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Abstract—Private information retrieval (PIR) protocols allow
a user to retrieve entries of a database without revealing the
index of the desired item. Information-theoretical privacy can
be achieved by the use of several servers and specific retrieval
algorithms. Most known PIR protocols focus on decreasing the
number of bits exchanged between the client and the server(s)
during the retrieval process. On another side, Fazeli et al.
introduced so-called PIR codes in order to reduce the storage
overhead on the servers. However, few works address the issue
of the computation complexity of the servers.

It this paper, we show that a specific encoding of the database
yields PIR protocols with reasonable communication complexity,
low storage overhead and optimal computational complexity for
the servers. This encoding is based on incidence matrices of
transversal designs, from which a natural and efficient recovering
algorithm is derived. We also present several instances for our
construction, which make use of finite geometries and orthogonal
arrays. We finally give a generalisation of our main construction
in order to resist collusions of servers.

I. INTRODUCTION

A. Private Information Retrieval

A private information retrieval (PIR) protocol aims at en-
suring a user that he can retrieve some part Di of a remote
database D without revealing the index i to the server(s) hold-
ing the database. For example, such protocols can be applied
in medical data storage where physicians would be able to
access parts of the genome while hiding the specific gene they
analyse. The PIR paradigm was originally introduced by Chor,
Goldreich, Kushilevitz and Sudan [6, 7].

A naive solution to the problem consists in downloading the
entire database each time the user wants a single entry. But
the communication complexity would then be overwhelming,
so we look for PIR protocols exchanging less bits. However,
Chor et al. proved that, when the k-bits database is stored on
a single server, a PIR protocol which leaks no information
on the index i (such a protocol being called information-
theoretically secure) must use Ω(k) bits of communication [7].
Two alternatives were then considered: restricting the protocol
to computational security (initiated by Chor and Gilboa [5]),
or allowing several servers to store the database. Our work
focuses on the last one.
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In many such PIR protocols the database is replicated on
` servers, ` > 1. Informally, the idea is that each server
is asked to compute some partial information related to a
random-like query sent by the user. Then the user collects
all the servers’ answers and retrieves the desired symbol
with an appropriate algorithm. For instance, Chor et al. [7]
considered a smart arrangement of the database entries in a
log(`)-dimensional array, and used XOR properties to mask
the index of the desired item and to retrieve the associated
symbol. Their protocol features decreasing communication
as a function of the number of servers: with ` servers, the
communication is O(` log(`)k1/ log `) bits. For constant `, the
authors also proposed a PIR protocol with communication
O(k1/`). A few years later, Katz and Trevisan [13] showed that
any smooth locally decodable code C ⊆ Σn of locality ` gives
rise to a PIR protocol with ` servers whose communication
complexity is O(` log(n|Σ|)) — see [20] for a good survey on
locally decodable codes (LDCs) and their applications in PIR
protocols. Building on this idea, many PIR schemes (notably
[3, 19, 10, 9]) successively decreased the communication com-
plexity, achieving O(k

√
log log k/ log k) with only ` = 2 servers.

However, only few of them tried to lighten the computational
and storage cost on the server side.

By preprocessing the database, Beimel, Ishai and Malkin [4]
were the first to address the minimization of the server stor-
age/computation in PIR protocols. Then, initiated by Fazeli,
Vardy and Yaakobi [11], recent works used the concept of
PIR codes to address the storage issue. The idea is to turn
an `-server replication-based PIR protocol into a more-than-`-
server distributed PIR protocol with a smaller overall storage
overhead. For this purpose, the user encodes the database
and distributes pieces of the associated codeword among the
servers, such that servers hold distinct parts of the database
(plus some redundancy). Through this transformation, both
communication complexity and computational cost keep the
same order of magnitude, but the storage overhead corresponds
to the PIR code’s one, which can be brought arbitrarily
close to 1 when sufficiently many servers are used. Several
recent works also address the PIR issue on previously coded
databases [18], and/or aim at reaching the so-called capacity
of the model [17]. However, while the storage drawback seems
to be solved, huge computational costs still represent a barrier
to the practicality of such PIR protocols.

https://doi.org/10.1109/TIT.2018.2861747


2

B. Motivations and results

As pointed out by Yekhanin [20], “the overwhelming com-
putational complexity of PIR schemes (...) currently presents
the main bottleneck to their practical deployment”. Consider
a public database which is frequently queried, e.g. a database
storing stock exchange prices where private queries could
be very relevant. Fast retrieval is crucial is this context.
Hence, one cannot afford each run of the PIR protocol to
be computationally inefficient, for instance Ω(k) if k is the
size of the database. Therefore, a relevant goal is to build
PIR protocols with sublinear computational complexity in the
length of the database stored by each server.

Naively, the computational complexity of a PIR protocol
could be drastically reduced if we let all possible answers to its
queries to be precomputed. Of course, storing all these answers
dramatically increases the needed storage, so let us focus on a
construction due to Augot, Levy-dit-Vehel and Shikfa [2] —
anterior to the PIR codes breakthrough [11] — that address
this issue.

The construction of Augot et al. [2] uses a specific family
of high-rate locally decodable codes called multiplicity codes
introduced by Kopparty, Saraf and Yekhanin [14]. But instead
of replicating the database on ` servers (` > 1 being the
locality of the codes), the authors split an encoded version
c of the database D into parts c(1), . . . , c(`), and share these
parts on the servers. The main difference with PIR codes [11]
is that Augot et al.’s construction does not purpose to emulate
a lighter PIR protocol with an existing one. It uses specific
properties of the encoding as a way to split the database on
several servers. In short, the multiplicity codes they use feature
both the privacy of the PIR protocol and the storage reduction
for the servers. We refer to Section VII for more details on
the construction.

In this work, we reconsider this “codeword support split-
ting” idea, and we propose a new generic framework for the
construction of PIR protocols which takes into account the
computational complexity issue. More precisely, the protocols
we give are computationally optimal with respect to the
communication complexity of the protocol, in the sense that
each server needs to read only one entry in the part of the
database it holds.

Our construction is based on combinatorial structures called
transversal designs, from which we naturally derive a linear
code, a partition of its support and a local reconstruction
algorithm. In practice, we give several instances of transversal
designs that lead to codes with large rate, hence to PIR pro-
tocols with low storage overhead. The two first families come
from incidences between points and lines in the affine (resp.
projective) space. They are closely related to the classical
geometric designs of 1-flats. A third family of instances makes
use of a classical transformation of so-called orthogonal arrays
of strength 2 into transversal designs. We then proceed to a
thorough study of the dimension of codes coming from MDS-
like orthogonal arrays of strength 2. A fourth and last family
of practical instances appears when showing that orthogonal
arrays built from divisible codes lead to PIR protocols with
storage expansion less than 2. We finally prove that orthogonal

arrays with strength t > 2 allow the construction of PIR
protocols resisting to collusions of up to t − 1 servers. We
exhibit and analyzed instances of some orthogonal arrays with
large strength to conclude this work.

C. Organization

We start by giving two formal definitions of PIR protocols
in Section II, depending on whether the database is replicated
or distributed on the servers. We also present the standard
construction of replication-based PIR protocols from smooth
locally decodable codes. In Section III, we recall defini-
tions of combinatorial structures and their associated codes.
The 1-private PIR protocols based on transversal designs
are introduced in Section IV. Section V is devoted to four
families of instances of the PIR construction having practical
parameters. Finally, a generalisation of our construction is
given in Section VI in order to keep up with collusions of
servers, and a comparison with the PIR protocols coming from
multiplicity codes is presented in Section VII.

II. DEFINITIONS AND RELATED CONSTRUCTIONS

We first recall that we are only concerned with information-
theoretically secure PIR protocols. In this paper, we denote
by U the user (or client) of the PIR protocol. User U owns
a database denoted by D = (Di)1≤i≤k ∈ Fkq , where Fq
represents the finite field with q elements. Database D hence
contains |D| = k log q bits. We also denote by S1, . . . , S` the
` servers involved in the PIR protocol.

Given A, B two sets, with |B| = n < ∞, we denote by
AB the set of n-tuples a = (ab)b∈B of A-elements indexed
by B, which can also be seen as functions from B to A. For
T ⊂ B, we also write a|T := (at)t∈T the restriction of the
tuple a to the coordinates of T .

A. Two definitions for PIR protocols

A vast majority of existing PIR schemes start by simply
cloning the database D on all the servers S1, . . . , S`. Then,
the role of each server Sj is to compute some combination
of symbols from D, related to the query sent by U . This
computation has a non-trivial cost, so in a certain sense, the
computational complexity of the privacy of the PIR scheme is
mainly devoted to the servers.

More formally, one can define replication-based PIR proto-
cols as follows:

Definition II.1 (standard, or replication-based PIR protocol).
Assume that every server Sj , 1 ≤ j ≤ `, stores a copy of the
database D. An `-server replication-based PIR protocol is a
set of three algorithms (Q,A,R) running the following steps
on input i ∈ [1, k]:

1) Query generation: the randomized algorithm Q generates
` queries (q1, . . . , q`) := Q(i). Query qj is sent to server
Sj .

2) Servers’ answer: each server Sj computes an answer
aj = A(qj , D) and sends it back to the user1.

1algorithm A := Aj may depend on j
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3) Reconstruction: denote by a = (a1, . . . , a`) and
q = (q1, . . . , q`). User U computes and outputs r =
R(i,a,q).

The PIR protocol is said:
• correct if r = Di when the servers follow the protocol;
• t-private if, for every (i, i′) ∈ [1, k]2 and every T ⊆ [1, `]

such that |T | ≤ t, the distributions Q(i)|T and Q(i′)|T
are the same. We also say that the PIR protocol resists t
collusions of servers.

We call communication complexity the number of bits sent
between the user and the servers, and server (resp. user) com-
putational complexity the maximal number of Fq-operations
made by a server in order to compute an answer aj (resp.
made by R to reconstruct the desired item).

According to this definition, one sees that the servers must
jointly carry the ` copies of the database, so the storage
overhead of the scheme is (` − 1)|D| bits. Moreover, since
D is a raw database without specific structure, the algorithm
A has no reason to be trivial and can incur superlinear
computations for the servers — which is verified for most
of current replication-based PIR protocols.

A way to reduce the computation cost of PIR protocols
is to preprocess the database. Therefore we need to model
PIR protocols for which the database can be encoded and
distributed over the servers. From now on, let c = (ci)i∈I
denote an encoding of the database D, i.e. the image of D
by an injective map Fkq → FIq , with |I| = n ≥ k. Besides,
for convenience we assume that I = [1, s] × [1, `] and for
readability we write c(i1,i2) = c

(i2)
i1

and c(j) = (c
(j)
r )r∈[1,s].

Definition II.2 (distributed PIR protocol). Assume that for
1 ≤ j ≤ `, server Sj holds the part c(j) of the encoded
database. An `–server distributed PIR protocol is a set of three
algorithms (Q,A,R) running the following steps on input
i ∈ I:

1) Query generation: the randomized algorithm Q generates
` queries (q1, . . . , q`) := Q(i). Query qj is sent to server
Sj .

2) Servers’ answer: each server Sj computes an answer
aj = A(qj , c

(j)) and sends it back to the user.
3) Reconstruction: denote by a = (a1, . . . , a`) and

q = (q1, . . . , q`). User U computes and outputs r =
R(i,a,q).

Correctness and privacy properties are identical to those of
replication-based PIR protocols. Similarly, one can also define
communication and computational complexities, and since the
database D has been encoded, we finally define the storage
overhead as the number of redundancy bits stored by the
servers, that is, (s`− k) log q.

In this paper, we focus on distributed PIR protocols with low
computational complexity on the server side. More precisely,
we build PIR protocols where the answering algorithm A
consists only in reading some symbols of the database. Thus,
our PIR protocols are computationally optimal on the server
side, in a sense that, compared to the non-private retrieval,
they incur no extra computational burden for the each server
taken individually.

B. PIR protocols from locally decodable codes

As pointed out in the introduction, Augot et al. [2] used
a family of locally decodable codes (LDC) to design a
distributed PIR scheme. LDCs are known to give rise to PIR
protocols for a long time [13], but we emphasize that the
main idea from [2] is to benefit from the fact that the encoded
database can be smartly partitioned with respect to the queries
of the local decoder.

Based on the seminal work of Katz and Trevisan [13],
we briefly remind how to design a PIR protocol based on
a perfectly smooth locally decodable code. First, let us define
(linear) locally decodable codes.

Definition II.3 (locally decodable code). Let Σ be a finite
set, 2 ≤ ` ≤ k ≤ n be integers, and δ, ε ∈ [0, 1]. A code
C : Σk → Fnq is (`, δ, ε)–locally decodable if and only if there
exists a randomized algorithm D such that, for every input
i ∈ [1, k] we have:
• for all m ∈ Σk and all y ∈ Fnq , if |{j ∈ [1, n], yj 6=
C(m)j}| ≤ δn, then

P(D(y)(i) = mi) ≥ 1− ε ,

where the probability is taken over the internal random-
ness of D;

• D reads at most ` symbols yq1 , . . . , yq` of y.
Notation D(y) refers to the fact that D has oracle access to
single symbols yqj of the word y. The parameter ` is called
the locality of the code. Moreover, the code C is said perfectly
smooth if on an arbitrary input i, each individual query of the
decoder D is uniformly distributed over the coordinates of the
word y.

Now let us say a user wants to use a PIR protocol on a
database D ∈ Σk, and assume there exists a perfectly smooth
locally decodable code C ⊂ Fnq of dimension k and locality `.
Figure 1 presents a distributed PIR protocol based on C.

1) Initialization step. User U encodes D into a codeword
c′ ∈ C. Each server S1, . . . , , S` holds a copy of c′. In the
formalism of Definition II.2, it means that c(j) := c′, for
j = 1, . . . , `.
2) Retrieving step for symbol Di. Denote by D a local
decoding algorithm for C.

1) Queries generation: user U calls D to generate at
random a query (q1, . . . , q`) for decoding the symbol
Di. Query qj is sent to server Sj .

2) Servers’ answer: each server Sj reads the encoded
symbol aj := c′qj . Then Sj sends aj to U .

3) Reconstruction: user U collects the ` codeword
symbols (c′qj )j∈[1,`] and feeds the local decoding
algorithm D in order to retrieve Di.

Fig. 1: A distributed PIR protocol based on a locally
decodable code C.

The main drawback of these LDC-based PIR protocols
is their storage overhead, since the ` servers must store
`n/k = `/R times more data than the raw database (R := k/n
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represents the information rate, or rate, of the code). This
issue becomes especially crucial as building LDCs with small
locality and high rate is highly non-trivial.

The idea of Augot, Levy-dit-Vehel and Shikfa [2] for
reducing the storage overhead is to benefit from a natural
partition of the support of multiplicity codes [14]. Assume
that each codeword c ∈ C can be split into ` disjoint parts
c(1), . . . , c(`), such that each coordinate qj of any possible
query (q1, . . . , q`) of the PIR protocol corresponds to reading
some symbols on c(j). By sending the part c(j) to server Sj ,
the PIR protocol of Figure 1 can be improved in order to save
storage. We devote Section VII to more explanation on this
construction, as well as to a comparison with our schemes.

Finally, one can notice that the communication complexity
of LDC-based PIR protocols depends on the locality of the
code, while the smoothness of the code serves their privacy.
We also point out two important remarks.

1) Assuming a noiseless transmission and honest-but-
curious servers (i.e. they want to discover the index of the
desired symbol but never give wrong answers), one does
not need a powerful local decoding algorithm. Indeed,
it should be possible to reconstruct the desired symbol
Di by local decoding only one erasure on the codeword.
For instance, computing a single low-weight parity-check
sum should be enough.

2) Smoothness is sufficient for 1-privacy, but we need more
structure for preventing collusions of servers.

Coupled with the fact that we want to split the database over
several servers, these remarks lead us to design other kinds
of encoding, which answer as close as possible the needs of
private information retrieval protocols. Our construction relies
on combinatorial structures, namely transversal designs, that
we recall in the upcoming section.

III. TRANSVERSAL DESIGNS AND CODES

Let us give here the definition of transversal designs and
how to build linear codes upon them. We refer to [1], [16]
and [8] for complementary details.

Definition III.1 (block design). A block design is a pair D =
(X,B) where X is a finite set of so-called points, and B is a
set of non-empty subsets of X called the blocks.

Definition III.2 (incidence matrix). Let D = (X,B) be a
block design. An incidence matrix MD of D is a matrix of
size |B| × |X|, whose (i, j)−entry, for i ∈ B and j ∈ X , is:{

1 if the block i contains the point j,
0 otherwise.

The q-rank of MD is the rank of MD over the field Fq .

For B ⊂ X , the incidence vector 1B ∈ {0, 1}X is the row
vector whose x-th coordinate is 1 if and only if x ∈ B. Let
us notice that, given a design D = (X,B), one can build MD
by stacking incidence vectors of blocks B ∈ B.

Of course, any design admits many incidence matrices,
depending on the way points and blocks are ordered. However,
all these incidence matrices are equal up to some permutation
of their rows and columns, and, in particular, they all have

the same q-rank. Hence, we call q-rank of a design the q-
rank of any of its incidence matrices. Moreover, from now on
we consider incidence matrices of designs up to an ordering
of points and blocks, and we abusively refer to the incidence
matrix MD of a design D.

Example III.3. Let A2(F3) be the affine plane over the finite
field F3, and X be the set consisting of its 9 points:

X = { (0, 0), (0, 1), (0, 2), (1, 0), (1, 1),
(1, 2), (2, 0), (2, 1), (2, 2) } .

We define the block set B as the set of the 12 affine lines of
A2(F3):

B = { {(0, 0), (0, 1), (0, 2)}, {(1, 0), (1, 1), (1, 2)},
{(2, 0), (2, 1), (2, 2)}, {(0, 0), (1, 1), (2, 2)},
{(1, 0), (2, 1), (0, 2)}, {(2, 0), (0, 1), (1, 2)},
{(0, 0), (2, 1), (1, 2)}, {(1, 0), (0, 1), (2, 2)},
{(2, 0), (1, 2), (0, 2)}, {(0, 0), (1, 0), (2, 0)},
{(0, 1), (1, 1), (2, 1)}, {(0, 2), (1, 2), (2, 2)} } .

The pair D = (X,B) is then a block design, and its associated
(12× 9)–incidence matrix is

MD =



1 1 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 1 0 0 1 0 0 1 0
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0
0 0 1 0 0 1 0 0 1
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1



.

A computation shows that over the field F2, matrix MD is
full-rank, while over F3, it has only rank 6.

Definition III.4 (transversal design). Let s, ` ≥ 2 and
λ ≥ 1 be integers. A transversal design, denoted TDλ(`, s),
is a block design (X,B) equipped with a partition G =
{G1, . . . , G`} of X called the set of groups, such that:
• |X| = `s;
• any group in G has size s and any block in B has size `;
• any unordered pair of elements from X is contained either

in one group and no block or in no group and λ blocks.
If λ = 1, we use the simpler notation TD(`, s).

Remark III.5. A block cannot be secant to a group in more
than one point, otherwise the third condition of the definition
would be disproved. Moreover, since the block size equals the
number of groups, any block must meet any group. Hence the
following holds:

∀(B,G) ∈ B × G, |B ∩G| = 1 .

The definition also implies there must lie exactly λs2 blocks
in B.

Example III.6. Let D = (X,B) be the block design defined
in Example III.3. Define G to be any set of 3 parallel lines
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from B which partitions the point set X . For instance, one can
consider

G = { {(0, 0), (0, 1), (0, 2)},
{(1, 0), (1, 1), (1, 2)},
{(2, 0), (2, 1), (2, 2)} } .

Then, T = (X,B \ G,G) is a transversal design TD(3, 3).
Indeed, T is composed of `s = 9 points, ` = 3 groups of size
s = 3 and s2 = 9 blocks of size ` = 3 each. Moreover,
in the affine plane every unordered pair of points belongs
simultaneously to a unique line, which is represented in T
either by a group or by a block. More generally, for any prime
power q, a transversal design TD(q, q) can be built with the
affine plane A2(Fq). A generalisation of this construction will
be given in Subsection V-A.

A simple way to build linear codes from block designs is to
associate a parity-check equation of the code to each incidence
vector of a block of the design. We recall that the dual code
C⊥ of a code C ⊆ Fnq is the linear vector space consisting of
vectors h ∈ Fnq such that ∀c ∈ C,

∑n
i=1 cihi = 0.

Definition III.7 (code of a design). Let Fq be a finite field,
D = (X,B) be a block design and MD be its incidence
matrix. The code Codeq(D) is the Fq-linear code of length
|X| admitting MD as a parity-check matrix.

Remark III.8. The code Codeq(D) is uniquely defined up
to a chosen order of the points X . For different orders, the
arising codes remain permutation-equivalent. Also notice that
the way blocks are ordered does not affect the code.

For any design D, the dimension over Fq of Codeq(D)
equals |X|−rankq(MD). Since MD has coefficients in {0, 1},
one must notice that rankq(MD) = rankp(MD), where p is
the characteristic of the field Fq .

Remark III.9. Standard literature (e.g. [1]) sometimes defines
Codeq(D) (and not Codeq(D)⊥) to be the vector space
generated by the incidence matrix of the design. We favor
this convention because Codeq(D) will serve to encode the
database in our PIR scheme.

Example III.10. The design D from Example III.3 gives rise
to C = Code3(D), a linear code over F3, of length 9 and
dimension 3. A full-rank generator matrix of C is given by:

G =

 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2

 .

One may notice that this code is the generalized Reed-Muller
code of degree 1 and order 2 over F3, that is, the evaluation
code of bivariate polynomials of total degree at most 1 over
the whole affine plane F2

3.

Definition III.11 (systematic encoding). Let C ⊆ Fnq be a
linear code of dimension k ≤ n. A systematic encoding for
C is a one-to-one map φ : Fkq → C, such that there exists an
injective map σ : [1, k]→ [1, n] satisfying:

∀m ∈ Fkq ,∀i ∈ [1, k], mi = φ(m)σ(i) .

The set σ([1, k]) ⊆ [1, n] is called an information set of C.

In other words, a systematic encoding allows to view the
message m as a subword of its associated codeword φ(m) ∈ C.
For instance, it is useful for retrieving m from c efficiently,
when the codeword c has not been corrupted. A systematic
encoding exists for any code C, is not necessarily unique, and
can be computed through a Gaussian elimination over any
generator matrix of the code. Also notice that this computation
can be tedious for large codes.

IV. 1-PRIVATE PIR PROTOCOLS BASED ON TRANSVERSAL
DESIGNS

In this section we present our construction of PIR protocols
relying on transversal designs. The idea is that the knowledge
of one point of a block of a transversal design gives (almost)
no information on the other points lying on this block. The
code associated to such a design then transfers this property to
the coordinates of codewords. Hence, we obtain a PIR protocol
which can be proven 1-private, that is, which ensures perfect
privacy for non-communicating servers. Though this protocol
cannot resist collusions, we will see in Section VI that a natural
generalisation leads to t-private PIR protocols with t > 1.

Notice that both Fazeli et al.’s work [11] and ours make
use of codes in order to save storage in PIR protocols.
Nevertheless, we emphasize that the constructions are very
different, since Fazeli et al. emulate a PIR protocol from an
existing one while we build our PIR protocols from scratch.

A. The transversal-design-based distributed PIR protocol

Let T be a transversal design TD(`, s) and n = |X| = `s.
Denote by C = Codeq(T ) ⊆ Fnq the associated Fq-linear code,
and let k = dimFq

C. Our PIR protocol is defined in Figure 2.
We then summarize the steps of the construction in Figure 3.

B. Analysis

We analyse our PIR scheme by proving the following:

Theorem IV.1. Let D be a database with k entries over Fq ,
and T = TD(`, s) be a transversal design, whose incidence
matrix has rank `s−k over Fq . Then, there exists a distributed
`-server 1-private PIR protocol with:
• only one Fq-symbol to read for each server,
• `− 1 field operations over Fq for the user,
• ` log(sq) bits of communication (` log s are uploaded,
` log q are downloaded),

• a (total) storage overhead of (`s − k) log q bits on the
servers.

Proof. Recall the PIR protocol we are dealing with is defined
in Figure 2.

Correctness. By definition of the code C = Codeq(T ), the
incidence vector 1B of any block B ∈ B belongs to the dual
code C⊥. Hence, for c ∈ C, the inner product 1B · c vanishes,
or said differently,

∑
x∈B cx = 0. We recall that j∗ represents

the index of the group which contains i. Since the servers
Sj , j 6= j∗, receive queries corresponding to the points of a
block B which contains i, we have ci = −

∑
x∈B\{i} cx =

−
∑
j 6=j∗ cqj , and our PIR protocol is correct as long as there

is no error on the symbols aj := cqj returned by the servers.
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Parameters: T = (X,B,G) is a TDλ(`, s); C =
Codeq(T ) has length n = `s and dimension k.

1) Initialization step.
1) Encoding. User U computes a systematic encoding

of the database D ∈ Fkq , resulting in the codeword
c ∈ C.

2) Distribution. Denote by c(j) = c|Gj
the symbols of

c whose support is the group Gj ∈ G. Each server
Sj receives c(j), for 1 ≤ j ≤ `.

2) Retrieving step for symbol ci for i ∈ X . Denote
by j∗ ∈ [1, `] the index of the unique group Gj∗ which
contains i — that is, ci = c

(j∗)
r for some r ∈ [1, s]. Also

denote by B∗ the subset of blocks containing i. The three
steps of the distributed PIR protocol are:

1) Queries generation. U picks uniformly at random a
block B ∈ B∗. For j 6= j∗, user sends the unique
index qj ∈ B ∩Gj to server Sj . Server Sj∗ receives
a random query qj∗ uniformly picked in Gj∗ . To sum
up ( $←− stands for “picked uniformly at random in”):

Q(i)j∗
$←− Gj∗ , for j∗ s.t. i ∈ Gj∗

B
$←− B∗ for j 6= j∗Q(i)j ← B ∩Gj ,

2) Servers’ answer. Each server Sj (including Sj∗ ) reads
aj := cqj and sends it back to the user. That is,

A(qj , c
(j)) = cqj .

3) Reconstruction. Denote by a = {a1, . . . , a`} and
q = {q1, . . . , q`}. User U computes

r = R(i,a,q) := −
∑
j 6=j∗

aj = −
∑
j 6=j∗

cqj

and outputs r.

Fig. 2: A 1-private distributed PIR protocol based on
the Fq-linear code defined by a transversal design.

Transversal design TD(`, s)

incidence matrix
��

TD-based linear code Codeq(TD(`, s)) ⊆ F`sq

database encoding
��

Distributed PIR scheme

Fig. 3: Summary of the steps leading to the construction
of a transversal-design-based PIR scheme.

Security (1-privacy). We need to prove that for all j ∈
[1, `], it holds that P(i | qj) = P(i), where probabilities are
taken over the randomness of B ← B∗. The law of total

probability implies

P(i | qj) = P(i | qj and i ∈ Gj)P(i ∈ Gj)
+ P(i | qj and i /∈ Gj)P(i /∈ Gj)

= P(i | i ∈ Gj)P(i ∈ Gj)
+ P(i | i /∈ Gj)P(i /∈ Gj)

= P(i) ,

and the reasons why we eliminated the random variable qj in
the conditional probabilities are:

• in the case i ∈ Gj (that is, j = j∗), by definition of our
PIR protocol we know that qj is uniformly random, so
qj and i are independent;

• in the case i /∈ Gj , by definition of a transversal design,
there are as many blocks containing both qj and i as there
are blocks containing qj and any i′ in X\Gj (the number
of such blocks is always λ). So once again, the value of
the random variable qj is not related to i.

Communication complexity. Exactly one index in [1, s]
and one symbol in Fq are exchanged between each server
and the user. So the overall communication complexity is `×
(log(s) + log(q)) = ` log(sq) bits.

Storage overhead. The number of bits stored on a server is
s log q, giving a total storage overhead of (`s−k) log q, where
k = dim C.

Computation complexity. Each server Sj only needs to
read the symbol defined by query qj , hence our protocol incurs
no extra computational cost.

Theorem IV.1 shows that, if we want to optimize the
practical parameters of our PIR scheme, we basically need to
look for small values of `, the number of groups. However, one
observes that the dimension k of Codeq(T ) strongly depends
on ` and n, and tiny values of ` can lead to trivial or very small
codes. This issue should be carefully taken into account, since
instances with k < ` represent PIR protocols which are more
communication expensive to use than the trivial one, which
simply retrieves the whole database. Hence, it is very natural
to raise the main issue of our construction:

Problem IV.2. Find codes C = Codeq(T ) arising from
transversal designs T = TD(`, s) with few groups (small `)
and large dimension k = dimFq C compared to their length
n = `s.

We first give a negative result, stating that the characteristic
of the field Fq should be chosen very carefully in order to
obtain non-trivial codes.

Proposition IV.3. Let T = (X,B,G) be a TDλ(`, s). Let
q = pe, p prime. If p - λs, then

Codeq(T ) ⊆ {c ∈ Fs`q ,∀G ∈ G, c|G ∈ Rep(s)} ,

where Rep(s) represents the repetition code of length s. In
particular, if p - λs, then Codeq(T ) has dimension at most `.

Proof. For x ∈ X , recall that Bx = {B ∈ B, x ∈ B}, and de-
note by a(x) =

∑
B∈Bx

1B . We know that a(x) ∈ Codeq(T )⊥,
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since Codeq(T )⊥ is generated by {1B , B ∈ B}. Denote by
Gx ∈ G the only group that contains x. We see that:

a
(x)
x = λs

a
(x)
i = 0 for all i ∈ Gx \ {x}
a
(x)
j = λ for all j ∈ X \Gx .

Therefore a(x) − a(y) = λs(1{x} − 1{y}) if x and y lie in
the same group G. If p - λs, then we get 1{x} − 1{y} ∈
Codeq(T )⊥. Let now

C = SpanFq
{1{x} − 1{y},∀x, y ∈ X s.t. {x, y} ⊂ G ∈ G}

We see that C⊥ = {c ∈ Fs`q ,∀G ∈ G, c|G ∈ Rep(s)}.
Therefore we obtain the expected result.

In the perspective of Problem IV.2, the following section is
devoted to the construction of transversal designs with high
rate.

V. EXPLICIT CONSTRUCTIONS OF 1-PRIVATE TD-BASED
PIR PROTOCOLS

From now on, we denote by `(k) the number of servers
involved in a given PIR protocol running on a database with
k entries, and by n(k) the actual number of symbols stored
by all the servers. As it is proved in Theorem IV.1, these
two parameters are crucial for the practicality of our PIR
schemes, and they respectively correspond to the block size
and the number of points of the transversal design used in the
construction. In practice, we look for small values of ` and n
as explained in Problem IV.2.

In this section, we first give two classical instances of
transversal designs derived from finite geometries (Subsec-
tions V-A and V-B), leading to good PIR parameters. We then
show how orthogonal arrays produce transversal designs, and
we more deeply study a family of such arrays leading to high-
rate codes. Subsection V-D is finally devoted to another family
of orthogonal arrays whose divisibility properties ensure to
give an upper bound on the storage overhead of related PIR
protocols.

A. Transversal designs from affine geometries

Transversal designs can be built with incidence properties
between subspaces of an affine space.

Construction V.1 (Affine transversal design). Let Am(Fq)
be the affine space of dimension m over Fq , and H =
{H1, . . . ,Hq} be q hyperplanes that partition Am(Fq). We
define a transversal design TA(m, q) as follows:
• the point set X consists in all the points in Am(Fq);
• the groups in G are the q hyperplanes from H;
• the blocks in B are all the 1-dimensional affine subspaces

(lines) which do not entirely lie in one of the Hj ,
j ∈ [1, q]. We also say that such lines are secant to the
hyperplanes in H .

The design thus defined is a TD(q, qm−1), since an affine
line is either contained in one of the Hj , or is 1-secant (i.e. has
intersection of size 1) to each of them. To complete the study

of the parameters of the induced PIR protocol, it remains to
compute the dimension of Code(TA(m, q)).

Proposition IV.3 first proves that if p does not divide λs = q,
then the code Codep(TA(m, q)) has poor dimension. Since our
goal is to obtain the largest codes as possible, we choose p to
be, for instance, the characteristic of the field Fq .

Now notice that all blocks of TA(m, q) belong to the block
set of the affine geometry design AG1(m, q) — which is de-
fined as the incidence structure of all points and affine lines in
Am(Fq). Thus, the incidence matrix MTA(m,q) is a sub-matrix
of MAG1(m,q), which implies that Codep(AG1(m, q)) ⊆
Codep(TA(m, q)) for any field Fp. In fact, equality holds as
shows the following result.

Proposition V.2. For every q = pe and m ≥ 2, we have

Codep(AG1(m, q)) = Codep(TA(m, q)) .

Proof. Denote by B(AG) the blocks of AG1(m, q), and by
B(T ) and G(T ) the blocks and groups of TA(m, q). Thanks to
the previous discussion, we only need to show that for every
block B ∈ B(AG) contained in a group G ∈ G(T ), it holds
that 1B ∈ Codep(TA(m, q))⊥. For this sake, first notice that
Codep(TA(m, q))⊥ = Span{1B′ , B′ ∈ B(T )}.

Let now G ∈ G(T ) and B ∈ B(AG) such that B ⊆ G.
Recall that G is a hyperplane of Am(Fq), and let P be a 2-
dimensional affine plane of Am(Fq) such that P ∩G = B. We
claim that 1P ∈ Span{1B′ , B′ ∈ B(T )}. Indeed, P admits a
partition into affine lines which are secant to every hyperplane
in G. Thus 1P can be written as sum of the characteristic
vectors of these lines.

Now let x ∈ B, and B(T )
x,P := {B′ ∈ B(T ), x ∈ B′ ⊂

P} ⊆ B(T ). Define b(x) =
∑
B′∈B(T )

x,P

1B′ . It is clear that

b(x) ∈ Span{1B′ , B′ ∈ B(T )}, and we can notice that
b
(x)
x = q = 0,

b
(x)
i = 0 for all i ∈ B \ {x},
b
(x)
j = 1 for all j ∈ P \B .

In other words, b(x) = 1P − 1B , therefore 1B ∈
Span{1B′ , B′ ∈ B(T )}.

The benefit to consider AG1(m, q) is that the p-rank of
its incidence matrix has been well-studied. For instance,
Hamada [12] gives a generic formula to compute the p-rank of
a design coming from projective geometry. Yet, as presented in
Appendix A, asymptotics are hard to derive from his formula
for a generic value of m.

However, if m = 2, we know that rankp(AG1(2, pe)) =(
p+1
2

)e
, which implies that

dim(Codep(TA(2, pe))) = p2e −
(
p+1
2

)e
.

Hence we obtain the following family of PIR protocols.

Proposition V.3. Let D be a database with k = p2e−
(
p+1
2

)e
entries, p a prime, e ≥ 1. There exists a distributed 1-private
PIR protocol for D with:

`(k) = pe and n(k) = p2e .
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For fixed p and k →∞, we have

`(k) =
√
k + Θ(k

1
2+cp) and

n(k)/k = 1

1−( 1+1/p
2 )

e = 1 + Θ(kcp)→ 1 , (1)

where cp = 1
2 logp(

1+1/p
2 ) < 0.

Proof. The existence of the PIR protocol is a consequence
of the previous discussion, using the family of codes
Codep(TA(2, pe)). Let us state the asymptotics of the param-
eters. Recall we fix the prime p and we let e→∞. First we
have:

n(k)/k =
p2e

p2e −
(
p+1
2

)e =
1

1−
(

1+1/p
2

)e
= 1 +

(
1 + 1/p

2

)e
+O

((
1 + 1/p

2

)2e
)
.

(2)

Notice that

logp k = 2e+ logp

(
1−

(
1 + 1/p

2

)e)
= 2e+O

((
1 + 1/p

2

)e)
.

Hence,(
1 + 1/p

2

)e
=

(
1 + 1/p

2

) 1
2 logp k+O(( 1+1/p

2 )
e
)

= k
1
2 logp( 1+1/p

2 ) ×
(

1 + 1/p

2

)O(( 1+1/p
2 )

e
)

= Θ (kcp) ,

since
(

1+1/p
2

)O(( 1+1/p
2 )

e
)
→ 1. Using (2) we obtain the

asymptotics we claimed on n(k)/k.
For `(k), we see that n(k) = `(k)2. Therefore, we get

`(k) =
√
k
√
n(k)/k =

√
k
√

1 + Θ(kcp) =
√
k+ Θ(k

1
2+cp) .

We give in Table I the dimension of some codes arising
from affine transversal designs. Notice that m is not restricted
to 2, but we focus on codes with large, since they aimed at
being applied in PIR protocols.

Finally, for a better understanding of the parameters we can
point out two PIR instances:
• choosing m = 2 and ` = 4096, there exists a PIR

protocol on a ' 2.0 MB file with 6 kB of communication
and only 3.2% storage overhead;

• for a ' 46 GB database (m = 3, ` = 8192), we obtain
a PIR protocol with 39 kB of communication and 27%
storage overhead.

B. Transversal designs from projective geometries

The projective space Pm(Fq) is defined as (Am+1(Fq) \
{0})/ ∼ , where for (P,Q) ∈ (Am+1(Fq) \ {0})2, we have
P ∼ Q if and only if there exists λ ∈ Fq such that P = λQ.
A projective subspace can be defined as the zero set of a

m ` = q n = s` = qm k = dim C R = k/n
2 8 64 37 0.578
2 16 256 175 0.684
2 32 1024 781 0.763
2 64 4096 3367 0.822
2 1024 1 048 576 989 527 0.944
2 4096 16 777 216 16 245 775 0.968
2 16 384 268 435 456 263 652 487 0.982
2 65 536 4 294 967 296 4 251 920 575 0.990
3 8 512 139 0.271
3 16 4096 1377 0.336
3 64 262 144 118 873 0.453
3 256 16 777 216 9 263 777 0.552
3 1024 1 073 741 824 680 200 873 0.633
3 8192 549 755 813 888 400 637 408 211 0.729
4 8 4096 406 0.099
4 64 16 777 216 2 717 766 0.162
4 256 4 294 967 296 890 445 921 0.207
5 8 32 768 994 0.030
5 64 1 073 741 824 44 281 594 0.041

TABLE I: Dimension and rate of binary codes C arising
from TA(m, q). Remind that the rate R of the code is
related to the server storage overhead of the PIR pro-
tocol, and that q = ` is essentially the communication
complexity and the number of servers.

collection of linear forms over Fm+1
q . In particular, a projective

hyperplane is the zero-set of one non-zero linear form over
Fm+1
q .
Projective geometries are closely related to affine geome-

tries, but contrary to them, there is no partition of the projective
space into hyperplanes, since every pair of distinct projective
hyperplanes intersects in a projective space of co-dimension 2.
To tackle this problem, an idea is to consider the hyperplanes
Hi which intersect on a fixed subspace of co-dimension 2
(call it Π∞). Then, all the sets Hi \Π∞ are disjoint, and their
union gives exactly Pm(Fq) \ Π∞, where Pm(Fq) denotes
the projective space of dimension m over Fq . Besides, any
projective line disjoint from Π∞ is either contained in one of
the Hi, or is 1-secant to all of them. It results to the following
construction:

Construction V.4 (Projective transversal design). Let Pm(Fq)
and Π∞ defined as above. Let us define
• a point set X = Pm(Fq) \Π∞;
• a group set G = {projective hyperplanes H ⊂
Pm(Fq), Π∞ ⊂ H};

• a block set B = {projective lines L ⊂ Pm(Fq), L ∩
Π∞ = ∅ and ∀H ∈ G, L 6⊂ H} .

Finally, denote by TP (m, q) := (X,B,G).

The design TP (m, q) is a TD(q + 1, qm−1) and, as in the
affine setting, its p-rank is related to that of PG1(m, q), the
classical design of point-line incidences in the projective space
Pm(Fq). Indeed, the incidence matrix M of TP (m, q) is a
submatrix of MPG1(m,q) from which we removed:
• the columns corresponding to the points in Π∞,
• the rows corresponding to the lines not in B.

Said differently, the code associated to TP (m, q) con-
tains (as a subcode) the Π∞-shortening of the code as-
sociated to PG1(m, q). Hence dim Code(TP (m, q)) ≥
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dim Code(PG1(m, q)) − |Π∞|. Contrary to Proposition V.2,
we could not prove equality, but this is of little conse-
quence: up to using a subcode of Code(TP (m, q)) we can
consider PIR protocols on databases with k entries, where
k = dim Code(PG1(m, q))− |Π∞|.

Once again, for projective geometries Hamada’s formula
gets simpler for m = 2, and leads to the following proposition.

Proposition V.5. Let D be a database with k = p2e + pe −(
p+1
2

)e − 1 entries, p a prime and e ≥ 1. There exists a
distributed 1-private PIR protocol for D with:

`(k) = pe + 1 and n(k) = p2e + pe .

Asymptotics are the same as in Equation (1).

In order to emphasize that the two previous constructions
are asymptotically the same, we draw the rates of the codes
involved in these two kinds of PIR schemes in Figure 4.
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Fig. 4: Rate of binary codes coming from TA(m, q) (in
red) and TP (m, q) (in blue). For every fixed m, we let
q grow.

C. Orthogonal arrays and the incidence code construction
In this subsection, we first recall a way to produce plenty

of transversal designs from other combinatorial constructions
called orthogonal arrays.

Definition V.6 (orthogonal array). Let λ, s ≥ 1 and ` ≥ t ≥ 1,
and let A be an array with ` columns and λst rows, whose
entries are elements of a set S of size s. We say that A is
an orthogonal array OAλ(t, `, s) if, in any subarray A′ of A
formed by t columns and all its rows, every row vector from
St appears exactly λ times in the rows of A′. We call λ the
index of the orthogonal array, t its strength and ` its degree.
If t (resp. λ) is omitted, it is understood to be 2 (resp. 1). If
both these parameters are omitted we write A = OA(`, s).

From now on, for convenience we restrict Definition V.6 to
orthogonal arrays with no repeated column and no repeated
row. Next paragraph introduces a link between orthogonal
arrays and transversal designs.

1) Construction of transversal designs from orthogonal
arrays: We can build a transversal design TD(`, s) from an
orthogonal array OA(`, s) with the following construction,
given as a remark in [8, ch.II.2].

Construction V.7 (Transversal designs from orthogonal ar-
rays). Let A be an OA(`, s) of strength t = 2 and index
λ = 1 with symbol set S, |S| = s, and denote by Rows(A)
the s2 rows of A. We define the point set X = S × [1, `]. To
each row c ∈ Rows(A) we associate a block

Bc := {(ci, i), i ∈ [1, `]} ,

so that the block set is defined as

B := {Bc, c ∈ Rows(A)} .

Finally, let G := {S × {i}, i ∈ [1, `]}. Then (X,B,G) is a
transversal design TD(`, s).

Example V.8. A very simple example of this construction is
given in Figure 5, where for clarity we use letters for elements
of the symbol set {a, b}, while the columns are indexed by
integers. On the left-hand side, A is an OA1(2, 3, 2) with
symbol set {a, b}. On the right-hand side, the associated
transversal design TD(3, 2) is represented as a hypergraph:
the nodes are the points of the design, the “columns” of the
graph form the groups, and a block consists in all nodes linked
with a path of a fixed color. One can check that every pair of
nodes either belongs to the same group or is linked with one
path.

A =


a b b
b b a
b a b
a a a

 =⇒
(a, 1) (a, 2) (a, 3)

(b, 1) (b, 2) (b, 3)

Fig. 5: A representation of the construction of a
transversal design from an orthogonal array.

Remark V.9. Listed in rows, all the codewords of a (generic)
code C0 give rise to an orthogonal array, whose strength t is
derived from the dual distance d′ of C0 by t = d′ − 1. Notice
that for linear codes, the dual distance is simply the minimum
distance of the dual code, but it can also be defined for non-
linear codes (see [15, Ch.5.§5.]). More details about the link
between orthogonal arrays and codes can also be found in [8].
For example, the orthogonal array of Figure 5 comes from
the binary parity-check code of length 3 (by replacing a by 0
and b by 1). One can check that its dual distance is 3 and its
associated transversal design has strength 2.

Given a code C0, we denote by AC0 the orthogonal array
it defines (see Remark V.9) and by TC0 the transversal design
built from AC0 thanks to Construction V.7.

Example V.10. Let x = (x1, . . . , x`) be an `-tuple of pairwise
distinct elements of Fq and denote by RS2(x) the Reed-
Solomon code of length ` and dimension 2 over Fq with
evaluation points x:

RS2(x) := {(f(x1), . . . , f(x`)), f ∈ Fq[X], deg f < 2} .
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Then, RS2(x) has dual distance 3, so its codewords form an
orthogonal array ARS2(x) = OA(`, q) of strength 2. Now,
one can use Construction V.7 to obtain a transversal design
TRS2(x) = TD(`, q). The point set is X = Fq × [1, `], and the
blocks are “labeled Reed-Solomon codewords”, that is, sets of
the form {(ci, i), i ∈ [1, `]} with c ∈ RS2(x). The ` groups
correspond to the ` coordinates of the code: Gi = Fq × {i},
1 ≤ i ≤ `.

We can finally sum up our construction by introducing the
code Codeq(TC0) arising from the transversal design defined
by C0. To the best of our knowledge, the construction C0 7→
Codeq(TC0) is new. We name Codeq(TC0) the incidence code
of C0, since its parity-check matrix MTC0 essentially stores
incidence relations between all the codewords in C0.

Definition V.11 (incidence code). Let C0 be a (generic) code
of length ` over an alphabet S of size s. The incidence code of
C0 over Fq , denoted ICq(C0), is the Fq-linear code of length
n = s` built from the transversal design TC0 , that is:

ICq(C0) := Code(TC0) .

Notice that the field Fq does not need to be the alphabet S of
the code C0.

Incidence codes are introduced in order to design PIR
protocols, as summarizes Figure 6. We can show that, if C0 has
dual distance more than 3, then the induced PIR protocol is 1-
private. A generalisation is formally proved in Corollary VI.8.

Base code C0OO

equivalence (Rem. V.9)

��
Orthogonal array

Construction V.7 [8, ch.II.2]
��

Transversal design

incidence matrix
��

Incidence code of C0
database encoding
��

Distributed PIR scheme

Fig. 6: A distributed PIR scheme using the incidence
code construction.

Example V.12. Here we provide a full example of the
construction of an incidence code. Let C0 be the full-length
Reed-Solomon code of dimension 2 over the field F4 =
{0, 1, α, α2 = α + 1}. The orthogonal array associated to C0
is composed by the following list of codewords:

A =



0, 0, 0, 0
1, 1, 1, 1
α, α, α, α
α2, α2, α2, α2

0, 1, α, α2

0, α, α2, 1
0, α2, 1, α
1, 0, α2, α
1, α2, α, 0
1, α, 0, α2

α, α2, 0, 1
α, 0, 1, α2

α, 1, α2, 0
α2, α, 1, 0
α2, 1, 0, α
α2, 0, α, 1


Using Construction V.7, we get a transversal design TC0 =
(X,B,G) with 16 points (4 groups made of 4 points) and 16
blocks. Let us recall how we map a row of A to a word in
{0, 1}16. For instance, consider the fifth row:

a := A5 = (0, 1, α, α2) .

We turn a into a block Ba := {(0, 1), (1, 2), (α, 3), (α, 4)} ∈
B, and we build the incidence vector 1Ba of the block Ba
over the point set X = {(β, i), i ∈ [1, 4], β ∈ F4}. Of course,
in order to see 1Ba

as a word in {0, 1}16, we need to order
elements in X , for instance:(

(0, 1), (1, 1), (α, 1), (α2, 1),
(0, 2), (1, 2), (α, 2), (α2, 2),
(0, 3), (1, 3), (α, 3), (α2, 3),
(1, 4), (1, 4), (α, 4), (α2, 4)

)
.

Using this ordering, we get:

1Ba
=
(
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1

)
∈ {0, 1}16 .

By computing all the 1Ba
for a ∈ Rows(A), we obtain the

incidence matrix M of the transversal design TC0 :

M =



1000 1000 1000 1000
0100 0100 0100 0100
0010 0010 0010 0010
0001 0001 0001 0001
1000 0100 0010 0001
1000 0010 0001 0100
1000 0001 0100 0010
0100 1000 0001 0010
0100 0001 0010 1000
0100 0010 1000 0001
0010 0001 1000 0100
0010 1000 0100 0001
0010 0100 0001 1000
0001 0010 0100 1000
0001 0100 1000 0010
0001 1000 0010 0100



,

Notice that this matrix can be quickly obtained by respectively
replacing entries 0, 1, α and α2 in the array A by the binary
4-tuples (1000), (0100), (0010) and (0001) in the matrix
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M (of course this map depends on the ordering of X we
have chosen, but another choice would lead to a column-
permutation-equivalent matrix, hence a permutation-equivalent
code). Notice that in matrix M , coordinates lying in the same
group of the transversal design have been distinguished by
dashed vertical lines.

Matrix M then defines, over any extension F2e of the
prime field F2, the dual code of the so-called incidence code
IC2e(C0). For all values of e, the incidence codes IC2e(C0)
have the same generator matrix of 2-rank 7, being:

G =



1001 0000 0011 1010
0101 0000 0110 0011
0011 0000 0101 0110
0000 1001 0101 1100
0000 0101 0011 0110
0000 0011 0110 0101
0000 0000 1111 1111


.

2) A deeper analysis of incidence codes coming from linear
MDS codes of dimension 2: Incidence codes lead to an
innumerably large family of PIR protocols — as many as
there exists codes C0 — but most of them are not practical for
PIR protocols (essentially because the kernel of the incidence
matrix is too small). To simplify their study, one can first
remark that intuitively, the more blocks a transversal design,
the larger its incidence matrix, and consequently, the lower the
dimension of its associated code. But the number of blocks of
TC0 is the cardinality of C0. Hence, informally the smaller the
code C0, the larger IC(C0).

We recall that a [n, k, d] linear code is said to be maximum
distance separable (MDS) if it reaches the Singleton bound
n + 1 = k + d. Besides, the dual code of an MDS code is
also MDS, hence its dual distance is k + 1. In this paragraph
we analyse the incidence codes constructed with MDS codes
of dimension 2. Their interest lies in being the smallest codes
with dual distance 3, which is the minimal setting for defining
1-private PIR protocols.

Generalized Reed-Solomon codes are the best-known family
of MDS codes.

Definition V.13 (generalized Reed-Solomon code). Let ` ≥
k ≥ 1. Let also x ∈ F`q be a tuple of pairwise distinct so-called
evaluation points, and y ∈ (F×q )` be the column multipliers.
We associate to x and y the generalized Reed-Solomon (GRS)
code:

GRSk(x,y) := {(y1f(x1), . . . , y`f(x`)),

f ∈ Fq[X],deg f < k} .
Generalized Reed-Solomon codes GRSk(x,y) are linear

MDS codes of dimension k over Fq , and they give usual
Reed-Solomon codes when y = (1, . . . , 1). Moreover, GRS
codes are essentially the only MDS codes of dimension 2, as
states the following lemma whose proof can be found in the
Appendix.

Lemma V.14. All [`, 2, ` − 1] MDS codes over Fq with 2 ≤
` ≤ q are generalized Reed-Solomon codes.

Let us study the consequences of Lemma V.14 in terms
of transversal designs. We say a map φ : X → X ′ is

an isomorphism between transversal designs (X,B,G) and
(X ′,B′,G′) if it is one-to-one and if it preserves the incidence
relations, or in other words, if φ is invertible on the points,
blocks and groups:

φ(X) = X ′, φ(B) = B′, φ(G) = G′.

Lemma V.15. Let C, C′ be two codes such that C′ = y ∗ C
for some y ∈ (F×q )`, where ∗ is the coordinate-wise product
of `-tuples. Recall TC , TC′ are the transversal designs they
respectively define. Then, TC and TC′ are isomorphic.

Proof. Write TC = (X,B,G) and TC′ = (X ′,B′,G′). From
the definition it is clear that X = X ′ = Fq × [1, `] and G =
G′ = {Fq × {i}, 1 ≤ i ≤ `}. Now consider the blocks sets.
We see that B = {{(ci, i), 1 ≤ i ≤ `}, c ∈ C} and B′ =
{{(yici, i), 1 ≤ i ≤ `}, c ∈ C}. Let:

φy : Fq × [1, `] → Fq × [1, `]
(x, i) 7→ (yix, i)

The vector y is ∗-invertible, hence φy is one-to-one on the
point set X . It remains to notice that φy maps G to itself
since it only acts on the first coordinate, and that φy(B) is
exactly B′ by definition of C and C′.

Proposition V.16. Let 2 ≤ ` ≤ q and C0 be an [`, 2, `−1]q lin-
ear (MDS) code. Let also Fp be any finite field. The incidence
code ICp(C0) is permutation-equivalent to ICp(RS2(x)), with
x ∈ F`q , xi 6= xj .

Proof. Lemma V.14 shows that all [`, 2, `−1]q linear codes C0
can be written as y∗RS2(x) for some x ∈ F`q . Moreover, with
the previous notation φy(TRS2(x)) = Ty∗RS2(x), so we have
u ∈ ICp(y ∗RS2(x)) if and only if u ∈ Codep(φy(TRS2(x))).
Now, let:

φ̃y : FXp → FXp
u = (ux)x∈X 7→ (uφy(x))x∈X

.

Clearly φ̃y(ICp(RS2(x))) = Codep(φy(TRS2(x))) and φ̃y
is a permutation of coordinates. So ICp(C0) is permutation-
equivalent to ICp(RS2(x)) which proves the result.

In our study of incidence codes of 2-dimensional MDS
codes C0, the previous proposition allows us to restrict our
work on Reed-Solomon codes C0 = RS2(x) with x an `-tuple
on pairwise distinct Fq-elements.

A first result proves that if x contains all the elements in
Fq , then ICq(RS2(x)) is the code which has been previously
studied in subsection V-A. More precisely,

Proposition V.17. The following two codes are equal up to
permutation:

1) C1 = ICq(RS2(Fq)), the incidence code over Fq of the
full-length Reed-Solomon code of dimension 2 over Fq;

2) C2, the code over Fq based on the transversal design
TA(2, q).

Proof. It is sufficient to show that the transversal design
defined by C0 = RS2(Fq) is isomorphic to TA(2, q). Let us
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enumerate Fq = {x1, . . . , xq}. We recall that TC0 = (X,B,G)
where:

X = Fq × [1, q],

B = {{(ci, i), i ∈ [1, q]}, c ∈ C0},
G = {{(α, i), α ∈ Fq}, i ∈ [1, q]} ,

and that TA(2, q) = (X ′,B′,G′) with:

X ′ = Fq × Fq,
B′ = {{(axi + b, xi), i ∈ [1, q]}, (a, b) ∈ F2

q}
G′ = {{(α, xi), α ∈ Fq}, i ∈ [1, q]} .

In the light of the above, one defines φ : X → X ′, (α, i) 7→
(α, xi), which is clearly one-to-one and satisfies φ(G) = G′.
Moreover, a codeword c ∈ C0 is the evaluation of a polynomial
of degree ≤ 1 over Fq . Hence for some (a, b) ∈ F2

q , we have
ci = axi + b,∀i. This proves that φ extends to a one-to-one
map B → B′, giving the desired isomorphism.

It remains to study the case of tuples x of length ` < q.
First, one may notice that ICq(RS2(x)) is a shortening of
ICq(RS2(Fq)). Indeed, we have the following property:

Lemma V.18. Let C0 be a linear code of length ` over Fq ,
and C0 be a puncturing of C0 on s positions. Then for all
prime powers q′, ICq′(C0) is a shortening of ICq′(C0) on
the coordinates corresponding to s groups of the transversal
design TC0 .

Proof. Without loss of generality, we can assume that C0 is
punctured on its s last coordinates in order to give C0. Let
us analyse the link between TC0 = (X,B,G) and TC0 =
(X,B,G). We have:

X = Fq × [1, `− s] ⊂ X,
G = {Fq × {i}, i ∈ [1, `− s]} ⊂ G,
B = {B ∩X, B ∈ B}

Let C = ICq′(C0) and C = ICq′(C0). For clarity, we index
words in C (resp. C) by X (resp. X). For c ∈ FXq′ , we define
ext(c) := c ∈ FXq′ , such that c|X = c and c|X\X = 0.
By definition of code’s puncturing/shortening, all we need to
prove is:

C = {c ∈ FXq′ , ext(c) ∈ C}.

Remind that C is defined as the set of c ∈ FXq′ satisfying∑
b∈B cb = 0 for every B ∈ B. Hence we have:

c ∈ C ⇐⇒
∑
b∈B

cb = 0, ∀B ∈ B

⇐⇒
∑

b∈B∩X

cb = 0, ∀B ∈ B

⇐⇒
∑

b∈B∩X

ext(c)b

+
∑

b∈B∩(X\X)

ext(c)b = 0, ∀B ∈ B

⇐⇒
∑
b∈B

ext(c)b = 0, ∀B ∈ B

⇐⇒ ext(c) ∈ C

We conclude the proof by pointing out that X \X is a union
of s distinct groups from G.

Despite this result, incidence codes of Reed-Solomon codes
RS2(x) remain hard to classify for |x| = ` < q. Indeed, for
a given length ` < q, some IC(RS(x)) appear to be non-
equivalent. Their dimension can even be different, as shows
an exhaustive search on IC16(RS(x)) with pairwise distinct
x ∈ F`q , q = 16 and ` = 5: we observe that 48 of these codes
have dimension 24 while the 4320 others have dimension 22.
Further interesting research would then be to understand the
values of x leading to the largest codes, for a fixed length
|x| = `.

D. High-rate incidence codes from divisible codes

In this subsection, we prove that linear codes C0 satisfying
a divisibility condition yield incidence codes whose rate is
roughly greater than 1/2. Let us first define divisible codes.

Definition V.19 (divisibility of a code). Let p ≥ 2. A linear
code is p-divisible if p divides the Hamming weight of all its
codewords.

A study of the incidence matrix which defines an incidence
code leads to the following property.

Lemma V.20. Let C0 be a code of length ` over a set S, and
let T be the transversal design associated to C0. We denote by
M the incidence matrix of T , where rows of M are indexed
by codewords from C0. Then we have:

(MMT )c,c′ = `− d(c, c′) ∀c, c′ ∈ C0 ,

where d(·, ·) denotes the Hamming distance.

Proof. For clarity we adopt the notation M [c, (α, i)] for the
entry of M which is indexed by the codeword c ∈ C0 (for the
row), and (α, i) ∈ S × [1, `] (for the column). We also denote
by 1U(c,i,α) ∈ {0, 1} the boolean value of the property U , that
is, 1U(c,i,α) = 1 if and only if U(c, i, α) is satisfied. Now, let
c, c′ ∈ C0.

(MMT )c,c′ =
∑

α∈S, i∈[1,`]

M [c, (α, i)]M [c′, (α, i)]

=
∑

α∈S, i∈[1,`]

1ci=α1c′i=α

=
∑̀
i=1

∑
α∈S

1ci=c′i=α

=
∑̀
i=1

1ci=c′i

= `− d(c, c′) .

Hence, if some prime p divides ` as well as the weight of
all the codewords in C0, then the product MMT vanishes over
any extension of Fp, and M is a parity-check matrix of a code
containing its dual. A more general setting is analyzed in the
following proposition.
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Proposition V.21. Let C0 be a linear code of length ` over S,
|S| = s. Let also C = ICq(C0) with char(Fq) = p. Denote the
length of C by n = `s. If C0 is p-divisible, then

C⊥ ∩ Cpar ⊆ C ,

where Cpar denotes the parity-check code of length n over Fq .
In particular, we get dim C ≥ n−1

2 .
Moreover, if p | `, then C⊥ ⊆ C and dim C ≥ n

2 .

Proof. Let M be the incidence matrix of the transversal
design TC0 . Also denote by J and J ′ the all-ones matrices
of respective size |C0| × n and |C0| × |C0|. If we assume that
C0 is p-divisible, then Lemma V.20 translates into

MMT = `J ′ mod p (3)

while an easy computation shows that

MJT = `J ′ .

Hence, over Fq we obtain

M(M − J)T = 0 (4)

which brings us to consider the code A of length n generated
over Fq by the matrix M − J . Equation (4) indicates that
A ⊆ C. Let Cpar := {c ∈ Fnq ,

∑
i ci = 0} be the parity-check

code of length n over Fq . Notice that c ∈ Cpar ⇐⇒ cJT = 0
and uJ = 0 ⇐⇒ uJ ′ = 0. If p - `, this leads to:

C⊥ ∩ Cpar = {c = uM ∈ Fnq , cJT = 0}
= {c = uM ∈ Fnq , `uJ ′ = 0}
= {c = uM ∈ Fnq , uJ = 0}
= {u(M − J) ∈ Fnq , uJ = 0} ⊆ A ⊆ C .

On the other hand, if p | `, then equation (3) turns into
MMT = 0, meaning that C⊥ ⊆ C.

Finally, the first bound on the dimension comes from

dim C ≥ dim(C⊥ ∩ Cpar) ≥ dim C⊥ − 1 = n− dim C − 1 ,

while the second one is straightforward.

In terms of PIR protocols, previous result translates into the
following corollary.

Corollary V.22. Let p be a prime, and assume there exists
a p-divisible linear code of length `0 over Fq . Then, there
exists k ≥ (`0q − 1)/2 such that we can build a distributed
PIR protocol for a k-entries database over Fq , and whose
parameters are `(k) = `0 and n(k) = `0q ≤ 2k + 1.

Divisible codes over small fields have been well-studied,
and contain for instance the extended Golay codes [15,
ch.II.6], or the famous MDS codes of dimension 3 and length
q + 2 over Fq [15, ch.XI.6].

Example V.23. The extended binary Golay code is a self-dual
[24, 12, 8]2 linear code. It produces a transversal design with
24 groups, each storing 2 points. Its associated incidence code
Code2(Golay) has length n = 24 × 2 = 48 and dimension
≥ 24, and by computation we can show that this bound is
tight.

Remark V.24. In our application for PIR protocols, we would
like to find divisible codes C0 defined over large alphabets
(compared to the code length), but these two constraints
seem to be inconsistent. For instance, the binary Golay code
presented in Example V.23 leads to a PIR protocol with a
too expensive communication cost (24 bits of communication
for an original file of size... 24 bits: that is exactly the
communication cost of the trivial PIR protocol where the
whole database is downloaded). Nevertheless, Example V.23
represents the worst possible case for our construction, in a
sense that the rate of IC2(Golay2) is exactly 1/2 (it attains
the lower bound), and that each server stores 2 bits (which
is the smallest possible). Codes with better rate and/or with
larger server storage capability would then give PIR protocols
with relevant communication complexity. For instance, the
extended ternary Golay code gives better parameters — see
Example VI.9.

Divisible codes over large fields seems not to have been
thoroughly studied (to the best of our knowledge), since coding
theorists use to consider codes over small alphabets as more
practical. We hope that our construction of PIR protocols based
on divisible codes may encourage research in this direction.

VI. PIR PROTOCOLS WITH BETTER PRIVACY

When servers are colluding, the PIR protocol based on a
simple transversal design does not ensure a sufficient privacy,
because the knowledge of two points on a block gives some
information on it. To solve this issue, we propose to use
orthogonal arrays with higher strength t.

A. Generic construction and analysis

In the previous section, classical (t = 2) orthogonal arrays
were used to build transversal designs. Considering higher
values of t, we naturally generalize the latter as follows:

Definition VI.1 (t-transversal designs). Let ` ≥ t ≥ 1. A
t-transversal design is a block design D = (X,B) equipped
with a group set G = {G1, . . . , G`} partitioning X such that:
• |X| = s`;
• any group has size s and any block has size `;
• for any T ⊆ [1, `] with |T | = t and for any (x1, . . . , xt) ∈
GT1
× . . .×GTt

, there exist exactly λ blocks B ∈ B such
that {x1, . . . , xt} ⊂ B.

A t-transversal design with parameters s, `, t, λ is denoted
t-TDλ(`, s), or t-TD(`, s) if λ = 1.

Given a t-transversal design T , we can build a (t−1)-private
PIR protocol with the exactly the same steps as in section IV.
First, we define the code C = Codeq(T ) associated to the
design according to Definition III.7, and then we follow the
algorithm given in Figure 2. Since a t-transversal design is
also a 2-transversal design for t ≥ 2, the analysis is identical
for every PIR feature, except for the security where it remains
very similar.

Security ((t− 1)-privacy). Let T be a collusion of servers
of size |T | ≤ t−1. For varying i ∈ I , the distributions Q(i)|T
are the same because there are exactly λst−1−|T | ≥ λ 6= 0
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blocks which contain both i and the queries known by the
servers in T .

To sum up, the following theorem holds:

Theorem VI.2. Let D be a database with k entries over
Fq , and T = t-TD(`, s) be a t-transversal design, whose
incidence matrix has rank `s − k over Fq . Then, there exists
an `-server (t− 1)-private PIR protocol with:
• only 1 symbol to read for each server,
• `− 1 field operations for the user,
• ` log(sq) bits of communication,
• a (total) storage overhead of (`s − k) log q bits on the

servers.

B. Instances and results

1) t-transversal designs from curves of degree ≤ t − 1:
Looking for instances of t-transversal designs, it is natural to
try to generalise the transversal designs of Construction V.1.
An idea is to turn affine lines into higher degree curves.

Construction VI.3. Let X be the set of points in the affine
plane F2

q , and G = {G1, . . . , Gq} be a partition of X in q
parallel lines. W.l.o.g. we choose the following partition: Gi =
{(y, αi), y ∈ Fq} for each αi ∈ Fq . Blocks are now defined
as the sets of the form

BF = {(F (x), x), x ∈ Fq}, where F ∈ Fq[x], degF ≤ t−1.

Lemma VI.4. The design (X,B,G) given in Construc-
tion VI.3 forms a t-transversal design t-TD1(q, q).

Proof. The group set indeed partitions X into q groups,
each of size q. It remains to check the incidence property.
Let {GT1

, . . . , GTt
} be a set of t distinct groups, and let

((yT1
, xT1

), . . . , (yTt
, xTt

)) ∈ GT1
×· · ·×GTt

. From Lagrange
interpolation theorem, we know there exists a unique polyno-
mial F ∈ Fq[X] of degree ≤ t− 1 such that:

F (xTj ) = yTj ∀1 ≤ j ≤ t .

Said differently, there is a unique block which contains the t
points {(yTj

, xTj
)}1≤j≤t.

We do not yet analyse the rank properties of these designs,
since Construction VI.3 corresponds to a particular case of the
generic construction given below.

2) t-transversal designs from orthogonal arrays of strength
t: In this paragraph we give a generic construction of t-
transversal designs, which is a simple generalisation of the
way we build transversal designs with orthogonal arrays
(Subsection V-C).

Construction VI.5. Let A be an orthogonal array OAλ(t, `, s)
on a symbol set S. Recall that the array A is composed of rows
ai = (ai,j)1≤j≤` for 1 ≤ i ≤ λst. We define the following
design:
• its point set is X = S × [1, `];
• its group set is G = {S × {i}, 1 ≤ i ≤ `};
• its blocks are Bi = {(ai,j , j), 1 ≤ j ≤ `} for all ai ∈

Rows(A).

Proposition VI.6. If A is an OAλ(t, `, s), then the design
defined with A by Construction VI.5 is a t-TDλ(`, s).

Proof. It is clear that G is a partition of X and that blocks
and groups have the claimed size. Now focus on the incidence
property. Let T ⊂ [1, `] with |T | = t, and let (x1, . . . , xt) ∈
GT1 × . . . × GTt . We need to prove that there are exactly λ
blocks B ∈ B such that {x1, . . . , xt} ⊂ B.

Consider the map from blocks in B to rows of A given by:

ψ : B → Rows(A)
Bi = {(ai,j , j), 1 ≤ j ≤ `} 7→ (ai,1, . . . , ai,`)

Since we assumed that orthogonal arrays have no repeated row,
the map ψ is one-to-one. Denote by x′ = (x′1, , . . . , x

′
t) ∈ St

the vector formed by the first coordinates of (x1, , . . . , xt) ∈
Xt. From the definition of an orthogonal array of strength t
and index λ, we know that x′ appears exactly λ times in the
submatrix of A defined by the columns indexed by T . Hence
this defines λ preimages in B, which proves the result.

Remark VI.7. As we noticed before, Construction VI.3 is a
particular case of Construction VI.5. Indeed, a block BF =
{(F (x), x), x ∈ Fq}, with degF ≤ t − 1 is in one-to-one
correspondence with a codeword cF of a Reed-Solomon code
of dimension t.

Corollary VI.8. Let C0 be a code of length ` and dual distance
t + 2 ≤ ` over a set S of size s. Then, ICq(C0) defines a t-
private PIR protocol.

Proof. Let A be the orthogonal array defined by C0. We
know that A has strength t + 1 (see e.g. [15]), hence
from Proposition VI.6, the associated transversal design is
a (t + 1)-TD(`, s). Theorem VI.2 then ensures that the PIR
protocol induced by this transversal design is t-private.

As in Section V, if the code C0 is divisible, then we can give
a lower bound on the rate of its incidence code. We provide
two examples in finite (and small) length.

Example VI.9. A first example would be to consider extended
Golay codes. Indeed, they are known to be divisible by their
characteristic [15, ch.II.6], they have large dual distance, and
Proposition V.21 then ensures their incidence codes have
non-trivial rate. In Remark V.24, we noticed that the binary
Golay code does not lead to a practical PIR protocol due
to a large communication complexity. Thus, let us instead
consider the [12, 6, 6]3 extended ternary Golay code, that we
denote Golay3. It is self-dual, hence d⊥(Golay3) = 6. Then,
C = IC3e(Golay3), e ≥ 1, has length 36 and Proposition V.21
shows that dim C ≥ 18 (the bound can be proved to be tight
by computation). Hence, the associated PIR protocol works on
a raw file of 18 F3e -symbols encoded into 36, uses 12 servers
(each storing 3 F3e -symbols) and resists any collusion of one
third (i.e. 4) of them.

Example VI.10. A second example arises from the excep-
tional [q+2, 3, q]q MDS codes in characteristic 2 [15, ch.XI.6].
For instance, for q = 4, we obtain a 2-private PIR protocol
with 6 servers, each storing 4 symbols of F2e for some e ≥ 1.
Once again, the dimension of the incidence code attains the
lower bound, here k = 12.
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Example VI.11. Examples of incidence codes which do not
attain the lower bound of Proposition V.21 come from binary
Reed-Muller codes of order 1, denoted RM2(m, 1). These
codes are 2-divisible since they are known to be equivalent
to extended Hamming codes. They also have length n = 2m

and dual distance d⊥ = n/2.
For instance, RM2(3, 1) provides an incidence code of

dimension k = 11 > 8, that is, a 2-private 8-server PIR
protocol on a database with 11 F2e -symbols, where each server
stores 2 symbols. For m = 4, RM2(4, 1) gives a 6-private 16-
server PIR protocol on a database with 20 F2e -symbols, each
server storing 2 symbols. We conjecture that IC2(RM2(m, 1))
leads to a (2m−1 − 2)-private 2m-server PIR protocol on a
database with 2m+m symbols, each server storing 2 symbols.

As pointed out in Subsection V-C, high-rate incidence codes
C = IC(C0) have the best chance to occur when the dimension
of C0 is small, since the cardinality of C0 is the number of
rows in a (non-full-rank) parity-check matrix which defines C.
Besides, in order to define t-private PIR protocols, we need
an orthogonal array of strength t+ 2, i.e. a code C0 with dual
distance t + 2. Conciliating both constraints, we are tempted
to pick MDS codes of dimension t+ 1.

A well-known family of MDS codes is the family of Reed-
Solomon codes. For C0 = RSt+1(Fq) and varying values of q
and t, we were able to compute the rate of IC(C0), and these
codes lead to t-private PIR protocols with communication
complexity approximately

√
n, where n is the length of the

encoded database. These rates are presented in Figure 7 and as
expected, the rate of our families of incidence codes decreases
with t, the privacy parameter. Figure 7 also shows that Reed-
Solomon-based instances cannot expect to reach at the same
time constant information rate and resistance to a constant
fraction of colluding servers.

VII. COMPARISON WITH OTHER WORKS

Our construction fits into the model of distributed (or
coded) PIR protocols, which is currently instantiated in a few
schemes, notably the construction of Augot et al. [2] and
all the works involving the use of PIR codes initiated by
Fazeli et al [11]. We recall that we aimed at building PIR
protocols with very low burden for the servers, in terms of
storage and computation. While PIR codes are a very efficient
way to reduce the storage overhead, they do not cut down the
computation complexity of the original replication-based PIR
protocol used for the emulation.

Hence, for the sake of consistency, we will only compare the
parameters of our PIR schemes with those of the multiplicity
code construction presented in [2].

Sketch of the construction [2]. Multiplicity codes C have
the property that a codeword c ∈ C can be seen as the vector of
evaluations of a multivariate polynomial fc ∈ Fq[X1, . . . , Xm]
and its derivatives over the space Fmq , where Fq denotes the
finite field with q elements. Every affine line of the space Fmq
then induces linear relations between fc and its derivatives,
which translates into low-weight parity-check equations for
the codewords. This allows to define a local decoder for C:
when trying to retrieve a symbol Di indexed by i ∈ Fmq ,
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Fig. 7: Rate of incidence codes of C0 that are used
for building t-private PIR protocols. Codes C0 are full-
length Reed-Solomon codes of dimension t + 1 (dual
distance t+ 2) over Fq . Associated PIR protocols then
need q servers, each storing q symbols.

one can pick random affine lines going through i and recover
Di by computing short linear combinations of the symbols
associated to the evaluations of fc and their derivatives along
these lines. We refer to [14] for more details on these codes.

Augot et al. [2] realized that partitioning Fmq into q parallel
hyperplanes gives rise to storage improvements. By splitting
the encoded database according to these hyperplanes and
giving one part to each of the q servers, they obtained a
huge cut on both the total storage and the number of servers,
while keeping an acceptable communication complexity. Their
construction requires a minor modification of the LDC-based
PIR protocol of Figure 1; indeed, in the query generation
process, the only server which holds the desired symbol
must receive a random query. Nevertheless, the PIR scheme
they built was at that time the only one to let the servers
store less than twice the size of the database. Moreover, the
precomputation of the encoding of the database ensures an
optimal computational complexity for the servers. As noticed
previously, we emphasize the significance of this feature when
the database is very frequently queried.

Parameters of the distributed PIR protocol [2] based on
multiplicity codes. This PIR scheme depends on four main
parameters: the field size q, the dimension m of the underlying
affine space, the multiplicity order s and the maximal degree
d of evaluated polynomials. For an error-free and collusion-
free setting, d = s(q − 1) − 1 is the optimal choice. Let
σ =

(
m+s−1
m

)
. The associated PIR protocol uses q servers

to store an original database containing
(
d+m
m

)
Fq-symbols,

but encoded into codewords of length qm, where each symbol
has size σ log q bits. Hence the redundancy (in bits) of the
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scheme is:

ρ =

(
σqm −

(
s(q − 1) +m− 1

m

))
log q .

Concerning the communication complexity, let us only focus
on the download cost (which is often the bottleneck in prac-
tice). The multiplicity code local decoding algorithm needs to
query symbols of σ distinct lines of the space. Hence, each
server must answer σ symbols of size σ log q bits. Thus it
leads to a download communication complexity of

γ = σ2q log q bits.

Note about the comparison strategy. We consider a
database D of size 100 MB. Since the protocols may be
initially constructed for databases of smaller size k, we split
D into k chunks of size |D|/k. Hence, when running the PIR
protocol, the user is allowed to retrieve a whole chunk, and the
chunk size will be precised in our tables. For instance, in the
first row of Table II, one shall understand that the user is able
to retrieve 31.1kB of the database privately, with 1.99MB of
communication, while each server only produces 1 operation
over the chunks (of size 31.1kB) it holds.

Tables II and III first reveal that our PIR schemes are more
storage efficient than the PIR schemes relying on multiplicity
codes. Moreover, our constructions provide a better communi-
cation rate (defined as the ratio between communication cost
and chunk size), though the multiplicity code PIR protocols
allow to retrieve smaller chunks (hence is more flexible).

Remark VII.1. Recent constructions of PIR protocols (for
instance results of Sun and Jafar such that [17]) lead to better
parameters in terms of communication complexity. However,
we once more emphasize that we aimed at minimizing the
computation carried out by the servers, which is a feature that
is mostly not considered in those works.

VIII. CONCLUSION

In this work, we have presented a generic construction of
codes yielding distributed PIR protocols with optimal server
computational complexity, in a sense that each server only
has to read one symbol of the part of the database it stores.
Our construction makes use of transversal designs, whose
incidence properties ensure a natural distribution of the coded
database on the servers, as well as the privacy of the queries.
Our PIR protocols also feature efficient reconstructing steps
since the user has to compute a simple linear combination of
the symbols it receives. Finally, they require low storage for
the servers and acceptable communication complexity.

We instantiated our construction with classical transversal
designs coming from affine and projective geometries, and
with transversal designs emerging from orthogonal arrays of
strength 2. The last construction that we call incidence code
can even be generalized, since stronger orthogonal arrays lead
to PIR protocols with a better resilience to collusions.

The generality of our construction allows the user to choose
appropriate settings according to the context (low storage
capability, few colluding servers, etc.). It also raises the
question of finding transversal designs with the most practical

PIR parameters for a given context. Indeed, while affine and
projective geometries give excellent PIR parameters for the
servers (low computation, low storage), there seems to remain
room for improving the communication complexity and the
number of needed servers.
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APPENDIX

A. Hamada’s formula

Hamada [12] gives a generic formula to compute the p-rank
of a projective geometry design PGt(m, q), for q = pe:

rankp(PGt(m, q))

=
∑

(s0,..., se)∈S

e−1∏
j=0

L(sj+1,sj)∑
i=0

(−1)i
(
m+1

i

)(
m+sj+1p−sj−ip

m

)
where S ⊂ Ze+1 contains elements (s0, . . . , se) such that: s0 = se

t+ 1 ≤ sj ≤ m+ 1
0 ≤ sj+1p− sj ≤ (m+ 1)(p− 1) ,

and L(sj+1, sj) = b sj+1p−sj
p c .

The p-rank of the associated affine geometry design
AGt(m, q) can be derived from the projective one by:

rankp(AGt(m, q))

= rankp(PGt(m, q))− rankp(PGt(m− 1, q)) .

Despite its heavy expression, Hamada’s formula can be
simplified by picking very specific values of m, p or e. For
instance we have:

m = 2 : ∀p, e, rankp AG1(2, pe) =
(
p+1
2

)e
,

e = 1 : ∀p,m, rankp AG1(m, p) = pm −
(
m+p−2
m

)
.

For (m, e) = (3, 2), we get

∀p, rankp AG1(3, p2) =
(
p3 −

(
p+1
3

))2
+ 2
(
p
2

)(
p+1
3

)
,

this equality being found by interpolation, since
rankp(AG1(m, pe)) is a polynomial of degree at most
me in p.



18

B. Proof of Lemma V.14

Let us recall the result we want to state.

Lemma. All [`, 2, `− 1] MDS codes over Fq with 2 ≤ ` ≤ q
are generalized Reed-Solomon codes.

Proof. First we know that GRS codes are MDS.
Let C be an [`, 2, ` − 1]q code with 2 ≤ ` ≤ q. Since C

is MDS, it has dual distance d⊥ = 3, and we claim there
exists a codeword c ∈ C with Hamming weight `. Indeed, let
G = (P1, . . . , P`) be a generator matrix of C, where Pi ∈ F2

q

is written in column. Notice that each point Pi is non-zero
(otherwise d⊥ = 1) and 0, Pi, Pj are not on the same line
for i 6= j (otherwise d⊥ = 2). Moreover codewords in C
are simply evaluations of bilinear maps µ : F2

q → Fq over
(P1, . . . , P`):

C = {(µ(P1), . . . , µ(P`)), µ ∈ L(F2
q,Fq)} ,

and the Pi’s are not all on the same line (otherwise, dim C ≤
1).

Since ` ≤ q, there exists Q = (Q0, Q1) ∈ F2
q \ {0} such

that Q does not lie in the (vector) line defined by any of
the Pi’s. Let now µQ(X,Y ) = Q1X − Q0Y : it is a non-
zero bilinear form which must vanish on a line of F2

q , and
since µQ(Q) = 0, it vanishes on the one spanned by Q. To
sum up, for every i ∈ [1, `], we have µQ(Pi) 6= 0. Hence,
c = (µQ(P1), . . . , µQ(P`)) belongs to C and has Hamming
weight `.

Let now u ∈ C such that {c, u} spans C. We denote by c∗u
the coordinate-wise product (c1u1, . . . , c`u`) and by 1 the all-
one vector of length `. Then c = 1 ∗ c and u = c ∗ (c−1 ∗
u), where c−1 is the coordinate-wise inverse of c through ∗.
Hence, the code C can be written c ∗ C′ where C′ has G′ =(

1
c−1∗u

)
as generator matrix. It means that C is the GRS code

with evaluation points x = c−1 ∗ u, multipliers y = c and
dimension 2.
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