
HAL Id: hal-01901000
https://hal.science/hal-01901000v1

Submitted on 22 Oct 2018 (v1), last revised 5 Nov 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Progressive sequential pattern mining: steerable visual
exploration of patterns with PPMT

Vincent Raveneau, Julien Blanchard, Yannick Prié

To cite this version:
Vincent Raveneau, Julien Blanchard, Yannick Prié. Progressive sequential pattern mining: steerable
visual exploration of patterns with PPMT. Visualization in Data Science (VDS at IEEE VIS 2018),
Oct 2018, Berlin, Germany. �hal-01901000v1�

https://hal.science/hal-01901000v1
https://hal.archives-ouvertes.fr


Progressive sequential pattern mining:
steerable visual exploration of patterns with PPMT

Vincent Raveneau*

University of Nantes
Julien Blanchard†

University of Nantes
Yannick Prié‡

University of Nantes

Figure 1: The main interface of PPMT: (A) Information about the dataset, (B) history of the analyst’s actions, (G) information about
the state of the pattern mining algorithm and (H) discovered frequent patterns. Visualizations present information from the dataset
and the selected patterns: (D) overview of the data, (E) events and pattern occurrences, (F) user sessions and pattern occurrences.
Analysts can select event types and users to highlight them in the visualizations. Selecting patterns add their occurrences to the
visualizations. (C) A summary of the selections is always available.

ABSTRACT

The progressive visual analytics (PVA) paradigm has been proposed
to describe visual analytics systems whose main goal is to reach a
thorough coupling between the analyst and her system by getting
rid of waiting periods classically encountered during data process-
ing. PVA systems use algorithms that both provide intermediate
results throughout their execution, and are steerable by the analyst
to change the strategy used to perform the remaining computation.
Our focus is on progressive sequential pattern mining, as in the
seminal work of Stolper et al. [30]. Here we go further mainly by
considering the temporal nature of patterns related to their occur-
rences. We propose a pattern-oriented data model, a pattern analysis
task model, and guidelines for designing progressive pattern min-
ing algorithms. We introduce PPMT, a tool to support an analyst
progressively explore activity traces, based on a modification of the
GSP algorithm. We evaluate our proposal on the technical perfor-
mances of our progressive algorithm, and on the effect of steering
on analysts’ performances.

*e-mail: vincent.raveneau@univ-nantes.fr
†e-mail: julien.blanchard@univ-nantes.fr
‡e-mail: yannick.prie@univ-nantes.fr

Index Terms: Human-centered computing—Visualization—
Visualization systems and tools—Visual analytics; Information
systems—Information systems applications—Data mining

1 INTRODUCTION

Even though the available computing power continuously increases,
classical data analysis software still imposes waiting times to ana-
lysts, due to the amount of data needed to be processed, and to the
complexity of the involved algorithms. Based on incremental visual-
ization, the progressive visual analytics (PVA) paradigm has been
proposed by Stolper et al. [30] to alleviate these difficulties through
the use of intermediate results and steerable algorithms. Several PVA
systems have been proposed for various data and algorithms [4, 30].
In this paper, we focus on pattern mining techniques for progressive
visual analytics, and more precisely sequential pattern mining, i.e.
extracting patterns from temporal data.

Sequential patterns can be viewed as sequences of events that
occur frequently in temporal data. Identifying and interpreting such
structures allows one to draw insights and knowledge about recur-
ring behaviors in the dataset, which corresponds to the last stages
of the data science pipeline (explore and communicate data) [11].
Sequential patterns were already used for PVA in the work of Stolper
et al., who proposed a pattern exploration tool to illustrate the PVA
paradigm. As their paper was focused on formulating a general
definition of PVA, independently of the algorithmic techniques in
use, they did not take into account the temporal nature of sequential



patterns, only considering them as objects described by a name and
some numerical statistical attributes. However, an analyst exploring
data with sequential patterns is involved in a temporal data explo-
ration activity, which implies tasks such as localizing occurrences
in time, checking their duration, frequency or periodicity, and many
more [1, 18].

In this paper we study the design of a PVA system for exploring
temporal data using sequential pattern mining algorithms, taking
into account these time-related considerations. We first investigate
the actions an analyst working with sequential patterns may want to
perform, based on an existing temporal data analysis task model [1].
We then propose some requirements on how to design a progressive
pattern mining algorithm. We also present a working progressive
version of the classical GSP pattern mining algorithm. We describe
PPMT, our PVA tool for activity data analytics which integrates our
modified version of GSP. Eventually, we report on the results of two
studies: one about the performances of the progressive algorithm,
and the other about evaluating analysts’ steering interactions with
the algorithm within PPMT.

In summary, our contributions are the following:
• A data and task model for an analyst exploring temporal data

with patterns, instantiated from the general model of Andrienko
and Andrienko [1].

• Five guidelines for designing a progressive algorithm for se-
quential pattern mining.

• A pattern-based data exploration tool named PPMT, that im-
plements a progressive sequential pattern mining algorithm
featuring two new kinds of steering (towards sequence and
time).

• An evaluation of our contribution both on the technical side
of our progressive algorithm, and on the effect of steering
on analysts performances, pointing towards the relatively low
impact of progressiveness on execution time, and the increased
rapidity of analysis for question answering.

2 RELATED WORK

2.1 Mining sequential patterns

Sequential patterns are extracted from sequential data, i.e. a col-
lection of symbolic event sequences. An event has at least two
properties: a type that describes the event characteristics, and a
timestamp stating when the event occurred. In its simplest form, a
sequential pattern consists of an ordered list of event types (written
ABC and the like in this paper). It has two properties: a size, the
number of these event types, and a support, the number of occur-
rences of the pattern in data. Pattern mining algorithms only extract
patterns that have a support at least equal to a user-given threshold,
called frequent patterns. Other user-given parameters are used to
constrain the search for patterns, such as the occurrence maximum
duration. Since we focus on this kind of patterns, the terms pattern
and sequential pattern will be used with the meaning of frequent
sequential pattern in this paper.

Two kinds of sequential patterns are present in the literature,
differing in the data structure analyzed and the way patterns’ occur-
rences are counted, as illustrated in figure 2. Sequential patterns,
proposed by Srikant and Agrawal [29], are extracted from a set of
sequences. Counting the occurrences of a sequential pattern consists
in counting the number of sequences in which it is found, regardless
of how many times it is present in each sequence. Episodes, pro-
posed by Mannila et al. [20], are extracted from a single sequence.
Counting the occurrences of an episode consists in counting the
number of times it appears in the sequence from beginning to end.

Many pattern mining algorithms for sequential data have been
proposed, that can be classified in two categories. Apriori-like
algorithms, such as GSP [29], PSP [22], SPADE [33], SPAM [3],

Figure 2: Occurrences of BC as sequential pattern (left) and episodes
(right). The sequential pattern BC has 2 occurrences in the left
dataset, while the episode BC has 3 occurrences in the right dataset.

LAPIN [32], WINEPI [21] and MINEPI1 [19] generate candidate
patterns and check them by scanning data to determine if they are
frequent or not. The candidates are generated by extending shorter
frequent patterns with frequent event types. These algorithms can
either do a breadth-first search for frequent patterns, where they will
generate and check all the candidates of a given size before moving
on to longer ones, or they can do a depth-first search. In this case,
they will try to extend a given prefix as much as possible, before
moving on to another one.

FP-Growth algorithms, such as FreeSpan [13], PrefixSpan [26]
and SLPMiner [28] build a tree-like compressed representation of
the data called the FP-tree. If it fits into memory, this representation
is then used to extract the frequent patterns faster than with Apriori-
like approaches. The construction of the FP-tree is however time-
consuming.

2.2 Interactive and visual pattern mining

Goethals et al. [10] designed a system for interactive visual pattern
mining. They did not propose a steerable algorithm, but their system
was interactive enough to allow the user to alternate mining sessions
and pattern exploration sessions. Their approach heavily relied
on statistical interestingness measures for rules and itemsets. Van
Leeuwen stressed the need to integrate the analyst into the pattern
mining pipeline [31]. He insisted on the importance of exploiting
user feedback and learning subjective interestingness, and suggested
to use pattern set mining techniques instead of classical patterns.

The mining community has also worked on how to improve post-
analysis of algorithms results, mainly through visualizations. Among
the solutions proposed, one can find graphs [6, 9], matrices [12, 15]
or scatter plots [16]. However, only a few works deal with pattern
representations, such as Liu et al. [17]. The number of work tackling
pattern occurrence representations is also small, and usually in very
specific cases, such as medical data with Monroe et al. [23] or Kwon
et al. [14].

Note that all these works concern classical patterns but not tem-
poral patterns.

2.3 Progressive Visual Analytics

From the incremental visualization works [2, 7], Stolper et al. has
proposed the progressive visual analytics (PVA) paradigm [30] to
describe visual analytics systems whose main goal is to reach a
thorough coupling between the analyst. This paradigm revolves
around three core aspects, (1) designing analytic algorithms able
to produce meaningful partial results during their execution, (2)
being able to steer the remaining execution of these algorithms, and
(3) having visual interfaces allowing to manage the partial results
without altering the analyst’s cognitive workflow. [30] provides some

1WINEPI and MINEPI extract episodes, while the others extract sequen-
tial patterns



guidelines on how to design such systems, that have been enhanced
and completed by other works [4, 25, 34].

A few progressive systems have been presented in the literature,
such as Stolper et al.’s ProgressiveInsights [30] (described in the next
paragraph) and Badam et al.’s InsightsFeed [4]. Designed to allow an
analyst to perform progressive analytics over Twitter data, Insights-
Feed creates chunks of tweets that are processed when they reach
a certain size. Several computations are performed, like sentiment
classification and keyword extraction, and a map of these informa-
tion is constructed using clustering (k-means) and dimensionality
reduction (t-SNE projection). Users can control the algorithms by
pausing them or going back to previous steps. The remaining com-
putation can be steered by changing the data chunk size, update
speed, and clustering and projection parameters. Steering is taken
into account for the next computation step.

To our knowledge, only Stolper et al. have used patterns in
PVA [30]. Their system ProgressiveInsights allows an analyst to
explore the outputs of a progressive version of Ayres et al.’s SPAM
pattern mining algorithm [3]. Progressively extracted patterns are
presented with a scatterplot and in lists ordered by the patterns’
properties. This limits the exploration and interpretation to these
properties, the analyst being unable to get access to individual
occurrences. Computation can be steered by prioritizing the search
for patterns having a given prefix, or by ignoring the potential
extensions of given prefixes.

As a conclusion, several ways of adding interactivity to an al-
gorithm’s execution have been suggested. The interactive mining
community proposed techniques where the execution runs, stops,
then restarts or continues after an action from the analyst, tending to
favor confirmatory analysis at the cost of unexpected discoveries. In
PVA’s approach the algorithm is less relying on the analyst for its
execution, while still offering the possibility to steer the computation
at will. The only work involving patterns is an illustration of the
definition of PVA [30]. However its handling of patterns did not
fully take into account the temporal nature of their occurrences. In
the remainder of this paper we present our work towards a better
integration of such particularity in PVA.

3 PROGRESSIVE PATTERN MINING

In this section we present our vision for progressive pattern mining.
Since patterns are a tool to understand the data they were discovered
in, we first investigate the tasks one may want to perform with
patterns. We then reflect on this list, to determine how its elements
can be part of a progressive data analysis workflow. This leads
us to identify guidelines for designing progressive pattern mining
algorithms.

3.1 Sequential pattern analysis tasks
Several models of the tasks an analyst can perform while working
on data have been proposed [1, 5]. For instance Andrienko and
Andrienko [1] proposed a general model for high level tasks, that we
instantiate for an analyst exploring sequential patterns discovered
in data. The reason we chose this specific model is that it has been
designed to focus on analysis tasks one may perform on temporal
data. Moreover, this task model is formal and exhaustive, with
respect to the data representation used. In this part, we present the
original general model from [1], along with our pattern-oriented
model.

3.1.1 Data representation
General model: A dataset is made of two types of variables, the
referrers and the attributes. The referrers are the dimensions of
the data, while the attributes store the values which appear at the
intersection of the referrers. For each combination of values of
the referrers, there is at most one combination of values for the

attributes. Thus, the data representation can be seen as a function
from R1 × R2 × . . .Rp to A1 × A2 × . . .Aq where Ri is the value
domain of the ith referrer and Ai is the value domain of the ith
attribute. For example, in a demographic dataset, space and time are
the referrers, respectively discretized by administrative districts and
years. The attributes are the variables measured each year in each
district, such as number of persons, number of unemployed persons,
employment rate.
Pattern-oriented model: We identify three referrers and one at-
tribute for temporal data exploration with sequential patterns:

• referrers: sequence, time and pattern.
• attribute: occurrence

This corresponds to the basic purpose of an episode mining algo-
rithm, which for any pattern searches for all its occurrences in any
sequence at any time. The values of the variables sequence, pattern
and occurrence can be seen as objects, referenced by an ID and
described by properties allowing to designate sets of objects without
indicating their IDs. For example:

• the sequences may be described by a category or their length
(total duration);

• the patterns may be described by their syntax, their size (num-
ber of event types), or an interest tag given by the analyst;

• the occurrences may be described by their duration.
The time referrer is the usual time scale that can be continuous or
discrete, with the many properties associated (day or night, weekend
or not, name of the month, etc). While our work considers the values
for this referrer to be points, we don’t see any important change
if one was to use ranges. However, using specific points doesn’t
prevent the analyst from specifying several of them to describe a
time range within a request.

More precisely, in mathematical terms, the data representation
for temporal datasets analyzed with patterns is this function d:

d
∣∣∣∣P×S×T → O
(p,s, t) 7→ o if o is an occurrence of p in s at time t

where T is the timescale, S is the set of data sequences, P is the set
of all the patterns generated by the mining algorithm, and O is the
set of all the occurrences identified by the mining algorithm. An
example of how to use this model is given in figure 3, where three
occurrences of a pattern BC are described with the d function.

Note that the representation proposed in this section encompasses
not only the patterns but the whole dataset since the data event can
be seen as patterns of size 1. So the representation can be used to
answer questions about the dataset and/or the patterns hidden inside.

Figure 3: Example of a small sequence dataset (left). On the right,
some values for the data function d are given.

3.1.2 Tasks model
In their general model, Andrienko and Andrienko provide an exhaus-
tive task classification in 11 categories. Since our data representation
is directly instantiated from the general model, we retrieve all 11 task
categories in our pattern-oriented model. Due to lack of space, and



as the instantiation is faithful, we do not explain the 11 categories
but provide illustrative examples in the pattern context for the 6 most
high-level tasks, which Andrienko and Andrienko consider to be the
most performed during exploratory data analysis.
Synoptic direct lookup: Are the occurrences of pattern ABC uni-
formly distributed over the sequences?
Synoptic inverse lookup: In sequence 15, during which time inter-
vals does the pattern ABC occur regularly each 3 days ?
Synoptic direct comparison: Compare the temporal distributions
of the occurrences of pattern ABC between sequences 1 and 2.
Synoptic inverse comparison: For the sequences of the control
group, compare the periods in which ABC collapses with the periods
in which ADE rises.
Synoptic relation-seeking: In which sequences is the temporal
distribution of ABC occurrences identical to the one in sequence 5?
Connectional task: Is the activity in sequence 45 influencing the
activity in sequence 71?

In theory, the 11 task categories are valid, and a system for ex-
ploring temporal data with sequential patterns should support them
all. However, this has to be adjusted, taking into account a strong
dichotomy among the three referrers. The time values form a metric
space, and the sequence values form a population, i.e. a set of ele-
ments that can reasonably be considered as independent (this is the
usual statistical assumption). But both time and sequence allow to
consider a distribution over them. For example, one may be inter-
ested in the distribution of the number of occurrences of pattern ABC
over time, or over the set of sequences (this last distribution is made
more readable by ordering the sequences). On the contrary, it is not
appropriate to consider a distribution over patterns since patterns are
clearly not independent. Larger patterns are built from the shorter
ones, and some inclusion relations stand among them (e.g. AB is
included into ABC), which introduces a bias into the distribution.
This makes a big difference for the synoptic tasks, which consider a
set of attribute values in its entirety by means of distributions (what
Andrienko and Andrienko call a ”behaviour”, including temporal
trends and spatial repartitions). We claim that the synoptic tasks
involving a distribution over patterns are not useful in practice,
and not correct in theory. This affects the 6 synoptic task categories,
without discarding any of them. It will have consequences on the
design of our system in section 4, by prioritizing time and sequences
to structure the visualizations.

3.2 Guidelines for progressive pattern mining algo-
rithms

We present guidelines for designing progressive algorithms for se-
quential pattern mining. The guidelines G1, G2 and G4 directly
results from the pattern-oriented model proposed in section 3.1.
G1: Extract episodes. As shown in the pattern-oriented model, the
notion of occurrence is central when exploring temporal data with
patterns. However, most of sequential pattern mining approaches
belong to the tradition of Srikant and Agrawal works [24], which
are looking for the sequences in which a pattern is found, rather than
where the pattern is found in these sequences. That is why episode
mining algorithms (cf. Mannila et al. [20] works) seem more ap-
propriate for the exploration of a temporal dataset, as it allows to
explore and analyze the context in which patterns occurrences are
discovered. As episode mining deals with only one sequence, one
needs to: either adapt an episode mining algorithm to read several se-
quences (by summing the occurrences over the sequences); or adapt
a sequential pattern mining algorithm to extract all the occurrences
(by scanning sequences from beginning to end). The first solution
is easier, but most of open source pattern mining algorithms mine
sequential patterns.
G2: Save occurrences. The result of a pattern mining algorithm is a
set of frequent patterns with numbers of occurrences. More precisely,
the pattern occurrences are identified and counted but not saved. For

exploring temporal data by means of patterns, one needs to save the
occurrences, in accordance with our pattern-oriented model. This is
a small change in the algorithm, but it largely increases the memory
needs.
G3: Use a BFS Apriori-like strategy. Being able to provide inter-
mediate results during the computation is mandatory for a progres-
sive algorithm. With regards to pattern mining, this makes Apriori-
like strategies better candidates to modification than FP-growth’s.
Indeed, Apriori-like algorithms start checking candidates and gen-
erating patterns right from the start of their execution, whereas
FP-growth algorithms need to build the FP-tree before beginning
generating any pattern. Furthermore, Stolper et al. [30] identified
that breadth-first search strategies are preferable over depth-first ones
for progressive pattern mining: since short patterns are the building
blocks of the longer ones, focusing the early stages of the compu-
tation on the extraction of short patterns gives a better overview of
what can be expected next.
G4: Propose steering on patterns, sequences and time. We saw
in section 3.1.1 that referrers are the access keys to the attributes.
This justifies that algorithm steering should be done by letting the
analyst focus on referrer values. Following the pattern-oriented
model we proposed, this means that the algorithm must be able to
prioritize the occurrence search on some patterns, some sequences,
or some time periods.
G5: Make the analyst aware of the algorithm activity. Since the
analyst needs to interact with the algorithm, it is also important
that he had information at any time about what the algorithm has
already done, or is currently doing. In the case of a pattern mining
algorithm, important information are the current explored pattern
size, the number of candidates of this size (both already checked and
remaining), and whether steering is occurring or not (and its target).
Other information might be of use, such as the speed at which the
algorithm is performing its search for frequent patterns.

4 PPMT: A PROGRESSIVE PATTERN MINING TOOL

PPMT is a tool designed to assist an analyst’s exploration of activity
traces. Its interface (figure 1), allows the analyst to explore the
data and interact with a progressive serial episode mining algorithm
running in the background. In this section, we present PPMT’s
architecture, our progressive pattern mining algorithm, and PPMT’s
widgets related to the progressiveness of the analysis.

As activity traces originate from users interacting with a system,
in this section the notion of sequence is called user, corresponding
to the event sequence of a specific user.

4.1 General architecture
PPMT is based on the architecture we proposed for progressive
pattern mining algorithms [27]. In this implementation, we chose a
server-client architecture, where the server is in charge of providing
the data and running the pattern mining algorithm, whereas the
client constructs the visualizations presented to the analyst. While
the dataset is stored by both sides, as well as the names of discovered
patterns, only the server has the detailed list of pattern occurrences,
the client storing only the ones that have been explicitly requested.
Communication between the two sides is done through websockets,
allowing both the client and the server to initiate a communication
when needed.

When the analyst accesses the client, a list of available datasets is
displayed. Selecting one starts the transmission of its content from
the server, and establishes the websocket connection that will be
used for the rest of the session. When the client has received all the
data, the server starts running the pattern mining algorithm. From
this moment, communications from the client to the server consist of
interactions with the algorithm through steering or requests for the
detailed occurrences of specific patterns. In addition to answering
these queries, communications from the server to the client consist



of transmitting information about the newly extracted patterns and
about the algorithm’s state and progression.

4.2 Our progressive pattern mining algorithm
Our main scientific topic being interaction in PVA, we did not de-
velop a progressive pattern mining algorithm from scratch, but in-
stead chose to adapt an existing open source implementation as
in [30]. To comply with guideline G1, we wanted to extract episode
rather than sequential patterns, but no implementation of this kind
of pattern mining algorithm was available at the time (in 2017; some
are now proposed in the SPMF library [8] since June 2018). Instead,
we selected a sequential pattern mining algorithm and modified it to
extract episodes, by changing how pattern occurrences are counted
(see 4.2.2). Other changes were made to turn the algorithm into a
progressive one (see 4.2.3 and 4.2.4).

Since progressive algorithms need to communicate with the an-
alyst, we integrate an software interface dedicated to this function
into the algorithm. Other parts of the code can be plugged to it to
be notified when an information is sent by the algorithm (about its
current state or a newly discovered pattern). This software inter-
face also stores the incoming steering requests into a queue that is
regularly checked during the execution.

4.2.1 Choosing a mining strategy (from guideline G3)
To implement our progressive pattern mining algorithm, we decided
to start from the GSP [29] algorithm, since it is well-known (many
pattern mining algorithms were actually designed as variations from
GSP) and natively uses a breadth-first search. We use the Java
implementation available in the SPMF library [8]. As a breadth-first
Apriori-like sequential pattern mining algorithm, GSP obtains the
frequent event types in the data, then combine them to generate all
the candidates of size 2. Each of these candidates is then checked to
see if it is frequent or not. Infrequent candidates are discarded, and
frequent ones are combined to obtain the candidates of size 3. This
process continues until a user-given size limit, or when no candidate
or frequent pattern are found.

4.2.2 Extracting episodes and occurrences (from G1 & G2)
We modify GSP’s behavior to extract serial episodes instead of
sequential patterns, by keeping track of all the pattern occurrences
rather than the sequence ID they were discovered in. This change
also leads us to use an absolute support threshold instead of a relative
one to determine if a candidate is frequent or not. In addition to the
support threshold, our algorithm takes the following parameters to
provide boundaries for the pattern space:

• The gap (minimum and maximum), expressed as a number of
events allowed to be found between events forming a pattern
occurrences, even though they are not part of the pattern. This
can be interpreted as a control over the level of noise allowed
in the pattern occurrences.

• The maximum size, expressed as a number of events, prevent-
ing the algorithm to search for patterns too long to carry any
important meaning.

• The maximum duration of a pattern occurrence, expressed as
a number of milliseconds. This effectively acts as the time
window constraint that is often found in episode mining.

4.2.3 Providing intermediate results (from guideline G5)
While GSP stores the frequent patterns and presents them all at once
at the end of its execution, we output a frequent pattern as soon as
all its occurrences are discovered, to produce intermediate results
during exploration. Since intermediate results are an important part
of progressive visual analytics, we could have the algorithm output
a pattern as soon as enough occurrences have been found to make
it frequent, and then update the number of its occurrences when
new ones are encountered. However, we decided to wait for the

completion of the occurrence search process to output a frequent
pattern. Our choice was made to reduce the amount of information
to process and update, and to increase the user’s confidence in the
numbers displayed, that they know won’t change anymore. Also,
considering the speed at which a single pattern is processed, it would
most of the time be a very small gain, probably unnoticeable to the
end user. While searching for patterns, the algorithm also regularly
outputs the number of candidates that have been verified, in order to
communicate about its progression.

4.2.4 Steering the algorithm (from guideline G4)

We implement steering using the previously mentioned software
interface. Before checking a new candidate, a verification is made to
see if a steering has been requested since the previous check. If it is
the case, the current state of the pattern search (the current size and
the list of unverified candidates) is saved, and the candidate verifica-
tion continues depending on the required steering, as described in
the next paragraphs. During the steering, since our knowledge about
frequent patterns of a given size is incomplete, candidates of size n
are no longer obtained by combining frequent patterns of size n−1.
Instead, candidates of size n− 1 are combined with the frequent
event types to generate the size n candidates. When the steering has
completed, the previously saved state of the pattern search is loaded,
information about the frequent patterns found during the steering is
added to it, and the default strategy resumes from this point.
Steering on pattern syntax: Every candidate is compared to the
syntax template, and the search for occurrences only starts if the
comparison matches. This is the easiest type of steering, because
a syntax constraint allows to directly filter out candidates without
reading the dataset.
Steering on a time period: The search for a candidate’s occur-
rences takes place over this timeframe. If at least one occurrence is
found, then the search is continued over the whole dataset, otherwise
it moves on to the next candidate.
Steering on a user: For each candidate, the algorithm first scans the
target user’s trace to determine if at least one occurrence is found. If
this is the case, occurrences are then extracted for the entire dataset.
Otherwise, the candidate is rejected for the current steering and the
algorithm moves on to the next one.

Steering on time and user implies additional data reads to decide
if a given candidate needs to be fully checked during the steering.
However, extracting all occurrences instead of just those present
in the targeted period or user trace has the benefit of keeping a
constant strategy to determine if a candidate is frequent. The same
support threshold can be used during both the steering and non-
steering phases, and all the frequent patterns discovered during a
steering phase remain valid for the future. While it might be possible
to devise other ways of doing it, we did not found any satisfying
enough. For example, using a fraction of the support threshold (i.e.
using 50% of the usual value if the steering targets half the dataset’s
users) could only work if the pattern occurrences were uniformly
distributed over the data.

4.2.5 Comparison with Stolper et al. [30]

In their original versions, the algorithm we use (GSP) and the one
used by Stolper et al. (SPAM) differ in the order in which they
discover frequent patterns. As said previously, GSP is a breadth-first
algorithm while SPAM uses a depth-first strategy, but the set of
patterns obtained at the end is the same. In their implementation,
Stolper et al. modified SPAM to make it use a breadth-first strategy.
Both our implementation and theirs also add the possibility to steer
the computation towards patterns with a given prefix.

Our progressive algorithm goes further than Stolper et al.’s on
two points. First, we offer more steering options, namely steering on
a time-period and on specific users. Secondly, our algorithm allows



the analyst to explore patterns’ behaviour in time, by means of the
occurrences.

4.3 PPMT’s interface

PPMT’s interface, illustrated in figure 1, presents different infor-
mation to the analyst. On the left, information is presented about
(A) the selected dataset such as event types and users, above (B) an
history of the analyst’s interactions with the system. On the right,
(G) the current state of the pattern mining algorithm is displayed,
along with (H) the discovered frequent patterns. Items from the lists
of event types, users and patterns can be selected with a clic, and (C)
a summary of these selections is available. Three coordinated visu-
alizations are available to explore the dataset and the patterns. The
first is (D) an overview of the dataset, displaying an aggregated view
of the events. A brush tool allows the analyst to describe a subset of
the whole dataset, that will be displayed in the other two views. The
second represents (E) the dataset’s events in the selected subset, and
occurrences of patterns selected by the analyst. Depending on the
selected time span, events are aggregated or displayed individually
(see figure 6). Finally, the third visualization displays (F) the user
sessions. Each rectangle is a period where the user was active. In
this subsection, rather than presenting the whole interface, we will
focus on the elements related to the patterns and to the progressive
nature of the pattern mining algorithm.

4.3.1 State of the algorithm

Figure 4: Detailed information about the pattern mining algorithm
presented to the analyst.

Information about the state of the pattern mining algorithm is
available to the analyst as shown in figure 4. The strategy is either
”default strategy” or an indication of the current steering target. Two
graphs are displaying the speed at which the algorithm has been
checking candidates and discovering frequent patterns over the last
minute. The table displays detailed information about the extraction
of every pattern size, such as the number of candidates needing to
be verified and the elapsed time. A color code is used to represent
completed pattern sizes (green), the current target of the algorithm
(blue) and incomplete pattern sizes (orange). This detailed view is
not always displayed but a condensed version is always visible, in
the top right corner of PPMT’s interface (see figure 1, (G)). The
analyst can open the detailed view by clicking on the condensed one.

4.3.2 Steering the algorithm

The analyst can request a steering of the algorithm by clicking on
three separate buttons, depending on the type of steering. The one
to steer on a time period is located above the overview (D in figure
1), where the corresponding time period is selected with the brush.
While hovering over an item in the pattern list, a button appears
over the line to request a steering using the corresponding pattern as
prefix. Steering on a specific user is done in the same way, with a
temporary button appearing while hovering over the user list.

4.3.3 Control over the patterns

The discovered frequent patterns are displayed in a list, as shown in
the lower right part of figure 1. The analyst has some control over
this list, that are shown in more details in figure 5. The support and
size sliders and the name (i.e. syntax) text field are filters that can be
expected from any pattern analysis tool, but the other elements are
tied to the progressive nature of PPMT. Since patterns are discovered
while the analyst uses the system, adding entries to the pattern list
while the analyst interacts with it is problematic. To prevent this,
the analyst has the possibility to toggle on or off the live update
of the list. When active, any new pattern is added to the list when
received. When the option is toggled off, new patterns await to be
integrated into the list, and the analyst can see how many of them
are available. The list is created from all the patterns, by default and
before applying any filter. However, since a steering phase targets
patterns the analyst is interested into, it is possible to create the list
only from the patterns that have been found during the last steering
phase.

Figure 5: Controls over the discovered patterns available to the ana-
lyst. There are filters over the list, along with options to change the
way it is constructed and updated. The numbers at the top reflect
(from right to left) the total number of discovered patterns, the number
of patterns used to create the list (equal to the total unless the live
update is off), and the number of patterns remaining after applying
the filters.

4.3.4 Patterns Visualization

In PPMT, patterns are visualized in the central timeline, as illus-
trated in figure 6. When a pattern is selected, an overview of its
occurrences’ temporal positions is displayed under the timeline, each
black dot being an occurrence. If the analyst wants to focus on a
specific occurrence, zooming in on it displays a detailed view of the
individual events composing the occurrence by linking them together.
This allows the analyst to observe the context of the occurrence in
term of preceding and following events, which can be useful to its
understanding of the data at hand. Patterns are also visible in the
user session view, in the bottom central part of figure 1; sessions
where a selected pattern is present are displayed in red, while blue
sessions indicate its absence.

5 EVALUATION

In this section, we present the two evaluations we conducted on our
progressive algorithm and on PPMT’s steering features. Both evalua-
tions were conducted with the same dataset, collected while students
were using COCoNotes2, an online video-annotation platform. The
data contains 201 000 events, 32 event types and 211 users, over a
four months period from September 2016 to January 2017.

2https://coconotes.comin-ocw.org/



Figure 6: Visualizations of a pattern’s occurrences. Depending on
the zoom level, the analyst can either see an overview of where the
occurrences are (black dots on the top image) or a detailed view of
the events composing the occurrences (linked events on the bottom
image).

5.1 Effect of progressiveness & steering on the algo-
rithm

Having a progressive version of an existing algorithm may lose its
interest if the original one is much more efficient, so we wanted
to see how our progressive algorithm performed compared to the
original GSP. The main uncertainty lies in the impact of steering on
computation, so we decided to compare the following configurations:
(1) the original GSP algorithm modified to extract episodes, (2) our
progressive GSP, (3) our progressive GSP performing pattern syntax
steering and (4) our progressive GSP performing time steering. We
chose not to test user steering, because of its mechanical similarity
with time steering, as explained in section 4.2.4. In configurations
(3) and (4), steering on a random element (pattern or time-period)
is executed once for each pattern size, which amounts to about 15
steering phases per execution. An execution lasting between 3 and
20 minutes, we believe that –though not a perfect recreation of a real
use case– it is sufficient to highlight any impact the steering could
have on the algorithm, and to provide relevant insights about the
various configurations’ performances.

We measure the CPU time and maximum memory usage needed
to extract all the episodes in the dataset. Regarding the algorithm’s
parameters, we use constant values for the gap (0-2), maximum size
(20) and maximum duration (30s), but use three different support
thresholds, to obtain the following scenarios:
Scenario 1: 3492 episodes, with a minimum support of 150.
Scenario 2: 21731 episodes, with a minimum support of 50.
Scenario 3: 49121 episodes, with a minimum support of 30.

Each configuration is run from 20 times over each scenario, on a
single dedicated CPU core, and we compute the average values for
CPU execution time (figure 7) and memory usage.

As can be seen in figure 7, the relation between the different

Figure 7: Results of the comparison between the different algorithms,
regarding the CPU time necessary to discover every pattern.

algorithms for CPU usage is the same for all the scenarios, with the
original GSP being faster than the progressive one. While perform-
ing similarly when extracting a few patterns, relaxing the parameters
to obtain more patterns increases the difference in computation time
between each configuration. We can also see that steering the algo-
rithm on pattern syntax has less repercussions on the performances
than steering on a time period. This was expected, since steering on
time requires additional data reads compared to steering on syntax,
as explained in section 4.2.4.

As far as memory usage is concerned, our first results show that
GSP uses more memory than Progressive GSP with or without
steering, which seems logical as GSP has to maintain the full list
of all occurrences until the end of its execution. Our system also
uses memory outside of GSP to store those occurrences, so memory
usage of progressive algorithms needs further investigation.

5.2 Effect of steering on analysis tasks
5.2.1 Protocol

We focus on steering, the main interaction between the analyst and
the progressive algorithm. We recruited 14 participants within our
laboratory (13 males, 1 female, mean age 26.1 ± 7.05), so that
they all had some experience with data analysis. After participants
signed a consent form, they were given some reminders about pattern
mining and a presentation of PPMT, as well as a list of analysis
questions they had to answer with PPMT. Only 7 participants had a
PPMT version with which they could steer the algorithm (steering
group). The questions were the following:
Q1 How many occurrences of the pattern paused played Visibili-

tyChange are present in the data?
Q2 How many users have the pattern paused created played?
Q3 How many patterns are discovered for the user user049, in his

session of October 5th, from 9:02am to 9:11am?
Q4 Give two patterns of a size strictly greater than 2, present both

in the first session of user user153 AND in the first session of
user user177 (September 18th, from 9:38am to 11:15am).

Q5 We are interested in the events x that can follow or precede the
pattern M = Mdp media play played. How many patterns of
the form x M or M x are found?

Questions 1, 2 and 5 were designed to encourage the use of
steering on a pattern syntax, while questions 3 and 4 were more
suited to steering on a time-period. The questions had to be answered
in this order, and pattern mining was restarted for each question.
We did not make use of user steering, because the whole evaluation
session was already long enough (60 to 75 min), with participants
needing to assimilate a lot of information about PPMT’s features
and the dataset. For each question and each participant we collected
the duration, and the answer, graded as correct or incorrect (false or
non answered).



After using PPMT participants had to give their agreement with
a 5-points Likert scale on 14 affirmations on their global feedback,
pattern progressive extraction, and steering (only for the steering
group). Then they could freely comment on their experience.

5.2.2 Results
The time participants spent on each task is presented in figure 8.
We can see that participants from the steering group were faster for
every question, except the first one. This was expected, since the
first question was very easy to answer even without steering. We
computed Wilcoxon Signed-rank test for questions 2–5 and for the
whole set of questions. The non-significant results show an effect of
the steering/non-steering condition on the response times with the
following p-values: Q2: 5.3%, Q3: 12.8%, Q4: 5.3%, Q5: 14.1%,
Q1–5: 7.2%.

Regarding the correctness of the answers, steering group partic-
ipants gave 26 right answers, 8 wrong ones and did not answer 1
question. The other group gave 20 good answers, 12 wrong ones
and did not answer 3 questions. On an individual basis, most of the
14 participants gave the correct answers for questions 1, 2 and 4.
Only 7 correctly answered question 5, mostly because they did not
answer for both syntax xM and Mx. Only 5 gave the correct answer
to question 3 (see discussion).

The steering group participants used steering for almost every
question. They were able to target the information needed to answer
the questions in one unique steering request, but one participant did
multiple steering on more and more precise time periods to answer
question 3. The most notable exception to the use of steering was
for question 5, where 3 out of 7 decided not to use it since it would
only give them half of the answer. For questions 3 and 4, only 2
members of the steering group did not use time steering.

Figure 8: Summary of time needed for participants to perform the
tasks. Graduations are in seconds.

Participants’ feedback is presented in figure 9. The steering group
participants were unanimously agreeing with its usefulness for the
analysis, and the fact that it allows them be be faster when they have
a goal, while feeling in control of the computation.

5.2.3 Discussion
With regards to accuracy, the steering group performed slightly
better, however more participants would be needed to conclude
about the potential positive impact of steering on the correctness of
answers.

With regards to speed, the results are encouraging as the steering
group participants were globally faster than the others to answer
questions. This can be associated with their feedback that steering
was augmenting their confidence, helping them save time and feel
in control, while being generally useful. For example, one of the
participants declared that ”having the ability to steer the algorithm
really makes the analysis more fluid”, while another said that ”with-
out being able to steer the computation, [he] would have probably
given up on some questions”. This also echoes some remarks for-
mulated by two of the participants of the non steering group, that

Figure 9: Feedback from the participants after performing the tasks

had the feeling they would have wanted a way to ask for specific
patterns. While the difference between steering and non-steering
groups favors the steering by one or two minutes, it is important
to keep in mind that we designed the questions so that both groups
were able to answer them in a reasonable time. Had we chosen
different questions (essentially involving longer patterns), the gap
between the two groups could have been significantly larger.

An interesting observation originated from the way members
of the steering group dealt with question 3. Being able to steer
the computation allowed them to greatly shorten the time needed
to answer, however as soon as results stopped coming in during
the steering, 2 of them gave their answer without waiting for the
completion of the steering.

6 CONCLUSION

We presented some guidelines for designing progressive pattern
mining algorithms based on a data and task model inspired by [1].
We then introduced PPMT, our tools for progressive pattern analysis
of usage traces. Our evaluation points towards both the relatively
low impact of progressiveness on execution time, and the increased
rapidity of analysis for question answering. More work is however
needed to confirm these preliminary results by exploring the various
ways analysts use pattern, time, and sequence steering during longer
analysis sessions.

REFERENCES

[1] N. Andrienko and G. Andrienko. Exploratory analysis of spatial and
temporal data: a systematic approach. Springer Science & Business
Media, 2006.

[2] M. Angelini and G. Santucci. Modeling Incremental Visualizations. In
M. Pohl and H. Schumann, eds., EuroVis Workshop on Visual Analytics.
The Eurographics Association, 2013. doi: 10.2312/PE.EuroVAST.
EuroVA13.013-017

[3] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining
using a bitmap representation. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’02, pp. 429–435. ACM, New York, NY, USA, 2002.

[4] S. K. Badam, N. Elmqvist, and J.-D. Fekete. Steering the Craft: UI El-
ements and Visualizations for Supporting Progressive Visual Analytics.
Computer Graphics Forum, 36(3):491–502, June 2017.

[5] M. Brehmer and T. Munzner. A multi-level typology of abstract vi-
sualization tasks. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2376–2385, Dec 2013.

[6] L. A. F. Fernandes and A. C. B. Garcı́a. Association rule visualization
and pruning through response-style data organization and clustering.
In J. Pavón, N. D. Duque-Méndez, and R. Fuentes-Fernández, eds.,
Advances in Artificial Intelligence – IBERAMIA 2012: 13th Ibero-
American Conference on AI, Cartagena de Indias, Colombia, Novem-
ber 13-16, 2012. Proceedings, pp. 71–80. Springer, 2012.



[7] D. Fisher, I. Popov, S. Drucker, et al. Trust me, i’m partially right:
incremental visualization lets analysts explore large datasets faster. In
Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, pp. 1673–1682. ACM, 2012.

[8] P. Fournier-Viger, J. C.-W. Lin, A. Gomariz, T. Gueniche, A. Soltani,
Z. Deng, and H. T. Lam. The spmf open-source data mining library
version 2. In B. Berendt, B. Bringmann, É. Fromont, G. Garriga, P. Mi-
ettinen, N. Tatti, and V. Tresp, eds., Machine Learning and Knowledge
Discovery in Databases, pp. 36–40. Springer, Cham, 2016.

[9] E. Glatz, S. Mavromatidis, B. Ager, and X. Dimitropoulos. Visualizing
big network traffic data using frequent pattern mining and hypergraphs.
Computing, 96(1):27–38, Jan 2014. doi: 10.1007/s00607-013-0282-8

[10] B. Goethals, S. Moens, and J. Vreeken. Mime: A framework for
interactive visual pattern mining. In Proc. 17th ACM SIGKDD, KDD
’11, pp. 757–760. ACM, 2011.

[11] M. Gupta and J. Han. Applications of pattern discovery using sequential
data mining. In P. Kumar, P. R. Krishna, and S. B. Raju, eds., Pattern
Discovery Using Sequence Data Mining: Applications and Studies,
chap. 1, pp. 1–23. IGI Global, 2012.

[12] M. Hahsler and R. Karpienko. Visualizing association rules in hierar-
chical groups. Journal of Business Economics, 87(3):317–335, Apr
2017. doi: 10.1007/s11573-016-0822-8

[13] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu.
Freespan: Frequent pattern-projected sequential pattern mining. In
Proc. ACM SIGKDD, pp. 355–359. ACM, New York, NY, USA, 2000.

[14] B. C. Kwon, J. Verma, and A. Perer. Peekquence: Visual analytics for
event sequence data. In ACM SIGKDD 2016 Workshop on Interactive
Data Exploration and Analytics, vol. 1, 2016.

[15] H. Lei, C. Xie, P. Shang, F. Zhang, W. Chen, and Q. Peng. Visual anal-
ysis of user-driven association rule mining. In Proc. 9th International
Symposium on Visual Information Communication and Interaction,
VINCI ’16, pp. 96–103. ACM, New York, NY, USA, 2016.

[16] G. Liu, A. Suchitra, H. Zhang, M. Feng, S.-K. Ng, and L. Wong.
Assocexplorer: An association rule visualization system for exploratory
data analysis. In Proc. 18th ACM SIGKDD, KDD ’12, pp. 1536–1539.
ACM, New York, NY, USA, 2012.

[17] Z. Liu, Y. Wang, M. Dontcheva, M. Hoffman, S. Walker, and A. Wilson.
Patterns and sequences: Interactive exploration of clickstreams to
understand common visitor paths. IEEE Transactions on Visualization
and Computer Graphics, 23(1):321–330, Jan 2017. doi: 10.1109/
TVCG.2016.2598797

[18] A. MacEachren. How maps work: representation, visualization, and
design. New York: Guilford Press, 1995.

[19] H. Mannila and H. Toivonen. Discovering generalized episodes using
minimal occurrences. In KDD, vol. 96, pp. 146–151, 1996.

[20] H. Mannila, H. Toivonen, and A. Inkeri Verkamo. Discovery of frequent
episodes in event sequences. Data Mining and Knowledge Discovery,
1(3):259–289, 1997. doi: 10.1023/A:1009748302351

[21] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent
episodes in sequences extended abstract. In Proc. first Conference on
Knowledge Discovery and Data Mining, pp. 210–215, 1995.

[22] F. Masseglia, F. Cathala, and P. Poncelet. The psp approach for mining
sequential patterns. In J. ytkow and M. Quafafou, eds., Principles
of Data Mining and Knowledge Discovery, vol. 1510 of LNCS, pp.
176–184. Springer Berlin Heidelberg, 1998.

[23] M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman. Temporal
event sequence simplification. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2227–2236, Dec 2013.

[24] C. H. Mooney and J. F. Roddick. Sequential pattern mining – ap-
proaches and algorithms. ACM Comput. Surv., 45(2):19:1–19:39, Mar.
2013. doi: 10.1145/2431211.2431218

[25] T. Mühlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and M. Streit.
Opening the black box: Strategies for increased user involvement in ex-
isting algorithm implementations. IEEE Transactions on Visualization
and Computer Graphics, 20(12):1643–1652, Dec 2014.

[26] J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen, U. Dayal, and
M. chun Hsu. Prefixspan: Mining sequential patterns efficiently by
prefix-projected pattern growth. pp. 215–224, 2001.

[27] V. Raveneau, J. Blanchard, and Y. Prié. Toward an open-source tool
for pattern-based progressive analytics on interaction traces. IEEE VIS

2016 Workshop on Temporal and Sequential Event Analysis, Baltimore,
MD, USA, 2016.

[28] M. Seno and G. Karypis. Slpminer: an algorithm for finding frequent
sequential patterns using length-decreasing support constraint. In Data
Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International
Conference on, pp. 418–425, 2002.

[29] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations
and performance improvements. In Proc. 5th International Conference
on Extending Database Technology: Advances in Database Technology,
EDBT ’96, pp. 3–17. Springer-Verlag, London, UK, UK, 1996.

[30] C. D. Stolper, A. Perer, and D. Gotz. Progressive visual analytics:
User-driven visual exploration of in-progress analytics. IEEE Trans. on
Visualization and Computer Graphics, 20(12):1653–1662, Dec 2014.

[31] M. van Leeuwen. Interactive data exploration using pattern mining. In
A. Holzinger and I. Jurisica, eds., Interactive Knowledge Discovery and
Data Mining in Biomedical Informatics: State-of-the-Art and Future
Challenges, pp. 169–182. Springer, 2014.

[32] Z. Yang and M. Kitsuregawa. Lapin-spam: An improved algorithm for
mining sequential pattern. In Data Engineering Workshops, 2005. 21st
International Conference on, pp. 1222–1222, April 2005.

[33] M. Zaki. Spade: An efficient algorithm for mining frequent sequences.
Machine Learning, 42(1-2):31–60, 2001.

[34] E. Zgraggen, A. Galakatos, A. Crotty, J. D. Fekete, and T. Kraska. How
progressive visualizations affect exploratory analysis. IEEE Trans. on
Visualization and Computer Graphics, 23(8):1977–1987, Aug 2017.


	Introduction
	Related work
	Mining sequential patterns
	Interactive and visual pattern mining
	Progressive Visual Analytics

	Progressive pattern mining
	Sequential pattern analysis tasks
	Data representation
	Tasks model

	Guidelines for progressive pattern mining algorithms

	PPMT: a Progressive Pattern Mining Tool
	General architecture
	Our progressive pattern mining algorithm
	Choosing a mining strategy (from guideline G3)
	Extracting episodes and occurrences (from G1 & G2)
	Providing intermediate results (from guideline G5)
	Steering the algorithm (from guideline G4)
	Comparison with Stolper et al.Stolper:pva

	PPMT's interface
	State of the algorithm
	Steering the algorithm
	Control over the patterns
	Patterns Visualization


	Evaluation
	Effect of progressiveness & steering on the algorithm
	Effect of steering on analysis tasks
	Protocol
	Results
	Discussion


	Conclusion

