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Evaluating a security product requires the ability to conduct tests to assert that the product reacts as expected, both in terms of scalability and semantics. However, the production of evaluation data at a large scale with a high semantic is very costly with current methods. Load tests are semantically poor and semantic tests require a testbed environment to be deployed at a large scale. Evaluation data from real world activity need to be anonymized and a compromise must be made between the request of the evaluator and the interest of the real world organization. Moreover, to evaluate the full scope of a security product, the evaluator needs multiple test methods. In this paper, we describe a new methodology to produce evaluation data with a customizable level of realism and the possibility to be deployed at a large scale with lower resource requirements for a network support than a testbed environment. Our prototype relies on this method to generate realistic activity for up to 250 simulated users interacting with a real-world webmail server.

I. INTRODUCTION

Security products can be defined as all services and products designed to protect a service, machine or network against attacks. Like other products, they must be tested to guarantee adherence to specifications. Tests can be divided into two categories: semantic tests -tests of capability that require data with a high-level of semantic; and load tests -tests that subject the product to a large amount of data.

With current testing methods [START_REF] Milenkoski | Evaluating computer intrusion detection systems: A survey of common practices[END_REF], load tests are semantically poor, thus not realistic. Meanwhile, semantic tests either require vast amount of resources to reach large scales (e.g., testbed environments), or rely on real life captures with their own set of challenges (e.g., elaboration of the ground truth and privacy concerns). Moreover, a complete evaluation of a security product tests several properties of the product and the evaluator needs to select different methods with the right granularities. The granularity of interactions of the data corresponds to the level of control or precision of the data. For an evaluator, the right granularity for a testing method is a granularity that is fine enough to test specific vulnerabilities or properties. Rather than relying on several methods with different granularities, we aim to elaborate a method to produce data with a customizable granularity and the possibility to achieve large scale generation with appropriate semantic.

In this paper, we present a methodology to produce simulated evaluation data with different granularities independently of the network support. To achieve variable granularity of our model, we formally define two concepts. First, a Data reproducing function represents the level of realism of the simulation (the property of the data to reproduce) and decides the level of control over the data. Second, elementary actions correspond to the most atomic actions the evaluator can simulate, the basis upon which the experimental scenario will be built. We also develop a prototype of our methodology and validate our approach with a series of experiments.

The remainder of this paper is organized as follows. Section II reviews the related work on the production of evaluation data and their limits. Section III defines the concepts of our methodology and uses those concepts to introduce our model. Section IV explains the different choices we made for the implementation of our prototype and shows the experiment results to validate our model. Finally, we conclude our work in Section V.

II. RELATED WORK A. Semantic tests

Semantic tests generate evaluation data with high semantic value. Their goal is to generate realistic workloads to produce real-life reactions of the security product or to test specific functionalities and vulnerabilities of the product. One of the approaches to obtain data with the highest semantics is to use real world data, which can come from several sources: provided by organizations doing real world productions, or obtained from honeypots where actors from the real world were tricked into interacting with a recording system to learn about the current trends (ex: generation of intrusion detection signatures using a honeypot [START_REF] Kreibich | Honeycomb: creating intrusion detection signatures using honeypots[END_REF]).

However, the evaluator does not have a complete knowledge of the content of the data. Some of it can be misidentified or the intent behind some actions misinterpreted. Moreover, real world data are difficult to obtain. Organizations are reluctant to provide data that can damage their activity, and data anonymization has the drawback of deleting relevant information (e.g., challenges of anonymization [START_REF] Seeberg | A new classification scheme for anonymization of real data used in ids benchmarking[END_REF] and desanonymization techniques [START_REF] Coull | Playing devil's advocate: Inferring sensitive information from anonymized network traces[END_REF]). As for honeypots, the evaluator can never know beforehand how many data he can obtain or what kind of data he will gather.

Another way to obtain high semantic data is to generate them according to a defined scenario, relying on tools and scripts to produce specific and calibrated data. Those scripts can be homegrown scripts, exploits, or software testing scripts that try every function of a software to validate its specifications. Manually generating the data (e.g., video transcoding [START_REF] Srivastava | Secure observation of kernel behavior[END_REF], file copy operations [START_REF] Lombardi | Secure virtualization for cloud computing[END_REF], compiling the Linux kernel [START_REF] Reeves | Intrusion detection for resource-constrained embedded control systems in the power grid[END_REF], etc.) offers the greatest control over the interactions inside the data, but the automation of the activity generated through scripts with tools like exploit databases (Metasploit [START_REF] Nasr | Performance analysis of wireless intrusion detection systems[END_REF], Nikto [START_REF] Ma | Toward a lightweight framework for monitoring public clouds[END_REF], w3af [START_REF] Ke | Using w3af to achieve automated penetration testing by live dvd/live usb[END_REF], Nessus [START_REF] Massicotte | Context-based intrusion detection using snort, nessus and bugtraq databases[END_REF]) also offers good control.

However, those methods are quite time-consuming or require in-depth knowledge of the evaluated product. Moreover, the available tools are not necessarily appropriate for customized generation.

B. Load tests

Load tests create stress on the tested product [START_REF] Puketza | A methodology for testing intrusion detection systems[END_REF]. The most common tests use workload drivers like SPEC CPU2000 [START_REF] Reeves | Intrusion detection for resource-constrained embedded control systems in the power grid[END_REF], ApacheBench [START_REF] Riley | Guest-transparent prevention of kernel rootkits with vmm-based memory shadowing[END_REF] [START_REF] Jin | A vmm-based intrusion prevention system in cloud computing environment[END_REF], iozone [START_REF] Jin | A vmm-based intrusion prevention system in cloud computing environment[END_REF], LMBench [START_REF] Morris | Linux security modules: General security support for the linux kernel[END_REF] [7], etc. They produce a customizable workload with a specific intensity. The evaluator can also manually start tasks or processes known to stimulate particular resources (e.g., kernel compilation [START_REF] Riley | Guest-transparent prevention of kernel rootkits with vmm-based memory shadowing[END_REF] [15], files download [START_REF] Laureano | Protecting host-based intrusion detectors through virtual machines[END_REF], or execution of Linux commands [START_REF] Laureano | Protecting host-based intrusion detectors through virtual machines[END_REF]). Those methods are designed to test particular resources of a system (like I/O, CPU and memory consumption) or produce large amount of workload of a specific protocol. For example, SPEC CPU 2017 generates CPUintensive workloads while ApacheBench generates intensive HTTP workloads. However, the semantics of the workloads are low: the generated data are characteristic of the driver used and do not closely resemble real life data.

C. Deployment of semantic tests at a large scale

Evaluators prefer tests that are both intensive and with a high semantic, as the performance of security products like intrusion detection systems often deteriorate at high levels of activity [START_REF] Mell | An overview of issues in testing intrusion detection systems[END_REF]. Methods for semantic tests are deployed on a large scale network support like a testbed environment where a large amount of resources and contributors are gathered to create a large-scale test. Evaluators must either have access to a testbed environment with enough resources to deploy largescale experiments or use the results of other organizations that conducted large-scale experiments and made their data publicly available for the scientific community (DARPA/KDD-99 [START_REF] Cunningham | Evaluating intrusion detection systems without attacking your friends: The 1998 darpa intrusion detection evaluation[END_REF], CAIDA [START_REF] Phan | Distributed-som: A novel performance bottleneck handler for large-sized software-defined networks under flooding attacks[END_REF], DEFCON [START_REF] Cowan | Defcon capture the flag: Defending vulnerable code from intense attack[END_REF], MawiLab [START_REF] Fontugne | Mawilab: combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking[END_REF], etc.).

However, publicly available datasets, on top of often containing errors [START_REF] Milenkoski | Evaluating computer intrusion detection systems: A survey of common practices[END_REF], are not designed for the specific needs of each evaluator. The evaluator needs to have an in-depth knowledge of the characteristics of the activities recorded in the dataset to avoid having an incorrect interpretation of the results of studies using those datasets. Finally, those large-scale experiments produce one-time datasets that can be quickly outdated.

III. OUR EVALUATION DATA PRODUCTION METHOD

Our goal is to generate evaluation data at a large scale with a customizable level of realism and semantic richness. The main weakness of large scale semantic test's method lies in the testbed environment. A testbed environment requires large resources and a lot of contributors to set up, use, maintain and return to a previous state. The virtual machines used to support the data generation methods are costly and the light virtual machines are currently too limited for the requirements of semantic methods. We propose a new production method that generates controlled activity data from short traces independently of the network support. It can be implemented on a testbed environment or on a network support with lower requirements like a lower end network simulator.

We also want our method to meet the need of evaluators to generate tests with a rich variety (different systems, properties of the data, etc.) and to devise hybrid tests, both semantic and load oriented. In our methodology, the simulated data is not produced by the execution of activity functions of the host system but by a generic Data generating function that represents a level of realism required of the simulated data. A simulated activity is comprised of a single Data generating function that is provided with a set of Model data extracted from the execution of specific Elementary actions and used to create a Script of the activity. In the following section, we define concepts on which we build a formal description of our methodology.

A. Concepts and definitions 1) Elementary action: In our methodology, we distinguish real activity -not issued from our simulation method -(R) and simulated activity -issued from our simulation method -(S) in Elementary actions. We call Elementary action (A) a short ordered set of interactions that represents an action between two actors of the activity. Those actors are a Host -a source of generated data -or a Service -a set of functionalities available to a Host. A Service can be an external server or an internal service.

For each Elementary action, we acquire Model data that are the captured data of the execution of this Elementary action during real activity. The goal of Elementary actions is to divide the activity we simulate in individual actions that correspond to an entry of the ground truth, such as "connection to the web interface of a webmail server". The ground truth is an exact representation of the activity generated. So a finer set of Elementary actions for an activity means a finer representation of the simulated activity and a finer control of the activity model for the evaluator.

Model data take different forms (traces, logs, values, etc.), and to label the ground truth, Model data are classified by the evaluator. The evaluator can use that classification to label the resulting Simulation data. For example, the evaluator can create two classes of Model data to represent malicious activity and benign activity, respectively. In other contexts, such as generating activity for the evaluation of administration tools of a network, the actors to consider are different (security: attacker/user, administration: admin/user/client) and the evaluator will have to define classes of data accordingly.

After capturing Model data for every Elementary action relevant for the evaluation, the resulting set of Model data is then given to a Data generating function. We call Equivalence (∼) the fact that two activity data have the same properties. The properties of the data are of different forms: acknowledgement of the data by the Service, size of sent packets, value of a measure, etc. and they represent the level of realism chosen by the evaluator. The evaluator selects a set of Elementary actions to decide the finesse of control over the simulation and he chooses a Data generating function to reproduce the properties of the data he requires. If the Data generating function that produces Simulation data from a dataset of Model data cannot produce data with the same properties, it is useless for the evaluator. Thus, we define the following verification property of Data generating functions:

Property 1: a Data generating function f is said to be useful to a set of Model data D if all Simulation data generated by f from any Model data that belong to D is equivalent to the data used as model.

∀ d ∈ D and f /f (d) = d simulation ⇒ f is usef ul to D, if ∀d ∈ D, d ∼ d simulation
The evaluator can select the Data generating function that is useful to his Model data with Simulation parameters (p simulation ) and provide the Data generating function with additional parameters called Elementary action parameters (p A ). Elementary action parameters allow the evaluator to modify the behavior of the Data generating function to match a larger dataset of Model data (e.g. services accepting the same credentials but with different identifiers, such as "id=" and " id=") or provide a finer control (e.g. possibility to change the credentials in the submit form).

Data generating functions are selected with Simulation parameters by the evaluator for the properties they preserve and the evaluator adapts or controls the Simulation data with Elementary action parameters. The data exchanged by the program that controls the simulation and the Host that runs a Data generating function is the Control data (d control ) and is essentially the ground truth of the simulation. The compilation of the Control data informs us of all the actions taken during the simulated activity.

3) Scenario and Scripts: We finally define a Script, which is the representation of a realistic behavior of a Host. A Script is an ordered set of actions coupled with Elementary action parameters. These actions can be Elementary actions or actions that do not generate activity data (e.g. "wait X seconds"). A Script (Script H ) is defined for each individual Host and describes the activity it must generate during the simulation. The set of defined Scripts is called the Scenario (Sce) of the simulation.

A Script can be represented as a graph of actions, as illustrated in Figure1.

4) Our model: Figure 2 is a representation of our model. In that figure, the evaluator provides the simulation control program with the Simulation parameters (p simulation ) and the Scenario (Sce): The model we presented is the situation where all the Hosts are simulated and the Services are real services. If some Hosts also acted as Services, they could also initiate the generation of Simulation data according to requests received from other Hosts in the form of other Simulation data.

Sce = {Script H0 , Script H1 } = {([A, p A ], . . . ), ([A, p A ], etc.)} A 0 , p A0 A 1 , p A1 A 2 , p A2 . . .
In our model, the ground truth is built upon the Control data of Hosts simulated by our model. Therefore, no data from Hosts unrelated to the simulation are processed.

Lastly, we must present one of the major issues of our model: the parameterization of the Elementary actions. Indeed, in accordance with the required level of realism of the simulation, the parameterization must allow the Data generating function to preserve various data properties. The higher the level of realism, the more complex the reproduction of Elementary actions becomes. Therefore, designing a Data generating function for a highly realistic simulation, where not only packet size is preserved but also data acknowlegement, requires to consider three main aspects:

• typing: identification and generation of short-lived data like tokens, identifiers of session, etc. • semantics: modification of inputs with a high semantic value in the Model data: credentials, mail selection, mail content, etc. • scalability: a large scale execution of the Data generation function can have consequences on the previous aspects and requires additional changes (e.g., creation of multiple user accounts in the Service database).

These three aspects are integrated to the Elementary action parameters. However, a few in-depth issues still require further consideration and development in order to elaborate a model able to adapt to various test situations without the intervention of the evaluator. The typing issue can be solved with methods based on machine learning, but others may require specific methodologies according to the context of the evaluation. For example, in the case of real-life network reproduction, the semantic and scalability issues can be solved by identifying and using inputs with a high semantic value recorded during a long Model data acquisition period.

IV. IMPLEMENTATION OF THE PROPOSED METHOD

In this section, we describe the implemention of a prototype that follows the requirements of our model, and we show that simulations based on that prototype are both scalable and realistic.

This prototype uses Mininet [START_REF] De Oliveira | Using mininet for emulation and prototyping software-defined networks[END_REF] as the network support of our simulation. Mininet is an open-source network simulator that deploys lightweight virtual machines to create virtual networks, and able to create hundreds of lightweight virtual machines in a short amount of time.

A. Model of the prototype

Our prototype contains several Data generating functions that conserve each of these properties: execution time, packet size, acknowledgement of the data by the Service. Based on these Data generating functions we simulate the activity of 50 to 200 Hosts representing regular employees of a small company interacting with the Service of a webmail server Roundcube on a Postfix mail server. A simulation control program follows the Script described in Figure 3 for all the Hosts of the simulation. In Figure 3, the Elementary actions are in italics while actions that do not generate activity data are in a regular font. The Host can simulate two different series of Elementary actions after a waiting period of X seconds each time. The intensity of the Script can be modulated by modifying the value of X.

To make sure that our method improves the existing methods, it must meet these two requirements:

• Scalability: ability to generate evaluation data proportionally to the scale of the simulation, up to a few hundreds of hosts. • Realism: closeness of the generated data to the the referential Model data.

Our Data generating functions are designed to preserve specific data properties (cf. Property 1), thus 

B. Experiments on the prototype

The validation of our prototype is conducted with two separate experiments, which aim to prove that our model leads to both scalable and realistic data generation.

The first experiment is a control experiment. We deploy 5 virtual machines on the network simulator Hynesim [START_REF]Homepage of Hynesim[END_REF] and make them generate the activity of our simulation. We script the Elementary actions of the Script described in Figure 3 with the web driver Selenium [START_REF] Razak | Agile testing with selenium[END_REF] and make the virtual machines use their browser to interact with the webmail server. This experiment provides referential values for our second experiment. To prove the scalability of our prototype, we expect proportionality between these values and the results of our simulation, with respect to the number of Hosts. In the second experiment, we simulate different number of Hosts (5, 50, 100, 150, 200 and 250) and make them generate the activity of regular users using a webmail service for 30 minutes. We measure the activity at three different points: the webmail server, the network simulator Mininet and the server hosting the simulation. Every 30 seconds, we measure four parameters: CPU usage, memory usage, network I/O, and disk I/O. Figure 4 is an example of the measured activity. It represents the network traffic received and sent by the webmail server with 50 simulated Hosts. Each Host follows the Script described in Figure 3, with X = 30.

We also retrieve the logs produced by the webmail server during both experiments. The quantity and content of the logs is analyzed in Table I and Table II.

In the second experiment, we use the Data generating function with the highest level of realism: the adapted replay. That Data generating function preserves the data acknowledgement by the Service and allows Elementary action parameters to modify the inputs of submitted forms. Concretely, it means that a server cannot distinguish the adapted replay from an interaction with a real user. Also, with the help of Elementary action parameters, the evaluator can freely change the credentials replayed to the webmail server.

The analysis of the results aims at proving that the data generated in the second experiment are consistent with those obtained from the first experiment, in terms of both quantity and semantics.

Table I represents the quantity of logs produced by the webmail server during both experiments. We express the average number of lines in the log files of the webmail and their standard deviation. The first column is the name of the main log files produced by the server: "userlogins" logs every connection (successful or not), "imap" logs every instruction from the server that uses the IMAP protocol, and "sql" logs every interaction between the server and its database. The entries under the name "5 VMs" correspond to the results of the control experiment while the other entries are the results of the simulation experiment.

The number of lines in "userlogins" represents the number of connections during the experiments (one line per connection) and can be used to calculate the number of sessions created during both experiments. Figure 5 shows the average number of sessions created during the second experiment and its standard deviation according to the number of simulated Hosts. We also estimate the average number of sessions inferred from the results of the control experiment, based on proportionality (avg("5 VMs") × number of Hosts

5

).

We observe that the number of sessions created during the second experiment is close to our estimation. Our simulation produces more sessions than expected but it can be explained by the fact that our Data generating function reproduces the Model data of an Elementary action faster than the browser of the virtual machines. Hence, in a period of 30 minutes, the simulated activity has gone through more cycles of the Script than the control experiment. A projection of the number of lines of the other log files ("imap" and "sql") displays similar results. These results establish that the simulated activity produces a consistent amount of logs. In Figure 6, we examine the network traffic produced by our simulated activity. The blue and red parts represent the average number of bytes, respectively, received and sent by the webmail server every 30 seconds, along with the standard deviation. For comparison, the black lines correspond to the estimation of the expected results based on the control experiment. As before, the results of the second experiment are close to our estimation. The deviation can be justified with the same explanation regarding the activity speed difference. This deviation is also partly due to the cached data. Since these data are stored on the host after the first connection, the amount of exchanged data during the first connection is higher than during subsequent sessions.

However, our Data generating function does not take cached data into account. Therefore, our simulated connections request more data from the webmail server than estimated. This observation is part of the parametrization issues of the Data generating function raised at the end of Section III. Adding Elementary action parameters to modify the behavior of the function can solve this issue as we did for previous typing and semantic issues. However, the addition of new Elementary action parameters is made from empiric observation and could be improved by adding new methods to our model like machine learning.

Despite those issues, we have shown that the simulated activity of the second experiment generated a large network activity proportionally to the number of simulated Hosts, as expected. We now focus on proving that the activity semantics was also preserved. For each Elementary action of the activity Script, we look for log entries that could act as signatures for the action. By comparing these signatures in both experiments, we obtain the results displayed in Table II.

From Table II, the following observations can be made:

• the number of signatures for the "connect" Elementary action is slightly inferior to the number of sessions (the number of lines from "userlogins") observed for 150 Hosts and above. It is explained by the fact that the signatures correspond to the number of successful connections to the webmail server. If we remove the number of lines in the "userlogins" file that correspond to failed connections, we find the exact number of signatures for the "connect" Elementary action. • the number of signature for the "disconnect" Elementary action corresponds to the exact number of sessions observed in Table I. • the number of signatures for the "open" Elementary action is slightly inferior to the number of signatures for the "connect" Elementary action for 50 Hosts and above. It is likely due to the experiment ending before the last Script cycle ended for a few Hosts. • no characteristic entry for the "send an email" Elementary action could be found in the "userlogins", "imap" and "sql" log files.

The failure of several connections in our simulation may also be due to the parameterization of the Data generating function. The adapted replay Data generating function was designed to modify short-lived information from the Model data like the token or the session identifier according to the server reply from the requests. However, such modification was not included in the first request. The webmail server possibly refused some connections because they contained the same information at the same time. Therefore, an improvement of the typing of the adapted replay Data generating function should raise the number of successful connections with a high number of simulated Hosts. Table II shows that for each successful session in our simulated activity, the webmail server correctly interpreted the Elementary actions.

To sum up the results analysis, our prototype generates a simulated activity that produces a realistic amount of network traffic and logs from the webmail server. Moreover, the webmail server produces the appropriate number of logs reflecting the correct semantics. Therefore, our prototype succeeds in providing scalable and realistic data generation, thus validating our model.

V. CONCLUSION

In this paper, we establish a new methodology to generate realistic evaluation data on a network support (Mininet) with far fewer requirements than the common network testbeds. This methodology takes into consideration the need for an evaluator to test different properties and evaluate different vulnerabilities in a security product. Therefore, an evaluator can select the Data generation function that matches the properties of the product that need to be tested. The evaluator also has a control on the granularity of the activity Elementary actions. The finesse of the simulated activity can be improved by introducing new Elementary actions or adding Elementary action parameters to the Data generation function.

We validate our model with a prototype able to generate realistic activity up to 250 users interacting with a webmail server. The traffic can be customized in terms of Hosts numbers as well as Scripts content. Therefore, it will be possible to use this prototype to develop more complex activity scenarios dedicated to the evaluation of security products such as intrusion detection systems.

However, our prototype still has a few limitations. The existing Data generating functions mostly focus on the creation of network activity and does not generate system activity for host-based security products. The parametrization for more realistic Data generating functions also raises additional issues that need to be addressed with further work. Finally, our prototype is currently limited to the simulation of Hosts. In parallel with the testing of network-based intrusion detection systems based on our prototype, the next steps of our work will focus on extending our prototype to include the simulation of Services and develop new Data generating functions that focus on the generation of system data rather than network data.

2 )

 2 Data generating function: A Data generating function (f ) creates Simulation data from Model data. Simulation data (d simulation ) is created from the execution by a Host (H) of an Elementary action (A) during a simulated activity. It is the output of a Data generating function and we express our demands for Simulation data as Equivalence.

Figure 1 .

 1 Figure 1. Example of a Script

Figure 2 .

 2 Figure 2. Generation of simulated activity from short traces

8 Figure 3 .

 83 Figure 3. Generation of simulated activity from short traces

Figure 4 .

 4 Figure 4. Network traffic of the webmail server for a single experiment (50 Hosts)

Figure 5 .

 5 Figure 5. Number of sessions created during simulation (blue) compared to estimation (black)

Figure 6 .

 6 Figure 6. Network traffic of the webmail server

TABLE I .

 I NUMBER OF LINES IN THE WEBMAIL LOG FILES.

		5 VMs	5 Hosts	50 Hosts	100 Hosts	150 Hosts	200 Hosts	250 Hosts
	Filenames	avg	stdev	avg	stdev	avg	stdev	avg	stdev	avg	stdev	avg	stdev	avg	stdev
	userlogins	90	9	112	10	1032	36	2084	45	3085	52	4121	53	5118	74
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