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Abstract—This paper focuses on the theoretical performance
of a neuro-inspired digital communication, where the input signal
is below the activation threshold of the neuron, making the noise
crucial for the detection. We first derive the error probability of
a neuro-inspired detector build upon a single Integrate-and-Fire
(IF) neuron and then extend this result to a IF-based detector
build upon multiple neurons. In this case, we propose to optimize
the number of neurons in parallel, leading to an error probability
of below 10−4 for a large noise range, proving the strength of
such a IF-based detector.

I. INTRODUCTION

With the introduction of various communicating devices,
Internet of Things (IoT) becomes more and more concrete. Ad
hoc sensor networks designed, for instance for smart cities,
smart buildings or 5G, create on one hand an increasing
demand for transmission rates but on the other hand suffer
from their energy consumption. Indeed, one major source
of energy loss is the radio transceiver. Staying in an idle
mode, while waiting for incoming data, costs a large amount
of energy to a node. In order to achieve energy efficient
communications, two main solutions have been proposed in
the literature: either receivers wake-up in a periodic fashion,
or they are waken-up when receiving a specific signal, as for
instance the node ID in an ad hoc network, which is called
wake-up radio. The latter seems to offer a promising decrease
of energy waste. Unfortunately, mot of these devices are build
upon miro-controllers that consume a large amount of energy,
decreasing thus the energy efficiency of the wake-up receivers.

To overcome thus energy consumption issue due to the use
of standard micro-controllers, many research are turning to
neuro-science: our brain is indeed a very good example of a
complex system where many excitable cells, called neurons,
communicate with each other through the transmission of
bioeletrical signals, called spikes, in order to perform complex
tasks such as detection or classification, with a very low
energy consumption. Inspired by our brain, neuromorphic
systems are designed to have a very low energy consumption:
a recently developed CMOS based neuron [1], [2] was proven
to consume only few femto-Joule which is several order of
magnitude lower than what standard processors would need to
execute similar operations. This neuron is based on a Morris-
Lecar model [3] but various models of spiking neurons can be
found in the literature, from the simplest one, Integrate-and-

Fire (IF) [4], to more complex ones such as Morris-Lecar.
Thus, if the wake-up receivers were designed with neuromor-
phic circuits, one could achieve high energy efficiency for IoT
and ad hoc networks.

One natural question arising is whether a neuro-inspired
detection is reliable enough in the context of ad hoc networks,
where one needs to detect a weak signal surrounded by noise.

One major advantage of a neuro-based detector, besides its
very low energy consumption, is its nonlinear behavior. These
non linearities are a key ingredient of stochastic resonance
(SR), a paradoxical phenomenon, where the addition of noise
enhances the overall performance of a nonlinear system. From
a neuroscience point of view, SR is ubiquitous and crucial
in facilitating the information processing. The idea of adding
noise in order to improve the performance of a system is rather
counter-intuitive but some example can be found even in the
communication field with dithers in lattice coding [5], with
noise aided LDPC decoders [6], or even the effect of SR in
locally optimal detectors [7]. Since in ad hoc sensor network,
many sensors communicate over the same resources, there will
be a large amount of surrounding noise when considering a
given communication. Since the neuro-inspired detector is non
linear, it can definitely takes advantage of this surrounding
noise.

In this paper, we propose to study the theoretical perfor-
mance of a neuro-based digital communication, where the
signal detection is performed using an IF neuron. Our main
contributions are the following:

• We derive the theoretical performance of a digital com-
munication setup using a single IF detector.

• We show that stochastic resonance occurs with the single
IF detector.

• We derive the theoretical performance of a digital com-
munication setup using multiple IF detectors in parallel.

The remaining of the paper is organized as follows: Sec-
tion II presents some mathematical tools and distributions. The
IF neuron and the digital communication setup are presented
in Section III and the error probability of a single neuron-
based detection is derived in Section IV. Section V presents
an extension to multiple neurons in parallel in order to achieve
an enough reliable detection for digital communication and
Section VI concludes the paper.



II. NOTATIONS AND DEFINITIONS

A. Notations

The following notations will be used throughout the paper.

• 1[0,T ](t) denotes the indicator function over the interval
[0, T ]: ∀t ∈ [0, T ],1[0,T ](t) = 1.

• N (µ, σ2) denotes the normal distribution with mean µ
and variance σ2. Φ(t) denotes the cumulative distribution
function (cdf) of a standard normal distribution N (0, 1).

• erfc(x) is the complementary error function, defined as

erfc(x) =
2√
π

∫ ∞

x

exp(−t2)dt.
• L(µ, c) denotes the Levy distribution, with location pa-

rameter µ and scale parameter c. Its cdf is denoted by

FL(x) and is given as FL(x) = erfc
(√

c
2(x−µ)

)
.

• IG(µ, λ) denotes the Inverse Gaussian distribution with
mean µ and shape parameter c. Its cdf is denoted

by FI(x) ans is given as FI(x) = Φ

(√
λ
x

(
x
µ − 1

))
+

exp

(
2λ
µ

)
Φ

(
−
√
λ
x

(
x
µ+1

))
.

B. Brownian motion and first hitting time

As we will show later on in the paper, the neuron output
can be expressed as a Brownian motion. In this subsection,
we will briefly introduce Brownian motion and the notion of
first hitting time, that will be needed to derive the theoretical
performance of our IF-based detector.

1) Standard Brownian motion: Let Zs follow a standard
normal distribution Zs ∼ N (0, 1) and denote by Wt its inte-
gral over a the time interval [0, t], i.e. Wt =

∫ t
0
Zs(τ)dτ . Wt

is a standard Brownian motion and is such that Wt ∼ N (0, t).
2) Brownian motion with drift [8]: Let Y (t) denote a

Brownian motion with drift µ. Y (t) is given as

Y (t) = µt+ σWt. (1)

3) First hitting time: Since events are usually triggered
when the particle first reaches a given threshold, characterizing
the first hitting time is of important matter. Let Ta denote the
needed time for the signal to reach for the first time the value
a > 0.

Lemma 1 [9] The first hitting time Ta of a Brownian motion
Y (t) as given in (1) with a non-zero drift µ 6= 0 starting
in position y0 at time t = 0 follows the Inverse Gaussian

distribution: Ta ∼ IG
(
a−y0
µ , (a−y0)

2

σ2

)
.

Remark 1 Note that if the drift µ equals zero, then the inverse
Gaussian distribution reduces to a Levy distribution. Thus, the
first hitting time Ta of a Brownian motion Y (t) as given in (1)
with a zero drift µ = 0 starting in position y0 at time t = 0

follows the Levy distribution: Ta ∼ L
(
0, (a−y0)

2

σ2

)
.

III. DIGITAL COMMUNICATION WITH NEURO-BASED
DETECTION

A. Integrate-and-Fire neuron

Integrate-and-Fire (IF) neurons are among the easiest mod-
els of spiking neurons, where the state of the neuron is
characterized only by its membrane potential.

The electrical model of an IF neuron consists in a capacitor
C in parallel of a resistor R that is driven by an input current.
The neuron output is a function of the voltage. Throughout this
paper, we focus on the perfect integrator [4], where the resistor
R is negligible, i.e. the membrane potential’s decay over time
is neglected. Such a case can be achieved in practice when
the duration of a symbol is much larger compared to the time
constants of the electronic circuit. The membrane potential
V of the perfect IF neuron is thus given as the integral of
the injected current Iinj as V (t) = 1

CVrest+
1
C

∫ t
0
Iinj(τ)dτ ,

where Vrest is the membrane potential without excitation.
The neuron ”fires” when it’s membrane potential V reaches

a threshold γ. In other words, for a time t = tγ such that
V (tγ) = γ, a spike is generated. Since we are not interested
in modeling the shape of the spike, we model this spike
generation solely by an amplitude change as V (tγ) = γ+Vs.
After a spike generation, the membrane potential is reset to
its resting value Vrest and the integration process is restarted.
Throughout this paper, we assume that the integration process
is immediately restarted, such that no refractory period exists
and we assume that Vrest = 0. The obtained results can be
easily extended to a case with Vrest 6= 0 and with a refractory
period.

B. Communication setup

The studied detection setup is described in Fig. 1.
Let {iinj(k)}k∈N denote the symbol sequence, where ∀k,

Iinj

Z

+
+

In
∫ t

0

V
Decision

Îinj

Fig. 1. Studied communication setup

iinj(k) ∈ {0, A} such that P(iinj(k) = 0) = P(iinj(k) =
A) = 1/2.

Let In denote the neuron input. In is given as a noisy
version of Iinj as In = Iinj + Z, where Z is assumed to
be an additive white Gaussian noise of variance σ2

N .
Without loss of generality, we restrict our study on one

time interval [0, T ]. Let iinj ∈ {0, A} denote the information
symbol. The membrane potential V of the neuron at time t ∈
[0, T ] is thus given as

V (t) =
1

C

∫ t

0

(
iinj1[0,T ](τ) + Z(τ)

)
dτ. (2)

The goal is, based on the generated spike train, to decide
whether the information symbol iinj was equal to 0 or A.



Detecting spikes at the decoder is an easy task, since we model
a spike by a very large amplitude change. We propose thus
to use a hard decision rule with threshold K based on the
number of generated spikes Ns over the interval [0, T ] as

îinj =

{
A if Ns ≥ K
0 if Ns ≤ K.

(3)

In the remaining of the paper, we restrict our study to the case
K = 1, but it can be easily extended to arbitrary values of K.

An example of the evolution of the output potential V (t)
over the interval [0, T ] is given in Fig. 2, where iinj = A,
A = 1, C = 1 and σ2

N = 0. For this example, Ns = 3 spikes
are generated over the time interval [0, T ].

Iinj(t)

t
T

1

V (t)

t
Ttγ

γ

γ + Vs

Fig. 2. Example of the evolution of the membrane voltage V (t) in absence
of additive noise Z over the interval [0, T ], when iinj = A, A = 1 and
C = 1. Under this setup, Ns = 3 spikes have been generated.

In this paper, we aim to characterize the theoretical per-
formance of such an IF-based detection in the context of
energy efficient communication and wake-up radio. As such,
the transmitted power is low, and if there are many users, the
noise variance can easily be very high, thus our goal is to
detect a signal with a very low amplitude compared to the
noise. We aim to show that in an extreme case, where the
spiking threshold γ of the neuron is such that γ > AT , i.e.
where without channel noise no detection of Iinj = A can
occur, one can achieve a small error probability by taking
advantage of the surrounding noise.

The next Section presents one of our main contribution.

IV. PERFORMANCE ANALYSIS OF AN IF-NEURO BASED
DETECTOR

The following Proposition presents the error probability of
a digital communication set-up using our proposed IF-based
detector.

Proposition 1 When using the proposed IF-based detector
with K = 1, threshold γ, over the AWGN channels with noise

variance σ2
N , the error probability Pe = P(̂iinj 6= iinj) is

given as

Pe =
1

2
erfc
(√

γ2C2

2Tσ2
N

)
+

1

2
− 1

2
Φ

(
TA− γC√

σ2
NT

)

− 1

2
exp
(
2γCA

σ2
N

)
Φ

(
− TA+ γC√

σ2
NT

)
.

Proof: The error probability can be expressed as

Pe =
1

2
P(̂iinj = A|iinj = 0) +

1

2
P(̂iinj = 0|iinj = A). (4)

Let us compute the two conditional error probabilities sepa-
rately.

a) : Let us first assume that iinj = 0. The output of
the neuron at time t is thus given as V (t) = 1

C

∫ t
0
Z(τ)dτ =

σN

C Wt. Using Remark 1, the first hitting time Tγ follows a

Levy distribution: Tγ ∼ L
(
0, γ

2C2

σ2
N

)
.

The probability P(̂iinj = A|iinj = 0) corresponds to have
the first hitting time Tγ = tγ inside the time interval [0, T ],
leading to

P(̂iinj = A|iinj = 0) = FL(T ) = erfc
(√

γ2C2

2Tσ2
N

)
. (5)

b) : Let us now assume that iinj = A. The output of the
neuron at time t is thus given as V (t) = 1

C

∫ t
0
A+N(τ)dτ =

A
C t+σNWt. Using Lemma 1, the first hitting time Tγ follows

an Inverse Gaussian distribution: Tγ ∼ IG
(
γC
A , γ

2C2

σ2
N

)
.

The probability P(̂iinj = 0|iinj = A) corresponds to have
the first hitting time Tγ outside the interval [0, T ], leading to

P(̂iinj = 0|iinj = A) = 1− FI(T )

= 1−Φ
(
TA−γC√

σ2
NT

)
− exp

(
2γCA

σ2
N

)
Φ

(
− TA+γC√

σ2
NT

)
. (6)

Finally, replacing (5) and (6) into (4) concludes the proof.

Fig. 3 shows the error probability Pe as a function of the
normalized noise variance σ2

N/Fe, where Fe is the sampling
frequency, when the duration of a symbol is set to T = 50
and the amplitude A is set to A = 1. We consider normalized
noise variance in order to obtain performance closed to one
obtained by analog circuits used for the hardware neuron.
We used an IF neuron with γ = 51 and C = 1, thus in
absence of noise, no signal detection can occur if Iinj = A.
The curve marked with circle corresponds to the simulated
error probability when 105 symbols iinj have been generated,
whereas the curve marked with squares corresponds to the
error probability given in Proposition 1. First, one can note
that the simulated results fit the theory and second, that there
exists a specific value of the noise variance such that the error
probability is minimal, proving thus the existence of SR in this
IF-based communication scheme. Nevertheless, with a single
IF neuron, one can achieve an error probability of 0.24 in the
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Fig. 3. Error probability Pe as a function of the normalized noise variance
σ2
N/Fe, γ = 51, T = 50, K = 1, A = 1, C = 1, 105 symbols iinj

best case. First note that this error probability is too large to
consider an application to digital communication with a single
IF-based detector. Moreover, even if this value was smaller,
it is achieved only for a specific value of normalized noise
variance. Unfortunately, one can not control the noise power
of the channel, thus one can not guarantee a low enough error
probability with this single IF-based detector.

If instead one is interested in achieving a small error
probability for a fixed noise variance when the transmitted
power can be large, the best solution is to set the amplitude
A as large as possible. Indeed, if A becomes large, then the
conditional error probability P(̂iinj = 0|iinj=A) tends to 0.
Thus the error probability tends to Pe → 1

2erfc
(√

γ2C2

2Tσ2
N

)
.

In the following Section we propose to use parallel neurons
in order to overcome the single IF neuron issues and to
achieve, as we will see in the numerical simulations, an error
probability of the order of 10−12 (for a specific value of the
noise variance) and below 10−4 for a large range of noise
variance, allowing thus the use of our proposed IF-based
detector for energy efficient communication.

V. PERFORMANCE ANALYSIS OF Np IF-NEURO BASED
DETECTOR IN PARALLEL

Let assume that we have Np IF-based decoders with the
same input sequence. In the remaining of the paper, we assume
that we can have at most Nmax = 50 neurons in parallel.
Each detector outputs its own decided symbol, with K = 1
and the overall decoder decides whether the input symbol was
equal to 0 or A. Again, this decision step is performed using a
hard decision rule based on the number N1 of single IF-based
detectors that have decided that the input symbol was equal
to A. The output symbol is decoded as follows:

îinj =

{
A if N1 ≥ Kp

0 else

This situation is depicted in Fig. 4.

Iin j

Z1

Z2

ZNp

+
+

+
+

+
+

∫ t

0

∫ t

0

∫ t

0

Detector
K = 1

Detector
K = 1

Detector
K = 1

Decoder

N1: Nb. of decided
’A’

Îin j =

{
A if N1 ≥ Kp

0 else

Îin j

...

Fig. 4. Np neuro-based detectors with K = 1. The overall decoder decides
Iinj = A if at least Kp of the Np decoders have decided Îinj = A

To ease the readability, we denote by P(j|k), j, k ∈ {0, A}
the conditional probability P(j|k) = P(̂iinj = j|iinj = k).

Proposition 2 When using the proposed IF-based detector
with K = 1 and threshold γ over Np parallel AWGN channels
with noise variance σ2

N , for a given Kp, the error probability
PKp

e,Np
= P(̂iinj 6= iinj) is given as

PKp

e,Np
=

Np∑

k=Kp

(
Np
k

)
P(A|0)kP(0|0)Np−k

2

+

Np∑

k=Np−Kp+1

(
Np
k

)
P(0|A)kP(A|A)Np−k

2
,

where P(A|0), respectively P(0|A), is given in (5), respectively
in (6).

Proof: The error probability is given as

PKp

e,Np
=

1

2
P(at least Kp decided îinj = A|iinj = 0)

+
1

2
P(at most Kp − 1 decided îinj = A|iinj = A)

In the following, we propose a way to determine the optimal
number N∗p of neuron in parallel and the optimal threshold K∗p
for a given noise variance. Since we assume that we can at
most have access to Nmax = 50 IF-neurons in parallel, N∗p
and K∗p are chosen as

N∗p ,K
∗
p = arg min

Np,Kp

PKp

e,Np

subject to Np ≤ Nmax,
Kp ≤ Nmax

(7)

The obtained results are summarized in Table I and the
corresponding error probability curves are given in Fig. 5 as
a function of the noise variance. Table II presents the optimal
number to put in parallel if one sets Kp to Kp = 2. Indeed,
varying the decoding threshold without increasing the energy



−10 log(σ2
N/Fe) 8 0 -5 -10 -15 -20 -25 -30

K∗
p 2 2 4 11 21 30 37 42

N∗
p 50 50 50 50 50 50 50 50

TABLE I
OPTIMAL NUMBER OF PARALLEL NEURONS N∗

p AND K∗
p OBTAINED BY

EXHAUSTIVE SEARCH.

−10 log(σ2
N/Fe) 8 0 -5 -10 -15 -20 -25 -30

Kp 2 2 2 2 2 2 2 2
N∗

p 50 50 27 9 4 3 2 2
TABLE II

OPTIMAL NUMBER OF PARALLEL NEURONS N∗
p OBTAINED BY

EXHAUSTIVE SEARCH WHEN Kp = 2.

consumption or the size of the circuit for each variance if the
entire circuit is build upon CMOS technology is a hard task.
Thus, these two set-ups allows the compare the gap between
optimality over both (Np,Kp) and only over Np for a fixed
Kp.

Fig. 5 compares the achievable error probabilities in five
cases: three cases where Kp = 2, the single neuron case and
one case with optimal N∗p and K∗p .

For the case K = 2, we consider 2 cases: either we optimize
the number of neurons in parallel Np under the constraint
Kp = 2 or we set this number of neuron in parallel to Np =
16, which is optimal for a normalized variance of 0.5.

From Fig. 5, one can see that putting neurons in parallel
improves significantly the error probability for a large range
of normalized variance compared to the single neuron case.
Nevertheless, one can also note that for a large value of the
normalized noise variance, having an unappropriated number
in parallel can decrease the performance compared to the
single neuron case (For instance, for a normalized noise
variance from 13 to 25, having 16 neurons in parallel yields
an error probability larger than the one obtained in the single
neuron case).
One can also note that there is a large gap between the two
curves where one optimize the number of neuron in parallel
for a fixed Kp or when one optimize both values.
We can also note that the error probability is below 10−4 for
a very large range of normalized noise variance. As such, a
detector based on this very low-consuming parallel IF-based
architecture can be used in the context of energy efficient
communication and in wake-up radio scenario.

VI. CONCLUSION

In this paper we characterized the theoretical performance
of a neuro-based digital communication. We showed that with
only one neuron, the error probability is too high to consider
a digital communication setup so we proposed to use parallel
neurons. With this new neuro-based architecture, we showed
that one can achieve a very low error probability, less than
10−4, for a large range of noise variance. Moreover, our
detection scheme applies to below-threshold signal detection
where we took advantage of the surrounding noise thanks
to the non-linear behavior of our decoder. Nevertheless, this
large performance improvement requires having Np i.i.d. white
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opt. nb of neurons in parallel, opt. K
p
 (theory)

Fig. 5. Error probability PKp

e,Np
as a function of the normalized SNR -

comparison between the single neuron case, the parallel neurons case with
Kp = 2 and optimal Np and the parallel neurons case with optimal Np and
Kp when C = 1, γ = 51, A = 1 and T = 50

noise sources of same variance and Np identical neurons,
which is in practice very hard to achieve. To overcome
this issue, one could transform our parallel decoder into a
sequential one requiring only one neuron and one noise source
by turning the encoding into a repetition, and allowing a
latency equal to the number of needed neurons in parallel.
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