
HAL Id: hal-01901017
https://hal.science/hal-01901017v1

Submitted on 22 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new approach of network simulation for data
generation in evaluating security products

Pierre-Marie Bajan, Hervé Debar, Christophe Kiennert

To cite this version:
Pierre-Marie Bajan, Hervé Debar, Christophe Kiennert. A new approach of network simulation for
data generation in evaluating security products. ICIMP 2018: 13th International Conference on
Internet Monitoring and Protection, Jul 2018, Barcelone, Spain. pp.35-41. �hal-01901017�

https://hal.science/hal-01901017v1
https://hal.archives-ouvertes.fr


A New Approach of Network Simulation for Data Generation

in Evaluating Security Products

Pierre-Marie Bajan

University of Paris-Saclay
and IRT SystemX

France
Email: {first.last}@irt-systemx.fr

Christophe Kiennert
and Herve Debar

Telecom SudParis
France

Email: {first.last}@telecom-sudparis.eu

Abstract—Evaluating a security product requires the ability to
conduct tests to assert that the product reacts as expected, both
in terms of scalability and semantics. However, the production
of evaluation data at a large scale with a high semantic is very
costly with current methods. Load tests are semantically poor
and semantic tests require a testbed environment to be deployed
at a large scale. Evaluation data from real world activity need
to be anonymized and a compromise must be made between
the request of the evaluator and the interest of the real world
organization. Moreover, to evaluate the full scope of a security
product, the evaluator needs multiple test methods. In this paper,
we describe a new methodology to produce evaluation data with
a customizable level of realism and the possibility to be deployed
at a large scale with lower resource requirements for a network
support than a testbed environment. Our prototype relies on this
method to generate realistic activity for up to 250 simulated users
interacting with a real-world webmail server.

Keywords–cybersecurity; simulation; evaluation.

I. INTRODUCTION

Security products can be defined as all services and prod-
ucts designed to protect a service, machine or network against
attacks. Like other products, they must be tested to guarantee
adherence to specifications. Tests can be divided into two
categories: semantic tests – tests of capability that require data
with a high-level of semantic; and load tests – tests that subject
the product to a large amount of data.

With current testing methods [1], load tests are seman-
tically poor, thus not realistic. Meanwhile, semantic tests
either require vast amount of resources to reach large scales
(e.g., testbed environments), or rely on real life captures with
their own set of challenges (e.g., elaboration of the ground
truth and privacy concerns). Moreover, a complete evaluation
of a security product tests several properties of the product
and the evaluator needs to select different methods with the
right granularities. The granularity of interactions of the data
corresponds to the level of control or precision of the data.
For an evaluator, the right granularity for a testing method is
a granularity that is fine enough to test specific vulnerabilities
or properties. Rather than relying on several methods with
different granularities, we aim to elaborate a method to produce
data with a customizable granularity and the possibility to
achieve large scale generation with appropriate semantic.

In this paper, we present a methodology to produce simu-
lated evaluation data with different granularities independently

of the network support. To achieve variable granularity of
our model, we formally define two concepts. First, a Data
reproducing function represents the level of realism of the
simulation (the property of the data to reproduce) and decides
the level of control over the data. Second, elementary actions
correspond to the most atomic actions the evaluator can
simulate, the basis upon which the experimental scenario will
be built. We also develop a prototype of our methodology and
validate our approach with a series of experiments.

The remainder of this paper is organized as follows. Section
II reviews the related work on the production of evaluation
data and their limits. Section III defines the concepts of our
methodology and uses those concepts to introduce our model.
Section IV explains the different choices we made for the
implementation of our prototype and shows the experiment
results to validate our model. Finally, we conclude our work
in Section V.

II. RELATED WORK

A. Semantic tests
Semantic tests generate evaluation data with high semantic

value. Their goal is to generate realistic workloads to produce
real-life reactions of the security product or to test specific
functionalities and vulnerabilities of the product. One of the
approaches to obtain data with the highest semantics is to
use real world data, which can come from several sources:
provided by organizations doing real world productions, or
obtained from honeypots where actors from the real world
were tricked into interacting with a recording system to learn
about the current trends (ex: generation of intrusion detection
signatures using a honeypot [2]).

However, the evaluator does not have a complete knowl-
edge of the content of the data. Some of it can be misidentified
or the intent behind some actions misinterpreted. Moreover,
real world data are difficult to obtain. Organizations are reluc-
tant to provide data that can damage their activity, and data
anonymization has the drawback of deleting relevant informa-
tion (e.g., challenges of anonymization [3] and desanonymiza-
tion techniques [4]). As for honeypots, the evaluator can never
know beforehand how many data he can obtain or what kind
of data he will gather.

Another way to obtain high semantic data is to generate
them according to a defined scenario, relying on tools and



scripts to produce specific and calibrated data. Those scripts
can be homegrown scripts, exploits, or software testing scripts
that try every function of a software to validate its specifica-
tions. Manually generating the data (e.g., video transcoding
[5], file copy operations [6], compiling the Linux kernel [7],
etc.) offers the greatest control over the interactions inside
the data, but the automation of the activity generated through
scripts with tools like exploit databases (Metasploit [8], Nikto
[9], w3af [10], Nessus [11]) also offers good control.

However, those methods are quite time-consuming or re-
quire in-depth knowledge of the evaluated product. Moreover,
the available tools are not necessarily appropriate for cus-
tomized generation.

B. Load tests
Load tests create stress on the tested product [12]. The

most common tests use workload drivers like SPEC CPU2000
[7], ApacheBench [13] [14], iozone [14], LMBench [15] [7],
etc. They produce a customizable workload with a specific
intensity. The evaluator can also manually start tasks or pro-
cesses known to stimulate particular resources (e.g., kernel
compilation [13] [15], files download [16], or execution of
Linux commands [16]). Those methods are designed to test
particular resources of a system (like I/O, CPU and memory
consumption) or produce large amount of workload of a spe-
cific protocol. For example, SPEC CPU 2017 generates CPU-
intensive workloads while ApacheBench generates intensive
HTTP workloads. However, the semantics of the workloads
are low: the generated data are characteristic of the driver used
and do not closely resemble real life data.

C. Deployment of semantic tests at a large scale
Evaluators prefer tests that are both intensive and with a

high semantic, as the performance of security products like
intrusion detection systems often deteriorate at high levels of
activity [17]. Methods for semantic tests are deployed on a
large scale network support like a testbed environment where
a large amount of resources and contributors are gathered to
create a large-scale test. Evaluators must either have access to
a testbed environment with enough resources to deploy large-
scale experiments or use the results of other organizations that
conducted large-scale experiments and made their data publicly
available for the scientific community (DARPA/KDD-99 [18],
CAIDA [19], DEFCON [20], MawiLab [21], etc.).

However, publicly available datasets, on top of often con-
taining errors [1], are not designed for the specific needs
of each evaluator. The evaluator needs to have an in-depth
knowledge of the characteristics of the activities recorded in
the dataset to avoid having an incorrect interpretation of the
results of studies using those datasets. Finally, those large-scale
experiments produce one-time datasets that can be quickly
outdated.

III. OUR EVALUATION DATA PRODUCTION METHOD

Our goal is to generate evaluation data at a large scale with
a customizable level of realism and semantic richness. The
main weakness of large scale semantic test’s method lies in
the testbed environment. A testbed environment requires large
resources and a lot of contributors to set up, use, maintain
and return to a previous state. The virtual machines used to
support the data generation methods are costly and the light

virtual machines are currently too limited for the requirements
of semantic methods. We propose a new production method
that generates controlled activity data from short traces inde-
pendently of the network support. It can be implemented on
a testbed environment or on a network support with lower
requirements like a lower end network simulator.

We also want our method to meet the need of evaluators to
generate tests with a rich variety (different systems, properties
of the data, etc.) and to devise hybrid tests, both semantic
and load oriented. In our methodology, the simulated data is
not produced by the execution of activity functions of the
host system but by a generic Data generating function that
represents a level of realism required of the simulated data.
A simulated activity is comprised of a single Data generating
function that is provided with a set of Model data extracted
from the execution of specific Elementary actions and used
to create a Script of the activity. In the following section, we
define concepts on which we build a formal description of our
methodology.

A. Concepts and definitions

1) Elementary action: In our methodology, we distinguish
real activity – not issued from our simulation method – (R)
and simulated activity – issued from our simulation method
– (S) in Elementary actions. We call Elementary action (A)
a short ordered set of interactions that represents an action
between two actors of the activity. Those actors are a Host – a
source of generated data – or a Service – a set of functionalities
available to a Host. A Service can be an external server or an
internal service.

For each Elementary action, we acquire Model data that
are the captured data of the execution of this Elementary action
during real activity. The goal of Elementary actions is to divide
the activity we simulate in individual actions that correspond
to an entry of the ground truth, such as ”connection to the
web interface of a webmail server”. The ground truth is an
exact representation of the activity generated. So a finer set of
Elementary actions for an activity means a finer representation
of the simulated activity and a finer control of the activity
model for the evaluator.

Model data take different forms (traces, logs, values, etc.),
and to label the ground truth, Model data are classified by
the evaluator. The evaluator can use that classification to label
the resulting Simulation data. For example, the evaluator can
create two classes of Model data to represent malicious activity
and benign activity, respectively. In other contexts, such as
generating activity for the evaluation of administration tools
of a network, the actors to consider are different (security:
attacker/user, administration: admin/user/client) and the evalu-
ator will have to define classes of data accordingly.

After capturing Model data for every Elementary action
relevant for the evaluation, the resulting set of Model data is
then given to a Data generating function.

2) Data generating function: A Data generating function
(f ) creates Simulation data from Model data. Simulation data
(dsimulation) is created from the execution by a Host (H) of
an Elementary action (A) during a simulated activity. It is
the output of a Data generating function and we express our
demands for Simulation data as Equivalence.



We call Equivalence (∼) the fact that two activity data have
the same properties.

dactivityA ∼ d′ activityA

⇐⇒
Properties(dactivityA ) = Properties(d′ activityA )

The properties of the data are of different forms: acknowl-
edgement of the data by the Service, size of sent packets, value
of a measure, etc. and they represent the level of realism chosen
by the evaluator. The evaluator selects a set of Elementary
actions to decide the finesse of control over the simulation
and he chooses a Data generating function to reproduce the
properties of the data he requires. If the Data generating
function that produces Simulation data from a dataset of Model
data cannot produce data with the same properties, it is useless
for the evaluator. Thus, we define the following verification
property of Data generating functions:

Property 1: a Data generating function f is said to be
useful to a set of Model data D if all Simulation data
generated by f from any Model data that belong to D is
equivalent to the data used as model.

∀ d ∈ D and f /f(d) = dsimulation

⇒ f is useful to D, if ∀d ∈ D, d ∼ dsimulation

The evaluator can select the Data generating function
that is useful to his Model data with Simulation parameters
(psimulation) and provide the Data generating function with
additional parameters called Elementary action parameters
(pA). Elementary action parameters allow the evaluator to
modify the behavior of the Data generating function to match a
larger dataset of Model data (e.g. services accepting the same
credentials but with different identifiers, such as ”id=” and
” id=”) or provide a finer control (e.g. possibility to change
the credentials in the submit form).

Data generating functions are selected with Simulation
parameters by the evaluator for the properties they preserve
and the evaluator adapts or controls the Simulation data with
Elementary action parameters. The data exchanged by the
program that controls the simulation and the Host that runs a
Data generating function is the Control data (dcontrol) and is
essentially the ground truth of the simulation. The compilation
of the Control data informs us of all the actions taken during
the simulated activity.

3) Scenario and Scripts: We finally define a Script, which
is the representation of a realistic behavior of a Host. A
Script is an ordered set of actions coupled with Elementary
action parameters. These actions can be Elementary actions
or actions that do not generate activity data (e.g. ”wait X
seconds”). A Script (ScriptH ) is defined for each individual
Host and describes the activity it must generate during the
simulation. The set of defined Scripts is called the Scenario
(Sce) of the simulation.

A Script can be represented as a graph of actions, as
illustrated in Figure1.

4) Our model: Figure 2 is a representation of our model.
In that figure, the evaluator provides the simulation control
program with the Simulation parameters (psimulation) and the
Scenario (Sce):

Sce = {ScriptH0
, ScriptH1

} = {([A, pA], . . . ), ([A, p′A], etc.)}

A0, p
A0 A1, p

A1 A2, p
A2 . . .

Figure 1. Example of a Script

Simula'on	
control	
program	

Sce dcontrol (ground truth)

psimulation,A, pA
Host	0	

dA
model

f p
simulation

dA
simulation

Host	1	

psimulation,A, ʹp A
ʹdA
simulation

psimulation

dA
model

f p
simulation

Figure 2. Generation of simulated activity from short traces

The simulation control program interprets the Scenario and
the Simulation parameters and deduces the number of Hosts
in the current simulation. It instructs the Hosts H0 and H1

to reproduce the Elementary action (A) with the parameters
psimulation and pA. Then, each Host retrieves the Model data
associated to the Elementary action and executes the Data
generating function (f ) selected in the Simulation parameters.
That function produces Simulation data, which is sent to a
Service. The use of different Elementary action parameters by
H0 and H1 results in the generation of different Simulation
data even when the Data generating function and the Model
Data are the same:

dsimulation
A = fpsimulation

(dmodel
A , pA)

d′ simulation
A = fpsimulation

(dmodel
A , p′A)

}
6⇒

dsimulation
A = d′ simulation

A

After the Hosts inform the simulation control program that they
finished simulating the Elementary action A, they await the
next simulation orders from the simulation control program.

The model we presented is the situation where all the Hosts
are simulated and the Services are real services. If some Hosts
also acted as Services, they could also initiate the generation
of Simulation data according to requests received from other
Hosts in the form of other Simulation data.

In our model, the ground truth is built upon the Control
data of Hosts simulated by our model. Therefore, no data from
Hosts unrelated to the simulation are processed.

Lastly, we must present one of the major issues of our
model: the parameterization of the Elementary actions. In-
deed, in accordance with the required level of realism of
the simulation, the parameterization must allow the Data
generating function to preserve various data properties. The
higher the level of realism, the more complex the reproduction
of Elementary actions becomes. Therefore, designing a Data



generating function for a highly realistic simulation, where not
only packet size is preserved but also data acknowlegement,
requires to consider three main aspects:

• typing: identification and generation of short-lived
data like tokens, identifiers of session, etc.

• semantics: modification of inputs with a high seman-
tic value in the Model data: credentials, mail selection,
mail content, etc.

• scalability: a large scale execution of the Data gener-
ation function can have consequences on the previous
aspects and requires additional changes (e.g., creation
of multiple user accounts in the Service database).

These three aspects are integrated to the Elementary action
parameters. However, a few in-depth issues still require further
consideration and development in order to elaborate a model
able to adapt to various test situations without the intervention
of the evaluator. The typing issue can be solved with methods
based on machine learning, but others may require specific
methodologies according to the context of the evaluation. For
example, in the case of real-life network reproduction, the
semantic and scalability issues can be solved by identifying
and using inputs with a high semantic value recorded during
a long Model data acquisition period.

IV. IMPLEMENTATION OF THE PROPOSED METHOD

In this section, we describe the implemention of a prototype
that follows the requirements of our model, and we show
that simulations based on that prototype are both scalable and
realistic.

This prototype uses Mininet [22] as the network support of
our simulation. Mininet is an open-source network simulator
that deploys lightweight virtual machines to create virtual
networks, and able to create hundreds of lightweight virtual
machines in a short amount of time.

A. Model of the prototype
Our prototype contains several Data generating functions

that conserve each of these properties: execution time, packet
size, acknowledgement of the data by the Service. Based on
these Data generating functions we simulate the activity of
50 to 200 Hosts representing regular employees of a small
company interacting with the Service of a webmail server
Roundcube on a Postfix mail server. A simulation control
program follows the Script described in Figure 3 for all the
Hosts of the simulation. In Figure 3, the Elementary actions
are in italics while actions that do not generate activity data are
in a regular font. The Host can simulate two different series
of Elementary actions after a waiting period of X seconds
each time. The intensity of the Script can be modulated by
modifying the value of X .

To make sure that our method improves the existing
methods, it must meet these two requirements:

• Scalability: ability to generate evaluation data pro-
portionally to the scale of the simulation, up to a few
hundreds of hosts.

• Realism: closeness of the generated data to the the
referential Model data.
Our Data generating functions are designed to pre-
serve specific data properties (cf. Property 1), thus

Wait X seconds

Connect to webmail

Read last email

Disconnect

p = 0.5

Wait X seconds

Connect to webmail

Read last email

Send email

Disconnect

p = 0.5

p = 0.2

p = 0.8

Figure 3. Generation of simulated activity from short traces

matching different levels of realism. The following
experiments aim at proving that these properties are
still preserved in the context of a Scenario with an
increasing number of hosts.

B. Experiments on the prototype
The validation of our prototype is conducted with two

separate experiments, which aim to prove that our model leads
to both scalable and realistic data generation.

The first experiment is a control experiment. We deploy
5 virtual machines on the network simulator Hynesim [23]
and make them generate the activity of our simulation. We
script the Elementary actions of the Script described in Figure
3 with the web driver Selenium [24] and make the virtual
machines use their browser to interact with the webmail server.
This experiment provides referential values for our second
experiment. To prove the scalability of our prototype, we
expect proportionality between these values and the results of
our simulation, with respect to the number of Hosts.

0 20 40 6010 30 50 705 15 25 35 45 55 65

0

200 000

400 000

600 000

100 000

300 000

500 000

50 000

150 000

250 000

350 000

450 000

550 000

slices of 30 seconds

b
y
te

s

recv

send

Figure 4. Network traffic of the webmail server for a single experiment (50
Hosts)

In the second experiment, we simulate different number of
Hosts (5, 50, 100, 150, 200 and 250) and make them generate
the activity of regular users using a webmail service for 30
minutes. We measure the activity at three different points:
the webmail server, the network simulator Mininet and the



TABLE I. NUMBER OF LINES IN THE WEBMAIL LOG FILES.

5 VMs 5 Hosts 50 Hosts 100 Hosts 150 Hosts 200 Hosts 250 Hosts
Filenames avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev
userlogins 90 9 112 10 1032 36 2084 45 3085 52 4121 53 5118 74
imap 43245 5070 57775 5306 487883 22742 984642 28820 1450507 27792 1933823 21117 274825 235985
sql 4955 525 6703 563 56081 1886 113031 2452 167138 2964 223427 2906 265354 4688

server hosting the simulation. Every 30 seconds, we measure
four parameters: CPU usage, memory usage, network I/O, and
disk I/O. Figure 4 is an example of the measured activity. It
represents the network traffic received and sent by the webmail
server with 50 simulated Hosts. Each Host follows the Script
described in Figure 3, with X = 30.

We also retrieve the logs produced by the webmail server
during both experiments. The quantity and content of the logs
is analyzed in Table I and Table II.

In the second experiment, we use the Data generating func-
tion with the highest level of realism: the adapted replay. That
Data generating function preserves the data acknowledgement
by the Service and allows Elementary action parameters to
modify the inputs of submitted forms. Concretely, it means
that a server cannot distinguish the adapted replay from an
interaction with a real user. Also, with the help of Elemen-
tary action parameters, the evaluator can freely change the
credentials replayed to the webmail server.

The analysis of the results aims at proving that the data
generated in the second experiment are consistent with those
obtained from the first experiment, in terms of both quantity
and semantics.

Table I represents the quantity of logs produced by the
webmail server during both experiments. We express the
average number of lines in the log files of the webmail and
their standard deviation. The first column is the name of the
main log files produced by the server: ”userlogins” logs every
connection (successful or not), ”imap” logs every instruction
from the server that uses the IMAP protocol, and ”sql” logs
every interaction between the server and its database. The
entries under the name ”5 VMs” correspond to the results of
the control experiment while the other entries are the results
of the simulation experiment.

The number of lines in ”userlogins” represents the number
of connections during the experiments (one line per connec-
tion) and can be used to calculate the number of sessions
created during both experiments. Figure 5 shows the average
number of sessions created during the second experiment and
its standard deviation according to the number of simulated
Hosts. We also estimate the average number of sessions
inferred from the results of the control experiment, based on
proportionality (avg(”5 VMs”)× number of Hosts

5 ).

We observe that the number of sessions created during the
second experiment is close to our estimation. Our simulation
produces more sessions than expected but it can be explained
by the fact that our Data generating function reproduces the
Model data of an Elementary action faster than the browser
of the virtual machines. Hence, in a period of 30 minutes, the
simulated activity has gone through more cycles of the Script
than the control experiment. A projection of the number of
lines of the other log files (”imap” and ”sql”) displays similar
results.

0 20010050 150 250

0

2 000

4 000

6 000

1 000

3 000

5 000

number of Hosts simulated

n
u

m
b

e
r 

o
f 

s
e

s
s
io

n
 c

re
a

te
d

average number of sessions

standard deviation

estimation

Figure 5. Number of sessions created during simulation (blue)
compared to estimation (black)

These results establish that the simulated activity produces
a consistent amount of logs. In Figure 6, we examine the net-
work traffic produced by our simulated activity. The blue and
red parts represent the average number of bytes, respectively,
received and sent by the webmail server every 30 seconds,
along with the standard deviation. For comparison, the black
lines correspond to the estimation of the expected results based
on the control experiment. As before, the results of the second
experiment are close to our estimation. The deviation can be
justified with the same explanation regarding the activity speed
difference. This deviation is also partly due to the cached data.
Since these data are stored on the host after the first connection,
the amount of exchanged data during the first connection is
higher than during subsequent sessions.

However, our Data generating function does not take
cached data into account. Therefore, our simulated connections
request more data from the webmail server than estimated. This
observation is part of the parametrization issues of the Data
generating function raised at the end of Section III. Adding
Elementary action parameters to modify the behavior of the
function can solve this issue as we did for previous typing
and semantic issues. However, the addition of new Elementary
action parameters is made from empiric observation and could
be improved by adding new methods to our model like machine
learning.

Despite those issues, we have shown that the simulated
activity of the second experiment generated a large network
activity proportionally to the number of simulated Hosts, as
expected. We now focus on proving that the activity semantics
was also preserved.



TABLE II. SIGNATURE LOG ENTRIES.

5 VMs 5 Hosts 50 Hosts 100 Hosts 150 Hosts 200 Hosts 250 Hosts
Signatures Actions avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev
imap.sign1 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign2 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign3 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign4 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign5 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign6 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign7 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign8 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign9 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4873 88
imap.sign10 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4873 88
sql.sign1 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
sql.sign2 disconnect 90 9 122 10 1032 36 2079 44 3085 52 4121 53 5118 74
imap.sign11 open 89 9 122 10 1028 36 2069 44 3059 52 4090 53 4808 91

0 20010050 150 250

0e00

1e06

2e05

4e05

6e05

8e05

1.2e06

1.4e06

1.6e06

number of Hosts simulated

b
y
te

s

average number received every 30s

received standard deviation

received estimation

average number sent every 30s

sent standard deviation

sent estimation

Figure 6. Network traffic of the webmail server

For each Elementary action of the activity Script, we look
for log entries that could act as signatures for the action. By
comparing these signatures in both experiments, we obtain the
results displayed in Table II.

From Table II, the following observations can be made:

• the number of signatures for the ”connect” Elementary
action is slightly inferior to the number of sessions
(the number of lines from ”userlogins”) observed for
150 Hosts and above. It is explained by the fact that
the signatures correspond to the number of successful
connections to the webmail server. If we remove the
number of lines in the ”userlogins” file that correspond
to failed connections, we find the exact number of
signatures for the ”connect” Elementary action.

• the number of signature for the ”disconnect” Ele-
mentary action corresponds to the exact number of
sessions observed in Table I.

• the number of signatures for the ”open” Elementary
action is slightly inferior to the number of signatures
for the ”connect” Elementary action for 50 Hosts and
above. It is likely due to the experiment ending before
the last Script cycle ended for a few Hosts.

• no characteristic entry for the ”send an email” Ele-
mentary action could be found in the ”userlogins”,
”imap” and ”sql” log files.

The failure of several connections in our simulation may
also be due to the parameterization of the Data generating
function. The adapted replay Data generating function was
designed to modify short-lived information from the Model
data like the token or the session identifier according to the
server reply from the requests. However, such modification was
not included in the first request. The webmail server possibly
refused some connections because they contained the same
information at the same time. Therefore, an improvement of
the typing of the adapted replay Data generating function
should raise the number of successful connections with a
high number of simulated Hosts. Table II shows that for each
successful session in our simulated activity, the webmail server
correctly interpreted the Elementary actions.

To sum up the results analysis, our prototype generates a
simulated activity that produces a realistic amount of network
traffic and logs from the webmail server. Moreover, the web-
mail server produces the appropriate number of logs reflecting
the correct semantics. Therefore, our prototype succeeds in
providing scalable and realistic data generation, thus validating
our model.

V. CONCLUSION

In this paper, we establish a new methodology to generate
realistic evaluation data on a network support (Mininet) with
far fewer requirements than the common network testbeds.
This methodology takes into consideration the need for an
evaluator to test different properties and evaluate different
vulnerabilities in a security product. Therefore, an evaluator
can select the Data generation function that matches the
properties of the product that need to be tested. The evaluator
also has a control on the granularity of the activity Elementary
actions. The finesse of the simulated activity can be improved
by introducing new Elementary actions or adding Elementary
action parameters to the Data generation function.

We validate our model with a prototype able to generate
realistic activity up to 250 users interacting with a webmail
server. The traffic can be customized in terms of Hosts numbers
as well as Scripts content. Therefore, it will be possible to use
this prototype to develop more complex activity scenarios ded-
icated to the evaluation of security products such as intrusion
detection systems.

However, our prototype still has a few limitations. The
existing Data generating functions mostly focus on the creation
of network activity and does not generate system activity for



host-based security products. The parametrization for more
realistic Data generating functions also raises additional issues
that need to be addressed with further work. Finally, our
prototype is currently limited to the simulation of Hosts. In
parallel with the testing of network-based intrusion detection
systems based on our prototype, the next steps of our work will
focus on extending our prototype to include the simulation of
Services and develop new Data generating functions that focus
on the generation of system data rather than network data.

REFERENCES

[1] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne,
“Evaluating computer intrusion detection systems: A survey of common
practices,” ACM Computing Surveys (CSUR), vol. 48, no. 1, 2015,
p. 12.

[2] C. Kreibich and J. Crowcroft, “Honeycomb: creating intrusion detection
signatures using honeypots,” ACM SIGCOMM computer communica-
tion review, vol. 34, no. 1, 2004, pp. 51–56.

[3] V. E. Seeberg and S. Petrovic, “A new classification scheme for
anonymization of real data used in ids benchmarking,” in Availability,
Reliability and Security, 2007. ARES 2007. The Second International
Conference on. IEEE, 2007, pp. 385–390.

[4] S. E. Coull et al., “Playing devil’s advocate: Inferring sensitive infor-
mation from anonymized network traces.” in NDSS, vol. 7, 2007, pp.
35–47.

[5] A. Srivastava, K. Singh, and J. Giffin, “Secure observation of kernel
behavior,” Georgia Institute of Technology, Tech. Rep., 2008.

[6] F. Lombardi and R. Di Pietro, “Secure virtualization for cloud comput-
ing,” Journal of Network and Computer Applications, vol. 34, no. 4,
2011, pp. 1113–1122.

[7] J. Reeves, A. Ramaswamy, M. Locasto, S. Bratus, and S. Smith,
“Intrusion detection for resource-constrained embedded control systems
in the power grid,” International Journal of Critical Infrastructure
Protection, vol. 5, no. 2, 2012, pp. 74–83.

[8] K. Nasr, A. Abou-El Kalam, and C. Fraboul, “Performance analysis
of wireless intrusion detection systems,” in International Conference
on Internet and Distributed Computing Systems. Springer, 2012, pp.
238–252.

[9] K. Ma, R. Sun, and A. Abraham, “Toward a lightweight framework
for monitoring public clouds,” in Computational Aspects of Social
Networks (CASoN), 2012 Fourth International Conference on. IEEE,
2012, pp. 361–365.

[10] J.-K. Ke, C.-H. Yang, and T.-N. Ahn, “Using w3af to achieve automated
penetration testing by live dvd/live usb,” in Proceedings of the 2009
International Conference on Hybrid Information Technology. ACM,
2009, pp. 460–464.

[11] F. Massicotte, M. Couture, Y. Labiche, and L. Briand, “Context-based
intrusion detection using snort, nessus and bugtraq databases.” in PST,
2005.

[12] N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A. Olsson,
“A methodology for testing intrusion detection systems,” IEEE Trans-
actions on Software Engineering, vol. 22, no. 10, 1996, pp. 719–729.

[13] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention of kernel
rootkits with vmm-based memory shadowing,” in International Work-
shop on Recent Advances in Intrusion Detection. Springer, 2008, pp.
1–20.

[14] H. Jin et al., “A vmm-based intrusion prevention system in cloud
computing environment,” The Journal of Supercomputing, vol. 66, no. 3,
2013, pp. 1133–1151.

[15] J. Morris, S. Smalley, and G. Kroah-Hartman, “Linux security modules:
General security support for the linux kernel,” in USENIX Security
Symposium, 2002, pp. 17–31.

[16] M. Laureano, C. Maziero, and E. Jamhour, “Protecting host-based
intrusion detectors through virtual machines,” Computer Networks,
vol. 51, no. 5, 2007, pp. 1275–1283.

[17] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman, “An overview
of issues in testing intrusion detection systems,” NIST Interagency,
Tech. Rep., 2003.

[18] R. K. Cunningham, R. P. Lippmann, D. J. Fried, S. L. Garfinkel, I. Graf,
K. R. Kendall, S. E. Webster, D. Wyschogrod, and M. A. Zissman,
“Evaluating intrusion detection systems without attacking your friends:
The 1998 darpa intrusion detection evaluation,” Massachusetts Inst. of
Tech. Lexington Lincoln Lab, Tech. Rep., 1999.

[19] T. V. Phan, N. K. Bao, and M. Park, “Distributed-som: A novel per-
formance bottleneck handler for large-sized software-defined networks
under flooding attacks,” Journal of Network and Computer Applications,
vol. 91, 2017, pp. 14–25.

[20] C. Cowan, S. Arnold, S. Beattie, C. Wright, and J. Viega, “Defcon
capture the flag: Defending vulnerable code from intense attack,” in
DARPA Information Survivability Conference and Exposition, 2003.
Proceedings, vol. 1. IEEE, 2003, pp. 120–129.

[21] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “Mawilab: com-
bining diverse anomaly detectors for automated anomaly labeling and
performance benchmarking,” in Proceedings of the 6th International
COnference. ACM, 2010, p. 8.

[22] R. L. S. De Oliveira, A. A. Shinoda, C. M. Schweitzer, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in Communications and Computing (COLCOM), 2014 IEEE
Colombian Conference on. IEEE, 2014, pp. 1–6.

[23] “Homepage of Hynesim,” 2018, URL: https://www.hynesim.org [ac-
cessed: 2018-04-09].

[24] R. A. Razak and F. R. Fahrurazi, “Agile testing with selenium,” in
Software Engineering (MySEC), 2011 5th Malaysian Conference in.
IEEE, 2011, pp. 217–219.


