal
polymorphs (fcc and hep for this case), competing ordering
toward these two mutually inconsistent symmetries leads to
strong frustration effects on crystallization, as in the case of
2D spin liquids.*>**® The results shown in Fig. 10 suggest that
mechanism (ii) may be more relevant for the suppression of
crystallization.

Although we studied polydisperse hard spheres in this
article, these frustration mechanisms should be relevant to
many other glass-forming systems including metallic glass
formers.”*

V. SUMMARY

In this article, we show firm evidence for the importance
of many-body correlations in glass transition phenomena for
hard spheres liquids. This feature cannot be described by the
standard liquid-state theories based on two-body correlation.
In relation to this, we note that Berthier and Tarjus recently
questioned the validity of “microscopic” approaches to the
slow dynamics of glass-forming liquids based on the sole
knowledge of the static pair density correlations.® We argue
that, at high density, liquid state packing effects inevitably
lead to many-body correlations, which play key roles in phe-
nomena like the glass transition and crystallization. A phys-
ically natural order parameter to pick up these many-body
correlations is the bond order parameter, whose importance
has been well recognized and established for ordering tran-
sitions of hard disks in 2D.>' We believe in the importance
of incorporating many-body correlations into theories to de-
scribe both the glass transition and crystallization phenomena
properly.*6:47

Our study also indicates that there is an intrinsic link be-
tween crystallization and vitrification. Whether a polydisperse
hard spheres system is crystallized or vitrified can be con-
trolled just by changing polydispersity, which affects extend-
able crystal-like bond orientational order and isolated icosa-
hedral order in an opposite manner. We speculate that this di-
rect link may exist for systems where crystallization does not
involve phase separation, in other words, as far as the two
phenomena are described by the same free energy.* 7 How
universal is this scenario needs to be checked carefully in the
future.
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