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Control Design for Soft Robots based on Reduced
Order Model

Maxime Thieffry1,2, Alexandre Kruszewski2, Christian Duriez2, and Thierry-Marie Guerra1

Abstract—Inspired by nature, soft robots promise disruptive
advances in robotics. Soft robots are naturally compliant and
exhibit nonlinear behavior, which makes their study challenging.
No unified framework exists to control these robots, especially
when considering their dynamics. This work proposes a method-
ology to study this type of robots around a stable equilibrium
point. It can make the robot converge faster and with reduced
oscillations to a desired equilibrium state. Using computational
mechanics, a large-scale dynamic model of the robot is obtained
and model reduction algorithms enable the design of low order
controller and observer. A real robot is used to demonstrate the
interest of the results.

Index Terms—Modeling, Control, and Learning for Soft
Robots, Robust Control of Robotic Systems, Model Order Re-
duction

I. INTRODUCTION

ONE of the driving forces behind soft robotics is the
requirement for machines that can work closely with hu-

mans rather than in competition with them. Where there is no
need for a high level of adaptability in the environment, there
is no need to think about soft robots; traditional rigid robots
will most likely outperform soft robots if the desired task is
well defined, in a well known and structured environment.
The ever-increasing mastery of rigid robots and the desire to
design more realistic robots, to interact with humans and/or in
confined space in contacts with the environment, pushed the
roboticist community to invent new paradigms, among which
is soft robotics [1], [2], [3].

By definition, soft robots are compliant to the environment,
and regarding the variety of materials used for their design and
manufacture, which are also lighter than rigid robots. Another
advantage is a larger power to weight ratio, which make them
easy to deploy. Potential applications are too numerous to be
all cited, but one of the most important is health-care industry,
in particular surgery where a soft robot is used as a medical
device for heart implant [4], cardiovascular therapy [5] and
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prosthesis and exosuits: removing rigid links in wearable robot
makes it more comfortable to wear, and more efficient [6], [7].

Biology provides a major inspiration in the design of soft
robots. The elephant’s trunk, octopus arm or snake body lead
to the design of the first soft robots [8], [9]. The octopus’
arm’s morphology allows it to benefit from its interaction with
the environment to achieve a specific task. These biological
examples have no backbone and achieve therefore better per-
formance in unstructured and cluttered environments, which is
one of the motivation to design soft robots. This bioinspiration
can also come from the human, and helps to improve industrial
gripper, or, coming back to health related applications, could
improve the hand-prosthesis design [10].

This new field of research has opened research areas, among
which is the need of accurate modeling methods, design tools
and control methodologies [11], [12]. The present work aims
at providing new results in this last category: it proposes a
methodology to control the dynamics of soft robots around a
stable equilibrium point based on its finite element model.

II. PREVIOUS WORK AND STATE OF THE ART
A. Modeling

Soft robotics is often referred to as a subclass of continuum
robots, and results are available in this field to design, model
and control continuum robots as in [13], and [14] presents a
detailed state-of-the-art of kinematic modeling of continuum
manipulator for which a visual summary is shown in figure 1.

Soft robotics can take benefits of some methods initially
developed for continuum robots, such as the Cosserat-Rod
theory, see [15] for details. This theory has the advantage of
being real-time computable and geometrically exact. Another
modeling method is the Piecewise-Constant Curvature, see
[16] for details, but it requires the studied robots to have
a specific shape in order to validate the constant curvature
assumption.

For simple geometry, such as beam, the modeling problem
can be solved, as in [17]. However, the present work aims at
being generic and should therefore not make any assumption
regarding the geometry of the robot in order to be used on
various types of robots.

Different modeling solutions are combined in [18], where
authors use continuum robot modeling, finite element method
(FEM) and machine learning to develop a generic model-
ing method for soft robots. Finite element method is also
used in [19] and [20]. These papers propose a real-time
implementation of the FEM that has the advantage to start
from the constitutive law of the material which is measurable
experimentally.
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B. Control

The aforementioned FEM methodology has shown some
significant results for kinematics control: [14], [21]. However,
the extension of this method to dynamical study is not trivial
and brings additional challenges, such as dimensionality.

A recent survey recall the current state of research in control
of soft robots manipulators [22]. With a precise comparison
between model-based and model-free controllers and kinemat-
ics and dynamic controllers, this work states that considering
the complete dynamic of the robots is probably the most
challenging field of soft robot control. It recall that model-
based dynamic controllers are still in their “nascent stage and
consequently, there are a multitude of gaps that should be
addressed in design, modeling, and control”. This is the aim
of the present work.

Recently, different strategies to provide generic approaches
for soft robot control have been proposed. In [23], authors
propose a solution for the inverse kinematics problem and
a model free control method is presented in [24]. This last
method is based on machine learning and seems not to require
any assumptions about the model, but is for now restricted
to open-loop. Learning algorithms have also been used in
[25] where a generic control framework is presented. The
control strategy is based on a training step to learn the model
without prior consideration regarding the robot’s structure. In
the present work, we aim at presenting a model-based dynamic
control approach using finite element method modeling, such
as in [26].

Soft robots have a theoretical infinite number of degrees of
freedom. The spatial discretization in finite element limits it
to a considerable large number and brings us to large-scale
control theory, which is also an active field of research.

To design a controller usable in practice with a reasonable
number of sensors, the use of model reduction is explored.
Again, lots of results exists in this field, as recalled here [27],
bringing the soft robotics community to use it for soft robot
modeling [28], and control of continuum manipulators [29].

In [30], authors identify difficulties about soft robot control
because identifying good performance is not straightforward
when studying soft robots. This work highlights the need of
a better control design but shows that those controllers affect
the natural behavior of the soft robot, making them stiffer. A
mix between feedback, feedforward and iterative learning is
proposed to solve this issue.

III. PRESENT CONTRIBUTION

The present work aims at providing a methodology to
control soft robots in order to make them converge faster
and without oscillations to a desired final position. It is an
extension of the work presented in [26], that presented a
methodology to control the convergence rate of soft robots
using state feedback controller. The present work extends the
previous results from state feedback (all states were supposed
available) to output feedback (real-time considerations) via a
state observer design. The full methodology is then tested ex-
perimentally. It covers modeling, control and state observation
of soft robots in both simulation and real experiments on an

Fig. 1. Summary of available modeling methods for continuum robots, from
[14].

academic case. It focuses on model-based control, to maximize
the benefits from the FEM method described in [19].

To avoid the expansion of dimensionality and ensure the
solvability of the problem two steps are performed. The first
one is to get a linear model from the FEM nonlinear model via
linearization. The second step uses model-reduction providing
a reduced linear model compatible with the actual solvers,
in order to derive both a controller and an observer (for the
unmeasured states). Of course, both steps introduce an error
that has to be taken into account for the control design.

The present work contributions are:
• an experimental validation of the control methodology

presented in [26],
• a robust reduced order Luenberger observer.

IV. FEM-BASED MODELING

A. FEM model

Modeling soft robots relies on both continuum mechanics
theory and numerical approaches to solve the underlying
equations. First, it requires a mesh of the studied robot, which
can be obtained using any mechanical design software. Let us
define position and velocity vectors, respectively q(t) ∈ Rn
and v(t) ∈ Rn whose dimension n is proportional to the
size of the FEM mesh used to model the robot. As there is
no ambiguity, the time-dependency of those vectors will be
omitted in the latter and v(t) = v, q(t) = q. The more nodes
the mesh has, the more the model tends to be accurate and,
for soft robots application, the size N of the FEM mesh goes
from hundreds to thousands of variables. The dimension n of
the vectors q and v is made of 3×N variables, as the position
and velocity vectors are given in the 3 dimension of space.

The non-linear equation of motion of the robots is given by
Newton’s law:

M(q)v̇ = P(q)−F(q, v) +HT (q)z(t) (1)

where M(q) is the mass matrix, HT (q)z is the actuators
contribution : HT (q) contains the direction of the actuators
forces and z their amplitude. The matrix F(q, v) represents
the internal forces and P(q) gathers all the known external
forces. As we consider only the gravity field, P(q) is constant
and P(q) = P .

Let q0 ∈ Rn be a stable equilibrium that could be obtained
using an inverse problem. This configuration q0 is the desired
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state of the robot and is induced by P and z(t) = z0, i.e. q0

is solution to

0 = P − F(q0, 0) +HT (q0)z0 (2)

Equation (1) can also be written as:

M(q)v̇ = P − F(q, v) +HT (q)u(t)− P + F(q0, 0)−HT (q0)z0

⇔
M(q)v̇ = F(q0, 0)−F(q, v) +HT (q)u(t)−HT (q0)z0

(3)
We can approximate the internal forces F with a first order

Taylor expansion around this equilibrium point:

F(q, v) ≈F(q0, 0) +
∂F(q, 0)

∂q

∣∣∣∣
q=q0

(q − q0) +
∂F(q0, v)

∂v

∣∣∣∣
v=0

v (4)

where ∂F(q,v)
∂q = K(q, v) is the compliance matrix, and

∂F(q,v)
∂v = D(q, v) is the damping matrix. By definition, mass,

compliance and damping matrices are positive definite. With
these notations, the equation of motion around an equilibrium
point q0 is given by the following relation:

M(q)v̇ ≈ −K(q0, 0)d−D(q0, 0)v +HT (q)u(t)−HT (q0)z0 (5)

with d the displacement vector defined by:

d = q − q0 (6)

B. Linear state-space Equation

Around an equilibrium point q0, let us consider M =
M(q0, 0), D = D(q0, 0), K = K(q0, 0) and H(q0) = H(q) =
H. Defining the new input vector u as u = z− z0, system (5)
can be approximated by the following linear representation:


ẋ =

(
−M−1D −M−1K

I 0

)
︸ ︷︷ ︸

A

x+

(
M−1HT

0

)
︸ ︷︷ ︸

B

u

y = Cx

(7)

where x =

(
v
d

)
, x ∈ R2n and where system matrices

are large-scale sparse matrices, i.e. A ∈ R2n×2n, B ∈
R2n×m, C ∈ Rp×2n, where m is the number of actuators and
p the number of outputs.

C. Experiments on a real robot

1) Experimental setup: The theoretical results developed in
this paper are illustrated with an experimental setup shown in
figure 2 and 3. This robot is a 90 centimeters long soft beam
that weighs 13 grams. It is actuated with 2 cables placed at
the middle of the beam, at 45 centimeter of the wall. The
validation results are given for the following experiment: the
robot is released from an initial position, left of figure 2, and
converges to a stable position given by P and u0, right of
figure 2. The output of this robot is the displacement of the tip
(left extremity) of the beam in the three directions of space, x y
and z as described on the figure 3. In simulation, a mesh made
of 2531 tetrahedrons and 907 nodes is used, corresponding to
position and velocity vectors of dimension n = 2721 and a
state x ∈ R5442.

Fig. 2. Experimental conditions. Left: start position; Right: end position

Fig. 3. Schematic view of the robot

The displacement of the tip of the beam in open-loop is
shown in figure 4.

Fig. 4. Measurements of open-loop position error of the tip of the robot.
Red : error along z axis; Yellow : x axis; Blue : y axis.

2) Nonlinear model validation: Using the SOFA frame-
work, see [19] for details, the nonlinear system is simulated
and its output is compared to the real measurements in figure
5. It presents the worst case error signal evolution compared
to the real measurement, with a 3.5 centimeters absolute
maximum error.

Fig. 5. Difference between outputs of nonlinear model and real robot.

3) Validation of the linearization step: Figure 6 presents the
worst case error signal between linear and nonlinear evolution
with a 1.1 centimeters absolute maximum error. In addition,
the linear model is validated as it captures faithfully the
oscillations.
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Fig. 6. Difference between outputs of nonlinear and linear models.

V. MODEL ORDER REDUCTION

To design a state feedback control law, the large-scale FEM
model is not adapted. Control design tools are indeed not
suitable for systems with thousands of decision variables.
That is why model reduction is proposed to obtain a system
of reduced dimension used to compute both controller and
observer.

Even if different results exist in the literature for linear
model reduction, like balanced truncation or iterative tangen-
tial interpolation [31], the only method suitable for non-linear
system is the Proper Orthogonal Decomposition (POD) [27].
To ease the extension of this work to nonlinear model, this
method is used to perform model reduction.

A. State projection

Projection-based model order reduction consists of find-
ing two projectors V =

(
Vr Vr̄

)
∈ R2n×2n and W =(

Wr Wr̄

)
∈ R2n×2n to compute a reduced order state

xr ∈ Rr and a neglected state xr̄ ∈ R2n−r, defined as:

x = Vrxr + Vr̄xr̄ (8)

Projectors are orthogonals, it holds WT
r Vr = I and

WT
r Vr̄ = 0. Thus, the system’s dynamics writes:

ẋr = WT
r AVr︸ ︷︷ ︸
Ar

xr +WT
r B︸ ︷︷ ︸
Br

u+WT
r AVr̄xr̄

ẋr̄ = WT
r̄ AVr̄xr̄ +WT

r̄ Bu+WT
r̄ AVrxr

yr = CV︸︷︷︸
Cr

x+ CVr̄xr̄

(9)

It provides us with a low dimensional state xr and a reduced
order system which is used to design a controller and an
observer. In both case, the aim is to use only xr to control the
whole state dynamics described in (7).

B. Application to soft robotics

POD reduction needs a first experiments where snapshots
of the robots’ state are saved, then a singular value decom-
position of these snapshots is performed. The state vector is
truncated depending on how fast the singular values decay. The
presented reduction method is used on the soft robot presented
in figure 2. Figure 7 shows the decay of its singular values,
showing a fast decay for the first 10 values, and those 10
first values represent more than 99% of the singular values of

the model. The results of the reduction algorithm are shown
in figure 8, that shows a comparison between outputs of the
full and reduced systems with 10 states. The reduced system
clearly represents faithfully the large-order one around the
studied equilibrium point.

Fig. 7. Evolution of the singular values of the model of the soft robot.

Fig. 8. Error between outputs of large and reduced models yr−y
||y|| .

Red : error along z axis; Yellow : x axis; Blue : y axis.

VI. CONTROL DESIGN

The aim of this work is to present a methodology to design
feedback controller for soft robots, based on the dynamical
model presented in the previous section. Robots’ dynamics
is controlled based on the reduced order model introduced
previously. A control method for soft robots based on a
reduced model and taking into account reduction error has
been presented in [26]. The idea behind this control design is
to control the dynamics of the reduced system using a feedback
control law and ensure the large-scale closed loop stability
using Lyapunov theory.

Let L ∈ Rm×r, where m is the number of inputs of the
system, be the feedback matrix of the control law:

u = −Lxr (10)

leading to the following closed-loop reduced order model:{
ẋr = (Ar −BrL)xr

yr = Crxr
(11)

and to corresponding the large-scale closed-loop system:{
ẋ = (A−BLWT )x

y = Cx
(12)
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Let us recall here theorem 2 of [26]. It is based on the
existence of an energy-based Lyapunov function in open-loop.
The closed-loop poles are placed at desired location thanks to
the state feedback and the stability is ensured thanks to the
large-scale LMI.

Theorem 2: System (7) with feedback (10) is stable with a
decay rate λ if:
There exists ε such as:(

(1 + ε)M εM
εM (1 + ε)K + εD

)
> 0 (13)

and

(S + T) < −λ
(

(1 + ε)M εM
εM (1 + ε)K + εD

)
(14)

with

S = V T
(
−(1 + ε)D + εM 0

0 −εK

)
V + (∗) (15)

which also writes

S =


−(1 + ε)Drv

rv + εMrv
rv 0 −(1 + ε)Dr̄v

rv + εMr̄v
rv 0

0 −εKrv
rv 0 −εKr̄v

rv

−(1 + ε)Drv
r̄v + εMrv

r̄v 0 −(1 + ε)Dr̄v
r̄v + εMr̄v

r̄v 0
0 −εKrv

r̄v 0 −εKr̄v
r̄v


where Drvrv = V TrvDVrv, Dr̄vrv = V TrvDVr̄v and

T = V T

(
(1 + ε)HT

εHT

)
LV + (∗)

=


(1 + ε)V T

rvHTLrv (1 + ε)V T
rvHTLrd 0 0

εV T
rdHTLrv εV T

rdHTLrd 0 0
(1 + ε)V T

r̄vHTLrv (1 + ε)V T
r̄vHTLrd 0 0

εV T
r̄dHTLrv εV T

r̄dHTLrd 0 0

+ (∗)

(16)

This LMI problem implies few decision variables, as the
feedback matrix L is of reduced dimension, and a large
number of constraints are solved to ensure large-scale stability
and performances. In the case considered in this work, the state
vector x is made of 5442 variables, the matrices S and T are
also of dimension 5442 × 5442 and the low order feedback
matrix L is of dimension 2× 10.

This control strategy is tested in simulation on the linear
large-scale system. The goal of this simulation experiment is
to drive the robot to the final position with reduced vibrations,
compared to figure 4. Results are shown on the figure 9 and
show a clear diminution of the oscillations.

Fig. 9. Position error of the large-scale linear model in closed-loop.
Red : error along z axis; Yellow : x axis; Blue : y axis.

VII. OBSERVER

To use the previous control design in practice, where neither
x nor xr are available from sensor, an observer is designed to
reconstruct xr from y (in our case, from the position of the tip
in three dimensions of space). As for the control part, where
the reduction error is taken into account in the computation,
the goal is to design an observer that is robust according to the
reduction error. To do so, an unknown input observer, in the
form of a PI-observer as in [32], reconstructs xr and considers
the reduction error as a disturbance, i.e. the unknown input.

A. Observer design

From (9), the dynamics of the reduced order state writes:{
ẋr = Arxr +Bru+WT

r AVr̄xr̄

yr = Crxr
(17)

A Luenberger-observer for this system would be:

˙̂xr = Arx̂r +Bru+WT
r AVr̄xr̄ + Fobs(yr − ŷr)

ŷr = Crx̂r
(18)

However, the vector xr̄ ∈ R2n−r is of large dimension
and cannot be used to compute Fobs. Let us denote Φ =
WT
r AVr̄xr̄, Φ ∈ Rr, equation (17) writes:{

ẋr = Arxr +Bru+ Φ

yr = Crxr
(19)

We propose to define an unknown input ω to model the
behavior of Φ. Let us assume that:

Φ = Zω + Ψ (20)

with Z ∈ Rr×nω , ω ∈ Rnω and Ψ ∈ Rr and assuming that
the pth derivative of ω is zero, i.e. the dynamics of ω can be
captured via a cascade of integrators such as:

ω̇
ω̈
...

ω(p)


︸ ︷︷ ︸

Γ̇

=


0 1 . . . 0
...

. . . . . . 0
0 . . . 0 1
0 . . . . . . 0


︸ ︷︷ ︸

J


ω
ω̇
...

ω(p−1)


︸ ︷︷ ︸

Γ

(21)

Under these assumptions, (19) is observable iff:{
(Ar, Cr) is observable,

rank(Z) ≤ ny
(22)

where ny is the number of outputs. The problem is that Φ
is of larger dimension than ω, otherwise the state would be
completely measured. A way to tackle this problem is to
determine the matrix Z that minimizes Φ−Zω and that can be
obtained thanks to simulation experiments, where the vector
Φ is computable and snapshots of this vector are saved:

Ω =
(
Φ(t1) Φ(t2) Φ(t3) . . . Φ(tf )

)
(23)

It is possible to see how xr̄ affects xr by performing a
singular value decomposition of Ω and retrieve the unknown
input matrix Z:
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Ω = Z
(
diag(σi) 02n×(tf−2n)

)
ω1

ω2

...
ωtf

 (24)

Where σi are the singular values of Ω and 0r,c is a zero
matrix of size r × c. Thus, for each ti the reduction error is:

Ωi = Φ(ti) = Z
(
diag(σi) 02n×(tf−2n)

)
ωi (25)

which also writes:

Φ(ti) =

2n∑
j=1

Zjσjωi,j

Φ(ti) =

r∑
j=1

Zjσjωi,j +

2n∑
j=r+1

Zjσjωi,j

(26)

From SVD algorithm, it holds:

||
2n∑

j=r+1

Zjσjωi,j || ≤
2n∑

j=r+1

σj (27)

The vector ω gathers the reduction error and is the unknown
input of the observer.

˙̂xr = Arx̂r +Bru+ Fobs(y − ŷr) + Zω̂

ŷr = Crx̂r
(28)

Considering the extended state xe =
(
xr Γ

)T
, whose

dynamics (with Γ and J defined in (21)) writes:

ẋe =

(
Ar

(
Z 0 . . . 0

)
0 J

)
︸ ︷︷ ︸

Ae

xe +

(
Br
0

)
︸ ︷︷ ︸
Be

u+

(
Ψ
0

)
(29)

and the observed extended state

x̂e =

(
x̂r
Γ̂

)
(30)

the observation error e = xe − x̂e dynamics is the following:

ė =

(
Ar − Fobs1Cr

(
Z 0 . . . 0

)
−Fobs2Cr J

)
e+

(
Ψ
0

)
(31)

with ||Ψ|| ≤
∑2n
j=r+1 σj .

In order to minimize the effect of the residue Ψ, the observer
gain Fobs =

(
Fobs1 Fobs2

)T
is computed using a H∞

criteria:

Fobs = arg min
Fobs

max
||Ψ||<1

||e||2
||Ψ||2

(32)

B. Simulation results

During this simulation experiment, the observed state x̂r
is compared to the one of large-scale linear system (7), i.e.
WT
r x, the corresponding results are shown in figure 10.

Fig. 10. Error between projected state of large linear model and observed

state: WT
r x−x̂r

||WT x|| .

C. Experiments on real device

Once both controller and observer have been tested in
simulation, the entire control strategy, i.e. low dimensional
state feedback using observer, is applied to the real robot and
results are shown in figure 11. Compared to figure 4, it shows
a clear diminution of the oscillations before converging to the
reference. However, the oscillations are not exactly damped as
it was noticed during simulation. This behavior is mainly due
to the state estimation error dynamics.

Fig. 11. Measurements of position error of the tip of the beam in closed-loop.
Red : error along z axis; Yellow : x axis; Blue : y axis.

Several experiments were done and the results of four
of them are given in table I. The Integral Time Absolute
Error (ITAE), defined as ITAE =

∫ T
0
t|e(t)|dt, and the

3%−settling-time are provided in the table to compare open
and closed-loop results. These experiments were made with the
same setup as described in part IV-C1, with different initial
positions around an equilibrium point. Experiments 1 and 2
correspond to the following experiment: the robot is released
from an initial position of (x, y, z) = (−22, 12, 53) as shown
in figure 2, and for experiments 3 and 4 the robot is released
from an initial position (x, y, z) = (−18;−2; 35).The results
show an average diminution of 40% for the settling time and
30% for the ITAE.
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Exp1 Exp2 Exp3 Exp4
—– ————— ————— ————— ————–
Open ITAE = 1795 ITAE = 1675 ITAE = 1420 ITAE = 1350
loop ST = 5.4 s ST = 4.9 s ST = 4.1 s ST = 4 s
—– ————— ————— ————— ————–
Closed ITAE 1312 ITAE = 1102 ITAE = 1110 ITAE = 1090
loop ST = 3.3 s ST = 2.9 s ST = 2.8 s ST = 2.6 s

TABLE I
SUMMARY OF PERFORMANCES

Another set of experiments is conducted on this robot. The
goal is to make the tip of the beam follow a trajectory (see
attached video). Results are shown in figure 12 that displays
the comparison between the reference trajectory (in red) and
the measurements of the position of the tip of the beam along
the z axis. Even if oscillations are present along the reference
trajectory, the proposed controller enables the control of the
robot along desired paths.

Fig. 12. Measurements of the position of the beam along the z axis.
Red : reference, Blue = real measurements.

VIII. COMPLETE CLOSED-LOOP STABILITY
ANALYSIS

This section is dedicated to the study of the stability of the
closed-loop using the observer, i.e. the stability of system (33):

ẋ = Ax−BLx̂r (33)

which can be written as:(
ẋr
ẋr̄

)
=

(
WT
r AV

T
r WT

r AV
T
r̄

WT
r̄ AV

T
r WT

r̄ AV
T
r̄

)(
xr
xr̄

)
+

(
WT
r B

WT
r̄ B

)
Lx̂r

(34)
and using the definition of e = xe − x̂e, whose dynamics
is described in equation (31), the previous equation can be
written in the following form:

ẋr
ẋr̄

ẋr − ˙̂xr

Γ̇− ˙̂
Γ

 = O


xr
xr̄

xr − x̂r
Γ− Γ̂

 (35)

where the matrix O is defined as:WT
r AV T

r −WT
r BL WT

r AV T
r̄ WT

r BL 0
WT

r̄ AV T
r −WT

r̄ BL WT
r̄ AV T

r̄ WT
r̄ BL 0

0 0 Ar − Fobs1Cr (Z 0 . . . 0)
0 0 −Fobs2Cr J


This formulation can be used as a tool to check the stability
of the complete closed-loop system, under the assumption
that the reduction error is bounded. Once both controller

and observer have been computed using the methodology
described in the previous sections, the sign of the eigenvalues
of O determines the stability of the closed-loop.

In the case of the foam beam studied in this work, the
5455 eigenvalues of O are all negative, with a maximum
real part of -7.7058. The closed-loop system composed of
the large-scale model of section IV, the observer designed in
section VII and the controller of section VI is also stable.

IX. DISCUSSION
A. Use of linear model

The model used to compute both controller and observer
is a linear model. Therefore, all the results presented in this
paper are valid in a neighborhood around the equilibrium
point where the system has been linearized. We are currently
investigating the extension of this work to Linear Parameter
Varying modeling, to enable the control around multiple points
of interest.

B. Different actuation and sensing

The presented methodology has been tested on a real device
to show its effectiveness. The soft robot considered in this
work is actuated with cables and only the position of the tip
is measured. In a near future, the proposed method will be
implemented on several kind of soft robots in order to test how
the method is generic, especially thinking that no geometric
assumptions are needed as only a finite element mesh is
needed. The proposed method can be tested indifferently on a
robot actuated with cables, pneumatic, hydraulics... Only the
definition of the matrix B of the model would be changed.

C. No proof for tracking

As the initial FEM nonlinear model is linearized around an
equilibrium point, the trajectories to follow must remain in a
region around this point. Moreover, the trajectory tracking is
only tested experimentally and no theoretical proof has been
given. This will be the topic of future research.

D. Simultaneous Observer and Controller Design

In the last section of this work, a validation of both
controller and observer is proposed to check the stability
of the closed-loop. It provides a proof of stability for the
large-scale closed-loop system but is for now only a post-
design step. Future work will focus on the simultaneous design
of both controller and observer while ensuring stability and
performances of the large-scale closed-loop.

X. CONCLUSIONS
We have presented a control method for cancelling the

vibrations of soft robots around a stable equilibrium point.
This strategy uses finite element method and model reduction
to compute a control law and an observer. Using Lyapunov
theory and large-scale linear matrix inequalities, a reduced
order feedback set the performances and ensure stability of
the large-scale model in closed-loop.
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This work can be seen as a first step to design closed-
loop controller for soft robots using FEM and model order
reduction. In addition to the tracks developed in the discussion
section, future work could for instance include the ability to
handle contacts with environment.
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